
3
DZIAŁANIE PROGRAMU

Nic nie dzieje się wbrew naturze,

lecz wbrew temu, co o niej wiemy.
Fox Mulder w serialu „Z archiwum X”

Poznaliśmy już przedsmak uroków programowania w C++ i stworzyliśmy kilka własnych
programów. Opanowaliśmy jednocześnie najbardziej podstawowe podstawy podstaw
kodowania w tym języku :)

Możemy więc odkryć kolejne, ważne jego elementy, które pozwolą nam tworzyć bardziej
interesujące i przydatne programy. Przyszła bowiem pora na spotkanie z instrukcjami
sterującymi przebiegiem aplikacji i sposobem jej działania.

Funkcje nieco bliżej
Z funkcjami mieliśmy do czynienia już wcześniej. Powiedzieliśmy sobie wtedy, że są to
wydzielone fragmenty kodu realizujące jakąś czynność. Przytoczyłem przy tym dość
banalny przykład funkcji PokazTekst(), wyświetlającej w konsoli ustalony napis.

Niewątpliwie był on klarowny i ukazywał wspomniane tam przeznaczenie funkcji (czyli
podział kodu na fragmenty), jednakże pomijał dwa bardzo ważne aspekty z nimi
związane. Chodzi mianowicie o parametry oraz zwracanie wartości. Rozszerzają one
użyteczność i możliwości funkcji tak znacznie, że bez nich w zasadzie trudno wyobrazić
sobie skuteczne i efektywne programowanie.

W takiej sytuacji nie możemy wszak przejść obok nich obojętnie - niezwłocznie
przystąpimy zatem do poznawania tych arcyważnych zagadnień :)

Parametry funkcji
Nie tylko w programowaniu trudno wskazać operację, którą można wykonać bez
posiadania o niej dodatkowych informacji. Przykładowo, nie można wykonać operacji
kopiowania czy przesunięcia pliku do innego katalogu, jeśli nie jest znana nazwa tegoż
pliku oraz nazwa docelowego folderu.
Gdybyśmy napisali funkcję realizującą taką czynność, to nazwy pliku oraz katalogu
finalnego byłyby jej parametrami.

Parametry funkcji to dodatkowe dane, przekazywane do funkcji podczas jej wywołania.

Parametry pełnią rolę dodatkowych zmiennych wewnątrz funkcji i można ich używać
podobnie jak innych zmiennych, zadeklarowanych w niej bezpośrednio. Różnią się one
oczywiście tym, że wartości parametrów pochodzą z „zewnątrz” – są im przypisywane
podczas wywołania funkcji.

Podstawy programowania 78

Po tym krótkim opisie czas na obrazowy przykład. Oto zmodyfikujemy nasz program
liczący tak, żeby korzystał z dobrodziejstw parametrów funkcji:

// Parameters - wykorzystanie parametrów funkcji

#include <iostream>
#include <conio.h>

void Dodaj(int nWartosc1, int nWartosc2)
{
 int nWynik = nWartosc1 + nWartosc2;
 std::cout << nWartosc1 << " + " << nWartosc2 << " = " << nWynik;
 std::cout << std::endl;
}

void main()
{
 int nLiczba1;
 std::cout << "Podaj pierwsza liczbe: ";
 std::cin >> nLiczba1;

 int nLiczba2;
 std::cout << "Podaj druga liczbe: ";
 std::cin >> nLiczba2;

 Dodaj (nLiczba1, nLiczba2);
 getch();
}

Rzut oka na działający program pozwala stwierdzić, iż wykonuje on taką samą pracę, jak
jego poprzednia wersja. Z kolei spojrzenie na kod ujawnia w nim widoczne zmiany –
przyjrzyjmy się im.

Zasadnicza czynność programu, czyli dodawanie dwóch liczb, została wyodrębniona w
postaci osobnej funkcji Dodaj(). Posiada ona dwa parametry nWartosc1 i nWartosc2,
które są w niej dodawane do siebie i wyświetlane w konsoli.
Wielce interesujący jest w związku z tym nagłówek funkcji Dodaj(), zawierający
deklarację owych dwóch parametrów:

void Dodaj(int nWartosc1, int nWartosc2)

Jak sam widzisz, wygląda ona bardzo podobnie do deklaracji zmiennych – najpierw
piszemy typ parametru, a następnie jego nazwę. Nazwa ta pozwala odwoływać się do
wartości parametru w kodzie funkcji, a więc na przykład użyć jej jako składnika sumy.
Określenia kolejnych parametrów oddzielamy od siebie przecinkami, zaś całą deklarację
umieszczamy w nawiasie po nazwie funkcji.

Wywołanie takiej funkcji jest raczej oczywiste:

Dodaj (nLiczba1, nLiczba2);

Podajemy tu w nawiasie kolejne wartości, które zostaną przypisane jej parametrom;
oddzielamy je tradycyjnie już przecinkami. W niniejszym przypadku parametrowi
nWartosc1 zostanie nadana wartość zmiennej nLiczba1, zaś nWartosc2 – nLiczba2.
Myślę, że jest to dość intuicyjne i nie wymaga więcej wyczerpującego komentarza :)

Działanie programu 79

Reasumując: parametry pozwalają nam przekazywać funkcjom dodatkowe dane, których
mogą użyć do wykonania swoich działań. Ilość, typy i nazwy parametrów deklarujemy w
nagłówku funkcji, zaś podczas jej wywoływania podajemy ich wartości w analogiczny
sposób.

Wartość zwracana przez funkcję
Spora część funkcji pisanych przez programistów ma za zadanie obliczenie jakiegoś
wyniku (często na podstawie przekazanych im parametrów). Inne z kolei wykonują
operacje, które nie zawsze muszą się udać (choćby usunięcie pliku – dany plik może
przecież już nie istnieć).
W takich przypadkach istnieje więc potrzeba, by funkcja zwróciła jakąś wartość.
Niekiedy będzie to rezultat jej intensywnej pracy, a innym razem jedynie informacja, czy
zlecona funkcji czynność została wykonana pomyślnie.

Zgodnie ze zwyczajem, popatrzymy teraz na odpowiedni program przykładowy17 :) Pyta
on użytkownika o długości boków prostokąta, wyświetlając w zamian jego pole
powierzchni oraz obwód. Czyni to ten kod (jest to fragment funkcji main()):

// ReturnValue - funkcje zwracające wartość

int nDlugosc1;
std::cout << "Podaj dlugosc pierwszego boku: ";
std::cin >> nDlugosc1;

int nDlugosc2;
std::cout << "Podaj dlugosc drugiego boku: ";
std::cin >> nDlugosc2;

std::cout << "Obwod prostokata: " << Obwod(nDlugosc1, nDlugosc2) <<
std::endl;
std::cout << "Pole prostokata: " << Pole(nDlugosc1, nDlugosc2) <<
std::endl;
getch();

Linijki wyświetlające gotowy wynik zawierają wywołania dwóch funkcji – Obwod() i
Pole(). Można je umieścić w tym miejscu, gdyż zwracają one wartości – w dodatku te,
które chcemy zaprezentować :) Wyświetlamy je dokładnie w ten sam sposób jak wartości
zmiennych i wszystkich innych wyrażeń liczbowych.

Cała istota działania aplikacji zawiera się więc w tych dwóch funkcjach. Prezentują się
one następująco:

int Obwod(int nBok1, int nBok2)
{
 return 2 * (nBok1 + nBok2);
}

int Pole(int nBok1, int nBok2)
{
 return nBok1 * nBok2;
}

Cóż ciekawego możemy o nich rzec? Widoczną różnicą w stosunku do dotychczasowych
przykładów funkcji, jakie mieliśmy okazję napotkać, jest chociażby zastąpienie słówka

17 Całość programu jest dołączona do tutoriala, tutaj zaprezentujemy tylko jego najważniejsze fragmenty

Podstawy programowania 80

void przez nazwę typu, int. To oczywiście nie przypadek – w taki właśnie sposób
informujemy kompilator, iż nasza funkcja ma zwracać wartość oraz wskazujemy jej typ.
Kod funkcji to tylko jeden wiersz, zaczynający się od return (‘powrót’). Określa on ni
mniej, ni więcej, jak tylko ową wartość, która będzie zwrócona i stanie się wynikiem
działania funkcji. Rezultat ten zobaczymy w końcu i my w oknie konsoli:

Screen 15. Miernik prostokątów w akcji

return powoduje jeszcze jeden efekt, który nie jest tu tak wyraźnie widoczny. Użycie tej
instrukcji skutkuje mianowicie natychmiastowym przerwaniem działania funkcji i
powrotem do miejsca jej wywołania. Wprawdzie nasze proste funkcje i tak kończą się
niemal od razu, więc nie ma to większego znaczenia, jednak w przypadku poważniejszych
podprogramów należy o tym fakcie pamiętać.

Wynika z niego także możliwość użycia return w funkcjach niezwracających żadnej
wartości – można je w ten sposób przerwać, zanim wykonają swój kod w całości.
Ponieważ nie mamy wtedy żadnej wartości do zwracania, używamy samego słowa
return; - bez wskazywania nim jakiegoś wyrażenia.

Dowiedzieliśmy się zatem, iż funkcja może zwracać wartość jako wynik swej pracy.
Rezultat taki winien być określonego typu – deklarujemy go w nagłówku funkcji jeszcze
przed jej nazwą. Natomiast w kodzie funkcji możemy użyć instrukcji return, by wskazać
wartość będącą jej wynikiem. Jednocześnie instrukcja ta spowoduje zakończenie
działania funkcji.

Składnia funkcji
Gdy już poznaliśmy zawiłości i niuanse związane z używaniem funkcji w swoich
aplikacjach, możemy tą wydatną porcję informacji podsumować ogólnymi regułami
składniowymi dla podprogramów w C++. Otóż postać funkcji w tym języku jest
następująca:

typ_zwracanej_wartości/void nazwa_funkcji([typ_parametru nazwa, ...])
{
 instrukcje_1
 return wartość_funkcji_1;
 instrukcje_2
 return wartość_funkcji_2;
 instrukcje_3
 return wartość_funkcji_3;
 ...
 return wartość_funkcji_n;
}

Jeżeli dokładnie przestudiowałeś (i zrozumiałeś! :)) wiadomości z tego paragrafu i z
poprzedniego rozdziału, nie powinna być ona dla ciebie żadnym zaskoczeniem.

Działanie programu 81

Zauważ jeszcze, ze fraza return może występować kilka razy, zwracać w każdym z
wariantów różne wartości, a całość funkcji mieć logiczny sens i działać poprawnie. Jest to
możliwe między innymi dzięki instrukcjom warunkowym, które poznamy już za chwilę.

W ten oto sposób uzyskaliśmy bardzo ważną umiejętność programistyczną, jaką jest
poprawne używanie funkcji we własnych programach. Upewnij się przeto, iż skrupulatnie
przyswoiłeś sobie informacje o tym zagadnieniu, jakie serwowałem w aktualnym i
poprzednim rozdziale. W dalszej części kursu będziemy często korzystać z funkcji w
przykładowych kodach i omawianych tematach, dlatego ważne jest, byś nie miał
kłopotów z nimi.

Jeśli natomiast czujesz się na siłach i chcesz dowiedzieć czegoś więcej o funkcjach,
zajrzyj do pomocy MSDN zawartej w Visual Studio.

Sterowanie warunkowe
Dobrze napisany program powinien być przygotowany na każdą ewentualność i
nietypową sytuację, jaka może się przydarzyć w czasie jego działania. W niektórych
przypadkach nawet proste czynności mogą potencjalnie kończyć się niepowodzeniem, zaś
porządna aplikacja musi radzić sobie z takimi drobnymi (lub całkiem sporymi) kryzysami.
Oczywiście program nie uczyni nic, czego nie przewidziałby jego twórca. Dlatego też
ważnym zadaniem programisty jest opracowanie kodu reagującego odpowiednio na
nietypowe sytuacje, w rodzaju błędnych danych wprowadzonych przez użytkownika lub
braku pliku potrzebnego aplikacji do działania.

Możliwe są też przypadki, w których dla kilku całkowicie poprawnych sytuacji, danych itp.
trzeba wykonać zupełnie inne operacje. Ważne jest wtedy rozróżnienie tych wszystkich
wariantów i skierowanie działania programu na właściwe tory, gdy ma miejsce któryś z
nich.

Do wszystkich tych zadań stworzono w C++ (i w każdym języku programowania) zestaw
odpowiednich narzędzi, zwanych instrukcjami warunkowymi. Ich przeznaczeniem jest
właśnie dokonywanie różnorakich wyborów, zależnych od ustalonych warunków.
Jak widać, przydatność tych konstrukcji jest nadspodziewanie duża, żal byłoby więc
ominąć je bez wnikania w ich szczegóły, prawda? :) Niezwłocznie zatem zajmiemy się
nimi, poznając ich składnię i sposób funkcjonowania.

Instrukcja warunkowa if

Instrukcja if (‘jeżeli’) pozwala wykonać jakiś kod tylko wtedy, gdy spełniony jest
określony warunek. Jej działanie sprowadza się więc do sprawdzenia tegoż warunku i,
jeśli zostanie stwierdzona jego prawdziwość, wykonania wskazanego bloku kodu.
Tę prostą ideę może ilustrować choćby taki przykład:

// SimpleIf – prosty przykład instrukcji if

void main()
{
 int nLiczba;

 std::cout << "Wprowadz liczbe wieksza od 10: ";
 std::cin >> nLiczba;

Podstawy programowania 82

 if (nLiczba > 10)
 {
 std::cout << "Dziekuje." << std::endl;
 std::cout << "Wcisnij dowolny klawisz, by zakonczyc.";
 getch();
 }
}

Uruchom ten program dwa razy – najpierw podaj liczbę mniejszą od 10, zaś za drugim
razem spełnij życzenie aplikacji. Zobaczysz, że w pierwszym przypadku zostaniesz
potraktowany raczej mało przyjemnie, gdyż program bez słowa zakończy się. W drugim
natomiast otrzymasz stosowne podziękowanie za swoją uprzejmość ;)
„Winna” jest temu, jakżeby inaczej, właśnie instrukcja if. W linijce:

if (nLiczba > 10)

wykonywane jest bowiem sprawdzenie, czy podana przez ciebie liczba jest rzeczywiście
większa od 10. Wyrażenie nLiczba > 10 jest tu więc warunkiem instrukcji if.
W przypadku, gdy okaże się on prawdziwy, wykonywane są trzy instrukcje zawarte w
nawiasach klamrowych. Jak pamiętamy, sekwencję taką nazywamy blokiem kodu.
Jeżeli zaś warunek jest nieprawdziwy (a liczba mniejsza lub równa 10), program omija
ten blok i wykonuje następną instrukcję występującą za nim. Ponieważ jednak u nas po
bloku if nie ma żadnych instrukcji, aplikacja zwyczajnie kończy się, gdyż nie ma nic
konkretnego do roboty :)

Po takim sugestywnym przykładzie nie od rzeczy będzie przedstawienie składni instrukcji
warunkowej if w jej prostym wariancie:

if (warunek)
{
 instrukcje
}

Stopień jej komplikacji z pewnością sytuuje się poniżej przeciętnej ;) Nic w tym dziwnego
– to w zasadzie najprostsza, lecz jednocześnie bardzo często używana konstrukcja
programistyczna.
Warto jeszcze zapamiętać, że blok instrukcji składający się tylko z jednego polecenia
możemy zapisać nawet bez nawiasów klamrowych18. Wtedy jednak należy postawić na
jego końcu średnik:

if (warunek) instrukcja;

Taka skrócona wersja jest używana często do sprawdzania wartości parametrów funkcji,
na przykład:

void Funkcja(int nParametr)
{
 // sprawdzenie, czy parametr nie jest mniejszy lub równy zeru -
 // jeżeli tak, to funkcja kończy się
 if (nParametr <= 0) return;

 // ... (reszta funkcji)
}

18 Zasada ta dotyczy prawie każdego bloku kodu w C++ (z wyjątkiem funkcji)

Działanie programu 83

Fraza else
Prosta wersja instrukcji if nie zawsze jest wystarczająca – nieeleganckie zachowanie
naszego przykładowego programu jest dobrym tego uzasadnieniem. Powinien on wszakże
pokazać stosowny komunikat również wtedy, gdy użytkownik nie wykaże się chęcią
współpracy i nie wprowadzi żądanej liczby. Musi więc uwzględnić przypadek, w którym
warunek badany przez instrukcję if (u nas nLiczba > 10) nie jest prawdziwy i
zareagować nań w odpowiedni sposób.
Naturalnie, można by umieścić stosowny kod po konstrukcji if, ale jednocześnie
należałoby zadbać, aby nie był on wykonywany w razie prawdziwości warunku. Sztuczka
z dodaniem instrukcji return; (przerywającej funkcję main(), a więc i cały program) na
koniec bloku if zdałaby oczywiście egzamin, lecz straty w przejrzystości i prostocie kodu
byłyby zdecydowanie niewspółmierne do efektów :))
Dlatego też C++, jako pretendent do miana nowoczesnego języka programowania,
posiada bardziej sensowny i logiczny sposób rozwiązania tego problemu. Jest nim
mianowicie fraza else (‘w przeciwnym wypadku’) – część instrukcji warunkowej if.
Korzystająca z niej, ulepszona wersja poprzedniej aplikacji przykładowej może zatem
wyglądać chociażby tak:

// Else – blok alternatywny w instrukcji if

void main()
{
 int nLiczba;

 std::cout << "Wprowadz liczbe wieksza od 10: ";
 std::cin >> nLiczba;

 if (nLiczba > 10)
 {
 std::cout << "Dziekuje." << std::endl;
 std::cout << "Wcisnij dowolny klawisz, by zakonczyc.";
 }
 else
 {
 std::cout << "Liczba " << nLiczba
 << " nie jest wieksza od 10." << std::endl;
 std::cout << "Czuj sie upomniany :P";
 }

 getch();
}

Gdy uruchomisz powyższy program dwa razy, w podobny sposób jak poprzednio, w
każdym wypadku zostaniesz poczęstowany jakimś komunikatem. Zależnie od wpisanej
przez ciebie liczby będzie to podziękowanie albo upomnienie :)

Screeny 16 i 17. Dwa warianty działania programu, czyli instrukcje if i else w całej swej krasie :)

Występujący tu blok else jest uzupełnieniem instrukcji if – kod w nim zawarty zostanie
wykonany tylko wtedy, gdy określony w if warunek nie będzie spełniony. Dzięki temu
możemy odpowiednio zareagować na każdą ewentualność, a zatem nasz program
zachowuje się porządnie w obu możliwych przypadkach :)

Podstawy programowania 84

Funkcja getch() jest w tej aplikacji wywoływana poza blokami warunkowymi, gdyż
niezależnie od wpisanej liczby i treści wyświetlanego komunikatu istnieje potrzeba
poczekania na dowolny klawisz. Zamiast więc umieszczać tę instrukcję zarówno w bloku
if, jak i else, można ją zostawić całkowicie poza nimi.

Czas teraz zaprezentować składnię pełnej wersji instrukcji if, uwzględniającej także blok
alternatywny else:

if (warunek)
{
 instrukcje_1
}
else
{
 instrukcje_2
}

Kiedy warunek jest prawdziwy, uruchamiane są instrukcje_1, zaś w przeciwnym
przypadku (else) – instrukcje_2. Czy świat widział kiedyś coś równie
elementarnego? ;) Nie daj się jednak zwieść tej prostocie – instrukcja warunkowa if jest
w istocie potężnym narzędziem, z którego intensywnie korzystają wszystkie programy.

Bardziej złożony przykład
By całkowicie upewnić się, iż znamy i rozumiemy tę szalenie ważną konstrukcję
programistyczną, przeanalizujemy ostatnią, bardziej skomplikowaną ilustrację jej użycia.
Będzie to aplikacja rozwiązująca równania liniowe – tzn. wyrażenia postaci:

0=+ bax

Jak zapewne pamiętamy ze szkoły, mogą mieć one zero, jedno lub nieskończenie wiele
rozwiązań, a wszystko zależy od wartości współczynników a i b. Mamy zatem duże pole
do popisu dla instrukcji if :D
Program realizujący to zadanie wygląda więc tak:

// LinearEq – rozwiązywanie równań liniowych

float fA;
std::cout << "Podaj wspolczynnik a: ";
std::cin >> fA;

float fB;
std::cout << "Podaj wspolczynnik b: ";
std::cin >> fB;

if (fA == 0.0)
{
 if (fB == 0.0)
 std::cout << "Rownanie spelnia kazda liczba rzeczywista."
 << std::endl;
 else
 std::cout << "Rownanie nie posiada rozwiazan." << std::endl;
}
else
 std::cout << "x = " << -fB / fA << std::endl;

getch();

Działanie programu 85

Zagnieżdżona instrukcja if wygląda może cokolwiek tajemniczo, ale w gruncie rzeczy
istota jej działania jest w miarę prosta. Wyjaśnimy ją za moment.
Najpierw powtórka z matematyki :) Przypomnijmy, iż równanie liniowe ax + b = 0:

 posiada nieskończenie wiele rozwiązań, jeżeli współczynniki a i b są jednocześnie
równe zeru

 nie posiada w ogóle rozwiązań, jeżeli a jest równe zeru, zaś b nie
 ma dokładnie jedno rozwiązanie (-b/a), gdy a jest różne od zera

Wynika stąd, że istnieją trzy możliwe przypadki i scenariusze działania programu.
Zauważmy jednak, że warunek „a jest równe zeru” jest konieczny do realizacji dwóch z
nich – możemy więc go wyodrębnić i zapisać w postaci pierwszej (bardziej zewnętrznej)
instrukcji if.
Nadal wszakże pozostaje nam problem współczynnika b – sam fakt zerowej wartości a
nie przecież pozwala na obsłużenie wszystkich możliwości. Rozwiązaniem jest
umieszczenie instrukcji sprawdzającej b (czyli także if) wewnątrz bloku if,
sprawdzającego a! Umożliwia to poprawne wykonanie programu dla wszystkich wartości
liczb a i b.

Screen 18. Program rozwiązujący równania liniowe

Używamy toteż dwóch instrukcji if, które razem odpowiadają za właściwe zachowanie
się aplikacji w trzech możliwych przypadkach. Pierwsza z nich:

if (fA == 0.0)

kontroluje wartość współczynnika a i tworzy pierwsze rozgałęzienie na szlaku działania
programu. Jedna z wychodzących z niego dróg prowadzi do celu zwanego „dokładnie
jedno rozwiązanie równania”, druga natomiast do kolejnego rozwidlenia:

if (fB == 0.0)

Ono też kieruje wykonywanie aplikacji albo do „nieskończenie wielu rozwiązań”, albo też
do „braku rozwiązań” równania – zależy to oczywiście od ewentualnej równości b z
zerem.

Operatorem równości w C++ jest ==, czyli podwójny znak „równa się” (=). Należy
koniecznie odróżniać go od operatora przypisania, czyli pojedynczego znaku =. Jeśli
omyłkowo użylibyśmy tego drugiego w wyrażeniu będącym warunkiem, to
najprawdopodobniej byłby on zawsze albo prawdziwy, albo fałszywy19 – na pewno jednak
nie działałby tak, jak byśmy tego oczekiwali. Co gorsza, można by się o tym przekonać
dopiero w czasie działania programu, gdyż jego kompilacja przebiegłaby bez zakłóceń.
Pamiętajmy więc, by w wyrażeniach warunkowych do sprawdzania równości używać
zawsze operatora ==, rezerwując znak = do przypisywania wartości zmiennym.

19 Zależałoby to od wartości po prawej stronie znaku równości – jeśli byłaby równa zeru, warunek byłby
fałszywy, w przeciwnym wypadku - prawdziwy

Podstawy programowania 86

Ostrzeżeniem tym kończymy nasze nieco przydługie spotkanie z instrukcją warunkową
if. Można śmiało powiedzieć, że oto poznaliśmy jeden z fundamentów, na których opiera
się działanie wszelkich algorytmów w programach komputerowych. Twoje aplikacje
nabiorą przez to elastyczności i będą zdolne do wykonywania mniej trywialnych zadań…
jeżeli sumiennie przestudiowałeś ten podrozdział! :))

Instrukcja wyboru switch

Instrukcja switch (‘przełącz’) jest w pewien sposób podobna do if: jej przeznaczeniem
jest także wybór jednego z wariantów kodu podczas działania programu. Pomiędzy
obiema konstrukcjami istnieją jednak dość znaczne różnice.
O ile if podejmuje decyzję na podstawie prawdziwości lub fałszywości jakiegoś warunku,
o tyle switch bierze pod uwagę wartość podanego wyrażenia. Z tego też powodu może
dokonywać wyboru spośród większej liczby możliwości niż li tylko dwóch (prawdy lub
fałszu).
Najlepiej widać to na przykładzie:

// Switch – instrukcja wyboru

void main()
{
 // (pomijam tu kod odpowiedzialny za pobranie od użytkownika dwóch
 // liczb – robiliśmy to tyle razy, że nie powinieneś mieć z tym
 // kłopotów :)) Liczby są zapisane w zmiennych fLiczba1 i fLiczba2)

 int nOpcja;
 std::cout << "Wybierz dzialanie:" << std::endl;
 std::cout << "1. Dodawanie" << std::endl;
 std::cout << "2. Odejmowanie" << std::endl;
 std::cout << "3. Mnozenie" << std::endl;
 std::cout << "4. Dzielenie" << std::endl;
 std::cout << "0. Wyjscie" << std::endl;
 std::cout << "Twoj wybor: ";
 std::cin >> nOpcja;

 switch (nOpcja)
 {
 case 1: std::cout << fLiczba1 << " + " << fLiczba2 << " = "
 << fLiczba1 + fLiczba2; break;
 case 2: std::cout << fLiczba1 << " - " << fLiczba2 << " = "
 << fLiczba1 - fLiczba2; break;
 case 3: std::cout << fLiczba1 << " * " << fLiczba2 << " = "
 << fLiczba1 * fLiczba2; break;
 case 4:
 if (fLiczba2 == 0.0)
 std::cout << "Dzielnik nie moze byc zerem!";
 else
 std::cout << fLiczba1 << " / " << fLiczba2 << " = "
 << fLiczba1 / fLiczba2;
 break;
 case 0: std::cout << "Dziekujemy :)"; break;
 default: std::cout << "Nieznana opcja!";
 }

 getch();
}

No, to już jest program, co się zowie: posiada szeroką funkcjonalność, prosty interfejs –
krótko mówiąc pełen profesjonalizm ;) Tym bardziej więc powinniśmy przejrzeć

Działanie programu 87

dokładniej jego kod źródłowy - zważywszy, iż zawiera interesującą nas w tym momencie
instrukcję switch.
Zajmuje ona zresztą pokaźną część listingu; na dodatek jest to ten fragment, w którym
wykonywane są obliczenia, będące podstawą działania programu. Jaka jest zatem rola tej
konstrukcji?

Screen 19. Kalkulator w działaniu

Cóż, nie jest trudno domyśleć się jej – skoro mamy w naszym programie menu,
będziemy też mieli kilka wariantów jego działania. Wybranie przez użytkownika jednego z
nich zostaje wcielone w życie właśnie poprzez instrukcję switch. Porównuje ona kolejno
wartość zmiennej nOpcja (do której zapisujemy numer wskazanej pozycji menu) z
pięcioma wcześniej ustalonymi przypadkami. Każdemu z nich odpowiada fragment kodu,
zaczynający się od słówka case (‘przypadek’) i kończący na break; (‘przerwij’). Gdy
któryś z nich zostanie uznany za właściwy (na podstawie wartości wspomnianej już
zmiennej), wykonywane są zawarte w nim instrukcje. Jeżeli zaś żaden nie będzie
pasował, program „skoczy” do dodatkowego wariantu default (‘domyślny’) i uruchomi
jego kod. Ot, i cała filozofia :)

Po tym pobieżnym wyjaśnieniu działania instrukcji switch, poznamy jej pełną postać
składniową:

switch (wyrażenie)
{
 case wartość_1:
 instrukcje_1
 [break;]
 case wartość_2:
 instrukcje_2
 [break;]
 ...
 case wartość_n;
 instrukcje_n;
 [break;]
 [default:
 instrukcje_domyślne]
}

Korzystając z niej, jeszcze prościej zrozumieć przeznaczenie konstrukcji switch oraz
wykonywane przez nią czynności. Mianowicie, oblicza ona wpierw wynik wyrażenia, by
potem porównywać go kolejno z podanymi (w instrukcjach case) wartościami. Kiedy
stwierdzi, że zachodzi równość, skacze na początek pasującego wariantu i wykonuje cały
kod aż do końca bloku switch.
Zaraz – jak to do końca bloku? Przecież w naszym przykładowym programie, gdy
wybraliśmy, powiedzmy, operację odejmowania, to otrzymywaliśmy wyłącznie różnicę
liczb – bez iloczynu i ilorazu (czyli dalszych opcji). Przyczyna tego tkwi w instrukcji

Podstawy programowania 88

break, umieszczonej na końcu każdej pozycji rozpoczętej przez case. Polecenie to
powoduje bowiem przerwanie działania konstrukcji switch i wyjście z niej; tym
sposobem zapobiega ono wykonaniu kodu odpowiadającego następnym wariantom.

W większości przypadków należy zatem kończyć fragment kodu rozpoczęty przez case
instrukcją break - gwarantuje to, iż tylko jedna z możliwości ustalonych w switch
zostanie wykonana.

Znaczenie ostatniej, nieobowiązkowej frazy default wyjaśniliśmy sobie już wcześniej.
Można jedynie dodać, że pełni ona w switch podobną rolę, co else w if i umożliwia
wykonanie jakiegoś kodu także wtedy, gdy żadna z przewidzianych wartości nie będzie
zgadzać się z wyrażeniem. Brak tej instrukcji będzie zaś skutkować niepodjęciem
żadnych działań w takim przypadku.

Omówiliśmy w ten sposób obie konstrukcje, dzięki którym można sterować przebiegiem
programu na podstawie ustalonych warunków czy też wartości wyrażeń. Potrafimy więc
już sprawić, aby nasze aplikacje zachowywały się prawidłowo niezależnie od okoliczności.
Nie zmienia to jednak faktu, że nadal potrafią one co najwyżej tyle, ile mało funkcjonalny
kalkulator i nie wykorzystują w pełni w ogromnych możliwości komputera. Zmienić to
może kolejny element języka C++, który teraz właśnie poznamy. Przy pomocy pętli, bo o
nich mowa, zdołamy zatrudnić leniuchujący dotąd procesor do wytężonej pracy, która
wyciśnie z niego siódme poty ;)

Pętle
Pętle (ang. loops), zwane też instrukcjami iteracyjnymi, stanowią podstawę prawie
wszystkich algorytmów. Lwia część zadań wykonywanych przez programy komputerowe
opiera się w całości lub częściowo właśnie na pętlach.

Pętla to element języka programowania, pozwalający na wielokrotne, kontrolowane
wykonywanie wybranego fragmentu kodu.

Liczba takich powtórzeń (zwanych cyklami lub iteracjami pętli) jest przy tym
ograniczona w zasadzie tylko inwencją i rozsądkiem programisty. Te potężne narzędzia
dają więc możliwość zrealizowania niemal każdego algorytmu.
Pętle są też niewątpliwie jednym z atutów C++: ich elastyczność i prostota jest większa
niż w wielu innych językach programowania. Jeżeli zatem będziesz kiedyś kodował jakąś
złożoną funkcję przy użyciu skomplikowanych pętli, z pewnością przypomnisz sobie i
docenisz te zalety :)

Pętle warunkowe do i while

Na początek poznamy dwie konstrukcje, które zwane są pętlami warunkowymi. Miano
to określa całkiem dobrze ich zastosowanie: ciągłe wykonywanie kodu, dopóki spełniony
jest określony warunek. Pętla sprawdza go przy każdym swoim cyklu - jeżeli stwierdzi
jego fałszywość, natychmiast kończy działanie.

Pętla do
Prosty przykład obrazujący ten mechanizm prezentuje się następująco:

// Do – pierwsza pętla warunkowa

Działanie programu 89

#include <iostream>
#include <conio.h>

void main()
{
 int nLiczba;

 do
 {
 std::cout << "Wprowadz liczbe wieksza od 10: ";
 std::cin >> nLiczba;
 } while (nLiczba <= 10);

 std::cout << "Dziekuje za wspolprace :)";
 getch();
}

Program ten, podobnie jak jeden z poprzednich, oczekuje od nas o liczby większej niż
dziesięć. Tym razem jednak nie daje się zbyć byle czym - jeżeli nie będziemy skłonni od
razu przychylić się do jego prośby, będzie ją niezłomnie powtarzał aż do skutku (lub do
użycia Ctrl+Alt+Del ;D).

Screen 20. Nieugięty program przeciwko krnąbrnemu użytkownikowi :)

Upór naszej aplikacji bierze się oczywiście z umieszczonej wewnątrz niej pętli do (‘czyń’).
Wykonuje ona kod odpowiedzialny za prośbę do użytkownika tak długo, jak długo ten
jest konsekwentny w ignorowaniu jej :) Przejawia się to rzecz jasna wprowadzaniem
liczb, które nie są większe od 10, lecz mniejsze lub równe tej wartości – odpowiada to
warunkowi pętli nLiczba <= 10. Instrukcja niniejsza wykonuje się więc dopóty, dopóki
(ang. while) zmienna nLiczba, która przechowuje liczbę pobraną od użytkownika, nie
przekracza granicznej wartości dziesięciu. Przedstawia to poglądowo poniższy diagram:

Schemat 4. Działanie przykładowej pętli do

Podstawy programowania 90

Co się jednak dzieje przy pierwszym „obrocie” pętli, gdy program nie zdążył jeszcze
pobrać od użytkownika żadnej liczby? Jak można porównywać wartość zmiennej nLiczba,
która na samym początku jest przecież nieokreślona?… Tajemnica tkwi w fakcie, iż pętla
do dokonuje sprawdzenia swojego warunku na końcu każdego cyklu – dotyczy to także
pierwszego z nich. Wynika z tego dość oczywisty wniosek:

Pętla do wykona zawsze co najmniej jeden przebieg.

Fakt ten sprawia, że nadaje się ona znakomicie do uzyskiwania jakichś danych od
użytkownika przy jednoczesnym sprawdzaniu ich poprawności. Naturalnie, w
prawdziwym programie należałoby zapewnić swobodę zakończenia aplikacji bez
wpisywania czegokolwiek. Nasz obrazowy przykład jest jednak wolny od takich fanaberii
– to wszak tylko kod pomocny w nauce, więc pisząc go nie musimy przejmować się
takimi błahostkami ;))

Podsumowaniem naszego spotkania z pętlą do będzie jej składnia:

do
{
 instrukcje
} while (warunek)

Wystarczy przyjrzeć się jej choć przez chwilę, by odkryć cały sens. Samo tłumaczenie
wyjaśnia właściwie wszystko: „Wykonuj (ang. do) instrukcje, dopóki (ang. while)
zachodzi warunek”. I to jest właśnie spiritus movens całej tej konstrukcji.

Pętla while
Przyszła pora na poznanie drugiego typu pętli warunkowych, czyli while. Słówko będące
jej nazwą widziałeś już wcześniej, przy okazji pętli do – nie jest to bynajmniej przypadek,
gdyż obydwie konstrukcje są do siebie bardzo podobne.
Działanie pętli while prześledzimy zatem na poniższym ciekawym przykładzie:

// While - druga pętla warunkowa

#include <iostream>
#include <ctime>
#include <conio.h>

void main()
{
 // wylosowanie liczby
 srand ((int) time(NULL));
 int nWylosowana = rand() % 100 + 1;
 std::cout << "Wylosowano liczbe z przedzialu 1-100." << std::endl;

 // pierwsza próba odgadnięcia liczby
 int nWprowadzona;
 std::cout << "Sprobuj ja odgadnac: ";
 std::cin >> nWprowadzona;

 // kolejne próby, aż do skutku - przy użyciu pętli while
 while (nWprowadzona != nWylosowana)
 {
 if (nWprowadzona < nWylosowana)
 std::cout << "Liczba jest zbyt mala.";
 else
 std::cout << "Za duza liczba.";

Działanie programu 91

 std::cout << " Sprobuj jeszcze raz: ";
 std::cin >> nWprowadzona;
 }

 std::cout << "Celny strzal :) Brawo!" << std::endl;
 getch();
}

Jest to nic innego, jak prosta… gra :) Twoim zadaniem jest w niej odgadnięcie
„pomyślanej” przez komputer liczby (z przedziału od jedności do stu). Przy każdej próbie
otrzymujesz wskazówkę, mówiącą czy wpisana przez ciebie wartość jest za duża, czy za
mała.

Screen 21. Wystarczyło tylko 8 prób :)

Tak przedstawia się to w działaniu. Jako programiści chcemy jednak zajrzeć do kodu
źródłowego i przekonać się, w jaki sposób można było taki efekt osiągnąć. Czym prędzej
więc ziśćmy te pragnienia :D

Pierwszą czynnością podjętą przez nasz program jest wylosowanie liczby, którą
użytkownik będzie odgadywał. Zasadniczo odpowiadają za to dwie początkowe linijki:

srand ((int) time(NULL));
int nWylosowana = rand() % 100 + 1;

Nie będziemy obecnie zagłębiać się w szczegóły ich funkcjonowania, gdyż te zostaną
omówione w następnym rozdziale. Teraz możesz jedynie zapamiętać, iż pierwszy wiersz,
zawierający funkcję srand() (i jej osobliwy parametr), jest czymś w rodzaju zakręcenia
kołem ruletki. Jego obecność sprawia, że aplikacja za każdym razem losuje nam inną
liczbę.
Za samo losowanie odpowiada natomiast wyrażenie z funkcją rand(). Obliczona wartość
tegoż jest od razu przypisywana do zmiennej nWylosowana i to o nią toczy bój
niestrudzony gracz :)

Kolejny pakiet kodu pozwala na wykonanie pierwszej próby odgadnięcia właściwego
wyniku. Nie widać tu żadnych nowości – z podobnymi fragmentami spotykaliśmy się już
wielokrotnie i wyjaśniliśmy je dogłębnie. Zauważmy tylko, że liczba wpisana przez
użytkownika jest zapamiętywana w zmiennej nWprowadzona.

O wiele bardziej interesująca jest dla nas pętla while, występująca dalej. To na niej
spoczywa zadanie wyświetlania graczowi wskazówek, umożliwiania mu kolejnych prób i
sprawdzania wpisanych wartości.
Podobnie jak w przypadku do, wykonywanie tej pętli uzależnione jest spełnieniem
określonego kryterium. Tutaj jest nim niezgodność między liczbą wylosowaną na
początku (zawartą w zmiennej nWylosowana), a wprowadzoną przez użytkownika

Podstawy programowania 92

(zmienna nWprowadzona). Zapisujemy to w postaci warunku nWprowadzona !=
nWylosowana. Oczywiście pętla wykonuje się do chwili, w której założenie to przestaje
być prawdziwe, a użytkownik poda właściwą liczbę.
Wewnątrz bloku pętli podejmowane zaś są dwie czynności. Najpierw wyświetlana jest
podpowiedź dla użytkownika. Mówi mu ona, czy wpisana przed chwilą liczba jest większa
czy mniejsza od szukanej. Gracz otrzymuje następnie kolejną szansę na odgadnięcie
pożądanej wartości.
Gdy wreszcie uda mu się ta sztuka, raczony jest w nagrodę odpowiednim
komunikatem :)

Tak oto przedstawia się funkcjonowanie powyższego programu przykładowego, którego
witalną częścią jest pętla while. Wcześniej natomiast zdążyliśmy się dowiedzieć i
przekonać, iż konstrukcja ta bardzo przypomina poznaną poprzednio pętlę do. Na czym
więc polega różnica między nimi?…
Jest nią mianowicie moment sprawdzania warunku pętli. Jak pamiętamy, do czyni to
na końcu każdego cyklu. Analogicznie, while dokonuje tego zawsze na początku swego
przebiegu. Determinuje to dość oczywiste następstwo:

Pętla while może nie wykonać się ani razu, jeżeli jej warunek będzie od początku
nieprawdziwy.

W naszym przykładowym programie odpowiada to sytuacji, gdy gracz od razu trafia we
właściwą liczbę. Naturalnie, jest to bardzo mało prawdopodobne (rzędu 1%), lecz jednak
możliwe. Trzeba zatem przewidzieć i odpowiednio zareagować na taki przypadek, zaś
pętla while rozwiązuje nam ten problem praktycznie sama :)

Na koniec tradycyjnie już przyjrzymy się składni omawianej konstrukcji:

while (warunek)
{
 instrukcje
}

Ponownie wynika z niej praktycznie wszystko: „Dopóki (while) zachodzi warunek,
wykonuj instrukcje”. Czyż nie jest to wyjątkowo intuicyjne? ;)

Tak oto poznaliśmy dwa typy pętli warunkowych – ich działanie, składnię i sposób
używania. Tym samym dostałeś do ręki narzędzia, które pozwolą ci tworzyć lepsze i
bardziej skomplikowane programy.
Jakkolwiek oba te mechanizmy mają bardzo duże możliwości, korzystanie z nich może
być w niektórych wypadkach nieco niewygodne. Na podobne okazje obmyślono trzeci
rodzaj pętli, z którym właśnie teraz się zaznajomimy.

Pętla krokowa for

Do tej pory spotykaliśmy się z sytuacjami, w których należało wykonywać określony kod
aż do spełnienia pewnego warunku. Równie często jednak znamy wymaganą ilość
„obrotów” pętli jeszcze przed jej rozpoczęciem – chcemy ją podać w kodzie explicite
lub obliczyć wcześniej jako wartość zmiennej.
Co wtedy zrobić? Możemy oczywiście użyć odpowiednio spreparowanej pętli while,
chociażby w takiej postaci:

int nLicznik = 1;

Działanie programu 93

// wypisanie dziesięciu liczb całkowitych w osobnych linijkach
while (nLicznik <= 10)
{
 std::cout << nLicznik << std::endl;
 nLicznik++;
}

Powyższe rozwiązanie jest z pewnością poprawne, aczkolwiek istnieje jeszcze lepsze :) W
przypadku, gdy znamy z góry liczbę przebiegów pętli, bardziej naturalne staje się użycie
instrukcji for (‘dla’). Została ona bowiem stworzona specjalnie na takie okazje20 i
sprawdza się w nich o wiele lepiej niż uniwersalna while. Korzystający z niej ekwiwalent
powyższego kodu może wyglądać na przykład tak:

for (int i = 1; i <= 10; i++)
{
 std::cout << i << std::endl;
}

Jeżeli uważnie przyjrzysz się obu jego wersjom, z pewnością zdołasz domyśleć się
ogólnej zasady działania pętli for. Zanim dokładnie ją wyjaśnię, posłużę się bardziej
wyrafinowanym przykładem do jej ilustracji:

// For - pętla krokowa

int Suma(int nLiczba)
{
 int nSuma = 0;

 for (int i = 1; i <= nLiczba; i++)
 nSuma += i;

 return nSuma;
}

void main()
{
 int nLiczba;
 std::cout << "Program oblicza sume od 1 do podanej liczby."
 << std::endl;
 std::cout << "Podaj ja: ";
 std::cin >> nLiczba;

 std::cout << "Suma liczb od 1 do " << nLiczba << " wynosi "
 << Suma(nLiczba) << ".";
 getch();
}

Mamy zatem kolejny superużyteczny programik do przeanalizowania ;) Bezzwłocznie
więc przystąpmy do wykonania tego pożytecznego zadania.
Rzut oka na kod tudzież kompilacja i uruchomienie aplikacji prowadzi do słusznego
wniosku, iż przeznaczeniem programu jest obliczanie sumy kilku początkowych liczb
naturalnych. Zakres dodawania ustala przy tym sam użytkownik programu.

Czynnością sumowania zajmuje się tu odrębna funkcja Suma(), na której skupimy
obecnie całą naszą uwagę.

20 for nie jest tylko wymysłem twórców C++. Podobne konstrukcje spotkać można właściwie w każdym języku
programowania, istnieją też nawet bardziej wyspecjalizowane ich odmiany. Trudno więc uznać tę poczciwą pętlę
za zbędne udziwnienie :)

Podstawy programowania 94

Pierwsza linijka tej funkcji to znana już nam deklaracja zmiennej, połączona z jej
inicjalizacją wartością 0. Owa zmienna, nSuma, będzie przechowywać obliczony wynik
dodawania, który zostanie zwrócony jako rezultat całej funkcji.
Najbardziej interesującym fragmentem jest występująca dalej pętla for:

for (int i = 1; i <= nLiczba; i++)
 nSuma += i;

Wykonuje ona zasadnicze obliczenia: dodaje do zmiennej nSuma kolejne liczby naturalne,
zatrzymując się na podanym w funkcji parametrze. Całość odbywa się w następujący,
dość prosty sposób:

 Instrukcja int i = 1 jest wykonywana raz na samym początku. Jak widać, jest to
deklaracja i inicjalizacja zmiennej i. Nazywamy ją licznikiem pętli. W kolejnych
cyklach będzie ona przyjmować wartości 1, 2, 3, itd.

 Kod nSuma += i; stanowi blok pętli21 i jest uruchamiany przy każdym jej
przebiegu. Skoro zaś licznik i jest po kolei ustawiany na następujące po sobie
liczby naturalne, pętla for staje się odpowiednikiem sekwencji instrukcji nSuma +=
1; nSuma += 2; nSuma += 3; nSuma += 4; itd.

 Warunek i <= nLiczba określa górną granicę sumowania. Jego obecność
sprawia, że pętla jest wykonywana tylko wtedy, gdy licznik i jest mniejszy lub
równy zmiennej nLiczba. Zgadza się to oczywiście z naszym zamysłem.

 Wreszcie, na koniec każdego cyklu instrukcja i++ powoduje zwiększenie wartości
licznika o jeden.

Po dłuższym zastanowieniu nad powyższym opisem można niewątpliwie dojść do
wniosku, że nie jest on wcale taki skomplikowany, prawda? :) Zrozumienie go nie
powinno nastręczać ci zbyt wielu trudności. Gdyby jednak tak było, przypomnij sobie
podaną w tytule nazwę pętli for – krokowa.
To całkiem trafne określenie dla tej konstrukcji. Jej zadaniem jest bowiem przebycie
pewnej „drogi” (u nas są to liczby od 1 do wartości zmiennej nLiczba) poprzez serię
małych kroków i wykonanie po drodze jakichś działań. Klarownie przedstawia to tenże
rysunek:

Schemat 5. "Droga" przykładowej pętli for

Mam nadzieję, że teraz nie masz już żadnych kłopotów ze zrozumieniem zasady działania
naszego programu.

Przyszedł czas na zaprezentowanie składni omawianej przez nas pętli:

for ([początek]; [warunek]; [cykl])
{
 instrukcje
}

21 Jak zapewne pamiętasz, jedną linijkę w bloku kodu możemy zapisać bez nawiasów klamrowych {} –
dowiedzieliśmy się tego przy okazji instrukcji if :)

Działanie programu 95

Na jej podstawie możemy dogłębnie poznać funkcjonowanie tego ważnego tworu
programistycznego. Dowiemy się też, dlaczego konstrukcja for jest uważana za jedną z
mocnych stron języka C++.

Zaczniemy od początku, czyli komendy oznaczonej jako… początek :) Wykonuje się ona
jeden raz, jeszcze przed wejściem we właściwy krąg pętli. Zazwyczaj umieszczamy tu
instrukcję, która ustawia licznik na wartość początkową (może to być połączone z jego
deklaracją).
warunek jest sprawdzany przed każdym cyklem instrukcji. Jeżeli nie jest on spełniony,
pętla natychmiast kończy się. Zwykle więc wpisujemy w jego miejsce kod porównujący
licznik z wartością końcową.
W każdym przebiegu, po wykonaniu instrukcji, pętla uruchamia jeszcze fragment
zaznaczony jako cykl. Naturalną jego treścią będzie zatem zwiększenie lub zmniejszenie
licznika (w zależności od tego, czy liczymy w górę czy w dół).

Inkrementacja czy dekrementacja nie jest bynajmniej jedyną czynnością, jaką możemy
tutaj wykonać na liczniku. Posłużenie się choćby mnożeniem, dzieleniem czy nawet
bardziej zaawansowanymi funkcjami jest jak najbardziej dopuszczalne.
Wpisując na przykład i *= 2 otrzymamy kolejne potęgi dwójki (2, 4, 8, 16 itd.), i += 10
– wielokrotności dziesięciu, itp. Jest to znaczna przewaga nad wieloma innymi językami
programowania, w których liczniki analogicznych pętli mogą się zmieniać jedynie w
postępie arytmetycznym (o stałą wartość - niekiedy nawet dopuszczalna jest tu wyłącznie
jedynka!).

Elastyczność pętli for polega między innymi na fakcie, iż żaden z trzech podanych w
nawiasie „parametrów” nie jest obowiązkowy! Wprawdzie na pierwszy rzut oka obecność
każdego wydaje się tu absolutnie niezbędna, jednakże pominięcie któregoś (czasem
nawet wszystkich) może mieć swoje logiczne uzasadnienie.
Brak początku lub cyklu powoduje dość przewidywalny skutek – w chwili, gdy miałyby
zostać wykonane, program nie podejmie po prostu żadnych akcji. O ile nieobecność
instrukcji ustawiającej licznik na wartość początkową jest okolicznością rzadko
spotykaną, o tyle pominięcie frazy cykl jest konieczne, jeżeli nie chcemy zmieniać
licznika przy każdym przebiegu pętli. Możemy to osiągnąć, umieszczając odpowiedni kod
np. wewnątrz zagnieżdżonego bloku if.
Gdy natomiast opuścimy warunek, iteracja nie będzie miała czego weryfikować przy
każdym swym „obrocie”, więc zapętli się w nieskończoność. Przerwanie tego błędnego
koła będzie możliwe tylko poprzez instrukcję break, którą już za chwilę poznamy bliżej.

W ten oto sposób zawarliśmy bliższą znajomość z pętla krokową for. Nie jest to może
łatwa konstrukcja, ale do wielu zastosowań zdaje się być bardzo wygodna. Z tego
względu będziemy jej często używali – tak też robią wszyscy programiści C++.

Instrukcje break i continue

Z pętlami związane są jeszcze dwie instrukcje pomocnicze. Nierzadko ułatwiają one
rozwiązywanie pewnych problemów, a czasem wręcz są do tego niezbędne. Mowa tu o
tytułowych break i continue.

Z instrukcją break (‘przerwij’) spotkaliśmy się już przy okazji konstrukcji switch.
Korzystaliśmy z niej, aby zagwarantować wykonanie kodu odpowiadającego tylko
jednemu wariantowi case. break powodowała bowiem przerwanie bloku switch i
przejście do następnej linijki po nim.

Podstawy programowania 96

Rola tej instrukcji w kontekście pętli nie zmienia się ani na jotę: jej wystąpienie wewnątrz
bloku do, while lub for powoduje dokładnie ten sam efekt. Bez względu na prawdziwość
lub nieprawdziwość warunku pętli jest ona błyskawicznie przerywana, a punkt wykonania
programu przesuwa się do kolejnego wiersza za nią.
Przy pomocy break możemy teraz nieco poprawić nasz program demonstrujący pętlę do:

// Break – przerwanie pętli

void main()
{
 int nLiczba;

 do
 {
 std::cout << "Wprowadz liczbe wieksza od 10" << std::endl;
 std::cout << "lub zero, by zakonczyc program: ";
 std::cin >> nLiczba;

 if (nLiczba == 0) break;
 } while (nLiczba <= 10);

 std::cout << "Nacisnij dowolny klawisz.";
 getch();
}

Mankament niemożności zakończenia aplikacji bez spełnienia jej prośby został tutaj
skutecznie usunięty. Mianowicie, gdy wprowadzimy liczbę zero, instrukcja if skieruje
program ku komendzie break, która natychmiast zakończy pętlę i uwolni użytkownika od
irytującego żądania :)

Podobny skutek (przerwanie pętli po wpisaniu przez użytkownika zera) osiągnęlibyśmy
zmieniając warunek pętli tak, by stawał się prawdziwy również wtedy, gdy zmienna
nLiczba miałaby wartość 0. W następnym rozdziale dowiemy się, jak poczynić podobną
modyfikację.

Instrukcja continue jest używana nieco rzadziej. Gdy program natrafi na nią wewnątrz
bloku pętli, wtedy automatycznie kończy bieżący cykl i rozpoczyna nowy przebieg iteracji.
Z instrukcji tej korzystamy najczęściej wtedy, kiedy część (zwykle większość) kodu pętli
ma być wykonywana tylko pod określonym, dodatkowym warunkiem.

Zakończyliśmy właśnie poznawanie bardzo ważnych elementów języka C++, czyli pętli.
Dowiedzieliśmy się o zasadach ich działania, składni oraz przykładowych zastosowaniach.
Tych ostatnich będzie nam systematycznie przybywało wraz z postępami w sztuce
programowania, gdyż pętle to bardzo intensywnie wykorzystywany mechanizm – nie
tylko zresztą w C++.

Podsumowanie
Ten długi i ważny rozdział prezentował możliwości C++ w zakresie sterowania
przebiegiem aplikacji oraz sposobem jej działania.

Pierwszym zagadnieniem było bystrzejsze spojrzenie na funkcje, co obejmowało poznanie
ich parametrów oraz zwracanych wartości. Dalej zerknęliśmy na instrukcje warunkowe,
które wreszcie dopuszczały nam przewidywać różne ewentualności pracy programu. Na

Działanie programu 97

koniec, pętle dały nam okazję stworzyć nieco mniej banalne aplikacje niż zwykle – w tym
i jedną grę! :D
Tą drogą nabyliśmy przeto umiejętność tworzenia programów wykonujących niemal
dowolne zadania. Pewnie teraz nie jesteś o tym szczególnie przekonany, jednak
pamiętaj, że poznanie instrumentów to tylko pierwszy krok do osiągnięcia wirtuozerii.
Niezastąpiona jest praktyka w prawdziwym programowaniu, a sposobności do niej
będziesz miał z pewnością bez liku - także w niniejszym kursie :)

Pytania i zadania
Tak obszerny i kluczowy rozdział nie może się obejść bez słusznego pakietu zadań
domowych ;) Oto i one:

Pytania
1. Jaka jest rola parametrów funkcji?
2. Czy ilość parametrów w deklaracji i wywołaniu funkcji może być różna?

Wskazówka: Poczytaj w MSDN o domyślnych wartościach parametrów funkcji.
3. Co się stanie, jeżeli nie umieścimy instrukcji break po wariancie case w bloku

switch?
4. W jakich sytuacjach, oprócz niepodania warunku, pętla for będzie się wykonywała

w nieskończoność? A kiedy nie wykona się ani razu?
Czy podobnie jest z pętlą while?

Ćwiczenia
1. Stwórz program, który poprosi użytkownika o liczbę całkowitą i przyporządkuje ją

do jednego z czterech przedziałów: liczb ujemnych, jednocyfrowych,
dwucyfrowych lub pozostałych.
Która z instrukcji – if czy switch – będzie tu odpowiednia?

2. Napisz aplikację wyświetlającą listę liczb od 1 do 100 z podanymi obok
wartościami ich drugich potęg (kwadratów).
Jaką pętlę – do, while czy for – należałoby tu zastosować?

3. Zmodyfikuj program przykładowy prezentujący pętlę while. Niech zlicza on próby
zgadnięcia liczby podjęte przez gracza i wyświetla na końcu ich ilość.

