
4
OPERACJE NA ZMIENNYCH

Są plusy dodatnie i plusy ujemne.

Lech Wałęsa

W tym rozdziale przyjrzymy się dokładnie zmiennym i wyrażeniom w języku C++. Jak
wiemy, służą one do przechowywania wszelkich danych i dokonywania nań różnego
rodzaju manipulacji. Działania takie są podstawą każdej aplikacji, a w złożonych
algorytmach gier komputerowych mają niebagatelne znaczenie.

Poznamy więc szczegółowo większość aspektów programowania związanych ze
zmiennymi oraz zobaczymy często używane operacje na danych liczbowych i tekstowych.

Wnikliwy rzut oka na zmienne
Zmienna to coś w rodzaju pojemnika na informacje, mogącego zawierać określone dane.
Wcześniej dowiedzieliśmy się, iż dla każdej zmiennej musimy określić typ danych, które
będziemy w niej przechowywać, oraz nazwę, przez którą będziemy ją identyfikować.
Określenie takie nazywamy deklaracją zmiennej i stosowaliśmy je niemal w każdym
programie przykładowym – powinno więc być ci doskonale znane :)

Nasze aktualne wiadomości o zmiennych są mimo tego dość skąpe i dlatego musimy je
niezwłocznie poszerzyć. Uczynimy to wszakże w niniejszym podrozdziale.

Zasięg zmiennych
Gdy deklarujemy zmienną, podajemy jej typ i nazwę – to oczywiste. Mniej dostrzegalny
jest fakt, iż jednocześnie określamy też obszar obowiązywania takiej deklaracji. Innymi
słowy, definiujemy zasięg zmiennej.

Zasięg (zakres, ang. scope) zmiennej to część kodu, w ramach której dana zmienna
jest dostępna.

Wyróżniamy kilka rodzajów zasięgów. Do wszystkich jednak stosuje się ogólna, naturalna
reguła: niepoprawne jest jakiekolwiek użycie zmiennej przed jej deklaracją. Tak więc
poniższy kod:

std::cin >> nZmienna;
int nZmienna;

niechybnie spowoduje błąd kompilacji. Sądzę, że jest to dość proste i logiczne – nie
możemy przecież wymagać od kompilatora znajomości czegoś, o czym sami go wcześniej
nie poinformowaliśmy.

W niektórych językach programowania (na przykład Visual Basicu czy PHP) możemy
jednak używać niezadeklarowanych zmiennych. Większość programistów uważa to za

Podstawy programowania 100

niedogodność i przyczynę powstawania trudnych do wykrycia błędów (spowodowanych
choćby literówkami). Ja osobiście całkowicie podzielam ten pogląd :D

Na razie poznamy dwa rodzaje zasięgów – lokalny i modułowy.

Zasięg lokalny
Zakres lokalny obejmuje pojedynczy blok kodu. Jak pamiętasz, takim blokiem
nazywamy fragment listingu zawarty między nawiasami klamrowymi { }. Dobrym
przykładem mogą być tu bloki warunkowe instrukcji if, bloki pętli, a także całe funkcje.
Otóż każda zmienna deklarowana wewnątrz takiego bloku ma właśnie zasięg lokalny.

Zakres lokalny obejmuje kod od miejsca deklaracji zmiennej aż do końca bloku, wraz z
ewentualnymi blokami zagnieżdżonymi.

Te dość mgliste stwierdzenia będą pewnie bardziej wymowne, jeżeli zostaną poparte
odpowiednimi przykładami. Zerknijmy więc na poniższy kod:

void main()
{
 int nX;
 std::cin >> nX;

 if (nX > 0)
 {
 std::cout << nX;
 getch();
 }
}

Jego działanie jest, mam nadzieję, zupełnie oczywiste (zresztą nieszczególnie nas teraz
interesuje :)). Przyjrzyjmy się raczej zmiennej nX. Jako że zadeklarowaliśmy ją wewnątrz
bloku kodu – w tym przypadku funkcji main() – posiada ona zasięg lokalny. Możemy
zatem korzystać z niej do woli w całym tym bloku, a więc także w zagnieżdżonej
instrukcji if.

Dla kontrastu spójrzmy teraz na inny, choć podobny kod:

void main()
{
 int nX = 1;

 if (nX > 0)
 {
 int nY = 10;
 }

 std::cout << nY;
 getch();
}

Powinien on wypisać liczbę 10, prawda? Cóż… niezupełnie :) Sama próba uruchomienia
programu skazana jest na niepowodzenie: kompilator „przyczepi” się do przedostatniego
wiersza, zawierającego nazwę zmiennej nY. Wyda mu się bowiem kompletnie nieznana!
Ale dlaczego?! Przecież zadeklarowaliśmy ją ledwie dwie linijki wyżej! Czyż nie możemy
więc użyć jej tutaj?…
Jeżeli uważnie przeczytałeś poprzednie akapity, to zapewne znasz już przyczynę
niezadowolenia kompilatora. Mianowicie, zmienna nY ma zasięg lokalny, obejmujący

Operacje na zmiennych 101

wyłącznie blok if. Reszta funkcji main() nie należy już do tego bloku, a zatem znajduje
się poza zakresem nY. Nic dziwnego, że zmienna jest tam traktowana jako obca – poza
swoim zasięgiem ona faktycznie nie istnieje, gdyż jest usuwana z pamięci w momencie
jego opuszczenia.

Zmiennych o zasięgu lokalnym relatywnie najczęściej używamy jednak bezpośrednio we
wnętrzu funkcji. Przyjęło się nawet nazywać je zmiennymi lokalnymi22 lub
automatycznymi. Ich rolą jest zazwyczaj przechowywanie tymczasowych danych,
wykorzystywanych przez podprogramy, lub częściowych wyników obliczeń.
Tak jak poszczególne funkcje w programie, tak i ich zmienne lokalne są od siebie
całkowicie niezależne. Istnieją w pamięci komputera jedynie podczas wykonywania
funkcji i „znikają” po jej zakończeniu. Niemożliwe jest więc odwołanie do zmiennej
lokalnej spoza jej macierzystej funkcji. Poniższy przykład ilustruje ten fakt:

// LocalVariables - zmienne lokalne

void Funkcja1()
{
 int nX = 7;
 std::cout << "Zmienna lokalna nX funkcji Funkcja1(): " << nX
 << std::endl;
}

void Funkcja2()
{
 int nX = 5;
 std::cout << "Zmienna lokalna nX funkcji Funkcja2(): " << nX
 << std::endl;
}

void main()
{
 int nX = 3;

 Funkcja1();
 Funkcja2();
 std::cout << "Zmienna lokalna nX funkcji main(): " << nX
 << std::endl;

 getch();
}

Mimo że we wszystkich trzech funkcjach (Funkcja1(), Funkcja2() i main()) nazwa
zmiennej jest identyczna (nX), w każdym z tych przypadków mamy do czynienia z
zupełnie inną zmienną.

Screen 22. Ta sama nazwa, lecz inne znaczenie. Każda z trzech lokalnych zmiennych nX jest

całkowicie odrębna i niezależna od pozostałych

22 Nie tylko zresztą w C++. Wprawdzie sporo języków jest uboższych o możliwość deklarowania zmiennych
wewnątrz bloków warunkowych, pętli czy podobnych, ale niemal wszystkie pozwalają na stosowanie zmiennych
lokalnych. Nazwa ta jest więc obecnie używana w kontekście dowolnego języka programowania.

Podstawy programowania 102

Mogą one współistnieć obok siebie pomimo takich samych nazw, gdyż ich zasięgi nie
pokrywają się. Kompilator słusznie więc traktuje je jako twory absolutnie niepowiązane
ze sobą. I tak też jest w istocie – są one „wewnętrznymi sprawami” każdej z funkcji, do
których nikt nie ma prawa się mieszać :)

Takie wyodrębnianie niektórych elementów aplikacji nazywamy hermetyzacją
(ang. encapsulation). Najprostszym jej wariantem są właśnie podprogramy ze zmiennymi
lokalnymi, niedostępnymi dla innych. Dalszym krokiem jest tworzenie klas i obiektów,
które dokładnie poznamy w dalszej części kursu.
Zaletą takiego dzielenia kodu na mniejsze, zamknięte części jest większa łatwość
modyfikacji oraz niezawodność. W dużych projektach, realizowanych przez wiele osób,
podział na odrębne fragmenty jest w zasadzie nieodzowny, aby współpraca między
programistami przebiegała bez problemów.

Ze zmiennymi o zasięgu lokalnym spotykaliśmy się dotychczas nieustannie w naszych
programach przykładowych. Prawdopodobnie zatem nie będziesz miał większych
kłopotów ze zrozumieniem sensu tego pojęcia. Jego precyzyjne wyjaśnienie było jednak
nieodzowne, abym z czystym sumieniem mógł kontynuować :D

Zasięg modułowy
Szerszym zasięgiem zmiennych jest zakres modułowy. Posiadające go zmienne są
widoczne w całym module kodu. Możemy więc korzystać z nich we wszystkich
funkcjach, które umieścimy w tymże module.
Jeżeli zaś jest to jedyny plik z kodem programu, to oczywiście zmienne te będą dostępne
dla całej aplikacji. Nazywamy się je wtedy globalnymi.
Aby zobaczyć, jak „działają” zmienne modułowe, przyjrzyj się następującemu
przykładowi:

// ModularVariables - zmienne modułowe

int nX = 10;

void Funkcja()
{
 std::cout << "Zmienna nX wewnatrz innej funkcji: " << nX
 << std::endl;
}

void main()
{
 std::cout << "Zmienna nX wewnatrz funkcji main(): " << nX
 << std::endl;
 Funkcja();

 getch();
}

Zadeklarowana na początku zmienna nX ma właśnie zasięg modułowy. Odwołując się do
niej, obie funkcje (main() i Funkcja()) wyświetlają wartość jednej i tej samej zmiennej.

Screen 23. Zakres modułowy zmiennej

Operacje na zmiennych 103

Jak widać, deklarację zmiennej modułowej umieszczamy bezpośrednio w pliku
źródłowym, poza kodem wszystkich funkcji. Wyłączenie jej na zewnątrz podprogramów
daje zatem łatwy do przewidzenia skutek: zmienna staje się dostępna w całym module i
we wszystkich zawartych w nim funkcjach.

Oczywistym zastosowaniem dla takich zmiennych jest przechowywanie danych, z których
korzysta wiele procedur. Najczęściej muszą być one zachowane przez większość czasu
działania programu i osiągalne z każdego miejsca aplikacji. Typowym przykładem może
być chociażby numer aktualnego etapu w grze zręcznościowej czy nazwa pliku otwartego
w edytorze tekstu. Dzięki zastosowaniu zmiennych o zasięgu modułowym dostęp do
takich kluczowych informacji nie stanowi już problemu.

Zakres modułowy dotyczy tylko jednego pliku z kodem źródłowym. Jeśli nasza aplikacja
jest na tyle duża, byśmy musieli podzielić ją na kilka modułów, może on wszakże nie
wystarczać. Rozwiązaniem jest wtedy wyodrębnienie globalnych deklaracji we własnym
pliku nagłówkowym i użycie dyrektywy #include. Będziemy o tym szerzej mówić w
niedalekiej przyszłości :)

Przesłanianie nazw
Gdy używamy zarówno zmiennych o zasięgu lokalnym, jak i modułowym (czyli w
normalnym programowaniu w zasadzie nieustannie), możliwa jest sytuacja, w której z
danego miejsca w kodzie dostępne są dwie zmienne o tej samej nazwie, lecz różnym
zakresie. Wyglądać to może chociażby tak:

int nX = 5;

void main()
{
 int nX = 10;
 std::cout << nX;
}

Pytanie brzmi: do której zmiennej nX – lokalnej czy modułowej - odnosi się instrukcja
std::cout? Inaczej mówiąc, czy program wypisze liczbę 10 czy 5? A może w ogóle się
nie skompiluje?…
Zjawisko to nazywamy przesłanianiem nazw (ang. name shadowing), a pojawiło się
ono wraz ze wprowadzeniem idei zasięgu zmiennych. Tego rodzaju kolizja oznaczeń nie
powoduje w C++23 błędu kompilacji, gdyż jest ona rozwiązywana w nieco inny sposób:

Konflikt nazw zmiennych o różnym zasięgu jest rozstrzygany zawsze na korzyść zmiennej
o węższym zakresie.

Zazwyczaj oznacza to zmienną lokalną i tak też jest w naszym przypadku. Nie oznacza to
jednak, że jej modułowy imiennik jest w funkcji main() niedostępny. Sposób odwołania
się do niego ilustruje poniższy przykładowy program:

// Shadowing - przesłanianie nazw

int nX = 4;

void main()
{

23 A także w większości współczesnych języków programowania

Podstawy programowania 104

 int nX = 7;
 std::cout << "Lokalna zmienna nX: " << nX << std::endl;
 std::cout << "Modulowa zmienna nX: " << ::nX << std::endl;

 getch();
}

Pierwsze odniesienie do nX w funkcji main() odnosi się wprawdzie do zmiennej lokalnej,
lecz jednocześnie możemy odwołać się także do tej modułowej. Robimy to bowiem w
następnej linijce:

std::cout << "Modulowa zmienna nX: " << ::nX << std::endl;

Poprzedzamy tu nazwę zmiennej dwoma znakami dwukropka ::. Jest to tzw. operator
zasięgu. Wstawienie go mówi kompilatorowi, aby użył zmiennej globalnej zamiast
lokalnej - czyli zrobił dokładnie to, o co nam chodzi :)

Operator ten ma też kilka innych zastosowań, o których powiemy niedługo (dokładniej
przy okazji klas).

Chociaż C++ udostępnia nam tego rodzaju mechanizm24, do dobrej praktyki
programistycznej należy niestosowanie go. Identyczne nazwy wprowadzają bowiem
zamęt i pogarszają czytelność kodu.
Dlatego też do nazw zmiennych modułowych dodaje się zazwyczaj przedrostek25 g_ (od
global), co pozwala łatwo odróżnić je od lokalnych. Po zastosowaniu tej reguły nasz
przykład wyglądałby mniej więcej tak:

int g_nX = 4;

void main()
{
 int nX = 7;
 std::cout << "Lokalna zmienna: " << nX << std::endl;
 std::cout << "Modulowa zmienna: " << g_nX << std::endl;

 getch();
}

Nie ma już potrzeby stosowania mało czytelnego operatora :: i całość wygląda
przejrzyście i profesjonalnie ;)

Zapoznaliśmy się zatem z niełatwą ideą zasięgu zmiennych. Jest to jednocześnie bardzo
ważne pojęcie, które trzeba dobrze znać, by nie popełniać trudnych do wykrycia błędów.
Mam nadzieję, że jego opis oraz przykłady były na tyle przejrzyste, że nie miałeś
poważniejszych kłopotów ze zrozumieniem tego aspektu programowania.

Modyfikatory zmiennych
W aktualnym podrozdziale szczególnie upodobaliśmy sobie deklaracje zmiennych. Oto
bowiem omówimy kolejne zagadnienie z nimi związane – tak zwane modyfikatory

24 Większość języków go nie posiada!
25 Jest to element notacji węgierskiej, aczkolwiek szeroko stosowany przez wielu programistów. Więcej
informacji w Dodatku A.

Operacje na zmiennych 105

(ang. modifiers). Są to mianowicie dodatkowe określenia umieszczane w deklaracji
zmiennej, nadające jej pewne specjalne własności.

Zajmiemy się dwoma spośród trzech dostępnych w C++ modyfikatorów. Pierwszy –
static – chroni zmienną przed utratą wartości po opuszczeniu jej zakresu przez
program. Drugi zaś – znany nam const – oznacza stałą, opisaną już jakiś czas temu.

Zmienne statyczne
Kiedy aplikacja opuszcza zakres zmiennej lokalnej, wtedy ta jest usuwana z pamięci. To
całkowicie naturalne – po co zachowywać zmienną, do której i tak nie byłoby dostępu?
Logiczniejsze jest zaoszczędzenie pamięci operacyjnej i pozbycie się nieużywanej
wartości, co też program skrzętnie czyni. Z tego powodu przy ponownym wejściu w
porzucony wcześniej zasięg wszystkie podlegające mu zmienne będą ustawione na swe
początkowe wartości.
Niekiedy jest to zachowanie niepożądane – czasem wolelibyśmy, aby zmienne lokalne nie
traciły swoich wartości w takich sytuacjach. Najlepszym rozwiązaniem jest wtedy użycie
modyfikatora static. Rzućmy okiem na poniższy przykład:

// Static - zmienne statyczne

void Funkcja()
{
 static int nLicznik = 0;

 ++nLicznik;
 std::cout << "Funkcje wywolano po raz " << nLicznik << std::endl;
}

void main()
{
 std::string strWybor;
 do
 {
 Funkcja();

 std::cout << "Wpisz 'q', aby zakonczyc: ";
 std::cin >> strWybor;
 } while (strWybor != "q");
}

Ów program jest raczej trywialny i jego jedynym zadaniem jest kilkukrotne uruchomienie
podprogramu Funkcja(), dopóki życzliwy użytkownik na to pozwala :) We wnętrzu tejże
funkcji mamy zadeklarowaną zmienną statyczną, która służy tam jako licznik
uruchomień.

Screen 24. Zliczanie wywołań funkcji przy pomocy zmiennej statycznej

Podstawy programowania 106

Jego wartość jest zachowywana pomiędzy kolejnymi wywołaniami funkcji, gdyż istnieje
w pamięci przez cały czas działania aplikacji26. Możemy więc każdorazowo inkrementować
tą wartość i pokazywać jako ilość uruchomień funkcji. Tak właśnie działają zmienne
statyczne :)

Deklaracja takiej zmiennej jest, jak widzieliśmy, nad wyraz prosta:

static int nLicznik = 0;

Wystarczy poprzedzić oznaczenie jej typu słówkiem static i voila :) Nadal możemy
także stosować inicjalizację do ustawienia początkowej wartości zmiennej.

Jest to wręcz konieczne – gdybyśmy bowiem zastosowali zwykłe przypisanie, odbywałoby
się ono przy każdym wejściu w zasięg zmiennej. Wypaczałoby to całkowicie sens
stosowania modyfikatora static.

Stałe
Stałe omówiliśmy już wcześniej, więc nie są dla ciebie nowością. Obecnie podkreślimy ich
związek ze zmiennymi.
Jak (mam nadzieję) pamiętasz, aby zadeklarować stałą należy użyć słowa const, na
przykład:

const float GRAWITACJA = 9.80655;

const, podobnie jak static, jest modyfikatorem zmiennej. Stałe posiadają zatem
wszystkie cechy zmiennych, takie jak typ czy zasięg. Jedyną różnicą jest oczywiście
niemożność zmiany wartości stałej.

Tak oto uzupełniliśmy swe wiadomości na temat zmiennych o ich zasięg oraz
modyfikatory. Uzbrojeni w tą nową wiedzę możemy teraz śmiało podążać dalej :D

Typy zmiennych
W C++ typ zmiennej jest sprawą niezwykle ważną. Gdy określamy go przy deklaracji,
zostaje on trwale „przywiązany” do zmiennej na cały czas działania programu. Nie może
więc zajść sytuacja, w której zmienna zadeklarowana na przykład jako liczba całkowita
zawiera informację tekstową czy liczbę rzeczywistą.

Niektórych języki programowania pozwalają jednak na to. Delphi i Visual Basic są
wyposażone w specjalny typ Variant, który potrafi przechowywać zarówno dane
liczbowe, jak i tekstowe. PHP natomiast w ogóle nie wymaga podawania typu zmiennych.

Chociaż wymóg ten wygląda na poważny mankament C++, w rzeczywistości wcale nim
nie jest. Bardzo trudno wskazać czynność, która wymagałaby zmiennej „uniwersalnego
typu”, mogącej przechowywać każdy rodzaj danych. Jeżeli nawet zaszłaby takowa
konieczność, możliwe jest zastosowanie przynajmniej kilku niemal równoważnych

26 Dokładniej mówiąc: od momentu deklaracji do zakończenia programu

Operacje na zmiennych 107

rozwiązań27.

Generalnie jednak jesteśmy „skazani” na korzystanie z typów zmiennych, co mimo
wszystko nie powinno nas smucić :) Na osłodę proponuję bliższe przyjrzenie się im.
Będziemy mieli okazję zobaczyć, że ich możliwości, elastyczność i zastosowania są
niezwykle szerokie.

Modyfikatory typów liczbowych
Dotychczas w swoich programach mieliśmy okazję używać głównie typu int,
reprezentującego liczbę całkowitą. Czasem korzystaliśmy także z float, będącego typem
liczb rzeczywistych.
Dwa sposoby przechowywania wartości liczbowych to, zdawałoby się, bardzo niewiele.
Zważywszy, iż spora część języków programowania udostępnia nawet po kilkanaście
takich typów, asortyment C++ może wyglądać tutaj wyjątkowo mizernie.

Domyślasz się zapewne, że jest to tylko złudne wrażenie :) Do każdego typu liczbowego
w C++ możemy bowiem dołączyć jeden lub kilka modyfikatorów, które istotnie
zmieniają jego własności. Spróbujmy dokładnie przyjrzeć się temu mechanizmowi.

Typy ze znakiem i bez znaku
Typ liczbowy int może nam przechowywać zarówno liczby dodatnie, jak i ujemne. Dosyć
często jednak nie potrzebujemy wartości mniejszych od zera. Przykładowo, ilość punktów
w większości gier nigdy nie będzie ujemna; to samo dotyczy liczników upływającego
czasu, zmiennych przechowujących wielkość plików, długości odcinków, rozmiary
obrazków - i tak dalej.

Możemy rzecz jasna zwyczajnie zignorować obecność liczb ujemnych i korzystać jedynie
z wartości dodatnich. Wadą tego rozwiązania jest marnotrawstwo: tracimy wtedy połowę
miejsca zajmowanego w pamięci przez zmienną. Jeżeli na przykład int mógłby zawierać
liczby od -10 000 do +10 000 (czyli 20 000 możliwych wartości28), to ograniczylibyśmy
ten przedział do 0…+10 000 (a więc skromnych 10 000 możliwych wartości).
Nie jest to może karygodna niegospodarność w przypadku jednej zmiennej, ale gdy
mówimy o kilku czy kilkunastu tysiącach podobnych zmiennych29, ilość zmarnowanej
pamięci staje się znaczna.

Należałoby zatem powiedzieć kompilatorowi, że nie potrzebujemy liczb ujemnych i w
zamian za nie chcemy zwiększenia przedziału liczb dodatnich. Czynimy to poprzez
dodanie do typu zmiennej int modyfikatora unsigned (‘nieoznakowany’, czyli bez znaku;
zawsze dodatni). Deklaracja będzie wtedy wyglądać na przykład tak:

unsigned int uZmienna; // przechowuje liczby naturalne

Analogicznie, moglibyśmy dodać przeciwstawny modyfikator signed (‘oznakowany’, czyli
ze znakiem; dodatni lub ujemny) do typów zmiennych, które mają zawierać zarówno
liczby dodatnie, jak i ujemne:

signed int nZmienna; // przechowuje liczby całkowite

27 Można wykorzystać chociażby szablony, unie czy wskaźniki. O każdym z tych elementów C++ powiemy sobie
w dalszej części kursu, więc cierpliwości ;)
28 To oczywiście jedynie przykład. Na żadnym współczesnym systemie typ int nie ma tak małego zakresu.
29 Co nie jest wcale niemożliwe, a przy stosowaniu tablic (opisanych w następnym rozdziale) staje całkiem
częste.

Podstawy programowania 108

Zazwyczaj tego nie robimy, gdyż modyfikator ten jest niejako domyślnie tam
umieszczony i nie ma potrzeby jego wyraźnego stosowania.

Jako podsumowanie proponuję diagram obrazujący działanie poznanych modyfikatorów:

Schemat 6. Przedział wartości typów liczbowych ze znakiem (signed) i bez znaku (unsigned)

Widzimy, że zastosowanie unsigned powoduje „przeniesienie” ujemnej połowy przedziału
zmiennej bezpośrednio za jej część dodatnią. Nie mamy wówczas możliwości korzystania
z liczb ujemnych, ale w zamian otrzymujemy dwukrotnie więcej miejsca na wartości
dodatnie. Tak to już jest w programowaniu, że nie ma nic za darmo :D

Rozmiar typu całkowitego
W poprzednim paragrafie wspominaliśmy o przedziale dopuszczalnych wartości zmiennej,
ale nie przyglądaliśmy się bliżej temu zagadnieniu. Teraz zatrzymamy się na nim trochę
dłużej i zajmiemy rozmiarem zmiennych całkowitych.

Wiadomo nam doskonale, że pamięć komputera jest ograniczona, zatem miejsce
zajmowane w tej pamięci przez każdą zmienną jest również limitowane. W przypadku
typów liczbowych przejawia się to ograniczonym przedziałem wartości, które mogą
przyjmować zmienne należące do takich typów.

Jak duży jest to przedział? Nie ma uniwersalnej odpowiedzi na to pytanie. Okazuje się
bowiem, że rozmiar typu int jest zależny od kompilatora. Wpływ na tę wielkość ma
pośrednio system operacyjny oraz procesor komputera.
Nasz kompilator (Visual C++ .NET), podobnie jak wszystkie tego typu narzędzia
pracujące w systemie Windows 95 i wersjach późniejszych, jest 32-bitowy. Oznacza to
między innymi, że typ int ma u nas wielkość równą 32 bitom właśnie, a więc w
przeliczeniu30 4 bajtom.

Cztery bajty to cztery znaki (na przykład cyfry) – czyżby zatem największymi i
najmniejszymi możliwymi do zapisania wartościami były +9999 i -9999?…
Oczywiście, że nie! Komputer przechowuje liczby w znacznie efektywniejszej postaci
dwójkowej. Wykorzystanie każdego bitu sprawia, że granice przedziału wartości typu int
to aż ±231 – nieco ponad dwa miliardy!

Więcej informacji na temat sposobu przechowywania danych w pamięci operacyjnej
możesz znaleźć w Dodatku B, Reprezentacja danych w pamięci.

Przedział ten sprawdza się dobrze w wielu zastosowaniach. Czasem jednak jest on zbyt
mały (tak, to możliwe :D) lub zwyczajnie zbyt duży. Daje się to odczuć na przykład przy
odczytywaniu plików, w których każda wartość zajmuje obszar o ściśle określonym
rozmiarze, nie zawsze równym int’owym 4 bajtom (tzw. plików binarnych).

30 1 bajt to 8 bitów.

Operacje na zmiennych 109

Dlatego też C++ udostępnia nam poręczny zestaw dwóch modyfikatorów, którymi
możemy wpływać na wielkość typu całkowitego. Są to: short (‘krótki’) oraz long
(‘długi’). Używamy ich podobnie jak signed i unsigned – poprzedzając typ int którymś z
nich:

short int nZmienna; // "krótka" liczba całkowita
long int nZmienna; // "długa" liczba całkowita

Cóż znaczą jednak te, nieco żartobliwe, określenia „krótkiej” i „długiej” liczby? Chyba
najlepszą odpowiedzią będzie tu… stosowna tabelka :)

nazwa rozmiar przedział wartości
int 4 bajty od –231 do +231 - 1

short int 2 bajty od -32 768 do +32 767
long int 4 bajty od –231 do +231 - 1

Tabela 4. Typy całkowite w 32-bitowym Visual C++ .NET31

Niespodzianką może być brak typu o rozmiarze 1 bajta. Jest on jednak obecny w C++ –
to typ… char :) Owszem, reprezentuje on znak. Nie zapominajmy jednak, że komputer
operuje na znakach jak na odpowiadającym im kodom liczbowym. Dlatego też typ char
jest w istocie także typem liczb całkowitych!

Visual C++ udostępnia też nieco lepszy sposób na określenie wielkości typu liczbowego.
Jest nim użycie frazy __intn, gdzie n oznacza rozmiar zmiennej w bitach. Oto przykłady:

__int8 nZmienna; // 8 bitów == 1 bajt, wartości od -128 do 127
__int16 nZmienna; // 16 bitów == 2 bajty, wartości od -32768 do 32767
__int32 nZmienna; // 32 bity == 4 bajty, wartości od -231 do 231 – 1
__int64 nZmienna; // 64 bity == 8 bajtów, wartości od -263 do 263 – 1

__int8 jest więc równy typowi char, __int16 – short int, a __int32 – int lub long
int. Gigantyczny typ __int64 nie ma natomiast swojego odpowiednika.

Precyzja typu rzeczywistego
Podobnie jak w przypadku typu całkowitego int, typ rzeczywisty float posiada
określoną rozpiętość wartości, które można zapisać w zmiennych o tym typie. Ponieważ
jednak jego przeznaczeniem jest przechowywanie wartości ułamkowych, pojawia się
kwestia precyzji zapisu takich liczb.

Szczegółowe wyjaśnienie sposobu, w jaki zmienne rzeczywiste przechowują wartości, jest
dość skomplikowane i dlatego je sobie darujemy32 :) Najważniejsze są dla nas wynikające
z niego konsekwencje. Otóż:

Precyzja zapisu liczby w zmiennej typu rzeczywistego maleje wraz ze wzrostem
wartości tej liczby

Przykładowo, duża liczba w rodzaju 1000000.0023 zostanie najpewniej zapisana bez
części ułamkowej. Natomiast mała wartość, jak 1.43525667 będzie przechowana z dużą

31 To zastrzeżenie jest konieczne. Wprawdzie int zajmuje 4 bajty we wszystkich 32-bitowych kompilatorach,
ale w przypadku pozostałych typów może być inaczej! Standard C++ wymaga jedynie, aby short int był
mniejszy lub równy od int’a, a long int większy lub równy int’owi.
32 Zainteresowanych odsyłam do Dodatku B.

Podstawy programowania 110

dokładnością, z kilkoma cyframi po przecinku. Ze względu na tę właściwość (zmienną
precyzję) typy rzeczywiste nazywamy często zmiennoprzecinkowymi.

Zgadza się – typy. Podobnie jak w przypadku liczb całkowitych możemy dodać do typu
float odpowiednie modyfikatory. I podobnie jak wówczas, ujrzymy je w należytej
tabelce :)

nazwa rozmiar precyzja
float 4 bajty 6–7 cyfr

double float 8 bajtów 15-16 cyfr

Tabela 5. Typy zmiennoprzecinkowe w C++

double (‘podwójny’), zgodnie ze swoją nazwą, zwiększa dwukrotnie rozmiar zmiennej
oraz poprawia jej dokładność. Tak zmodyfikowana zmienna jest nazywana czasem liczbą
podwójnej precyzji - w odróżnieniu od float, która ma tylko pojedynczą precyzję.

Skrócone nazwy
Na koniec warto nadmienić jeszcze o możności skrócenia nazw typów zawierających
modyfikatory. W takich sytuacjach możemy bowiem całkowicie pominąć słowa int i
float.
Przykładowe deklaracje:

unsigned int uZmienna;
short int nZmienna;
unsigned long int nZmienna;
double float fZmienna;

mogą zatem wyglądać tak:

unsigned uZmienna;
short nZmienna;
unsigned long nZmienna;
double fZmienna;

Mała rzecz, a cieszy ;) Mamy też kolejny dowód na dużą kondensację składni C++.

Poznane przed chwilą modyfikatory umożliwiają nam większą kontrolę nad zmiennymi w
programie. Pozwalają bowiem na dokładne określenie, jaką zmienną chcemy w danej
chwili zadeklarować i nie dopuszczają, by kompilator myślał za nas ;D

Pomocne konstrukcje
Zapoznamy się teraz z dwoma elementami języka C++, które ułatwiają nieco pracę z
różnymi typami zmiennych. Będzie to instrukcja typedef oraz operator sizeof.

Instrukcja typedef
Wprowadzenie modyfikatorów sprawiło, że oto mamy już nie kilka, a przynajmniej
kilkanaście typów zmiennych. Nazwy tychże typów są przy tym dosyć długie i wielokrotne
ich wpisywanie może nam zabierać dużo czasu. Zbyt dużo.

Operacje na zmiennych 111

Dlatego też (i nie tylko dlatego) C++ posiada instrukcję typedef (ang. type definition –
definicja typu). Możemy jej użyć do nadania nowej nazwy (aliasu) dla już
istniejącego typu. Zastosowanie tego mechanizmu może wyglądać choćby tak:

typedef unsigned int UINT;

Powyższa linijka kodu mówi kompilatorowi, że od tego momentu typ unsigned int
posiada także dodatkową nazwę - UINT. Staję się ona dokładnym synonimem
pierwotnego określenia. Odtąd bowiem obie deklaracje

unsigned int uZmienna;

oraz

UINT uZmienna;

są w pełni równoważne.

Użycie typedef, podobnie jak jej składnia, jest bardzo proste:

typedef typ nazwa;

Skutkiem skorzystania z tej instrukcji jest możliwość wstawiania nowej nazwy tam, gdzie
wcześniej musieliśmy zadowolić się jedynie starym typem. Obejmuje to zarówno
deklaracje zmiennych, jak i parametrów funkcji tudzież zwracanych przez nie wartości.
Dotyczy więc wszystkich sytuacji, w których mogliśmy korzystać ze starego typu –
nowa nazwa nie jest pod tym względem w żaden sposób ułomna.

Jaka jest praktyczna korzyść z definiowania własnych określeń dla istniejących typów?
Pierwszą z nich jest przytoczone wcześniej skracanie nazw, które z pewnością pozytywnie
wpłynie na stan naszych klawiatur ;)) Oszczędnościowe „przydomki” w rodzaju
zaprezentowanego wyżej UINT są przy tym na tyle wygodne i szeroko wykorzystywane,
że niektóre kompilatory (w tym i nasz Visual C++) nie wymagają nawet ich jawnego
określenia!
Możliwość dowolnego oznaczania typów pozwala również na nadawanie im znaczących
nazw, które obrazują ich zastosowania w aplikacji. Z przykładem podobnego
postępowania spotkasz się przy tworzeniu programów okienkowych w Windows. Używa
się tam wielu typów o nazwach takich jak HWND, HINSTANCE, WPARAM, LRESULT itp., z
których każdy jest jedynie aliasem na 32-bitową liczbę całkowitą bez znaku. Stosowanie
takiego nazewnictwa poważnie poprawia czytelność kodu – oczywiście pod warunkiem, że
znamy znaczenie stosowanych nazw :)

Zauważmy pewien istotny fakt. Mianowicie, typedef nie tworzy nam żadnych nowych
typów, a jedynie duplikuje już istniejące. Zmiany, które czyni w sposobie
programowania, są więc stricte kosmetyczne, choć na pierwszy rzut oka mogą wyglądać
na dość znaczne.
Do kreowania zupełnie nowych typów służą inne elementy języka C++, z których część
poznamy w następnym rozdziale.

Operator sizeof
Przy okazji prezentacji różnych typów zmiennych podawałem zawsze ilość bajtów, którą
zajmuje w pamięci każdy z nich. Przypominałem też kilka razy, że wielkości te są
prawdziwe jedynie w przypadku kompilatorów 32-bitowych, a niektóre nawet tylko w
Visual C++.

Podstawy programowania 112

Z tegoż powodu mogą one szybko stać się po prostu nieaktualne. Przy dzisiejszym
tempie postępu technicznego, szczególnie w informatyce, wszelkie zmiany dokonują się
w zasadzie nieustannie33. W tej gonitwie także programiści nie mogą pozostawać w tyle –
w przeciwnym wypadku przystosowanie ich starych aplikacji do nowych warunków
technologicznych może kosztować mnóstwo czasu i wysiłku.
Jednocześnie wiele programów opiera swe działanie na rozmiarze typów podstawowych.
Wystarczy napomknąć o tak częstej czynności, jak zapisywanie danych do plików albo
przesyłanie ich poprzez sieć. Jeśliby każdy program musiał mieć wpisane „na sztywno”
rzeczone wielkości, wtedy spora część pracy programistów upływałaby na
dostosowywaniu ich do potrzeb nowych platform sprzętowych, na których miałyby działać
istniejące aplikacje. A co z tworzeniem całkiem nowych produktów?…

Szczęśliwie twórcy C++ byli na tyle zapobiegliwi, żeby uchronić nas, koderów, od tej
koszmarnej perspektywy. Wprowadzili bowiem operator sizeof (‘rozmiar czegoś’), który
pozwala na uzyskanie wielkości zmiennej (lub jej typu) w trakcie działania programu.
Spojrzenie na poniższy przykład powinno nam przybliżyć funkcjonowanie tego operatora:

// Sizeof - pobranie rozmiaru zmiennej lub typu

#include <iostream>
#include <conio.h>

void main()
{
 std::cout << "Typy liczb calkowitych:" << std::endl;
 std::cout << "- int: " << sizeof(int) << std::endl;
 std::cout << "- short int: " << sizeof(short int) << std::endl;
 std::cout << "- long int: " << sizeof(long int) << std::endl;
 std::cout << "- char: " << sizeof(char) << std::endl;
 std::cout << std::endl;

 std::cout << "Typy liczb zmiennoprzecinkowych:" << std::endl;
 std::cout << "- float: " << sizeof(float) << std::endl;
 std::cout << "- double: " << sizeof(double) << std::endl;

 getch();
}

Uruchomienie programu z listingu powyżej, jak słusznie można przypuszczać, będzie nam
skutkowało krótkim zestawieniem rozmiarów typów podstawowych.

Screen 25. sizeof w akcji

33 W chwili pisania tych słów – pod koniec roku 2003 – mamy już coraz wyraźniejsze widoki na poważne
wykorzystanie procesorów 64-bitowych w domowych komputerach. Jednym ze skutków tego „zwiększenia
bitowości” będzie zmiana rozmiaru typu liczbowego int.

Operacje na zmiennych 113

Po uważnym zlustrowaniu kodu źródłowego widać jak na dłoni działanie oraz sposób
użycia operatora sizeof. Wystarczy podać mu typ lub zmienną jako parametr, by
otrzymać w wyniku jego rozmiar w bajtach34. Potem możemy zrobić z tym rezultatem
dokładnie to samo, co z każdą inną liczbą całkowitą – chociażby wyświetlić ją w konsoli
przy użyciu strumienia wyjścia.

Zastosowanie sizeof nie ogranicza się li tylko do typów wbudowanych. Gdy w kolejnych
rozdziałach nauczymy się tworzyć własne typy zmiennych, będziemy mogli w identyczny
sposób ustalać ich rozmiary przy pomocy poznanego przed momentem operatora. Nie da
się ukryć, że bardzo lubimy takie uniwersalne rozwiązania :D

Wartość, którą zwraca operator sizeof, należy do specjalnego typu size_t. Zazwyczaj
jest on tożsamy z unsigned int, czyli liczbą bez znaku (bo przecież rozmiar nie może
być ujemny). Należy więc uważać, aby nie przypisywać jej do zmiennej, która jest liczbą
ze znakiem.

Rzutowanie
Idea typów zmiennych wprowadza nam pewien sposób klasyfikacji wartości. Niektóre z
nich uznajemy bowiem za liczby całkowite (3, -17, 44, 67*88 itd.), inne za
zmiennoprzecinkowe (7.189, 12.56, -1.41, 8.0 itd.), jeszcze inne za tekst ("ABC",
"Hello world!" itp.) czy pojedyncze znaki35 ('F', '@' itd.).
Każdy z tych rodzajów odpowiada nam któremuś z poznanych typów zmiennych.
Najczęściej też nie są one ze sobą kompatybilne – innymi słowy, „nie pasują” do siebie,
jak chociażby tutaj:

int nX = 14;
int nY = 0.333 * nX;

Wynikiem działania w drugiej linijce będzie przecież liczba rzeczywista z częścią
ułamkową, którą nijak nie można wpasować w ciasne ramy typu int, zezwalającego
jedynie na wartości całkowite36.

Oczywiście, w podanym przykładzie wystarczy zmienić typ drugiej zmiennej na float, by
rozwiązać nurtujący nas problem. Nie zawsze jednak będziemy mogli pozwolić sobie na
podobne kompromisy, gdyż często jedynym wyjściem stanie się „wymuszenie” na
kompilatorze zaakceptowania kłopotliwego kodu.
Aby to uczynić, musimy rzutować (ang. cast) przypisywaną wartość na docelowy typ –
na przykład int. Rzutowanie działa trochę na zasadzie umowy z kompilatorem, która w
naszym przypadku mogłaby brzmieć tak: „Wiem, że naprawdę jest to liczba
zmiennoprzecinkowa, ale właśnie tutaj chcę, aby stała się liczbą całkowitą typu int, bo
muszę ją przypisać do zmiennej tego typu”. Takie porozumienie wymaga ustępstw od
obu stron – kompilator musi „pogodzić się” z chwilowym zaprzestaniem kontroli typów, a
programista powinien liczyć się z ewentualną utratą części danych (w naszym przykładzie
poświęcimy cyfry po przecinku).

34 Ściślej mówiąc, sizeof podaje nam rozmiar obiektu w stosunku do wielkości typu char. Jednakże typ ten ma
najczęściej wielkość dokładnie 1 bajta, zatem utarło się stwierdzenie, iż sizeof zwraca w wyniku ilość bajtów.
Nie ma w zasadzie żadnego powodu, by uznać to za błąd.
35 Znaki są typu char, który jak wiemy jest także typem liczbowym. W C++ kod znaku jest po prostu
jednoznaczny z nim samym, dlatego możemy go interpretować zarówno jako symbol, jak i wartość liczbową.
36 Niektóre kompilatory (w tym i Visual C++) zaakceptują powyższy kod, jednakże nie obejdzie się bez
ostrzeżeń o możliwej (i faktycznej!) utracie danych. Wprawdzie niektórzy nie przejmują się w ogóle takimi
ostrzeżeniami, my jednak nie będziemy tak krótkowzroczni :D

Podstawy programowania 114

Proste rzutowanie
Zatem do dzieła! Zobaczmy, jak w praktyce wyglądają takie „negocjacje” :) Zostawimy
na razie ten trywialny, dwulinijkowy przykład (wrócimy jeszcze do niego) i zajmiemy się
poważniejszym programem. Oto i on:

// SimpleCast - proste rzutowanie typów

void main()
{
 for (int i = 32; i < 256; i += 4)
 {
 std::cout << "| " << (char) (i) << " == " << i << " | ";
 std::cout << (char) (i + 1) << " == " << i + 1 << " | ";
 std::cout << (char) (i + 2) << " == " << i + 2 << " | ";
 std::cout << (char) (i + 3) << " == " << i + 3 << " |";
 std::cout << std::endl;
 }

 getch();
}

Huh, faktycznie nie jest to banalny kod :) Wykonywana przezeń czynność jest jednak
dość prosta. Aplikacja ta pokazuje nam tablicę kolejnych znaków wraz z odpowiadającymi
im kodami ANSI.

Screen 26. Fragment tabeli ANSI

Najważniejsza jest tu dla nas sama operacja rzutowania, ale warto przyjrzeć się
funkcjonowaniu programu jako całości.
Zawarta w nim pętla for wykonuje się dla co czwartej wartości licznika z przedziału od
32 do 255. Skutkuje to faktem, iż znaki są wyświetlane wierszami, po 4 w każdym.

Pomijamy znaki o kodach mniejszych od 32 (czyli te z zakresu 0…31), ponieważ są to
specjalne symbole sterujące, zasadniczo nieprzeznaczone do wyświetlania na ekranie.
Znajdziemy wśród nich na przykład tabulator (kod 9), znak „powrotu karetki” (kod 13),
końca wiersza (kod 10) czy sygnał błędu (kod 7).

Operacje na zmiennych 115

Za prezentację pojedynczego wiersza odpowiadają te wielce interesujące instrukcje:

std::cout << "| " << (char) (i) << " == " << i << " | ";
std::cout << (char) (i + 1) << " == " << i + 1 << " | ";
std::cout << (char) (i + 2) << " == " << i + 2 << " | ";
std::cout << (char) (i + 3) << " == " << i + 3 << " |";

Sądząc po widocznym ich efekcie, każda z nich wyświetla nam jeden znak oraz
odpowiadający mu kod ANSI. Przyglądając się bliżej temu listingowi, widzimy, że
zarówno pokazanie znaku, jak i przynależnej mu wartości liczbowej odbywa się zawsze
przy pomocy tego samego wyrażenia. Jest nim odpowiednio i, i + 1, i + 2 lub i + 3.

Jak to się dzieje, że raz jest ono interpretowane jako znak, a innym razem jako liczba?
Domyślasz się zapewne niebagatelnej roli rzutowania w działaniu tej „magii” :) Istotnie,
jest ono konieczne. Jako że licznik i jest zmienną typu int, zacytowane wyżej cztery
wyrażenia także należą do tego typu. Przesłanie ich do strumienia wyjścia w
niezmienionej postaci powoduje wyświetlenie ich wartości w formie liczb. W ten sposób
pokazujemy kody ANSI kolejnych znaków.
Aby wyświetlić same symbole musimy jednak oszukać nieco nasz strumień std::cout,
rzutując wspomniane wartości liczbowe na typ char. Dzięki temu zostaną one
potraktowane jako znaki i takoż wyświetlone w konsoli.

Zobaczmy, w jaki sposób realizujemy tutaj to osławione rzutowanie. Spójrzmy
mianowicie na jeden z czterech podobnych kawałków kodu:

(char) (i + 1)

Ten niepozorny fragment wykonuje całą ważką operację, którą nazywamy rzutowaniem.
Zapisanie w nawiasach nazwy typu char przed wyrażeniem i + 1 (dla jasności
umieszczonym również w nawiasach) powoduje bowiem, iż wynik tak ujętego działania
zostaje uznany jako podpadający pod typ char. Tak jest też traktowany przez strumień
wyjścia, dzięki czemu możemy go oglądać jako znak, a nie liczbę.

Zatem, aby rzutować jakieś wyrażenie na wybrany typ, musimy użyć niezwykle prostej
konstrukcji:

(typ) wyrażenie

wyrażenie może być przy tym ujęte w nawias lub nie; zazwyczaj jednak stosuje się
nawiasy, by uniknąć potencjalnych kłopotów z kolejnością operatorów.

Można także użyć składni typ(wyrażenie). Stosuje się ją rzadziej, gdyż przypomina
wywołanie funkcji i może być przez to przyczyną pomyłek.

Wróćmy teraz do naszego pierwotnego przykładu. Rozwiązanie problemu, który wcześniej
przedstawiał, powinno być już banalne:

int nX = 14;
int nY = (int) (0.333 * nX);

Po takich manipulacjach zmienna nY będzie przechowywała część całkowitą z wyniku
podanego mnożenia. Oczywiście tracimy w ten sposób dokładność obliczeń, co jest
jednak nieuniknioną ceną kompromisu towarzyszącego rzutowaniu :)

Podstawy programowania 116

Operator static_cast
Umiemy już dokonywać rzutowania, poprzedzając wyrażenie nazwą typu napisaną w
nawiasach. Taki sposób postępowania wywodzi się jeszcze z zamierzchłych czasów języka
C37, poprzednika C++. Czyżby miało to znaczyć, że jest on zły?…

Powiedzmy, że nie jest wystarczająco dobry :) Nie przeczę, że na początku może
wydawać się świetnym rozwiązaniem – klarownym, prostym, niewymagającym wiele
pisania etc. Jednak im dalej w las, tym więcej śmieci: już teraz dokładniejsze spojrzenie
ujawnia nam wiele mankamentów, a w miarę zwiększania się twoich umiejętności i
wiedzy dostrzeżesz ich jeszcze więcej.

Spójrzmy choćby na samą składnię. Oprócz swojej niewątpliwej prostoty posiada dwie
zdecydowanie nieprzyjemne cechy.
Po pierwsze, zwiększa nam ilość nawiasów w wyrażeniach, które zawierają rzutowanie. A
przecież nawet i bez niego potrafią one być dostatecznie skomplikowane. Częste przecież
użycie kilku operatorów, kilku funkcji (z których każda ma pewnie po kilka parametrów)
oraz kilku dodatkowych nawiasów (aby nie kłopotać się kolejnością działań) gmatwa
nasze wyrażenia w dostatecznym już stopniu. Jeżeli dodamy do tego jeszcze parę
rzutowań, może nam wyjść coś w tym rodzaju:

int nX = (int) (((2 * nY) / (float) (nZ + 3)) – (int) Funkcja(nY * 7));

Konwersje w formie (typ) wyrażenie z pewnością nie poprawiają tu czytelności kodu.
Drugim problemem jest znowuż kolejność działań. Pytanie za pięć punktów: jaką wartość
ma zmienna nY w poniższym fragmencie?

float fX = 0.75;
int nY = (int) fX * 3;

Zatem?… Jeżeli obecne w drugiej linijce rzutowanie na int dotyczy jedynie zmiennej fX,
to jej wartość (0.75) zostanie zaokrąglona do zera, zatem nY będzie przypisane również
zero. Jeśli jednak konwersji na int zostanie poddane całe wyrażenie (0.75 * 3, czyli
2.25), to nY przyjmie wartość 2!
Wybrnięcie z tego dylematu to… kolejna para nawiasów, obejmująca tą część wyrażenia,
którą faktycznie chcemy rzutować. Wygląda więc na to, że nie opędzimy się od częstego
stosowania znaków (i).

Składnia to jednak nie jedyny kłopot. Tak naprawdę o wiele ważniejsze są kwestie
związane ze sposobem, w jaki jest realizowane samo rzutowanie. Niestety, na razie
jesteś w niezbyt komfortowej sytuacji, gdyż musisz zaakceptować pewien fakt bez
uzasadnienia („na wiarę” :D). Brzmi on następująco:

Rzutowanie w formie (typ) wyrażenie, zwane też rzutowaniem w stylu C, nie jest
zalecane do stosowania w C++.

Dokładnie przyczyny takiego stanu rzeczy poznasz przy okazji omawiania klas i
programowania obiektowego38.

37 Nazywa się go nawet rzutowaniem w stylu C.
38 Dla szczególnie dociekliwych mam wszakże wyjaśnienie częściowe. Mianowicie, rzutowanie w stylu C nie
rozróżnia nam tzw. bezpiecznych i niebezpiecznych konwersji. Za bezpieczną możemy uznać zamianę jednego
typu liczbowego na drugi czy wskaźnika szczegółowego na wskaźnik bardziej ogólny (np. int* na void* - o
wskaźnikach powiemy sobie szerzej, gdy już uporamy się z podstawami :)). Niebezpieczne rzutowanie to
konwersja między niezwiązanymi ze sobą typami, na przykład liczbą i tekstem; w zasadzie nie powinno się
takich rzeczy robić.

Operacje na zmiennych 117

No dobrze, załóżmy, że uznajemy tą odgórną radę39 i zobowiązujemy się nie stosować
rzutowania „nawiasowego” w swoich programach. Czy to znaczy, że w ogóle tracimy
możliwość konwersji zmiennych jednego typu na inne?!
Rzeczywistość na szczęście nie jest aż tak straszna :) C++ posiada bowiem aż cztery
operatory rzutowania, które są najlepszym sposobem na realizację zamiany typów w
tym języku. Będziemy sukcesywnie poznawać je wszystkie, a zaczniemy od najczęściej
stosowanego – tytułowego static_cast.

static_cast (‘rzutowanie statyczne’) nie ma nic wspólnego z modyfikatorem static i
zmiennymi statycznymi. Operator ten służy do przeprowadzania najbardziej pospolitych
konwersji, które jednak są spotykane najczęściej. Możemy go stosować wszędzie, gdzie
sposób zamiany jest oczywisty – zarówno dla nas, jak i kompilatora ;)

Najlepiej po prostu zawsze używać static_cast, uciekając się do innych środków, gdy
ten zawodzi i nie jest akceptowany przez kompilator (albo wiąże się z pokazaniem
ostrzeżenia).

W szczególności, możemy i powinniśmy korzystać ze static_cast przy rzutowaniu
między typami podstawowymi. Zobaczmy zresztą, jak wyglądałoby ono dla naszego
ostatniego przykładu:

float fX = 0.75;
int nY = static_cast<int>(fX * 3);

Widzimy, że użycie tego operatora od razu likwiduje nam niejednoznaczność, na którą
poprzednio zwróciliśmy uwagę. Wyrażenie poddawane rzutowaniu musimy bowiem ująć
w nawiasy okrągłe.
Ciekawy jest sposób zapisu nazwy typu, na który rzutujemy. Znaki < i >, oprócz tego że
są operatorami mniejszości i większości, tworzą parę nawiasów ostrych. Pomiędzy nimi
wpisujemy określenie docelowego typu.

Pełna składnia operatora static_cast wygląda więc następująco:

static_cast<typ>(wyrażenie)

Być może jest ona bardziej skomplikowana od „zwykłego” rzutowania, ale używając jej
osiągamy wiele korzyści, o których mogłeś się naocznie przekonać :)

Warto też wspomnieć, że trzy pozostałe operatory rzutowania mają identyczną postać –
oczywiście z wyjątkiem słowa static_cast, które jest zastąpione innym.

Tą uwagą kończymy omawianie różnych aspektów związanych z typami zmiennych w
języku C++. Wreszcie zajmiemy się tytułowymi zagadnieniami tego rozdziału, czyli
czynnościach, które możemy wykonywać na zmiennych.

Problem z rzutowaniem w stylu C polega na tym, iż zupełnie nie rozróżnia tych dwóch rodzajów zamiany.
Pozostaje tak samo niewzruszone na niewinną konwersję z float na int oraz, powiedzmy, na zupełnie
nienaturalną zmianę std::string na bool. Nietrudno domyśleć się, że zwiększa to prawdopodobieństwo
występowania różnego rodzaju błędów.
39 Jak wszystko, co dotyczy fundamentów języka C++, pochodzi ona od jego Komitetu Standaryzacyjnego.

Podstawy programowania 118

Kalkulacje na liczbach
Poznamy teraz kilka standardowych operacji, które możemy wykonywać na danych
liczbowych. Najpierw będą to odpowiednie funkcje, których dostarcza nam C++, a
następnie uzupełnienie wiadomości o operatorach arytmetycznych. Zaczynajmy więc :)

Przydatne funkcje
C++ udostępnia nam wiele funkcji matematycznych, dzięki którym możemy
przeprowadzać proste i nieco bardziej złożone obliczenia. Prawie wszystkie są zawarte w
pliku nagłówkowym cmath, dlatego też musimy dołączyć ten plik do każdego programu,
w którym chcemy korzystać z tych funkcji. Robimy to analogicznie jak w przypadku
innych nagłówków – umieszczając na początku naszego kodu dyrektywę:

#include <cmath>

Po dopełnieniu tej drobnej formalności możemy korzystać z całego bogactwa narzędzi
matematycznych, jakie zapewnia nam C++. Spójrzmy więc, jak się one przedstawiają.

Funkcje potęgowe
W przeciwieństwie do niektórych języków programowania, C++ nie posiada oddzielnego
operatora potęgowania40. Zamiast niego mamy natomiast funkcję pow() (ang. power –
potęga), która prezentuje się następująco:

double pow(double base, double exponent);

Jak widać, bierze ona dwa parametry. Pierwszym (base) jest podstawa potęgi, a drugim
(exponent) jej wykładnik. W wyniku zwracany jest oczywiście wynik potęgowania (a więc
wartość wyrażenia baseexponent).

Podobną do powyższej deklarację funkcji, przedstawiającą jej nazwę, ilość i typy
parametrów oraz typ zwracanej wartości, nazywamy prototypem.

Oto kilka przykładów wykorzystania funkcji pow():

double fX;
fX = pow(2, 8); // ósma potęga dwójki, czyli 256
fX = pow(3, 4); // czwarta potęga trójki, czyli 81
fX = pow(5, -1); // odwrotność piątki, czyli 0.2

Inną równie często wykonywaną czynnością jest pierwiastkowanie. Realizuje ją między
innymi funkcja sqrt() (ang. square root – pierwiastek kwadratowy):

double sqrt(double x);

Jej jedyny parametr to oczywiście liczba, która chcemy pierwiastkować. Użycie tej funkcji
jest zatem niezwykle intuicyjne:

fX = sqrt(64); // 8 (bo 8*8 == 64)
fX = sqrt(2); // około 1.414213562373

40 Znak ^, który służy w nich do wykonywania tego działania, jest w C++ zarezerwowany dla jednej z operacji
bitowych – różnicy symetrycznej. Więcej informacji na ten temat możesz znaleźć w Dodatku B, Reprezentacja
danych w pamięci.

Operacje na zmiennych 119

fX = sqrt(pow(fY, 2)); // fY

Nie ma natomiast wbudowanej formuły, która obliczałaby pierwiastek dowolnego
stopnia z danej liczby. Możemy jednak łatwo napisać ją sami, korzystając z prostej
własności:

aa xx
1

=

Po przełożeniu tego równania na C++ uzyskujemy następującą funkcję:

double root(double x, double a) { return pow(x, 1 / a); }

Zapisanie jej definicji w jednej linijce jest całkowicie dopuszczalne i, jak widać, bardzo
wygodne. Elastyczność składni C++ pozwala więc na zupełnie dowolną organizację kodu.

Dokładny opis poznanych funkcji pow() i sqrt() znajdziesz w MSDN.

Funkcje wykładnicze i logarytmiczne

Najczęściej stosowaną w matematyce funkcją wykładniczą jest xe , niekiedy oznaczana
także jako)exp(x . Taką też formę ma ona w C++:

double exp(double x);

Zwraca ona wartość stałej e41 podniesionej do potęgi x. Popatrzmy na kilka przykładów:

fX = exp(0); // 1
fX = exp(1); // e
fX = exp(2.302585093); // 10.000000

Natomiast funkcję wykładniczą o dowolnej podstawie uzyskujemy, stosując omówioną już
wcześniej formułę pow().

Przeciwstawne do funkcji wykładniczych są logarytmy. Tutaj mamy aż dwie odpowiednie
funkcje :) Pierwsza z nich to log():

double log(double x);

Jest to logarytm naturalny (o podstawie e), a więc funkcja dokładnie do odwrotna do
poprzedniej exp(). Otóż dla danej liczby x zwraca nam wartość wykładnika, do którego
musielibyśmy podnieść e, by otrzymać x. Dla pełnej jasności zerknijmy na poniższe
przykłady:

fX = log(1); // 0
fX = log(10); // 2.302585093
fX = log(exp(x)); // x

Drugą funkcją jest log10(), czyli logarytm dziesiętny (o podstawie 10):

double log10(double x);

41 Tak zwanej stałej Nepera, podstawy logarytmów naturalnych - równej w przybliżeniu 2.71828182845904.

Podstawy programowania 120

Analogicznie, funkcja ta zwraca wykładnik, do którego należałoby podnieść dziesiątkę,
aby otrzymać podaną liczbę x, na przykład:

fX = log10(1000); // 3 (bo 103 == 1000)
fX = log10(1); // 0
fX = log10(pow(10, x)); // x

Niestety, znowu (podobnie jak w przypadku pierwiastków) nie mamy bardziej
uniwersalnego odpowiednika tych dwóch funkcji, czyli logarytmu o dowolnej podstawie.
Ponownie jednak możemy skorzystać z odpowiedniej tożsamości matematycznej42:

a
x

x
b

b
a log

log
log =

Nasza własna funkcja może więc wyglądać tak:

double log_a(double a, double x) { return log(x) / log(a); }

Oczywiście użycie log10() w miejsce log() jest również poprawne.

Zainteresowanych ponownie odsyłam do MSDN celem poznania dokładnego opisu funkcji
exp() oraz log() i log10().

Funkcje trygonometryczne
Dla nas, (przyszłych) programistów gier, funkcje trygonometryczne są szczególnie
przydatne, gdyż będziemy korzystać z nich niezwykle często – choćby przy różnorakich
obrotach. Wypadałoby zatem dobrze znać ich odpowiedniki w języku C++.

Na początek przypomnijmy sobie (znane, mam nadzieję :D) określenia funkcji
trygonometrycznych. Posłuży nam do tego poniższy rysunek:

Rysunek 1. Definicje funkcji trygonometrycznych dowolnego kąta

42 Znanej jako zmiana podstawy logarytmu.

Operacje na zmiennych 121

Zwróćmy uwagę, że trzy ostatnie funkcje są określone jako odwrotności trzech
pierwszych. Wynika stąd fakt, iż potrzebujemy do szczęścia jedynie sinusa, cosinusa i
tangensa – resztę funkcji i tak będziemy mogli łatwo uzyskać.
C++ posiada oczywiście odpowiednie funkcje:

double sin(double alfa); // sinus
double cos(double alfa); // cosinus
double tan(double alfa); // tangens

Działają one identycznie do swoich geometrycznych odpowiedników. Jako jedyny
parametr przyjmują miarę kąta w radianach i zwracają wyniki, których bez wątpienia
można się spodziewać :)
Jeżeli chodzi o trzy brakujące funkcje, to ich definicje są, jak sądzę, oczywiste:

double cot(double alfa) { return 1 / tan(alfa); } // cotangens
double sec(double alfa) { return 1 / cos(alfa); } // secant
double csc(double alfa) { return 1 / sin(alfa); } // cosecant

Gdy pracujemy z kątami i funkcjami trygonometrycznymi, nierzadko pojawia się
konieczność zamiany miary kąta ze stopni na radiany lub odwrotnie. Niestety, nie
znajdziemy w C++ odpowiednich funkcji, które realizowałyby to zadanie. Być może
dlatego, że sami możemy je łatwo napisać:

const double PI = 3.1415923865;
double degtorad(double alfa) { return alfa * PI / 180; }
double radtodeg(double alfa) { return alfa * 180 / PI; }

Pamiętajmy też, aby nie mylić tych dwóch miar kątów i zdawać sobie sprawę, iż funkcje
trygonometryczne w C++ używają radianów. Pomyłki w tej kwestii są dość częste i
powodują nieprzyjemne rezultaty, dlatego należy się ich wystrzegać :)

Jak zwykle, więcej informacji o funkcjach sin(), cos() i tan() znajdziesz w MSDN.
Możesz tam również zapoznać się z funkcjami odwrotnymi do trygonometrycznych –
asin(), acos() oraz atan() i atan2().

Liczby pseudolosowe
Zostawmy już te zdecydowanie zbyt matematyczne dywagacje i zajmijmy się czymś, co
bardziej zainteresuje przeciętnego zjadacza komputerowego i programistycznego
chleba :) Mam tu na myśli generowanie wartości losowych.
Liczby losowe znajdują zastosowanie w bardzo wielu programach. W przypadku gier
mogą służyć na przykład do tworzenia realistycznych efektów ognia, deszczu czy śniegu.
Używając ich możemy również kreować za każdym inną mapę w grze strategicznej czy
zapewnić pojawianie się wrogów w przypadkowych miejscach w grach zręcznościowych.
Przydatność liczb losowych jest więc bardzo szeroka.

Uzyskanie losowej wartości jest w C++ całkiem proste. W tym celu korzystamy z funkcji
rand() (ang. random – losowy):

int rand();

Jak możnaby przypuszczać, zwraca nam ona przypadkową liczbę dodatnią43. Najczęściej
jednak potrzebujemy wartości z określonego przedziału – na przykład w programie

43 Liczba ta należy do przedziału <0; RAND_MAX>, gdzie RAND_MAX jest stałą zdefiniowaną przez kompilator (w
Visual C++ .NET ma ona wartość 32767).

Podstawy programowania 122

ilustrującym działanie pętli while losowaliśmy liczbę z zakresu od 1 do 100. Osiągnęliśmy
to w dość prosty sposób:

int nWylosowana = rand() % 100 + 1;

Wykorzystanie operatora reszty z dzielenia sprawia, że nasza dowolna wartość (zwrócona
przez rand()) zostaje odpowiednio „przycięta” – w tym przypadku do przedziału <0; 99>
(ponieważ resztą z dzielenia przez sto może być 0, 1, 2, …, 98, 99). Dodanie jedynki
zmienia ten zakres do pożądanego <1; 100>.
W podobny sposób możemy uzyskać losową liczbę z jakiegokolwiek przedziału. Nie od
rzeczy będzie nawet napisanie odpowiedniej funkcji:

int random(int nMin, int nMax)
 { return rand() % (nMax - nMin + 1) + nMin; }

Używając jej, potrafimy bez trudu stworzyć chociażby symulator rzutu kostką do gry:

void main()
{
 std::cout << "Wylosowano " << random(1, 6) << " oczek.";
 getch();
}

Zdaje się jednak, że coś jest nie całkiem w porządku… Uruchamiając parokrotnie
powyższy program, za każdym razem zobaczymy jedną i tą samą liczbę! Gdzie jest więc
ta obiecywana losowość?!

Cóż, nie ma w tym nic dziwnego. Komputer to tylko wielkie liczydło, które działa w
zaprogramowany i przewidywalny sposób. Dotyczy to także funkcji rand(), której
działanie opiera się na raz ustalonym i niezmiennym algorytmie. Jej wynik nie jest zatem
w żaden sposób losowany, lecz wyliczany na podstawie formuł matematycznych.
Dlatego też liczby uzyskane w ten sposób nazywamy pseudolosowymi, ponieważ tylko
udają prawdziwą przypadkowość.
Wydawać by się mogło, że fakt ten czyni je całkowicie nieprzydatnymi. Na szczęście nie
jest to prawdą: liczby pseudolosowe można z powodzeniem wykorzystywać we
właściwym im celu – pod warunkiem, że robimy to poprawnie.

Musimy bowiem pamiętać, aby przed pierwszym użyciem rand() wywołać inną funkcję –
srand():

void srand(unsigned int seed);

Jej parametr seed to tak zwane ziarno. Jest to liczba, która inicjuje generator wartości
pseudolosowych. Dla każdego możliwego ziarna funkcja rand() oblicza nam inny ciąg
liczb. Zatem, logicznie wnioskując, powinniśmy dbać o to, by przy każdym uruchomieniu
programu wartość ziarna była inna.
Dochodzimy tym samym do pozornie błędnego koła – żeby uzyskać liczbę losową,
potrzebujemy… liczby losowej! Jak rozwiązać ten, zdawałoby się, nierozwiązywalny
problem?…

Otóż należy znaleźć taką wartość, która będzie się zmieniać miedzy kolejnymi
uruchomieniami programu. Nietrudno ją wskazać – to po prostu czas systemowy.
Jego pobranie jest bardzo łatwe, bowiem C++ udostępnia nam zgrabną funkcję time(),
zwracająca aktualny czas44 w sekundach:

44 Funkcja ta zwraca liczbę sekund, jakie upłynęły od północy 1 stycznia 1970 roku.

Operacje na zmiennych 123

time_t time(time_t* timer);

Być może wygląda ona dziwnie, ale zapewniam cię, że działa świetnie :) Wymaga jednak,
abyśmy dołączyli do programu dodatkowy nagłówek ctime:

#include <ctime>

Teraz mamy już wszystko, co potrzebne. Zatem do dzieła! Nasza prosta aplikacja
powinna obecnie wyglądać tak:

// Random - losowanie liczby

#include <iostream>
#include <ctime>
#include <conio.h>

int random(int nMin, int nMax) { return rand() % nMax + nMin; }

void main()
{
 // zainicjowanie generatora liczb pseudolosowych aktualnym czasem
 srand (static_cast<unsigned int>(time(NULL)));

 // wylosowanie i pokazanie liczby
 std::cout << "Wylosowana liczba to " << random(1, 6) << std::endl;

 getch();
}

Kompilacja i kilkukrotne uruchomienie powyższego kodu utwierdzi nas w przekonaniu, iż
tym razem wszystko funkcjonuje poprawnie.

Screen 27. Przykładowy rezultat „rzutu kostką”

Dzieje się tak naturalnie za sprawą tej linijki:

srand (static_cast<unsigned int>(time(NULL)));

Wywołuje ona funkcję srand(), podając jej ziarno uzyskane poprzez time(). Ze względu
na to, iż time() zwraca wartość należącą do specjalnego typu time_t, potrzebne jest
rzutowanie jej na typ unsigned int.
Wyjaśnienia wymaga jeszcze parametr funkcji time(). NULL to tak zwany wskaźnik
zerowy, niereprezentujący żadnej przydatnej wartości. Używamy go tutaj, gdyż nie
mamy nic konkretnego do przekazania dla funkcji, zaś ona sama niczego takiego od nas
nie wymaga :)

Kompletny opis funkcji rand(), srand() i time() znajdziesz, jak poprzednio, w MSDN.

Zaokrąglanie liczb rzeczywistych
Gdy poznawaliśmy rzutowanie typów, podałem jako przykład konwersję wartości float
na int. Wspomniałem też, że zastosowane w tym przypadku zaokrąglenie liczby
rzeczywistej polega na zwyczajnym odrzuceniu jej części ułamkowej.

Podstawy programowania 124

Nie jest to wszakże jedyny sposób dokonywania podobnej zamiany, gdyż C++ posiada
też dwie specjalnie do tego przeznaczone funkcje. Działają one w inaczej niż zwykłe
rzutowanie, co samo w sobie stanowi dobry pretekst do ich poznania :D

Owe dwie funkcje są sobie wzajemnie przeciwstawne – jedna zaokrągla liczbę w górę
(wynik jest zawsze większy lub równy podanej wartości), zaś druga w dół (rezultat jest
mniejszy lub równy). Świetne obrazują to ich nazwy, odpowiednio: ceil() (ang. ceiling –
sufit) oraz floor() (‘podłoga’).
Przyjrzyjmy się teraz nagłówkom tych funkcji:

double ceil(double x);
double floor(double x);

Nie ma tu żadnych niespodzianek – no, może poza typem zwracanego wyniku. Dlaczego
nie jest to int? Otóż typ double ma po prostu większą rozpiętość przedziału wartości,
jakie może przechowywać. Ponieważ argument funkcji także należy do tego typu,
zastosowanie int spowodowałoby otrzymywanie błędnych rezultatów dla bardzo dużych
liczb (takich, jakie „nie zmieściłyby się” do int’a).

Na koniec mamy jeszcze kilka przykładów, ilustrujących działanie poznanych przed chwilą
funkcji:

fX = ceil(6.2); // 7.0
fX = ceil(-5.6); // -5.0
fX = ceil(14); // 14.0
fX = floor(1.7); // 1.0
fX = floor(-2.1); // -3.0

Szczególnie dociekliwych czeka kolejna wycieczka wgłąb MSDN po dokładny opis funkcji
ceil() i floor() ;D

Inne funkcje
Ostatnie dwie formuły trudno przyporządkować do jakiejś konkretnej grupy. Nie znaczy
to jednak, że są one mniej ważne niż pozostałe.

Pierwszą z nich jest abs() (ang. absolute value), obliczająca wartość bezwzględną
(moduł) danej liczby. Jak pamiętamy z matematyki, wartość ta jest tą samą liczbą, lecz
bez znaku – zawsze dodatnią.
Ciekawa jest deklaracja funkcji abs(). Istnieje bowiem kilka jej wariantów, po jednym
dla każdego typu liczbowego:

int abs(int n);
float abs(float n);
double abs(double n);

Jest to jak najbardziej możliwe i w pełni poprawne. Zabieg taki nazywamy
przeciążaniem (ang. overloading) funkcji.

Przeciążanie funkcji (ang. function overloading) to obecność kilku deklaracji funkcji o
tej samej nazwie, lecz posiadających różne listy parametrów i/lub typy zwracanej
wartości.

Gdy więc wywołujemy funkcję abs(), kompilator stara się wydedukować, który z jej
wariantów powinien zostać uruchomiony. Czyni to przede wszystkim na podstawie
przekazanego doń parametru. Jeżeli byłaby to liczba całkowita, zostałaby wywołana

Operacje na zmiennych 125

wersja przyjmująca i zwracająca typ int. Jeżeli natomiast podalibyśmy liczbę
zmiennoprzecinkową, wtedy do akcji wkroczyłby inny wariant funkcji.
Zatem dzięki mechanizmowi przeciążania funkcja abs() może operować na różnych
typach liczb:

int nX = abs(-45); // 45
float fX = abs(7.5); // 7.5
double fX = abs(-27.8); // 27.8

Druga funkcja to fmod(). Działa ona podobnie do operatora %, gdyż także oblicza resztę z
dzielenia dwóch liczb. Jednak w przeciwieństwie do niego nie ogranicza się jedynie do
liczb całkowitych, bowiem potrafi operować także na wartościach rzeczywistych. Widać to
po jej nagłówku:

double fmod(double x, double y);

Funkcja ta wykonuje dzielenie x przez y i zwraca pozostałą zeń resztę, co oczywiście
łatwo wydedukować z jej nagłówka :) Dla porządku zerknijmy jeszcze na parę
przykładów:

fX = fmod(14, 3); // 2
fX = fmod(2.75, 0.5); // 0.25
fX = fmod(-10, 3); // -1

Wielbiciele MSDN mogą zacierać ręce, gdyż z pewnością znajdą w niej szczegółowe opisy
funkcji abs()45 i fmod() ;)

Zakończyliśmy w ten sposób przegląd asortymentu funkcji liczbowych, oferowanego
przez C++. Przyswoiwszy sobie wiadomości o tych formułach będziesz mógł robić z
liczbami niemal wszystko, co tylko sobie zamarzysz :)

Znane i nieznane operatory
Dobrze wiemy, że funkcje to nie jedyne środki służące do manipulacji wartościami
liczbowymi. Od początku używaliśmy do tego przede wszystkim operatorów, które
odpowiadały doskonale nam znanym podstawowym działaniom matematycznym.
Nadarza się dobra okazja, aby przypomnieć sobie o tych elementach języka C++, przy
okazji poszerzając swoje informacje o nich.

Dwa rodzaje
Operatory w C++ możemy podzielić na dwie grupy ze względu na liczbę „parametrów”,
na których działają. Wyróżniamy więc operatory unarne – wymagające jednego
„parametru” oraz binarne – potrzebujące dwóch.

Do pierwszej grupy należą na przykład symbole + oraz -, gdy stawiamy je przed jakimś
wyrażeniem. Wtedy bowiem nie pełnią roli operatorów dodawania i odejmowania, lecz
zachowania lub zmiany znaku. Może brzmi to dość skomplikowanie, ale naprawdę jest
bardzo proste:

int nX = 5;

45 Standardowo dołączona do Visual Studio .NET biblioteka MSDN posiada lekko nieaktualny opis tej funkcji –
nie są tam wymienione jej wersje przeciążane dla typów float i double.

Podstawy programowania 126

int nY = +nX; // nY == 5
nY = -nX; // nY == -5

Operator + zachowuje nam znak wyrażenia (czyli praktycznie nie robi nic, dlatego zwykle
się go nie stosuje), zaś – zmienia go na przeciwny (neguje wyrażenie). Operatory te
mają identyczną funkcję w matematyce, dlatego, jak sądzę, nie powinny sprawić ci
większego kłopotu :)
Do grupy operatorów unarnych zaliczamy również ++ oraz --, odpowiadające za
inkrementację i dekrementację. Za chwilę przyjrzymy im się bliżej.

Drugi zestaw to operatory binarne; dla nich konieczne są dwa argumenty. Do tej grupy
należą wszystkie poznane wcześniej operatory arytmetyczne, a więc + (dodawanie), -
(odejmowanie), * (mnożenie), / (dzielenie) oraz % (reszta z dzielenia).
Ponieważ swego czasu poświęciliśmy im sporo uwagi, nie będziemy teraz dogłębnie
wnikać w działanie każdego z nich. Więcej miejsca przeznaczymy tylko na operator
dzielenia.

Sekrety inkrementacji i dekrementacji
Operatorów ++ i -- używamy, aby dodać do zmiennej lub odjąć od niej jedynkę. Taki
zapis jest najkrótszy i najwygodniejszy, a poza tym najszybszy. Używamy go szczególnie
często w pętlach for.

Jednak może być on także częścią złożonych wyrażeń. Poniższe fragmenty kodu są
absolutnie poprawne i w dodatku nierzadko spotykane:

int nA = 6;
int nB = ++nA;

int nC = 4;
int nD = nC++;

Od tej pory będę mówił jedynie o operatorze inkrementacji, jednak wszystkie
przedstawione tu własności dotyczą także jego dekrementującego brata.

Nasuwa się naturalne pytanie: jakie wartości będą miały zmienne nA, nB, nC i nD po
wykonaniu tych czterech linijek kodu?

Jeżeli chodzi o nA i nC, to sprawa jest oczywista. Każda z tych zmiennych została
jednokrotnie poddana inkrementacji, zatem ich wartości są o jeden większe niż na
początku. Wynoszą odpowiednio 7 i 5.
Pozostałe zmienne są już twardszym orzechem do zgryzienia. Skupmy się więc chwilowo
na nB. Jej wartość na pewno ma coś wspólnego z wartością nA - może to być albo 6
(liczba przed inkrementacją), albo 7 (już po inkrementacji). Analogicznie, nD może być
równa 4 (czyli wartości nC przed inkrementacją) lub 5 (po inkrementacji).

Jak jest w istocie? Sam się przekonaj! Stwórz nowy program, wpisz do jego funkcji
main() powyższe wiersze kodu i dodaj instrukcje pokazujące wartości zmiennych…

Cóż widzimy? Zmienna nB jest równa 7, a więc została jej przypisana wartość nA już po
inkrementacji. Natomiast nD równa się 4 - tyle, co nC przed inkrementacją.
Przyczyną tego faktu jest rzecz jasna rozmieszczenie plusów. Gdy napisaliśmy je przed
inkrementowaną zmienną, dostaliśmy w wyniku wartość zwiększoną o 1. Kiedy zaś
umieściliśmy je za tą zmienną, otrzymaliśmy jeszcze stary rezultat.
Jak zatem mogliśmy się przekonać, odpowiednie zapisanie operatorów ++ i -- ma
całkiem spore znaczenie.

Operacje na zmiennych 127

Umieszczenie operatora ++ (--) przed wyrażeniem nazywamy preinkrementacją
(predekrementacją). W takiej sytuacji najpierw dokonywane jest zwiększenie
(zmniejszenie) jego wartości o 1. Nowa wartość jest potem zwracana jako wynik.

Kiedy napiszemy operator ++ (--) po wyrażeniu, mamy do czynienia z
postinkrementacją (postdekrementacją). W tym przypadku najpierw następuje
zwrócenie wartości, która dopiero potem jest zwiększana (zmniejszana) o jeden46.

Czyżby trzeba było tych regułek uczyć się na pamięć? Oczywiście, że nie :) Jak większość
rzeczy w programowaniu, możemy je traktować intuicyjnie.
Kiedy napiszemy plusy (lub minusy) przed zmienną, wtedy najpierw „zadziałają”
właśnie one. A skutkiem ich działania będzie inkrementacja lub dekrementacja wartości
zmiennej, a więc otrzymamy w rezultacie już zmodyfikowaną liczbę.
Gdy zaś umieścimy je za nazwą zmiennej, ustąpią jej pierwszeństwa i pozwolą, aby jej
stara wartość została zwrócona. Dopiero potem wykonają swoją pracę, czyli
in/dekrementację.

Jeżeli mamy możliwość dokonania wyboru między dwoma położeniami operatora ++ (lub
--), powinniśmy zawsze używać wariantu prefiksowego (przed zmienną). Wersja
postfiksowa musi bowiem utworzyć w pamięci kopię zmiennej, żeby móc zwrócić jej starą
wartość po in/dekrementacji. Cierpi na tym zarówno szybkość programu, jak i jego
wymagania pamięciowe (chociaż w przypadku typów liczbowych jest to niezauważalna
różnica).

Słówko o dzieleniu
W programowaniu mamy do czynienia z dwoma rodzajami dzielenia liczb:
całkowitoliczbowym oraz zmiennoprzecinkowym. Oba zwracają te same rezultaty w
przypadku podzielnych przez siebie liczb całkowitych, ale w innych sytuacjach zachowują
się odmiennie.
Dzielenie całkowitoliczbowe podaje jedynie całkowitą część wyniku, odrzucając cyfry po
przecinku. Z tego powodu wynik takiego dzielenia może być bezpośrednio przypisany do
zmiennej typu całkowitego. Wtedy jednak traci się dokładność ilorazu.
Dzielenie zmiennoprzecinkowe pozwala uzyskać precyzyjny rezultat, gdyż zwraca liczbę
rzeczywistą wraz z jej częścią ułamkową. Ów wynik musi być wtedy zachowany w
zmiennej typu rzeczywistego.

Większa część języków programowania rozróżnia te dwa typy dzielenia poprzez
wprowadzenie dwóch odrębnych operatorów dla każdego z nich47. C++ jest tu swego
rodzaju wyjątkiem, ponieważ posiada tylko jeden operator dzielący, /. Jednakże
posługując się nim odpowiednio, możemy uzyskać oba rodzaje ilorazów.

Zasady, na podstawie których wyróżniane są w C++ te dwa typy dzielenia, są ci już
dobrze znane. Przedstawiliśmy je sobie podczas pierwszego spotkania z operatorami
arytmetycznymi. Ponieważ jednak powtórzeń nigdy dość, wymienimy je sobie
ponownie :)

Jeżeli obydwa argumenty operatora / (dzielna i dzielnik) są liczbami całkowitymi, wtedy
wykonywane jest dzielenie całkowitoliczbowe.

46 To uproszczone wyjaśnienie, bo przecież zwrócenie wartości kończyłoby działanie operatora. Naprawdę więc
wartość wyrażenia jest tymczasowo zapisywana i zwracana po dokonaniu in/dekrementacji.
47 W Visual Basicu jest to \ dla dzielenia całkowitoliczbowego i / dla zmiennoprzecinkowego. W Delphi
odpowiednio div i /.

Podstawy programowania 128

W przypadku, gdy chociaż jedna z liczb biorących udział w dzieleniu jest typu
rzeczywistego, mamy do czynienia z dzieleniem zmiennoprzecinkowym.

Od chwili, w której poznaliśmy rzutowanie, mamy większą kontrolę nad dzieleniem.
Możemy bowiem łatwo zmienić typ jednej z liczb i w ten sposób spowodować, by został
wykonany inny rodzaj dzielenia. Możliwe staje się na przykład uzyskanie dokładnego
ilorazu dwóch wartości całkowitych:

int nX = 12;
int nY = 5;
float fIloraz = nX / static_cast<float>(nY);

Tutaj uzyskamy precyzyjny rezultat 2.4, gdyż kompilator przeprowadzi dzielenie
zmiennoprzecinkowe. Zrobi tak, bo drugi argument operatora /, mimo że ma wartość
całkowitą, jest traktowany jako wyrażenie typu float. Dzieje się tak naturalnie dzięki
rzutowaniu.
Gdybyśmy go nie zastosowali i wpisali po prostu nX / nY, wykonałoby się dzielenie
całkowitoliczbowe i ułamkowa część wyniku zostałaby obcięta. Ten okrojony rezultat
zmieniłby następnie typ na float (ponieważ przypisalibyśmy go do zmiennej
rzeczywistej), co byłoby zupełnie zbędne, gdyż i tak w wyniku dzielenia dokładność
została stracona.

Prosty wniosek brzmi: uważajmy, jak i co tak naprawdę dzielimy, a w razie wątpliwości
korzystajmy z rzutowania.

Kończący się właśnie podrozdział prezentował podstawowe instrumentarium operacyjne
wartości liczbowych w C++. Poznając je zyskałeś potencjał do tworzenia aplikacji
wykorzystujących złożone obliczenia, do których niewątpliwie należą także gry.

Jeżeli czujesz się przytłoczony nadmiarem matematyki, to mam dla ciebie dobrą
wiadomość: nasza uwaga skupi się teraz na zupełnie innym, lecz również ważnym typie
danych - tekście.

Łańcuchy znaków
Ciągi znaków (ang. strings) stanowią drugi, po liczbach, ważny rodzaj informacji
przetwarzanych przez programy. Chociaż zajmują więcej miejsca w pamięci niż dane
binarne, a operacje na nich trwają dłużej, mają wiele znaczących zalet. Jedną z nich jest
fakt, iż są bardziej zrozumiałe dla człowieka niż zwykłe sekwencje bitów. W czasie, gdy
moce komputerów rosną bardzo szybko, wymienione wcześniej wady nie są natomiast aż
tak dotkliwe. Wszystko to powoduje, że dane tekstowe są coraz powszechniej spotykane
we współczesnych aplikacjach.

Duża jest w tym także rola Internetu. Takie standardy jak HTML czy XML są przecież
formatami tekstowymi.

Dla programistów napisy były od zawsze przyczyną częstych bólów głowy. W
przeciwieństwie bowiem do typów liczbowych, mają one zmienny rozmiar, który nie
może być ustalony raz podczas uruchamiania programu. Ilość pamięci operacyjnej, którą
zajmuje każdy napis musi być dostosowywana do jego długości (liczby znaków) i
zmieniać się podczas działania aplikacji. Wymaga to dodatkowego czasu (od programisty

Operacje na zmiennych 129

i od komputera), uwagi oraz dokładnego przemyślenia (przez programistę, nie
komputer ;D) mechanizmów zarządzania pamięcią.
Zwykli użytkownicy pecetów - szczególnie ci, którzy pamiętają jeszcze zamierzchłe czasy
DOSa - także nie mają dobrych wspomnień związanych z danymi tekstowymi. Odwieczne
kłopoty z polskimi „ogonkami” nadal dają o sobie znać, choć na szczęście coraz rzadziej
musimy oglądać na ekranie dziwne „krzaczki” zamiast znajomych liter w rodzaju ą, ć, ń
czy ź.

Wydaje się więc, że przed koderem piszącym programy przetwarzające tekst piętrzą się
niebotyczne wręcz trudności. Problemy są jednak po to, aby je rozwiązywać (lub by inni
rozwiązywali je za nas ;)), więc oba wymienione dylematy doczekały się już wielu bardzo
dobrych pomysłów.
Rozszerzające się wykorzystanie standardu Unicode ograniczyło już znacznie kłopoty
związane ze znakami specyficznymi dla niektórych języków. Kwestią czasu zdaje się
chwila, gdy znikną one zupełnie.
Powstało też mnóstwo sposobów na efektywne składowanie napisów o zmiennej długości
w pamięci komputera. Wprawdzie w tym przypadku nie ma jednego, wiodącego trendu
zapewniającego przenośność między wszystkimi platformami sprzętowymi lub chociaż
aplikacjami, jednak i tak sytuacja jest znacznie lepsza niż jeszcze kilka lat temu48.
Koderzy mogą więc sobie pozwolić na uzasadniony optymizm :)

Wsparci tymi pokrzepiającymi faktami możemy teraz przystąpić do poznawania
elementów języka C++, które służą do pracy z łańcuchami znaków.

Napisy według C++
Trudno w to uwierzyć, ale poprzednik C++ - język C - w ogóle nie posiadał odrębnego
typu zmiennych, mogącego przechowywać napisy. Aby móc operować danymi
tekstowymi, trzeba było używać mało poręcznych tablic znaków (typu char) i samemu
dbać o zagadnienia związane z przydzielaniem i zwalnianiem pamięci.
Nam, programistom C++, nic takiego na szczęście nie grozi :) Nasz ulubiony język jest
bowiem wyposażony w kilka bardzo przydatnych i łatwych w obsłudze mechanizmów,
które udostępniają możliwość manipulacji tekstem.

Rozwiązania, o których będzie mowa poniżej, są częścią Biblioteki Standardowej języka
C++. Jako że jest ona dostępna w każdym kompilatorze tego języka, sposoby te są
najbardziej uniwersalne i przenośne, a jednocześnie wydajne. Korzystanie z nich jest
także bardzo wygodne i łatwe.
Oprócz nich istnieją również inne metody obsługi łańcuchów znaków. Na przykład
biblioteki MFC i VCL (wspomagające programowanie w Windows) posiadają własne
narzędzia, służące temu właśnie celowi49. Nawet jeżeli skorzystasz kiedyś z tych
bibliotek, będziesz mógł wciąż używać opisanych tutaj mechanizmów standardowych.

Aby móc z nich skorzystać, należy przede wszystkim włączyć do swojego kodu plik
nagłówkowy string:

#include <string>

Po tym zabiegu zyskujemy dostęp do całego arsenału środków programistycznych,
służących operacjom tekstowym.

48 Dużą zasługę ma w tym ustandaryzowanie języka C++, w którym powstaje ponad połowa współczesnych
aplikacji. W przyszłości znaczącą rolę mogą odegrać także rozwiązania zawarte w platformie .NET.
49 MFC (Microsoft Foundation Classes) zawiera przeznaczoną do tego klasę CString, zaś VCL (Visual Component
Library) posiada typ String, który jest częścią kompilatora C++ firmy Borland.

Podstawy programowania 130

Typy zmiennych tekstowych
Istnieją dwa typy zmiennych tekstowych, które różnią się rozmiarem pojedynczego
znaku. Ujmuje je poniższa tabelka:

nazwa typ znaku rozmiar znaku zastosowanie
std::string char 1 bajt tylko znaki ANSI
std::wstring wchar_t 2 bajty znaki ANSI i Unicode

Tabela 6. Typy łańcuchów znaków

std::string jest ci już dobrze znany, gdyż używaliśmy go niejednokrotnie. Przechowuje
on dowolną (w granicach dostępnej pamięci) ilość znaków, z których każdy jest typu
char. Zajmuje więc dokładnie 1 bajt i może reprezentować jeden z 256 symboli
zawartych w tablicy ANSI.

Wystarcza to do przechowywania tekstów w językach europejskich (choć wymaga
specjalnych zabiegów, tzw. stron kodowych), jednak staje się niedostateczne w
przypadku dialektów o większej liczbie znaków (na przykład wschodnioazjatyckich).
Dlatego wykoncypowano, aby dla pojedynczego symbolu przeznaczać większą ilość
bajtów i w ten sposób stworzono MBCS (Multi-Byte Character Sets - wielobajtowe
zestawy znaków) w rodzaju Unicode.
Nie mamy tu absolutnie czasu ani miejsca na opisywanie tego standardu. Warto jednak
wiedzieć, że C++ posiada typ łańcuchowy, który umożliwia współpracę z nim - jest to
std::wstring (ang. wide string - „szeroki” napis). Każdy jego znak jest typu wchar_t
(ang. wide char - „szeroki” znak) i zajmuje 2 bajty. Łatwo policzyć, że umożliwia tym
samym przechowywanie jednego z aż 65536 (2562) możliwych symboli, co stanowi
znaczny postęp w stosunku do ANSI :)
Korzystanie z std::wstring niewiele różni się przy tym od używania jego bardziej
oszczędnego pamięciowo kuzyna. Musimy tylko pamiętać, żeby poprzedzać literką L
wszystkie wpisane do kodu stałe tekstowe, które mają być trzymane w zmiennych typu
std::wstring. W ten sposób bowiem mówimy kompilatorowi, że chcemy zapisać dany
napis w formacie Unicode. Wygląda to choćby tak:

std::wstring strNapis = L"To jest tekst napisany znakami dwubajtowymi";

Dobra wiadomość jest taka, że jeśli zapomniałbyś o wspomnianej literce L, to powyższy
kod w ogóle by się nie skompilował ;D

Jeżeli chciałbyś wyświetlać takie „szerokie” napisy w konsoli i umożliwić użytkownikowi
ich wprowadzanie, musisz użyć specjalnych wersji strumieni wejścia i wyjścia. Są to
odpowiednio std::wcin i std::wcout. Używa się ich w identyczny sposób, jak poznanych
wcześniej „zwykłych” strumieni std::cin i std::cout.

Manipulowanie łańcuchami znaków
OK, gdy już znamy dwa typy zmiennych tekstowych, jakie oferuje C++, czas zobaczyć
możliwe działania, które możemy na nich przeprowadzać.

Inicjalizacja
Najprostsza deklaracja zmiennej tekstowej wygląda, jak wiemy, mniej więcej tak:

std::string strNapis;

Operacje na zmiennych 131

Wprowadzona w ten sposób nowa zmienna jest z początku całkiem pusta - nie zawiera
żadnych znaków. Jeżeli chcemy zmienić ten stan rzeczy, możemy ją zainicjalizować
odpowiednim tekstem - tak:

std::string strNapis = "To jest jakis tekst";

albo tak:

std::string strNapis("To jest jakis tekst");

Ten drugi zapis bardzo przypomina wywołanie funkcji. Istotnie, ma on z nimi wiele
wspólnego - na tyle dużo, że możliwe jest nawet zastosowanie drugiego parametru, na
przykład:

std::string strNapis("To jest jakis tekst", 7);

Jaki efekt otrzymamy tą drogą? Otóż do naszej zmiennej zostanie przypisany jedynie
fragment podanego tekstu - dokładniej mówiąc, będzie to podana w drugim parametrze
ilość znaków, liczonych od początku napisu. U nas jest to zatem sekwencja "To jest".

Co ciekawe, to wcale nie są wszystkie sposoby na inicjalizację zmiennej tekstowej.
Poznamy jeszcze jeden, który jest wyjątkowo użyteczny. Pozwala bowiem na uzyskanie
ściśle określonego „kawałka” danego tekstu. Rzućmy okiem na poniższy kod, aby
zrozumieć tą metodę:

std::string strNapis1 = "Jakis krotki tekst";
std::string strNapis2(strNapis1, 6, 6);

Tym razem mamy aż dwa parametry, które razem określają fragment tekstu zawartego
w zmiennej strNapis1. Pierwszy z nich (6) to indeks pierwszego znaku tegoż fragmentu
- tutaj wskazuje on na siódmy znak w tekście (gdyż znaki liczymy zawsze od zera!).
Drugi parametr (znowuż 6) precyzuje natomiast długość pożądanego urywka - będzie on
w tym przypadku sześcioznakowy.
Jeżeli takie opisowe wyjaśnienie nie bardzo do ciebie przemawia, spójrz na ten
poglądowy rysunek:

Schemat 7. Pobieranie wycinka tekstu ze zmiennej typu std::string

Widać więc czarno na białym (i na zielonym :)), że kopiowaną częścią tekstu jest wyraz
"krotki".

Podstawy programowania 132

Podsumowując, poznaliśmy przed momentem trzy nowe sposoby na inicjalizację
zmiennej typu tekstowego:

std::[w]string nazwa_zmiennej([L]"tekst");
std::[w]string nazwa_zmiennej([L]"tekst", ilość_znaków);
std::[w]string nazwa_zmiennej(inna_zmienna, początek [, długość]);

Ich składnia, podana powyżej, dokładnie odpowiada zaprezentowanym wcześniej
przykładowym kodom. Zaskoczenie może jedynie budzić fakt, że w trzeciej metodzie nie
jest obowiązkowe podanie długości kopiowanego fragmentu tekstu. Dzieje się tak, gdyż
w przypadku jej pominięcia pobierane są po prostu wszystkie znaki od podanego indeksu
aż do końca napisu.

Kiedy opuścimy parametr długość, wtedy trzeci sposób inicjalizacji staje się bardzo
podobny do drugiego. Nie możesz jednak ich mylić, gdyż w każdym z nich liczby
podawane jako drugi parametr znaczą coś innego. Wyrażają one albo ilość znaków,
albo indeks znaku, czyli wartości pełniące zupełnie odrębne role.

Łączenie napisów
Skoro zatem wiemy już wszystko, co wiedzieć należy na temat deklaracji i inicjalizacji
zmiennych tekstowych, zajmijmy się działaniami, jakie możemy nań wykonywać.

Jedną z najpowszechniejszych operacji jest złączenie dwóch napisów w jeden - tak zwana
konkatenacja. Można ją uznać za tekstowy odpowiednik dodawania liczb, szczególnie że
przeprowadzamy ją także za pomocą operatora +:

std::string strNapis1 = "gra";
std::string strNapis2 = "ty";
std::string strWynik = strNapis1 + strNapis2;

Po wykonaniu tego kodu zmienna strWynik przechowuje rezultat połączenia, którym są
oczywiście "graty" :D Widzimy więc, iż scalenie zostaje przeprowadzone w kolejności
ustalonej przez porządek argumentów operatora +, zaś pomiędzy poszczególnymi
składnikami nie są wstawiane żadne dodatkowe znaki. Nie rozminę się chyba z prawdą,
jeśli stwierdzę, że można było się tego spodziewać :)

Konkatenacja może również zachodzić między większą liczbą napisów, a także między
tymi zapisanymi w sposób dosłowny w kodzie:

std::string strImie = "Jan";
std::string strNazwisko = "Nowak";
std::string strImieINazwisko = strImie + " " + strNazwisko;

Tutaj otrzymamy personalia pana Nowaka zapisane w postaci ciągłego tekstu, ze spacją
wstawioną pomiędzy imieniem i nazwiskiem.

Jeśli chciałbyś połączyć dwa teksty wpisane bezpośrednio w kodzie (np. "jakis tekst" i
"inny tekst"), choćby po to żeby rozbić długi napis na kilka linijek, nie możesz
stosować do niego operatora +. Zapis "jakis tekst" + "inny tekst" będzie
niepoprawny i odrzucony przez kompilator.
Zamiast niego wpisz po prostu "jakis tekst" "inny tekst", stawiając między
obydwoma stałymi jedynie spacje, tabulatory, znaki końca wiersza itp.

Podobieństwo łączenia znaków do dodawania jest na tyle duże, iż możemy nawet używać
skróconego zapisu poprzez operator +=:

Operacje na zmiennych 133

std::string strNapis = "abc";
strNapis += "def";

W powyższy sposób otrzymamy więc sześć pierwszych małych liter alfabetu - "abcdef".

Pobieranie pojedynczych znaków
Ostatnią przydatną operacją na napisach, jaką teraz poznamy, jest uzyskiwanie
pojedynczego znaku o ustalonym indeksie.

Być może nie zdajesz sobie z tego sprawy, ale już potrafisz to zrobić. Zamierzony efekt
można bowiem osiągnąć, wykorzystując jeden ze sposobów na inicjalizację łańcucha:

std::string strNapis = "przykladowy tekst";
std::string strZnak(strNapis, 9, 1); // jednoznakowy fragment od ind. 9

Tak oto uzyskamy dziesiąty znak (przypominam, indeksy liczymy od zera!) z naszego
przykładowego tekstu - czyli 'w'.

Przyznasz jednak, że taka metoda jest co najmniej kłopotliwa i byłoby ciężko używać jej
na co dzień. Dobry C++ ma więc w zanadrzu inną konstrukcję, którą zobaczymy w
niniejszym przykładowym programie:

// CharCounter - zliczanie znaków

#include <string>
#include <iostream>
#include <conio.h>

unsigned ZliczZnaki(std::string strTekst, char chZnak)
{
 unsigned uIlosc = 0;

 for (unsigned i = 0; i <= strTekst.length() - 1; ++i)
 {
 if (strTekst[i] == chZnak)
 ++uIlosc;
 }

 return uIlosc;
}

void main()
{
 std::string strNapis;
 std::cout << "Podaj tekst, w ktorym maja byc zliczane znaki: ";
 std::cin >> strNapis;

 char chSzukanyZnak;
 std::cout << "Podaj znak, ktory bedzie liczony: ";
 std::cin >> chSzukanyZnak;

 std::cout << "Znak '" << chSzukanyZnak <<"' wystepuje w tekscie "
 << ZliczZnaki(strNapis, chSzukanyZnak) << " raz(y)."
 << std::endl;

 getch();
}

Podstawy programowania 134

Ta prosta aplikacja zlicza nam ilość wskazanych znaków w podanym napisie i wyświetla
wynik.

Screen 28. Zliczanie znaków w akcji

Czyni to poprzez funkcję ZliczZnaki(), przyjmującą dwa parametry: napis oraz znak,
który ma być liczony. Ponieważ jest to najważniejsza część naszego programu,
przyjrzymy się jej bliżej :)

Najbardziej oczywistym sposobem na dokonanie podobnego zliczania jest po prostu
przebiegnięcie po wszystkich znakach tekstu odpowiednią pętlą for i sprawdzanie, czy
nie są równe szukanemu znakowi. Każde udane porównanie skutkuje inkrementacją
zmiennej przechowującej wynik funkcji. Wszystko to dzieje się w poniższym kawałku
kodu:

for (unsigned i = 0; i <= strTekst.length() - 1; ++i)
{
 if (strTekst[i] == chZnak)
 ++uIlosc;
}

Jak już kilkakrotnie i natarczywie przypominałem, indeksy znaków w zmiennej tekstowej
liczymy od zera, zatem są one z zakresu <0; n-1>, gdzie n to długość tekstu. Takie też
wartości przyjmuje licznik pętli for, czyli i. Wyrażenie strTekst.length() zwraca nam
bowiem długość łańcucha strTekst.
Wewnątrz pętli szczególnie interesujące jest dla nas porównanie:

if (strTekst[i] == chZnak)

Sprawdza ono, czy aktualnie „przerabiany” przez pętlę znak (czyli ten o indeksie równym
i) nie jest takim, którego szukamy i zliczamy. Samo porównanie nie byłoby dla nas
niczym nadzwyczajnym, gdyby nie owe wyławianie znaku o określonym indeksie (w tym
przypadku i-tym). Widzimy tu wyraźnie, że można to zrobić pisząc po prostu żądany
indeks w nawiasach kwadratowych [] za nazwą zmiennej tekstowej.

Ze swej strony dodam tylko, że możliwe jest nie tylko odczytywanie, ale i zapisywanie
takich pojedynczych znaków. Gdybyśmy więc umieścili w pętli następującą linijkę:

strTekst[i] = '.';

zmienilibyśmy wszystkie znaki napisu strTekst na kropki.

Pamiętajmy, żeby pojedyncze znaki ujmować w apostrofy (''), zaś cudzysłowy ("")
stosować dla stałych tekstowych.

Tak oto zakończyliśmy ten krótki opis operacji na łańcuchach znaków w języku C++. Nie
jest to jeszcze cały potencjał, jaki oferują nam zmienne tekstowe, ale z pomocą

Operacje na zmiennych 135

zdobytych już wiadomości powinieneś radzić sobie całkiem nieźle z prostym
przetwarzaniem tekstu.

Na koniec tego rozdziału poznamy natomiast typ logiczny i podstawowe działania
wykonywane na nim. Pozwoli nam to między innymi łatwiej sterować przebiegiem
programu przy użyciu instrukcji warunkowych.

Wyrażenia logiczne
Sporą część poprzedniego rozdziału poświęciliśmy na omówienie konstrukcji sterujących,
takich jak na przykład pętle. Pozwalają nam one wpływać na przebieg wykonywania
programu przy pomocy odpowiednich warunków.
Nasze pierwsze wyrażenia tego typu były bardzo proste i miały dość ograniczone
możliwości. Przyszła więc pora na powtórzenie i rozszerzenie wiadomości na ten temat.
Zapewne bardzo się z tego cieszysz, prawda? ;)) Zatem niezwłocznie zaczynajmy.

Porównywanie wartości zmiennych
Wszystkie warunki w języku C++ opierają się na jawnym lub ukrytym porównywaniu
dwóch wartości. Najczęściej jest ono realizowane poprzez jeden ze specjalnych
operatorów porównania, zwanych czasem relacyjnymi. Wbrew pozorom nie są one
dla nas niczym nowym, ponieważ używaliśmy ich w zasadzie w każdym programie, w
którym musieliśmy sprawdzać wartość jakiejś zmiennej. W poniższej tabelce znajdziesz
więc jedynie starych znajomych :)

operator porównanie jest prawdziwe, gdy
== lewy argument jest równy prawemu
!= lewy argument nie jest równy prawemu (jest od niego różny)
> lewy argument ma większą wartość niż prawy
>= lewy argument ma wartość większą lub równą wartości prawego
< lewy argument ma mniejszą wartość niż prawy
<= lewy argument ma wartość mniejszą lub równą wartości prawego

Tabela 7. Operatory porównania w C++

Dodatkowym ułatwieniem jest fakt, że każdy z tych operatorów ma swój matematyczny
odpowiednik - na przykład dla >= jest to ≥, dla != mamy ≠ itd. Sądzę więc, że symbole te
nie będą ci sprawiać żadnych trudności. Gorzej może być z następnymi ;)

Operatory logiczne
Doszliśmy oto do sedna sprawy. Nowy rodzaj operatorów, który zaraz poznamy, jest
bowiem narzędziem do konstruowania bardziej skomplikowanych wyrażeń logicznych.
Dzięki nim możemy na przykład uzależnić wykonanie jakiegoś kodu od spełnienia kilku
podanych warunków lub tylko jednego z wielu ustalonych; możliwe są też bardziej
zakręcone kombinacje. Zaznajomienie się z tymi operatorami da nam więc pełną
swobodę sterowania działaniem programu.

Ubolewam, iż nie mogę przedstawić ciekawych i interesujących przykładowych
programów na ilustrację tego zagadnienia. Niestety, choć operatory logiczne są niemal
stale używane w programowaniu poważnych aplikacji, trudno o ewidentne przykłady ich
głównych zastosowań - może dlatego, że stosuje się je prawie do wszystkiego? :)
Musisz więc zadowolić się niniejszymi, dość trywialnymi kodami, ilustrującymi
funkcjonowanie tych elementów języka.

Podstawy programowania 136

Koniunkcja
Pierwszy z omawianych operatorów, oznaczany poprzez &&, zwany jest koniunkcją lub
iloczynem logicznym. Gdy wstawimy go między dwoma warunkami, pełni rolę spójnika
„i”. Takie wyrażenie jest prawdziwe tylko wtedy, kiedy oba te warunki są spełnione.
Operator ten można wykorzystać na przykład do sprawdzania przynależności liczby do
zadanego przedziału:

int nLiczba;
std::cout << "Podaj liczbe z zakresu 1-10: ";
std::cin >> nLiczba;

if (nLiczba >= 1 && nLiczba <= 10)
 std::cout << "Dziekujemy.";
else
 std::cout << "Nieprawidlowa wartosc!";

Kiedy dana wartość należy do przedziału <1; 10>? Oczywiście wtedy, gdy jest
jednocześnie większa lub równa jedynce i mniejsza lub równa dziesiątce. To właśnie
sprawdzamy w warunku:

if (nLiczba >= 1 && nLiczba <= 10)

Operator && zapewnia, że całe wyrażenie (nLiczba >= 1 && nLiczba <= 10) zostanie
uznane za prawdziwe jedynie w przypadku, gdy obydwa składniki (nLiczba >= 1,
nLiczba <= 10) będą przedstawiały prawdę. To jest właśnie istotą koniunkcji.

Alternatywa
Drugi rodzaj operacji, zwany alternatywą lub sumą logiczną, stanowi niejako
przeciwieństwo pierwszego. O ile koniunkcja jest prawdziwa jedynie w jednym, ściśle
określonym przypadku (gdy oba jej argumenty są prawdziwe), o tyle alternatywa jest
tylko w jednej sytuacji fałszywa. Dzieje się tak wtedy, gdy obydwa złączone nią
wyrażenia przedstawiają nieprawdę.
W C++ operatorem sumy logicznej jest ||, co widać na poniższym przykładzie:

int nLiczba;
std::cin >> nLiczba;

if (nLiczba < 1 || nLiczba > 10)
 std::cout << "Liczba spoza przedzialu 1-10.";

Uruchomienie tego kodu spowoduje wyświetlenie napisu w przypadku, gdy wpisana liczba
nie będzie należeć do przedziału <1; 10> (czyli odwrotnie niż w poprzednim przykładzie).
Naturalnie, stanie się tak wówczas, jeśli będzie ona mniejsza od 1 lub większa od 10.
Taki też warunek posiada instrukcja if, a osiągnęliśmy go właśnie dzięki operatorowi
alternatywy.

Negacja
Jak można było zauważyć, alternatywa nLiczba < 1 || nLiczba > 10 jest dokładnie
przeciwstawna koniunkcji nLiczba >= 1 && nLiczba <= 10 (co jest dość oczywiste -
przecież liczba nie może jednocześnie należeć i nie należeć do jakiegoś przedziału :D).
Warunki te znacznie różnią się od siebie: stosujemy w nich przecież różne działania
logiczne oraz porównania. Moglibyśmy jednak postąpić inaczej.
Aby zmienić sens wyrażenia na odwrotny - tak, żeby było prawdziwe w sytuacjach, kiedy
oznaczało fałsz i na odwrót - stosujemy operator negacji !. W przeciwieństwie do

Operacje na zmiennych 137

poprzednich, jest on unarny, gdyż przyjmuje tylko jeden argument: warunek do
zanegowania.
Stosując go dla naszej przykładowej koniunkcji:

if (nLiczba >= 1 && nLiczba <= 10)

otrzymalibyśmy wyrażenie:

if (!(nLiczba >= 1 && nLiczba <= 10))

które jest prawdziwe, gdy dana liczba nie należy do przedziału <1; 10>. Jest ono zatem
równoważne alternatywnie nLiczba < 1 || nLiczba > 10, a o to przecież nam
chodziło :)

W ten sposób (niechcący ;D) odkryliśmy też jedno z tzw. praw de Morgana. Mówi ono, że
zaprzeczenie (negacja) koniunkcji dwóch wyrażeń równe jest alternatywnie wyrażeń
przeciwstawnych. A ponieważ nLiczba >= 1 jest odwrotne do nLiczba < 1, zaś nLiczba
<= 10 do nLiczba > 10, możemy naocznie stwierdzić, że prawo to jest słuszne :)

Czasami więc użycie operatora negacji uwalnia od konieczności przekształcania złożonych
warunków na ich przeciwieństwa.

Zestawienie operatorów logicznych
Zasady funkcjonowania operatorów logicznych ujmuje się często w tabelki,
przedstawiające ich wartości dla wszystkich możliwych argumentów. Niekiedy nazywa się
je tablicami prawd (ang. truth tables). Nie powinno więc zabraknąć ich tutaj, zatem
czym prędzej je przedstawiam:

a b a && b a || b
prawda prawda prawda prawda
prawda fałsz fałsz prawda

fałsz prawda fałsz prawda
fałsz fałsz fałsz fałsz

a !a
prawda fałsz

fałsz prawda

Tabele 8 i 9. Rezultaty działania operatorów koniunkcji, alternatywy oraz negacji

Oczywiście, nie ma najmniejszej potrzeby, abyś uczył się ich na pamięć (a już się bałeś,
prawda? :D). Jeżeli uważnie przeczytałeś opisy każdego z operatorów, to tablice te będą
dla ciebie jedynie powtórzeniem zdobytych wiadomości.

Najważniejsze są bowiem proste reguły, rządzące omawianymi operacjami. Powtórzmy je
zatem raz jeszcze:

Koniunkcja (&&) jest prawdziwa tylko wtedy, kiedy oba jej argumenty są prawdziwe.

Alternatywa (||) jest fałszywa jedynie wówczas, gdy oba jej argumenty są fałszywe.

Negacja (!) powoduje zmianę prawdy na fałsz lub fałszu na prawdę.

Łączenie elementarnych wyrażeń przy pomocy operatorów pozwala na budowę dowolnie
skomplikowanych warunków, regulujących funkcjonowanie każdej aplikacji. Gdy
zaczniesz używać tych działań w swoich programach, zdziwisz się, jakim sposobem
mogłeś w ogóle kodować bez nich ;)

Podstawy programowania 138

Ponieważ operatory logiczne mają niższy priorytet niż operatory porównania, nie ma
potrzeby stosowania nawiasów w warunkach podobnych do tych zaprezentowanych.
Jeżeli jednak będziesz łączył większą liczbę wyrażeń logicznych, pamiętaj o używaniu
nawiasów - to zawsze rozstrzyga wszelkie nieporozumienia i pomaga w uniknięciu
niektórych błędów.

Typ bool

Przydatność wyrażeń logicznych byłaby dość ograniczona, gdyby można je było stosować
tylko w warunkach instrukcji if i pętli. Zdecydowanie przydałby się sposób na
zapisywanie wyników obliczania takich wyrażeń, by móc je potem choćby przekazywać do
i z funkcji.

C++ dysponuje rzecz jasna odpowiednim typem zmiennych, nadającym się to tego celu.
Jest nim tytułowy bool50. Można go uznać za najprostszy typ ze wszystkich, gdyż może
przyjmować jedynie dwie dozwolone wartości: prawdę (true) lub fałsz (false).
Odpowiada to prawdziwości lub nieprawdziwości wyrażeń logicznych.

Mimo oczywistej prostoty (a może właśnie dzięki niej?) typ ten ma całe multum różnych
zastosowań w programowaniu. Jednym z ciekawszych jest przerywanie wykonywania
zagnieżdżonych pętli:

bool bKoniec = false;

while (warunek_pętli_zewnętrznej)
{
 while (warunek_pętli_wewnętrznej)
 {
 kod_pętli

 if (warunek_przerwania_obu_pętli)
 {
 // przerwanie pętli wewnętrznej
 bKoniec = true;
 break;
 }
 }

 // przerwanie pętli zewnętrznej, jeżeli zmienna bKoniec
 // jest ustawiona na true
 if (bKoniec) break;
}

Widać tu klarownie, że zmienna typu bool reprezentuje wartość logiczną - możemy ją
bowiem bezpośrednio wpisać jako warunek instrukcji if; nie ma potrzeby korzystania z
operatorów porównania.

W praktyce często stosuje się funkcje zwracające wartość typu bool. Poprzez taki
rezultat mogą one powiadamiać o powodzeniu lub niepowodzeniu zleconej im czynności
albo sprawdzać, czy dane zjawisko zachodzi, czy nie.
Przyjrzyjmy się takiemu właśnie przykładowi funkcji:

// IsPrime - sprawdzanie, czy dana liczba jest pierwsza

50 Nazwa pochodzi od nazwiska matematyka George’a Boole’a, twórcy zasad logiki matematycznej (zwanej też
algebrą Boole’a).

Operacje na zmiennych 139

bool LiczbaPierwsza(unsigned uLiczba)
{
 if (uLiczba == 2) return true;

 for (unsigned i = 2; i <= sqrt(uLiczba); ++i)
 {
 if (uLiczba % i == 0)
 return false;
 }

 return true;
}

void main()
{
 unsigned uWartosc;
 std::cout << "Podaj liczbe: ";
 std::cin >> uWartosc;

 if (LiczbaPierwsza(uWartosc))
 std::cout << "Liczba " << uWartosc << " jest pierwsza.";
 else
 std::cout << "Liczba " << uWartosc<< " nie jest pierwsza.";

 getch();
}

Mamy tu funkcję LiczbaPierwsza() o prostym przeznaczeniu - sprawdza ona, czy
podana liczba jest pierwsza51, czy nie. Produkuje więc wynik, który może być
sklasyfikowany w kategoriach logicznych: prawdy (liczba jest pierwsza) lub fałszu (nie
jest). Naturalne jest zatem, aby zwracała wartość typu bool, co też czyni.

Screen 29. Określanie, czy wpisana liczba jest pierwsza

Wykorzystujemy ją od razu w odpowiedniej instrukcji if, przy pomocy której
wyświetlamy jeden z dwóch stosownych komunikatów. Dzięki temu, że funkcja
LiczbaPierwsza() zwraca wartość logiczną, wszystko wygląda ładnie i przejrzyście :)

Algorytm zastosowany tutaj do sprawdzania „pierwszości” podanej liczby jest chyba
najprostszy z możliwych. Opiera się na pomyśle tzw. sita Eratostenesa i, jak widać,
polega po prostu na sprawdzaniu po kolei wszystkich liczb jako potencjalnych dzielników,
aż do wartości pierwiastka kwadratowego badanej liczby.

Operator warunkowy
Z wyrażeniami logicznymi ściśle związany jest jeszcze jeden, bardzo przydatny i
wygodny, operator. Jest on kolejnym z licznych mechanizmów C++, które czynią
składnię tego języka niezwykle zwartą.

51 Liczba pierwsza to taka, która ma tylko dwa dzielniki - jedynkę i samą siebie.

Podstawy programowania 140

Mowa tu o tak zwanym operatorze warunkowym ?:. Użycie go pozwala na uniknięcie,
nieporęcznych niekiedy, instrukcji if. Nierzadko może się nawet przyczynić do poprawy
szybkości kodu.
Jego działanie najlepiej zilustrować na prostym przykładzie. Przypuśćmy, że mamy
napisać funkcję zwracają większą wartość spośród dwóch podanych52. Ochoczo
zabieramy się więc do pracy i produkujemy kod podobny do tego:

int max(int nA, int nB)
{
 if (nA > nB) return nA;
 else return nB;
}

Możemy jednak użyć operatora ?:, a wtedy funkcja przyjmie bardziej oszczędną postać:

int max(int nA, int nB)
{
 return (nA > nB ? nA : nB);
}

Znikła nam tu całkowicie instrukcja if, gdyż zastąpił ją nasz nowy operator. Porównując
obie (równoważne) wersje funkcji max(), możemy łatwo wydedukować jego działanie.

Wyrażenie zawierające tenże operator wygląda bowiem tak:

warunek ? wartość_dla_prawdy : wartość_dla_fałszu

Składa się więc z trzech części - dlatego ?: nazywany jest czasem operatorem
ternarnym, przyjmującym trzy argumenty (jako jedyny w C++).
Jego funkcjonowanie jest nadzwyczaj proste. Sprowadza się do obliczenia warunku oraz
podjęcia na jego podstawie odpowiedniej decyzji. Jeśli będzie on prawdziwy, operator
zwróci wartość_dla_prawdy, w innym przypadku - wartość_dla_fałszu.
Działalność ta jest w oczywisty sposób podobna do instrukcji if. Różnica polega na tym,
że operator warunkowy manipuluje wyrażeniami, a nie instrukcjami. Nie zmienia więc
przebiegu programu, lecz co najwyżej wyniki jego pracy.

Kiedy zatem należy go używać? Odpowiedź jest prosta: wszędzie tam, gdzie konstrukcja
if wykonuje te same instrukcje w obu swoich blokach, lecz operuje na różnych
wyrażeniach. W naszym przykładzie było to zawsze zwracanie wartości przez funkcję
(instrukcja return), jednak sam rezultat zależał od warunku.

I to już wszystko, co powinieneś wiedzieć na temat wyrażeń logicznych, ich
konstruowania i używania we własnych programach. Umiejętność odpowiedniego
stosowania złożonych warunków przychodzi z czasem, dlatego nie martw się, jeżeli na
razie wydają ci się one lekką abstrakcją. Pamiętaj, ćwiczenie czyni mistrza!

Podsumowanie
Nadludzkim wysiłkiem dobrnęliśmy wreszcie do samego końca tego niezwykle długiego i
niezwykle ważnego rozdziału. Poznałeś tutaj większość szczegółów dotyczących
zmiennych oraz trzech podstawowych typów wyrażeń. Cały ten bagaż będzie ci bardzo

52 Tutaj ograniczymy się tylko do liczb całkowitych i typu int.

Operacje na zmiennych 141

przydatny w dalszym kodowaniu, choć na razie możesz być o tym nieszczególnie
przekonany :)

Uzupełnieniem wiadomości zawartych w tym rozdziale może być Dodatek B,
Reprezentacja danych w pamięci. Jeżeli czujesz się na siłach, to zachęcam do jego
przeczytania :)

W kolejnym rozdziale nauczysz się korzystania ze złożonych struktur danych,
stanowiących chleb powszedni w poważnym kodowaniu - także gier.

Pytania i zadania
Nieubłaganie zbliża się starcie z pracą domową ;) Postaraj się zatem odpowiedzieć na
poniższe pytania oraz wykonać zadania.

Pytania
1. Co to jest zasięg zmiennej? Czym się różni zakres lokalny od modułowego?
2. Na czym polega zjawisko przesłaniania nazw?
3. Omów działanie poznanych modyfikatorów zmiennych.
4. Dlaczego zmienne bez znaku mogą przechowywać większe wartości dodatnie niż

zmienne ze znakiem?
5. Na czym polega rzutowanie i jakiego operatora należy doń używać?
6. Który plik nagłówkowy zawiera deklaracje funkcji matematycznych?
7. Jak nazywamy łączenie dwóch napisów w jeden?
8. Opisz funkcjonowanie operatorów logicznych oraz operatora warunkowego

Ćwiczenia
1. Napisz program, w którym przypiszesz wartość 3000000000 (trzy miliardy) do

dwóch zmiennych: jednej typu int, drugiej typu unsigned int. Następnie
wyświetl wartości obu zmiennych. Co stwierdzasz?
(Trudne) Czy potrafisz to wyjaśnić?
Wskazówka: zapoznaj się z podrozdziałem o liczbach całkowitych w Dodatku B.

2. Wymyśl nowe nazwy dla typów short int oraz long int i zastosuj je w programie
przykładowym, ilustrującym działanie operatora sizeof.

3. Zmodyfikuj nieco program wyświetlający tablicę znaków ANSI:
a) zamień cztery wiersze wyświetlające pojedynczy rząd znaków na jedną pętlę

for
b) zastąp rzutowanie w stylu C operatorem static_cast
c) (Trudniejsze) spraw, żeby program czekał na dowolny klawisz po całkowitym

zapełnieniu okna konsoli - tak, żeby użytkownik mógł spokojnie przeglądnąć
całą tablicę
Wskazówka: możesz założyć „na sztywno”, że konsola mieści 24 wiersze

4. Stwórz aplikację podobną do przykładu LinearEq z poprzedniego rozdziału, tyle
że rozwiązującą równania kwadratowe. Pamiętaj, aby uwzględnić wartość
współczynników, przy których równanie staje się liniowe (możesz wtedy użyć kodu
ze wspomnianego przykładu).
Wskazówka: jeżeli nie pamiętasz sposobu rozwiązywania równań kwadratowych
(wstyd! :P), możesz zajrzeć na przykład do encyklopedii WIEM.

5. Przyjrzyj się programowi sprawdzającemu, czy dana liczba jest pierwsza i spróbuj
zastąpić występującą tam instrukcję if-else operatorem warunkowym ?:.

http://wiem.onet.pl/wiem/00da60.html

