DZIALANIE PROGRAMU

Nic nie dzieje sie wbrew naturze,

lecz wbrew temu, co o niej wiemy.
Fox Mulder w serialu ,Z archiwum X"

Poznalismy juz przedsmak urokéw programowania w C++ i stworzyliSmy kilka wiasnych
programoéw. Opanowali$my jednoczesnie najbardziej podstawowe podstawy podstaw
kodowania w tym jezyku :)

Mozemy wiec odkry¢ kolejne, wazne jego elementy, ktére pozwolg nam tworzy¢ bardziej
interesujace i przydatne programy. Przyszia bowiem pora na spotkanie z instrukcjami
sterujacymi przebiegiem aplikacji i sposobem jej dziatania.

Funkcje nieco blizej

Z funkcjami mieliSmy do czynienia juz wczesniej. PowiedzieliSmy sobie wtedy, ze sg to
wydzielone fragmenty kodu realizujgce jakas czynnosé. Przytoczytem przy tym dosé
banalny przykfad funkcji pokazTekst (), wysSwietlajgcej w konsoli ustalony napis.

Niewatpliwie byt on klarowny i ukazywat wspomniane tam przeznaczenie funkcji (czyli
podziat kodu na fragmenty), jednakze pomijat dwa bardzo wazne aspekty z nimi
zwigzane. Chodzi mianowicie o parametry oraz zwracanie wartosci. Rozszerzajg one
uzytecznosc i mozliwosci funkcji tak znacznie, ze bez nich w zasadzie trudno wyobrazi¢
sobie skuteczne i efektywne programowanie.

W takiej sytuacji nie mozemy wszak przej$¢ obok nich obojetnie - niezwtocznie
przystgpimy zatem do poznawania tych arcywaznych zagadnien :)

Parametry funkcji

Nie tylko w programowaniu trudno wskazac operacje, ktérg mozna wykonac bez
posiadania o niej dodatkowych informacji. Przyktadowo, nie mozna wykona¢ operacji
kopiowania czy przesuniecia pliku do innego katalogu, jesli nie jest znana nazwa tegoz
pliku oraz nazwa docelowego folderu.

Gdybysmy napisali funkcje realizujgcq takg czynnosé, to nazwy pliku oraz katalogu
finalnego bytyby jej parametrami.

Parametry funkcji to dodatkowe dane, przekazywane do funkcji podczas jej wywotania.

Parametry petnig role dodatkowych zmiennych wewnatrz funkcji i mozna ich uzywac
podobnie jak innych zmiennych, zadeklarowanych w niej bezposrednio. Rdznig sie one
oczywiscie tym, ze wartosci parametréw pochodzg z ,,zewnatrz” - sg im przypisywane
podczas wywotania funkcji.

78 Podstawy programowania

Po tym krétkim opisie czas na obrazowy przykfad. Oto zmodyfikujemy nasz program
liczacy tak, zeby korzystat z dobrodziejstw parametréw funkcji:

// Parameters - wykorzystanie parametrdéw funkcji

#include <iostream>
#include <conio.h>

void Dodaj (int nWartoscl, int nWartosc2)

{
int nWynik = nWartoscl + nWartosc2;
std::cout << nWartoscl << " + " << nWartosc2 << " = " << nWynik;
std::cout << std::endl;

}

void main ()

{
int nLiczbal;
std::cout << "Podaj pierwsza liczbe: ";
std::cin >> nlLiczbal;

int nLiczba2;
std::cout << "Podaj druga liczbe: ";
std::cin >> nlLiczba2;

Dodaj (nLiczbal, nLiczba?2);
getch();
}

Rzut oka na dziatajacy program pozwala stwierdzi¢, iz wykonuje on takg sama prace, jak
jego poprzednia wersja. Z kolei spojrzenie na kod ujawnia w nim widoczne zmiany -

przyjrzyjmy sie im.

Zasadnicza czynnos$¢ programu, czyli dodawanie dwéch liczb, zostata wyodrebniona w
postaci osobnej funkcji Dodaj (). Posiada ona dwa parametry niartoscl i nWartosc2,
ktére sg w niej dodawane do siebie i wyswietlane w konsoli.

Wielce interesujacy jest w zwigzku z tym nagtdwek funkcji bodaj (), zawierajacy
deklaracje owych dwdch parametréw:

void Dodaj (int nWartoscl, int nWartosc?2)

Jak sam widzisz, wyglada ona bardzo podobnie do deklaracji zmiennych - najpierw
piszemy typ parametru, a nastepnie jego nazwe. Nazwa ta pozwala odwotywac sie do
wartosci parametru w kodzie funkcji, a wiec na przyktad uzy¢ jej jako sktadnika sumy.
Okreslenia kolejnych parametréw oddzielamy od siebie przecinkami, zas catg deklaracje
umieszczamy w nawiasie po nazwie funkcji.

Wywotanie takiej funkcji jest raczej oczywiste:

Dodaj (nLiczbal, nLiczbaZ?);

Podajemy tu w nawiasie kolejne wartosci, ktdre zostang przypisane jej parametrom;
oddzielamy je tradycyjnie juz przecinkami. W niniejszym przypadku parametrowi
nWartoscl zostanie nadana wartos$¢ zmiennej nLiczbal, za$ nWartosc2 — nLiczba2.
Mysle, ze jest to dosc intuicyjne i nie wymaga wiecej wyczerpujacego komentarza :)

*k*k

Drziatanie programu 79

Reasumujgc: parametry pozwalajg nam przekazywac funkcjom dodatkowe dane, ktorych
mogq uzy¢ do wykonania swoich dziatan. Ilos¢, typy i nazwy parametrow deklarujemy w
nagtéwku funkcji, zas podczas jej wywotywania podajemy ich wartosci w analogiczny
Ssposob.

Wartos$¢ zwracana przez funkcje

Spora czes¢ funkcji pisanych przez programistow ma za zadanie obliczenie jakiegos
wyniku (czesto na podstawie przekazanych im parametréow). Inne z kolei wykonujg
operacje, ktére nie zawsze muszg sie udac (chocby usuniecie pliku — dany plik moze
przeciez juz nie istniec).

W takich przypadkach istnieje wiec potrzeba, by funkcja zwrocita jakas wartosc.
Niekiedy bedzie to rezultat jej intensywnej pracy, a innym razem jedynie informacja, czy
zlecona funkcji czynnos$¢ zostata wykonana pomysinie.

Zgodnie ze zwyczajem, popatrzymy teraz na odpowiedni program przyktadowy!’ :) Pyta
on uzytkownika o dtugosci bokéw prostokata, wyswietlajgc w zamian jego pole
powierzchni oraz obwdd. Czyni to ten kod (jest to fragment funkcji main ()):

// ReturnValue - funkcje zwracajace wartosé

int nDlugoscl;
std::cout << "Podaj dlugosc pierwszego boku: ";
std::cin >> nDlugoscl;

int nDlugosc2;
std::cout << "Podaj dlugosc drugiego boku: ";
std::cin >> nDlugosc2;

std::cout << "Obwod prostokata: " << Obwod(nDlugoscl, nDlugosc2) <<
std::endl;

std::cout << "Pole prostokata: " << Pole(nDlugoscl, nDlugosc?) <<
std::endl;

getch () ;

Linijki wyswietlajace gotowy wynik zawierajg wywotania dwoch funkcji - obwod () i

Pole (). Mozna je umiesci¢ w tym miejscu, gdyz zwracajg one wartosci - w dodatku te,
ktére chcemy zaprezentowac :) Wyswietlamy je dokfadnie w ten sam sposéb jak wartosci
zmiennych i wszystkich innych wyrazen liczbowych.

Cata istota dziatania aplikacji zawiera sie wiec w tych dwoch funkcjach. Prezentujq sie
one nastepujaco:

int Obwod (int nBokl, int nBok2)

{
return 2 * (nBokl + nBok2):;

}

int Pole(int nBokl, int nBok?2)
{

return nBokl * nBok2;

}

Coz ciekawego mozemy o nich rzec? Widoczng roznicg w stosunku do dotychczasowych
przyktadéw funkcji, jakie mieliSmy okazje napotkad, jest chociazby zastgpienie stéwka

17 Catoé¢ programu jest dotaczona do tutoriala, tutaj zaprezentujemy tylko jego najwazniejsze fragmenty

80 Podstawy programowania

void przez nazwe typu, int. To oczywiscie nie przypadek - w taki wtasnie sposdb
informujemy kompilator, iz nasza funkcja ma zwracac¢ warto$¢ oraz wskazujemy jej typ.
Kod funkcji to tylko jeden wiersz, zaczynajacy sie od return (‘powrédt’). Okresla on ni
mniej, ni wiecej, jak tylko owg wartos¢, ktéra bedzie zwrdcona i stanie sie wynikiem
dziatania funkcji. Rezultat ten zobaczymy w konicu i my w oknie konsoli:

OBLICZANIE OBWODU I POLA PROSTOKATA

Podaj dlugosc pierwszego hok

Podaj dlugosc drugiego hoku: 14
Obwod prostokata: 48
Pole prostokata: 148

Screen 15. Miernik prostokatow w akcji

return powoduje jeszcze jeden efekt, ktéry nie jest tu tak wyraznie widoczny. Uzycie tej
instrukcji skutkuje mianowicie natychmiastowym przerwaniem dziatania funkcji i
powrotem do miejsca jej wywotania. Wprawdzie nasze proste funkcje i tak konczg sie
niemal od razu, wiec nie ma to wiekszego znaczenia, jednak w przypadku powazniejszych
podprogramow nalezy o tym fakcie pamietac.

Wynika z niego takze mozliwo$¢ uzycia return w funkcjach niezwracajacych zadnej

- wartosci - mozna je w ten spos6b przerwac, zanim wykonajg swoj kod w catosci.
. Poniewaz nie mamy wtedy zadnej wartosci do zwracania, uzywamy samego stowa
. return; - bez wskazywania nim jakiego$ wyrazenia.

*k*k

DowiedzieliSmy sie zatem, iz funkcja moze zwraca¢ wartos¢ jako wynik swej pracy.
Rezultat taki winien by¢ okreslonego typu - deklarujemy go w nagtéwku funkcji jeszcze
przed jej nazwa. Natomiast w kodzie funkcji mozemy uzy¢ instrukcji return, by wskazac
wartos¢ bedaca jej wynikiem. Jednoczesnie instrukcja ta spowoduje zakonczenie
dziatania funkcji.

Sktadnia funkcji

Gdy juz poznaliSmy zawitosci i niuanse zwigzane z uzywaniem funkcji w swoich
aplikacjach, mozemy tg wydatng porcje informacji podsumowacé ogdlnymi regutami
sktadniowymi dla podprograméw w C++. Ot6z postac funkcji w tym jezyku jest
nastepujgca:

typ zwracanej wartosci/void nazwa funkcji([typ parametru nazwa, ...])
{

instrukcje 1

return wartos$c¢ funkcji I1;

instrukcje 2

return wartosé funkcji 2;

instrukcje 3

return wartos¢ funkcji 3;

return wartosé funkcji n;

}

Jezeli doktadnie przestudiowates (i zrozumiates$! :)) wiadomosci z tego paragrafu i z
poprzedniego rozdziatu, nie powinna by¢ ona dla ciebie zadnym zaskoczeniem.

Drziatanie programu 81

Zauwaz jeszcze, ze fraza return moze wystepowac kilka razy, zwraca¢ w kazdym z
wariantow rézne wartosci, a catos¢ funkcji mie¢ logiczny sens i dziata¢ poprawnie. Jest to
mozliwe miedzy innymi dzieki instrukcjom warunkowym, ktére poznamy juz za chwile.

Xk k

W ten oto sposdb uzyskalismy bardzo wazng umiejetnos$¢ programistyczng, jaka jest
poprawne uzywanie funkcji we wtasnych programach. Upewnij sie przeto, iz skrupulatnie
przyswoites sobie informacje o tym zagadnieniu, jakie serwowatem w aktualnym i
poprzednim rozdziale. W dalszej czesci kursu bedziemy czesto korzysta¢ z funkcji w
przyktadowych kodach i omawianych tematach, dlatego wazne jest, by$ nie miat
ktopotow z nimi.

Jesli natomiast czujesz sie na sitach i chcesz dowiedzie¢ czegos$ wiecej o funkcjach,
zajrzyj do pomocy MSDN zawartej w Visual Studio.

Sterowanie warunkowe

Dobrze napisany program powinien by¢ przygotowany na kazdg ewentualnosc i
nietypowa sytuacje, jaka moze sie przydarzy¢ w czasie jego dziatania. W niektérych
przypadkach nawet proste czynnosci mogg potencjalnie konczy¢ sie niepowodzeniem, zas
porzadna aplikacja musi radzi¢ sobie z takimi drobnymi (lub catkiem sporymi) kryzysami.
Oczywiscie program nie uczyni nic, czego nie przewidziatby jego tworca. Dlatego tez
waznym zadaniem programisty jest opracowanie kodu reagujgcego odpowiednio na
nietypowe sytuacje, w rodzaju btednych danych wprowadzonych przez uzytkownika lub
braku pliku potrzebnego aplikacji do dziatania.

Mozliwe sg tez przypadki, w ktérych dla kilku catkowicie poprawnych sytuacji, danych itp.
trzeba wykona¢ zupetnie inne operacje. Wazne jest wtedy rozrdznienie tych wszystkich
wariantéw i skierowanie dziatania programu na witasciwe tory, gdy ma miejsce ktorys z
nich.

Do wszystkich tych zadan stworzono w C++ (i w kazdym jezyku programowania) zestaw
odpowiednich narzedzi, zwanych instrukcjami warunkowymi. Ich przeznaczeniem jest
wiasnie dokonywanie réznorakich wyboréw, zaleznych od ustalonych warunkéw.

Jak wida¢, przydatnos¢ tych konstrukcji jest nadspodziewanie duza, zal bytoby wiec
omina¢ je bez wnikania w ich szczegdty, prawda? :) Niezwiocznie zatem zajmiemy sie
nimi, poznajac ich sktadnie i sposob funkcjonowania.

Instrukcja warunkowa if

Instrukcja if (‘jezeli’) pozwala wykonac¢ jakis kod tylko wtedy, gdy spetniony jest
okreslony warunek. Jej dziatanie sprowadza sie wiec do sprawdzenia tegoz warunku i,
jesli zostanie stwierdzona jego prawdziwos¢, wykonania wskazanego bloku kodu.

Te prostg idee moze ilustrowac chocby taki przyktad:

// SimpleIf - prosty przykitad instrukcji if

void main ()

{

int nLiczba;

std::cout << "Wprowadz liczbe wieksza od 10: ;
std::cin >> nLiczba;

82 Podstawy programowania

if (nLiczba > 10)

{
std::cout << "Dziekuje." << std::endl;
std::cout << "Wcisnij dowolny klawisz, by zakonczyc.";
getch () ;

}

Uruchom ten program dwa razy — najpierw podaj liczbe mniejszg od 10, zas za drugim
razem spetnij zyczenie aplikacji. Zobaczysz, ze w pierwszym przypadku zostaniesz
potraktowany raczej mato przyjemnie, gdyz program bez stowa zakonczy sie. W drugim
natomiast otrzymasz stosowne podziekowanie za swojgq uprzejmosc ;)

»Winna” jest temu, jakzeby inaczej, wiasnie instrukcja if. W linijce:

if (nLiczba > 10)

wykonywane jest bowiem sprawdzenie, czy podana przez ciebie liczba jest rzeczywiscie
wieksza od 10. Wyrazenie nLiczba > 10 jest tu wiec warunkiem instrukcji if.

W przypadku, gdy okaze sie on prawdziwy, wykonywane sg trzy instrukcje zawarte w
nawiasach klamrowych. Jak pamietamy, sekwencje takg nazywamy blokiem kodu.
Jezeli zas warunek jest nieprawdziwy (a liczba mniejsza lub réwna 10), program omija
ten blok i wykonuje nastepng instrukcje wystepujacg za nim. Poniewaz jednak u nas po
bloku if nie ma zadnych instrukcji, aplikacja zwyczajnie konczy sie, gdyz nie ma nic
konkretnego do roboty :)

Po takim sugestywnym przyktadzie nie od rzeczy bedzie przedstawienie skiadni instrukcji
warunkowej i f w jej prostym wariancie:

if (warunek)

{

instrukcje

}

Stopien jej komplikacji z pewnoscig sytuuje sie ponizej przecietnej ;) Nic w tym dziwnego
- to w zasadzie najprostsza, lecz jednoczesnie bardzo czesto uzywana konstrukcja
programistyczna.

Warto jeszcze zapamietaé, ze blok instrukcji sktadajgcy sie tylko z jednego polecenia
mozemy zapisa¢ nawet bez nawiaséw klamrowych!®. Wtedy jednak nalezy postawié¢ na
jego koncu srednik:

if (warunek) instrukcja;

Taka skrocona wersja jest uzywana czesto do sprawdzania wartosci parametréow funkcji,
na przyktad:

void Funkcja (int nParametr)

{

// sprawdzenie, czy parametr nie jest mniejszy lub rdéwny zeru -
// jezeli tak, to funkcja konczy sie
if (nParametr <= 0) return;

// ... (reszta funkcji)

18 7asada ta dotyczy prawie kazdego bloku kodu w C++ (z wyjatkiem funkcji)

Drziatanie programu 83

Fraza else

Prosta wersja instrukcji i f nie zawsze jest wystarczajaca - nieeleganckie zachowanie
naszego przyktadowego programu jest dobrym tego uzasadnieniem. Powinien on wszakze
pokaza¢ stosowny komunikat rowniez wtedy, gdy uzytkownik nie wykaze sie checig
wspotpracy i nie wprowadzi zadanej liczby. Musi wiec uwzgledni¢ przypadek, w ktorym
warunek badany przez instrukcje if (u nas nLiczba > 10) nie jest prawdziwy i
zareagowac nan w odpowiedni sposob.

Naturalnie, mozna by umiesci¢ stosowny kod po konstrukciji if, ale jednoczesnie
nalezatoby zadbaé, aby nie byt on wykonywany w razie prawdziwosci warunku. Sztuczka
z dodaniem instrukcji return; (przerywajacej funkcje main (), a wiec i caty program) na
koniec bloku if zdataby oczywiscie egzamin, lecz straty w przejrzystosci i prostocie kodu
bylyby zdecydowanie niewspdétmierne do efektow :))

Dlatego tez C++, jako pretendent do miana nowoczesnego jezyka programowania,
posiada bardziej sensowny i logiczny sposob rozwigzania tego problemu. Jest nim
mianowicie fraza else (‘w przeciwnym wypadku’) - czes$¢ instrukcji warunkowej if.
Korzystajaca z niej, ulepszona wersja poprzedniej aplikacji przyktadowej moze zatem
wygladac chociazby tak:

// Else - blok alternatywny w instrukcji if

void main ()

{

int nLiczba;

std::cout << "Wprowadz liczbe wieksza od 10: ";
std::cin >> nLiczba;

if (nLiczba > 10)
{
std::cout << "Dziekuje." << std::endl;
std::cout << "Wcisnij dowolny klawisz, by zakonczyc.";

else
{
std::cout << "Liczba " << nLiczba
<< " nie jest wieksza od 10." << std::endl;
std::cout << "Czuj sie upomniany :P";
}
getch () ;

}

Gdy uruchomisz powyzszy program dwa razy, w podobny sposéb jak poprzednio, w
kazdym wypadku zostaniesz poczestowany jakim$ komunikatem. Zaleznie od wpisanej
przez ciebie liczby bedzie to podziekowanie albo upomnienie :)

Wprowadz liczhe wiekszza od 18: 12
Dziekuje.
Weiznij dowolny klawisz,. hy zakonczuyc.

Uprowadz liczbe wieksza od 18: 7

Liczba 7 nie jest wieksza od 18.
Czuj sie upomniany :P

Screeny 16 i 17. Dwa warianty dziatania programu, czyli instrukcje if i else w catej swej krasie :)

Wystepujacy tu blok else jest uzupetnieniem instrukcji i £ — kod w nim zawarty zostanie
wykonany tylko wtedy, gdy okreslony w if warunek nie bedzie spetniony. Dzieki temu
mozemy odpowiednio zareagowac¢ na kazdg ewentualnos¢, a zatem nasz program
zachowuje sie porzadnie w obu mozliwych przypadkach :)

84 Podstawy programowania

Funkcja getch () jest w tej aplikacji wywolywana poza blokami warunkowymi, gdyz

| niezaleznie od wpisanej liczby i tresci wyswietlanego komunikatu istnieje potrzeba

- poczekania na dowolny klawisz. Zamiast wiec umieszczac te instrukcje zaréwno w bloku
| if, jak i else, mozna jq zostawi¢ catkowicie poza nimi.

Czas teraz zaprezentowacd sktadnie petnej wersji instrukcji i £, uwzgledniajacej takze blok
alternatywny else:

if (warunek)
{

instrukcje 1
}

else

{
instrukcje 2

}

Kiedy warunek jest prawdziwy, uruchamiane s instrukcje 1, za$ w przeciwnym
przypadku (else) - instrukcje 2. Czy Swiat widziat kiedys cos réownie

elementarnego? ;) Nie daj sie jednak zwies¢ tej prostocie - instrukcja warunkowa if jest
w istocie poteznym narzedziem, z ktérego intensywnie korzystajg wszystkie programy.

Bardziej ztozony przyktad

By catkowicie upewnic sie, iz znamy i rozumiemy te szalenie wazng konstrukcje
programistyczng, przeanalizujemy ostatnig, bardziej skomplikowang ilustracje jej uzycia.
Bedzie to aplikacja rozwigzujaca rownania liniowe - tzn. wyrazenia postaci:

ax+b=0

Jak zapewne pamietamy ze szkoty, mogg mie¢ one zero, jedno lub nieskonczenie wiele
rozwigzan, a wszystko zalezy od wartosci wspotczynnikow a i b. Mamy zatem duze pole
do popisu dla instrukcji if :D

Program realizujacy to zadanie wyglada wiec tak:

// LinearEq - rozwiazywanie rdéwnan liniowych

float fA;
std::cout << "Podaj wspolczynnik a: ";
std::cin >> fA;

float £B;
std::cout << "Podaj wspolczynnik b: ";
std::cin >> £fB;

if (fA == 0.0)
{
if (£B == 0.0)
std::cout << "Rownanie spelnia kazda liczba rzeczywista."
<< std::endl;

else
std::cout << "Rownanie nie posiada rozwiazan." << std::endl;
}
else
std::cout << "x = " << —-fB / fA << std::endl;

getch () ;

Drziatanie programu 85

Zagniezdzona instrukcja i f wyglada moze cokolwiek tajemniczo, ale w gruncie rzeczy
istota jej dziatania jest w miare prosta. Wyjasnimy jg za moment.
Najpierw powtdrka z matematyki :) Przypomnijmy, iz réwnanie liniowe ax + b = 0:
» posiada nieskoniczenie wiele rozwigzan, jezeli wspotczynniki a i b sg jednoczesnie
rowne zeru
> nie posiada w ogdle rozwigzan, jezeli a jest réwne zeru, zas b nie
» ma doktadnie jedno rozwigzanie (-b/a), gdy a jest rézne od zera

Wynika stad, ze istniejg trzy mozliwe przypadki i scenariusze dziatania programu.
Zauwazmy jednak, ze warunek ,a jest rowne zeru” jest konieczny do realizacji dwdch z
nich - mozemy wiec go wyodrebni¢ i zapisa¢ w postaci pierwszej (bardziej zewnetrznej)
instrukcji if.

Nadal wszakze pozostaje nam problem wspotczynnika b — sam fakt zerowej wartosci a
nie przeciez pozwala na obstuzenie wszystkich mozliwosci. Rozwigzaniem jest
umieszczenie instrukcji sprawdzajacej b (czyli takze if) wewnatrz bloku if,
sprawdzajacego a! Umozliwia to poprawne wykonanie programu dla wszystkich wartosci
liczb aib.

Podaj wspolczynnik a:- 12

Podaj wspolczunnik h: 6
» = -B.5

Screen 18. Program rozwiazujacy rownania liniowe

Uzywamy totez dwodch instrukcji i£, ktére razem odpowiadajg za wiasciwe zachowanie
sie aplikacji w trzech mozliwych przypadkach. Pierwsza z nich:

if (fA == 0.0)

kontroluje warto$¢ wspotczynnika a i tworzy pierwsze rozgatezienie na szlaku dziatania
programu. Jedna z wychodzacych z niego drég prowadzi do celu zwanego , doktadnie
jedno rozwigzanie rownania”, druga natomiast do kolejnego rozwidlenia:

if (£B == 0.0)

Ono tez kieruje wykonywanie aplikacji albo do ,nieskoriczenie wielu rozwigzan”, albo tez
do ,braku rozwigzan” rownania — zalezy to oczywiscie od ewentualnej réwnosci b z
zerem.

Operatorem rownosci w C++ jest ==, czyli podwojny znak ,rowna sie” (=). Nalezy
koniecznie odrézniac¢ go od operatora przypisania, czyli pojedynczego znaku =. Jesli
omytkowo uzylibysmy tego drugiego w wyrazeniu bedgcym warunkiem, to
najprawdopodobniej bytby on zawsze albo prawdziwy, albo fatszywy'® - na pewno jednak
nie dziatatby tak, jak bysmy tego oczekiwali. Co gorsza, mozna by sie o tym przekonac
dopiero w czasie dziatania programu, gdyz jego kompilacja przebiegtaby bez zaktdcen.
Pamietajmy wiec, by w wyrazeniach warunkowych do sprawdzania rownosci uzywac
zawsze operatora ==, rezerwujac znak = do przypisywania wartosci zmiennym.

Xk k

19 Zalezatoby to od warto$ci po prawej stronie znaku réwnosci - je$li bytaby réwna zeru, warunek bytby
fatszywy, w przeciwnym wypadku - prawdziwy

86 Podstawy programowania

Ostrzezeniem tym konczymy nasze nieco przydiugie spotkanie z instrukcjq warunkowg
if. Mozna $miato powiedzie¢, ze oto poznaliSmy jeden z fundamentow, na ktérych opiera
sie dziatanie wszelkich algorytmoéw w programach komputerowych. Twoje aplikacje
nabiorg przez to elastycznosci i bedg zdolne do wykonywania mniej trywialnych zadan...
jezeli sumiennie przestudiowates$ ten podrozdziat! :))

Instrukcja wyboru switch

Instrukcja switch (‘przetacz’) jest w pewien sposéb podobna do if: jej przeznaczeniem
jest takze wybor jednego z wariantéw kodu podczas dziatania programu. Pomiedzy
obiema konstrukcjami istniejg jednak dos¢ znaczne rdznice.

O ile if podejmuje decyzje na podstawie prawdziwosci lub fatszywosci jakiego$ warunku,
o tyle switch bierze pod uwage wartos¢ podanego wyrazenia. Z tego tez powodu moze
dokonywac wyboru sposrdd wiekszej liczby mozliwosci niz li tylko dwdch (prawdy lub
fatszu).

Najlepiej widac to na przykfadzie:

// Switch - instrukcja wyboru

void main ()

{

// (pomijam tu kod odpowiedzialny za pobranie od uzytkownika dwdch
// liczb - robilismy to tyle razy, ze nie powiniene$ mie¢ z tym
// klopotdédw :)) Liczby sa zapisane w zmiennych fLiczbal i fLiczba2)

int nOpcja;

std::cout << "Wybierz dzialanie:" << std::endl;
std::cout << "1. Dodawanie" << std::endl;
std::cout << "2. Odejmowanie" << std::endl;
std::cout << "3. Mnozenie" << std::endl;
std::cout << "4. Dzielenie" << std::endl;
std::cout << "0O. Wyjscie" << std::endl;
std::cout << "Twoj wybor: ';

std::cin >> nOpcja;

switch (nOpcja)
{
case 1l: std::cout << fLiczbal << " + " << fLiczba2 << " ="
<< fLiczbal + fLiczba2; break;
case 2: std::cout << fLiczbal << " - " << fLiczba2 << " ="
<< fLiczbal - fLiczba2; break;
case 3: std::cout << fLiczbal << " * " << fLiczba2 << " ="
<< fLiczbal * fLiczba2; break;

case 4:
if (fLiczba2 == 0.0)
std::cout << "Dzielnik nie moze byc zerem!";
else
std::cout << fliczbal << " / " << fliczba2 << " ="
<< flLiczbal / fliczba2;
break;
case 0: std::cout << "Dziekujemy :)"; break;

default: std::cout << "Nieznana opcjal!";

}

getch () ;
}

No, to juz jest program, co sie zowie: posiada szerokg funkcjonalnos¢, prosty interfejs —
krétko moéwiagc peten profesjonalizm ;) Tym bardziej wiec powinnismy przejrzeé

Drziatanie programu 87

doktadniej jego kod zrédtowy - zwazywszy, iz zawiera interesujgcg nas w tym momencie
instrukcje switch.

Zajmuje ona zresztg pokazng czesc listingu; na dodatek jest to ten fragment, w ktorym
wykonywane sg obliczenia, bedace podstawg dziatania programu. Jaka jest zatem rola tej
konstrukcji?

KALKULATOR

Podaj pierwsza liczhbe: 243
Podaj druga liczhe: 3

Wyhierz dzialanie:
1. Dodawanie

2. Odejmowanie

3. Mnozenie

g. Dzielenie

Screen 19. Kalkulator w dzialaniu

Coz, nie jest trudno domyslec sie jej — skoro mamy w naszym programie menu,
bedziemy tez mieli kilka wariantédw jego dziatania. Wybranie przez uzytkownika jednego z
nich zostaje wcielone w zycie wtasnie poprzez instrukcje switch. Poréwnuje ona kolejno
warto$¢ zmiennej nopcja (do ktdrej zapisujemy numer wskazanej pozycji menu) z
piecioma wczesniej ustalonymi przypadkami. Kazdemu z nich odpowiada fragment kodu,
zaczynajacy sie od stdwka case (‘przypadek’) i konczacy na break; (‘przerwij’). Gdy
ktérys z nich zostanie uznany za wtasciwy (na podstawie wartosci wspomnianej juz
zmiennej), wykonywane sg zawarte w nim instrukcje. Jezeli zas zaden nie bedzie
pasowat, program ,skoczy” do dodatkowego wariantu default (‘domysiny’) i uruchomi
jego kod. Ot, i cata filozofia :)

Po tym pobieznym wyjasnieniu dziatania instrukcji switch, poznamy jej petng postac
sktadniowa:

switch (wyrazenie)
{
case wartosc¢ 1:
instrukcje 1
[break;]
case wartosc¢ 2:
instrukcje 2
[break;]

case wartos¢ n;
instrukcje n;
[break;]

[default:
instrukcje domyslne]

}

Korzystajac z niej, jeszcze prosciej zrozumieé przeznaczenie konstrukcji switch oraz
wykonywane przez nig czynnosci. Mianowicie, oblicza ona wpierw wynik wyrazenia, by
potem poréwnywac go kolejno z podanymi (w instrukcjach case) wartosciami. Kiedy
stwierdzi, ze zachodzi rownos¢, skacze na poczatek pasujgcego wariantu i wykonuje caty
kod az do konca bloku switch.

Zaraz - jak to do konca bloku? Przeciez w naszym przyktadowym programie, gdy
wybraliSmy, powiedzmy, operacje odejmowania, to otrzymywaliSmy wytgcznie réznice
liczb — bez iloczynu i ilorazu (czyli dalszych opcji). Przyczyna tego tkwi w instrukcji

88 Podstawy programowania

break, umieszczonej na koncu kazdej pozycji rozpoczetej przez case. Polecenie to
powoduje bowiem przerwanie dziatania konstrukcji switch i wyjscie z niej; tym
sposobem zapobiega ono wykonaniu kodu odpowiadajgcego nastepnym wariantom.

W wiekszosci przypadkéw nalezy zatem konczy¢ fragment kodu rozpoczety przez case
instrukcjg break - gwarantuje to, iz tylko jedna z mozliwosci ustalonych w switch
zostanie wykonana.

Znaczenie ostatniej, nieobowigzkowej frazy default wyjasniliSmy sobie juz wczesniej.
Mozna jedynie doda¢, ze petni ona w switch podobng role, co else w if i umozliwia
wykonanie jakiegos$ kodu takze wtedy, gdy zadna z przewidzianych wartosci nie bedzie
zgadzac sie z wyrazeniem. Brak tej instrukcji bedzie zas skutkowac niepodjeciem
zadnych dziatan w takim przypadku.

Xk k

OmowiliSmy w ten sposdb obie konstrukcje, dzieki ktérym mozna sterowac przebiegiem
programu na podstawie ustalonych warunkéw czy tez wartosci wyrazen. Potrafimy wiec
juz sprawic, aby nasze aplikacje zachowywaty sie prawidtowo niezaleznie od okolicznosci.
Nie zmienia to jednak faktu, ze nadal potrafig one co najwyzej tyle, ile mato funkcjonalny
kalkulator i nie wykorzystujg w petni w ogromnych mozliwosci komputera. Zmienic to
moze kolejny element jezyka C++, ktdry teraz witasnie poznamy. Przy pomocy petli, bo o
nich mowa, zdofamy zatrudnic¢ leniuchujacy dotad procesor do wytezonej pracy, ktéra
wycisnie z niego siddme poty ;)

Petle

Petle (ang. loops), zwane tez instrukcjami iteracyjnymi, stanowig podstawe prawie
wszystkich algorytmdw. Lwia cze$¢ zadan wykonywanych przez programy komputerowe
opiera sie w catosci lub czesciowo wiasnie na petlach.

Petla to element jezyka programowania, pozwalajacy na wielokrotne, kontrolowane
wykonywanie wybranego fragmentu kodu.

Liczba takich powtérzen (zwanych cyklami lub iteracjami petli) jest przy tym
ograniczona w zasadzie tylko inwencjq i rozsadkiem programisty. Te potezne narzedzia
daja wiec mozliwos¢ zrealizowania niemal kazdego algorytmu.

Petle sg tez niewatpliwie jednym z atutéow C++: ich elastycznos¢ i prostota jest wieksza
niz w wielu innych jezykach programowania. Jezeli zatem bedziesz kiedy$ kodowat jakas
ztozong funkcje przy uzyciu skomplikowanych petli, z pewnoscig przypomnisz sobie i
docenisz te zalety :)

Petle warunkowe do i while

Na poczatek poznamy dwie konstrukcje, ktore zwane sg petlami warunkowymi. Miano
to okresla catkiem dobrze ich zastosowanie: ciagte wykonywanie kodu, dopdki spetniony
jest okreslony warunek. Petla sprawdza go przy kazdym swoim cyklu - jezeli stwierdzi
jego fatszywosé, natychmiast konczy dziatanie.

Petla do
Prosty przyktad obrazujacy ten mechanizm prezentuje sie nastepujaco:

// Do — pierwsza petla warunkowa

Drziatanie programu 89

#include <iostream>
#include <conio.h>

void main ()

{

int nLiczba;

do

{
std::cout << "Wprowadz liczbe wieksza od 10: ";
std::cin >> nlLiczba;

} while (nLiczba <= 10);

std::cout << "Dziekuje za wspolprace :)";
getch () ;
}

Program ten, podobnie jak jeden z poprzednich, oczekuje od nas o liczby wiekszej niz
dziesie¢. Tym razem jednak nie daje sie zby¢ byle czym - jezeli nie bedziemy sktonni od
razu przychyli¢ sie do jego prosby, bedzie jg nieztomnie powtarzat az do skutku (lub do
uzycia Ctrl+Alt+Del ;D).

Wprowadz licszhe wiekseza
Wprowadz liczhe wieks=a
Wprowadz licszhe wiekseza
Wprowadz liczhe wieks=a

Wprowadz licszhe wiekseza
Wprowadz liczhe wieks=a
Wprowadz licszhe wieksea
Dziekuje =za wspolprace

Screen 20. Nieugiety program przeciwko krngbrnemu uzytkownikowi :)

Updr naszej aplikacji bierze sie oczywiscie z umieszczonej wewnatrz niej petli do (‘czyn’).
Wykonuje ona kod odpowiedzialny za prosbe do uzytkownika tak diugo, jak dtugo ten
jest konsekwentny w ignorowaniu jej :) Przejawia sie to rzecz jasna wprowadzaniem
liczb, ktore nie sq wieksze od 10, lecz mniejsze lub réwne tej wartosci - odpowiada to
warunkowi petli nLiczba <= 10. Instrukcja niniejsza wykonuje sie wiec dopéty, dopdki
(ang. while) zmienna nLiczba, ktdra przechowuje liczbe pobrang od uzytkownika, nie
przekracza granicznej wartosci dziesieciu. Przedstawia to pogladowo ponizszy diagram:

Liczha
mniepsza
Iuky rowmna
107

Wz "

Schemat 4. Dziatanie przykitadowej petli do

90 Podstawy programowania

Co sie jednak dzieje przy pierwszym , obrocie” petli, gdy program nie zdazyt jeszcze
pobra¢ od uzytkownika zadnej liczby? Jak mozna porownywac wartos¢ zmiennej nLiczba,
ktéra na samym poczatku jest przeciez nieokreslona?... Tajemnica tkwi w fakcie, iz petla
do dokonuje sprawdzenia swojego warunku na koncu kazdego cyklu — dotyczy to takze
pierwszego z nich. Wynika z tego dos¢ oczywisty wniosek:

Petla do wykona zawsze co najmniej jeden przebieg.

Fakt ten sprawia, ze nadaje sie ona znakomicie do uzyskiwania jakich$ danych od
uzytkownika przy jednoczesnym sprawdzaniu ich poprawnosci. Naturalnie, w
prawdziwym programie nalezatoby zapewni¢ swobode zakonczenia aplikacji bez
wpisywania czegokolwiek. Nasz obrazowy przyktad jest jednak wolny od takich fanaberii
- to wszak tylko kod pomocny w nauce, wiec piszac go nie musimy przejmowac sie
takimi btahostkami ;))

Podsumowaniem naszego spotkania z petlg do bedzie jej sktadnia:

do
{

instrukcje
} while (warunek)

Wystarczy przyjrzec sie jej cho¢ przez chwile, by odkry¢ caty sens. Samo ttumaczenie
wyjasnia wiasciwie wszystko: ,Wykonuj (ang. do) instrukcje, dopoki (ang. while)
zachodzi warunek”. I to jest wiasnie spiritus movens catej tej konstrukcji.

Petla while

Przyszta pora na poznanie drugiego typu petli warunkowych, czyli while. Stéwko bedace
jej nazwa widziates juz wczesniej, przy okazji petli do — nie jest to bynajmniej przypadek,
gdyz obydwie konstrukcje sg do siebie bardzo podobne.

Dziatanie petli while przesledzimy zatem na ponizszym ciekawym przyktadzie:

// While - druga petla warunkowa

#include <iostream>
#include <ctime>
#include <conio.h>

volid main ()

{
// wylosowanie liczby
srand ((int) time (NULL)) ;

int nWylosowana = rand() % 100 + 1;
std::cout << "Wylosowano liczbe z przedzialu 1-100." << std::endl;

// pilerwsza prdba odgadniecia liczby
int nWprowadzona;

std::cout << "Sprobuj ja odgadnac: ";
std::cin >> nWprowadzona;

// kolejne proéby, az do skutku - przy uzyciu petli while
while (nWprowadzona != nWylosowana)
{
if (nWprowadzona < nWylosowana)
std::cout << "Liczba Jest zbyt mala.";
else
std::cout << "Za duza liczba.'";

Drziatanie programu 91

std::cout << " Sprobuj Jjeszcze raz: ";
std::cin >> nWprowadzona;

}

std::cout << "Celny strzal :) Brawo!" << std::endl;
getch (),
}

Jest to nic innego, jak prosta... gra :) Twoim zadaniem jest w niej odgadniecie
~pomyslanej” przez komputer liczby (z przedziatu od jednosci do stu). Przy kazdej prébie
otrzymujesz wskazéwke, mowigcg czy wpisana przez ciebie wartos¢ jest za duza, czy za
mata.

ZGADYUANKERA

Wylosowane liczbe = przedzialu 1-160.

Sprobuj ja odgadnac: 56

Liczbha Jjest zbyt mala. Sprobuj jeszcze raz: 78
Za duza liczba. Sprobuj jeszcze raz: 6H

Liczha jest zbyt mala. Sprobuj jeszcze raz: 78
Za duza liczba. Sprobuj jeszcze raz: b5

Liczha jest zbyt mala. Sprobuj jeszcze raz: 67
Liczha jest zhyt mala. Sprobuj jeszcze raz: 69
Za duza liczba. Sprobuj jes=zcze raz: b8

Celny strzal :>» Brawo?

Screen 21. Wystarczylo tylko 8 préb :)

Tak przedstawia sie to w dziataniu. Jako programisci chcemy jednak zajrze¢ do kodu
zrodtowego i przekonac sie, w jaki sposdb mozna bylto taki efekt osiggna¢. Czym predzej
wiec zis$¢my te pragnienia :D

Pierwszg czynnoscig podjetg przez nasz program jest wylosowanie liczby, ktérg
uzytkownik bedzie odgadywat. Zasadniczo odpowiadajg za to dwie poczatkowe linijki:

srand ((int) time (NULL)) ;

o)

int nWylosowana = rand() % 100 + 1;

Nie bedziemy obecnie zagtebiac sie w szczegdty ich funkcjonowania, gdyz te zostang
omoéwione w nastepnym rozdziale. Teraz mozesz jedynie zapamieta¢, iz pierwszy wiersz,
zawierajacy funkcje srand () (i jej osobliwy parametr), jest czyms$ w rodzaju zakrecenia
kotem ruletki. Jego obecnos$¢ sprawia, ze aplikacja za kazdym razem losuje nam inng,
liczbe.

Za samo losowanie odpowiada natomiast wyrazenie z funkcjg rand (). Obliczona wartos¢
tegoz jest od razu przypisywana do zmiennej niiylosowana i to 0 nig toczy bdj
niestrudzony gracz :)

Kolejny pakiet kodu pozwala na wykonanie pierwszej proby odgadniecia wtasciwego
wyniku. Nie wida¢ tu zadnych nowosci — z podobnymi fragmentami spotykalismy sie juz
wielokrotnie i wyjasnilismy je dogtebnie. Zauwazmy tylko, ze liczba wpisana przez
uzytkownika jest zapamietywana w zmiennej niwprowadzona.

O wiele bardziej interesujaca jest dla nas petla while, wystepujgca dalej. To na niej
spoczywa zadanie wyswietlania graczowi wskazéwek, umozliwiania mu kolejnych préb i
sprawdzania wpisanych wartosci.

Podobnie jak w przypadku do, wykonywanie tej petli uzaleznione jest spetnieniem
okreslonego kryterium. Tutaj jest nim niezgodnos$¢ miedzy liczbg wylosowang na
poczatku (zawartag w zmiennej nWwylosowana), @ wprowadzong przez uzytkownika

92 Podstawy programowania

(zmienna nWprowadzona). Zapisujemy to w postaci warunku nWprowadzona !=
nWylosowana. Oczywiscie petla wykonuje sie do chwili, w ktdrej zatozenie to przestaje
by¢ prawdziwe, a uzytkownik poda witasciwg liczbe.

Wewnatrz bloku petli podejmowane zas sg dwie czynnosci. Najpierw wyswietlana jest
podpowiedz dla uzytkownika. Mowi mu ona, czy wpisana przed chwilg liczba jest wieksza
czy mniejsza od szukanej. Gracz otrzymuje nastepnie kolejng szanse na odgadniecie
pozadanej wartosci.

Gdy wreszcie uda mu sie ta sztuka, raczony jest w nagrode odpowiednim

komunikatem :)

Tak oto przedstawia sie funkcjonowanie powyzszego programu przyktadowego, ktérego
witalng czescig jest petla while. Wczesniej natomiast zdazyliSmy sie dowiedzied i
przekona¢, iz konstrukcja ta bardzo przypomina poznang poprzednio petle do. Na czym
wiec polega réznica miedzy nimi?...

Jest nig mianowicie moment sprawdzania warunku petli. Jak pamietamy, do czyni to
na koncu kazdego cyklu. Analogicznie, while dokonuje tego zawsze na poczatku swego
przebiegu. Determinuje to dos$¢ oczywiste nastepstwo:

Petla while moze nie wykonac sie ani razu, jezeli jej warunek bedzie od poczatku
nieprawdziwy.

W naszym przyktadowym programie odpowiada to sytuacji, gdy gracz od razu trafia we
wiasciwg liczbe. Naturalnie, jest to bardzo mato prawdopodobne (rzedu 1%), lecz jednak
mozliwe. Trzeba zatem przewidzie¢ i odpowiednio zareagowac na taki przypadek, zas
petla while rozwigzuje nam ten problem praktycznie sama :)

Na koniec tradycyjnie juz przyjrzymy sie sktadni omawianej konstrukcji:

while (warunek)

{

instrukcje

}

Ponownie wynika z niej praktycznie wszystko: ,,Dopoki (while) zachodzi warunek,
wykonuj instrukcje”. Czyz nie jest to wyjatkowo intuicyjne? ;)

>k k%

Tak oto poznaliSmy dwa typy petli warunkowych - ich dziatanie, skfadnie i sposdb
uzywania. Tym samym dostates$ do reki narzedzia, ktore pozwolg ci tworzy¢ lepsze i
bardziej skomplikowane programy.

Jakkolwiek oba te mechanizmy majg bardzo duze mozliwosci, korzystanie z nich moze
by¢ w niektorych wypadkach nieco niewygodne. Na podobne okazje obmyslono trzeci
rodzaj petli, z ktérym witasnie teraz sie zaznajomimy.

Petla krokowa for

Do tej pory spotykaliSmy sie z sytuacjami, w ktérych nalezato wykonywac okreslony kod
az do spetnienia pewnego warunku. Réwnie czesto jednak znamy wymagang ilo$¢
~0brotow” petli jeszcze przed jej rozpoczeciem - chcemy jg podac¢ w kodzie explicite
lub obliczy¢ wczesniej jako wartos¢ zmiennej.

Co wtedy zrobi¢? Mozemy oczywiscie uzy¢ odpowiednio spreparowanej petli while,
chociazby w takiej postaci:

int nLicznik = 1;

Drziatanie programu 93

// wypisanie dziesieciu liczb catkowitych w osobnych linijkach
while (nLicznik <= 10)
{

std::cout << nLicznik << std::endl;

nLicznik++;

Powyzsze rozwigzanie jest z pewnoscig poprawne, aczkolwiek istnieje jeszcze lepsze :) W
przypadku, gdy znamy z gory liczbe przebiegdéw petli, bardziej naturalne staje sie uzycie
instrukcji for (‘dla’). Zostata ona bowiem stworzona specjalnie na takie okazje® i
sprawdza sie w nich o wiele lepiej niz uniwersalna while. Korzystajacy z niej ekwiwalent
powyzszego kodu moze wygladac na przyktad tak:

for (int 1 = 1; 1 <= 10; 1i++)
{

std::cout << 1 << std::endl;
}

Jezeli uwaznie przyjrzysz sie obu jego wersjom, z pewnoscig zdotasz domyslec sie
ogolnej zasady dziatania petli for. Zanim dokfadnie jg wyjasnie, postuze sie bardziej
wyrafinowanym przyktadem do jej ilustracji:

// For - petla krokowa

int Suma (int nLiczba)

{

int nSuma = 0;

for (int i = 1; 1 <= nliczba; i++)
nSuma += i;

return nSuma;

}

void main ()

{
int nLiczba;
std::cout << "Program oblicza sume od 1 do podanej liczby."
<< std::endl;
std::cout << "Podaj ja: ";
std::cin >> nLiczba;

std::cout << "Suma liczb od 1 do " << nLiczba << " wynosi "
<< Suma (nLiczba) << ".";
getch (),

Mamy zatem kolejny superuzyteczny programik do przeanalizowania ;) Bezzwitocznie
wiec przystagpmy do wykonania tego pozytecznego zadania.

Rzut oka na kod tudziez kompilacja i uruchomienie aplikacji prowadzi do stusznego
whniosku, iz przeznaczeniem programu jest obliczanie sumy kilku poczatkowych liczb
naturalnych. Zakres dodawania ustala przy tym sam uzytkownik programu.

Czynnoscig sumowania zajmuje sie tu odrebna funkcja suma (), na ktérej skupimy
obecnie calg naszg uwage.

20 £6r nie jest tylko wymystem twdrcdw C++. Podobne konstrukcje spotkaé mozna wtasciwie w kazdym jezyku
programowania, istniejg tez nawet bardziej wyspecjalizowane ich odmiany. Trudno wiec uznac te poczciwg petle
za zbedne udziwnienie :)

94 Podstawy programowania

Pierwsza linijka tej funkcji to znana juz nam deklaracja zmiennej, potaczona z jej
inicjalizacjg wartoscig 0. Owa zmienna, nSuma, bedzie przechowywac obliczony wynik
dodawania, ktory zostanie zwrdcony jako rezultat catej funkciji.

Najbardziej interesujgcym fragmentem jest wystepujaca dalej petla for:

for (int 1 = 1; 1 <= nliczba; i++)
nSuma += 1i;

Wykonuje ona zasadnicze obliczenia: dodaje do zmiennej nsuma kolejne liczby naturalne,
zatrzymujac sie na podanym w funkcji parametrze. Cato$¢ odbywa sie w nastepujacy,
dos¢ prosty sposéb:

> Instrukcja int i = 1 jest wykonywana raz na samym poczatku. Jak wida¢, jest to
deklaracja i inicjalizacja zmiennej i. Nazywamy jq licznikiem petli. W kolejnych
cyklach bedzie ona przyjmowac wartosci 1, 2, 3, itd.

» Kod nSuma += i; stanowi blok petli?! i jest uruchamiany przy kazdym jej
przebiegu. Skoro zas$ licznik i jest po kolei ustawiany na nastepujgce po sobie
liczby naturalne, petla for staje sie odpowiednikiem sekwencji instrukcji nSuma +=
1; nSuma += 2; nSuma += 3; nSuma += 4; itd.

> Warunek i <= nLiczba okresla gbérng granice sumowania. Jego obecnos¢
sprawia, ze petla jest wykonywana tylko wtedy, gdy licznik i jest mniejszy lub
rowny zmiennej nLiczba. Zgadza sie to oczywiscie z naszym zamystem.

> Wreszcie, na koniec kazdego cyklu instrukcja i++ powoduje zwiekszenie wartosci
licznika o jeden.

Po dtuzszym zastanowieniu nad powyzszym opisem mozna niewatpliwie dojs¢ do
whniosku, ze nie jest on wcale taki skomplikowany, prawda? :) Zrozumienie go nie
powinno nastreczac ci zbyt wielu trudnosci. Gdyby jednak tak byto, przypomnij sobie
podang w tytule nazwe petli for - krokowa.

To catkiem trafne okreslenie dla tej konstrukcji. Jej zadaniem jest bowiem przebycie
pewnej ,,drogi” (u nas sg to liczby od 1 do wartosci zmiennej nLiczba) poprzez serie
matych krokdow i wykonanie po drodze jakichs$ dziatan. Klarownie przedstawia to tenze
rysunek:

W" L _I_1I-”.”” ‘h\

i = 1 2 3 4 5 nLiczba - 2 | nliczba - 1 nLiczba

Schemat 5. "Droga" przykltadowej petli for

Mam nadzieje, ze teraz nie masz juz zadnych ktopotéw ze zrozumieniem zasady dziatania
naszego programu.

Przyszedt czas na zaprezentowanie sktadni omawianej przez nas petli:

for ([poczatek]; [warunek]; [cykl])
{

instrukcje

}

21 Jak zapewne pamietasz, jedna linijke w bloku kodu mozemy zapisaé bez nawiaséw klamrowych {} -
dowiedzieliSmy sie tego przy okazji instrukcji if :)

Drziatanie programu 95

Na jej podstawie mozemy dogtebnie poznac¢ funkcjonowanie tego waznego tworu
programistycznego. Dowiemy sie tez, dlaczego konstrukcja for jest uwazana za jedng z
mocnych stron jezyka C++.

Zaczniemy od poczatku, czyli komendy oznaczonej jako... poczatek :) Wykonuje sie ona
jeden raz, jeszcze przed wejsciem we wiasciwy krag petli. Zazwyczaj umieszczamy tu
instrukcje, ktéra ustawia licznik na wartos¢ poczatkowg (moze to by¢ potaczone z jego
deklaracja).

warunek jest sprawdzany przed kazdym cyklem instrukcji. Jezeli nie jest on spetniony,
petla natychmiast konczy sie. Zwykle wiec wpisujemy w jego miejsce kod poréwnujacy
licznik z wartoscig koncowa.

W kazdym przebiegu, po wykonaniu instrukcji, petla uruchamia jeszcze fragment
zaznaczony jako cykl. Naturalng jego trescig bedzie zatem zwiekszenie lub zmniejszenie
licznika (w zaleznosci od tego, czy liczymy w goére czy w dof).

Inkrementacja czy dekrementacja nie jest bynajmniej jedyng czynnoscia, jaka mozemy
tutaj wykona¢ na liczniku. Postuzenie sie choéby mnozeniem, dzieleniem czy nawet
bardziej zaawansowanymi funkcjami jest jak najbardziej dopuszczalne.

Whpisujac na przyktad i *= 2 otrzymamy kolejne potegi dwojki (2, 4, 8, 16 itd.), i += 10
- wielokrotnosci dziesieciu, itp. Jest to znaczna przewaga nad wieloma innymi jezykami
programowania, w ktérych liczniki analogicznych petli mogg sie zmienia¢ jedynie w
postepie arytmetycznym (o statg wartos¢ - niekiedy nawet dopuszczalna jest tu wylgcznie
jedynkal).

Elastycznosc petli for polega miedzy innymi na fakcie, iz Zzaden z trzech podanych w
nawiasie ,parametréw” nie jest obowigzkowy! Wprawdzie na pierwszy rzut oka obecnos¢
kazdego wydaje sie tu absolutnie niezbedna, jednakze pominiecie ktéregos (czasem
nawet wszystkich) moze miec¢ swoje logiczne uzasadnienie.

Brak poczatku lub cyklu powoduje dos¢ przewidywalny skutek — w chwili, gdy miatyby
zosta¢ wykonane, program nie podejmie po prostu zadnych akcji. O ile nieobecnos¢
instrukcji ustawiajacej licznik na wartos$¢ poczatkowq jest okolicznoscig rzadko
spotykang, o tyle pominiecie frazy cykl jest konieczne, jezeli nie chcemy zmieniac
licznika przy kazdym przebiegu petli. Mozemy to osiggna¢, umieszczajac odpowiedni kod
np. wewnatrz zagniezdzonego bloku if.

Gdy natomiast opuscimy warunek, iteracja nie bedzie miata czego weryfikowac przy
kazdym swym ,obrocie”, wiec zapetli sie w nieskoriczonos¢. Przerwanie tego btednego
kota bedzie mozliwe tylko poprzez instrukcje break, ktérg juz za chwile poznamy blizej.

Xk k

W ten oto sposdb zawarliSmy blizszg znajomos¢ z petla krokowg for. Nie jest to moze
tatwa konstrukcja, ale do wielu zastosowan zdaje sie by¢ bardzo wygodna. Z tego
wzgledu bedziemy jej czesto uzywali — tak tez robig wszyscy programisci C++.

Instrukcje break i continue

Z petlami zwigzane sg jeszcze dwie instrukcje pomocnicze. Nierzadko utatwiajg one
rozwigzywanie pewnych probleméw, a czasem wrecz sg do tego niezbedne. Mowa tu o
tytutowych break i continue.

Z instrukcjg break (‘przerwij’) spotkalismy sie juz przy okazji konstrukcji switch.
KorzystaliSmy z niej, aby zagwarantowa¢ wykonanie kodu odpowiadajgcego tylko
jednemu wariantowi case. break powodowata bowiem przerwanie bloku switch i
przejscie do nastepnej linijki po nim.

96 Podstawy programowania

Rola tej instrukcji w kontekscie petli nie zmienia sie ani na jote: jej wystapienie wewnatrz
bloku do, while lub for powoduje doktadnie ten sam efekt. Bez wzgledu na prawdziwos¢
lub nieprawdziwos$¢ warunku petli jest ona btyskawicznie przerywana, a punkt wykonania
programu przesuwa sie do kolejnego wiersza za niq.

Przy pomocy break mozemy teraz nieco poprawi¢ nasz program demonstrujacy petle do:

// Break - przerwanie petli

void main ()

{

int nLiczba;

do
{

std::cout << "Wprowadz liczbe wieksza od 10" << std::endl;

std::cout << "lub zero, by zakonczyc program: ";
std::cin >> nLiczba;

if (nLiczba == 0) break;
} while (nLiczba <= 10);

std::cout << "Nacisnij dowolny klawisz.'";
getch () ;
}

Mankament niemoznosci zakonczenia aplikacji bez spetnienia jej prosby zostat tutaj
skutecznie usuniety. Mianowicie, gdy wprowadzimy liczbe zero, instrukcja if skieruje
program ku komendzie break, ktdra natychmiast zakonczy petle i uwolni uzytkownika od
irytujagcego zadania :)

' Podobny skutek (przerwanie petli po wpisaniu przez uzytkownika zera) osiggneliby$my
zmieniajac warunek petli tak, by stawat sie prawdziwy rowniez wtedy, gdy zmienna

| nLiczba miataby warto$¢ 0. W nastepnym rozdziale dowiemy sie, jak poczyni¢ podobng
' modyfikacje.

Instrukcja continue jest uzywana nieco rzadziej. Gdy program natrafi na nig wewnatrz
bloku petli, wtedy automatycznie konczy biezacy cykl i rozpoczyna nowy przebieg iteracji.
Z instrukcji tej korzystamy najczesciej wtedy, kiedy czesé (zwykle wiekszos¢) kodu petli
ma by¢ wykonywana tylko pod okreslonym, dodatkowym warunkiem.

Xk k

Zakonczylismy witasnie poznawanie bardzo waznych elementéw jezyka C++, czyli petli.
DowiedzieliSmy sie o zasadach ich dziatania, sktadni oraz przykfadowych zastosowaniach.
Tych ostatnich bedzie ham systematycznie przybywato wraz z postepami w sztuce
programowania, gdyz petle to bardzo intensywnie wykorzystywany mechanizm - nie
tylko zresztg w C++.

Podsumowanie

Ten dtugi i wazny rozdziat prezentowat mozliwosci C++ w zakresie sterowania
przebiegiem aplikacji oraz sposobem jej dziatania.

Pierwszym zagadnieniem byto bystrzejsze spojrzenie na funkcje, co obejmowato poznanie
ich parametréw oraz zwracanych wartosci. Dalej zerkneliSmy na instrukcje warunkowe,
ktére wreszcie dopuszczaty nam przewidywac rézne ewentualnosci pracy programu. Na

Drziatanie programu 97

koniec, petle daty nam okazje stworzy¢ nieco mniej banalne aplikacje niz zwykle - w tym
i jedng gre! :D

Tg drogg nabyliSmy przeto umiejetnos¢ tworzenia programoéow wykonujacych niemal
dowolne zadania. Pewnie teraz nie jeste$ o tym szczegdlnie przekonany, jednak
pamietaj, ze poznanie instrumentdw to tylko pierwszy krok do osiggniecia wirtuozerii.
Niezastgpiona jest praktyka w prawdziwym programowaniu, a sposobnosci do niej
bedziesz miat z pewnoscig bez liku - takze w niniejszym kursie :)

Pytania i zadania

Tak obszerny i kluczowy rozdziat nie moze sie obejs¢ bez stusznego pakietu zadan
domowych ;) Oto i one:

Pytania

1. Jaka jest rola parametréow funkcji?

2. Czy ilo$¢ parametréw w deklaracji i wywotaniu funkcji moze by¢ rézna?
Wskazdwka: Poczytaj w MSDN o domysinych wartosciach parametréw funkciji.

3. Co sie stanie, jezeli nie umiescimy instrukcji break po wariancie case w bloku
switch?

4. W jakich sytuacjach, oprdcz niepodania warunku, petla for bedzie sie wykonywata
w nieskonczonos¢? A kiedy nie wykona sie ani razu?
Czy podobnie jest z petlg while?

Cwiczenia

1. Stwodrz program, ktéry poprosi uzytkownika o liczbe catkowitg i przyporzadkuje jq
do jednego z czterech przedziatéw: liczb ujemnych, jednocyfrowych,
dwucyfrowych lub pozostatych.
Ktora z instrukcji — if czy switch — bedzie tu odpowiednia?

2. Napisz aplikacje wyswietlajgcg liste liczb od 1 do 100 z podanymi obok
wartosciami ich drugich poteg (kwadratéow).
Jakg petle - do, while czy for — nalezatoby tu zastosowac?

3. Zmodyfikuj program przyktadowy prezentujacy petle while. Niech zlicza on proby
zgadniecia liczby podjete przez gracza i wyswietla na koncu ich ilos¢.

