
1
KRÓTKO O

PROGRAMOWANIU

Programy nie spadają z nieba,
najpierw tym niebem potrząść trzeba.

gemGreg

Rozpoczynamy zatem nasz kurs programowania gier. Zanim jednak napiszesz swojego
własnego Quake’a, Warcrafta czy też inny wielki przebój, musisz nauczyć się tworzenia
programów (gry to przecież też programy, prawda?) – czyli programowania.

Jeszcze niedawno czynność ta była traktowana na poły mistycznie: oto bowiem
programista (czytaj jajogłowy) wpisuje jakieś dziwne ciągi liter i numerków, a potem w
niemal magiczny sposób zamienia je w edytor tekstu, kalkulator czy wreszcie grę.
Obecnie obraz ten nie przystaje już tak bardzo do rzeczywistości, a tworzenie programów
jest prostsze niż jeszcze kilkanaście lat temu. Nadal jednak wiele zależy od umiejętności
samego kodera oraz jego doświadczenia, a zyskiwanie tychże jest kwestią długiej pracy i
realizacji wielu projektów.
Nagrodą za ten wysiłek jest możliwość urzeczywistnienia dowolnego praktycznie pomysłu
i wielka satysfakcja.

Czas więc przyjrzeć się, jak powstają programy.

Krok za krokiem
Większość aplikacji została stworzona do realizacji jednego, konkretnego, choć
obszernego zadania. Przykładowo, Notatnik potrafi edytować pliki tekstowe, Winamp –
odtwarzać muzykę, a Paint tworzyć rysunki.

Screen 6. Głównym zadaniem Winampa jest odtwarzanie plików muzycznych

Możemy więc powiedzieć, że główną funkcją każdego z tych programów będzie
odpowiednio edycja plików tekstowych, odtwarzanie muzyki czy tworzenie rysunków.
Funkcję tę można jednak podzielić na mniejsze, bardziej szczegółowe. I tak Notatnik
potrafi otwierać i zapisywać pliki, drukować je i wyszukiwać w nich tekst. Winamp zaś
pozwala nie tylko odtwarzać utwory, ale też układać z nich playlisty.

Podstawy programowania 50

Idąc dalej, możemy dotrzeć do następnych, coraz bardziej szczegółowych funkcji danego
programu. Przypominają one więc coś w rodzaju drzewka, które pozwala nam niejako
„rozłożyć daną aplikację na części”.

Schemat 1. Podział programu Notatnik na funkcje składowe

Zastanawiasz się pewnie, na jak drobne części możemy w ten sposób dzielić programy.
Innymi słowy, czy dojdziemy wreszcie do takiego elementu, który nie da się rozdzielić na
mniejsze. Spieszę z odpowiedzią, iż oczywiście tak – w przypadku Notatnika byliśmy
zresztą bardzo blisko.

Czynność zatytułowana Otwieranie plików wydaje się być już jasno określona. Kiedy
wybieramy z menu Plik programu pozycję Otwórz, Notatnik robi kilka rzeczy: najpierw
pokazuje nam okno wyboru pliku. Gdy już zdecydujemy się na jakiś, pyta nas, czy
chcemy zachować zmiany w już otwartym dokumencie (jeżeli jakiekolwiek zmiany
rzeczywiście poczyniliśmy). W przypadku, gdy je zapiszemy w innym pliku lub odrzucimy,
program przystąpi do odczytania zawartości żądanego przez nas dokumentu i wyświetli
go na ekranie. Proste, prawda? :)
Przedstawiona powyżej charakterystyka czynności otwierania pliku posiada kilka
znaczących cech:

 określa dokładnie kolejne kroki wykonywane przez program
 wskazuje różne możliwe warianty sytuacji i dla każdego z nich przewiduje

odpowiednią reakcję
Pozwalają one nazwać niniejszy opis algorytmem.

Algorytm to jednoznacznie określony sposób, w jaki program komputerowy realizuje
jakąś elementarną czynność.5

Jest to bardzo ważne pojęcie. Myśl o algorytmie jako o czymś w rodzaju przepisu albo
instrukcji, która „mówi” aplikacji, co ma zrobić gdy napotka taką czy inną sytuację. Dzięki
swoim algorytmom programy wiedzą co zrobić po naciśnięciu przycisku myszki, jak
zapisać, otworzyć czy wydrukować plik, jak wyświetlić poprawnie stronę WWW, jak
odtworzyć utwór w formacie MP3, jak rozpakować archiwum ZIP i ogólnie – jak
wykonywać zadania, do których zostały stworzone.

Jeśli nie podoba ci się, iż cały czas mówimy o programach użytkowych zamiast o grach,
to wiedz, że gry także działają w oparciu o algorytmy. Najczęściej są one nawet znacznie

5 Nie jest to ścisła matematyczna definicja algorytmu, ale na potrzeby programistyczne nadaje się bardzo
dobrze :)

Edycja plików tekstowych

Otwieranie i zapisywanie plików

Drukowanie plików

Wyszukiwanie i zamiana tekstu

Otwieranie plików

Zapisywanie plików

Wyszukiwanie tekstu w pliku

Zamiana danego tekstu na inny

Krótko o programowaniu 51

bardziej skomplikowane od tych występujących w używanych na co dzień aplikacjach.
Czyż nie łatwiej narysować prostą tabelkę z liczbami niż skomplikowaną scenę
trójwymiarową? :)

Z tego właśnie powodu wymyślanie algorytmów jest ważną częścią pracy twórcy
programów, czyli programisty. Właśnie tą drogą koder określa sposób działania
(„zachowanie”) pisanego programu.

Podsumujmy: w każdej aplikacji możemy wskazać wykonywane przez nią czynności,
które z kolei składają się z mniejszych etapów, a te jeszcze z mniejszych itd. Zadania te
realizowane są poprzez algorytmy, czyli przepisy określone przez programistów –
twórców programów.

Jak rozmawiamy z komputerem?
Wiemy już, że programy działają dzięki temu, że programiści konstruują dla nich
odpowiednie algorytmy. Poznaliśmy nawet prosty algorytm, który być może jest
stosowany jest przez program Notatnik do otwierania plików tekstowych.

Zauważ jednak, że jest on napisany w języku naturalnym – to znaczy takim, jakim
posługują się ludzie. Chociaż jest doskonale zrozumiały dla wszystkich, to ma jedną
niezaprzeczalną wadę: nie rozumie go komputer! Dla bezmyślnej maszyny jest on po
prostu zbyt niejednoznaczny i niejasny.
Z drugiej strony, już istniejące programy są przecież doskonale „zrozumiałe” dla
komputera i działają bez żadnych problemów. Jak to możliwe? Otóż pecet też posługuje
się pewnego rodzaju językiem. Chcąc zobaczyć próbkę jego talentu lingwistycznego,
wystarczy podejrzeć zawartość dowolnego pliku EXE. Co zobaczymy? Ciąg
bezsensownych, chyba nawet losowych liter, liczb i innych znaków. On ma jednak sens,
tyle że nam bardzo trudno poznać go w tej postaci. Po prostu język komputera jest dla
równowagi zupełnie niezrozumiały dla nas, ludzi :)

Screen 7. Tak wygląda plik EXE :-)

Jak poradzić sobie z tym, zdawałoby się nierozwiązalnym, problemem? Jak radzą sobie
wszyscy twórcy oprogramowania, skoro budując swoje programy muszą przecież
„rozmawiać” z komputerem?
Ponieważ nie możemy peceta nauczyć naszego własnego języka i jednocześnie sami nie
potrafimy porozumieć się z nim w jego „mowie”, musimy zastosować rozwiązanie
kompromisowe. Na początek uściślimy więc i przejrzyście zorganizujemy nasz opis
algorytmów. W przypadku otwierania plików w Notatniku może to wyglądać na przykład
tak:

Algorytm Plik -> Otwórz
 Pokaż okno wyboru plików
 Jeżeli użytkownik kliknął Anuluj, To Przerwij

Podstawy programowania 52

 Jeżeli poczyniono zmiany w aktualnym dokumencie, To
 Wyświetl komunikat "Czy zachować zmiany w aktualnym
dokumencie?" z przyciskami Tak, Nie, Anuluj
 Sprawdź decyzję użytkownika
 Decyzja Tak: wywołaj polecenie Plik -> Zapisz
 Decyzja Anuluj: Przerwij

 Odczytaj wybrany plik
 Wyświetl zawartość pliku
Koniec Algorytmu

Jak widać, sprecyzowaliśmy tu kolejne kroki wykonywane przez program – tak aby
„wiedział”, co należy po kolei zrobić. Fragmenty zaczynające się od Jeżeli i Sprawdź
pozwalają odpowiednio reagować na różne sytuacje, takie jak zmiana decyzji
użytkownika i wciśnięcie przycisku Anuluj.
Czy to wystarczy, by komputer wykonał to, co mu każemy? Otóż nie bardzo… Chociaż
wprowadziliśmy już nieco porządku, nadal używamy języka naturalnego – jedynie
struktura zapisu jest bardziej ścisła. Notacja taka, zwana pseudokodem, przydaje się
jednak bardzo do przedstawiania algorytmów w czytelnej postaci. Jest znacznie bardziej
przejrzysta oraz wygodniejsza niż opis w formie zwykłych zdań, które musiałyby być
najczęściej wielokrotnie złożone i niezbyt poprawne gramatycznie. Dlatego też, kiedy
będziesz wymyślał własne algorytmy, staraj się używać pseudokodu do zapisywania ich
ogólnego działania.

No dobrze, wygląda to całkiem nieźle, jednak nadal nie potrafimy się porozumieć z tym
mało inteligentnym stworem, jakim jest nasz komputer. Wszystko dlatego, iż nie wie on,
w jaki sposób przetworzyć nasz algorytm, napisany w powstałym ad hoc języku, do
postaci zrozumiałych dla niego „krzaczków”, które widziałeś wcześniej.
Dla rozwiązania tego problemu stworzono sztuczne języki o dokładnie określonej składni i
znaczeniu, które dzięki odpowiednim narzędziom mogą być zamieniane na kod binarny,
czyli formę zrozumiałą dla komputera. Nazywamy je językami programowania i to
właśnie one służą do tworzenia programów komputerowych. Wiesz już zatem, czego
najpierw musisz się nauczyć :)

Język programowania to forma zapisu instrukcji dla komputera i programów
komputerowych, pośrednia między językiem naturalnym a kodem maszynowym.

Program zapisany w języku programowania jest, podobnie jak nasz algorytm w
pseudokodzie, zwykłym tekstem. Podobieństwo tkwi również w fakcie, że sam taki tekst
nie wystarczy, aby napisaną aplikację uruchomić – najpierw należy ją zamienić w plik
wykonywalny (w systemie Windows są to pliki z rozszerzeniem EXE). Czynność ta jest
dokonywana w dwóch etapach.
Podczas pierwszego, zwanego kompilacją, program nazywany kompilatorem zamienia
instrukcje języka programowania (czyli kod źródłowy, który, jak już mówiliśmy, jest po
prostu tekstem) w kod maszynowy (binarny). Zazwyczaj na każdy plik z kodem
źródłowym (zwany modułem) przypada jeden plik z kodem maszynowym.

Kompilator – program zamieniający kod źródłowy, napisany w jednym z języków
programowania, na kod maszynowy w postaci oddzielnych modułów.

Drugi etap to linkowanie (zwane też konsolidacją lub po prostu łączeniem). Jest to
budowanie gotowego pliku EXE ze skompilowanych wcześniej modułów. Oprócz nich
mogą tam zostać włączone także inne dane, np. ikony czy kursory. Czyni to program
zwany linkerem.

Krótko o programowaniu 53

Linker łączy skompilowane moduły kodu i inne pliki w jeden plik wykonywalny, czyli
program (w przypadku Windows – plik EXE).

Tak oto zdjęliśmy nimb magii z procesu tworzenia programu ;D

Skoro kompilacja i linkowanie są przeprowadzane automatycznie, a programista musi
jedynie wydać polecenie rozpoczęcia tego procesu, to dlaczego nie pójść dalej – niech
komputer na bieżąco tłumaczy sobie program na swój kod maszynowy. Rzeczywiście,
jest to możliwe – powstało nawet kilka języków programowania działających w ten
sposób (tak zwanych języków interpretowanych, przykładem jest choćby PHP, służący do
tworzenia stron internetowych). Jednakże ogromna większość programów jest nadal
tworzona w „tradycyjny” sposób.
Dlaczego? Cóż – jeżeli w programowaniu nie wiadomo, o co chodzi, to na pewno chodzi o
wydajność6 ;)) Kompilacja i linkowanie trwa po prostu długo, od kilkudziesięciu sekund w
przypadku niewielkich programów, do nawet kilkudziesięciu minut przy dużych. Lepiej
zrobić to raz i używać szybkiej, gotowej aplikacji niż nie robić w ogóle i czekać dwie
minuty na rozwinięcie menu podręcznego :DD

Zatem czas na konkluzję i usystematyzowanie zdobytej wiedzy. Programy piszemy w
językach programowania, które są niejako formą komunikacji z komputerem i wydawania
mu poleceń. Są one następnie poddawane procesom kompilacji i konsolidacji, które
zamieniają zapis tekstowy w binarny kod maszynowy. W wyniku tych czynności powstaje
gotowy plik wykonywalny, który pozwala uruchomić program.

Języki programowania

Przegląd najważniejszych języków programowania
Obecnie istnieje bardzo, bardzo wiele języków programowania. Niektóre przeznaczono do
konkretnych zastosowań, na przykład sieci neuronowych, inne zaś są narzędziami
ogólnego przeznaczenia. Zazwyczaj większe korzyści zajmuje znajomość tych drugich,
dlatego nimi właśnie się zajmiemy.
Od razu muszę zaznaczyć, że mimo to nie ma czegoś takiego jak język, który będzie
dobry do wszystkiego. Spośród języków „ogólnych” niektóre są nastawione na szybkość,
inne na rozmiar kodu, jeszcze inne na przejrzystość itp. Jednym słowem, panuje totalny
rozgardiasz ;)

Należy koniecznie odróżniać języki programowania od innych języków używanych w
informatyce. Na przykład HTML jest językiem opisu, gdyż za jego pomocą definiujemy
jedynie wygląd stron WWW (wszelkie interaktywne akcje to już domena JavaScriptu).
Inny rodzaj to języki zapytań w rodzaju SQL, służące do pobierania danych z różnych
źródeł (na przykład baz danych).
Niepoprawne jest więc (popularne skądinąd) stwierdzenie „programować w HTML”.

Przyjrzyjmy się więc najważniejszym używanym obecnie językom programowania:

1. Visual Basic
Jest to następca popularnego swego czasu języka BASIC. Zgodnie z nazwą (basic
znaczy prosty), był on przede wszystkim łatwy do nauki. Visual Basic pozwala na
tworzenie programów dla środowiska Windows w sposób wizualny, tzn. poprzez
konstruowanie okien z takich elementów jak przyciski czy pola tekstowe.
Język ten posiada dosyć spore możliwości, jednak ma również jedną, za to bardzo

6 Niektórzy powiedzą, że o niezawodność, ale to już kwestia osobistych priorytetów :)

Podstawy programowania 54

poważną wadę. Programy w nim napisane nie są kompilowane w całości do kodu
maszynowego, ale interpretowane podczas działania. Z tego powodu są
znacznie wolniejsze od tych kompilowanych całkowicie.
Obecnie Visual Basic jest jednym z języków, który umożliwia tworzenie aplikacji
pod lansowaną przez Microsoft platformę .NET, więc pewnie jeszcze o nim
usłyszymy :)

Screen 8. Kod przykładowego projektu w Visual Basicu

2. Object Pascal (Delphi)

Delphi z kolei wywodzi się od popularnego języka Pascal. Podobnie jak VB jest
łatwy do nauczenia, jednakże oferuje znacznie większe możliwości zarówno jako
język programowania, jak i narzędzie do tworzenia aplikacji. Jest całkowicie
kompilowany, więc działa tak szybko, jak to tylko możliwe. Posiada również
możliwość wizualnego konstruowania okien. Dzięki temu jest to obecnie chyba
najlepsze środowisko do budowania programów użytkowych.

Screen 9.Tworzenie aplikacji w Delphi

3. C++

C++ jest teraz chyba najpopularniejszym językiem do zastosowań wszelakich.
Powstało do niego bardzo wiele kompilatorów pod różne systemy operacyjne i
dlatego jest uważany za najbardziej przenośny. Istnieje jednak druga strona
medalu – mnogość tych narzędzi prowadzi do niewielkiego rozgardiaszu i pewnych

Krótko o programowaniu 55

trudności w wyborze któregoś z nich. Na szczęście sam język został w 1997 roku
ostatecznie ustandaryzowany.
O C++ nie mówi się zwykle, że jest łatwy – być może ze względu na dosyć
skondensowaną składnię (na przykład odpowiednikiem pascalowych słów begin i
end są po prostu nawiasy klamrowe { i }). To jednak dosyć powierzchowne
przekonanie, a sam język jest spójny i logiczny.
Jeżeli chodzi o możliwości, to w przypadku C++ są one bardzo duże – w sumie
można powiedzieć, że nieco większe niż Delphi. Jest on też chyba najbardziej
elastyczny – niejako dopasowuje się do preferencji programisty.

4. Java
Ostatnimi czasy Java stała się niemal częścią kultury masowej – wystarczy choćby
wspomnieć o telefonach komórkowych i przeznaczonych doń aplikacjach. Ilustruje
to dobrze główny cel Javy, a mianowicie przenośność – i to nie kodu, lecz
skompilowanych programów! Osiągnięto to poprzez kompilację do tzw. bytecode,
który jest wykonywany w ramach specjalnej maszyny wirtualnej. W ten sposób,
program w Javie może być uruchamiany na każdej platformie, do której istnieje
maszyna wirtualna Javy – a istnieje prawie na wszystkich, od Windowsa przez
Linux, OS/2, QNX, BeOS, palmtopy czy wreszcie nawet telefony komórkowe. Z
tego właśnie powodu Java jest wykorzystywana do pisania niewielkich programów
umieszczanych na stronach WWW, tak zwanych apletów.
Ceną za tą przenośność jest rzecz jasna szybkość – bytecode Javy działa znacznie
wolniej niż zwykły kod maszynowy, w dodatku jest strasznie pamięciożerny.
Ponieważ jednak zastosowaniem tego języka nie są wielkie i wymagające
aplikacje, lecz proste programy, nie jest to aż tak wielki mankament.
Składniowo Java bardzo przypomina C++.

Screen 10. Krzyżówka w formie apletu Javy

5. PHP

PHP (skrót od Hypertext Preprocessor) jest językiem używanym przede wszystkim
w zastosowaniach internetowych, dokładniej na stronach WWW. Pozwala dodać im
znacznie większą funkcjonalność niż ta oferowana przez zwykły HTML. Obecnie
miliony serwisów wykorzystuje PHP – dużą rolę w tym sukcesie ma zapewne jego
licencja, oparta na zasadach Open Source (czyli brak ograniczeń w
rozprowadzaniu i modyfikacji).
Możliwości PHP są całkiem duże, nie można tego jednak powiedzieć o szybkości –
jest to język interpretowany. Jednakże w przypadku głównego zastosowania PHP,
czyli obsłudze serwisów internetowych, nie ma ona większego znaczenia – czas

Podstawy programowania 56

wczytywania strony WWW to przecież w większości czas przesyłania gotowego
kodu HTML od serwera do odbiorcy.
Jeżeli chodzi o składnię, to trochę przypomina ona C++. Kod PHP można jednak
swobodnie przeplatać znacznikami HTML.
Z punktu widzenia programisty gier język ten jest w zasadzie zupełnie
bezużyteczny (chyba że kiedyś sam będziesz wykonywał oficjalną stronę
internetową swojej wielkiej produkcji ;D), wspominam o nim jednak ze względu
na bardzo szerokie grono użytkowników, co czyni go jednym z ważniejszych
języków programowania.

Screen 11. Popularny skrypt forów dyskusyjnych, phpBB, także działa w oparciu o PHP

To oczywiście nie wszystkie języki – jak już pisałem, jest ich całe mnóstwo. Jednakże w
ogromnej większości przypadków główną różnicą między nimi jest składnia, a więc
sprawa mało istotna (szczególnie, jeżeli dysponuje się dobrą dokumentacją :D). Z tego
powodu poznanie jednego z nich bardzo ułatwia naukę następnych – po prostu im więcej
języków już znasz, tym łatwiej uczysz się następnych :)

Brzemienna w skutkach decyzja
Musimy zatem zdecydować, którego języka będziemy się uczyć, aby zrealizować nasz
nadrzędny cel, czyli poznanie tajników programowania gier. Sprecyzujmy więc
wymagania wobec owego języka:

 programy w nim napisane muszą być szybkie – w takim wypadku możemy wziąć
pod uwagę jedynie języki całkowicie kompilowane do kodu maszynowego

 musi dobrze współpracować z różnorodnymi bibliotekami graficznymi, na przykład
DirectX

 powinien posiadać duże możliwości i zapewniać gotowe, często używane
rozwiązania

 nie zaszkodzi też, gdy będzie w miarę prosty i przejrzysty :)
Jeżeli uwzględnimy wszystkie te warunki, to spośród całej mnogości języków
programowania (w tym kilku przedstawionych wcześniej) zostają nam aż… dwa – Delphi
oraz C++.

Przyglądając się bliżej Delphi, możemy zauważyć, iż jest on przeznaczony przede
wszystkim do programowania aplikacji użytkowych, które pozostają przecież poza
kręgiem naszego obecnego zainteresowania :) Na plus można jednak zaliczyć prostotę i
przejrzystość języka oraz jego bardzo dużą wydajność. Również możliwości Delphi są
całkiem spore.
Z kolei C++ zdaje się być bardziej uniwersalny. Dobrze rozumie się z ważnymi dla nas
bibliotekami graficznymi, jest także bardzo szybki i posiada duże możliwości. Składnia z
kolei jest raczej „ekonomiczna” i być może nieco bardziej skomplikowana.

Krótko o programowaniu 57

Czyżbyśmy mieli zatem remis, a prawda leżała (jak zwykle) pośrodku? :) Otóż
niezupełnie – nie uwzględniliśmy bowiem ważnego czynnika, jakim jest popularność
danego języka. Jeżeli jest on szeroko znany i używany (do programowania gier), to z
pewnością istnieje o nim więcej przydatnych źródeł informacji, z których mógłbyś
korzystać.
Z tego właśnie powodu Delphi jest gorszym wyborem, ponieważ ogromna większość
dokumentacji, artykułów, kursów itp. dotyczy języka C++. Wystarczy chociażby
wspomnieć, iż Microsoft nie dostarcza narzędzi pozwalających na wykorzystanie DirectX
w Delphi – są one tworzone przez niezależne zespoły7 i ich używanie wymaga pewnego
doświadczenia.

A więc – C++! Język ten wydaje się najlepszym wyborem, jeżeli chodzi o programowanie
gier komputerowych. A skoro mamy już tą ważną decyzję za sobą, została nam jeszcze
tylko pewna drobnostka – trzeba się tego języka nauczyć :))

Kwestia kompilatora
Jak już wspominałem kilkakrotnie, C++ jest bardzo przenośnym językiem,
umożliwiającym tworzenie aplikacji na różnych platformach sprzętowych i programowych.
Z tegoż powodu istnieje do niego całe mnóstwo kompilatorów.
Ale kompilator to tylko program do zamiany kodu C++ na kod maszynowy – w dodatku
działa on zwykle w trybie wiersza poleceń, a więc nie jest zbyt wygodny w użyciu.
Dlatego równie ważne jest środowisko programistyczne, które umożliwiałoby
wygodne pisanie kodu, zarządzanie całymi projektami i ułatwiałoby kompilację.

Środowisko programistyczne (ang. integrated development environment – w skrócie
IDE) to pakiet aplikacji ułatwiających tworzenie programów w danym języku
programowania. Umożliwia najczęściej organizowanie plików z kodem w projekty, łatwą
kompilację, czasem też wizualne tworzenie okien dialogowych.
Popularnie, środowisko programistyczne nazywa się po prostu kompilatorem (gdyż jest
jego główną częścią).

Przykłady takich środowisk zaprezentowałem na screenach przy okazji przeglądu języków
programowania. Nietrudno się domyśleć, iż dla C++ również przewidziano takie
narzędzia. W przypadku środowiska Windows, które rzecz jasna interesuje nas
najbardziej, mamy ich kilka:

1. Bloodshed Dev-C++
Pakiet ten ma niewątpliwą zaletę – jest darmowy do wszelakich zastosowań, także
komercyjnych. Niestety zdaje się, że na tym jego zalety się kończą :) Posiada
wprawdzie całkiem wygodne IDE, ale nie może się równać z profesjonalnymi
narzędziami: nie posiada na przykład możliwości edycji zasobów (ikon, kursorów
itd.)
Można go znaleźć na stronie producenta.

2. Borland C++Builder
Z wyglądu bardzo przypomina Delphi – oczywiście poza zastosowanym językiem
programowania, którym jest C++. Niemniej, tak samo jak swój kuzyn jest on
przeznaczony głównie do tworzenia aplikacji użytkowych, więc nie odpowiadałby
nam zbytnio :)

3. Microsoft Visual C++
Ponieważ jest to produkt firmy Microsoft, znakomicie integruje się z innym
produktem tej firmy, czyli DirectX – wobec czego dla nas, (przyszłych)

7 Najbardziej znanym jest JEDI

http://www.bloodshed.net/

Podstawy programowania 58

programistów gier, wypada bardzo korzystnie. Nic dziwnego zatem, że używają go
nawet profesjonalni twórcy.

Tak jest, dobrze myślisz – zalecam Visual C++ :) Warto naśladować najlepszych, a skoro
ogromna większość komercyjnych gier powstaje przy użyciu tego narzędzia (i to nie tylko
w połączeniu z DirectX), musi to chyba znaczyć, że faktycznie jest dobre8.
Jeżeli upierasz się przy innym środowisku, to pamiętaj, że przedstawione przeze mnie
opisy niektórych poleceń i opcji mogą nie odpowiadać twojemu IDE. W większości nie
dotyczy to jednak samego języka C++, którego składnię i możliwości zachowują
wszystkie kompilatory. W razie jakichkolwiek kłopotów możesz zawsze odwołać się do
dokumentacji :)

Podsumowanie
Uff, to już koniec tego rozdziału :) Zaczęliśmy go od dokładnego zlustrowania Notatnika i
podzieleniu go na drobne części – aż doszliśmy do algorytmów. Dowiedzieliśmy się, iż to
głównie one składają się na gotowy program i że zadaniem programisty jest właśnie
wymyślanie algorytmów.
Następnie rozwiązaliśmy problem wzajemnego niezrozumienia człowieka i komputera,
dzięki czemu w przyszłości będziemy mogli tworzyć własne programy. Poznaliśmy służące
do tego narzędzia, czyli języki programowania.
Wreszcie, podjęliśmy (OK, ja podjąłem :D) ważne decyzje, które wytyczają nam kierunek
dalszej nauki – a więc wybór języka C++ oraz środowiska Visual C++.

Następny rozdział jest wcale nie mniej znaczący, a może nawet ważniejszy. Napiszesz
bowiem swój pierwszy program :)

Pytania i zadania
Cóż, prace domowe są nieuniknione :) Odpowiedzenie na poniższe pytania i wykonanie
ćwiczeń pozwoli ci lepiej zrozumieć i zapamiętać informacje z tego rozdziału.

Pytania
1. Dlaczego języki interpretowane są wolniejsze od kompilowanych?

Ćwiczenia
1. Wybierz dowolny program i spróbuj nazwać jego główną funkcję. Postaraj się też

wyróżnić te bardziej szczegółowe.
2. Zapisz w postaci pseudokodu algorytm… parzenia herbaty :D Pamiętaj o

uwzględnieniu takich sytuacji jak: pełny/pusty czajnik, brak zapałek lub
zapalniczki czy brak herbaty

8 Wiem, że dla niektórych pojęcia „dobry produkt” i „Microsoft” wzajemnie się wykluczają, ale akurat w tym
przypadku wcale tak nie jest :)

