Z CZEGO SKLADA SIE
PROGRAM?

Kazdy dziatajgcy program jest przestarzaty.
pierwsze prawo Murphy’ego o oprogramowaniu

Gdy mamy juz przyswojong niezbedng dawke teoretycznej i pseudopraktycznej wiedzy,
mozemy przejs¢ od stéw do czynow :)

W aktualnym rozdziale zapoznamy sie z podstawami jezyka C++, ktore pozwolg nam
opanowac umiejetnosé tworzenia aplikacji w tym jezyku. Napiszemy wiec swéj pierwszy
program (drugi, trzeci i czwarty zreszta tez :D), zaznajomimy sie z podstawowymi
pojeciami uzywanymi w programowaniu i zdobedziemy gars$¢ niezbednej wiedzy :)

C++, pierwsze starcie

Zanim w ogole zaczniemy programowac, musisz zaopatrzy¢ sie w odpowiedni kompilator
C++ - wspominatem o tym pod koniec poprzedniego rozdziatu, zalecajac jednoczesnie
uzywanie Visual C++. Dlatego tez opisy polecen IDE czy screeny beda dotyczyly wtasnie
tego narzedzia. Nie uniemozliwia to oczywiscie uzywania innego $rodowiska, lecz w takim
wypadku bedziesz w wiekszym stopniu zdany na siebie. Ale przeciez lubisz wyzwania,
prawda? ;)

Bliskie spotkanie z kompilatorem

Pierwsze wyzwanie, jakim jest instalacja srodowiska, powiniene$ mie¢ juz za sobg, wiec
pozwole sobie optymistycznie zatozy¢, iz faktycznie tak jest :) Swojg droga, instalowanie
programow jest czescig niezbednego zestawu umiejetnosci, ktdre trzeba posigsc, by
mienic¢ sie (Srednio)zaawansowanym uzytkownikiem komputera. Zas kandydat na
przysztego programiste powinien niewatpliwie posiada¢ pewien (w domysle - raczej
wiekszy niz mniejszy) poziom obeznania w kwestii obstugi peceta. W ostatecznosci
mozna jednak siegng¢ do odpowiednich pomocy naukowych :D

Srodowisko programistyczne bedzie twoim podstawowym narzedziem pracy, wiec musisz
je dobrze poznaé. Nie jest ono zbyt skomplikowane w obstudze - z pewnoscig nie zawiera
takiego nattoku nikomu niepotrzebnych funkcji jak chociazby popularne pakiety

biurowe :) Niemniej, z pewnoscig przyda ci kilka stéw wprowadzenia.

W uzyciu jest pare wersji Visual C++4. W tym tutorialu bede opierat sie na pakiecie Visual
Studio 7 .NET (Visual C++ jest jego czescig), ktory rozni sie nieco od wczesniejszej, do
niedawna bardzo popularnej, wersji 6. Dlatego tez w miare mozliwosci bede starat sie
wskazywac na najwazniejsze réznice miedzy tymi dwoma edycjami IDE.

60 Podstawy programowania

»Goty” kompilator jest tylko maszynka zamieniajacg kod C++ na kod maszynowy,
dziatajacq na zasadzie ,ty mi podajesz plik ze swoim kodem, a ja go kompiluje”. Gdy
uswiadomimy sobie, ze przecietny program sktada sie z kilku(nastu) plikow kodu
zrédtowego, z ktorych kazdy nalezatoby kompilowac oddzielnie i wreszcie linkowac je w
jeden plik wykonywalny, docenimy zawarte w $rodowiskach programistycznych
mechanizmy zarzadzania projektami.

Projekt w srodowiskach programistycznych to zbiér modutéw kodu zrédtowego i innych
plikow, ktére po kompilacji i linkowaniu stajq sie pojedynczym plikiem EXE, czyli
programem.

Do najwazniejszych zalet projektu nalezy bardzo fatwa kompilacja — wystarczy wydac¢
jedno polecenie (na przykifad wybra¢ opcje z menu), a projekt zostanie automatycznie
skompilowany i zlinkowany. Zwazywszy, iz tak nie tak dawno temu czynnos¢ ta
wymagata wpisania kilkunastu dtugich polecen lub napisania oddzielnego skryptu,
widzimy tutaj duzy postep :)

Kilka projektéw mozna pogrupowac w tzw. rozwigzania® (ang. solutions). Przyktadowo,
jezeli tworzysz gre, do ktorej dotaczysz edytor etapu, to zasadnicza gra oraz edytor bedg
oddzielnymi projektami, ale rozsadnie bedzie zorganizowac je w jedno rozwigzanie.

%k >k

Teraz, gdy wiemy juz sporo na temat sposobu dziatania naszego $rodowiska oraz
przyczyn, dlaczego utatwia nam ono zycie, przydatoby sie je uruchomic¢ — uczyn wiec to
niezwtocznie. Powinienes$ zobaczy¢ na przyktad taki widok:

22 Microsoft Development Environment [design] - Start Page m

H-a-edd@| 2R oo -8B .
B A e B

P

b z
wa:/default.htm - | L i 2 | A%

T Get Started
Projects || Find Samples |

Modified

Open Project New Project

Screen 12. Okno poczatkowe srodowiska Visual Studio .NET

Coz, czas wiec co$ napisac - skoro mamy nauczyc¢ sie programowania, pisanie
programow jest przeciez koniecznoscig :D

Na podstawie tego, co wczeséniej napisatem o projektach, nietrudno sie domysle¢, iz
rozpoczecie pracy nad aplikacjg oznacza wtasnie stworzenie nowego projektu. Robi sie to
bardzo prosto: najbardziej elementarna metoda to po prostu klikniecie w przycisk New

° W Visual C++ 6 byly to obszary robocze (ang. workspaces)

Z czego skitada sie program? 61

Project widoczny na ekranie startowym; mozna réwniez uzy¢ polecenia File|New|Project
Z menu.

Twoim oczom ukaze sie wtedy okno zatytutowane, a jakze, New Project® :) Mozesz w
nim wybra¢ typ projektu - my zdecydujemy sie oczywiscie na Visual C++ oraz Win32
Project, czyli aplikacje Windows.

Hew Project

[“isual Basic Projects
i{Z7 Wisual C# Projects
Wisual Ji Projects

MFC MFCDLL MFC I54PI

Setup and Deployment Projects tspplication Ewtension DIl

Other Projects

C:AProgramy' |—

o el T

Screen 13. Opcje nowego projektu

Nadaj swojemu projektowi jakas dobrg nazwe (chociazby taka, jak na screenie), wybierz
dla niego katalog i kliknij OK.

Najlepiej jezeli utworzysz sobie specjalny folder na programy, ktére napiszesz podczas
tego kursu. Pamietaj, porzadek jest bardzo wazny :)

Po krotkiej chwili ujrzysz nastepne okno - kreator :) Obsesja Microsoftu na ich punkcie
jest powszechnie znana, wiec nie badz zdziwiony widzac kolejny przejaw ich radosnej
tworczosci ;) Tenze egzemplarz stuzy doktadnemu dopasowaniu parametrow projektu do
osobistych zyczen. Najbardziej interesujaca jest dla nas strona zatytutowana Application
Settings - przetacz sie zatem do niej.

Rodzaje aplikacji

Skoncentrujemy sie przede wszystkim na opcji Application Type, a z kilku dopuszczalnych
wariantéw wezmiemy pod lupe dwa:

» Windows application to zgodnie z nazwg aplikacja okienkowa. Skfada sie z
jednego lub kilku okien, zawierajacych przyciski, pola tekstowe, wyboru itp. -
czyli wszystko to, z czym stykamy sie w Windows nieustannie.

» Console application jest programem innego typu: do komunikacji z uzytkownikiem
uzywa tekstu wypisywanego w konsoli - stad nazwa. Dzisiaj moze wydawac sie
to archaizmem, jednak aplikacje konsolowe sg szeroko wykorzystywane przez
doswiadczonych uzytkownikéw systemoéw operacyjnych. Szczegdlnie dotyczy to
tych z rodziny Unixa, ale w Windows takze mogg by¢ bardzo przydatne.

Programy konsolowe nie sg tak efektowne jak ich okienkowi bracia, posiadajq za to
bardzo wazng dla poczatkujgacego programisty ceche - sg proste :) Najprostsza aplikacja
tego typu to kwestia kilku linijek kodu, podczas gdy program okienkowy wymaga ich

10 Analogiczne okno w Visual C++ 6 wygladato zupetnie inaczej, jednak ma podobne opcje

62 Podstawy programowania

kilkudziesieciu. Idee dziatania takiego programu s réwniez troche bardziej
skomplikowane.

Z tych wiasnie powoddw zajmiemy sie na razie wytacznie aplikacjami konsolowymi —
pozwolg nam w miare tatwo nauczy¢ sie samego jezyka C++ (co jest przeciez naszym
aktualnym priorytetem), bez zagtebiania sie w skomplikowane meandry programowania
Windows.

Win32 Application Wizard - First

Application Settings

Specify the type of application wou will build with this project and the options or libraries wou
want supporked,

Screen 14, Ustawienia aplikacji

Wybierz wiec pozycje Console application na licie Application type. Dodatkowo zaznacz
tez opcje Empty project - spowoduje to utworzenie pustego projektu, a oto nam
aktualnie chodzi.

Pierwszy program

Gdy wreszcie ustalimy i zatwierdzimy wszystkie opcje projektu, mozemy przystgpi¢ do
wilasciwej czesci tworzenia programu, czyli kodowania.

Aby dodac¢ do naszego projektu pusty plik z kodem Zzrédlowym, wybierz pozycje menu
Project|Add New Item. W okienku, ktore sie pojawi, w polu Templates zaznacz ikone
C++ File (.cpp), a jako nazwe wpisz po prostu main. W ten sposéb utworzysz plik
main.cpp, ktory wypetnimy kodem naszego programu.

Plik ten zostanie od razu otwarty, wiec mozesz bez zwioki wpisa¢ don taki oto kod:
// First - pierwszy program w C++

#include <iostream>
#include <conio.h>

void main ()

{

std::cout << "Hurra! Napisalem pierwszy program w C++!" << std::endl;
getch () ;
}

Tak jest, to wszystko - te kilka linijek kodu sktadajq sie na caty nasz program. Pewnie
niezbyt wielka to teraz pociecha, bo 6w kod jest dla ciebie zapewne ,troche” niejasny, ale
spokojnie — powoli wszystko sobie wyjasnimy :)

Z czego skitada sie program? 63

Na razie wcisnij klawisz F7 (lub wybierz z menu Build|Build Solution), by skompilowac i
zlinkowac aplikacje. Jak widzisz, jest to proces catkowicie automatyczny i, jezeli tylko kod
jest poprawny, nie wymaga zadnych dziatan z twojej strony.

W koncu, wcisnij F5 (lub wybierz Debug|Start) i podziwiaj konsole z wyswietlonym
entuzjastycznym komunikatem :D (A gdy sie nim nacieszysz, nacisnij dowolny klawisz,
by zakonczy¢ program.)

Kod programu

Naturalnie, teraz przyjrzymy sie blizej naszemu elementarnemu projektowi, przy okazji
odkrywajac najwazniejsze aspekty programowania w C++.

Komentarze

Pierwsza linijka:

// First - pilerwszy program w C++

to komentarz, czyli dowolny opis stowny. Jest on catkowicie ignorowany przez
kompilator, natomiast moze by¢ pomocny dla piszgcego i czytajacego kod.

Komentarze piszemy w celu wyjasnienia pewnych fragmentéw kodu programu,
oddzielenia jednej jego czesci od drugiej, oznaczania funkcji i modutéw itp. Odpowiednia
ilo$¢ komentarzy utatwia zrozumienie kodu, wiec stosuj je czesto :)

W C++ komentarze zaczynamy od // (dwdch slashy):
// To jest komentarz
lub umieszczamy je miedzy /* i */, na przykiad:

/* Ten komentarz moze by¢ bardzo diugi
i sktada¢ sie z kilku linijek. */

W moim komentarzu do programu umiescitem jego tytut'! oraz krétki opis; bede te

zasade stosowat na poczatku kazdego przykfadowego kodu. Oczywiscie, ty mozesz
komentowac swoje zrddta wedle wtasnych upodoban, do czego cie gorgco zachecam :D

Funkcja main ()

Kiedy uruchamiamy nasz program, zaczyna on wykonywac kod zawarty w funkcji main ().
Od niej wiec rozpoczyna sie dziatanie aplikacji - a nawet wiecej: na niej tez to dziatanie
sie konczy. Zatem program (konsolowy) to przede wszystkim kod zawarty w funkcji

main () — determinuje on bezposrednio jego zachowanie.

W przypadku rozwazanej aplikacji funkcja ta nie jest zbyt obszerna, niemniej zawiera
wszystkie niezbedne elementy.
Najwazniejszym z nich jest nagtowek, ktory u nas prezentuje sie nastepujaco:

void main ()

1 Takim samym tytutem jest oznaczony gotowy program przyktadowy dotaczony do kursu

64 Podstawy programowania

Wystepujace na poczatku stowo kluczowe void méwi kompilatorowi, ze nasz program nie
bedzie informowat systemu operacyjnego o wyniku swojego dziatania. Niektore programy
robig to poprzez zwracanie liczby - zazwyczaj zera w przypadku braku btedéw i innych
wartosci, gdy wystgpity jakies problemy. Nam to jest jednak zupetnie niepotrzebne - w
koncu nie wykonujemy zadnych ztozonych operacji, zatem nie istnieje mozliwos¢
jakiekolwiek niepowodzenia®?.

Gdybysmy jednak chcieli uczyni¢ systemowi zados¢, to powinniSmy zmieni¢ nagtéwek na
int main () i na koncu funkcji dopisa¢ return 0; - a wiec poinformowac system o
sukcesie operacji. Jak jednak przekonaliSmy sie wczesniej, nie jest to niezbedne.

Po nagtowku wystepuje nawias otwierajacy {. Jego gtéwna rola to informowanie
kompilatora, ze ,tutaj cos sie zaczyna”. Wraz z nawiasem zamykajacym } tworzy on blok
kodu - na przykfad funkcje. Z takimi parami nawiaséw bedziesz sie stale spotykat; majg
one znaczenie takze dla programisty, gdyz porzadkujq kod i czynig go bardziej
czytelnym.

Przyjete jest, iz nastepne linijki po nawiasie otwierajacym {, az do zamykajacego },
powinny by¢ przesuniete w prawo za pomocg wcie¢ (uzyskiwanych spacjami lub
klawiszem TAB). Poprawia to oczywiscie przejrzystosc¢ kodu, lecz pamietanie o tej
zasadzie podczas pisania moze byc¢ ucigzliwe. Na szczescie dzisiejsze srodowiska
programistyczne sg na tyle sprytne, ze same dbajg o wtasciwe umieszczanie owych
wciec. Nie musisz wiec zawracac sobie glowy takimi btahostkami - grunt, zeby wiedziec,
komu nalezy by¢ wdziecznym ;))

Takim oto sposobem zapoznalismy sie ze strukturg funkcji main (), bedacej gtéwng
czescig programu konsolowego w C++. Teraz czas zajac sie jej zawartoscig i dowiedzie¢
sie, jak i dlaczego nasz program dziata :)

Pisanie tekstu w konsoli

MieliSmy okazje sie przekonaé, ze nasz program pokazuje nam komunikat podczas
dziatania. Nietrudno dociec, iz odpowiada za to ta linijka:

std::cout << "Hurra! Napisalem pierwszy program w C++!" << std::endl;

std: :cout oznacza tak zwany strumien wyjscia. Jego zadaniem jest wyswietlanie na
ekranie konsoli wszystkiego, co don wyslemy - a wysyta¢c mozemy oczywiscie tekst.
Korzystanie z tego strumienia umozliwia zatem pokazywanie nam w oknie konsoli
wszelkiego rodzaju komunikatow i innych informacji. Bedziemy go uzywac bardzo czesto,
dlatego musisz koniecznie zaznajomié sie ze sposobem wysytania don tekstu.

A jest to wbrew pozorom bardzo proste, nawet intuicyjne. Spdjrz tylko na omawiang
linijke — nasz komunikat jest otoczony czyms$ w rodzaju strzatek wskazujacych

std: :cout, czyli wtasnie strumien wyjscia. Wpisujac je (za pomocg znaku mniejszosci),
robimy doktadnie to, o co nam chodzi: wysylamy nasz tekst do strumienia wyjscia.
Drugim elementem, ktéry tam trafia, jest std: :endl. Oznacza on ni mniej, ni wiecej, jak
tylko koniec linijki i przejscie do nastepnej. W przypadku, gdy wyswietlamy tylko jedng
linie tekstu nie ma takiej potrzeby, ale przy wiekszej ich liczbie jest to niezbedne.

Wystepujacy przez nazwami cout i endl przedrostek std:: oznacza tzw. przestrzen
nazw. Taka przestrzen to nic innego, jak zbiér symboli, ktdremu nadajemy nazwe.

2 podobny optymizm jest zazwyczaj gruba przesada i mozemy sobie na niego pozwoli¢ tylko w najprostszych
programach, takich jak niniejszy :)

Z czego skitada sie program? 65

Niniejsze dwa nalezg do przestrzeni std, gdyz sg czescig Biblioteki Standardowej jezyka
C++ (wszystkie jej elementy nalezg do tej przestrzeni). Mozemy uwolni¢ sie od
koniecznosci pisania przedrostka przestrzeni nazw std, jezeli przed funkcjg main ()
umiescimy deklaracje using namespace std;. Wtedy moglibysmy uzywac krotszych
nazw cout i endl.

Konkludujac: strumien wyjscia pozwala nam na wyswietlanie tekstu w konsoli, za$
uzywamy go poprzez std: :cout oraz ,strzatki” <<.

Xk k

Druga linijka funkcji main () jest bardzo krotka:
getch();

Podobnie krétko powiem wiec, ze odpowiada ona za oczekiwanie programu na nacisniecie
dowolnego klawisza. Traktujac rzecz scislej, getch () jest funkcjg podobnie jak main (),
jednakze do zwigzanego z tym faktem zagadnienia przejdziemy nieco pdzniej. Na razie
zapamietaj, iz jest to jeden ze sposobdéw na wstrzymanie dziatania programu do
momentu wciéniecia przez uzytkownika dowolnego klawisza na klawiaturze.

Dotgczanie plikow nagtowkowych
Pozostaty nam jeszcze dwie pierwsze linijki programu:

#include <iostream>
#include <conio.h>

ktére wcale nie sg tak straszne, jak wygladajg na pierwszy rzut oka :)

Przede wszystkim zauwazmy, ze zaczynajg sie one od znaku #, czym niewatpliwie réznig
sie od innych instrukcji jezyka C++. Sa to bowiem specjalne polecenia wykonywane
jeszcze przed kompilacjg - tak zwane dyrektywy. Przekazujg one rdzne informacje i
komendy, pozwalajg wiec sterowac przebiegiem kompilacji programu.

Jedng z tych dyrektyw jest wtasnie #include. Jak sama nazwa wskazuje, stuzy ona do
dotaczania - przy jej pomocy wigczamy do naszego programu pliki nagiéwkowe Ale
czym one sg i dlaczego ich potrzebujemy?

By sie o tym przekonac¢, zapomnijmy na chwile o programowaniu i wczujmy sie w role
zwyktego uzytkownika komputera. Gdy instaluje on nowg gre, zazwyczaj musi rowniez
zainstalowac DirectX, jezeli jeszcze go nie ma. To catkowicie naturalne, gdyz wiekszos¢
gier korzysta z tej biblioteki, wiec wymaga jej do dziatania. Rownie oczywisty jest takze
fakt, ze do uzywania edytora tekstu czy przegladarki WWW 6w pakiet nie jest potrzebny
- te programy po prostu z niego nie korzystaja.

Nasz program nie korzysta ani z DirectX, ani nawet ze standardowych funkcji Windows
(bo nie jest aplikacjg okienkowa). Wykorzystuje natomiast konsole i dlatego potrzebuje
odpowiednich mechanizmoéw do jej obstugi - zapewniajg je wiasnie pliki nagtéwkowe.

Pliki nagtowkowe umozliwiajq korzystanie z pewnych funkcji, technik, bibliotek itp.
wszystkim programom, ktore dotaczajg je do swojego kodu zrdodtowego.

W naszym przypadku dyrektywa #include ma za zadanie wigczenie do kodu plikow
iostream i conio.h. Pierwszy z nich pozwala nam pisa¢ w oknie konsoli za pomoca
std: :cout, drugi zas wywotac funkcje getch (), ktéra czeka na dowolny klawisz.

66 Podstawy programowania

" Nie znaczy to jednak, ze kazdy plik nagtéwkowy odpowiada tylko za jedng instrukcje.
est wrecz odwrotnie, na przykfad wszystkie funkcje systemu Windows (a jest ich kilka
| tysiecy) wymagajq dotaczenia tylko jednego pliku!

Koniecznos$¢ dofaczania plikéw nagtdéwkowych (zwanych w skrécie nagtdwkami) moze ci
sie wydawac celowym utrudnianiem zycia programiscie. Ma to jednak gteboki sens, gdyz
zmniejsza rozmiary programoéw. Dlaczego kompilator miatby powieksza¢ plik EXE zwykiej
aplikacji konsolowej o nazwy (i nie tylko nazwy) wszystkich funkcji Windows czy DirectX,
skoro i tak nie bedzie ona z nich korzysta¢? Mechanizm plikow nagtdéwkowych pozwala
temu zapobiec i tg drogg korzystnie wptynaé na objetos¢ programow.

Xk k

Tym zagadnieniem zakonczyliSmy omawianie naszego programu - mozemy sobie
pogratulowac :) Nie byt on wprawdzie ani wielki, ani szczegdlnie imponujacy, lecz
poczatki zawsze sgq skromne. Nie spoczywajmy zatem na laurach i kontynuujmy...

Procedury i funkcje

Pierwszy napisany przez nas program skfadat sie wytacznie z jednej funkcji main (). W
praktyce takie sytuacje w ogdle sie nie zdarzajqg, a kod aplikacji zawiera najczesciej
bardzo wiele procedur i funkcji. Poznamy zatem dogtebnie istote tych konstrukcji, by méc
pisa¢ prawdziwe programy.

Procedura lub funkcja to fragment kodu, ktéry jest wpisywany raz, ale moze by¢
wykonywany wielokrotnie. Realizuje on najczesciej jakas pojedynczg czynnos¢ przy
uzyciu ustalonego przez programiste algorytmu. Jak wiemy, dziatanie wielu algorytméw
sktada sie na prace catego programu, mozemy wiec powiedzie¢, ze procedury i funkcje sg
podprogramami, ktérych czgstkowa praca przyczynia sie do funkcjonowania programu
jako catosci.

Gdy mamy juz (a mamy? :D) peing jasnos$¢, czym sg podprogramy i rozumiemy ich role,
wyjasnijmy sobie réznice miedzy procedurg a funkcja.

Procedura to wydzielony fragment kodu programu, ktérego zadaniem jest wykonywanie
jakiejs czynnosci.

Funkcja zawiera kod, ktdrego celem jest obliczenie i zwrdcenie jakiej$ wartosci.

Procedura moze przeprowadzac¢ dziatania takie jak odczytywanie czy zapisywanie pliku,
wypisywanie tekstu czy rysowanie na ekranie. Funkcja natomiast moze policzy¢ ilos¢
wszystkich znakéw ‘a’ w danym pliku czy tez wyznaczy¢ najmniejszg liczbe sposrdd wielu
podanych.

W praktyce (i w jezyku C++) roznica miedzy procedurg a funkcjq jest dosy¢ subtelna,
dlatego czesto obie te konstrukcje nazywa sie dla uproszczenia funkcjami. A poniewaz
lubimy wszelkg prostote, tez bedziemy tak czyni¢ :)

Wtasne funkcje

Na poczatek dokonamy prostej modyfikacji programu napisanego wczesniej. Jego kod
bedzie teraz wygladat tak:

13 Oczywiscie moze ona przy tym wykonywaé pewne dodatkowe operacje

Z czego skitada sie program? 67

// Functions - przykiad witasnych funkcji

#include <iostream>
#include <conio.h>

void PokazTekst ()
{

std::cout << "Umiem Juz pisac wlasne funkcje! :)" << std::endl;

}

void main ()

{
PokazTekst () ;
getch();

}

Po kompilacji i uruchomieniu programu nie wida¢ wiekszych zmian - nadal pokazuje on
komunikat w oknie konsoli (oczywiscie o innej tresci, ale to raczej srednio wazne :)).
Jednak wyraznie wida¢, ze kod ulegt powaznym zmianom. Na czym one polegajg?

Otéz wydzielilismy fragment odpowiedzialny za wypisywanie tekstu do osobnej funkcji o
nazwie PokazTekst (). Jest ona teraz wywolywana przez naszg gtéwna funkcje, main ().
Zmianie ulegt wiec sposdb dziatania programu - rozpoczyna sie od funkcji main (), ale od
razu ,przeskakuje” do pPokazTekst (). Po jej zakonczeniu ponownie wykonywana jest
funkcja main (), ktéra z kolei wywotuje funkcje getch (). Czeka ona na wcisniecie
dowolnego klawisza i gdy to nastgpi, wraca do main (), ktérej jedynym zadaniem jest
teraz zakonczenie programu.

Tryb sledzenia

Przekonajmy sig, czy to faktycznie prawda! W tym celu uruchomimy nasz program w
specjalnym trybie krokowym. Aby to uczyni¢ wystarczy wybra¢ z menu opcje
Debug|Step Into lub Debug|Step Over, ewentualnie wcisng¢ F11 lub F10.

Zamiast konsoli z wypisanym komunikatem widzimy nadal okno kodu z z6ttg strzatka,
wskazujaca nawias otwierajacy funkcje main (). Jest to aktualny punkt wykonania
(ang. execution point) programu, czyli biezgco wykonywana instrukcja kodu - tutaj
poczatek funkcji main ().

Wcisniecie F10 lub F11 spowoduje ,wejscie” w owg funkcje i sprawi, ze strzatka spocznie
teraz na linijce

PokazTekst () ;

Jest to wywotanie naszej wtasnej funkcji PokazTekst (). Chcemy doktadnie przesledzic jej
przebieg, dlatego wcisniemy F11 (lub skorzystamy z menu Debug|Step Into), by
skierowac sie do jej wnetrza. Uzycie klawisza F10 (albo Debug|Step Over)
spowodowatoby ominiecie owej funkcji i przejscie od razu do nastepnej linijki w main ().
Oczywiscie mija sie to z naszym zamystem i dlatego skorzystamy z F11.

Punkt wykonania osiadt obecnie na poczatku funkcji PokazTekst (), wigec korzystajac z
ktéregos z dwdch uzywanych ostatnio klawiszy mozemy umiesci¢ go w jej kodzie.
Dokfadniej, w pierwszej linijce

std::cout << "Umiem Juz pisac wlasne funkcje! :)" << std::endl;
Jak wiemy, wypisuje ona tekst do okna konsoli. W tym momencie uzyj Alt+Tab lub

jakiegos innego windowsowego sposobu, by przetaczy¢ sie do niego. Przekonasz sie
(czarno na czarnym ;)), iz jest catkowicie puste. Wré¢ wiec do okna kodu, wcisnij

68 Podstawy programowania

F10/F11 i ponownie spdjrz na konsole. Zobaczysz naocznie, iz std: : cout faktycznie
wypisuje nam to, co chcemy :D

Po kolejnych dwdch uderzeniach w jeden z klawiszy powrdcimy do funkcji main (), a
strzatka zwana punktem wykonania ustawi sie na

getch () ;

Moglibysmy teraz uzy¢ F11 i zobaczy¢ kod zrédtowy funkcji getch (), ale to ma raczej
niewielki sens. Poza tym, darowanemu koniowi (jakim sg z pewnoscia tego rodzaju
funkcje!) nie patrzy sie w zeby :) Postuzymy sie przeto klawiszem F10 i pozwolimy
funkcji wykonac sie bez przeszkadd.

Zaraz zaraz... Gdzie podziata sie strzatka? Czyzby co$ poszio nie tak?... Spokojnie,
wszystko jest w jak najlepszym porzadku. Pamietamy, ze funkcja getch () oczekuje na
przycisniecie dowolnego klawisza, wiec teraz wraz z nig czeka na to cata aplikacja. Aby
nie przedtuza¢ nadto wyczekiwania, przetacz sie do okna konsoli i uczyn mu zadosé :)

I tak oto dotarliSmy do epilogu - punkt wykonania jest teraz na koricu funkcji main (). Tu
konczy sie kod napisany przez nas, na program sktada sie jednak takze dodatkowy kod,
dodany przez kompilator. Oszczedzimy go sobie i wcisnieciem F5 (tudziez
Debug|Continue) pozwolimy przebiec po nim sprintem i w konsekwencji zakonczy¢
program.

Ta oto drogg zapoznaliSmy sie z bardzo waznym narzedziem pracy programisty, czyli
trybem krokowym, pracg krokowa lub trybem $ledzenia'®. Widzieliémy, ze pozwala on
doktadnie przestudiowac dziatanie programu od poczatku do korica, poprzez wszystkie
jego instrukcje. Z tego powodu jest nieocenionym pomocnikiem przy szukaniu i usuwaniu
btedéw w kodzie.

Przebieg programu

Konkluzjg naszej przygody z funkcjami i pracg krokowg bedzie diagram, obrazujacy
dziatanie programu od poczatku do konhca:

raing) -)

¥
A
—h\ L 4
PokazTekst () / 4+
getch () :/\/

Schemat 2. Sposé6b dziatania przykiadowego programu

Czarne linie ze strzatkami oznaczajg wywotywanie i powrét z funkcji, zas duze biate - ich
wykonywanie. Program zaczyna sie u z lewej strony schematu, a konczy po prawej;
zauwazmy tez, ze w obu tych miejscach wykonywana funkcja jest main (). Prawdaq jest
zatem fakt, iz to ona jest gldbwng czescig aplikacji konsolowej.

Jesli opis stowny nie byt dla ciebie nie do konca zrozumiaty, to ten schemat powinien
wyjasni¢ wszystkie watpliwosci :)

 Inne nazwy to takze przechodzenie krok po kroku czy $ledzenie

Z czego skitada sie program? 69

Zmienne i state

Umiemy juz wypisywac tekst w konsoli i tworzy¢ wiasne funkcje. Niestety, nasze
programy sg na razie zupetnie bierne, jezeli chodzi o kontakt z uzytkownikiem. Nie ma on
przy nich nic do roboty oprdécz przeczytania komunikatu i wcisniecia dowolnego klawisza.
Najwyzszy czas to zmieni¢. Napiszmy wiec program, ktéry bedzie porozumiewat sie z
uzytkownikiem. Moze on wyglada¢ na przykiad tak:

// Input — uzycie zmiennych 1 strumienia wejscia

#include <string>
#include <iostream>
#include <conio.h>

void main ()

{

std::string strimie;

std::cout << "Podaj swoje imie: ";
std::cin >> strImie;

std::cout << "Twoje imie to " << strImie << "." << std::endl;

getch();
}

Po kompilacji i uruchomieniu wida¢ juz wyrazny postep w dziedzinie form komunikacji :)
Nasza aplikacja oczekuje na wpisanie imienia uzytkownika i potwierdzenie klawiszem
ENTER, a nastepnie chwali sie dopiero co zdobytg informacja.

Patrzac w kod programu widzimy kilka nowych elementéw, zatem nie bedzie
niespodzianka, jezeli teraz przystapie do ich omawiania :D

Zmienne i ich typy

Na poczatek zauwazmy, ze program pobiera od nas pewne dane i wykonuje na nich
operacje. Sg to dziatania dos¢ trywialne (jak wyswietlenie rzeczonych danych w
niezmienionej postaci), jednak wymagajg przechowania przez jaki$ czas uzyskanej porcji
informaciji.

W jezykach programowania stuzg do tego zmienne.

Zmienna (ang. variable) to miejsce w pamieci operacyjnej, przechowujace pojedynczg
wartos¢ okreslonego typu. Kazda zmienna ma nazwe, dzieki ktérej mozna sie do niej
odwotywac.

Przed pierwszym uzyciem zmienng nalezy zadeklarowaé, czyli po prostu poinformowac
kompilator, ze pod takg a takg nazwa kryje sie zmienna danego typu. Moze to wygladac
chocby tak:

std::string striImie;

W ten sposdb zadeklarowaliSmy w naszym programie zmienng typu std: :string O
nazwie strImie. W deklaracji piszemy wiec najpierw typ zmiennej, a potem jej nazwe.
Nazwa zmiennej moze zawierac liczby, litery oraz znak podkreslenia w dowolnej
kolejnosci. Nie mozna jedynie zaczynac jej od liczby. W nazwie zmiennej nie jest takze
dozwolony znak spacji.

70 Podstawy programowania

| Zasady te dotyczg wszystkich nazw w C++ i, jak sadze, nie szczegodlnie trudne do
- przestrzegania.

. Z brakiem spacji mozna sobie poradzi¢ uzywajac w jej miejsce podkreslenia

' (jakas_zmienna) lub rozpoczynaé kazdy wyraz z wielkiej litery (JakasZzmienna).

W jednej linijce mozemy ponadto zadeklarowac kilka zmiennych, oddzielajac ich nazwy
przecinkami. Wszystkie beda wtedy przynalezne do tego samego typu.

Typ okresla nam rodzaj informacji, jakie mozna przechowywac w naszej zmiennej. Mogq
to by¢ liczby catkowite, rzeczywiste, tekst (czyli tancuchy znakéw, ang. strings), i tak
dalej. Mozemy takze sami tworzy¢ wiasne typy zmiennych, czym zresztg niedtugo sie
zajmiemy. Na razie jednak powinnismy zapoznac sie z do$¢ szerokim wachlarzem typow
standardowych, ktdre to obrazuje niniejsza tabelka:

nazwa typu opis
int liczba catkowita (dodatnia lub ujemna)
float liczba rzeczywista (z czescig utamkowaq)
bool wartos¢ logiczna (prawda lub fatsz)
char pojedynczy znak
std::string tancuch znakéw (tekst)

Tabela 1. Podstawowe typy zmiennych w C++

Uzywajac tych typow mozemy zadeklarowac takie zmienne jak:

int nLiczba; // liczba catkowita, np. 45 czy 12 + 89
float fliczba; // liczba rzeczywista (1.4, 3.14, 1.0e-8 itp.)
std::string strNapis; // dowolny tekst

By¢ moze zauwazytes$, ze na poczatku kazdej nazwy widnieje tu przedrostek, np. str czy
n. Jest to tak zwana notacja wegierska; pozwala ona m.in. rozrézni¢ typ zmiennej na
podstawie nazwy. Zapis ten stat sie bardzo popularny, szczegdlnie wsrod programistow
jezyka C++ - spora ich cze$¢ uwaza, ze znacznie poprawia on czytelnos$¢ kodu.

Szerszy opis notacji wegierskiej mozesz znalez¢ w Dodatku A.

Strumien wejscia
Co6z by nam jednak byto po zmiennych, jesli nie mielismy skad wzig¢ dla nich danych?...

Prostych sposobem uzyskania ich jest prosba do uzytkownika o wpisanie odpowiednich
informacji z klawiatury. Tak tez czynimy w aktualnie analizowanym programie -
odpowiada za to kod:

std::cin >> strImie;

Wyglada on podobnie do tego, ktéry jest odpowiedzialny za wypisywanie tekstu w
konsoli. Wykonuje jednak czynnos¢ doktadnie odwrotng: pozwala na wprowadzenie
sekwencji znakdw i zapisuje jg do zmiennej strimie.

std: :cin symbolizuje strumien wejscia, ktéry zadaniem jest wtasnie pobieranie
wpisanego przez uzytkownika tekstu. Nastepnie kieruje go (co obrazuja ,strzatki” >>) do
wskazanej przez nas zmiennej.

Zauwazmy, ze w naszej aplikacji kursor pojawia sie w tej samej linijce, co komunikat
- ,Podaj swoje imie”. Nietrudno domyslec sig, dlaczego - nie umiesciliSmy po nim
| std::endl, wobec czego nie jest wykonywane przejscie do nastepnego wiersza.

Z czego skitada sie program? 71

I Jednoczesnie znaczy to, iz strumien wejscia zawsze pokazuje kursor tam, gdzie
- skonczyliSmy pisanie — warto o tym pamietac.

*k%k

Strumienie wejscia i wyjscia stanowig razem nieroztaczng pare mechanizmodw, ktore
umozliwiajg nam petng swobode komunikacji z uzytkownikiem w aplikacjach
konsolowych.

Strumier wyjscia

Tekst pokazany
[5tedz roout) Lyt ko ik .

Program

Strumien wejscia Uzytkownik

Tekst wpisany przez ®
(std::cin)

Liylkownika

Schemat 3. Komunikacja miedzy programem konsolowym i uzytkownikiem

State

State sq w swoim przeznaczeniu bardzo podobne do zmiennych - tyle tylko ze s3...
niezmienne :)) Uzywamy ich, aby nada¢ znaczace nazwy jakim$ niezmieniajagcym sie
wartosciom w programie.

Stala to niezmienna wartos¢, ktdrej nadano nazwe celem tatwego jej odroznienia od
innych, czesto podobnych wartosci, w kodzie programu.

Jej deklaracja, na przyktad taka:

const int STALA = 10;

przypomina nieco sposéb deklarowania zmiennych - nalezy takze podac typ oraz nazwe.
Stéwko const (ang. constant - stata) méwi jednak kompilatorowi, ze ma do czynienia ze
statg, dlatego oczekuje réwniez podania jej wartosci. Wpisujemy ja po znaku réwnosci =.

W wiekszosci przypadkdéw statych uzywamy do identyfikowania liczb - zazwyczaj takich,
ktére wystepujg w kodzie wiele razy i majg po kilka znaczen w zaleznosci od kontekstu.
Pozwala to unikna¢ pomyiek i poprawia czytelnos¢ programu.

State majq tez te zalete, Zze ich wartosci mozemy okresla¢ za pomoca innych statych, na
przyktad:

const int NETTO = 2000;
const int PODATEK = 22;
const int BRUTTO = NETTO + NETTO * PODATEK / 100;

Jezeli kiedy$ zmieni sie jedna z tych wartosci, to bedziemy musieli dokona¢ zmiany tylko
w jednym miejscu kodu - bez wzgledu na to, ile razy uzyliSmy danej statej w naszym
programie. I to jest piekne :)

Inne przyktady statych:

72 Podstawy programowania

const int DNI W TYGODNIU = 7; /=)
const float PI = 3.141592653589793; // w koncu to tez stala!
const int MAX POZIOM = 50; // np. w grze RPG

Operatory arytmetyczne

Przyznajmy szczerze: nasze dotychczasowe aplikacje nie wykonywaty zadnych
sensownych zadan - bo czy mozna nimi nazwac wypisywanie ciggle tego samego tekstu?
Z pewnoscig nie. Czy to sie szybko zmieni? Niczego nie obiecuje, jednak z czasem
powinno by¢ w tym wzgledzie coraz lepiej :D

Znajomosc¢ operatorow arytmetycznych z pewnoscig poprawi ten stan rzeczy — w koncu
od dawien dawna podstawowym przeznaczeniem wszelkich programéw komputerowych
jest wiasnie liczenie.

Umiemy liczyc!
Tradycyjnie juz zaczniemy od przyktadowego programu:
// Arithmetic - proste dziatania matematyczne

#include <iostream>
#include <conio.h>

void main ()

{
int nLiczbal;
std::cout << "Poda] pierwsza liczbe: ";
std::cin >> nLiczbal;

int nLiczba2;
std::cout << "Podaj druga liczbe: ";
std::cin >> nlLiczba?2;

int nWynik = nLiczbal + nLiczbaZ2;
std::cout << nLiczbal << " + " << nLiczba2 << " = " << nWynik;
getch ()

Po uruchomieniu skompilowanej aplikacji przekonasz sie, iz jest to prosty... kalkulator :)
Prosi on najpierw o dwie liczby catkowite i zwraca pdzniej wynik ich dodawania. Nie jest
to moze imponujace, ale z pewnoscig bardzo pozyteczne ;)

Zajrzyjmy teraz w kod programu. Poczatkowa czes¢ funkcji main () :

int nLiczbal;
std::cout << "Podaj pierwsza liczbe: ";
std::cin >> nliczbal;

odpowiada za uzyskanie od uzytkownika pierwszej z liczb. Mamy tu deklaracje zmiennej,
w ktérej zapiszemy owa liczbe, wyswietlenie prosby przy pomocy strumienia wyjscia oraz
pobranie wartosci za pomoca strumienia wejscia.

Kolejne trzy linijki sq bardzo podobne do powyzszych, gdyz ich zadanie jest niemal
identyczne - chodzi oczywiscie o zdobycie drugiej liczby naszej sumy. Nie ma wiec
potrzeby doktadnego ich omawiania.

Z czego skitada sie program? 73

Wazny jest za to nastepny wiersz:

int nWynik = nLiczbal + nLiczbaZ2;

Jest to deklaracja zmiennej nwynik, pofaczona z przypisaniem do niej sumy dwdch liczb
uzyskanych poprzednio. Takg czynnosé (natychmiastowe nadanie wartosci deklarowanej
zmiennej) nazywamy inicjalizacja. Oczywiscie mozna by zrobi¢ to w dwdch instrukcjach,
ale tak jest tadniej, prosciej i efektywniej :)

Znak = nie wskazuje tu absolutnie na réwnos¢ dwdéch wyrazen - jest to bowiem operator
przypisania, ktérego uzywamy do ustawiania wartosci zmiennych.

Ostatnie dwie linijki nie wymagajq zbyt wiele komentarza - jest to po prostu
wyswietlenie obliczonego wyniku i przywotanie znanej juz skadinad funkcji getch (),
ktéra oczekuje na dowolny klawisz.

Rodzaje operatordow arytmetycznych

Znak +, ktérego uzyliSmy w napisanym przed chwilg programie, jest jednym z kilkunastu
operatorow jezyka C++.

Operator to jeden lub kilka znakéw (zazwyczaj niebedacych literami), ktdre majq
specjalne znaczenie w jezyku programowania.

Operatory dzielimy na kilka grup; jedng z nich sg wtasnie operatory arytmetyczne, ktore
stuzg do wykonywania prostych dziatan na liczbach. Odpowiadajg one podstawowym
operacjom matematycznym, dlatego ich poznanie nie powinno nastreczac ci problemow.
Przedstawia je ta oto tabelka:

operator opis
+ dodawanie
- odejmowanie
* mnozenie
/ dzielenie
3 reszta z dzielenia

Tabela 2. Operatory arytmetyczne w C++

Pierwsze trzy pozycje sq na tyle jasne i oczywiste, ze darujemy sobie ich opis :)
Przyjrzymy sie za to blizej operatorom zwigzanym z dzieleniem.

Operator / dziata na dwa sposoby w zaleznosci od tego, jakiego typu liczby dzielimy.
Rozrdznia on bowiem dzielenie catkowite, kiedy interesuje nas jedynie wynik bez czesci
po przecinku, oraz rzeczywiste, gdy zyczymy sobie uzyskac¢ doktadny iloraz. Rzecz
jasna, w takich przypadkach jak 25 / 5, 33 / 3 czy 221 / 13 wynik bedzie zawsze
liczbg catkowita. Gdy jednak mamy do czynienia z liczbami niepodzielnymi przez siebie,
sytuacja nie wyglada juz tak prosto.

Kiedy zatem mamy do czynienia z ktéryms z typdw dzielenia? Zasada jest bardzo prosta
- jesli obie dzielone liczby sg catkowite, wynik rowniez bedzie liczbg catkowity; jezeli
natomiast cho¢ jedna jest rzeczywista, wtedy otrzymamy iloraz wraz z czescig utamkowa.
No dobrze, wynika stad, ze takie przyktadowe dziatanie

float fWynik = 11.5 / 2.5;

da nam prawidtowy wynik 4.6. Co jednak zrobi¢, gdy dzielimy dwie niepodzielne liczby
catkowite i chcemy uzyskac¢ doktadny rezultat?... Musimy po prostu obie liczby zapisac

74 Podstawy programowania

jako rzeczywiste, a wiec wraz z czescig utamkowg - chocby byta réwna zeru,
przykfadowo:

float fWynik = 8.0 / 5.0;
Uzyskamy w ten sposéb prawidtowy wynik 1.6.

A co z tym dziwnym ,procentem”, czyli operatorem $? Zwigzany jest on Scisle z
dzieleniem catkowitym, mianowicie oblicza nam reszte z dzielenia jednej liczby przez
druga. Dobrg ilustracjg dziatania tego operatora moga by¢... zakupy :) Powiedzmy, ze
wybraliSmy sie do sklepu z siedmioma ztotymi w garsci celem nabycia drogg kupna
jakiegos towaru, ktory kosztuje 3 ztote za sztuke i jest mozliwy do sprzedazy jedynie w
catosci. W takiej sytuacji dzielgc (catkowicie!) 7 przez 3 otrzymamy ilos¢ sztuk, ktére
mozemy kupi¢. Zas

int nReszta = 7 % 3;

bedzie kwotg, ktéra pozostanie nam po dokonaniu transakcji — czyli jedng ztotéwka. Czyz
to nie banalne? ;)

Priorytety operatorow

Proste obliczenia, takie jak powyzsze, rzadko wystepujg w prawdziwych programach.
Najczesciej taczymy kilka dziatarn w jedno wyrazenie i wtedy moze pojawic¢ sie problem
pierwszenstwa (priorytetu) operatoréw, czyli po prostu kolejnosci wykonywania
dziatan.

W C++ jest ona na szczescie identyczna z tg znang nam z lekcji matematyki. Najpierw
wiec wykonywane jest mnozenie i dzielenie, a potem dodawanie i odejmowanie. Mozemy
utozy¢ obrazujaca ten fakt tabelke:

priorytet | operator(y)
1 R
2 +, -

Tabela 3. Priorytety operatoréw arytmetycznych w C++

Najlepiej jednak nie polegac na tej witasnosci operatordow i uzywaé nawiaséw w przypadku
jakichkolwiek watpliwosci.

Nawiasy chronig przed trudnymi do wykrycia btedami zwigzanymi z pierwszenstwem
operatoréw, dlatego stosuj je w przypadku kazdej watpliwosci co do kolejnosci dziatan.

Xk k

W taki oto sposdéb zapoznaliSmy sie wiasnie z operatorami arytmetycznymi.

Tajemnicze znaki

Tworcy jezyka C++ mieli chyba na uwadze oszczednos¢ palcéw i klawiatur programistow,
uczynili wiec jego skfadnie wyjatkowo zwartg i dodali kilka mechanizméw skracajgcych
zapis kodu. Z jednym z nich, bardzo czesto wykorzystywanym, zapoznamy sie za chwile.

Otoz instrukcje w rodzaju

nZmienna = nZmienna + nInnaZmienna;
nX = nX * 10;

Z czego skitada sie program? 75

i=1i+1;
j=3 -5

mogaq by¢, przy uzyciu tej techniki, napisane nieco krécej. Zanim jg poznamy, zauwazmy,
iz we wszystkich przedstawionych przyktadach po obu stronach znaku = znajduja sie te
same zmienne. Instrukcje powyzsze nie sq wiec przypisywaniem zmiennej nowej
wartosci, ale modyfikacjg juz przechowywanej liczby.

Korzystajac z tego faktu, pierwsze dwie linijki mozemy zapisac jako

nZmienna += nInnaZmienna;
nX *= 10;

Jak widzimy, operator + przeszedt w +=, zas * w *=, Podobna , sztuczka” mozliwa jest
takze dla trzech pozostatych znakdéw dziatan’>. Sposéb ten nie tylko czyni kod krétszym,
ale takze przyspiesza jego wykonywanie (pomysl, dlaczego!).

Jezeli chodzi o nastepne wiersze, to oczywiscie dadzg sie one zapisa¢ w postaci

i +=1;
J 1;
Mozna je jednak skrocic (i przyspieszy¢) nawet bardziej. Dodawanie i odejmowanie

jedynki sg bowiem na tyle czestymi czynnosciami, ze dorobity sie wtasnych operatoréw
++ i —- (tzw. inkrementacji i dekrementacji), ktorych uzywamy tak:

++1;
-=Ji

Na pierwszy rzut oka wyglada to nieco dziwnie, ale gdy zaczniesz stosowac te technike w
praktyce, szybko docenisz jej wygode.

Podsumowanie

Bohatersko brnac przez kolejne akapity dotarliSmy wreszcie do konca tego rozdziatu :))
PrzyswoiliSmy sobie przy okazji spory kawatek koderskiej wiedzy.

Rozpoczelismy od bliskiego spotkania z IDE Visual Studio, nastepnie napisaliSmy swdj
pierwszy program. Po zapoznaniu sie z dziataniem strumienia wyjscia, przeszlismy do
funkcji (przy okazji poznajac uroki trybu sledzenia), a potem wreszcie do zmiennych i
strumienia wejscia. Gdy juz dowiedzieliSmy sie, czym one sq, okrasiliSmy wszystko
drobng porcjg informacji na temat operatoréw arytmetycznych. Smacznego! ;)

Pytania i zadania

Od niestrawnosci uchronig cie odpowiedzi na ponizsze pytania i wykonanie ¢wiczen :)

15 A takze dla niektérych innych rodzajéw operatordw, ktére poznamy pdzniej
16 Istnieje réznica miedzy tymi dwoma formami zapisu, ale na razie nie jest ona dla nas istotna... co nie znaczy,
ze nie bedzie :)

76 Podstawy programowania
Pytania

1. Dzieki jakim elementom jezyka C++ mozemy wypisywac tekst w konsoli i zwracac
sie do uzytkownika?

2. Jaka jest rola funkcji w kodzie programu?

3. Czym sg state i zmienne?

4. Wymien poznane operatory arytmetyczne.

Cwiczenia

1. Napisz program wyswietlajacy w konsoli trzy linijki tekstu i oczekujacy na dowolny
klawisz po kazdej z nich.

2. Zmien program napisany przy okazji poznawania zmiennych (ten, ktéry pytat o
imie) tak, aby zadawat réwniez pytanie o nazwisko i wyswietlat te dwie informacje
razem (w rodzaju ,Nazywasz sie Jan Kowalski”).

3. Napisz aplikacje obliczajacq iloczyn trzech podanych liczb.

4. (Trudne) Poczytaj, na przyktad w MSDN, o deklarowaniu statych za pomoca

dyrektywy #define. Zastandw sie, jakie niebezpieczenstwo btedéw moze byc¢ z
tym zwigzane.
Wskazdwka: chodzi o priorytety operatorow.

