OPERACIJE NA ZMIENNYCH

Sg plusy dodatnie i plusy ujemne.
Lech Watesa

W tym rozdziale przyjrzymy sie doktadnie zmiennym i wyrazeniom w jezyku C++. Jak
wiemy, stuzg one do przechowywania wszelkich danych i dokonywania nan réznego
rodzaju manipulacji. Dziatania takie s podstawg kazdej aplikacji, a w ztozonych
algorytmach gier komputerowych majgq niebagatelne znaczenie.

Poznamy wiec szczegotowo wiekszos$¢ aspektow programowania zwigzanych ze
zmiennymi oraz zobaczymy czesto uzywane operacje na danych liczbowych i tekstowych.

Whnikliwy rzut oka na zmienne

Zmienna to co$ w rodzaju pojemnika na informacje, mogacego zawierac okreslone dane.
Wczesniej dowiedzieliSmy sig, iz dla kazdej zmiennej musimy okresli¢ typ danych, ktére
bedziemy w niej przechowywaé, oraz nazwe, przez ktorg bedziemy jg identyfikowac.
Okreslenie takie nazywamy deklaracja zmiennej i stosowali$my je niemal w kazdym
programie przyktadowym - powinno wiec by¢ ci doskonale znane :)

Nasze aktualne wiadomosci o zmiennych sg mimo tego dos$¢ skape i dlatego musimy je
niezwtocznie poszerzyé. Uczynimy to wszakze w niniejszym podrozdziale.

Zasieg zmiennych

Gdy deklarujemy zmienng, podajemy jej typ i nazwe - to oczywiste. Mniej dostrzegalny
jest fakt, iz jednoczesnie okreslamy tez obszar obowigzywania takiej deklaracji. Innymi
stowy, definiujemy zasieg zmiennej.

Zasieg (zakres, ang. scope) zmiennej to cze$¢ kodu, w ramach ktdrej dana zmienna
jest dostepna.

Wyrézniamy kilka rodzajow zasiegéw. Do wszystkich jednak stosuje sie ogdlna, naturalna
reguta: niepoprawne jest jakiekolwiek uzycie zmiennej przed jej deklaracjg. Tak wiec
ponizszy kod:

std::cin >> nZmienna;
int nZmienna;

niechybnie spowoduje btad kompilacji. Sadze, ze jest to dos¢ proste i logiczne - nie
mozemy przeciez wymagac¢ od kompilatora znajomosci czegos, o czym sami go wczesniej
nie poinformowalismy.

W niektérych jezykach programowania (na przyktad Visual Basicu czy PHP) mozemy
jednak uzywac niezadeklarowanych zmiennych. Wiekszos$¢ programistéw uwaza to za

100 Podstawy programowania

niedogodnos$¢ i przyczyne powstawania trudnych do wykrycia btedéw (spowodowanych
chocby literéwkami). Ja osobiscie catkowicie podzielam ten poglad :D

Na razie poznamy dwa rodzaje zasiegéow - lokalny i modutowy.

Zasieg lokalny

Zakres lokalny obejmuje pojedynczy blok kodu. Jak pamietasz, takim blokiem
nazywamy fragment listingu zawarty miedzy nawiasami klamrowymi { }. Dobrym
przyktadem mogg by¢ tu bloki warunkowe instrukcji if, bloki petli, a takze cate funkcije.
Otdz kazda zmienna deklarowana wewnatrz takiego bloku ma wtasnie zasieg lokalny.

Zakres lokalny obejmuje kod od miejsca deklaracji zmiennej az do konca bloku, wraz z
ewentualnymi blokami zagniezdzonymi.

Te dos¢ mgliste stwierdzenia bedg pewnie bardziej wymowne, jezeli zostang poparte
odpowiednimi przyktadami. Zerknijmy wiec na ponizszy kod:

void main ()

{
int nX;
std::cin >> nX;

if (nX > 0)

{
std::cout << nX;
getch (),

}

Jego dziatanie jest, mam nadzieje, zupetnie oczywiste (zresztg nieszczegdlnie nas teraz
interesuje :)). Przyjrzyjmy sie raczej zmiennej nx. Jako ze zadeklarowaliSmy ja wewnatrz
bloku kodu — w tym przypadku funkcji main () — posiada ona zasieg lokalny. Mozemy
zatem korzystac¢ z niej do woli w catym tym bloku, a wiec takze w zagniezdzonej
instrukcji if.

Dla kontrastu spdéjrzmy teraz na inny, cho¢ podobny kod:

void main ()

{
int nX = 1;

if (nX > 0)
{

int nY = 10;
}

std::cout << nY;
getch () ;
}

Powinien on wypisac liczbe 10, prawda? Coz... niezupetnie :) Sama préba uruchomienia
programu skazana jest na niepowodzenie: kompilator ,przyczepi” sie do przedostatniego
wiersza, zawierajacego nazwe zmiennej ny. Wyda mu sie bowiem kompletnie nieznana!
Ale dlaczego?! Przeciez zadeklarowali$my jq ledwie dwie linijki wyzej! Czyz nie mozemy
wiec uzyc¢ jej tutaj?...

Jezeli uwaznie przeczytates$ poprzednie akapity, to zapewne znasz juz przyczyne
niezadowolenia kompilatora. Mianowicie, zmienna ny ma zasieg lokalny, obejmujacy

Operacje na zmiennych 101

wylacznie blok if. Reszta funkcji main () nie nalezy juz do tego bloku, a zatem znajduje
sie poza zakresem ny. Nic dziwnego, ze zmienna jest tam traktowana jako obca - poza
swoim zasiegiem ona faktycznie nie istnieje, gdyz jest usuwana z pamieci w momencie
jego opuszczenia.

Zmiennych o zasiegu lokalnym relatywnie najczesciej uzywamy jednak bezposrednio we
wnetrzu funkcji. Przyjeto sie nawet nazywa¢ je zmiennymi lokalnymi®? lub
automatycznymi. Ich rolg jest zazwyczaj przechowywanie tymczasowych danych,
wykorzystywanych przez podprogramy, lub czesciowych wynikdéw obliczen.

Tak jak poszczegdlne funkcje w programie, tak i ich zmienne lokalne sg od siebie
catkowicie niezalezne. Istniejg w pamieci komputera jedynie podczas wykonywania
funkcji i ,znikaja” po jej zakonczeniu. Niemozliwe jest wiec odwotanie do zmiennej
lokalnej spoza jej macierzystej funkcji. Ponizszy przyktad ilustruje ten fakt:

// LocalVariables - zmienne lokalne

void Funkcjal ()
{
int nX = 7;
std::cout << "Zmienna lokalna nX funkcji Funkcjal(): " << nX
<< std::endl;
}

void Funkcja2 ()

{
int nX = 5;
std::cout << "Zmienna lokalna nX funkcji Funkcja2(): " << nX
<< std::endl;
}

void main ()

{
int nX = 3;

Funkcijal();

Funkcjaz2 () ;

std::cout << "Zmienna lokalna nX funkcji main(): " << nX
<< std::endl;

getch () ;

Mimo ze we wszystkich trzech funkcjach (Funkcjal (), Funkcja2 () i main()) nazwa
zmiennej jest identyczna (nx), w kazdym z tych przypadkéw mamy do czynienia z
zupetnie inna zmienna.

ZMIENNE LOKALNE

Zmienna lokalna nd funkcji FunkcjaiE;

= 7
HI

Zmienna lokalna n® funkcji Funkcja2
Zmienna lokalna nd funkcji main<>: 3

Screen 22. Ta sama nazwa, lecz inne znaczenie. Kazda z trzech lokalnych zmiennych nX jest
catkowicie odrebna i niezalezna od pozostatych

22 Nie tylko zreszta w C++. Wprawdzie sporo jezykdw jest ubozszych o mozliwoé¢ deklarowania zmiennych
wewnatrz blokéw warunkowych, petli czy podobnych, ale niemal wszystkie pozwalajg na stosowanie zmiennych
lokalnych. Nazwa ta jest wiec obecnie uzywana w kontekscie dowolnego jezyka programowania.

102 Podstawy programowania

Mogq one wspotistnie¢ obok siebie pomimo takich samych nazw, gdyz ich zasiegi nie
pokrywaja sie. Kompilator stusznie wiec traktuje je jako twory absolutnie niepowigzane
ze soba. I tak tez jest w istocie - sg one ,wewnetrznymi sprawami” kazdej z funkcji, do
ktérych nikt nie ma prawa sie mieszac :)

Takie wyodrebnianie niektérych elementéw aplikacji nazywamy hermetyzacjg

(ang. encapsulation). Najprostszym jej wariantem sg witasnie podprogramy ze zmiennymi
lokalnymi, niedostepnymi dla innych. Dalszym krokiem jest tworzenie klas i obiektow,
ktére dokfadnie poznamy w dalszej czesci kursu.

Zaletg takiego dzielenia kodu na mniejsze, zamkniete czesci jest wieksza tatwosc
modyfikacji oraz niezawodnos$¢. W duzych projektach, realizowanych przez wiele osdéb,
podziat na odrebne fragmenty jest w zasadzie nieodzowny, aby wspoétpraca miedzy
programistami przebiegata bez problemow.

Ze zmiennymi o zasiegu lokalnym spotykalismy sie dotychczas nieustannie w naszych
programach przyktadowych. Prawdopodobnie zatem nie bedziesz miat wiekszych
ktopotow ze zrozumieniem sensu tego pojecia. Jego precyzyjne wyjasnienie byto jednak
nieodzowne, abym z czystym sumieniem mégt kontynuowac :D

Zasieg modutowy

Szerszym zasiegiem zmiennych jest zakres modutowy. Posiadajgce go zmienne sg
widoczne w catym module kodu. Mozemy wiec korzystac z nich we wszystkich
funkcjach, ktére umiescimy w tymze module.

Jezeli zas jest to jedyny plik z kodem programu, to oczywiscie zmienne te bedg dostepne
dla catej aplikacji. Nazywamy sie je wtedy globalnymi.

Aby zobaczy¢, jak ,dziatajg” zmienne modutowe, przyjrzyj sie nastepujgcemu
przyktadowi:

// ModularVariables - zmienne modulowe
int nX = 10;

void Funkcja ()

{
std::cout << "Zmienna nX wewnatrz innej funkcji: " << nX
<< std::endl;
}

void main ()

{
std::cout << "Zmienna nX wewnatrz funkcji main(): " << nX
<< std::endl;
Funkcja () ;

getch () ;
}

Zadeklarowana na poczatku zmienna nx ma wiasnie zasieg modutowy. Odwotujac sie do
niej, obie funkcje (main () i Funkcja ()) wyswietlajg wartosc jednej i tej samej zmiennej.

ZMIENNA MODULOMWA

Zmienna nd wewnatrz funkcji main{>: 1@
Zmienna nd wewnatrz innej funkcji:=- 18

Screen 23. Zakres modutowy zmiennej

Operacje na zmiennych 103

Jak wida¢, deklaracje zmiennej modutowej umieszczamy bezposrednio w pliku
zrédtowym, poza kodem wszystkich funkcji. Wytaczenie jej na zewnatrz podprogramow
daje zatem fatwy do przewidzenia skutek: zmienna staje sie dostepna w calym module i
we wszystkich zawartych w nim funkcjach.

Oczywistym zastosowaniem dla takich zmiennych jest przechowywanie danych, z ktérych
korzysta wiele procedur. Najczesciej muszg by¢ one zachowane przez wiekszos¢ czasu
dziatania programu i osiggalne z kazdego miejsca aplikacji. Typowym przykiadem moze
byc¢ chociazby numer aktualnego etapu w grze zrecznosciowej czy nazwa pliku otwartego
w edytorze tekstu. Dzieki zastosowaniu zmiennych o zasiegu modutowym dostep do
takich kluczowych informacji nie stanowi juz problemu.

Zakres modutowy dotyczy tylko jednego pliku z kodem zrodtowym. Jesli nasza aplikacja
jest na tyle duza, by$my musieli podzieli¢ jg na kilka modutéw, moze on wszakze nie
wystarczaé. Rozwigzaniem jest wtedy wyodrebnienie globalnych deklaracji we wiasnym
pliku nagtdwkowym i uzycie dyrektywy #include. Bedziemy o tym szerzej mowi¢ w
niedalekiej przysztosci :)

Przestanianie nazw

Gdy uzywamy zaréwno zmiennych o zasiegu lokalnym, jak i modutowym (czyli w
normalnym programowaniu w zasadzie nieustannie), mozliwa jest sytuacja, w ktorej z
danego miejsca w kodzie dostepne sg dwie zmienne o tej samej nazwie, lecz roznym
zakresie. Wygladac to moze chociazby tak:

int nX = 5;

void main ()

{
int nX = 10;
std::cout << nX;

}

Pytanie brzmi: do ktérej zmiennej nx — lokalnej czy modutowej - odnosi sie instrukcja

std: :cout? Inaczej mowiac, czy program wypisze liczbe 10 czy 5? A moze w ogole sie

nie skompiluje?...

Zjawisko to nazywamy przestanianiem nazw (ang. name shadowing), a pojawito sie

ono wraz ze wprowadzeniem idei zasiegu zmiennych. Tego rodzaju kolizja oznaczen nie
powoduje w C++23 btedu kompilacji, gdyz jest ona rozwiqzywana w nieco inny sposéb:

Konflikt nazw zmiennych o réznym zasiegu jest rozstrzygany zawsze na korzys$¢ zmiennej
0 wezszym zakresie.

Zazwyczaj oznacza to zmienng lokalng i tak tez jest w naszym przypadku. Nie oznacza to
jednak, ze jej modutowy imiennik jest w funkcji main () niedostepny. Sposéb odwotania
sie do niego ilustruje ponizszy przykfadowy program:

// Shadowing - przestanianie nazw
int nX = 4;

void main ()

{

23 A takze w wiekszosci wspdtczesnych jezykéw programowania

104 Podstawy programowania

int nX = 7;

std::cout << "Lokalna zmienna nxX: " << nX << std::endl;
std::cout << "Modulowa zmienna nX: " << ::nX << std::endl;
getch () ;

}

Pierwsze odniesienie do nx w funkcji main () odnosi sie wprawdzie do zmiennej lokalnej,
lecz jednoczesnie mozemy odwotac sie takze do tej modutowej. Robimy to bowiem w
nastepnej linijce:

std::cout << "Modulowa zmienna nX: " << ::nX << std::endl;

Poprzedzamy tu nazwe zmiennej dwoma znakami dwukropka : :. Jest to tzw. operator
zasiegu. Wstawienie go méwi kompilatorowi, aby uzyt zmiennej globalnej zamiast
lokalnej - czyli zrobit dokfadnie to, o co nam chodzi :)

Operator ten ma tez kilka innych zastosowan, o ktérych powiemy niedtugo (dokfadniej
. przy okazji klas).

Chociaz C++ udostepnia nam tego rodzaju mechanizm?*, do dobrej praktyki
programistycznej nalezy niestosowanie go. Identyczne nazwy wprowadzajg bowiem
zamet i pogarszajg czytelnos¢ kodu.

Dlatego tez do nazw zmiennych modutowych dodaje sie zazwyczaj przedrostek®® g (od
global), co pozwala tatwo odrdzni¢ je od lokalnych. Po zastosowaniu tej reguty nasz
przykfad wygladatby mniej wiecej tak:

int g nX = 4;
void main ()

{
int nX = 7;

std::cout << "Lokalna zmienna: " << nX << std::endl;
std::cout << "Modulowa zmienna: " << g nX << std::endl;
getch () ;
}
Nie ma juz potrzeby stosowania mato czytelnego operatora :: i cato$¢ wyglada

przejrzyscie i profesjonalnie ;)

Xk k

Zapoznalismy sie zatem z nietatwg ideg zasiegu zmiennych. Jest to jednoczesnie bardzo
wazne pojecie, ktore trzeba dobrze zna¢, by nie popetnia¢ trudnych do wykrycia bteddow.
Mam nadzieje, ze jego opis oraz przyktady byty na tyle przejrzyste, ze nie miates
powazniejszych ktopotow ze zrozumieniem tego aspektu programowania.

Modyfikatory zmiennych

W aktualnym podrozdziale szczegdlnie upodobaliSmy sobie deklaracje zmiennych. Oto
bowiem omoéwimy kolejne zagadnienie z nimi zwigzane - tak zwane modyfikatory

24 Wiekszo$¢ jezykdw go nie posiada!
% Jest to element notacji wegierskiej, aczkolwiek szeroko stosowany przez wielu programistéw. Wiecej
informacji w Dodatku A.

Operacje na zmiennych 105

(ang. modifiers). Sa to mianowicie dodatkowe okreslenia umieszczane w deklaracji
zmiennej, nadajace jej pewne specjalne wtasnosci.

Zajmiemy sie dwoma sposréd trzech dostepnych w C++ modyfikatoréw. Pierwszy -
static — chroni zmienng przed utratg wartosci po opuszczeniu jej zakresu przez
program. Drugi zas — znany nam const — 0znacza statg, opisang juz jakis$ czas temu.

Zmienne statyczne

Kiedy aplikacja opuszcza zakres zmiennej lokalnej, wtedy ta jest usuwana z pamieci. To
catkowicie naturalne - po co zachowywac¢ zmienng, do ktérej i tak nie bytoby dostepu?
Logiczniejsze jest zaoszczedzenie pamieci operacyjnej i pozbycie sie nieuzywanej
wartosci, co tez program skrzetnie czyni. Z tego powodu przy ponownym wejsciu w
porzucony wczesniej zasieg wszystkie podlegajagce mu zmienne bedg ustawione na swe
poczatkowe wartosci.

Niekiedy jest to zachowanie niepozgadane - czasem wolelibysmy, aby zmienne lokalne nie
tracity swoich wartosci w takich sytuacjach. Najlepszym rozwigzaniem jest wtedy uzycie
modyfikatora static. Rzuémy okiem na ponizszy przyktad:

// Static - zmienne statyczne

void Funkcja ()

{

static int nLicznik = 0;
++nLicznik;
std::cout << "Funkcje wywolano po raz " << nLicznik << std::endl;

}

void main ()

{
std::string strWybor;

do

{
Funkcja() ;
std::cout << "Wpisz 'g', aby zakonczyc: ";
std::cin >> strWybor;

} while (strWybor != "g");

}

Ow program jest raczej trywialny i jego jedynym zadaniem jest kilkukrotne uruchomienie
podprogramu Funkcija (), dopdki zyczliwy uzytkownik na to pozwala :) We wnetrzu tejze
funkcji mamy zadeklarowang zmienng statyczna, ktéra stuzy tam jako licznik
uruchomien.

ZMIEHNA STATYCZHNA

Funkcje wywolano po raz 1
Wpise ‘g’ . aby zakonczyc:

Funkcje wywolano po raz 2
Hpisz_‘q‘, abhy zakonczyc:
Funkc je wywolano po raz 3
Hpisz_‘q‘, abhy zakonczyc:
Funkcje wywolano po raz 4
Wpise ‘qgq’. aby zakonczyc:

Screen 24. Zliczanie wywotan funkcji przy pomocy zmiennej statycznej

106 Podstawy programowania

Jego wartos¢ jest zachowywana pomiedzy kolejnymi wywotaniami funkcji, gdyz istnieje
w pamieci przez caly czas dziatania aplikacji’®. Mozemy wiec kazdorazowo inkrementowacé
tq wartosc¢ i pokazywac jako ilo$¢ uruchomien funkcji. Tak wiasnie dziatajg zmienne

statyczne :)
Deklaracja takiej zmiennej jest, jak widzieliSmy, nad wyraz prosta:
static int nLicznik = 0;

Wystarczy poprzedzi¢ oznaczenie jej typu stowkiem static i voila :) Nadal mozemy
takze stosowac inicjalizacje do ustawienia poczatkowej wartosci zmiennej.

Jest to wrecz konieczne - gdyby$smy bowiem zastosowali zwykte przypisanie, odbywatoby
. sie ono przy kazdym wejsciu w zasieg zmiennej. Wypaczatoby to catkowicie sens
- stosowania modyfikatora static.

State

State omowiliSmy juz wczesniej, wiec nie sg dla ciebie nowoscig. Obecnie podkreslimy ich
zwigzek ze zmiennymi.

Jak (mam nadzieje) pamietasz, aby zadeklarowac statg nalezy uzy¢ stowa const, na
przykiad:

const float GRAWITACJA = 9.80655;

const, podobnie jak static, jest modyfikatorem zmiennej. State posiadajq zatem
wszystkie cechy zmiennych, takie jak typ czy zasieg. Jedyng rdznica jest oczywiscie
niemoznos¢ zmiany wartosci statej.

Xk k

Tak oto uzupetniliSmy swe wiadomosci na temat zmiennych o ich zasieg oraz
modyfikatory. Uzbrojeni w tg nowag wiedze mozemy teraz $miato podgzac dalej :D

Typy zmiennych

W C++ typ zmiennej jest sprawg niezwykle wazng. Gdy okreslamy go przy deklaracji,
zostaje on trwale ,przywigzany” do zmiennej na caty czas dziatania programu. Nie moze
wiec zajs¢ sytuacja, w ktérej zmienna zadeklarowana na przyktad jako liczba catkowita
zawiera informacje tekstowg czy liczbe rzeczywista.

Niektorych jezyki programowania pozwalajg jednak na to. Delphi i Visual Basic sq
wyposazone w specjalny typ variant, ktory potrafi przechowywac zaréwno dane
liczbowe, jak i tekstowe. PHP natomiast w ogdle nie wymaga podawania typu zmiennych.

Chociaz wymdg ten wyglada na powazny mankament C++, w rzeczywistosci wcale nim
nie jest. Bardzo trudno wskazaé czynnos¢, ktdra wymagataby zmiennej ,uniwersalnego
typu”, mogacej przechowywac kazdy rodzaj danych. Jezeli nawet zasztaby takowa
koniecznos¢, mozliwe jest zastosowanie przynajmniej kilku niemal rownowaznych

26 Doktadniej méwiac: od momentu deklaracji do zakonczenia programu

Operacje na zmiennych 107

rozwigzan?’.

Generalnie jednak jesteSmy ,skazani” na korzystanie z typdw zmiennych, co mimo
wszystko nie powinno nas smuci¢ :) Na ostode proponuje blizsze przyjrzenie sie im.
Bedziemy mieli okazje zobaczy¢, ze ich mozliwosci, elastycznosc¢ i zastosowania sg
niezwykle szerokie.

Modyfikatory typdw liczbowych

Dotychczas w swoich programach mielismy okazje uzywac gtownie typu int,
reprezentujacego liczbe catkowita. Czasem korzystaliSmy takze z f1oat, bedgcego typem
liczb rzeczywistych.

Dwa sposoby przechowywania wartosci liczbowych to, zdawatoby sie, bardzo niewiele.
Zwazywszy, iz spora czes¢ jezykdw programowania udostepnia nawet po kilkanascie
takich typow, asortyment C++ moze wygladac tutaj wyjatkowo mizernie.

Domyslasz sie zapewne, ze jest to tylko ztudne wrazenie :) Do kazdego typu liczbowego
w C++ mozemy bowiem dotaczy¢ jeden lub kilka modyfikatoréw, ktére istotnie
zmieniajq jego wiasnosci. Sprébujmy dokfadnie przyjrzec sie temu mechanizmowi.

Typy ze znakiem i bez znaku

Typ liczbowy int moze nam przechowywac zaréwno liczby dodatnie, jak i ujemne. Dosy¢
czesto jednak nie potrzebujemy wartosci mniejszych od zera. Przyktadowo, ilo$¢ punktéw
w wiekszosci gier nigdy nie bedzie ujemna; to samo dotyczy licznikow uptywajacego
czasu, zmiennych przechowujacych wielkos$¢ plikéw, diugosci odcinkéw, rozmiary
obrazkow - i tak dalej.

Mozemy rzecz jasna zwyczajnie zignorowac¢ obecnos¢ liczb ujemnych i korzystac jedynie
z wartosci dodatnich. Wadg tego rozwigzania jest marnotrawstwo: tracimy wtedy potowe
miejsca zajmowanego w pamieci przez zmienng. Jezeli na przykfad int mdgtby zawierac
liczby od -10 000 do +10 000 (czyli 20 000 mozliwych wartoéci?®), to ograniczyliby$my
ten przedziat do 0...+10 000 (a wiec skromnych 10 000 mozliwych wartosci).

Nie jest to moze karygodna niegospodarnos¢ w przypadku jednej zmiennej, ale gdy
moéwimy o kilku czy kilkunastu tysigcach podobnych zmiennych?®, iloé¢ zmarnowanej
pamieci staje sie znaczna.

Nalezatoby zatem powiedzie¢ kompilatorowi, ze nie potrzebujemy liczb ujemnych i w
zamian za nie chcemy zwiekszenia przedziatu liczb dodatnich. Czynimy to poprzez
dodanie do typu zmiennej int modyfikatora unsigned (‘nieoznakowany’, czyli bez znaku;
zawsze dodatni). Deklaracja bedzie wtedy wyglada¢ na przykfad tak:

unsigned int uZmienna; // przechowuje liczby naturalne

Analogicznie, moglibysmy doda¢ przeciwstawny modyfikator signed (‘oznakowany’, czyli
ze znakiem; dodatni lub ujemny) do typéw zmiennych, ktére majg zawiera¢ zaréwno
liczby dodatnie, jak i ujemne:

signed int nZmienna; // przechowuje liczby catkowite

27 Mozna wykorzystaé chociazby szablony, unie czy wskazniki. O kazdym z tych elementéw C++ powiemy sobie
w dalszej czesci kursu, wiec cierpliwosci ;)

28 To oczywiécie jedynie przyktad. Na zadnym wspdtczesnym systemie typ int nie ma tak matego zakresu.

2% Co nie jest wcale niemozliwe, a przy stosowaniu tablic (opisanych w nastepnym rozdziale) staje catkiem
czeste.

108 Podstawy programowania

Zazwyczaj tego nie robimy, gdyz modyfikator ten jest niejako domysinie tam
umieszczony i nie ma potrzeby jego wyraznego stosowania.

Jako podsumowanie proponuje diagram obrazujacy dziatanie poznanych modyfikatoréw:

-X 0 +x +2%

‘ i L,

1 :] I
-¥ 0 +x +2x%

Schemat 6. Przedziat wartosci typow liczbowych ze znakiem (signed) i bez znaku (unsigned)

Widzimy, ze zastosowanie unsigned powoduje , przeniesienie” ujemnej potowy przedziatu
zmiennej bezposrednio za jej cze$¢ dodatnig. Nie mamy wowczas mozliwosci korzystania
z liczb ujemnych, ale w zamian otrzymujemy dwukrotnie wiecej miejsca na wartosci
dodatnie. Tak to juz jest w programowaniu, ze nie ma nic za darmo :D

Rozmiar typu catkowitego

W poprzednim paragrafie wspominali$my o przedziale dopuszczalnych wartosci zmiennej,
ale nie przygladaliSmy sie blizej temu zagadnieniu. Teraz zatrzymamy sie na nim troche
diuzej i zajmiemy rozmiarem zmiennych catkowitych.

Wiadomo nam doskonale, ze pamie¢ komputera jest ograniczona, zatem miejsce
zajmowane w tej pamieci przez kazda zmienng jest réwniez limitowane. W przypadku
typdéw liczbowych przejawia sie to ograniczonym przedziatem wartosci, ktére mogg
przyjmowac zmienne nalezace do takich typdéw.

Jak duzy jest to przedziat? Nie ma uniwersalnej odpowiedzi na to pytanie. Okazuje sie
bowiem, ze rozmiar typu int jest zalezny od kompilatora. Wptyw na te wielko$¢ ma
posrednio system operacyjny oraz procesor komputera.

Nasz kompilator (Visual C++ .NET), podobnie jak wszystkie tego typu narzedzia
pracujgce w systemie Windows 95 i wersjach pdzniejszych, jest 32-bitowy. Oznacza to
miedzy innymi, Ze typ int ma u nas wielko$¢ rowng 32 bitom witasnie, a wiec w
przeliczeniu*® 4 bajtom.

Cztery bajty to cztery znaki (na przyktad cyfry) — czyzby zatem najwiekszymi i
najmniejszymi mozliwymi do zapisania wartosciami byty +9999 i -99997?...

Oczywiscie, ze nie! Komputer przechowuje liczby w znacznie efektywniejszej postaci
dwdjkowej. Wykorzystanie kazdego bitu sprawia, ze granice przedziatu wartosci typu int
to az £23! - nieco ponad dwa miliardy!

Wiecej informacji na temat sposobu przechowywania danych w pamieci operacyjnej
mozesz znalez¢ w Dodatku B, Reprezentacja danych w pamieci.

Przedziat ten sprawdza sie dobrze w wielu zastosowaniach. Czasem jednak jest on zbyt
maty (tak, to mozliwe :D) lub zwyczajnie zbyt duzy. Daje sie to odczué na przykfad przy
odczytywaniu plikéw, w ktérych kazda wartos¢ zajmuje obszar o Scisle okreslonym
rozmiarze, nie zawsze rownym int’owym 4 bajtom (tzw. plikoéw binarnych).

30 1 bajt to 8 bitéw.

Operacje na zmiennych 109

Dlatego tez C++ udostepnia nam poreczny zestaw dwdéch modyfikatorow, ktorymi
mozemy wptywac na wielkosc¢ typu catkowitego. Sg to: short (‘krétki’) oraz long
(‘dtugi’). Uzywamy ich podobnie jak signed i unsigned — poprzedzajac typ int ktéryms z
nich:

short int nZmienna; // "krétka"™ liczba catkowita
long int nZmienna; // "dtuga" liczba catkowita

Coz znacza jednak te, nieco zartobliwe, okreslenia , krotkiej” i ,dtugiej” liczby? Chyba
najlepsza odpowiedzig bedzie tu... stosowna tabelka :)

nazwa | rozmiar| przedziat wartosci

int 4 bajty od -23'do +23* - 1
short int | 2 bajty | od -32 768 do +32 767

long int | 4 bajty od -231do +23 -1

Tabela 4. Typy catkowite w 32-bitowym Visual C++ .NET3!

Niespodziankga moze by¢ brak typu o rozmiarze 1 bajta. Jest on jednak obecny w C++ -
to typ... char :) Owszem, reprezentuje on znak. Nie zapominajmy jednak, ze komputer
operuje na znakach jak na odpowiadajacym im kodom liczbowym. Dlatego tez typ char
jest w istocie takze typem liczb catkowitych!

Visual C++ udostepnia tez nieco lepszy sposob na okreslenie wielkosci typu liczbowego.
Jest nim uzycie frazy intn, gdzie n 0znacza rozmiar zmiennej w bitach. Oto przykfady:

__int8 nZmienna; // 8 bitdéw == 1 bajt, wartosci od -128 do 127
__intl6é nZmienna; // 16 bitéw == 2 bajty, wartosci od -32768 do 32767
_ int32 nZmienna; // 32 bity == 4 bajty, wartoéci od -2°' do 2% - 1
_int64 nZmienna; // 64 bity == 8 bajtdéw, wartosci od -2° do 2% - 1

__int8 jest wiec rowny typowi char, intl6 — short int, @ int32 - int lub long
int. Gigantyczny typ int64 nie ma natomiast swojego odpowiednika.

Precyzja typu rzeczywistego

Podobnie jak w przypadku typu catkowitego int, typ rzeczywisty float posiada
okreslong rozpieto$¢ wartosci, ktére mozna zapisa¢ w zmiennych o tym typie. Poniewaz
jednak jego przeznaczeniem jest przechowywanie wartosci utamkowych, pojawia sie
kwestia precyzji zapisu takich liczb.

Szczego6towe wyjasnienie sposobu, w jaki zmienne rzeczywiste przechowujg wartosci, jest
doé¢ skomplikowane i dlatego je sobie darujemy?®? :) Najwazniejsze s dla nas wynikajace
z niego konsekwencje. Otoz:

Precyzja zapisu liczby w zmiennej typu rzeczywistego maleje wraz ze wzrostem
wartosci tej liczby

Przyktadowo, duza liczba w rodzaju 1000000.0023 zostanie najpewniej zapisana bez
czesci utamkowej. Natomiast mata wartosé, jak 1.43525667 bedzie przechowana z duzg

31 To zastrzezenie jest konieczne. Wprawdzie int zajmuje 4 bajty we wszystkich 32-bitowych kompilatorach,
ale w przypadku pozostatych typéw moze by¢ inaczej! Standard C++ wymaga jedynie, aby short int byt
mniejszy lub réwny od int’a, a long int wiekszy lub réwny int’owi.

32 Zainteresowanych odsytam do Dodatku B.

110 Podstawy programowania

dokfadnoscig, z kilkoma cyframi po przecinku. Ze wzgledu na te wtasciwos¢ (zmienng
precyzje) typy rzeczywiste nazywamy czesto zmiennoprzecinkowymi.

Zgadza sie - typy. Podobnie jak w przypadku liczb catkowitych mozemy dodac¢ do typu
float odpowiednie modyfikatory. I podobnie jak wowczas, ujrzymy je w nalezytej
tabelce :)

nazwa rozmiar | precyzja
float 4 bajty 6-7 cyfr
double float | 8 bajtéw | 15-16 cyfr

Tabela 5. Typy zmiennoprzecinkowe w C++

double (‘podwdijny’), zgodnie ze swojg nazwa, zwieksza dwukrotnie rozmiar zmiennej
oraz poprawia jej doktadnosc. Tak zmodyfikowana zmienna jest nazywana czasem liczbg
podwdéjnej precyzji - w odrdoznieniu od float, ktéra ma tylko pojedyncza precyzje.

Skrocone nazwy

Na koniec warto nadmienic jeszcze o moznosci skrocenia nazw typdw zawierajgcych
modyfikatory. W takich sytuacjach mozemy bowiem catkowicie pomina¢ stowa int i
float.

Przyktadowe deklaracje:

unsigned int uZmienna;
short int nZmienna;
unsigned long int nZmienna;
double float fZmienna;

mogq zatem wygladac tak:
unsigned uZmienna;
short nZmienna;

unsigned long nZmienna;
double fZmienna;

Mata rzecz, a cieszy ;) Mamy tez kolejny dowdd na duzg kondensacje skfadni C++.

Xk k

Poznane przed chwilag modyfikatory umozliwiajg nam wieksza kontrole nad zmiennymi w
programie. Pozwalajg bowiem na doktadne okreslenie, jaka zmienng chcemy w danej
chwili zadeklarowac i nie dopuszczajg, by kompilator myslat za nas ;D

Pomocne konstrukcje

Zapoznamy sie teraz z dwoma elementami jezyka C++, ktore utatwiajg nieco prace z
réoznymi typami zmiennych. Bedzie to instrukcja typedef oraz operator sizeof.

Instrukcja typedef

Wprowadzenie modyfikatoréw sprawito, ze oto mamy juz nie kilka, a przynajmniej
kilkanascie typéw zmiennych. Nazwy tychze typdw sg przy tym dosyc dtugie i wielokrotne
ich wpisywanie moze nam zabiera¢ duzo czasu. Zbyt duzo.

Operacje na zmiennych 111

Dlatego tez (i nie tylko dlatego) C++ posiada instrukcje typedef (ang. type definition -
definicja typu). Mozemy jej uzy¢ do nadania nowej nazwy (aliasu) dla juz
istniejacego typu. Zastosowanie tego mechanizmu moze wygladac chocby tak:

typedef unsigned int UINT;

Powyzsza linijka kodu mowi kompilatorowi, ze od tego momentu typ unsigned int
posiada takze dodatkowg nazwe - UINT. Staje sie ona doktadnym synonimem
pierwotnego okreslenia. Odtad bowiem obie deklaracje

unsigned int uZmienna;

oraz

UINT uZmienna;

sq W petni rGwnowazne.

Uzycie typedef, podobnie jak jej sktadnia, jest bardzo proste:
typedef typ nazwa;

Skutkiem skorzystania z tej instrukcji jest mozliwo$¢ wstawiania nowej nazwy tam, gdzie
wczesniej musieliSmy zadowoli¢ sie jedynie starym typem. Obejmuje to zaréwno
deklaracje zmiennych, jak i parametréow funkcji tudziez zwracanych przez nie wartosci.
Dotyczy wiec wszystkich sytuacji, w ktérych mogliSmy korzysta¢ ze starego typu -
nowa nazwa nie jest pod tym wzgledem w zaden sposob utomna.

Jaka jest praktyczna korzysc¢ z definiowania wiasnych okreslen dla istniejacych typow?
Pierwszg z nich jest przytoczone wczesniej skracanie nazw, ktére z pewnoscig pozytywnie
wptynie na stan naszych klawiatur ;)) Oszczednosciowe ,przydomki” w rodzaju
zaprezentowanego wyzej UINT sg przy tym na tyle wygodne i szeroko wykorzystywane,
ze niektore kompilatory (w tym i nasz Visual C++) nie wymagajg nawet ich jawnego
okreslenia!

Mozliwo$¢ dowolnego oznaczania typow pozwala réwniez na nadawanie im znaczacych
nazw, ktére obrazujg ich zastosowania w aplikacji. Z przyktadem podobnego
postepowania spotkasz sie przy tworzeniu programéw okienkowych w Windows. Uzywa
sie tam wielu typoéw o nazwach takich jak HWND, HINSTANCE, WPARAM, LRESULT itp., z
ktérych kazdy jest jedynie aliasem na 32-bitowg liczbe catkowitg bez znaku. Stosowanie
takiego nazewnictwa powaznie poprawia czytelnos¢ kodu - oczywiscie pod warunkiem, ze
Znamy znaczenie stosowanych nazw :)

Zauwazmy pewien istotny fakt. Mianowicie, typedef nie tworzy nam zadnych nowych
typow, a jedynie duplikuje juz istniejace. Zmiany, ktére czyni w sposobie
programowania, sg wiec stricte kosmetyczne, cho¢ na pierwszy rzut oka mogg wygladac¢
na dos¢ znaczne.

Do kreowania zupetnie nowych typow stuzg inne elementy jezyka C++, z ktorych czesc
poznamy w nastepnym rozdziale.

Operator sizeof

Przy okazji prezentacji roznych typdéw zmiennych podawatem zawsze ilos¢ bajtow, ktérg
zajmuje w pamieci kazdy z nich. Przypominatem tez kilka razy, ze wielkosci te sg
prawdziwe jedynie w przypadku kompilatoréw 32-bitowych, a niektére nawet tylko w
Visual C++.

112 Podstawy programowania

Z tegoz powodu mogg one szybko stac sie po prostu nieaktualne. Przy dzisiejszym
tempie postepu technicznego, szczegolnie w informatyce, wszelkie zmiany dokonujg sie
w zasadzie nieustannie®3, W tej gonitwie takze programisci nie moga pozostawad w tyle -
w przeciwnym wypadku przystosowanie ich starych aplikacji do nowych warunkow
technologicznych moze kosztowa¢ mnostwo czasu i wysitku.

Jednoczesnie wiele programow opiera swe dziatanie na rozmiarze typéw podstawowych.
Wystarczy napomknac¢ o tak czestej czynnosci, jak zapisywanie danych do plikéw albo
przesytanie ich poprzez siec. Jesliby kazdy program musiat mie¢ wpisane ,na sztywno”
rzeczone wielkosci, wtedy spora cze$¢ pracy programistow uptywataby na
dostosowywaniu ich do potrzeb nowych platform sprzetowych, na ktérych miatyby dziata¢
istniejgce aplikacje. A co z tworzeniem catkiem nowych produktow?...

Szczesliwie tworcy C++ byli na tyle zapobiegliwi, zeby uchroni¢ nas, koderdw, od tej
koszmarnej perspektywy. Wprowadzili bowiem operator sizeof (‘rozmiar czegos’), ktory
pozwala na uzyskanie wielkosci zmiennej (lub jej typu) w trakcie dzialania programu.
Spojrzenie na ponizszy przykfad powinno nam przyblizy¢ funkcjonowanie tego operatora:

// Sizeof - pobranie rozmiaru zmiennej lub typu
#include <iostream>
#include <conio.h>

voild main ()

{

std::cout << "Typy liczb calkowitych:" << std::endl;

std::cout << "- int: " << sizeof(int) << std::endl;

std::cout << "- short int: " << sizeof (short int) << std::endl;
std::cout << "- long int: " << sizeof(long int) << std::endl;
std::cout << "- char: " << sizeof (char) << std::endl;

std: :cout << std::endl;

std::cout << "Typy liczb zmiennoprzecinkowych:" << std::endl;
std::cout << "- float: " << sizeof(float) << std::endl;
std::cout << "- double: " << sizeof (double) << std::endl;
getch (),

}

Uruchomienie programu z listingu powyzej, jak stusznie mozna przypuszczaé, bedzie nam
skutkowato krotkim zestawieniem rozmiarow typodw podstawowych.

ROZMIARY TYPOW PODSTAWOWYCH

Typy liczh calkowitych:
— int: 4

— zhort int: 2

— long int: 4

— char: 1

Typy liczh zmiennoprzecinkowuych:
- float: 4
— double: 8

Screen 25. sizeof w akcji

33 W chwili pisania tych stdw - pod koniec roku 2003 - mamy juz coraz wyrazniejsze widoki na powazne
wykorzystanie procesoréw 64-bitowych w domowych komputerach. Jednym ze skutkdéw tego ,zwiekszenia
bitowosci” bedzie zmiana rozmiaru typu liczbowego int.

Operacje na zmiennych 113

Po uwaznym zlustrowaniu kodu zrédtowego widac¢ jak na dtoni dziatanie oraz sposob
uzycia operatora sizeof. Wystarczy poda¢ mu typ lub zmienng jako parametr, by
otrzyma¢ w wyniku jego rozmiar w bajtach*. Potem mozemy zrobi¢ z tym rezultatem
doktadnie to samo, co z kazdg inng liczbg catkowitg — chociazby wyswietli¢ jg w konsoli
przy uzyciu strumienia wyjscia.

Zastosowanie sizeof nie ogranicza sie li tylko do typow wbudowanych. Gdy w kolejnych
rozdziatach nauczymy sie tworzy¢ wiasne typy zmiennych, bedziemy mogli w identyczny
sposob ustalac ich rozmiary przy pomocy poznanego przed momentem operatora. Nie da
sie ukry¢, ze bardzo lubimy takie uniwersalne rozwigzania :D

Wartos¢, ktdra zwraca operator sizeof, nalezy do specjalnego typu size t. Zazwyczaj
jest on tozsamy z unsigned int, czyli liczbg bez znaku (bo przeciez rozmiar nie moze
by¢ ujemny). Nalezy wiec uwazaé, aby nie przypisywac jej do zmiennej, ktéra jest liczbg
ze znakiem.

Rzutowanie

Idea typow zmiennych wprowadza nam pewien sposob klasyfikacji wartosci. Niektére z
nich uznajemy bowiem za liczby catkowite (3, -17, 44, 67*88 itd.), inne za
zmiennoprzecinkowe (7.189, 12.56, -1.41, 8.0 itd.), jeszcze inne za tekst ("2BC",
"Hello world!" itp.) czy pojedyncze znaki®® ('r', "¢ itd.).

Kazdy z tych rodzajéw odpowiada nam ktéremus z poznanych typéw zmiennych.
Najczesciej tez nie sg one ze sobg kompatybilne - innymi stowy, , nie pasujg” do siebie,
jak chociazby tutaj:

int nX = 14;
int nY = 0.333 * nX;

Wynikiem dziatania w drugiej linijce bedzie przeciez liczba rzeczywista z czescig
utamkowa, ktérg nijak nie mozna wpasowac w ciasne ramy typu int, zezwalajacego
jedynie na wartosci catkowite®®.

Oczywiscie, w podanym przyktadzie wystarczy zmienic¢ typ drugiej zmiennej na float, by
rozwigzac¢ nurtujacy nas problem. Nie zawsze jednak bedziemy mogli pozwoli¢ sobie na
podobne kompromisy, gdyz czesto jedynym wyjsciem stanie sie ,wymuszenie” na
kompilatorze zaakceptowania ktopotliwego kodu.

Aby to uczyni¢, musimy rzutowac (ang. cast) przypisywang wartos¢ na docelowy typ -
na przyktad int. Rzutowanie dziata troche na zasadzie umowy z kompilatorem, ktoéra w
naszym przypadku mogtaby brzmie¢ tak: ,Wiem, ze naprawde jest to liczba
zmiennoprzecinkowa, ale wiasnie tutaj chce, aby stata sie liczbg catkowitg typu int, bo
musze jgq przypisa¢ do zmiennej tego typu”. Takie porozumienie wymaga ustepstw od
obu stron - kompilator musi ,, pogodzi¢ sie” z chwilowym zaprzestaniem kontroli typéw, a
programista powinien liczy¢ sie z ewentualng utratg czesci danych (w naszym przyktadzie
poswiecimy cyfry po przecinku).

34 Scidlej moéwiac, sizeof podaje nam rozmiar obiektu w stosunku do wielkoéci typu char. Jednakze typ ten ma
najczesciej wielkos¢ doktadnie 1 bajta, zatem utarto sie stwierdzenie, iz sizeof zwraca w wyniku ilos¢ bajtow.
Nie ma w zasadzie zadnego powodu, by uznac to za btad.

35 Znaki sg typu char, ktéry jak wiemy jest takze typem liczbowym. W C++ kod znaku jest po prostu
jednoznaczny z nim samym, dlatego mozemy go interpretowac zaréwno jako symbol, jak i wartosc¢ liczbowa.

36 Niektére kompilatory (w tym i Visual C++) zaakceptuja powyzszy kod, jednakze nie obejdzie sie bez
ostrzezen o mozliwej (i faktycznej!) utracie danych. Wprawdzie niektérzy nie przejmujq sie w ogodle takimi
ostrzezeniami, my jednak nie bedziemy tak krotkowzroczni :D

114 Podstawy programowania

Proste rzutowanie

Zatem do dzieta! Zobaczmy, jak w praktyce wygladajq takie ,negocjacje” :) Zostawimy
na razie ten trywialny, dwulinijkowy przyktad (wrdcimy jeszcze do niego) i zajmiemy sie
powazniejszym programem. Oto i on:

// SimpleCast - proste rzutowanie typdw

void main ()

{
for (int 1 = 32; 1 < 256; 1 += 4)
{

std::cout << "| " << (char) (i) << " == " << i << " | "y
std::cout << (char) (1 + 1) << " == " K<< 1 + 1 << "™ | ;
std::cout << (char) (1 + 2) << " == " << 1 + 2 << " | ";
std::cout << (char) (i + 3) << " == " KK 1 + 3 <" [";
std: :cout << std::endl;

}

getch () ;
}

Huh, faktycznie nie jest to banalny kod :) Wykonywana przezen czynnos$¢ jest jednak
dos¢ prosta. Aplikacja ta pokazuje nam tablice kolejnych znakow wraz z odpowiadajgcymi
im kodami ANSI.

DR 1 DO

o
=D [l

WS W 2| il 2 [T BINE S

e n RS T e ||] e
CEPI o gl e Jom k] e R Y o

R0 -
u .

L]

Screen 26. Fragment tabeli ANSI

Najwazniejsza jest tu dla nas sama operacja rzutowania, ale warto przyjrze¢ sie
funkcjonowaniu programu jako catosci.

Zawarta w nim petla for wykonuje sie dla co czwartej wartosci licznika z przedziatu od
32 do 255. Skutkuje to faktem, iz znaki sg wyswietlane wierszami, po 4 w kazdym.

Pomijamy znaki o kodach mniejszych od 32 (czyli te z zakresu 0...31), poniewaz sq to
specjalne symbole sterujace, zasadniczo nieprzeznaczone do wyswietlania na ekranie.
Znajdziemy wsrod nich na przyktad tabulator (kod 9), znak ,powrotu karetki” (kod 13),
konca wiersza (kod 10) czy sygnat btedu (kod 7).

Operacje na zmiennych 115

Za prezentacje pojedynczego wiersza odpowiadajg te wielce interesujace instrukcje:

std::cout << "| " << (char) (1) << " == T o<] << "
std::cout << (char) (i + 1) << " == " << i + 1 << " | "5
std::cout << (char) (1 + 2) << " == " << i 4+ 2 << " |
std::cout << (char) (1 + 3) << " == " << i + 3 << " [y

Sadzac po widocznym ich efekcie, kazda z nich wyswietla nam jeden znak oraz
odpowiadajacy mu kod ANSI. Przygladajac sie blizej temu listingowi, widzimy, ze
zaréwno pokazanie znaku, jak i przynaleznej mu wartosci liczbowej odbywa sie zawsze
przy pomocy tego samego wyrazenia. Jest nim odpowiednio i, i + 1,i + 2lubi + 3.

Jak to sie dzieje, ze raz jest ono interpretowane jako znak, a innym razem jako liczba?
Domyslasz sie zapewne niebagatelnej roli rzutowania w dziataniu tej ,magii” :) Istotnie,
jest ono konieczne. Jako ze licznik i jest zmienng typu int, zacytowane wyzej cztery
wyrazenia takze nalezg do tego typu. Przestanie ich do strumienia wyjscia w
niezmienionej postaci powoduje wyswietlenie ich wartosci w formie liczb. W ten sposéb
pokazujemy kody ANSI kolejnych znakéw.

Aby wyswietli¢ same symbole musimy jednak oszuka¢ nieco nasz strumien std: : cout,
rzutujgc wspomniane wartosci liczbowe na typ char. Dzieki temu zostang one
potraktowane jako znaki i takoz wyswietlone w konsoli.

Zobaczmy, w jaki sposdb realizujemy tutaj to ostawione rzutowanie. Spojrzmy
mianowicie na jeden z czterech podobnych kawatkéw kodu:

(char) (1 + 1)

Ten niepozorny fragment wykonuje catg wazka operacje, ktérg nazywamy rzutowaniem.
Zapisanie w nawiasach nazwy typu char przed wyrazeniem i + 1 (dla jasnosci
umieszczonym réwniez w nawiasach) powoduje bowiem, iz wynik tak ujetego dziatania
zostaje uznany jako podpadajacy pod typ char. Tak jest tez traktowany przez strumien
wyjscia, dzieki czemu mozemy go ogladad jako znak, a nie liczbe.

Zatem, aby rzutowac jakies wyrazenie na wybrany typ, musimy uzy¢ niezwykle prostej
konstrukcji:

(typ) wyrazenie

wyrazenie moze by¢ przy tym ujete w nawias lub nie; zazwyczaj jednak stosuje sie
nawiasy, by unikna¢ potencjalnych ktopotéw z kolejnoscig operatoréw.

Mozna takze uzyc sktadni typ (wyrazenie). Stosuje sie jq rzadziej, gdyz przypomina
wywoftanie funkcji i moze byc¢ przez to przyczyng pomyitek.

Wrocmy teraz do naszego pierwotnego przykfadu. Rozwigzanie problemu, ktéry wczesniej
przedstawiat, powinno by¢ juz banalne:

int nX = 14;
int nY = (int) (0.333 * nX);

Po takich manipulacjach zmienna ny bedzie przechowywata czes$¢ catkowita z wyniku
podanego mnozenia. Oczywiscie tracimy w ten sposdb doktadnos¢ obliczen, co jest
jednak nieunikniong ceng kompromisu towarzyszacego rzutowaniu :)

116 Podstawy programowania

Operator static cast

Umiemy juz dokonywac rzutowania, poprzedzajac wyrazenie nazwa typu napisang w
nawiasach. Taki sposdb postepowania wywodzi sie jeszcze z zamierzchtych czaséw jezyka
C¥, poprzednika C++. Czyzby miato to znaczyé, ze jest on zty?...

Powiedzmy, ze nie jest wystarczajaco dobry :) Nie przecze, ze na poczatku moze
wydawac sie $wietnym rozwigzaniem - klarownym, prostym, niewymagajacym wiele
pisania etc. Jednak im dalej w las, tym wiecej Smieci: juz teraz dokfadniejsze spojrzenie
ujawnia nam wiele mankamentéw, a w miare zwiekszania sie twoich umiejetnosci i
wiedzy dostrzezesz ich jeszcze wiecej.

Spéjrzmy chocby na sama sktadnie. Oprdcz swojej niewatpliwej prostoty posiada dwie
zdecydowanie nieprzyjemne cechy.

Po pierwsze, zwieksza nam ilos¢ nawiasow w wyrazeniach, ktére zawierajg rzutowanie. A
przeciez nawet i bez niego potrafig one by¢ dostatecznie skomplikowane. Czeste przeciez
uzycie kilku operatoréw, kilku funkcji (z ktérych kazda ma pewnie po kilka parametrow)
oraz kilku dodatkowych nawiaséw (aby nie klopotac¢ sie kolejnoscig dziatan) gmatwa
nasze wyrazenia w dostatecznym juz stopniu. Jezeli dodamy do tego jeszcze pare
rzutowan, moze nam wyjs¢ cos w tym rodzaju:

int nX = (int) (((2 * nY) / (float) (nZ + 3)) - (int) Funkcja(nY * 7));

Konwersje w formie (typ) wyrazenie z pewnoscig nie poprawiajg tu czytelnosci kodu.
Drugim problemem jest znowuz kolejnos$¢ dziatan. Pytanie za pie¢ punktow: jakg wartos¢
ma zmienna nY w ponizszym fragmencie?

float £fX = 0.75;
int nY = (int) £f£X * 3;

Zatem?... Jezeli obecne w drugiej linijce rzutowanie na int dotyczy jedynie zmiennej £x,
to jej wartos¢ (0.75) zostanie zaokraglona do zera, zatem nY bedzie przypisane rowniez
zero. Jesli jednak konwersji na int zostanie poddane cate wyrazenie (0.75 * 3, czyli
2.25), to nY przyjmie wartos¢ 2!

Wybrniecie z tego dylematu to... kolejna para nawiaséw, obejmujaca tg czes¢ wyrazenia,
ktérg faktycznie chcemy rzutowacé. Wyglada wiec na to, ze nie opedzimy sie od czestego
stosowania znakdéw (i).

Skfadnia to jednak nie jedyny ktopot. Tak naprawde o wiele wazniejsze sg kwestie
zwigzane ze sposobem, w jaki jest realizowane samo rzutowanie. Niestety, na razie
jestes w niezbyt komfortowej sytuacji, gdyz musisz zaakceptowac pewien fakt bez
uzasadnienia (,na wiare” :D). Brzmi on nastepujqco:

Rzutowanie w formie (typ) wyrazenie, zwane tez rzutowaniem w stylu C, nie jest
zalecane do stosowania w C++.

Doktadnie przyczyny takiego stanu rzeczy poznasz przy okazji omawiania klas i
programowania obiektowego>®.

37 Nazywa sie go nawet rzutowaniem w stylu C.

3 Dla szczegdlnie dociekliwych mam wszakze wyjasnienie czeéciowe. Mianowicie, rzutowanie w stylu C nie
rozréznia nam tzw. bezpiecznych i niebezpiecznych konwersji. Za bezpieczng mozemy uzna¢ zamiane jednego
typu liczbowego na drugi czy wskaznika szczegétowego na wskaznik bardziej ogélny (np. int* na void* - o
wskaznikach powiemy sobie szerzej, gdy juz uporamy sie z podstawami :)). Niebezpieczne rzutowanie to
konwersja miedzy niezwigzanymi ze sobg typami, na przyktad liczba i tekstem; w zasadzie nie powinno sie
takich rzeczy robic.

Operacje na zmiennych 117

No dobrze, zatézmy, ze uznajemy ta odgdrng rade® i zobowigzujemy sie nie stosowaé
rzutowania ,nawiasowego” w swoich programach. Czy to znaczy, ze w ogdle tracimy
mozliwo$¢ konwersji zmiennych jednego typu na inne?!

Rzeczywisto$¢ na szczescie nie jest az tak straszna :) C++ posiada bowiem az cztery
operatory rzutowania, ktore sg najlepszym sposobem na realizacje zamiany typow w
tym jezyku. Bedziemy sukcesywnie poznawac je wszystkie, a zaczniemy od najczesciej
stosowanego - tytutowego static cast.

static cast (‘rzutowanie statyczne’) nie ma nic wspdlnego z modyfikatorem static i
zmiennymi statycznymi. Operator ten stuzy do przeprowadzania najbardziej pospolitych
konwersiji, ktére jednak sg spotykane najczesciej. Mozemy go stosowac wszedzie, gdzie
sposéb zamiany jest oczywisty — zarowno dla nas, jak i kompilatora ;)

Najlepiej po prostu zawsze uzywac static cast, uciekajac sie do innych srodkdéw, gdy
. ten zawodzi i nie jest akceptowany przez kompilator (albo wiaze sie z pokazaniem
| ostrzezenia).

W szczegolnosci, mozemy i powinniSmy korzystac ze static cast przy rzutowaniu
miedzy typami podstawowymi. Zobaczmy zreszta, jak wygladatoby ono dla naszego
ostatniego przykfadu:

float £X = 0.75;
int nY = static cast<int>(fX * 3);

Widzimy, ze uzycie tego operatora od razu likwiduje nam niejednoznacznosé, na ktérg
poprzednio zwrdciliSmy uwage. Wyrazenie poddawane rzutowaniu musimy bowiem ujgc
w nawiasy okragte.

Ciekawy jest sposdb zapisu nazwy typu, na ktory rzutujemy. Znaki < i >, oprocz tego ze
sq operatorami mniejszosci i wiekszosci, tworzg pare nawiaséw ostrych. Pomiedzy nimi
wpisujemy okreslenie docelowego typu.

Petna skfadnia operatora static cast wyglada wiec nastepujaco:
static_ cast<typ>(wyrazZenie)

By¢ moze jest ona bardziej skomplikowana od ,zwykiego” rzutowania, ale uzywajac jej
osiggamy wiele korzysci, o ktorych mogtes sie naocznie przekonac :)

Warto tez wspomnie¢, ze trzy pozostate operatory rzutowania majg identyczng postac -
| oczywiscie z wyjatkiem stowa static_cast, ktore jest zastapione innym.

Xk k

Tg uwagq konczymy omawianie réznych aspektéw zwigzanych z typami zmiennych w
jezyku C++. Wreszcie zajmiemy sie tytutowymi zagadnieniami tego rozdziatu, czyli
czynnosciach, ktdre mozemy wykonywac¢ na zmiennych.

Problem z rzutowaniem w stylu C polega na tym, iz zupetnie nie rozrdznia tych dwdch rodzajow zamiany.
Pozostaje tak samo niewzruszone na niewinng konwersje z float na int oraz, powiedzmy, na zupetnie
nienaturalng zmiane std: :string na bool. Nietrudno domyslec sie, ze zwieksza to prawdopodobienstwo
wystepowania réznego rodzaju btedéw.

39 jJak wszystko, co dotyczy fundamentdw jezyka C++, pochodzi ona od jego Komitetu Standaryzacyjnego.

118 Podstawy programowania

Kalkulacje na liczbach

Poznamy teraz kilka standardowych operacji, ktére mozemy wykonywac na danych
liczbowych. Najpierw bedg to odpowiednie funkcje, ktorych dostarcza nam C++, a
nastepnie uzupetnienie wiadomosci o operatorach arytmetycznych. Zaczynajmy wiec :)

Przydatne funkcje

C++ udostepnia nam wiele funkcji matematycznych, dzieki ktérym mozemy
przeprowadzac proste i nieco bardziej ztozone obliczenia. Prawie wszystkie sg zawarte w
pliku nagtéwkowym cmath, dlatego tez musimy dotaczyc¢ ten plik do kazdego programu,
w ktérym chcemy korzystac z tych funkcji. Robimy to analogicznie jak w przypadku
innych nagtdéwkow — umieszczajac na poczatku naszego kodu dyrektywe:

#include <cmath>

Po dopetnieniu tej drobnej formalnosci mozemy korzystac z catego bogactwa narzedzi
matematycznych, jakie zapewnia nam C++. Spdjrzmy wiec, jak sie one przedstawiaja.

Funkcje potegowe

W przeciwienstwie do niektorych jezykdéw programowania, C++ nie posiada oddzielnego
operatora potegowania®®. Zamiast niego mamy natomiast funkcje pow () (ang. power -
potega), ktéra prezentuje sie nastepujaco:

double pow (double base, double exponent):;

Jak wida¢, bierze ona dwa parametry. Pierwszym (base) jest podstawa potegi, a drugim
(exponent) jej wyktadnik. W wyniku zwracany jest oczywiscie wynik potegowania (a wiec
warto$¢ wyrazenia basesonent),

Podobng do powyzszej deklaracje funkcji, przedstawiajaca jej nazwe, ilos¢ i typy
| parametrow oraz typ zwracanej wartosci, nazywamy prototypem.

Oto kilka przyktadow wykorzystania funkcji pow () :

double fX;

fX = pow (2, 8); // 6sma potega dwdjki, czyli 256
fX = pow (3, 4); // czwarta potega trdjki, czyli 81
fX = pow(5, -1); // odwrotnoé¢ piatki, czyli 0.2

Inng rownie czesto wykonywang czynnoscig jest pierwiastkowanie. Realizuje jg miedzy
innymi funkcja sqrt () (ang. square root - pierwiastek kwadratowy):

double sqgrt (double x);

Jej jedyny parametr to oczywiscie liczba, ktéra chcemy pierwiastkowac. Uzycie tej funkcji
jest zatem niezwykle intuicyjne:

fX = sqrt(64); // 8 (bo 8*8 == 64)
X sqrt (2) ; // okolo 1.414213562373

40 Znak *, ktéry stuzy w nich do wykonywania tego dziatania, jest w C++ zarezerwowany dla jednej z operacji
bitowych - réznicy symetrycznej. Wiecej informacji na ten temat mozesz znalez¢ w Dodatku B, Reprezentacja
danych w pamieci.

Operacje na zmiennych 119

fX = sqrt (pow (fY, 2)); // fY
Nie ma natomiast wbudowanej formuty, ktora obliczataby pierwiastek dowolnego
stopnia z danej liczby. Mozemy jednak tatwo napisac jg sami, korzystajac z prostej
wiasnosci:

1
Yx =x¢

Po przetozeniu tego rownania na C++ uzyskujemy nastepujaca funkcje:
double root (double x, double a) { return pow(x, 1 / a); }

Zapisanie jej definicji w jednej linijce jest catkowicie dopuszczalne i, jak wida¢, bardzo
wygodne. Elastycznos$¢ sktadni C++ pozwala wiec na zupetnie dowolng organizacje kodu.

Doktadny opis poznanych funkcji pow () i sqrt () znajdziesz w MSDN.

Funkcje wyktadnicze i logarytmiczne

Najczesciej stosowang w matematyce funkcjq wyktadnicza jest e*, niekiedy oznaczana
takze jako exp(x). Taka tez forme ma ona w C++:

double exp (double x);

Zwraca ona warto$¢ statej e*! podniesionej do potegi x. Popatrzmy na kilka przyktadéw:

fX = exp(0); // 1
fX = exp(1); // e
fX = exp(2.302585093) ; // 10.000000

Natomiast funkcje wyktadniczg o dowolnej podstawie uzyskujemy, stosujgc omowiong juz
wczesniej formute pow () .

Przeciwstawne do funkcji wyktadniczych sg logarytmy. Tutaj mamy az dwie odpowiednie
funkcje :) Pierwsza z nich to l1og():

double log(double x);

Jest to logarytm naturalny (o podstawie e€), a wiec funkcja doktadnie do odwrotna do
poprzedniej exp (). Otdz dla danej liczby x zwraca nam warto$¢ wykfadnika, do ktorego
musielibysmy podnies¢ e, by otrzymac x. Dla petnej jasnosci zerknijmy na ponizsze
przyktady:

fX = log(1l); // 0
fX = log(10); // 2.302585093
fX = log(exp(x)); // x

Druga funkcja jest 10910 (), czyli logarytm dziesietny (o podstawie 10):

double 1loglO (double x);

*! Tak zwanej statej Nepera, podstawy logarytméw naturalnych - réwnej w przyblizeniu 2.71828182845904.

120 Podstawy programowania

Analogicznie, funkcja ta zwraca wykfadnik, do ktérego nalezatoby podnies¢ dziesigtke,
aby otrzymac podang liczbe x, na przyktad:

fX = 1ogl0(1000) ; // 3 (bo 10° == 1000)
fX = loglO(1); // 0
fX = 1logl0(pow (10, x)); // %

Niestety, znowu (podobnie jak w przypadku pierwiastkéw) nie mamy bardziej
uniwersalnego odpowiednika tych dwdch funkcji, czyli logarytmu o dowolnej podstawie.
Ponownie jednak mozemy skorzysta¢ z odpowiedniej tozsamoéci matematycznej*?:

_log, x

log, x =
log, a

a

Nasza wiasna funkcja moze wiec wygladac tak:
double log a(double a, double x) { return log(x) / log(a); }

Oczywiscie uzycie 10g10 () w miejsce log () jest rdwniez poprawne.

Zainteresowanych ponownie odsytam do MSDN celem poznania doktadnego opisu funkcji
=39 () O des () [1ol ()

Funkcje trygonometryczne

Dla nas, (przysztych) programistow gier, funkcje trygonometryczne sg szczegdlnie
przydatne, gdyz bedziemy korzystac z nich niezwykle czesto — chocby przy réznorakich
obrotach. Wypadatoby zatem dobrze znac ich odpowiedniki w jezyku C++.

Na poczatek przypomnijmy sobie (znane, mam nadzieje :D) okreslenia funkcji
trygonometrycznych. Postuzy nam do tego ponizszy rysunek:

&

sina:=£
r
x
Cos 3 = —
r
r
tan-::.'f:E
¥ x
x 1
cot i = —=
¥ o tan &
X r 1
SEC ¥ = — =
x Cos &
r 1
CSC & = —= —
» TR

Rysunek 1. Definicje funkcji trygonometrycznych dowolnego kata

42 Znanej jako zmiana podstawy logarytmu.

Operacje na zmiennych 121

Zwroé¢my uwage, ze trzy ostatnie funkcje sg okreslone jako odwrotnosci trzech
pierwszych. Wynika stad fakt, iz potrzebujemy do szczescia jedynie sinusa, cosinusa i
tangensa - reszte funkcji i tak bedziemy mogli tatwo uzyskac.

C++ posiada oczywiscie odpowiednie funkcje:

double sin (double alfa); // sinus
double cos (double alfa); // cosinus
double tan(double alfa); // tangens

Dziatajg one identycznie do swoich geometrycznych odpowiednikéw. Jako jedyny
parametr przyjmujg miare kata w radianach i zwracajg wyniki, ktorych bez watpienia
mozna sie spodziewac :)

Jezeli chodzi o trzy brakujace funkcje, to ich definicje sq, jak sadze, oczywiste:

double cot (double alfa) { return 1 / tan(alfa); } // cotangens
double sec (double alfa) { return 1 / cos(alfa); } // secant
double csc (double alfa) { return 1 / sin(alfa); } // cosecant

Gdy pracujemy z katami i funkcjami trygonometrycznymi, nierzadko pojawia sie
koniecznos¢ zamiany miary kata ze stopni na radiany lub odwrotnie. Niestety, nie
znajdziemy w C++ odpowiednich funkcji, ktoére realizowatyby to zadanie. By¢ moze
dlatego, ze sami mozemy je fatwo napisac:

const double PI = 3.1415923865;
double degtorad(double alfa) { return alfa * PI / 180; }
double radtodeg(double alfa) { return alfa * 180 / PI; }

Pamietajmy tez, aby nie myli¢ tych dwdéch miar katéw i zdawac sobie sprawe, iz funkcje
trygonometryczne w C++ uzywajg radianow. Pomytki w tej kwestii sg dos$¢ czeste i
powodujg nieprzyjemne rezultaty, dlatego nalezy sie ich wystrzegac :)

Jak zwykle, wiecej informacji o funkcjach sin (), cos () i tan() znajdziesz w MSDN.
Mozesz tam réwniez zapoznac sie z funkcjami odwrotnymi do trygonometrycznych -
asin(), acos () oraz atan() i atan?2 ().

Liczby pseudolosowe

Zostawmy juz te zdecydowanie zbyt matematyczne dywagacje i zajmijmy sie czyms, co
bardziej zainteresuje przecietnego zjadacza komputerowego i programistycznego

chleba :) Mam tu na mysli generowanie wartosci losowych.

Liczby losowe znajdujq zastosowanie w bardzo wielu programach. W przypadku gier
mogaq stuzy¢ na przyktad do tworzenia realistycznych efektéw ognia, deszczu czy $niegu.
Uzywajac ich mozemy réwniez kreowac za kazdym inng mape w grze strategicznej czy
zapewnic pojawianie sie wrogow w przypadkowych miejscach w grach zrecznosciowych.
Przydatnos¢ liczb losowych jest wiec bardzo szeroka.

Uzyskanie losowej wartosci jest w C++ catkiem proste. W tym celu korzystamy z funkcji
rand () (ang. random - losowy):

int rand();

Jak moznaby przypuszczaé, zwraca nam ona przypadkowa liczbe dodatnig*®. Najczesciej
jednak potrzebujemy wartosci z okreslonego przedziatu - na przyktad w programie

43 Liczba ta nalezy do przedziatu <0; RAND MAX>, gdzie RAND MAX jest stalg zdefiniowang przez kompilator (w
Visual C++ .NET ma ona wartos$¢ 32767).

122 Podstawy programowania

ilustrujgcym dziatanie petli while losowaliémy liczbe z zakresu od 1 do 100. OsiagneliSmy
to w dos¢ prosty sposéb:

o)

int nWylosowana = rand() % 100 + 1;

Wykorzystanie operatora reszty z dzielenia sprawia, ze nasza dowolna wartos¢ (zwrocona
przez rand ()) zostaje odpowiednio ,przycieta” - w tym przypadku do przedziatu <0; 99>
(poniewaz resztg z dzielenia przez sto moze by¢ 0, 1, 2, ..., 98, 99). Dodanie jedynki
zmienia ten zakres do pozadanego <1; 100>.

W podobny sposdéb mozemy uzyskac¢ losowg liczbe z jakiegokolwiek przedziatu. Nie od
rzeczy bedzie nawet napisanie odpowiedniej funkcji:

int random(int nMin, int nMax)

Q

{ return rand() % (nMax - nMin + 1) + nMin; }

Uzywajac jej, potrafimy bez trudu stworzy¢ chociazby symulator rzutu kostkg do gry:

voild main ()

{
std::cout << "Wylosowano " << random(l, 6) << " oczek.";
getch (),

}

Zdaje sie jednak, ze co$ jest nie catkiem w porzadku... Uruchamiajac parokrotnie
powyzszy program, za kazdym razem zobaczymy jedng i ta sama liczbe! Gdzie jest wiec
ta obiecywana losowos¢?!

Coz, nie ma w tym nic dziwnego. Komputer to tylko wielkie liczydto, ktére dziata w
zaprogramowany i przewidywalny sposdb. Dotyczy to takze funkcji rand (), ktorej
dziatanie opiera sie na raz ustalonym i niezmiennym algorytmie. Jej wynik nie jest zatem
w zaden sposdb losowany, lecz wyliczany na podstawie formut matematycznych.
Dlatego tez liczby uzyskane w ten sposdb nazywamy pseudolosowymi, poniewaz tylko
udajg prawdziwg przypadkowos¢é.

Wydawac by sie mogto, ze fakt ten czyni je catkowicie nieprzydatnymi. Na szczescie nie
jest to prawda: liczby pseudolosowe mozna z powodzeniem wykorzystywacé we
wiasciwym im celu — pod warunkiem, ze robimy to poprawnie.

Musimy bowiem pamieta¢, aby przed pierwszym uzyciem rand () wywotac inng funkcje -
srand () :

void srand(unsigned int seed);

Jej parametr seed to tak zwane ziarno. Jest to liczba, ktdra inicjuje generator wartosci
pseudolosowych. Dla kazdego mozliwego ziarna funkcja rand () oblicza nam inny ciag
liczb. Zatem, logicznie wnioskujac, powinnismy dbac o to, by przy kazdym uruchomieniu
programu wartos¢ ziarna byta inna.

Dochodzimy tym samym do pozornie btednego kota — zeby uzyskac liczbe losowa,
potrzebujemy... liczby losowej! Jak rozwigzac ten, zdawatoby sie, nierozwigzywalny
problem?...

Otdéz nalezy znalez¢ takg wartos¢, ktora bedzie sie zmienia¢ miedzy kolejnymi
uruchomieniami programu. Nietrudno jg wskaza¢ - to po prostu czas systemowy.
Jego pobranie jest bardzo fatwe, bowiem C++ udostepnia nam zgrabna funkcje time (),
zwracajaca aktualny czas** w sekundach:

** Funkcja ta zwraca liczbe sekund, jakie uptynety od pétnocy 1 stycznia 1970 roku.

Operacje na zmiennych 123

time t time(time t* timer);

By¢ moze wyglada ona dziwnie, ale zapewniam cie, ze dziata Swietnie :) Wymaga jednak,
abysmy dotaczyli do programu dodatkowy nagtéwek ctime:

#include <ctime>

Teraz mamy juz wszystko, co potrzebne. Zatem do dzieta! Nasza prosta aplikacja
powinna obecnie wygladac tak:

// Random - losowanie liczby

#include <iostream>
#include <ctime>
#include <conio.h>

Q

int random(int nMin, int nMax) { return rand() % nMax + nMin; }

void main ()

{

// zainicjowanie generatora liczb pseudolosowych aktualnym czasem
srand (static cast<unsigned int>(time (NULL))) ;

// wylosowanie i pokazanie liczby
std::cout << "Wylosowana liczba to " << random(l, 6) << std::endl;

getch (),
}

Kompilacja i kilkukrotne uruchomienie powyzszego kodu utwierdzi nas w przekonaniu, iz
tym razem wszystko funkcjonuje poprawnie.

KOSTHA

Wylozowana liczba to 4

”

Screen 27. Przyktadowy rezultat ,rzutu kostka

Dzieje sie tak naturalnie za sprawa_ tej linijki:
srand (static cast<unsigned int>(time (NULL)))

Wywotuje ona funkcje srand (), podajac jej ziarno uzyskane poprzez time (). Ze wzgledu
na to, iz time () zwraca wartos¢ nalezacq do specjalnego typu time t, potrzebne jest
rzutowanie jej na typ unsigned int.

Wyjasnienia wymaga jeszcze parametr funkcji time (). NULL to tak zwany wskaznik
zerowy, niereprezentujacy zadnej przydatnej wartosci. Uzywamy go tutaj, gdyz nie
mamy nic konkretnego do przekazania dla funkcji, za$ ona sama niczego takiego od nas
nie wymaga :)

Kompletny opis funkcji rand (), srand () i time () znajdziesz, jak poprzednio, w MSDN.

Zaokraglanie liczb rzeczywistych

Gdy poznawaliSmy rzutowanie typéw, podatem jako przyktad konwersje wartosci float
na int. Wspomniatem tez, ze zastosowane w tym przypadku zaokraglenie liczby
rzeczywistej polega na zwyczajnym odrzuceniu jej czesci utamkowej.

124 Podstawy programowania

Nie jest to wszakze jedyny sposdb dokonywania podobnej zamiany, gdyz C++ posiada
tez dwie specjalnie do tego przeznaczone funkcje. Dziatajg one w inaczej niz zwykte
rzutowanie, co samo w sobie stanowi dobry pretekst do ich poznania :D

Owe dwie funkcje sg sobie wzajemnie przeciwstawne - jedna zaokragla liczbe w gore
(wynik jest zawsze wiekszy lub réwny podanej wartosci), za$ druga w doét (rezultat jest
mniejszy lub réwny). Swietne obrazuja to ich nazwy, odpowiednio: ceil () (ang. ceiling -
sufit) oraz floor () (‘podtoga’).

Przyjrzyjmy sie teraz nagtowkom tych funkcji:

double ceil (double x);
double floor (double x);

Nie ma tu zadnych niespodzianek - no, moze poza typem zwracanego wyniku. Dlaczego
nie jest to int? Otdz typ double ma po prostu wiekszg rozpieto$¢ przedziatu wartosci,
jakie moze przechowywac. Poniewaz argument funkcji takze nalezy do tego typu,
zastosowanie int spowodowatoby otrzymywanie btednych rezultatéw dla bardzo duzych
liczb (takich, jakie ,nie zmiescityby sie” do int’a).

Na koniec mamy jeszcze kilka przyktaddéw, ilustrujgcych dziatanie poznanych przed chwilg
funkcji:

fX = ceil (6.2); // 7.0
fX = ceil (-5.6); // -5.0
fX = ceil (14); // 14.0
fX = floor(1l.7); // 1.0
fX = floor(-2.1); // =-3.0

Szczegdlnie dociekliwych czeka kolejna wycieczka wgtab MSDN po dokfadny opis funkcji
ceil Q) Il fleoeor () D

Inne funkcje

Ostatnie dwie formuty trudno przyporzadkowac do jakiej$ konkretnej grupy. Nie znaczy
to jednak, ze sq one mniej wazne niz pozostate.

Pierwszg z nich jest abs () (ang. absolute value), obliczajgca wartos$¢ bezwzgledng
(modut) danej liczby. Jak pamietamy z matematyki, wartosc¢ ta jest ta sama liczbg, lecz
bez znaku - zawsze dodatnia.

Ciekawa jest deklaracja funkcji abs () . Istnieje bowiem kilka jej wariantéw, po jednym
dla kazdego typu liczbowego:

int abs (int n);
float abs (float n);
double abs (double n);

Jest to jak najbardziej mozliwe i w peini poprawne. Zabieg taki nazywamy
przecigzaniem (ang. overloading) funkcji.

Przeciazanie funkcji (ang. function overloading) to obecnos¢ kilku deklaracji funkcji o
tej samej nazwie, lecz posiadajacych rozne listy parametréw i/lub typy zwracanej
wartosci.

Gdy wiec wywotujemy funkcje abs (), kompilator stara sie wydedukowac, ktéry z jej
wariantow powinien zosta¢ uruchomiony. Czyni to przede wszystkim na podstawie
przekazanego don parametru. Jezeli byfaby to liczba catkowita, zostataby wywotana

Operacje na zmiennych 125

wersja przyjmujaca i zwracajaca typ int. Jezeli natomiast podalibysmy liczbe
zmiennoprzecinkowq, wtedy do akcji wkroczytby inny wariant funkcji.

Zatem dzieki mechanizmowi przecigzania funkcja abs () moze operowac na réznych
typach liczb:

int nX = abs (-45); // 45
float £X = abs(7.5); // 1.5
double fX = abs(-27.8); // 27.8

Druga funkcja to fmod (). Dziata ona podobnie do operatora %, gdyz takze oblicza reszte z
dzielenia dwoch liczb. Jednak w przeciwienstwie do niego nie ogranicza sie jedynie do
liczb catkowitych, bowiem potrafi operowac takze na wartosciach rzeczywistych. Widac¢ to
po jej nagtowku:

double fmod (double x, double y);

Funkcja ta wykonuje dzielenie x przez y i zwraca pozostatg zen reszte, co oczywiscie
tatwo wydedukowac z jej nagtdwka :) Dla porzadku zerknijmy jeszcze na pare
przyktadéw:

fX = fmod (14, 3); // 2
fX = fmod(2.75, 0.5); // 0.25
fX = fmod(-10, 3); // -1

Wielbiciele MSDN mogg zacierac rece, gdyz z pewnoscig znajdgq w niej szczegdtowe opisy
funkcji abs () *° i fmod () ;)

Xk k%

Zakonczylismy w ten sposob przeglad asortymentu funkcji liczbowych, oferowanego
przez C++. Przyswoiwszy sobie wiadomosci o tych formutach bedziesz mogt robic z
liczbami niemal wszystko, co tylko sobie zamarzysz :)

Znane i nieznane operatory

Dobrze wiemy, ze funkcje to nie jedyne s$rodki stuzgce do manipulacji wartosciami
liczbowymi. Od poczatku uzywaliSmy do tego przede wszystkim operatoréw, ktore
odpowiadaty doskonale nam znanym podstawowym dziataniom matematycznym.
Nadarza sie dobra okazja, aby przypomniec sobie o tych elementach jezyka C++, przy
okazji poszerzajac swoje informacje o nich.

Dwa rodzaje

Operatory w C++ mozemy podzieli¢ na dwie grupy ze wzgledu na liczbe ,parametrow”,
na ktorych dziatajg. Wyrézniamy wiec operatory unarne - wymagajace jednego
»~parametru” oraz binarne - potrzebujace dwdch.

Do pierwszej grupy nalezg na przyktad symbole + oraz -, gdy stawiamy je przed jakims$
wyrazeniem. Wtedy bowiem nie petnig roli operatoréw dodawania i odejmowania, lecz
zachowania lub zmiany znaku. Moze brzmi to dos$¢ skomplikowanie, ale naprawde jest
bardzo proste:

int nX = 5;

45 Standardowo dotfaczona do Visual Studio .NET biblioteka MSDN posiada lekko nieaktualny opis tej funkcji -
nie sg tam wymienione jej wersje przecigzane dla typow float i double.

126 Podstawy programowania

int nY = +nX; // nY == 5
nY = -nX; // nY == -5

Operator + zachowuje nam znak wyrazenia (czyli praktycznie nie robi nic, dlatego zwykle
sie go nie stosuje), za$ - zmienia go na przeciwny (neguje wyrazenie). Operatory te
majq identyczng funkcje w matematyce, dlatego, jak sadze, nie powinny sprawic ci
wiekszego kiopotu :)

Do grupy operatoréw unarnych zaliczamy réwniez ++ oraz --, odpowiadajace za
inkrementacje i dekrementacje. Za chwile przyjrzymy im sie blizej.

Drugi zestaw to operatory binarne; dla nich konieczne sq dwa argumenty. Do tej grupy
nalezg wszystkie poznane wczesniej operatory arytmetyczne, a wiec + (dodawanie), -
(odejmowanie), * (mnozenie), / (dzielenie) oraz % (reszta z dzielenia).

Poniewaz swego czasu poswiecilismy im sporo uwagi, nie bedziemy teraz dogtebnie
whnika¢ w dziatanie kazdego z nich. Wiecej miejsca przeznaczymy tylko na operator
dzielenia.

Sekrety inkrementacji i dekrementacji

Operatoréw ++ i —— uzywamy, aby doda¢ do zmiennej lub odjg¢ od niej jedynke. Taki
zapis jest najkrétszy i najwygodniejszy, a poza tym najszybszy. Uzywamy go szczegdlnie
czesto w petlach for.

Jednak moze byc¢ on takze czescig ztozonych wyrazen. Ponizsze fragmenty kodu sg
absolutnie poprawne i w dodatku nierzadko spotykane:

int nA = 6;
int nB ++nk;

int nC = 4;
int nD nC++;

Od tej pory bede moéwit jedynie o operatorze inkrementacji, jednak wszystkie
. przedstawione tu wiasnosci dotyczg takze jego dekrementujacego brata.

Nasuwa sie naturalne pytanie: jakie wartosci bedg miaty zmienne na, nB, nC i nD po
wykonaniu tych czterech linijek kodu?

Jezeli chodzi o nA i nC, to sprawa jest oczywista. Kazda z tych zmiennych zostata
jednokrotnie poddana inkrementacji, zatem ich wartosci s o jeden wieksze niz na
poczatku. Wynoszg odpowiednio 7 i 5.

Pozostate zmienne sg juz twardszym orzechem do zgryzienia. Skupmy sie wiec chwilowo
na nB. Jej wartos¢ na pewno ma cos$ wspdlnego z wartoscig na - moze to byé¢ albo 6
(liczba przed inkrementacjq), albo 7 (juz po inkrementacji). Analogicznie, nD moze by¢
rowna 4 (czyli wartosci nc przed inkrementacja) lub 5 (po inkrementaciji).

Jak jest w istocie? Sam sie przekonaj! Stwdrz nowy program, wpisz do jego funkcji
main () powyzsze wiersze kodu i dodaj instrukcje pokazujace wartosci zmiennych...

Céz widzimy? Zmienna nB jest réwna 7, a wiec zostata jej przypisana wartos¢ na juz po
inkrementacji. Natomiast nb rowna sie 4 - tyle, co nc przed inkrementacja.

Przyczyng tego faktu jest rzecz jasna rozmieszczenie pluséw. Gdy napisalismy je przed
inkrementowang zmienng, dostaliSmy w wyniku warto$¢ zwiekszong o 1. Kiedy zas
umiesciliSmy je za tg zmienng, otrzymaliSmy jeszcze stary rezultat.

Jak zatem mogli$my sie przekonac¢, odpowiednie zapisanie operatoréw ++ i -- ma
catkiem spore znaczenie.

Operacje na zmiennych 127

Umieszczenie operatora ++ (--) przed wyrazeniem nazywamy preinkrementacja
(predekrementacja). W takiej sytuacji najpierw dokonywane jest zwiekszenie
(zmniejszenie) jego wartosci o 1. Nowa wartosc¢ jest potem zwracana jako wynik.

Kiedy napiszemy operator ++ (--) po wyrazeniu, mamy do czynienia z
postinkrementacja (postdekrementacja). W tym przypadku najpierw nastepuje
zwrdcenie wartosci, ktéra dopiero potem jest zwiekszana (zmniejszana) o jeden?®.

Czyzby trzeba byto tych regutek uczy¢ sie na pamiec¢? Oczywiscie, ze nie :) Jak wiekszos¢
rzeczy w programowaniu, mozemy je traktowac intuicyjnie.

Kiedy napiszemy plusy (lub minusy) przed zmienng, wtedy najpierw ,zadziatajg”
wiasnie one. A skutkiem ich dziatania bedzie inkrementacja lub dekrementacja wartosci
zmiennej, a wiec otrzymamy w rezultacie juz zmodyfikowang liczbe.

Gdy zas$ umiescimy je za nazwg zmiennej, ustapig jej pierwszenstwa i pozwolg, aby jej
stara wartos¢ zostata zwrdcona. Dopiero potem wykonaja swojg prace, czyli
in/dekrementacje.

Jezeli mamy mozliwos¢ dokonania wyboru miedzy dwoma potozeniami operatora ++ (lub
--), powinnismy zawsze uzywac wariantu prefiksowego (przed zmienng). Wersja
postfiksowa musi bowiem utworzy¢ w pamieci kopie zmiennej, zeby moc zwrécic jej starg
wartos¢ po in/dekrementacji. Cierpi na tym zaréwno szybkos$¢ programu, jak i jego
wymagania pamieciowe (chociaz w przypadku typow liczbowych jest to niezauwazalna
roéznica).

Stowko o dzieleniu

W programowaniu mamy do czynienia z dwoma rodzajami dzielenia liczb:
catkowitoliczbowym oraz zmiennoprzecinkowym. Oba zwracajq te same rezultaty w
przypadku podzielnych przez siebie liczb catkowitych, ale w innych sytuacjach zachowujag
sie odmiennie.

Dzielenie catkowitoliczbowe podaje jedynie catkowitg czesé wyniku, odrzucajgc cyfry po
przecinku. Z tego powodu wynik takiego dzielenia moze by¢ bezposrednio przypisany do
zmiennej typu catkowitego. Wtedy jednak traci sie doktadnos¢ ilorazu.

Dzielenie zmiennoprzecinkowe pozwala uzyskac’ precyzyjny rezultat, gdyz zwraca liczbe
rzeczywistg wraz z jej czescig utamkowa. Ow wynik musi by¢ wtedy zachowany w
zmiennej typu rzeczywistego.

Wieksza czes$¢ jezykdw programowania rozrdznia te dwa typy dzielenia poprzez
wprowadzenie dwdch odrebnych operatoréw dla kazdego z nich*’. C++ jest tu swego
rodzaju wyjatkiem, poniewaz posiada tylko jeden operator dzielacy, /. Jednakze
postugujac sie nim odpowiednio, mozemy uzyskac¢ oba rodzaje ilorazow.

Zasady, na podstawie ktérych wyrdézniane sg w C++ te dwa typy dzielenia, sa ci juz
dobrze znane. PrzedstawiliSmy je sobie podczas pierwszego spotkania z operatorami
arytmetycznymi. Poniewaz jednak powtdrzen nigdy dos¢, wymienimy je sobie
ponownie :)

Jezeli obydwa argumenty operatora / (dzielna i dzielnik) sg liczbami catkowitymi, wtedy
wykonywane jest dzielenie catkowitoliczbowe.

6 To uproszczone wyjasnienie, bo przeciez zwrdcenie wartosci koriczytoby dziatanie operatora. Naprawde wiec
warto$¢ wyrazenia jest tymczasowo zapisywana i zwracana po dokonaniu in/dekrementacji.

47 W Visual Basicu jest to \ dla dzielenia catkowitoliczbowego i / dla zmiennoprzecinkowego. W Delphi
odpowiednio div i /.

128 Podstawy programowania

W przypadku, gdy chociaz jedna z liczb bioracych udziat w dzieleniu jest typu
rzeczywistego, mamy do czynienia z dzieleniem zmiennoprzecinkowym.

Od chwili, w ktérej poznaliémy rzutowanie, mamy wiekszg kontrole nad dzieleniem.
Mozemy bowiem tatwo zmienié typ jednej z liczb i w ten sposéb spowodowaé, by zostat
wykonany inny rodzaj dzielenia. Mozliwe staje sie na przykfad uzyskanie doktadnego
ilorazu dwoch wartosci catkowitych:

int nX = 12;
int nY = 5;
float fIloraz = nX / static_cast<float>(nY);

Tutaj uzyskamy precyzyjny rezultat 2.4, gdyz kompilator przeprowadzi dzielenie
zmiennoprzecinkowe. Zrobi tak, bo drugi argument operatora /, mimo ze ma wartos¢
catkowita, jest traktowany jako wyrazenie typu float. Dzieje sie tak naturalnie dzieki
rzutowaniu.

Gdybysmy go nie zastosowali i wpisali po prostu nX / ny, wykonatoby sie dzielenie
catkowitoliczbowe i utamkowa czes¢ wyniku zostataby obcieta. Ten okrojony rezultat
zmienitby nastepnie typ na float (poniewaz przypisalibySmy go do zmiennej
rzeczywistej), co byloby zupetnie zbedne, gdyz i tak w wyniku dzielenia doktadnos¢
zostata stracona.

Prosty wniosek brzmi: uwazajmy, jak i co tak naprawde dzielimy, a w razie watpliwosci
korzystajmy z rzutowania.

Xk k

Konczacy sie wtasnie podrozdziat prezentowat podstawowe instrumentarium operacyjne
wartosci liczbowych w C++. Poznajac je zyskates potencjat do tworzenia aplikacji
wykorzystujacych ztozone obliczenia, do ktorych niewatpliwie nalezg takze gry.

Jezeli czujesz sie przyttoczony nadmiarem matematyki, to mam dla ciebie dobrg
wiadomos¢: nasza uwaga skupi sie teraz na zupetnie innym, lecz rdwniez waznym typie
danych - tekscie.

Lancuchy znakow

Ciagi znakdéw (ang. strings) stanowig drugi, po liczbach, wazny rodzaj informacji
przetwarzanych przez programy. Chociaz zajmujgq wiecej miejsca w pamieci niz dane
binarne, a operacje na nich trwajg dtuzej, majq wiele znaczacych zalet. Jedna z nich jest
fakt, iz sg bardziej zrozumiate dla czlowieka niz zwykie sekwencje bitow. W czasie, gdy
moce komputerdw rosng bardzo szybko, wymienione wczesniej wady nie sg natomiast az
tak dotkliwe. Wszystko to powoduje, ze dane tekstowe sgq coraz powszechniej spotykane
we wspoifczesnych aplikacjach.

Duza jest w tym takze rola Internetu. Takie standardy jak HTML czy XML sq przeciez
. formatami tekstowymi.

Dla programistéw napisy byty od zawsze przyczyng czestych béléw gtowy. W
przeciwienstwie bowiem do typdéw liczbowych, majg one zmienny rozmiar, ktéry nie
moze by¢ ustalony raz podczas uruchamiania programu. Ilo$¢ pamieci operacyjnej, ktorg
zajmuje kazdy napis musi by¢ dostosowywana do jego dtugosci (liczby znakow) i
zmieniac sie podczas dziatania aplikacji. Wymaga to dodatkowego czasu (od programisty

Operacje na zmiennych 129

i od komputera), uwagi oraz doktadnego przemyslenia (przez programiste, nie

komputer ;D) mechanizmoéw zarzadzania pamiecia.

Zwykli uzytkownicy pecetow - szczegdlnie ci, ktorzy pamietajg jeszcze zamierzchte czasy
DOSa - takze nie majq dobrych wspomnien zwigzanych z danymi tekstowymi. Odwieczne
ktopoty z polskimi ,ogonkami” nadal dajg o sobie zna¢, cho¢ na szczescie coraz rzadziej
musimy ogladac¢ na ekranie dziwne ,krzaczki” zamiast znajomych liter w rodzaju g, ¢, n
czy Z.

Wydaje sie wiec, ze przed koderem piszacym programy przetwarzajace tekst pietrza sie
niebotyczne wrecz trudnosci. Problemy sg jednak po to, aby je rozwigzywacé (lub by inni
rozwigzywali je za nas ;)), wiec oba wymienione dylematy doczekaty sie juz wielu bardzo
dobrych pomystow.

Rozszerzajace sie wykorzystanie standardu Unicode ograniczyto juz znacznie ktopoty
zwigzane ze znakami specyficznymi dla niektérych jezykdw. Kwestig czasu zdaje sie
chwila, gdy znikng one zupetnie.

Powstato tez mndstwo sposobdw na efektywne sktadowanie napisow o zmiennej dtugosci
w pamieci komputera. Wprawdzie w tym przypadku nie ma jednego, wiodacego trendu
zapewniajgcego przenosnosé miedzy wszystkimi platformami sprzetowymi lub chociaz
aplikacjami, jednak i tak sytuacja jest znacznie lepsza niz jeszcze kilka lat temu*®.
Koderzy mogg wiec sobie pozwoli¢ na uzasadniony optymizm :)

Wsparci tymi pokrzepiajacymi faktami mozemy teraz przystapi¢ do poznawania
elementow jezyka C++, ktére stuzg do pracy z tancuchami znakow.

Napisy wedtug C++

Trudno w to uwierzy¢, ale poprzednik C++ - jezyk C - w ogdle nie posiadat odrebnego
typu zmiennych, mogacego przechowywac napisy. Aby mdoc operowacé danymi
tekstowymi, trzeba byto uzywac mato porecznych tablic znakdéw (typu char) i samemu
dbac o zagadnienia zwigzane z przydzielaniem i zwalnianiem pamieci.

Nam, programistom C++, nic takiego na szczescie nie grozi :) Nasz ulubiony jezyk jest
bowiem wyposazony w kilka bardzo przydatnych i tatwych w obstudze mechanizmédw,
ktére udostepniajg mozliwos¢ manipulacji tekstem.

Rozwigzania, o ktorych bedzie mowa ponizej, sq czescig Biblioteki Standardowej jezyka
C++. Jako ze jest ona dostepna w kazdym kompilatorze tego jezyka, sposoby te sg
najbardziej uniwersalne i przenosne, a jednoczesnie wydajne. Korzystanie z nich jest
takze bardzo wygodne i fatwe.

Oprécz nich istniejg réwniez inne metody obstugi tancuchdéw znakéw. Na przyktad
biblioteki MFC i VCL (wspomagajace programowanie w Windows) posiadajgq wtasne
narzedzia, stuzace temu wiaénie celowi*®. Nawet jezeli skorzystasz kiedy$ z tych
bibliotek, bedziesz mdgt wcigz uzywac opisanych tutaj mechanizmow standardowych.

Aby moc z nich skorzystaé, nalezy przede wszystkim witaczy¢ do swojego kodu plik
nagtéwkowy string:

#include <string>

Po tym zabiegu zyskujemy dostep do catego arsenatu srodkéw programistycznych,
stuzacych operacjom tekstowym.

“8 Duzg zastuge ma w tym ustandaryzowanie jezyka C++, w ktérym powstaje ponad potowa wspotczesnych
aplikacji. W przysztosci znaczaca role mogg odegrac takze rozwigzania zawarte w platformie .NET.

4 MFC (Microsoft Foundation Classes) zawiera przeznaczong do tego klase cstring, za$ VCL (Visual Component
Library) posiada typ string, ktdry jest czescig kompilatora C++ firmy Borland.

130 Podstawy programowania

Typy zmiennych tekstowych

Istniejg dwa typy zmiennych tekstowych, ktére rdéznig sie rozmiarem pojedynczego
znaku. Ujmuje je ponizsza tabelka:

nazwa | typ znaku | rozmiar znaku| zastosowanie
std::string char 1 bajt tylko znaki ANSI
std::wstring | wchar_t 2 bajty znaki ANSI i Unicode

Tabela 6. Typy tancuchéw znakéw

std::string jest ci juz dobrze znany, gdyz uzywali$my go niejednokrotnie. Przechowuje
on dowolng (w granicach dostepnej pamieci) ilo$¢ znakdw, z ktérych kazdy jest typu
char. Zajmuje wiec dokfadnie 1 bajt i moze reprezentowac jeden z 256 symboli
zawartych w tablicy ANSI.

Wystarcza to do przechowywania tekstow w jezykach europejskich (cho¢ wymaga
specjalnych zabiegéw, tzw. stron kodowych), jednak staje sie niedostateczne w
przypadku dialektéw o wiekszej liczbie znakéw (na przykifad wschodnioazjatyckich).
Dlatego wykoncypowano, aby dla pojedynczego symbolu przeznacza¢ wiekszg ilos¢
bajtéw i w ten sposdéb stworzono MBCS (Multi-Byte Character Sets - wielobajtowe
zestawy znakdow) w rodzaju Unicode.

Nie mamy tu absolutnie czasu ani miejsca na opisywanie tego standardu. Warto jednak
wiedzieé¢, ze C++ posiada typ tancuchowy, ktéry umozliwia wspétprace z nim - jest to
std: :wstring (ang. wide string - ,szeroki” napis). Kazdy jego znak jest typu wchar t
(ang. wide char - ,szeroki” znak) i zajmuje 2 bajty. tatwo policzy¢, ze umozliwia tym
samym przechowywanie jednego z az 65536 (2562) mozliwych symboli, co stanowi
znaczny postep w stosunku do ANSI :)

Korzystanie z std: :wstring niewiele rézni sie przy tym od uzywania jego bardziej
oszczednego pamieciowo kuzyna. Musimy tylko pamietac¢, zeby poprzedzac literkg L
wszystkie wpisane do kodu state tekstowe, ktére majg by¢ trzymane w zmiennych typu
std::wstring. W ten sposoéb bowiem méwimy kompilatorowi, ze chcemy zapisa¢ dany
napis w formacie Unicode. Wyglada to chocby tak:

std::wstring strNapis = L"To jest tekst napisany znakami dwubajtowymi';

Dobra wiadomosc jest taka, ze jesli zapomniatby$s o wspomnianej literce 1., to powyzszy
kod w ogdle by sie nie skompilowat ;D

Jezeli chciatby$ wyswietlac takie ,,szerokie” napisy w konsoli i umozliwi¢ uzytkownikowi
ich wprowadzanie, musisz uzy¢ specjalnych wersji strumieni wejscia i wyjscia. Sa to

odpowiednio std: :wcin i std: :wcout. Uzywa sie ich w identyczny sposéb, jak poznanych
wczesniej ,zwyktych” strumieni std: :cin i std: :cout.

Manipulowanie tarnicuchami znakow

OK, gdy juz znamy dwa typy zmiennych tekstowych, jakie oferuje C++, czas zobaczy¢
mozliwe dziatania, ktore mozemy na nich przeprowadzac.

Inicjalizacja
Najprostsza deklaracja zmiennej tekstowej wyglada, jak wiemy, mniej wiecej tak:

std::string strNapis;

Operacje na zmiennych 131

Wprowadzona w ten sposob nowa zmienna jest z poczatku catkiem pusta - nie zawiera
zadnych znakow. Jezeli chcemy zmienic¢ ten stan rzeczy, mozemy jg zainicjalizowac
odpowiednim tekstem - tak:

std::string strNapis = "To jest jakis tekst";
albo tak:
std::string strNapis("To jest jakis tekst");

Ten drugi zapis bardzo przypomina wywotanie funkcji. Istotnie, ma on z nimi wiele
wspélnego - na tyle duzo, ze mozliwe jest nawet zastosowanie drugiego parametru, na
przykfad:

std::string strNapis("To jest jakis tekst", 7);

Jaki efekt otrzymamy tg drogg? Otéz do naszej zmiennej zostanie przypisany jedynie
fragment podanego tekstu - doktadniej mowigc, bedzie to podana w drugim parametrze
ilos¢ znakow, liczonych od poczatku napisu. U nas jest to zatem sekwencja "To jest".

Co ciekawe, to wcale nie sq wszystkie sposoby na inicjalizacje zmiennej tekstowej.
Poznamy jeszcze jeden, ktéry jest wyjatkowo uzyteczny. Pozwala bowiem na uzyskanie
Scisle okreslonego ,kawatka” danego tekstu. Rzuémy okiem na ponizszy kod, aby
zrozumiec¢ ta metode:

std::string strNapisl = "Jakis krotki tekst";
std::string strNapis2 (strNapisl, 6, 6);

Tym razem mamy az dwa parametry, ktére razem okreslajg fragment tekstu zawartego
w zmiennej strNapisl. Pierwszy z nich (¢6) to indeks pierwszego znaku tegoz fragmentu
- tutaj wskazuje on na siédmy znak w tekscie (gdyz znaki liczymy zawsze od zera!).
Drugi parametr (znowuz 6) precyzuje natomiast dtugos$c¢ pozadanego urywka - bedzie on
w tym przypadku szescioznakowy.

Jezeli takie opisowe wyjasnienie nie bardzo do ciebie przemawia, spdjrz na ten
pogladowy rysunek:

& znakow |

striapisl == Jlalkli|s kir|o|t|k]i tle|lk|s|t

01 2 3 4 5,68 7T 8 9 1011 12 13 14 15 16 17

—

. indeks pierwszego znaku

¥
kirjo[t|k]i

strNapisz?

01 2 3 4 5

Schemat 7. Pobieranie wycinka tekstu ze zmiennej typu std: :string

Wida¢ wiec czarno na biatym (i na zielonym :)), ze kopiowang czescig tekstu jest wyraz
"krotki".

132 Podstawy programowania

Podsumowujac, poznaliSmy przed momentem trzy nowe sposoby na inicjalizacje
zmiennej typu tekstowego:

std::[w]lstring nazwa zmiennej ([L]"tekst");
std::[w]lstring nazwa zmiennej ([L]"tekst", ilos¢ znakodw);
std::[w]lstring nazwa zmiennej(inna zmienna, poczatek [, diugoscl);

Ich skfadnia, podana powyzej, doktadnie odpowiada zaprezentowanym wczesniej
przyktadowym kodom. Zaskoczenie moze jedynie budzi¢ fakt, ze w trzeciej metodzie nie
jest obowigzkowe podanie diugosci kopiowanego fragmentu tekstu. Dzieje sie tak, gdyz
w przypadku jej pominiecia pobierane sg po prostu wszystkie znaki od podanego indeksu
az do konca napisu.

Kiedy opuscimy parametr dzugosé, wtedy trzeci sposdb inicjalizacji staje sie bardzo
podobny do drugiego. Nie mozesz jednak ich myli¢, gdyz w kazdym z nich liczby
podawane jako drugi parametr znaczg cos innego. Wyrazajg one albo ilo$é znakéw,
albo indeks znaku, czyli wartosci petnigce zupetnie odrebne role.

tgczenie napisow

Skoro zatem wiemy juz wszystko, co wiedzie¢ nalezy na temat deklaracji i inicjalizacji
zmiennych tekstowych, zajmijmy sie dziataniami, jakie mozemy nan wykonywac.

Jedng z najpowszechniejszych operacji jest ztaqczenie dwdch napiséw w jeden - tak zwana
konkatenacja. Mozna jg uznac za tekstowy odpowiednik dodawania liczb, szczegélnie ze
przeprowadzamy jg takze za pomocg operatora +:

std::string strNapisl = "gra";
std::string strNapis2 "ty";
std::string strWynik = strNapisl + strNapis2;

Po wykonaniu tego kodu zmienna strWynik przechowuje rezultat potaczenia, ktérym sg
oczywiscie "graty" :D Widzimy wiec, iz scalenie zostaje przeprowadzone w kolejnosci
ustalonej przez porzadek argumentéw operatora +, zas pomiedzy poszczegdlnymi
skfadnikami nie sg wstawiane zadne dodatkowe znaki. Nie rozmine sie chyba z prawda,
jesli stwierdze, ze mozna byto sie tego spodziewac :)

Konkatenacja moze réwniez zachodzi¢ miedzy wiekszg liczbg napiséw, a takze miedzy
tymi zapisanymi w sposéb dostowny w kodzie:

std::string strImie = "Jan'";
std::string strNazwisko = "Nowak";
std::string strImieINazwisko = strImie + " " + strNazwisko;

Tutaj otrzymamy personalia pana Nowaka zapisane w postaci ciggtego tekstu, ze spacjq
wstawiong pomiedzy imieniem i nazwiskiem.

Jesli chciatbys potaczy¢ dwa teksty wpisane bezposrednio w kodzie (np. "jakis tekst" |
"inny tekst"), choéby po to zeby rozbi¢ diugi napis na kilka linijek, nie mozesz
stosowac do niego operatora +. Zapis "jakis tekst" + "inny tekst' bedzie
niepoprawny i odrzucony przez kompilator.

Zamiast niego wpisz po prostu "jzkis tekst" "inny tekst", stawiajac miedzy
obydwoma statymi jedynie spacje, tabulatory, znaki konca wiersza itp.

Podobienstwo tgczenia znakéw do dodawania jest na tyle duze, iz mozemy nawet uzywac
skréconego zapisu poprzez operator +=:

Operacje na zmiennych 133

std::string strNapis = "abc";
strNapis += "def";

W powyzszy sposob otrzymamy wiec szesé pierwszych matych liter alfabetu - "abcdef,

Pobieranie pojedynczych znakow

Ostatnig przydatng operacjg na napisach, jakg teraz poznamy, jest uzyskiwanie
pojedynczego znaku o ustalonym indeksie.

By¢ moze nie zdajesz sobie z tego sprawy, ale juz potrafisz to zrobi¢. Zamierzony efekt
mozna bowiem osiggna¢, wykorzystujac jeden ze sposobdw na inicjalizacje tancucha:

std::string strNapis = "przykladowy tekst";
std::string strZnak(strNapis, 9, 1); // jednoznakowy fragment od ind. 9

Tak oto uzyskamy dziesigty znak (przypominam, indeksy liczymy od zera!) z naszego
przyktadowego tekstu - czyli "w'.

Przyznasz jednak, ze taka metoda jest co najmniej ktopotliwa i bytoby ciezko uzywac jej
na co dzien. Dobry C++ ma wiec w zanadrzu inng konstrukcje, ktéra zobaczymy w
niniejszym przyktadowym programie:

// CharCounter - zliczanie znakdw
#include <string>
#include <iostream>

#include <conio.h>

unsigned ZliczZnaki (std::string strTekst, char chZnak)

{

unsigned ulIlosc = 0;
for (unsigned i = 0; i <= strTekst.length() - 1; ++1i)
{
if (strTekst[i] == chZnak)
++ullosc;

}

return ullosc;

}

void main ()

{
std::string strNapis;
std::cout << "Podaj tekst, w ktorym maja byc zliczane znaki: ";
std::cin >> strNapis;

char chSzukanyZnak;
std::cout << "Podaj znak, ktory bedzie liczony: ";
std::cin >> chSzukanyZnak;

std::cout << "Znak '" << chSzukanyZnak <<"' wystepuje w tekscie "
<< ZliczZnaki (strNapis, chSzukanyZnak) << " raz(y)."
<< std::endl;

getch () ;

134 Podstawy programowania

Ta prosta aplikacja zlicza nam ilo$¢ wskazanych znakéw w podanym napisie i wyswietla
wynik.

LICEZNIE ZHAKOW

Podaj tekst. w ktorum maja byc zliczane =naki: abrakadahbra

Podag z=nak. ktory bedzie liczony: a
Znak ‘a’ wystepuje w tekscie 5 pra=sdyd.

Screen 28. Zliczanie znakoéw w akcji

Czyni to poprzez funkcje zZliczznaki (), przyjmujacq dwa parametry: napis oraz znak,
ktéry ma by¢ liczony. Poniewaz jest to najwazniejsza cze$¢ naszego programu,
przyjrzymy sie jej blizej :)

Najbardziej oczywistym sposobem na dokonanie podobnego zliczania jest po prostu
przebiegniecie po wszystkich znakach tekstu odpowiednig petlg for i sprawdzanie, czy
nie sq rowne szukanemu znakowi. Kazde udane porownanie skutkuje inkrementacjg
zmiennej przechowujacej wynik funkcji. Wszystko to dzieje sie w ponizszym kawatku
kodu:

for (unsigned i = 0; i <= strTekst.length() - 1; ++1i)
{
if (strTekst[i] == chZnak)
++ullosc;

}

Jak juz kilkakrotnie i natarczywie przypominatem, indeksy znakdw w zmiennej tekstowej
liczymy od zera, zatem sq one z zakresu <0; n-1>, gdzie n to dtugos$c¢ tekstu. Takie tez

wartosci przyjmuje licznik petli for, czyli 1. Wyrazenie strTekst.length () zwraca nam
bowiem dtugos¢ tancucha strTekst.

Wewnatrz petli szczegdlnie interesujace jest dla nas poréwnanie:

if (strTekst[i] == chZnak)

Sprawdza ono, czy aktualnie , przerabiany” przez petle znak (czyli ten o indeksie rownym
i) nie jest takim, ktérego szukamy i zliczamy. Samo poréwnanie nie bytoby dla nas
niczym nadzwyczajnym, gdyby nie owe wylawianie znaku o okreslonym indeksie (w tym
przypadku i-tym). Widzimy tu wyraznie, ze mozna to zrobi¢ piszac po prostu zadany
indeks w nawiasach kwadratowych [] za nazwg zmiennej tekstowej.

Ze swej strony dodam tylko, ze mozliwe jest nie tylko odczytywanie, ale i zapisywanie
takich pojedynczych znakéw. Gdybysmy wiec umiescili w petli nastepujaca linijke:

strTekst[i] = '.';

zmienilibySmy wszystkie znaki napisu strTekst na kropki.

Pamietajmy, zeby pojedyncze znaki ujmowacé w apostrofy (' '), zas cudzystowy (")
stosowac dla statych tekstowych.

Xk %k

Tak oto zakonczyliSmy ten krétki opis operacji na tancuchach znakéw w jezyku C++. Nie
jest to jeszcze caty potencjat, jaki oferujg nam zmienne tekstowe, ale z pomocg

Operacje na zmiennych 135

zdobytych juz wiadomosci powinienes radzi¢ sobie catkiem niezle z prostym
przetwarzaniem tekstu.

Na koniec tego rozdziatu poznamy natomiast typ logiczny i podstawowe dziatania
wykonywane na nim. Pozwoli nam to miedzy innymi tatwiej sterowac przebiegiem
programu przy uzyciu instrukcji warunkowych.

Wyrazenia logiczne

Sporg czes¢ poprzedniego rozdziatu poswiecilismy na omoéwienie konstrukcji sterujacych,
takich jak na przyktad petle. Pozwalajg nam one wptywac na przebieg wykonywania
programu przy pomocy odpowiednich warunkow.

Nasze pierwsze wyrazenia tego typu byty bardzo proste i miaty do$¢ ograniczone
mozliwosci. Przyszta wiec pora na powtdrzenie i rozszerzenie wiadomosci na ten temat.
Zapewne bardzo sie z tego cieszysz, prawda? ;)) Zatem niezwtocznie zaczynajmy.

Porownywanie wartosci zmiennych

Wszystkie warunki w jezyku C++ opierajg sie na jawnym lub ukrytym poréwnywaniu
dwdch wartosci. Najczesciej jest ono realizowane poprzez jeden ze specjalnych
operatoréw poréwnania, zwanych czasem relacyjnymi. Wbrew pozorom nie sg one
dla nas niczym nowym, poniewaz uzywaliSmy ich w zasadzie w kazdym programie, w
ktérym musieliSmy sprawdzaé wartosc¢ jakiejs zmiennej. W ponizszej tabelce znajdziesz
wiec jedynie starych znajomych :)

operator poréwnanie jest prawdziwe, gdy
== lewy argument jest rowny prawemu
I= lewy argument nie jest rowny prawemu (jest od niego rézny)
> lewy argument ma wiekszg wartos¢ niz prawy

>= lewy argument ma wartos¢ wiekszg lub rowng wartosci prawego
< lewy argument ma mniejszg wartosSc niz prawy
<= lewy argument ma warto$¢ mniejszg lub réwng wartosci prawego

Tabela 7. Operatory poréwnania w C++

Dodatkowym utatwieniem jest fakt, ze kazdy z tych operatorow ma swéj matematyczny
odpowiednik - na przyktad dla >= jest to >, dla != mamy # itd. Sadze wiec, ze symbole te
nie bedga ci sprawia¢ zadnych trudnosci. Gorzej moze by¢ z nastepnymi ;)

Operatory logiczne

DoszliSmy oto do sedna sprawy. Nowy rodzaj operatorow, ktéry zaraz poznamy, jest
bowiem narzedziem do konstruowania bardziej skomplikowanych wyrazen logicznych.
Dzieki nim mozemy na przykfad uzalezni¢ wykonanie jakiegos kodu od spetnienia kilku
podanych warunkow lub tylko jednego z wielu ustalonych; mozliwe sg tez bardziej
zakrecone kombinacje. Zaznajomienie sie z tymi operatorami da nam wiec petng
swobode sterowania dziataniem programu.

Ubolewam, iz nie moge przedstawi¢ ciekawych i interesujacych przyktadowych
programoéw na ilustracje tego zagadnienia. Niestety, cho¢ operatory logiczne sg niemal
stale uzywane w programowaniu powaznych aplikacji, trudno o ewidentne przyktady ich
gtownych zastosowan - moze dlatego, ze stosuje sie je prawie do wszystkiego? :)
Musisz wiec zadowoli¢ sie niniejszymi, dos¢ trywialnymi kodami, ilustrujgcymi
funkcjonowanie tych elementow jezyka.

136 Podstawy programowania

Koniunkcja

Pierwszy z omawianych operatorow, oznaczany poprzez ss, zwany jest koniunkcja lub
iloczynem logicznym. Gdy wstawimy go miedzy dwoma warunkami, peini role spdjnika
.. Takie wyrazenie jest prawdziwe tylko wtedy, kiedy oba te warunki s spetnione.
Operator ten mozna wykorzysta¢ na przykfad do sprawdzania przynaleznosci liczby do
zadanego przedziatu:

int nLiczba;
std::cout << "Podaj liczbe z zakresu 1-10: ";
std::cin >> nLiczba;

if (nLiczba >= 1 && nLiczba <= 10)
std::cout << "Dziekujemy.";

else
std::cout << "Nieprawidlowa wartosc!";

Kiedy dana wartosc nalezy do przedziatu <1; 10>? Oczywiscie wtedy, gdy jest
jednoczes$nie wieksza lub réwna jedynce i mniejsza lub réwna dziesigtce. To wlasnie
sprawdzamy w warunku:

if (nLiczba >= 1 && nLiczba <= 10)

Operator s& zapewnia, ze cate wyrazenie (nLiczba >= 1 && nLiczba <= 10) zostanie
uznane za prawdziwe jedynie w przypadku, gdy obydwa sktadniki (nLiczba >= 1,
nLiczba <= 10) bedq przedstawiaty prawde. To jest wiasnie istotg koniunkcji.

Alternatywa

Drugi rodzaj operacji, zwany alternatywa lub suma logiczng, stanowi niejako
przeciwienstwo pierwszego. O ile koniunkcja jest prawdziwa jedynie w jednym, Scisle
okreslonym przypadku (gdy oba jej argumenty sq prawdziwe), o tyle alternatywa jest
tylko w jednej sytuacji fatlszywa. Dzieje sie tak wtedy, gdy obydwa ztgqczone nig
wyrazenia przedstawiajg nieprawde.

W C++ operatorem sumy logicznej jest | |, co wida¢ na ponizszym przykfadzie:

int nLiczba;
std::cin >> nlLiczba;

if (nLiczba < 1 || nLiczba > 10)
std::cout << "Liczba spoza przedzialu 1-10.";

Uruchomienie tego kodu spowoduje wyswietlenie napisu w przypadku, gdy wpisana liczba
nie bedzie naleze¢ do przedziatu <1; 10> (czyli odwrotnie niz w poprzednim przyktadzie).
Naturalnie, stanie sie tak wéwczas, jesli bedzie ona mniejsza od 1 lub wieksza od 10.
Taki tez warunek posiada instrukcja if, a osiagneliSmy go witasnie dzieki operatorowi
alternatywy.

Negacja

Jak mozna byto zauwazy¢, alternatywa nLiczba < 1 || nLiczba > 10 jest doktadnie
przeciwstawna koniunkcji nLiczba >= 1 && nLiczba <= 10 (co jest dos$¢ oczywiste -
przeciez liczba nie moze jednoczesnie nalezec i nie naleze¢ do jakiego$ przedziatu :D).
Warunki te znacznie réznig sie od siebie: stosujemy w nich przeciez rézne dziatania
logiczne oraz poréwnania. Moglibysmy jednak postgpi¢ inaczej.

Aby zmieni¢ sens wyrazenia na odwrotny - tak, zeby byto prawdziwe w sytuacjach, kiedy
oznaczato fatsz i na odwrot - stosujemy operator negacji !. W przeciwienstwie do

Operacje na zmiennych 137

poprzednich, jest on unarny, gdyz przyjmuje tylko jeden argument: warunek do
zanegowania.
Stosujac go dla naszej przyktadowej koniunkcji:

if (nLiczba >= 1 && nLiczba <= 10)
otrzymaliby$my wyrazenie:
if (! (nLiczba >= 1 && nLiczba <= 10))

ktore jest prawdziwe, gdy dana liczba nie nalezy do przedziatu <1; 10>. Jest ono zatem
rownowazne alternatywnie nLiczba < 1 || nLiczba > 10, a 0 to przeciez nam
chodzito :)

W ten sposoéb (niechcacy ;D) odkrylisSmy tez jedno z tzw. praw de Morgana. Méwi ono, ze
zaprzeczenie (negacja) koniunkcji dwoch wyrazen réwne jest alternatywnie wyrazen
przeciwstawnych. A poniewaz nLiczba >= 1 jest odwrotne do nLiczba < 1, za$ nLiczba
<= 10 do nLiczba > 10, mozemy naocznie stwierdzi¢, ze prawo to jest stuszne :)

Czasami wiec uzycie operatora negacji uwalnia od koniecznosci przeksztatcania ztozonych
warunkdéw na ich przeciwienstwa.

Zestawienie operatordéw logicznych

Zasady funkcjonowania operatoréw logicznych ujmuje sie czesto w tabelki,
przedstawiajgce ich wartosci dla wszystkich mozliwych argumentéw. Niekiedy nazywa sie
je tablicami prawd (ang. truth tables). Nie powinno wiec zabrakng¢ ich tutaj, zatem
czym predzej je przedstawiam:

a b as’&b | allb
prawda | prawda | prawda | prawda a 13
prawda | fatsz falsz | prawda prawda | fatsz
falsz | prawda | fatsz | prawda fatsz | prawda
fatsz fatsz fatsz fatsz

Tabele 8 i 9. Rezultaty dziatania operatoréw koniunkcji, alternatywy oraz negacji

Oczywiscie, nie ma najmniejszej potrzeby, aby$ uczylt sie ich na pamiec (a juz sie bates,
prawda? :D). Jezeli uwaznie przeczytates opisy kazdego z operatorow, to tablice te bedq
dla ciebie jedynie powtdrzeniem zdobytych wiadomosci.

Najwazniejsze sg bowiem proste reguly, rzadzgce omawianymi operacjami. Powtérzmy je
zatem raz jeszcze:

| Koniunkcja (s&) jest prawdziwa tylko wtedy, kiedy oba jej argumenty sg prawdziwe.

| Alternatywa (| |) jest fatszywa jedynie wowczas, gdy oba jej argumenty sg fatszywe.

| Negacja (!) powoduje zmiane prawdy na fatsz lub fatszu na prawde.

taczenie elementarnych wyrazen przy pomocy operatorow pozwala na budowe dowolnie
skomplikowanych warunkow, regulujgcych funkcjonowanie kazdej aplikacji. Gdy
zaczniesz uzywac tych dziatan w swoich programach, zdziwisz sie, jakim sposobem
mogtes w ogdle kodowac bez nich ;)

138 Podstawy programowania

| Poniewaz operatory logiczne majq nizszy priorytet niz operatory poréwnania, nie ma
potrzeby stosowania nawiaséw w warunkach podobnych do tych zaprezentowanych.
ezeli jednak bedziesz taczyt wiekszg liczbe wyrazen logicznych, pamietaj o uzywaniu
nawiasow - to zawsze rozstrzyga wszelkie nieporozumienia i pomaga w uniknieciu

. niektorych btedow.

Typ bool

Przydatnos$c¢ wyrazen logicznych bytaby do$¢ ograniczona, gdyby mozna je bylo stosowac
tylko w warunkach instrukcji if i petli. Zdecydowanie przydatby sie sposob na
zapisywanie wynikdéw obliczania takich wyrazen, by méc je potem choc¢by przekazywac do
i z funkcji.

C++ dysponuje rzecz jasna odpowiednim typem zmiennych, nadajacym sie to tego celu.
Jest nim tytutowy boo1°°. Mozna go uznaé za najprostszy typ ze wszystkich, gdyz moze
przyjmowac jedynie dwie dozwolone wartosci: prawde (true) lub fatsz (false).
Odpowiada to prawdziwosci lub nieprawdziwosci wyrazen logicznych.

Mimo oczywistej prostoty (a moze wiasnie dzieki niej?) typ ten ma cate multum réznych
zastosowan w programowaniu. Jednym z ciekawszych jest przerywanie wykonywania
zagniezdzonych petli:

bool bKoniec = false;

while (warunek petli zewnetrznej)

{

while (warunek petli wewnetrznej)

{
kod petli

if (warunek przerwania obu petli)

{

// przerwanie petli wewnetrzne]
bKoniec = true;
break;

}

// przerwanie petli zewnetrznej, jezeli zmienna bKoniec
// jest ustawiona na true
if (bKoniec) break;

}

Widac¢ tu klarownie, ze zmienna typu bool reprezentuje wartosc logiczng - mozemy jgq
bowiem bezposrednio wpisac jako warunek instrukcji i f; nie ma potrzeby korzystania z
operatoréw poréwnania.

W praktyce czesto stosuje sie funkcje zwracajace wartos¢ typu bool. Poprzez taki
rezultat mogg one powiadamiac¢ o powodzeniu lub niepowodzeniu zleconej im czynnosci
albo sprawdzac, czy dane zjawisko zachodzi, czy nie.

Przyjrzyjmy sie takiemu witasnie przyktadowi funkcji:

// IsPrime - sprawdzanie, czy dana liczba jest pierwsza

%0 Nazwa pochodzi od nazwiska matematyka George’a Boole'a, tworcy zasad logiki matematycznej (zwanej tez
algebrg Boole’a).

Operacje na zmiennych 139

bool LiczbaPierwsza (unsigned uLiczba)

{

if (ulLiczba == 2) return true;

for (unsigned i = 2; 1 <= sqgrt(uliczba); ++1)
{
if (uLiczba % i == 0)
return false;

}

return true;

}

void main ()

{
unsigned uWartosc;
std::cout << "Podaj liczbe: ";
std::cin >> uWartosc;

if (LiczbaPierwsza (uWartosc))

std::cout << "Liczba " << uWartosc << " jest pierwsza.'";
else

std::cout << "Liczba " << uWartosc<< " nie jest pilerwsza.";
getch () ;

}

Mamy tu funkcje LiczbaPierwsza () 0 prostym przeznaczeniu - sprawdza ona, czy
podana liczba jest pierwsza®!, czy nie. Produkuje wiec wynik, ktéry moze by¢
sklasyfikowany w kategoriach logicznych: prawdy (liczba jest pierwsza) lub fatszu (nie
jest). Naturalne jest zatem, aby zwracata wartos¢ typu bool, co tez czyni.

LICZBA PIERUWSZA

Podaj liczhe: 6456467
Liczha 6456467 jest pierusza._

Screen 29. Okreslanie, czy wpisana liczba jest pierwsza

Wykorzystujemy jg od razu w odpowiedniej instrukcji i £, przy pomocy ktérej
wys$wietlamy jeden z dwéch stosownych komunikatow. Dzieki temu, ze funkcja
LiczbaPierwsza () zwraca wartosc logiczng, wszystko wyglada tadnie i przejrzyscie :)

Algorytm zastosowany tutaj do sprawdzania ,pierwszosci” podanej liczby jest chyba
najprostszy z mozliwych. Opiera sie na pomysle tzw. sita Eratostenesa i, jak wida¢,
polega po prostu na sprawdzaniu po kolei wszystkich liczb jako potencjalnych dzielnikdw,
az do wartosci pierwiastka kwadratowego badanej liczby.

Operator warunkowy

Z wyrazeniami logicznymi Scisle zwigzany jest jeszcze jeden, bardzo przydatny i
wygodny, operator. Jest on kolejnym z licznych mechanizméw C++, ktdére czynig
skfadnie tego jezyka niezwykle zwarta.

5! Liczba pierwsza to taka, ktéra ma tylko dwa dzielniki - jedynke i sama siebie.

140 Podstawy programowania

Mowa tu o tak zwanym operatorze warunkowym 2 :. Uzycie go pozwala na unikniecie,
nieporecznych niekiedy, instrukcji i f. Nierzadko moze sie nawet przyczyni¢ do poprawy
szybkosci kodu.

Jego dziatanie najlepiej zilustrowac na prostym przyktadzie. Przypusémy, ze mamy
napisa¢ funkcje zwracaja wiekszg wartos¢ sposréd dwoéch podanych®2. Ochoczo
zabieramy sie wiec do pracy i produkujemy kod podobny do tego:

int max (int nA, int nB)

{
if (nA > nB) return nA;
else return nB;

}
Mozemy jednak uzy¢ operatora ?:, a wtedy funkcja przyjmie bardziej oszczedng postac:

int max (int nA, int nB)

{

return (nA > nB ? nA : nB);

}

Znikta nam tu catkowicie instrukcja if, gdyz zastgpit ja nasz nowy operator. Poréwnujac
obie (rownowazne) wersje funkcji max (), mozemy tatwo wydedukowa¢ jego dziatanie.

Wyrazenie zawierajgce tenze operator wyglada bowiem tak:

warunek ? wartosc¢ dla prawdy : wartos$c¢ dla fatszu

Skfada sie wiec z trzech czesci - dlatego ?: nazywany jest czasem operatorem
ternarnym, przyjmujacym trzy argumenty (jako jedyny w C++).

Jego funkcjonowanie jest nadzwyczaj proste. Sprowadza sie do obliczenia warunku oraz
podjecia na jego podstawie odpowiedniej decyzji. Jesli bedzie on prawdziwy, operator
zwrécCi wartosé dla prawdy, W innym przypadku - wartosé dla fatszu

Dziatalnos¢ ta jest w oczywisty sposdb podobna do instrukcji i£. Rdznica polega na tym,
ze operator warunkowy manipuluje wyrazeniami, a nie instrukcjami. Nie zmienia wiec
przebiegu programu, lecz co najwyzej wyniki jego pracy.

Kiedy zatem nalezy go uzywac? Odpowiedz jest prosta: wszedzie tam, gdzie konstrukcja
if wykonuje te same instrukcje w obu swoich blokach, lecz operuje na réznych
wyrazeniach. W naszym przyktadzie byto to zawsze zwracanie wartosci przez funkcje
(instrukcja return), jednak sam rezultat zalezat od warunku.

Xk k%

I to juz wszystko, co powinienes wiedzie¢ na temat wyrazen logicznych, ich
konstruowania i uzywania we wtasnych programach. Umiejetno$¢ odpowiedniego
stosowania ztozonych warunkéw przychodzi z czasem, dlatego nie martw sie, jezeli na
razie wydajq ci sie one lekkg abstrakcjgq. Pamietaj, ¢wiczenie czyni mistrza!

Podsumowanie

Nadludzkim wysitkiem dobrneliSmy wreszcie do samego konca tego niezwykle dtugiego i
niezwykle waznego rozdziatu. Poznates tutaj wiekszos¢ szczegdtow dotyczacych
zmiennych oraz trzech podstawowych typow wyrazen. Caty ten bagaz bedzie ci bardzo

52 Tutaj ograniczymy sie tylko do liczb catkowitych i typu int.

Operacje na zmiennych 141

przydatny w dalszym kodowaniu, cho¢ na razie mozesz by¢ o tym nieszczegdlnie
przekonany :)

Uzupetnieniem wiadomosci zawartych w tym rozdziale moze by¢ Dodatek B,
Reprezentacja danych w pamieci. Jezeli czujesz sie na sitach, to zachecam do jego
przeczytania :)

W kolejnym rozdziale nauczysz sie korzystania ze ztozonych struktur danych,
stanowigcych chleb powszedni w powaznym kodowaniu - takze gier.

Pytania i zadania

Nieubtaganie zbliza sie starcie z pracgq domowag ;) Postaraj sie zatem odpowiedzie¢ na
ponizsze pytania oraz wykonac zadania.

Pytania

Co to jest zasieg zmiennej? Czym sie rozni zakres lokalny od modutowego?

Na czym polega zjawisko przestaniania nazw?

Omoédw dziatanie poznanych modyfikatoréw zmiennych.

Dlaczego zmienne bez znaku moga przechowywac wieksze wartosci dodatnie niz
zmienne ze znakiem?

Na czym polega rzutowanie i jakiego operatora nalezy don uzywac?

Ktory plik nagtowkowy zawiera deklaracje funkcji matematycznych?

Jak nazywamy taczenie dwdch napiséw w jeden?

Opisz funkcjonowanie operatoréw logicznych oraz operatora warunkowego

PN

®NowUw

Cwiczenia
1. Napisz program, w ktérym przypiszesz wartos¢ 3000000000 (trzy miliardy) do
dwodch zmiennych: jednej typu int, drugiej typu unsigned int. Nastepnie
wyswietl wartosci obu zmiennych. Co stwierdzasz?
(Trudne) Czy potrafisz to wyjasni¢?
Wskazéwka: zapoznaj sie z podrozdziatem o liczbach catkowitych w Dodatku B.
2. Wymysl nowe nazwy dla typow short int oraz long int i zastosuj je w programie
przyktadowym, ilustrujacym dziatanie operatora sizeof.
3. Zmodyfikuj nieco program wyswietlajacy tablice znakow ANSI:
a) zamien cztery wiersze wyswietlajace pojedynczy rzad znakéw na jedng petle
for
b) zastgp rzutowanie w stylu C operatorem static cast
¢) (Trudniejsze) spraw, zeby program czekat na dowolny klawisz po catkowitym
zapetnieniu okna konsoli - tak, zeby uzytkownik mdgt spokojnie przegladnaé
catg tablice
Wskazéwka: mozesz zatozy¢ ,na sztywno”, ze konsola miesci 24 wiersze
4, Stworz aplikacje podobng do przyktadu LinearEq z poprzedniego rozdziatu, tyle
Ze rozwigzujaca rownania kwadratowe. Pamietaj, aby uwzgledni¢ wartos¢
wspotczynnikow, przy ktérych réwnanie staje sie liniowe (mozesz wtedy uzy¢ kodu
ze wspomnianego przyktadu).
Wskazéwka: jezeli nie pamietasz sposobu rozwigzywania réwnan kwadratowych
(wstyd! :P), mozesz zajrze¢ na przyktad do encyklopedii WIEM.
5. Przyjrzyj sie programowi sprawdzajgcemu, czy dana liczba jest pierwsza i sprobuj
zastgpi¢ wystepujacq tam instrukcje if-else operatorem warunkowym 2:.

http://wiem.onet.pl/wiem/00da60.html

