
Spora część ludzi nie ma w zwyczaju czytania wszelkich wstępów, gdyż szkoda im na to
czasu i fatygi. W tym przypadku jednak radziłbym nie ignorować tej części, gdyż może to
uchronić cię od niewłaściwego postępowania, które przy odrobinie pecha stanie się
przyczyną mniejszych lub większych kłopotów.

Bez zbędnych słów przejdźmy zatem do meritum.

1
WPROWADZENIE

Nawet tysiącmilowa podróż

zaczyna się od jednego kroku.
Lao Tse

Witam serdecznie wszystkich razem i każdego z osobna. Niniejszy megatutorial ma za
zadanie przybliżyć zwykłemu użytkownikowi komputera arkana programowania gier.
Jeżeli czytasz te słowa, to najprawdopodobniej chcesz wiedzieć, w jaki sposób tworzone
są gry, którymi pewnie nie raz bawiłeś się przez wiele godzin. I nie tylko chcesz wiedzieć,
ale też umieć samemu stworzyć podobne produkcje.

Jeżeli tak, to dobrze trafiłeś.

Dla kogo jest ten tutorial?
Nie twierdzę, że potrafię nauczyć programowania gier każdego, kto chciałby taką
umiejętność posiąść. Na pewno jednak będę starał się przekazywać swoją (i nie tylko
swoją) wiedzę w sposób jak najbardziej jasny i klarowny. Wybaczcie mi, jeżeli nie zawsze
będzie mi się to udawać.

Od czytelnika oczekuję jednak przynajmniej umiarkowanej znajomości obsługi
komputera. Jeśli samodzielnie ściągnąłeś i odczytałeś plik z tym tutorialem, to twoje
umiejętności są chyba wystarczające :)
Generalnie nie chciałbym, aby osoba czytająca ten tutorial robiła wielkie oczy na widok
takich pojęć jak „okno”, „menu”, „przycisk” itp. Skoro spełniasz te warunki
(a spełniasz? :D), możemy kontynuować.

Oprócz kompletnie zielonych w kwestii programowania gier czy programowania w ogóle,
liczę że tutorial ten trafi również do programistów z pewnym, niekoniecznie dużym,
doświadczeniem. Aby ułatwić im nieco życie i nie zmuszać do przeglądania całego tekstu
w poszukiwaniu zagadnień, których nie znają, postaram się dać im pewne wskazówki,
pozwalające szybko zorientować w swoim poziomie zaawansowania i przejść od razu do
odpowiadającym im rozdziałów. Wszyscy jednak powinni doczytać tą część tutoriala do
końca (zaczynając co najwyżej od następnego rozdziału).
Absolutni początkujący mogą pominąć ten fragment i iść do następnego podrozdziału.

Tak więc jeśli:

 Używałeś już kiedyś OpenGL, przejdź do Materiału Pomocniczego Przejście z
OpenGL na DirectX

 18

 Umiesz już programować w C++ i znasz Windows API, lecz nigdy nie kodziłeś gier
i nie znasz żadnego graficznego API, przejdź do części IV, DirectX

 Umiesz w miarę dobrze programować w C++, lecz nigdy jeszcze nie tworzyłeś
programów dla Windows, przejdź do części III, Wprowadzenie do Windows API

 Znasz podstawy C++ i chciałbyś kontynuować naukę, przejdź do części II,
Zaawansowane C++ i STL lub do rozdziałów wcześniejszych, w zależności od
swojego stanu wiedzy

 Nie znasz C++, ale znasz Pascala lub (lepiej) Object Pascala (Delphi), to zajrzyj
do Materiału Pomocniczego Przejście z Object Pascala na C++

 Nie znasz żadnego języka programowania, przejdź do następnego podrozdziału :)
Wszyscy jednak powinni przeczytać do końca tą część tutoriala. Wyjdzie wam to na
zdrowie :))

Kto może zostać koderem?
Chcesz więc opanować piękną acz niełatwą sztukę programowania? Chociaż prawie każdy
może tego dokonać, niektóre cechy osobowości i pokrewne zainteresowania mogą być
bardzo pomocne. Niektóre zaś okażą się pewną przeszkodą.

Zacznijmy od tego, że programista nie tylko pisze kod. Programista także, czy nawet
przede wszystkim, rozwiązuje problemy. Używa on do tego narzędzi, jakimi są właśnie
języki programowania.
Specyfika programowania polega na odpowiednim podejściu do rozwiązywania
problemów, mianowicie na podziale ich na mniejsze fragmenty, wykonywane w określony
sposób w określonym porządku – to jest właśnie kod. Dlatego też trzeba umieć rozbijać
duże zagadnienia na mniejsze, wielki problemy na małe części. Trzeba mieć umysł
analityczny.

Programista prawie cały czas poznaje nowe zagadnienia i techniki. Dlatego musi być
ciekawy świata i autentycznie lubić to, co robi.

Pamiętajmy też, że koder programuje komputery, które w działaniu są przeraźliwie
jednoznaczne, logiczne i przewidywalne. Należy więc umieć myśleć logicznie i
formułować swoje koderskie pomysły w sposób jasny i jednoznaczny.

Wreszcie, należy posiadać dobrą pamięć syntaktyczną i semantyczną. Cóż znaczą te
straszne słowa? :) Pamięć syntaktyczna to zdolność do jak najlepszego zapamiętywania
reguł składniowych – chodzi tu oczywiście o języki programowania. Pamięć semantyczna
to umiejętność przyswajania sobie znaczenia pojęć – nie można na przykład mylić
procedury z klasą albo zmiennej z makrem.
Te dwa warunki są zazwyczaj najtrudniejsze do spełnienia :D

Dobry koder powinien mieć typ osobowości określany jako teoretyczny, a więc doceniać
wartości intelektualne. Także typ polityczny bywa przydatny, szczególnie jako szef
zespołu programistów.
OK. to tyle tytułem socjologicznej psychoanalizy :)

Dodatkowo, programista gier musi w znacznie większym stopniu niż inni koderzy znać się
na matematyce i fizyce. Bez nich nie ma przecież mowy o grafice trójwymiarowej czy
realistycznym symulowaniu rzeczywistości.

Zastanawiasz się teraz, czy spełniasz te warunki? Jeżeli naprawdę się zastanawiasz, to
istnieje duże prawdopodobieństwo, że je spełniasz! :) Wcale nie żartuję – większość ludzi
od razu odrzuciłaby je jako nieprzystające do ich osoby i powiedziała „To nie dla mnie”.
Jeśli ty tak nie robisz, to jesteś usilnie proszony o dalszą lekturę :D

 19

Natomiast jeżeli wydaje ci się, iż nie podpadasz pod jeden tylko warunek, to twoja
decyzja powinna zależeć od tego, jakiego warunku nie spełniasz. W przypadku gdy chodzi
o logiczne (racjonalne) myślenie, to nie martw się – znam kilku koderów, którzy
doskonale obywają się bez niego :)
Bez umysłu analitycznego też da się żyć, ale z początku może być ci trudno samodzielnie
wymyślać algorytmy. Mówi się, że wszystkiego można się nauczyć – nie wiem, czy
zasada ta działa i w tym przypadku, ale zawsze możesz spróbować…
Niestety, brak dobrej pamięci syntaktycznej i semantycznej w zasadzie dyskwalifikuje
kandydata na programistę. Jeśli mimo wszystko chcesz spróbować, pamiętaj że robisz to
na własne ryzyko i że ostrzegałem :)

Cóż, czas na męską decyzję – czerwona czy niebieska pigułka? :) Daj sobie chwilę
przerwy, zastanów, przemyśl wszystkie za i przeciw… Kiedy będziesz gotowy, to albo
wciśniesz Alt+F4 i zapomnisz, że kiedykolwiek to czytałeś, albo przejdziesz dalej…

A więc wybrałeś czerwoną pigułkę… Zatem witaj na pustyni rzeczywistości ;)) Ale dosyć
już tych żartów – niedługo zaczniemy całkiem poważną naukę i będziesz mógł
zweryfikować swoją decyzję :) Zanim jednak to nastąpi, musisz otrzymać garść
wskazówek, które pomogą ci przejść przez obraną drogę.
(Huh, jak to wszystko patetycznie brzmi ;D)

Clicki a sprawa polska
Swego czasu dużą popularność zyskały programy do łatwego tworzenia gier, jak Klik &
Play, The Games Factory, Game Maker czy Multimedia Fusion. W założeniu mają one
umożliwić kompletnym laikom tworzenie prostych gier bez konieczności programowania.
Możliwe, że używałeś kiedyś tego rodzaju programów. Jeżeli tak, to jednocześnie dobrze i
źle. Dobrze – gdyż przy okazji nauczyłeś się zapewne używania prostych funkcji (np.
matematycznych) czy używania układu współrzędnych. Źle – bo programowanie może ci
się na początku wydawać zbyt trudne i pracochłonne.

Screen 1. Okno programu The Games Factory - edytor animacji. Czyż nie wygląda żałośnie? :)

(screen pochodzi z serwisu Strefa Twórców Gier)

http://www.strefa-tg.prv.pl/

 20

Zgadzam się jednak, że używanie programu Game Maker mogło ci przynieść więcej
pożytku niż szkody. Zawarty w nim język skryptowy mógł pomóc nauczyć się podstaw
programowania; zresztą, nawet nie używając go można się tam nauczyć tworzenia
prostych algorytmów. No i nie ma tam takich ułatwień jak wbudowany ruch odbijany czy
platformowy.

Jeżeli jednak chcesz na poważnie zająć się programowaniem gier, to powinieneś czym
prędzej porzucić wszelkie tego rodzaju programy. Wierz mi, iż o wiele większe
możliwości daje kodowanie. No i przynosi znacznie większą satysfakcję :)

Treść tutoriala
Zobaczmy więc, jak wygląda droga, który prowadzi nas do upragnionego celu, czyli
nauczenia się programowania gier.

Zawartość kursu

Najpierw musisz poznać programowanie w ogóle. Nauczysz się kodować w języku C++,
zaczynając od najbardziej elementarnych programów po coraz trudniejsze, poznasz
większość możliwości tego języka.
Po takiej solidnej porcji wiedzy będziesz mógł przejść do pisania programów dla
środowiska Windows. Nie będziemy się dokładnie wgłębiać we wszystkie aspekty tego
niezwykle obszernego zagadnienia – poznasz to, co będzie ci niezbędne do przejścia do
następnej fazy, czyli nauki DirectX.
Wtedy wreszcie zacznie się prawdziwe programowanie gier. Poznasz sposób tworzenia
trójwymiarowych i dwuwymiarowych scen, stosowania oświetlenia, tekstur i wielu innych
technik.

Niektórzy mogą się kłócić z zaproponowanym tu zestawem narzędzi (C++, Windows i
DirectX). Odpowiem im, że tak naprawdę jest to sprawa drugorzędna – o wiele
ważniejsze niż znajomość samego języka czy graficznego API jest orientowanie się w
koncepcjach: programowania w ogóle i grafiki w szczególności.

Układ graficzny i zapis składniowy

To jest właśnie droga, którą będziemy podążać. Zanim jednak w nią wyruszysz, poznaj
niektóre z drogowskazów, które dla ciebie zostawiłem. Mówiąc wprost, chodzi o układ
graficzny tekstu - niektóre elementy są w nim bowiem specjalnie wyróżnione:

Tak będą oznaczane fragmenty kodów źródłowych (tzw. listingi).

To będą ważne uwagi oraz pojęcia i definicje, które powinieneś sobie przyswoić.

Tak będę zwracał na potencjalne niebezpieczeństwa (głównie chodzi o popełnianie
trudnych do wykrycia błędów).

Te ramki to dodatkowe informacje dla zainteresowanych, opisujące dokładniej omawiane
sprawy. Początkujący mogą je pominąć, szczególnie przy pierwszym czytaniu.

A to będą mniej lub bardziej związane z tematem dygresje lub inne, luźne uwagi.

 21

Niekiedy będę też przedstawiał składnię jakichś konstrukcji w języku programowania. W
takich fragmentach wyrazy pisane kursywą mają być zastąpione przez konkretne nazwy,
zaś te napisane normalnie powinny pozostać bez zmian.
Pogrubione nawiasy kwadratowe [] zawierają natomiast nieobowiązkowe składniki
danej konstrukcji, a symbol wielokropka ... oznacza dalszy ciąg listy podobnych
elementów.

Podsumowania, pytania i zadania

Na końcu większości rozdziałów zamieszczał będę krótkie podsumowanie oraz
(niestety :D) ćwiczenia do wykonania dla ciebie. Cóż, prace domowe są nieuniknione :)

Podsumowanie
To dopiero pierwszy rozdział pierwszej (czy raczej zerowej) części, więc siłą rzeczy nie
przedstawiłem tu jeszcze żadnych konkretnych informacji. Przypomnijmy jednak, co
ciekawego udało się nam razem dokonać.

Przede wszystkim dowiedziałeś się, że ten tutorial przeznaczony jest dla osób pragnących
nauczyć się programowania gier. Podjąłeś brzemienną w skutkach decyzję o podjęciu
tego wyzwania – brawo :) Przeczytałeś też kilka uwag na temat programów do tworzenia
gier i wreszcie poznałeś pokrótce treść i formę tutoriala.

Z następnego rozdziału dowiesz się natomiast, z jakich innych źródeł informacji
powinieneś koniecznie korzystać podczas tego kursu, jak i w czasie codziennego
kodowania.

Zapraszam więc wgłąb króliczej nory…

