ZLOZONE ZMIENNE

Myli¢ sie jest rzecza ludzka,
ale zeby naprawde co$ spaprac
potrzeba komputera.

Edward Morgan Forster

Dzisiaj prawie zaden normalny program nie przechowuje swoich danych jedynie w
prostych zmiennych - takich, jakimi zajmowaliSmy sie do tej pory (tzw. skalarnych).
Istnieje mnéstwo réznych sytuacji, w ktorych sg one po prostu niewystarczajace, a
konieczne stajq sie bardziej skomplikowane konstrukcje. Wspomnijmy cho¢by o mapach
w grach strategicznych, tabelach w arkuszach kalkulacyjnych czy bazach danych
adresowych - wszystkie te informacje majg zbyt ztozong nature, aby daty sie przedstawic
przy pomocy pojedynczych zmiennych.

Szanujacy sie jezyk programowania powinien wiec udostepnia¢ odpowiednie konstrukcje,

stuzgce do przechowywania takich nieelementarnych typow danych. Naturalnie, C++
posiada takowe mechanizmy - zapoznamy sie z nimi w niniejszym rozdziale.

Tablice

Jezeli nasz zestaw danych sktada sie z wielu drobnych elementéow tego samego
rodzaju, jego najbardziej naturalnym ekwiwalentem w programowaniu bedzie tablica.

Tablica (ang. array) to zespot rownorzednych zmiennych, posiadajacych wspolng nazwe.
Jego poszczegdlne elementy sg rozrdéznianie poprzez przypisane im liczby - tak zwane
indeksy.

Kazdy element tablicy jest wiec zmienng nalezaca do tego samego typu. Nie ma tutaj
zadnych ograniczen: moze to by¢ liczba (w matematyce takie tablice nazywamy
wektorami), tancuch znakdéw (np. lista ucznidw lub pracownikéw), pojedynczy znak,
wartos$¢ logiczna czy jakikolwiek inny typ danych.

W szczegodlnosci, elementem tablicy moze by¢ takze... inna tablica! Takimi podwéjnie
- ztlozonymi przypadkami zajmiemy sie nieco dalej.

Po tej garsci ogdlnej wiedzy wstepnej, czas na cos$ przyjemniejszego - czyli przyktady :)

Proste tablice

Zadeklarowanie tablicy przypomina analogiczng operacje dla zwyktych (skalarnych)
zmiennych. Moze zatem wygladaé na przykfad tak:

int aKilkaLiczb[5];

144 Podstawy programowania

Jak zwykle, najpierw piszemy nazwe wybranego typu danych, a pdzniej oznaczenie samej
zmiennej (w tym przypadku tablicy - to takze jest zmienna). Nowoscig jest tu para
nawiaséw kwadratowych, umieszczona na koncu deklaracji. Wewnatrz niej wpisujemy
rozmiar tablicy, czyli ilo$¢ elementdéw, jakg ma ona zawierac. U nas jest to 5, a zatem z
tylu wtasnie liczb (kazdej typu int) bedzie skfadata sie nasza $wiezo zadeklarowana
tablica.

Skoro zesmy juz wprowadzili nowg zmienng, nalezatoby co$ z nig uczynic¢ - w koncu
niewykorzystana zmienna to zmarnowana zmienna :) Nadajmy wiec jakies wartosci jej
kolejnym elementom:

aKilkaLiczb[0] = 1;
aKilkalLiczb[1l] = 2;
aKilkaliczb[2] = 3;
aKilkaliczb[3] = 4;
aKlikaLiczb[4] = 5;

Tym razem takze korzystamy z nawiaséw kwadratowych. Teraz jednak uzywamy ich, aby
uzyskac¢ dostep do konkretnego elementu tablicy, identyfikowanego przez
odpowiedni indeks. Niewatpliwie bardzo przypomina to docieranie do okreslonego
znaku w zmiennej tekstowej (typu std: :string), aczkolwiek w przypadku tablic mozemy
mie¢ do czynienia z dowolnym rodzajem danych.

Analogia do faricuchow znakéw przejawia sie w jeszcze jednym fakcie - sg nim oczywiscie
indeksy kolejnych elementdéw tablicy. Identycznie jak przy napisach, liczymy je bowiem
od zera; tutaj sg to kolejno 0, 1, 2, 3 i 4. Na postawie tego przyktadu mozemy wiec
sformutowad bardziej ogolng zasade:

Tablica mieszczaca n elementoéw jest indeksowana wartosciami 0, 1, 2, ..., n-2, n-1.

Z regutg tg wigze sie tez bardzo wazne ostrzezenie:

W tablicy n-elementowej nie istnieje element o indeksie rownym n. Préba dostepu do
niego jest bardzo czestym btedem, zwanym przekroczeniem indeksoéw (ang. subscript
out of bounds).

Ponizsza linijka kodu spowodowataby zatem btad podczas dziatania programu i jego
awaryjne zakonczenie:

aKilkaLiczb[5] = 6; // BEAD!!!

Pamietaj wiec, by$ zwracat baczng uwage na indeksy tablic, ktérymi operujesz.

Przekroczenie indeksow to jeden z przedstawicieli licznej rodziny btedéw, noszgcych
. wspolne miano ,pomytek o jedynke”. Wiekszos$¢ z nich dotyczy wtasnie tablic, inne mozna |
' popetni¢ choéby przy pracy z liczbami pseudolosowymi: najwredniejszym jest chyba
- warunek w rodzaju rand() % 10 == 10, ktdry nigdy nie moze by¢ spetniony (pomysl,
~dlaczego®!).

Krytyczne spojrzenie na zaprezentowany kilka akapitow wyzej kawatek kodu moze
prowadzi¢ do wniosku, ze idea tablic nie ma wiekszego sensu. Przeciez rownie dobrze
moznaby zadeklarowac¢ 5 zmiennych i zajac¢ sie kazdg z nich osobno - podobnie jak
czynimy to teraz z elementami tablicy:

53 Reszta z dzielenia przez 10 moze by¢ z nazwy réwna jedynie liczbom o, 1, ..., 8, 9, zatem nigdy nie zréwna
sie z sama dziesiatkg. Programista chciat tu zapewne uzyska¢ wartos¢ z przedziatu <1; 10>, ale nie dodat
jedynki do wyrazenia - czyli pomylit sie o nig :)

Zlozone zmienne 145

int nLiczbal, nLiczba2, nLiczba3, nLiczba4, nLiczbab;

nLiczbal = 1;
nlLiczba?2 = 2;
// itd.

Takie rozumowanie jest pozornie stuszne... ale na szczescie, tylko pozornie! :D Uzycie
pieciu instrukcji - po jednej dla kazdego elementu tablicy - nie byto bowiem najlepszym
rozwigzaniem. O wiele bardziej naturalnym jest odpowiednia petla for:

for (int 1 = 0; 1 < 5; ++1) // drugim warunkiem moze by¢ tez i <= 4
aKilkalLiczb[i] = 1 + 1;

Jej zalety sq oczywiste: niezaleznie od tego, czy nasza tablica sktada sie z pieciu,
pieciuset czy pieciu tysiecy elementdéw, przytoczona petla jest w kazdym przypadku
niemal identyczna!

Tajemnica tego faktu tkwi rzecz jasna w indeksowaniu tablicy licznikiem petli, i.
Przyjmuje on odpowiednie wartosci (od zera do rozmiaru tablicy minus jeden), ktore
pozwalajg zajac sie catoscig tablicy przy pomocy jednej tylko instrukcji!

Taki manewr nie bytby mozliwy, gdybysmy uzywali tutaj pieciu zmiennych, zastepujacych
tablice. Ich ,indeksy” (bedace de facto czescig nazw) musiatyby by¢ bowiem statymi
wartosciami, wpisanymi bezposrednio do kodu. Nie datoby sie zatem skorzystac z petli
for w podobny sposob, jak to uczynilismy w przypadku tablic.

Inicjalizacja tablicy

Kiedy w tak szczegdtowy i szczegdlny sposdéb zajmujemy sie tablicami, fatwo mozemy
zapomnied, iz w gruncie rzeczy sg to takie same zmienne, jak kazde inne. Owszem,
sktadajq sie z wielu pojedynczych elementow (,podzmiennych”), ale nie przeszkadza to w
wykonywaniu nan wiekszosci znanych nam operacji. Jedng z nich jest inicjalizacja.

| Dzieki niej mozemy chociazby deklarowa¢ tablice bedace statymi.

Tablice mozemy zainicjalizowa¢ w bardzo prosty sposéb, unikajac przy tym wielokrotnych
przypisan (po jednym dla kazdego elementu):

int aKilkaliczb([5] = { 1, 2, 3, 4, 5 };

Kolejne wartosci wpisujemy w nawiasie klamrowym, oddzielajac je przecinkami. Zostang
one umieszczone w nastepujacych po sobie elementach tablicy, poczynajac od poczatku.
Tak wiec aKilkaLiczb[0] bedzie miat warto$¢ 1, akilkaliczb[1] - 2, itd. Uzyskamy
identyczny efekt, jak w przypadku poprzednich pieciu przypisan.

Interesujacq nowoscig w inicjalizacji tablic jest mozliwo$¢ pominiecia ich rozmiaru:

std::string aSystemyOperacyjne[] = {"Windows", "Linux'", "BeOS", "ONX"};
W takiej sytuacji kompilator ,domysli sie” prawidtowej wielkosci tablicy na podstawie
ilosci elementéw, jakg wpisaliSmy wewnatrz nawiaséow klamrowych (w tzw.
inicjalizatorze). Tutaj bedg to oczywiscie cztery napisy.

Inicjalizacja jest wiec catkiem dobrym sposobem na wstepne ustawienie wartosci
kolejnych elementow tablicy - szczegdlnie wtedy, gdy nie jest ich zbyt wiele i nie sg one
ze sobg jakos$ zwigzane. Dla duzych tablic nie jest to jednak efektywna metoda; w takich
wypadkach lepiej uzy¢ odpowiedniej petli for.

146 Podstawy programowania

Przyktad wykorzystania tablicy

Wiemy juz, jak teoretycznie wyglada praca z tablicami w jezyku C++, zatem naturalng
kolejq rzeczy bedzie teraz uwazne przygladniecie sie odpowiedniemu przyktfadowi. Ten
(spory :)) kawatek kodu wyglada nastepujaco:

// Lotto - uzycie proste]j tablicy liczb

const unsigned ILOSC LICZB = 6;
const int MAKSYMALNA LICZBA = 49;

void main ()
{
// deklaracja 1 wyzerowanie tablicy liczb
unsigned aLiczby[ILOSC LICZB];
for (int i = 0; i1 < ILOSC_LICZB; ++i)
alLiczby([i] = 0;

// losowanie liczb
srand (static cast<int>(time (NULL)));
for (int i = 0; i1 < ILOSC LICZB;)
{
// wylosowanie liczby
aLiczby[i] = rand() % MAKSYMALNA LICZBA + 1;

// sprawdzenie, czy sie ona nie powtarza
bool bPowtarzaSie = false;

for (int j = 0; j < 1i; ++73)

{

if (aLiczby[j] == alLiczbyl[i])
{
bPowtarzaSie = true;
break;

}

// Jezeli sie nie powtarza, przechodzimy do nastepne]j liczby
if (!bPowtarzaSie) ++i;

}

// wyswietlamy wylosowane liczby

std::cout << "Wyniki losowania:" << std::endl;

for (int 1 = 0; i < ILOSC LICZB; ++i)
std::cout << aliczby[i] << ™ ;

// czekamy na dowolny klawisz
getch () ;
}

Huh, trzeba przyznad, iz z pewnoscig nie nalezy on do elementarnych :) Nie jestes juz
jednak zupeinym nowicjuszem w sztuce programowania, wiec zrozumienie go nie
przysporzy ci wielkich ktopotow. Na poczatek sprobuj zobaczy¢ te przyktadowg aplikacje
w dziataniu:

Wyniki losowania:
44 47 6 28 1 21 _

Screen 30. Wysylanie kuponéw jest od dzisiaj zbedne ;-)

Zlozone zmienne 147

Nie potrzeba przenikliwosci Sherlocka Holmesa, by wydedukowac, ze program ten
dokonuje losowania zestawu liczb wedtug zasad znanej powszechnie gry loteryjnej. Te
reguty sg determinowane przez dwie state, zadeklarowane na samym poczatku kodu:

const unsigned ILOSC LICZB = 6;
const int MAKSYMALNA LICZBA = 49;

Ich nazwy sa na tyle znaczace, iz dokumentujg sie same. Wprowadzenie takich statych
ma tez inne wyrazne zalety, o ktérych wielokrotnie juz wspominali$my. Ewentualna
zmiana zasad losowania bedzie ograniczata sie jedynie do modyfikacji tychze dwdch
linijek, mimo ze te kluczowe wartosci sg wielokrotnie uzywane w catym programie.

Najwazniejszg zmienng w naszym kodzie jest oczywiscie tablica, ktora przechowuje
wylosowane liczby. Deklarujemy i inicjalizujemy ja zaraz na wstepie funkcji main () :

unsigned alLiczby[ILOSC LICZB];
for (int 1 = 0; i < ILOSC LICZB; ++1i)
aliczby[i] = 0;

Postugujac sie tutaj petla for, ustawiamy wszystkie jej elementy na wartosc 0. Zero jest
dla nas neutralne, gdyz losowane liczby bedq przeciez wytacznie dodatnie.

Identyczny efekt (wyzerowanie tablicy) mozna uzyskac stosujgc funkcje memset (), ktorej
deklaracja jest zawarta w nagtdéwku memory.h. Uzylibysmy jej w nastepujacy sposob:
nNEeEE (Blhewoy, 0, 8ilzaei (Rlhdexlow)) 3

Analogiczny skutek spowodowataby takze specjalna funkcja zZeroMemory () z windows.h:
Aerelicmery (Blklerow, SilzaerE (alhilemow)) 7

Nie uzytem tych funkcji w kodzie przyktadu, gdyz wyjasnienie ich dziatania wymaga
wiedzy o wskaznikach na zmienne, ktérej jeszcze nie posiadasz. Chwilowo jesteSmy wiec
zdani na swojskg petle :)

Po wyzerowaniu tablicy przeznaczonej na generowane liczby mozemy przystgpic¢ do
wiasciwej czynnosci programu, czyli ich losowania. Rozpoczynamy je od niezbednego
wywotania funkcji srand () :

srand (static cast<int>(time (NULL)));

Po dopetnieniu tej drobnej formalnosci mozemy juz zajac sie po kolei kazdg wartoscia,
ktérg chcemy uzyskac. Znowuz czynimy to poprzez odpowiednig petle for:

for (int 1 = 0; i < ILOSC LICZB;)
{

//
}

Jak zwykle, przebiega ona po wszystkich elementach tablicy aLiczby. Pewng
niespodziankg moze byc¢ tu nieobecnos¢ ostatniej czesci tej instrukcji, ktérg jest
zazwyczaj inkrementacja licznika. Jej brak spowodowany jest koniecznoscig sprawdzania,
czy wylosowana juz liczba nie powtarza sie wsréd wczesniej wygenerowanych. Z tego
tez powodu program bedzie niekiedy zmuszony do kilkakrotnego ,, obrotu” petli przy tej
samej wartosci licznika i losowania za kazdym razem nowej liczby, az do skutku.

Rzeczone losowane przebiega tradycyjng i znang nam dobrze drogaq:

aLiczby[i] = rand() % MAKSYMALNA LICZBA + 1;

148 Podstawy programowania

Uzyskana w ten sposéb wartosc¢ jest zapisywana w tablicy aLiczby pod i-tym indeksem,
abysmy mogli jg pozniej fatwo wyswietli¢. W powyzszym wyrazeniu obecna jest takze
stata, zadeklarowana wcze$niej na poczatku programu.

Wspominatem juz pare razy, ze konieczna jest kontrola otrzymanej tg metodgq wartosci
pod katem jej niepowtarzalnosci. Musimy po prostu sprawdzac, czy nie wystapita juz ona
przy poprzednich losowaniach. Jezeli istotnie tak sie stato, to z pewnoscig znajdziemy jq
we wczesniej ,przerobionej” czesci tablicy. Niezbedne poszukiwania realizuje kolejny
fragment listingu:

bool bPowtarzaSie = false;
for (int j = 0; j < 1i; ++73)
{

if (aliczby[j] == aliczbyl[il])
{
bPowtarzaSie = true;
break;

}

if (!bPowtarzaSie) ++1i;

Wprowadzamy tu najpierw pomocniczg zmienng (flage) logiczna, zainicjalizowang
wstepnie wartoscig false (fatsz). Bedzie ona niosta informacje o tym, czy faktycznie
mamy do czynienia z duplikatem ktérej$ z wczesniejszych liczb.

Aby sie o tym przekona¢, musimy dokonac¢ ponownego przegladniecia czesci tablicy.
Robimy to poprzez, a jakze, kolejng petle for :) Aczkolwiek tym razem interesujg nas
wszystkie elementy tablicy wystepujace przed tym aktualnym, o indeksie i. Jako
warunek petli wpisujemy wiec 7 < i (3 jest licznikiem nowej petli).

Koncentrujac sie na niuansach zagniezdzonej instrukcji for nie zapominajmy, ze jej
celem jest znalezienie ewentualnego blizniaka wylosowanej kilka wierszy wczesniej
liczby. Zadanie to wykonujemy poprzez odpowiednie poréwnanie:

if (alLiczbyl[j] == aLiczby[i])

aLiczby[i] (i-ty element tablicy aLiczby) reprezentuje oczywiscie liczbe, ktorej
szukamy; jak wiemy doskonale, uzyskaliSmy jg w stawetnym losowaniu :D Natomiast
aLiczby[j] (3-ta wartos¢ w tablicy) przy kazdym kolejnym przebiegu petli oznacza
jeden z przeszukiwanych elementow. Jezeli zatem wsrdd nich rzeczywiscie jest
wygenerowana, ,aktualna” liczba, niniejszy warunek instrukcji i f z pewnoscia jg wykryje.
Co powinnismy zrobi¢ w takiej sytuacji? Otéz nic skomplikowanego - mianowicie,
ustawiamy nasza zmienng logiczng na warto$¢ true (prawda), a potem przerywamy
petle for:

bPowtarzaSie = true;
break;

Jej dalsze dziatanie nie ma bowiem najmniejszego sensu, gdyz jeden duplikat liczby w
zupetnosci wystarcza nam do szczescia :)

W tym momencie jesteSmy juz w posiadaniu arcywaznej informacji, ktéry méwi nam, czy
wartos¢ wylosowana na samym poczatku cyklu gtdownej petli jest istotnie unikatowa, czy
tez konieczne bedzie ponowne jej wygenerowanie. Owg wiadomos¢ przydatoby sie teraz
wykorzystac - robimy to w zaskakujgco prosty sposob:

if (!bPowtarzaSie) ++1i;

Jak wida¢, wiasnie tutaj trafita brakujaca inkrementacja licznika petli, i. Zatem odbywa
sie ona wtedy, kiedy uzyskana na poczatku liczba losowa spetnia nasz warunek

Zlozone zmienne 149

niepowtarzalnosci. W innym przypadku licznik zachowuje swg aktualng wartos¢, wiec
wowczas bedzie przeprowadzona kolejna proba wygenerowania unikalnej liczby. Stanie
sie to w nastepnym cyklu petli.

Inaczej méwiac, jedynie fatszywo$¢ zmiennej bPowtarzaSie uprawnia petle for do
zajecia sie dalszymi elementami tablicy. Inna sytuacja zmusza jg bowiem do wykonania
kolejnego cyklu na tej samej wartosci licznika i, a wiec takze na tym samym
elemencie tablicy wynikowej. Czyni to az do otrzymania pozadanego rezultatu, czyli
liczby roznej od wszystkich poprzednich.

By¢ moze nasuneta ci sie watpliwos¢, czy takie kontrolowanie wylosowanej liczby jest aby
na pewno konieczne. Skoro prawidtowo zainicjowaliSmy generator wartosci losowych
(przy pomocy srand ()), to przeciez nie powinien on robi¢ nam $winstw, ktérymi z
pewnoscig bytyby powtdrzenia wylosowywanych liczb. Jezeli nawet istnieje jakas szansa
na otrzymanie duplikatu, to jest ona zapewne znikomo mata...

Otéz nic bardziej btednego! Sama potencjalna mozliwos$¢ wynikniecia takiej sytuacji
jest wystarczajacym powodem, zeby doda¢ do programu zabezpieczajacy przed nig kod.
Przeciez nie chcieliby$Smy, aby przyszty uzytkownik (niekoniecznie tego programu, ale
naszych aplikacji w ogodle) otrzymat produkt, ktéry raz dziata dobrze, a raz nie!

Inna sprawa, ze prawdopodobiefnstwo wylosowania powtarzajacych sie liczb nie jest tu
wcale takie mate. Mozesz sprébowac sie o tym przekonaé™...

Na finiszu catego programu mamy jeszcze wyswietlanie uzyskanego pieczotowicie
wyniku. Robimy to naturalnie przy pomocy adekwatnego for‘a, ktéry tym razem jest o
wiele mniej skomplikowany w poréwnaniu z poprzednim :)

Ostatnia instrukcja, getch () ;, nie wymaga juz nawet zadnego komentarza. Na niej tez
konczy sie wykonywanie naszej aplikacji, a my mozemy réwniez zakonczy¢ tutaj jej
omawianie. I odetchnac¢ z ulgq ;)

. Uff! To wcale nie byto takie tatwe, prawda? Wszystko dlatego, ze postawiony problem
' takze nie nalezat do trywialnych. Analiza algorytmu, stuzacego do jego rozwigzania,

. powinna jednak bardziej przyblizy¢ ci sposéb konstruowania kodu, realizujacego

. konkretne zadanie.

Mamy oto przejrzysty i, mam nadzieje, zrozumiaty przyktad na wykorzystanie tablic w
programowaniu. Przygladajac mu sie doktadnie, mogte$ dobrze poznac zastosowanie
tandemu tablica + petla for do wykonywania dosy¢ skomplikowanych czynnosci na
ztozonych danych. Jeszcze nie raz uzyjemy tego mechanizmu, wiec z pewnoscig bedziesz
miat szanse na jego doskonate opanowanie :)

Wiecej wymiarow

Dotychczasowym przedmiotem naszego zainteresowania byty tablice jednowymiarowe,
czyli takie, ktorych poszczegolne elementy sg identyfikowane poprzez jeden indeks.
Takie struktury nie zawsze sg wystarczajgce. Pomysimy na przykfad o szachownicy,
planszy do gry w statki czy mapach w grach strategicznych. Wszystkie te twory
wymagajq wiekszej liczby wymiardéw i nie dajq sie przedstawi¢ w postaci zwyktej,
ponumerowanej listy.

54 Wyliczenie jest bardzo proste. Zatézmy, ze losujemy n liczb, z ktdrych najwieksza moze byé réwna a. Wtedy
pierwsze losowanie nie moze rzecz jasna skutkowac¢ duplikatem. W drugim jest na to szansa réwna 1/a (gdyz
mamy juz jedng liczbe), w trzecim - 2/a (bo mamy juz dwie liczby), itd. Dla n liczb catosciowe
prawdopodobienstwo wynosi zatem (1 + 2 + 3 + ... + n-1)/a, czyli n(n - 1)/2a.

Unasn =6, zas$a = 49, wiec mamy 6(6 - 1)/(2*49) ~ 30,6% szansy na otrzymanie zestawu liczb, w ktorym
przynajmniej jedna sie powtarza. Gdyby$smy nie umiescili kodu sprawdzajacego, wtedy przecietnie co czwarte
uruchomienie programu dawatoby nieprawidtowe wyniki. Bytaby to ewidentna niedordbka.

150 Podstawy programowania

Naturalnie, tablice wielowymiarowe mogtyby by¢ z powodzeniem symulowane poprzez ich
jednowymiarowe odpowiedniki oraz formuty stuzace do przeliczania indekséw. Trudno
jednak uznac to za wygodne rozwigzanie. Dlatego tez C++ radzi sobie z tablicami
wielowymiarowymi w znacznie prostszy i bardziej przyjazny sposdb. Warto wiec przyjrzec
sie temu wielkiemu dobrodziejstwu ;)

Deklaracja i inicjalizacja

Domyslasz sie moze, iz aby zadeklarowacd tablice wielowymiarowa, nalezy podac wiecej
niz jedng liczbe okreslajaca jej rozmiar. Rzeczywiscie tak jest:

int aTablical4][5];

Linijka powyzsza tworzy nam dwuwymiarowgq tablice o wymiarach 4 na 5, zawierajacq
elementy typu int. Mozemy jg sobie wyobrazi¢ w sposéb podobny do tego:

(0] 0]

(0]11[1]

[0]11[2]

[0]1[3]

[01[4]

[1]1[0]

[1]1[1]

(11121

[11[3]

[1]1[4]

(2] [0]

[2] [1]

[2] [2]

[2] [3]

[2]1[4]

(3] [0]

(3] [1]

[31[2]

[3]1[3]

[31[4]

Schemat 8. Wyobrazenie tablicy dwuwymiarowej 4x5

Wida¢ wiec, ze poczatkowa analogia do szachownicy byta catkiem na miejscu :)

Nasza dziewicza tablica wymaga teraz nadania wstepnych wartosci swoim elementom.
Jak pamietamy, przy korzystaniu z jej jednowymiarowych kuzynow intensywnie
uzywalismy do tego odpowiednich petli for. Nic nie stoi na przeszkodzie, aby podobnie
postapi¢ i w tym przypadku:

for (int i = 0; 1 < 4; ++1i)
for (int j = 0; j < 5; ++73)
aTablicali][J] = 1 + J;

Teraz jednak mamy dwa wymiary tablicy, zatem musimy zastosowa¢ dwie zagniezdzone
petle. Ta bardziej zewnetrzna przebiega nam po czterech kolejnych wierszach tablicy,
natomiast wewnetrzna zajmuje sie kazdym z pieciu elementéw wybranego wczesniej
wiersza. Ostatecznie, przy kazdym cyklu zagniezdzonej petli liczniki 1 oraz § majq
odpowiednie wartosci, abysmy mogli za ich pomocg uzyskac¢ dostep do kazdego z
dwudziestu (4 * 5) elementéw tablicy.

Znamy wszakze jeszcze inny srodek, stuzgcy do wstepnego ustawiania zmiennych -
chodzi oczywiscie o inicjalizacje. ZobaczyliSmy niedawno, ze mozliwe jest zaprzegniecie
jej do pracy takze przy tablicach jednowymiarowych. Czy bedziemy mogli z niej
skorzystac rowniez teraz, gdy dodaliSmy do nich nastepne wymiary?...

Jak to zwykle w C++ bywa, odpowiedz jest pozytywna :) Inicjalizacja tablicy
dwuwymiarowej wyglada bowiem nastepujaco:

int aTablical[4][5] = {

{0, 1, 2, 3, 41},
{1

Zlozone zmienne 151

{ s
{ }

2, 6
3, 4, 5, 6, 7 }s

Opiera sie ona na tej samej zasadzie, co analogiczna operacja dla tablic
jednowymiarowych: kolejne wartosci oddzielamy przecinkami i umieszczamy w
nawiasach klamrowych. Tutaj sq to cztery wiersze naszej tabeli.

Jednak kazdy z nich sam jest niejako odrebng tablicg! W taki tez sposob go traktujemy:
ostateczne, liczbowe wartosci elementow podajemy albowiem wewnatrz
zagniezdzonych nawiasow klamrowych. Dla przejrzystosci rozmieszczamy je w
oddzielnych linijkach kodu, co sprawia, ze catos$¢ tudzgco przypomina wyobrazenie tablicy
dwuwymiarowej jako prostokata podzielonego na pola.

{{0,1, 2, 3, 41}, —"' [01[0] | [OJ0[1] | [0]([2]) | [O][3] | [O][4]

(1,2 3 4 51, —i (21001 | (21027 | 21021 | (21031 | (21041 |

= e =,

-

{3, 4, 5,6, 71} I—F [31[0] | [3001] | [31[2] | [31[3] | [3]1[4]

Schemat 9. Inicjalizacja tablicy dwuwymiarowej 4x5

Otrzymany efekt jest zresztg taki sam, jak ten osiagniety przez dwie wczesniejsze,
zagniezdzone petle.

Warto réwniez wiedzieé, ze inicjalizujgc tablice wielowymiarowg mozemy poming¢

wielko$¢ pierwszego wymiaru:
int aTablical[][5] = { },

}I

}I

Pl

PN N NN
w NP O
~ N 0~ 0~
DSw N
~ N 0~ 0~
g W N
~ N 0~ 0~
o U1 b W
~ N 0~ 0~
~ o U1

Zostanie on wtedy wywnioskowany z inicjalizatora.

Tablice w tablicy

Sposdb obstugi tablic wielowymiarowych w C++ rdzni sie zasadniczo od podobnych
mechanizmow w wielu innych jezykach. Tutaj bowiem nie sg one traktowane wyjatkowo,
jako byty odrebne od swoich jednowymiarowych towarzyszy. Powoduje to, ze w C++
dozwolone sg pewne operacje, na ktore nie pozwala wiekszos$¢ pozostatych jezykow
programowania.

Dzieje sie to za przyczyng dos¢ ciekawego pomystu potraktowania tablic
wielowymiarowych jako zwyktych tablic jednowymiarowych, ktérych elementami sa...
inne tablice! Brzmi to troche topornie, ale w istocie nie jest takie trudne, jak by¢ moze
wyglada :)

Najprostszy przyktad tego faktu, z jakim mieliSmy juz do czynienia, to konstrukcja
dwuwymiarowa. Z punktu widzenia C++ jest ona jednowymiarowq tablica swoich
wierszy; zwrdciliSmy zresztg na to uwage, dokonujac jej inicjalizacji. Kazdy z owych
wierszy jest zas takze jednowymiarowg tablicg, tym razem skfadajaca sie juz ze
zwyktych, skalarnych elementow.

Zjawisko to (oraz kilka innych ;D) niezle obrazuje ponizszy diagram:

152 Podstawy programowania

aTablica[x] [y]

x elementdw

.................. o
[0] | [1] (2] : l ‘ [x-2] | [%2-1]
..... i. 1 -.....i.....- .1. .i.
[erger | | rae)] (2101 |- l=-2]00] | | [=-1][9]
________ orrr |G| i || otz | t=-21121 | ¢ | =-2100
z o1tz1 || e || t2nm | tx-21121 | ¢ | [x-21021
2 ; I ' : . g
E -] [o1[3] [1] [3] [2113] [=-2][3] | ¢ | [=-1]([3]
] - Ay . ¥
al
=] ;
: _ : _ : _ [x-2] ; [x-1]
= - ro1y-21 | - . [11[y-2] | [2] [y-2] I HE
[1: 0] x-21 || 1x-11
eriy-21 | - | e I R
aTablica[y] : aTablicaly] aTablicaly] aTablica([y] aTablica[y]

Schemat 10. Przedstawienie tablicy dwuwymiarowej jako tablicy tablic

Uogdlniajac, mozemy stwierdzi¢, iz:

Kazda tablica n-wymiarowa sktada sie z odpowiedniej liczby tablic (n-1)-wymiarowych.

Przyktadowo, dla trzech wymiaréw bedziemy mieli tablice, sktadajaca sie z tablic
dwuwymiarowych, ktdére z kolei zbudowane sq z jednowymiarowych, a te dopiero z
pojedynczych skalaréw. Nietrudne, prawda? ;)

Zadajesz sobie pewnie pytanie: céz z tego? Czy ma to jakie$ praktyczne znaczenie i
zastosowanie w programowaniu?...

Pospieszam z odpowiedzig, brzmigcg jak zawsze ,.alez oczywiscie!” :)) Ujecie tablic w
takim stylu pozwala na ciekawg operacje wybrania jednego z wymiarow i przypisania
go do innej, pasujacej tablicy. Wyglada to mniej wiecej tak:

// zadeklarowanie tablicy tréj- i dwuwymiarowe]
int aTablica3D[2][2][2] = { { { 1, 2 },
{2, 311,
{ {3, 41,
{4, 511 }:

int aTablica2D[2][2];

// przypisanie drugiej "ptaszczyzny" tablicy aTablica3D do aTablica?2D
aTablica2D = aTablica3DI[1];

// aTablica2D zawiera teraz liczby: { { 3, 4 }, { 4, 5} }

Przykfad ten ma w zasadzie charakter ciekawostki, lecz przyjrzenie mu sie z pewnoscig
nikomu nie zaszkodzi :D

Zlozone zmienne 153

Nieco praktyczniejsze bytoby odwotanie do czesci tablicy - tak, zeby mozliwa byta jej
zmiana niezaleznie od catosci (np. przekazanie do funkcji). Takie dziatanie wymaga
jednak poznania wskaznikéw, a to stanie sie dopiero w rozdziale 8.

Xk k

Poznalismy wtasnie tablice jako sposdb na tworzenie ztozonych struktur, sktadajacych sie
z wielu elementow. Utatwiajq one (lub wrecz umozliwiajq) postugiwanie sie ztozonymi
danymi, jakich nie brak we wspétczesnych aplikacjach. Znajomos¢ zasad
wykorzystywania tablic z pewnoscig zatem zaprocentuje w przysztosci :)

Takze w tym przypadku niezawodnym zrodtem uzupetniajacych informacji jest MSDN.

Nowe typy danych

Wachlarz dostepnych w C++ typow wbudowanych jest, jak wiemy, niezwykle bogaty. W
potaczeniu z mozliwoscig fuzji wielu pojedynczych zmiennych do postaci wygodnych w
uzyciu tablic, daje nam to szerokie pole do popisu przy konstruowaniu wtasnych
sposobdw na przechowywanie danych.

Nabyte juz doswiadczenie oraz tytut niniejszego podrozdziatu sugeruje jednak, iz nie jest
to wcale kres potencjatu uzywanego przez nas jezyka. Przeciwnie: C++ oferuje nam
mozliwos¢ tworzenia swoich wiasnych typoéw zmiennych, odpowiadajacych bardziej
konkretnym potrzebom niz zwykte liczby czy napisy.

Nie chodzi tu wcale o znang i prostg instrukcje typedef, ktéra umie jedynie produkowac
nowe nazwy dla juz istniejgcych typdw. Mam bowiem na mysli znacznie potezniejsze
narzedzia, udostepniajace duzo wieksze mozliwosci w tym zakresie.

Czy znaczy to rowniez, ze sg one trudne do opanowania? Wedtug mnie siedzacy tutaj
diabet wcale nie jest taki straszny, jakim go malujg ;D Absolutnie wiec nie ma sie czego
bad!

Wyliczania nadszedt czas

Pierwszym z owych narzedzi, z ktorymi sie zapoznamy, bedg typy wyliczeniowe
(ang. enumerated types). Ujrzymy ich mozliwe zastosowania oraz techniki uzytkowania,
a rozpoczniemy od przyktadu z zycia wzietego :)

Przydatnos$¢ praktyczna

W praktyce czesto zdarza sie sytuacja, kiedy chcemy ograniczy¢ mozliwy zbiér wartosci
zmiennej do kilku(nastu/dziesieciu) $cisle ustalonych elementow. Jezeli, przykfadowo,
tworzylibysmy gre, w ktérej pozwalamy graczowi jedynie na ruch w czterech kierunkach
(gora, dot, lewo, prawo), z pewnoscig musieliby$my przechowywac w jaki$ sposéb jego
wybdr. Stuzgca do tego zmienna przyjmowataby wiec jedng z czterech okreslonych
wartosci.

Jak moznaby osiagnac taki efekt? Jednym z rozwigzan jest zastosowanie statych, na
przyktad w taki sposéb:

const int KIERUNEK GORA = 1;
const int KIERUNEK_DOL = 2;
const int KIERUNEK_LEWO = 3;
const int KIERUNEK_PRAWO = 4;

int nKierunek;

154 Podstawy programowania

nKierunek = PobierzWybranyPrzezGraczaKierunek() ;

switch (nKierunek)

{

case KIERUNEK GORA: // porusz graczem w gbre
case KIERUNEK DOL: // porusz graczem w dblt
case KIERUNEK LEWO: // porusz graczem w lewo
case KIERUNEK PRAWO: // Pporusz graczem w prawo
default: // a to co za kierunek? :)

}

Przy swoim obecnym stanie koderskiej wiedzy mdgtbys z powodzeniem uzy¢ tego
sposobu. Skoro jednak prezentujemy go w miejscu, z ktérego zaraz przejdziemy do
omawiania nowych zagadnien, nie jest on pewnie zbyt dobry :)

Najpowazniejszym chyba mankamentem jest zupetna nieswiadomos¢ kompilatora co do
specjalnego znaczenia zmiennej nKierunek. Traktuje jg wiec identycznie, jak kazda inng
liczbe catkowita, pozwalajac choéby na przypisanie podobne do tego:

nKierunek = 10;

Z punktu widzenia skfadni C++ jest ono catkowicie poprawne, ale dla nas byitby to
niewatpliwy bfad. 10 nie oznacza bowiem zadnego z czterech ustalonych kierunkéw, wiec
wartosc¢ ta nie miataby w naszym programie najmniejszego sensu!

Jak zatem podejs$¢ do tego problemu? Najlepszym wyjsciem jest zdefiniowanie nowego
typu danych, ktéry bedzie pozwalat na przechowywanie tylko kilku podanych wartosci.
Czynimy to w sposdb nastepujacy’:

enum DIRECTION { DIR UP, DIR DOWN, DIR LEFT, DIR RIGHT };

Tak oto stworzyliSmy typ wyliczeniowy zwany DIRECTION. Zmienne, ktore zadeklarujemy
jako nalezace do tegoz typu, bedg mogty przyjmowac jedynie wartosci wpisane przez
nas w jego definicji. Sq to DIR UP, DIR DOWN, DIR LEFT i DIR RIGHT, odpowiadajace
umowionym kierunkom. Petnig one funkcje statych - z tg rdéznicg, ze nie musimy
deklarowac ich liczbowych wartosci (gdyz i tak uzywac bedziemy jedynie tych
symbolicznych nazw).

Mamy wiec nowy typ danych, wypadatoby zatem skorzystac¢ z niego i zadeklarowac¢ jakas
zZmienng:

DIRECTION Kierunek = PobierzWybranyPrzezGraczaKierunek();

switch (Kierunek)

{

case DIR UP: //
case DIR DOWN: //
// itd.

}

Deklaracja zmiennej nalezacej do naszego wtasnego typu nie rézni sie w widoczny sposob
od podobnego dziatania podejmowanego dla typéw wbudowanych. Mozemy réwniez
dokonac jej inicjalizacji, co tez od razu czynimy.

55 Nowe typy danych bede nazywat po angielsku, aby odrézni¢ je od zmiennych czy funkcji.

Zlozone zmienne 155

Kod ten bedzie poprawny oczywiscie tylko wtedy, gdy funkcja
| PobierzWybranyPrzezGraczaKierunek () bedzie zwracata wartos¢ bedaca takze typu
. DIRECTION.

Wszelkie watpliwosci powinna rozwiac instrukcja switch. Widaé¢ wyraznie, ze uzyto jej w
identyczny sposdb jak wtedy, gdy korzystano jeszcze ze zwyktych statych,
deklarowanych oddzielnie.

Na czym wiec polega réznica? Otdz tym razem niemozliwe jest przypisanie w rodzaju:

Kierunek = 20;

Kompilator nie pozwoli na nie, gdyz zmienna Kierunek podlega ograniczeniom swego
typu DIRECTION. Okreslajac go, ustaliliSmy, ze moze on reprezentowac¢ wylacznie jedng
z czterech podanych wartosci, a 20 niewatpliwie nie jest ktérgs z nich :)

Tak wiec teraz bezmysIiny program kompilujacy jest po naszej stronie i pomaga nam jak
najwczesniej wytapywac btedy zwigzane z nieprawidtowymi wartosciami niektérych
zmiennych.

Definiowanie typu wyliczeniowego

Nie od rzeczy bedzie teraz przyjrzenie sie kawatkowi kodu, ktéry wprowadza nam nowy
typ wyliczeniowy. Oto i jego sktadnia:

enum nazwa typu { stata 1 [= wartosc¢c 1 1,
stata 2 [= wartos¢ 2 1,
stata 3 [= wartos¢ 3 1,
stata n [= wartos¢ n 1 };

Stowo kluczowe enum (ang. enumerate - wylicza¢) petni role informujaca: mowi, zaréwno
nam, jak i kompilatorowi, iz mamy tu do czynienia z definicjg typu wyliczeniowego.
Nazwe, ktérg chcemy nada¢ owemu typowi, piszemy zaraz za tym stowem; przyjeto sie,
aby uzywac do tego wielkich liter alfabetu.

Potem nastepuje czesty element w kodzie C++, czyli nawiasy klamrowe. Wewnatrz nich
umieszczamy tym razem liste statych - dozwolonych wartosci typu wyliczeniowego.
Jedynie one bedq dopuszczone przez kompilator do przechowywania przez zmienne
nalezace do definiowanego typu.

Tutaj réwniez zaleca sie, tak jak w przypadku zwyktych statych (tworzonych poprzez
const), uzywanie wielkich liter. Dodatkowo, dobrze jest doda¢ do kazdej nazwy
odpowiedni przedrostek, powstaty z nazwy typu, na przykitad:

// przyktadowy typ okreslajacy poziom trudnosci jakiejs gry
enum DIFFICULTY { DIF EASY, DIF MEDIUM, DIF HARD };

Widac to byto takze w przyktadowym typie DIRECTION.

Nie zapominajmy o $redniku na koncu definicji typu wyliczeniowego!

Warto wiedzie¢, ze state, ktore wprowadzamy w definicji typu wyliczeniowego,
reprezentujq liczby catkowite i tak tez sg przez kompilator traktowane. Kazdej z nich
nadaje on kolejng wartos$¢, poczynajac zazwyczaj od zera.

Najczesciej nie przejmujemy sie, jakie wartosci odpowiadajg poszczegdlnym statym.
Czasem jednak nalezy mie¢ to na uwadze - na przyktad wtedy, gdy planujemy
wspotprace naszego typu z jakimis zewnetrznymi bibliotekami. W takiej sytuacji mozemy

156 Podstawy programowania

wyraznie okresli¢, jakie liczby sg reprezentowane przez nasze state. Robimy to, wpisujac
wartos¢ po znaku = i nazwie statej.

Przykfadowo, w zaprezentowanym na poczatku typie DIRECTION mogliby$smy przypisac
kazdemu wariantowi kod liczbowy odpowiedniego klawisza strzafki:

enum DIRECTION { DIR UP = 38,
DIR DOWN = 40,
DIR LEFT = 37,

DIR RIGHT = 39 };

Nie trzeba jednak wyraznie okresla¢ wartosci dla wszystkich statych; mozliwe jest ich
sprecyzowanie tylko dla kilku. Dla pozostatych kompilator dobierze wtedy kolejne liczby,
poczynajac od tych narzuconych, tzn. zrobi co$ takiego:

enum MYENUM { ME ONE, // 0
ME TWO =12, // 12
ME THREE, // 13
ME FOUR, // 14
ME FIVE = 26, // 26
ME SIX, /127
ME SEVEN }; // 28

Zazwyczaj nie trzeba o tym pamietaé, bo lepiej jest albo catkowicie zostawic
przydzielanie wartosci w gestii kompilatora, albo samemu dobra¢ je dla wszystkich
statych i nie utrudniac sobie zycia ;)

Uzycie typu wyliczeniowego

Typy wyliczeniowe zalicza sie do typdow liczbowych, podobnie jak int czy unsigned. Mimo
to nie jest mozliwe bezposrednie przypisanie do zmiennej takiego typu liczby zapisanej
wprost. Kompilator nie przepusci wiec instrukcji podobnej do tej:

enum DECISION { YES = 1, NO = 0, DONT KNOW = -1 };
DECISION Decyzja = 0;

Zrobi tak nawet pomimo faktu, iz 0 odpowiada tutaj jednej ze statych typu DECISION.
C++ dba bowiem, aby typow enum uzywac zgodnie z ich przeznaczeniem, a nie jako
zamiennikow dla zmiennych liczbowych. Powoduje to, ze:

Do zmiennych wyliczeniowych mozemy przypisywac¢ wytacznie odpowiadajace im state.
Niemozliwe jest nadanie im ,zwyktych” wartosci liczbowych.

Jezeli jednak koniecznie potrzebujemy podobnego przypisania (bo np. odczytalismy liczbe
z pliku lub uzyskaliSmy jg za pomoca jakiej$ zewnetrznej funkcji), mozemy salwowac sie
rzutowaniem przy pomocy static cast:

// zaktadamy, ze OdczytajWartosc() zwraca liczbe typu int lub podobna
Decyzja = static cast<DECISION> (OdczytajWartosc()):;

Pamietajmy aczkolwiek, zeby w zwyktych sytuacjach uzywac zdefiniowanych statych.
Inaczej catkowicie wypaczalibysmy idee typow wyliczeniowych.

Zastosowania

Ewentualni fani programéw przyktadowych moga czuc sie zawiedzeni, gdyz nie
zaprezentuje zadnego krotkiego, kilkunastolinijkowego, dobitnego kodu obrazujacego
wykorzystanie typdéw wyliczeniowych w praktyce. Powdd jest dosc prosty: taki przyktad
miatby ztozonosc¢ i celowosé poréwnywalng do banalnych aplikacji dodajacych dwie liczby,

Zlozone zmienne 157

z ktérymi stykalismy sie na poczatku kursu. Zamiast tego poméwmy lepiej o
zastosowaniach opisywanych typow w konstruowaniu ,normalnych”, przydatnych
programow - takze gier.

Do czego wiec mogq przydac sie typy wyliczeniowe? Tak naprawde sposobdow na ich
konkretne uzycie jest wiecej niz ziaren piasku na pustyni; rownie dobrze moglibysmy,
zadac pytanie w rodzaju ,Jakie zastosowanie ma instrukcja i£?” :) Wszystko bowiem
zalezy od postawionego problemu oraz samego programisty. Istnieje jednak co najmniej
kilka ogdlnych sytuacji, w ktérych skorzystanie z typow wyliczeniowych jest wrecz
naturalne:
> Przechowywanie informacji o stanie jakiegos obiektu czy zjawiska.
Przyktadowo, jezeli tworzymy gre przygodowg, mozemy wprowadzi¢ nowy typ
okreslajacy aktualnie wykonywang przez gracza czynnos$¢: chodzenie, rozmowa,
walka itd. Stosujac przy tym instrukcje switch bedziemy mogli w kazdej klatce
podejmowac odpowiednie kroki sterujgce konwersacjg czy wymiang ciosow.
Inny przykfad to choéby odtwarzacz muzyczny. Wiadomo, ze moze on w danej
chwili zajmowac sie odgrywaniem jakiegos pliku, znajdowac sie w stanie pauzy
czy tez nie mie¢ wczytanego zadnego utworu i czekac na polecenia uzytkownika.
Te mozliwe stany sq dobrym materiatem na typ wyliczeniowy.

Wszystkie te i podobne sytuacje, z ktdrymi mozna sobie radzi¢ przy pomocy enum’dw, sg
przypadkami tzw. automatéw o skonczonej liczbie stanéw (ang. finite state machine).
Pojecie to ma szczegdlne zastosowanie przy programowaniu sztucznej inteligencji, zatem
jako (przyszty) programista gier bedziesz sie z nim czasem spotykat.

> Ustawianie parametréw o scisle okreslonym zbiorze wartosci.
Byt juz tu przytaczany dobry przyktad na wykorzystanie typdéw wyliczeniowych
wiasnie w tym celu. Jest to oczywiscie kwestia poziomu trudnosci jakiejs gry;
zapisanie wyboru uzytkownika wydaje sie najbardziej naturalne wiasnie przy
uzyciu zmiennej wyliczeniowej.
Dobrym reprezentantem tej grupy zastosowan moze by¢ rowniez sposéb
wyréwnywania akapitu w edytorach tekstu. Ustawienia: ,,do lewej”, do prawej”,
»~do srodka” czy ,wyjustowanie” sg przeciez swietnym materiatem na odpowiedni
enum.

> Przekazywanie jednoznacznych komunikatéw w ramach aplikacji.
Nie tak dawno temu poznaliSmy typ bool, ktéry moze by¢ uzywany miedzy innymi
do informowania o powodzeniu lub niepowodzeniu jakiej$ operacji (zazwyczaj
wykonywanej przez osobng funkcje). Taka czarno-biata informacja jest jednak
mato uzyteczna - w koncu jezeli wystgpit jakis btad, to wypadatoby wiedzie¢ o nim
co$ wiecej.
Tutaj z pomocg przychodzg typy wyliczeniowe. Mozemy bowiem zdefiniowac sobie
taki, ktory postuzy nam do identyfikowania ewentualnych btedéw. Okreslajac
odpowiednie state dla braku pamieci, miejsca na dysku, nieistnienia pliku i innych
czynnikow decydujacych o niepowodzeniu pewnych dziatan, bedziemy mogli je
tatwo rozrézniac i raczy¢ uzytkownika odpowiednimi komunikatami.

To tylko niektére z licznych metod wykorzystywania typdw wyliczeniowych w
programowaniu. W miare rozwoju swoich umiejetnosci sam odkryjesz dla nich mndstwo
specyficznych zastosowan i bedziesz czesto z nich korzystat w pisanych kodach.

Upewnij sie zatem, ze dobrze rozumiesz, na czym one polegajq i jak wyglada ich uzycie
w C++. To z pewnoscig sowicie zaprocentuje w przysztosci.
A kiedy uznasz, iz jestes juz gotowy, bedziemy mogli przejs¢ dalej :)

158 Podstawy programowania

Kompleksowe typy

Tablice, opisane na poczatku tego rozdziatu, nie sg jedynym sposobem na modelowanie
ztozonych danych. Chociaz przydajg sie wtedy, gdy informacje majq jednorodng postac
zestawu identycznych elementow, istnieje wiele sytuacji, w ktérych potrzebne sg inne
rozwigzania...

Wezmy chociazby banalny, zdawatoby sie, przyktad ksigzki adresowej. Na pierwszy rzut
oka jest ona idealnym materiatem na prostg tablice, ktérej elementami bytyby jej kolejne
pozycje - adresy.

Zauwazmy jednak, ze sama taka pojedyncza pozycja nie daje sie sensownie przedstawic
w postaci jednej zmiennej. Dane dotyczace jakiej$ osoby obejmuja przeciez jej imie,
nazwisko, ewentualnie pseudonim, adres e-mail, miejsce zamieszkania, telefon... Jest to
przynajmniej kilka elementarnych informacji, z ktérych kazda wymagataby oddzielnej
zmiennej.

Podobnych przypadkéw jest w programowaniu mnéstwo i dlatego tez dzisiejsze jezyki
posiadajg odpowiednie mechanizmy, pozwalajace na wygodne przetwarzanie informacji o
budowie hierarchicznej. Domys$lasz sie zapewne, ze teraz wtasnie rzucimy okiem na
oferte C++ w tym zakresie :)

Typy strukturalne i ich definiowanie

Wrocmy wiec do naszego problemu ksigzki adresowej, albo raczej listy kontaktéw -
najlepiej internetowych. Kazda jej pozycja mogtaby sie sktadaé z takich oto trzech
elementow:

» nicka tudziez imienia i nazwiska danej osoby

> jej adresu e-mail

> numeru identyfikacyjnego w jakim$ komunikatorze internetowym

Na przechowywanie tychze informacji potrzebujemy zatem dwéch tarncuchéw znakoéw (po
jednym na nick i adres) oraz jednej liczby catkowitej. Znamy oczywiscie odpowiadajace
tym rodzajom danych typy zmiennych w C++: sg to rzecz jasna std: :string oraz int.
Mozemy wiec uzy¢ ich do utworzenia nowego, ztozonego typu, reprezentujgcego w
catosci pojedynczy kontakt:

struct CONTACT

{
std::string strNick;
std::string strEmail;
int nNumerIM;

}s

W ten wiasnie sposdb zdefiniowaliSmy typ strukturalny.

Typy strukturalne (zwane tez w skrdcie strukturami®®) to zestawy kilku zmiennych,
nalezacych do innych typdéw, z ktérych kazda posiada swoja wtasng i unikalng nazwe.
Owe ,podzmienne” nazywamy polami struktury.

Nasz nowonarodzony typ strukturalny sktada sie zatem z trzech pdl, zas kazde z nich
przechowuje jedynie elementarng informacje. Zestawione razem reprezentujg jednak
zlozona dang o jakiej$ osobie.

56 Zazwyczaj strukturami nazywamy juz konkretne zmienne; u nas bytyby to wiec rzeczywiste dane kontaktowe
jakiej$ osoby (czyli zmienne nalezace do zdefiniowanego wiasnie typu conTacT). Czasem jednak pojec¢ ,typ
strukturalny” i ,struktura” uzywa sie zamiennie, a ich szczegdétowe znaczenie zalezy od kontekstu.

Zlozone zmienne 159

Struktury w akcji

Nie zapominajmy, ze zdefiniowane przed chwilg ,co$” o nazwie CONTACT jest nowym
typem, a wiec mozemy skorzysta¢ z niego tak samo, jak z innych typéw w jezyku C++
(wbudowanych lub poznanych niedawno enum’ow). Zadeklarujmy wiec przy jego uzyciu
jakas przykfadowg zmienna:

CONTACT Kontakt;

Logiczne byloby teraz nadanie jej pewnej wartosci... Pamietamy jednak, ze powyzszy
Kontakt to tak naprawde trzy zmienne w jednym (co$ jak szampon

przeciwtupiezowy ;D). Niemozliwe jest zatem przypisanie mu zwyktej, ,pojedynczej”
wartosci, wlasciwej typom skalarnym.

Mozemy za to zajac sie osobno kazdym z jego pdl. Sg one znanymi nam bardzo dobrze
tworami programistycznymi (napisem i liczbg), wiec nie bedziemy mieli z nimi
najmniejszych ktopotéow. Coz zatem zrobié, aby sie do nich dobrac?...

Skorzystamy ze specjalnego operatora wytuskania, bedacego zwyktg kropka (.).
Pozwala on miedzy innymi na uzyskanie dostepu do okreslonego pola w strukturze.
Uzycie go jest bardzo proste i dobrze widoczne na ponizszym przyktadzie:

// wypelnienie struktury danymi
Kontakt.strNick = "Hakier";
Kontakt.strEmail = "gigahaxxorlabc.pl";
Kontakt.nNumerIM = 192837465;

Postawienie kropki po nazwie struktury umozliwia nam niejako ,wejscie w jej gtgb”. W
dobrych $rodowiskach programistycznych wyswietlana jest nawet lista wszystkich jej pdl,
jakby na potwierdzenie tego faktu oraz utatwienie pisania dalszego kodu. Po kropce
wprowadzamy wiec nazwe pola, do ktérego chcemy sie odwotac.

Wykonawszy ten prosty zabieg mozemy zrobi¢ ze wskazanym polem wszystko, co sie
nam zywnie podoba. W przyktadzie powyzej czynimy don zwykte przypisanie wartosci,
lecz rownie dobrze mogtoby to by¢ jej odczytanie, uzycie w wyrazeniu, przekazanie do
funkcji, itp. Nie ma bowiem zadnej praktycznej réznicy w korzystaniu z pola struktury i
ze zwyktej zmiennej tego samego typu - oczywiscie poza faktem, iz to pierwsze jest tylko
czescig wiekszej catosci.

Sadze, ze wszystko to powinno by¢ dla ciebie w miare jasne :)

Co uwazniejsi czytelnicy (czyli pewnie zdecydowana wiekszos$¢ ;D) by¢ moze zauwazyli, iz
nie jest to nasze pierwsze spotkanie z kropkg w C++. Gdy zajmowalismy sie doktadniej
taricuchami znakdéw, uzywalismy formutki napis.length() do pobrania dtugosci tekstu.
Czy znaczy to, ze typ std::string réwniez nalezy do strukturalnych?... Céz, sprawa jest
generalnie dosy¢ ztozona, jednak czesciowo wyjasni sie juz w nastepnym rozdziale. Na
razie wiedz, ze cel uzycia operatora wytuskania byt tam podobny do aktualnie
omawianego (czyli ,wejscia w srodek” zmiennej), chociaz wtedy nie chodzito nam wcale o
odczytanie wartosci jakiego$ pola. Sugerujg to zresztg nawiasy wienczace wyrazenie...
Pozwdl jednak, abym chwilowo z braku czasu i miejsca nie zajmowat sie blizej tym
zagadnieniem. Jak juz nadmienitem, wrécimy do niego catkiem niedtugo, zatem uzbroéj
sie w cierpliwosc :)

Spogladajac krytycznym okiem na trzy linijki kodu, ktére wykonuja przypisania wartosci
do kolejnych pdl struktury, mozemy nabraé¢ pewnych watpliwosci, czy aby sktadnia C++
jest rzeczywiscie taka oszczedna, jakq sie zdaje. Przeciez wyraznie widac¢, iz musieliSmy
tutaj za w kazdym wierszu wpisywaé nieszczesng nazwe struktury, czyli Kontakt! Nie
datoby sie czegos$ z tym zrobic¢?

Kilka jezykéw, w tym np. Delphi i Visual Basic, posiada bloki with, ktore odcigzajq nieco

160 Podstawy programowania

[palce programisty i zezwalajg na pisanie jedynie nazw pdl struktur. Jakkolwiek jest to

- niewatpliwie wygodne, to czasem powoduje dos¢ nieoczekiwane i nietatwe do wykrycia
btedy logiczne. Wydaje sie, ze brak tego rodzaju instrukcji w C++ jest raczej rozsadnym
skutkiem bilansu zyskéw i strat, co jednak nie przeszkadza mi osobiscie uwazac tego za
. pewien feler :D

Istnieje jeszcze jedna droga nadania poczatkowych wartosci polom struktury, a jest nig
naturalnie znana juz szeroko inicjalizacja :) Poniewaz podobnie jak w przypadku tablic
mamy tutaj do czynienia ze ztozonymi zmiennymi, nalezy tedy postuzyc¢ sie odpowiednig,
forma inicjalizatora - taka, jak podana ponizej:

// inicjalizacja struktury
CONTACT Kontakt = { "MasterDisaster", "mdl337@ajajaj.com.pl'", 3141592 };

Uzywamy wiec w znajomy sposob nawiasow klamrowych, umieszczajac wewnatrz nich
wyrazenia, ktére majg byc¢ przypisane kolejnym polom struktury. Nalezy przy tym
pamietaé, by zachowac taki sam porzadek pdl, jaki zostat okreslony w definicji typu
strukturalnego. Inaczej mozemy spodziewad sie niespodziewanych bteddéw :)

Kolejnos¢ pol w definicji typu strukturalnego oraz w inicjalizacji nalezacej don struktury
musi by¢ identyczna.

Uff, zdaje sie, ze w ferworze poznawania szczegdtowych aspektow struktur
zapomnielismy juz catkiem o naszym pierwotnym zamysle. Przypominam wiec, iz byto
nim stworzenie elektronicznej wersji notesu z adresami, czyli po prostu listy
internetowych kontaktéw.

Nabyta wiedza nie pdjdzie jednak na marne, gdyz teraz potrafimy juz z fatwoscig
wymysli¢ stosowne rozwigzanie pierwotnego problemu. Zasadniczg listg bedzie po prostu
odpowiednia tablica struktur:

const unsigned LICZBA KONTAKTOW = 100;
CONTACT aKontakty[LICZBA KONTAKTOW] ;

Jej elementami stang sie dane poszczegdlnych osob zapisanych w naszej ksigzce
adresowej. Zestawione w jednowymiarowg tablice bedg doktadnie tym, o co nam od
poczatku chodzito :)

[o] [1] [2] [n-2] [n-1]
striick } [striNick ‘ striick] [striick | striNick
|5L;Em;il] [sLxEma_;‘ |s-x3m;;l] U [E_LEmJLl sLLEmgi;]
| nHumerIM ‘ [niumex=IM ‘ | nHumerIM] [nHumerIM I [niumerTHM 1

o o o

Schemat 11. Obrazowy model tablicy struktur

Metody obstugi takiej tablicy nie réznig sie wiele od poréwnywalnych sposobéw dla tablic
sktadajacych sie ze ,zwyktych” zmiennych. Mozemy wiec fatwo napisac przyktadowa,
prosta funkcje, ktéra wyszukuje osobe o danym nicku:

int WyszukajKontakt (std::string strNick)
{
// przebiegniecie po calej tablicy kontakté4w przy pomocy petli for
for (unsigned i = 0; i < LICZBA KONTAKTOW; ++i)
// pordwnywanie nicku kazdej osoby z szukanym

Zlozone zmienne 161

if (aKontakty[i].strNick == strNick)
// zwrbcenie indeksu pasujace] osoby
return i;

// ewentualnie, jes$li nic nie znaleziono, zwracamy -1
return -1;

}

Zwroé¢my w niej szczeg6lng uwage na wyrazenie, poprzez ktére pobieramy pseudonimy
kolejnych oséb na naszej liscie. Jest nim:

aKontakty[i] .strNick

W zasadzie nie powinno by¢ ono zaskoczeniem. Jak wiemy doskonale, akontakty [1i]
zwraca nam i-ty element tablicy. U nas jest on strukturg, zatem dostanie sie do jej
konkretnego pola wymaga tez uzycia operatora wytuskania. Czynimy to i uzyskujemy
ostatecznie oczekiwany rezultat, ktéry poréwnujemy z poszukiwanym nickiem.

W ten sposob przegladamy naszg tablice az do momentu, gdy faktycznie znajdziemy
poszukiwany kontakt. Wtedy tez konczymy funkcje i oddajemy indeks znalezionego
elementu jako jej wynik. W przypadku niepowodzenia zwracamy natomiast -1, ktéra to
liczba nie moze by¢ indeksem tablicy w C++.

Cata operacja wyszukiwania nie nalezy wiec do szczegdlnie skomplikowanych :)

Odrobina formalizmu - nie zaszkodzi!

Przyszedt wtasnie czas na uporzadkowanie i usystematyzowanie posiadanych informacji o
strukturach. Najwigkszym zainteresowaniem obdarzymy przeto reguty sktadniowe jezyka,
towarzyszace ich wykorzystaniu.

Mimo tak groznego wstepu nie opuszczaj niniejszego paragrafu, bo taka absencja z
pewnoscig nie wyjdzie ci na dobre :)

Typ strukturalny definiujemy, uzywajac stowa kluczowego struct (ang. structure -
struktura). Sktadnia takiej definicji wyglada nastepujaco:

struct nazwa typu

{
typ pola 1 nazwa pola 1;
typ pola 2 nazwa pola 2;
typ pola 3 nazwa pola 3;

typ pola n nazwa pola n;

bi

Kolejne wiersze wewnatrz niej fudzaco przypominajq deklaracje zmiennych i tak tez
mozna je traktowac. Pola struktury sg przeciez zawartymi w niej ,podzmiennymi”.
Catosc¢ tej listy pdl ujmujemy oczywiscie w stosowne do C++ nawiasy klamrowe.

Pamietajmy, aby za koncowym nawiasem koniecznie umiesci¢ srednik. Pomimo
zblizonego wygladu definicja typu strukturalnego nie jest przeciez funkcjq i dlatego nie
mozna zapominac¢ o tym dodatkowym znaku.

Przyktad wykorzystania struktury

To prawda, ze uzywanie struktur dotyczy najczesciej do$¢ ztozonych zbioréw danych.
Tym bardziej wydawatoby sie, iz trudno o jakis$ nietrywialny przyktad zastosowania tegoz
mechanizmu jezykowego w prostym programie.

Jest to jednak tylko cze$¢ prawdy. Struktury wystepujg bowiem bardzo czesto zaréwno w
standardowej bibliotece C++, jak i w innych, czesto uzywanych kodach - Windows API

162 Podstawy programowania

czy DirectX. Stuzg one nierzadko jako sposéb na przekazywanie do i z funkcji duzej ilosci
wymaganych informacji. Zamiast kilkunastu parametréw lepiej przeciez uzy¢ jednego,
kompleksowego, ktdorym znacznie wygodniej jest operowac.

My postuzymy sie takim witasnie typem strukturalnym oraz kilkoma funkcjami
pomocniczymi, aby zrealizowac naszg prostg aplikacje. Wszystkie te potrzebne elementy
znajdziemy w pliku nagtéwkowym ctime, gdzie umieszczona jest takze definicja typu tm:

struct tm

{

int tm sec; // sekundy

int tm min; // minuty

int tm hour; // godziny

int tm mday; // dzien miesiaca

int tm mon; // miesiac (0..11)

int tm year; // rok (od 1900)

int tm wday; // dzien tygodnia (0..6, gdzie 0 == niedziela)
int tm_yday; // dzien roku (0..365, gdzie 0 == 1 stycznia)
int tm isdst; // czy Jjest aktywny czas letni?

}i

Patrzac na nazwy jego pol oraz komentarze do nich, nietrudno uznaé, iz typ ten ma za
zadanie przechowywac date i czas w formacie przyjaznym dla cztowieka. To za$ prowadzi
do wniosku, iz nasz program bedzie wykonywat czynno$¢ zwigzang w jaki$ sposob z
uptywem czasu. Istotnie tak jest, gdyz jego przeznaczeniem stanie sie obliczanie
biorytmu.

Biorytm to modny ostatnio zestaw parametréw, ktore okreslajg aktualne mozliwosci
psychofizyczne kazdego cztowieka. Wedtug jego zwolennikéw, nasz potencjat fizyczny,
emocjonalny i intelektualny waha sie okresowo w cyklach o statej dtugosci,
rozpoczynajgacych sie w chwili narodzin.

100

50 AN YN

/
N
)
/

-16
22

-01-09
04-01-2

04-0

1-30

04-01-08
04401-11
04-01-12
04-01-13
04-01-14
04-01-15
04>
04-01-1
04-01-18
04-01-19
04-01-20
4-01-21
04-01-24
04-01-25
04-01-26
04-01-27
04-01-2
04-0,
04-01-31
04-02-01
04-02-02
04-02-03
04-02-04
04-02-05
04-02-06

%01—07 |

04-

-50

%
<
\
g

-100

‘—fizyczny = emocjonalny — intelektualny ‘

Wykres 1. Przyktadowy biorytm autora tego tekstu :-)

Mozliwe jest przy tym okreslenie liczbowej wartosci kazdego z trzech rodzajéow biorytmu
w danym dniu. Najczesciej przyjmuje sie w tym celu przedziat ,,procentowy”, obejmujacy
liczby od -100 do +100.

Same obliczenia nie sg szczegdlnie skomplikowane. Patrzac na wykres biorytmu, widzimy
bowiem wyraznie, iz ma on ksztatt trzech sinusoid, réznigcych sie jedynie okresami.
Wynosza one tyle, ile dlugosci trwania poszczegolnych cykli biorytmu, a przedstawia je
ponizsza tabelka:

cykl | dtugosé
fizyczny | 23 dni

Zlozone zmienne 163

cykl | dtugosé
emocjonalny | 28 dni
intelektualny | 33 dni

Tabela 10. Dtugosci cykli biorytmu

Uzbrojeni w te informacje mozemy juz napisa¢ program, ktéry zajmie sie liczeniem
biorytmu. Oczywiscie nie przedstawi on wynikéw w postaci wykresu (w koncu mamy do
dyspozycji jedynie konsole), ale pozwoli zapoznac sie z nimi w postaci liczbowej, ktéra
takze nas zadowala :)

Spojrzmy zatem na ten spory kawatek kodu:

// Biorhytm - pobieranie aktualnego czasu w postaci struktury
// i uzycie go do obliczania biorytmu

// typ wyliczeniowy, okres$lajacy rodzaj biorytmu
enum BIORHYTM { BIO PHYSICAL = 23,

BIO EMOTIONAL = 28,

BIO INTELECTUAL = 33 };

// pi 1)
const double PI = 3.1415926538;

// funkcja wyliczajaca dany rodzaj biorytmu
double Biorytm(double fDni, BIORHYTM Cykl)
{

return 100 * sin((2 * PI / Cykl) * fDni);
}

// funkcja main ()
void main ()
{
/* trzy struktury, przechowujace date urodzenia delikwenta,
aktualny czas oraz rdznice pomiedzy nimi */
tm DataUrodzenia = { 0, 0, 0, 0, O, O, 0O, 0, O };
tm AktualnyCzas = { 0, 0, 0, O, 0, O, O, 0, O };
tm RoznicaCzasu = { 0, 0, 0O, 0O, O, O, O, O, O };:

/* pytamy uzytkownika o date urodzenia */
std::cout << "Podaj date urodzenia" << std::endl;

// dzien
std::cout << "- dzien: ";
std::cin >> DataUrodzenia.tm mday;

// miesiac - musimy odjaé¢ 1, bo uzytkownik poda go w systemie 1..12
std::cout << "- miesiac: ";
std::cin >> DataUrodzenia.tm mon;

DataUrodzenia.tm mon--;

// rok - tuta]j natomiast musimy odjac¢ 1900

std::cout << "- rok: ";
std::cin >> DataUrodzenia.tm year;
DataUrodzenia.tm year -= 1900;

/* obliczamy liczbe przezytych dni */

164 Podstawy programowania

// pobieramy aktualny czas w postaci struktury
time t Czas = time (NULL);
AktualnyCzas = *localtime (&Czas);

// obliczamy rbéznice miedzy nim a data urodzenia
RoznicaCzasu.tm mday = AktualnyCzas.tm mday - DataUrodzenia.tm mday;
RoznicaCzasu.tm mon = AktualnyCzas.tm mon - DataUrodzenia.tm mon;
RoznicaCzasu.tm year = AktualnyCzas.tm year - DataUrodzenia.tm year;

// przeliczamy to na dni

double fPrzezyteDni = RoznicaCzasu.tm year * 365.25
+ RoznicaCzasu.tm mon * 30.4375
+ RoznicaCzasu.tm mday;

/* obliczamy biorytm i wyswielamy go */

// otdz i on
std::cout << std::endl;

std::cout << "Twoj biorytm" << std::endl;
std::cout << "- fizyczny: " << Biorytm(fPrzezyteDni, BIO PHYSICAL)
<< std::endl;
std::cout << "- emocjonalny: " << Biorytm(fPrzezyteDni,
BIO EMOTIONAL) << std::endl;
std::cout << "- intelektualny: " << Biorytm(fPrzezyteDni,

BIO INTELECTUAL) << std::endl;

// czekamy na dowolny klawisz
getch () ;

Jaki jest efekt tego, pokaznych rozmiardw, listingu? Sa nim trzy wartosci okreslajace
dzisiejszy biorytm osoby o podanej dacie urodzenia:

BIORYTM

Podaj date urodzenia
— d=zien: 17
— mieziac: 1
— rok: 1987

Twogj biorytm

— fizyceny: 71.7211

— emocjonalny: —38_2683
— intelektualny: 92.8368

Screen 31. Efekt dziatania aplikacji obliczajacej biorytm

Za jego wyznaczenie odpowiada prosta funkcja Biorytm () wraz towarzyszacym jej
typem wyliczeniowym, okreslajacym rodzaj biorytmu:

enum BIORHYTM { BIO PHYSICAL = 23,
BIO EMOTIONAL = 28,
BIO INTELECTUAL = 33 };

double Biorytm(double fDni, BIORHYTM Cykl)

{
return 100 * sin((2 * PI / Cykl) * fDni);

Zlozone zmienne 165

Godng uwagi sztuczka, jaka tu zastosowano, jest nadanie statym typu BIORHYTM
wartosci, bedacych jednoczesnie dtugosciami odpowiednich cykli biorytmu. Dzieki temu
funkcja zachowuje przyjazng posta¢ wywotania, na przykfad Biorytm(liczba dni,
BIO PHYSICAL), a jednocze$nie unikamy instrukcji switch wewnatrz niej.

Sama formutka liczaca opiera sie na ogélnym wzorze sinusoidy, tj.:
(2
e = ASIn(%-xJ

w ktorym A jest jej amplituda, zas T - okresem.
U nas okresem jest dtugos¢ trwania poszczegolnych cykli biorytmu, zas amplituda 100
powoduje ,rozciggniecie” przedziatu wartosci do zwyczajowego <-100; +100>.

Stanowigca wiekszos$¢ kodu dtuga funkcja main () dzieli sie na trzy czesci.

W pierwszej z nich pobieramy od uzytkownika jego date urodzenia i zapisujemy jg w
strukturze o nazwie... DataUrodzenia :) Zauwazmy, ze uzywamy tutaj jej pol jako
miejsca docelowego dla strumienia wejscia w identyczny sposob, jak to czyniliSmy dla
pojedynczych zmiennych.

Po pobraniu musimy jeszcze odpowiednio zmodyfikowa¢ dane - tak, zeby spetniaty
wymagania podane w komentarzach przy definicji typu tm (chodzi tu o numerowanie
miesiecy od zera oraz liczenie lat poczgwszy od roku 1900).

Kolejnym zadaniem jest obliczenie ilosci dni, jaka dany osobnik przezyt juz na tym
Swiecie. W tym celu musimy najpierw pobra¢ aktualny czas, co tez czynig dwie ponizsze
linijki:

time t Czas = time (NULL);

AktualnyCzas = *localtime (&Czas);

W pierwszej z nich znana nam juz funkcja time () uzyskuje czas w wewnetrznym
formacie C++>’. Dopiero zawarta w drugim wierszu funkcja localtime () konwertuje go
na zdatng do wykorzystania strukture, ktérg przypisujemy do zmiennej AktualnyCzas.

Troszke udziwniong postac tej funkcji musisz na razie niestety zignorowac :)

Dalej obliczamy réznice miedzy oboma czasami (zapisanymi w DataUrodzenia i
AktualnyCzas), odejmujac od siebie liczby dni, miesiecy i lat. Otrzymany ta drogq wiek
uzytkownika musimy na koniec przeliczy¢ na pojedyncze dni, za co odpowiada
wyrazenie:

double fPrzezyteDni = RoznicaCzasu.tm year * 365.25
+ RoznicaCzasu.tm mon * 30.4375
+ RoznicaCzasu.tm mday;

Zastosowane tu liczby 365.25 i 30.4375 sg $rednimi iloSciami dni w roku oraz w
miesigcu. Uwalniajg nas one od koniecznosci osobnego uwzgledniania lat przestepnych w
przeprowadzanych obliczeniach.

Wreszcie, ostatnie wiersze kodu obliczajg biorytm, wywotujac trzykrotnie funkcje o tej
nazwie, i prezentujg wyniki w klarownej postaci w oknie konsoli.

57 Jest to liczba sekund, ktére uptynety od pétnocy 1 stycznia 1970 roku.

166 Podstawy programowania

Dziatanie programu koriczy sie za$ na tradycyjnym getch (), ktore oczekuje na
przycisniecie dowolnego klawisza. Po tym fakcie nastepuje juz definitywny i nieodwotalny
koniec :D

Tak oto przekonaliSmy sie, ze struktury warto zna¢ nawet wtedy, gdy nie planujemy
tworzenia aplikacji manewrujacych skomplikowanymi danymi. Nie zdziw sie zatem, ze w
dalszym ciggu tego kursu bedziesz je catkiem czesto spotykat.

Unie
Drugim, znacznie rzadziej spotykanym rodzajem ztozonych typow sg unie.

Sg one w pewnym sensie podobne do struktur, gdyz ich definicje stanowig takze listy
poszczegdlnych pél:

union nazwa typu

{
typ pola 1 nazwa pola 1;
typ pola 2 nazwa pola 2;
typ pola 3 nazwa pola 3;

typ pola n nazwa pola n;

bi

Identycznie wygladaja rowniez deklaracje zmiennych, nalezacych do owych typow
»~unijnych”, oraz odwotania do ich pdl. Na czym wiec polegajq réznice?...

Przypomnijmy sobie, ze struktura jest zestawem kilku odrebnych zmiennych,
potaczonych w jeden kompleks. Kazde jego pole zachowuje sie doktadnie tak, jakby byto
samodzielng zmienng, i postusznie przechowuje przypisane mu wartosci. Rozmiar
struktury jest zas co najmniej suma rozmiaréw wszystkich jej pol.

Unia opiera sie na nieco innych zasadach. Zajmuje bowiem w pamieci jedynie tyle
miejsca, zeby moc pomiesci¢ swoj najwiekszy element. Nie znaczy to wszak, iz w jakis
nadprzyrodzony sposob potrafi ona zmiesci¢ w takim okrojonym obszarze wartosci
wszystkich pél. Przeciwnie, nawet nie prébuje tego robi¢. Zamiast tego obszary pamieci
przeznaczone na wartosci pol unii zwyczajnie nakladaja sie na siebie. Powoduje to, ze:

W danej chwili tylko jedno pole unii zawiera poprawng wartosc.

Do czego mogg sie przydac¢ takie dziwaczne twory? Coz, ich zastosowania sg dos¢
swoiste, wiec nieczesto bedziesz zmuszony do skorzystania z nich.

Jednym z przyktadéw moze by¢ jednak chec zapewnienia kilku drég dostepu do tych
samych danych:

union VECTOR3

{
// w postaci trdjelementowej tablicy
float v[3];

// lub poprzez odpowiednie zmienne x, y, z
struct
{
float x, vy, z;
bi

Zlozone zmienne 167

W powyzszej unii, ktéra ma przechowywac tréojwymiarowy wektor, mozliwe sg dwa
sposoby na odwotanie sie do jego wspotrzednych: poprzez pola x, y oraz z lub indeksy
odpowiedniej tablicy v. Oba sg rownowazne:

VECTOR3 vWektor;

// ponizsze dwie linijki robia to samo

vilektor.x = 1.0; vWektor.y = 5.0; vWektor.z = 0.0;
vWektor.v[0] = 1.0; vWektor.v[1l] = 5.0; vWektor.v[2] = 0.0;

Taka unie mozemy wiec sobie obrazowo przedstawi¢ chociazby poprzez niniejszy
rysunek:

unia
B v([0] v[l] v[2] o
pamied operacyjna ' j } I pamiet operacyjna
L) " \‘
S ‘ N v] . | ‘ e

Schemat 12. Model przechowywania unii w pamieci operacyjnej

Elementy tablicy v oraz pola x, y, z niejako ,wymieniajg” miedzy sobg wartosci.
Oczywiscie jest to tylko pozorna wymiana, gdyz tak naprawde chodzi po prostu o
odwotywanie sie do tego samego adresu w pamieci, jednak r6znymi drogami.

Wewnatrz naszej unii umiesciliSmy tzw. anonimowg strukture (nieopatrzong zadng

' nazwa). Musieliémy to zrobi¢, bo jezeli wpisalibySmy float x, y, z; bezposrednio do

- definicji unii, kazde z tych pdl bytoby zalezne od pozostatych i tylko jedno z nich miatoby
- poprawng warto$¢. Struktura natomiast taczy je w integralng cato$¢.

Mozna zauwazyc¢, ze struktury i unie sg jakby odpowiednikiem operacji logicznych -
koniunkcji i alternatywy - w odniesieniu do budowania ztozonych typéw danych.
Struktura petni jak gdyby funkcje operatora ss (pozwalajac na niezalezne istnienie
wszystkim obejmowanym sobg zmiennym), zas unia - operatora | | (dopuszczajac
wytacznie jedng dang). Zagniezdzajac frazy struct i union wewnagtrz definicji
kompleksowych typéw mozemy natomiast uzyskac bardziej skomplikowane kombinacije.
Naturalnie, rodzi sie pytanie ,Po co?”, ale to juz zupetnie inna kwestia ;)

Wiecej informacji o uniach zainteresowani znajdg w MSDN.

Xk k

Lektura konczacego sie wtasnie podrozdziatu data ci mozliwos¢ rozszerzania wachlarza
standardowych typow C++ o takie, ktére mogaq ci utatwié tworzenie przysztych aplikacji.
Poznates wiec typy wyliczeniowe, struktury oraz unie, uwalniajgc catkiem nowe
mozliwosci programistyczne. Na pewno niejednokrotnie bedziesz z nich korzystat.

Wiekszy projekt

Doszedtszy do tego miejsca w lekturze niniejszego kursu posiadtes juz dosy¢ duzg wiedze
programistyczng. Pora zatem na wykorzystanie jej w praktyce: czas stworzy¢ jakas

168 Podstawy programowania

wiekszg aplikacje, a poniewaz docelowo mamy zajmowac sie programowaniem gier, wiec
bedzie nig wtasnie gra.

Nie mozesz wprawdzie liczy¢ na oszatamiajgce efekty graficzne czy dzwiekowe, gdyz
chwilowo potrafimy operowac jedynie konsolg, lecz nie powinno cie to mimo wszystko
zniechecac. Srodki tekstowe okazg sie bowiem catkowicie wystarczajace dla naszego
skromnego projektu.

Projektowanie

Cdz wiec chcemy napisac? Otdz bedzie to produkcja oparta na wielce popularnej i
lubianej grze w kétko i krzyzyk :) Zainteresujemy sie jej najprostszym wariantem, w
ktérym dwoje graczy stawia naprzemian koétka i krzyzyki na planszy o wymiarach 3x3.
Celem kazdego z nich jest utworzenie linii z trzech wtasnych symboli - poziomej,
pionowej lub ukos$nej.

X
X

Rysunek 2. Rozgrywka w koétko i krzyzyk

Nasza gra powinna pokazywac rzeczong plansze w czasie rozgrywki, umozliwiac¢
wykonywanie graczom kolejnych ruchéw oraz sprawdzac, czy ktoérys z nich przypadkiem
nie wygrat :)

I taki wtasnie efekt bedziemy chcieli osiggna¢, tworzac ten program w C++. Najpierw
jednak, skoro juz wiemy, co bedziemy pisac, zastandwmy sie, jak to napiszemy.

Struktury danych w aplikacji

Pierwszym zadaniem jest okreslenie struktur danych, wykorzystywanych przez
program. Oznacza to ustalenie zmiennych, ktére przewidujemy w naszej aplikacji oraz
danych, jakie majg one przechowywac. Poniewaz wiemy juz niemal wszystko na temat
sposobdw organizowania informacji w C++, nasze instrumentarium w tym zakresie
bedzie bardzo szerokie. Zatem do dzieta!

Chyba najbardziej oczywistg potrzebg jest koniecznos¢ stworzenia jakiej$ programowej
reprezentacji planszy, na ktérej toczy sie rozgrywka. Patrzac na nig, nietrudno jest
znalez¢ odpowiednig droge do tego celu: wrecz idealna wydaje sie bowiem tablica
dwuwymiarowa o rozmiarze 3x3.

Sama wielkos$¢ to jednak nie wszystko - nalezy takze okresli¢, jakiego typu elementy
ma zawieracd ta tablica. Aby to uczynié¢, pomysimy, co sie dzieje z planszg podczas
rozgrywki. Na poczatku zawiera ona wytacznie puste pola; potem kolejno pojawiajg sie w
nich koétka lub krzyzyki... Czy juz wiesz, jaki typ bedzie wtasciwy?... Naturalnie, chodzi tu o
odpowiedni typ wyliczeniowy, dopuszczajacy jedynie trzy mozliwe wartosci: pole puste,
kétko lub krzyzyk. To byto od poczatku oczywiste, prawda? :)

Zlozone zmienne 169

Ostatecznie plansza bedzie wyglada¢ w ten sposob:

enum FIELD { FLD EMPTY, FLD CIRCLE, FLD CROSS };
FIELD g aPlansza[3][3] = { { FLD EMPTY, FLD EMPTY, FLD EMPTY },
{ FLD EMPTY, FLD EMPTY, FLD EMPTY },
{ FLD EMPTY, FLD EMPTY, FLD EMPTY } };

Inicjalizacja jest tu odzwierciedleniem faktu, iz na poczatku wszystkie jej pola sg puste.

Plansza to jednakowoz nie wszystko. W naszej grze bedzie sie przeciez co$ dzia¢: gracze
dokonywac bedg swych kolejnych posuniec. Potrzebujemy wiec zmiennych opisujacych
przebieg rozgrywki.

Ich wyodrebnienie nie jest juz takie tatwe, aczkolwiek nie powinniSmy mieé¢ z tym
wielkich ktopotow. Musimy mianowicie pomysle¢ o grze w koétko i krzyzyk jako o procesie
przebiegajacym etapami, wedtug okres$lonego schematu. To nas doprowadzi do
pierwszej zmiennej, okreslajacej aktualny stan gry:

enum GAMESTATE { GS _NOTSTARTED, // gra nie zostala rozpoczeta

GS_MOVE, // gra rozpoczeta, gracze wykonujg ruchy
GS_WON, // gra skohczona, wygrana ktdérego$ gracza
GS_DRAW }; // gra skohczona, remis

GAMESTATE g StanGry = GS _NOTSTARTED;

Wyréznilismy tutaj cztery fazy:

> poczatkowa - wtasciwa gra jeszcze sie nie rozpoczefa, czynione sg pewne
przygotowania (o ktérych wspomnimy nieco dalej)

» rozgrywka - uczestniczacy w niej gracze naprzemiennie wykonujg ruchy. Jest to
zasadnicza czes$¢ catej gry i trwa najdtuzej.

> wygrana - jeden z graczy zdotat utozy¢ linie ze swoich symboli i wygrat partie

> remis - plansza zostata szczelnie zapetniona znakami zanim ktérykolwiek z graczy
zdotat zwyciezy¢

Czy to wystarczy? Nietrudno sie domysle¢, ze nie. Nie przewidzieliSmy bowiem Zzadnego
sposobu na przechowywanie informacji o tym, ktory z graczy ma w danej chwili
wykonac swéj ruch. Czym predzej zatem naprawimy swoj btad:

enum SIGN { SGN CIRCLE, SGN CROSS };
SIGN g AktualnyGracz;

Zauwazmy, iz nie posiadamy o graczach zadnych dodatkowych wiadomosci ponad fakt,
jakie znaki (kotko czy krzyzyk) stawiajg oni na planszy. Informacja ta jest zatem
jedynym kryterium, pozwalajgcym na ich odrdznienie - totez skrzetnie z niej korzystamy,
deklarujac zmienng odpowiedniego typu wyliczeniowego.

Zamodelowanie wiasciwych struktur danych kontrolujacych przebieg gry to jedna z

- wazniejszych czynnosci przy jej projektowaniu. W naszym przypadku sa one bardzo
- proste (jedynie dwie zmienne), jednak zazwyczaj przyjmuja znacznie bardziej
| skomplikowang forme. W swoim czasie zajmiemy sie dokfadniej tym zagadnieniem.

Zdaje sie, ze to juz wszystkie zmienne, jakich bedziemy potrzebowaé w naszym
programie. Czas zatem zajac sie jego druga, rownie wazng czescig, czyli kodem
odpowiedzialnym za wiasciwe funkcjonowanie.

Dziatanie programu

Przed chwilg wprowadziliSmy sobie dwie zmienne, ktére bedg nam pomocne w
zaprogramowaniu przebiegu naszej gry od poczatku az do konca. Teraz wtasnie

170 Podstawy programowania

zajmiemy sie tymze ,szlakiem” programu, czyli sposobem, w jaki bedzie on dziatat i
prowadzit rozgrywke. Mozemy go zilustrowac na diagramie podobnym do ponizszego:

Wygrana
Rozpocrecie Sprawdzenie GS_WON
ary Ruch gracza stanu planszy
G5 ROTSTARTED G5 MOVE .
— = Remis
GS_DRAW

Schemat 13. Przebieg gry w koétko i krzyzyk

Widzimy na nim, w jaki sposdb nastepuje przejs$cie pomiedzy poszczegdlnymi stanami
gry, a wiec kiedy i jak ma sie zmienia¢ wartos¢ zmiennej g StanGry. Na tej podstawie
moglibysmy tez okresli¢ funkcje, ktore sg konieczne do napisania oraz ogdlne czynnosci,
jakie powinny one wykonywac.

Powyzszy rysunek jest uproszczonym diagramem przejs$c¢ standéw. To jeden z wielu
rodzajéw schematdw, jakie mozna wykona¢ podczas projektowania programu.

Potrzebujemy jednak bardziej szczegotowego opisu. Lepiej jest tez wykonac go teraz,
podczas projektowania aplikacji, niz przekfada¢ do czasu faktycznego programowania.
Przy okazji uscislania przebiegu programu postaramy sie uwzgledni¢ w nim takze
pominiete wczesniej, ,drobne” szczegdty - jak chocby okreslenie aktualnego gracza i jego
zmiana po kazdym wykonanym ruchu.

Nasz nowy szkic moze zatem wygladac tak:

I -
I Rozpoczecie gry Wygrana
Stan ;, — Wylosowanie ak;l.::ll:r:;go R
¥ rOZpoCEZyYna)gieqo
GS NOTSTARTED gracza Ustawienie stanu
! Ustawienie stanu gry na G5_DRAW
Ustawienie stanu gry na &5_Won L]
gry na Gs_MoVE - s

Rozgrywka

Wykananie ruchu -
wskazanego priez Sprawdzenie
uytkownika stanu planszy

D e P

aktualnego gracza

¥

Schemat 14. Dziatanie programu do gry w koétko i krzyzyk

Zlozone zmienne 171

Mozna tutaj zauwazy¢ czwoérke potencjalnych kandydatéow na funkcje - sg to sekwencje
dziatan zawarte w zielonych polach. Faktycznie jednak dla dwdch ostatnich (wygranej
oraz remisu) bytoby to pewnym naduzyciem, gdyz zawarte w nich operacje mozna z
powodzeniem dofgczy¢ do funkcji obstugujacej rozgrywke. Sa to bowiem jedynie
przypisania do zmiennej.

Ostatecznie mamy przewidziane dwie zasadnicze funkcje programu:
» rozpoczecie gry, realizowane na poczatku. Jej zadaniem jest przygotowanie
rozgrywki, czyli przede wszystkim wylosowanie gracza zaczynajacego
> rozgrywka, a wiec wykonywanie kolejnych ruchéw przez graczy

Skoro wiemy juz, jak nasza gra ma dziata¢ ,od $rodka”, nie od rzeczy bedzie zajecie sie
metoda jej komunikacji z zywymi uzytkownikami-graczami.

Interfejs uzytkownika
Hmm, jaki interfejs?...
Zazwyczaj pojecie to utozsamiamy z okienkami, przyciskami, pola tekstowymi, paskami

przewijania i innymi zdobyczami graficznych systeméw operacyjnych. Tymczasem termin
ten ma bardziej szersze znaczenie:

Interfejs uzytkownika to sposob, w jaki aplikacja prowadzi dialog z obstugujacymi ja
osobami. Obejmuje to zaréwno pobieranie od nich danych wejsciowych, jak i prezentacje
wynikow pracy.

Niewatpliwie wiec mozemy czuc sie uprawnieni, aby nazwac naszg skromna konsole
petnowartosciowym sSrodkiem do realizacji interfejsu uzytkownika! Pozwala ona przeciez
zaréwno na uzyskiwanie informacji od osoby siedzacej za klawiaturg, jak i na
wypisywanie przeznaczonych dla niej komunikatow programu.

Jak zatem magtby wygladac interfejs naszego programu?... Twoje dotychczasowe, bogate
doswiadczenie z aplikacjami konsolowymi powinny utatwic ci odpowiedz na to pytanie.
Informacja, ktérg prezentujemy uzytkownikowi, to oczywiscie aktualny stan planszy. Nie
bedzie ona wprawdzie miata postaci rysunkowej, jednakze zwykty tekst catkiem dobrze
sprawdzi sie w roli , grafiki”.

Po wyswietleniu biezacego stanu rozgrywki mozna poprosi¢ o gracza o wykonanie
swojego ruchu. Gdybysmy mogli obstuzy¢ myszke, wtedy posuniecie bytoby po prostu
kliknieciem, ale w tym wypadku musimy zadowoli¢ sie poleceniem wpisanym z
klawiatury.

Ostatecznie wyglad naszego programu moze by¢ podobny do ponizszego:

Podaj numer pola,. w ktorym
chcesz postawic kolko: _

Screen 32. Interfejs uzytkownika naszej gry

Przy okazji zauwazy¢ mozna jedno z rozwigzan problemu pt. ,Jak umozliwi¢ wykonywanie
ruchéw, postugujac sie jedynie klawiaturg?” Jest nim tutaj ponumerowanie kolejnych
elementow tablicy-planszy liczbami od 1 do 9, a nastepnie prosba do gracza o podanie
jednej z nich. To chyba najwygodniejsza forma gry, jakg potrafimy osiggnac¢ w tych
niesprzyjajacych, tekstowych warunkach...

172 Podstawy programowania

Metodami na przeliczanie pomiedzy zwyczajnymi, dwoma wspoétrzednymi tablicy oraz tg
- jedna ,nibywspoirzedna” zajmiemy sie podczas wtasciwego programowania.

Xk k

Na tym mozemy juz zakonczy¢ wstepne projektowanie naszego projektu :) Ustalilismy
sposéb jego dziatania, uzywane przezen struktury danych, a nawet interfejs uzytkownika.
Wszystko to utatwi nam pisanie kodu catej aplikacji, ktore to rozpoczniemy juz za chwile.

To byt tylko skromny i bardzo nieformalny wstep do dziedziny informatyki zwanej
inzynierig oprogramowania. Zajmuje sie ona projektowaniem wszelkiego rodzaju
programoéw, poczynajac kazdy od pomystu i prowadzac poprzez model, kod, testowanie i
wreszcie uzytkowanie. Jezeli chciatbys sie dowiedzie¢ wiecej na ten interesujacy i
przydatny temat, zapraszam do Materiatu Pomocniczego C, Podstawy inzynierii
oprogramowania (aczkolwiek zalecam najpierw skonczenie tej czesci kursu).

Kodowanie

Nareszcie mozemy uruchomi¢ swoje ulubione srodowisko programistyczne, wspierajgce
ulubiony jezyk programowania C++ i zacza¢ wiasciwe programowanie zaprojektowanej
juz gry. Uczyh to wiec, stwdrz w nim nowy projekt, nazywajac go dowolnie®®, i czekaj na
dalsze rozkazy ;D

Kilka modutow i wtasne nagtowki

Na poczatek utworzymy i dodamy do projektu wszystkie pliki, z jakich docelowo ma sie
sktadac¢. Zgadza sie - pliki. Pisany przez nas program moze okazac sie catkiem duzy,
dlatego rozsadnie bedzie podzieli¢ jego kod pomiedzy kilka odrebnych modutow.
Utrzymamy wtedy jego wzgledny porzadek oraz skrécimy czas kolejnych kompilaciji.

Zwyczajowo zaczniemy od pliku main.cpp, w ktérym umiescimy gtdwna funkcje
programu, main (). Chwilowo jednak nie wypetnimy jg zadng trescia:

void main ()

{
}

Zamiast tego wprowadzimy do projektu jeszcze jeden modut, w ktéorym wpiszemy
wiasciwy kod naszej gry. Przy pomocy opcji menu Project|Add New Item dodaj wiec do
aplikacji drugi juz plik typu C++ File (.cpp) i nazwij go game.cpp. W tym module znajda
sie wszystkie zasadnicze funkcje programu.

To jednak nie wszystko! Na deser zostawitem bowiem pewng nowos¢, z ktdrg nie
mieliSmy okazji sie do tej pory zetkngé. Stworzymy mianowicie swoj wiasny plik
nagltowkowy, idacy w parze ze swiezo dodanym modutem game.cpp. Uczynimy to
podobny sposdb, co dotychczas - z tg rdéznica, iz tym razem zmienimy typ dodawanego
pliku na Header File (.h).

58 Kompletny kod catej aplikacji jest zawarty w przyktadach do tego rozdziatu i opatrzony nazwg TicTacToe.

Zlozone zmienne 173

Add Hew Item - TicTacToe

=] visual C++
e =

3 W'.E.b -+ Filz - Midl File £.idl)
7] Utiliby {.cpp)

Fesource File SRF File {.srf) DEF File {.def)
{.rc)

5]

Reqistration
Scripk {,rgs)

c\Programy TicTacToe),

[open 7] o | ten |

Screen 33. Dodawanie pliku nagtéwkowego do projektu

Po co nam taki wtasny nagtéwek? W jakim celu w ogdle tworzy¢ nagtowki we wtasnych
projektach?...

Na powyzsze pytania istnieje dosy¢ prosta odpowiedz. Aby jg poznaé przypomnijmy
sobie, dlaczego dotaczamy do naszych programoéw nagtéwki w rodzaju iostream czy
conio.h. Hmm?...

Tak jest - dzieki nim jesteSmy w stanie korzystac z takich dobrodziejstw jezyka C++ jak
strumienie wejscia i wyjscia czy tancuchy znakow. Generalizujac, mozna powiedzie¢, ze
nagtéwki udostepniaja pewien kod wszystkim modutom, ktére dotacza je przy pomocy
dyrektywy #include.

Dotychczas nie zastanawialiémy sie zbytnio nad miejscem, w ktéorym egzystuje kod
wykorzystywany przez nas za posrednictwem nagtéwkdéw. Faktycznie moze on znajdowac
sie ,tuz obok” - w innym module tego samego projektu (i tak bedzie u nas), lecz réwnie
dobrze istnie¢ jedynie w skompilowanej postaci, na przyktad biblioteki DLL.

W przypadku dodanego witasnie nagtéwka game.h mamy jednak niczym nieskrepowany
dostep do odpowiadajacego mu modutu game.cpp. Zdawaltoby sie zatem, ze plik
nagtéwkowy jest tu catkowicie zbedny, a z kodu zawartego we wspomnianym module
moglibysmy z powodzeniem korzystac¢ bezposrednio.

Nic bardziej btednego! Za uzyciem pliku nagtéwkowego przemawia wiele argumentow, a
jednym z najwazniejszych jest zasada ograniczonego zaufania. Wediug niej kazda
czastka programu powinna posiadac dostep jedynie do tych jego fragmentow, ktore sq
niezbedne do jej prawidtowego funkcjonowania.

U nas tg czgstka bedzie funkcja main (), zawarta w module main.cpp. Nie napisaliSmy jej
jeszcze, ale potrafimy juz okresli¢, czego bedzie potrzebowata do swego poprawnego
dziatania. Bez watpienia bedg dlan konieczne funkcje odpowiedzialne za wykonywanie
posunie¢ wskazanych przez graczy czy tez procedury wyswietlajace aktualny stan
rozgrywki. Sposob, w jaki te zadania sa realizowane, nie ma jednak zadnego znaczenia!

174 Podstawy programowania

Podobnie przeciez nie jesteSmy zobligowani do wiedzy o szczegdtach funkcjonowania
strumieni konsoli, a mimo to stale z nich korzystamy.

Plik nagtdwkowy petni wiec role swoistej zastony, przykrywajacej nieistotne detale
implementacyjne, oraz klucza do tych zasobdw programistycznych (typow, funkcji,
zmiennych, itd.), ktérymi rzeczywiscie chcemy sie dzielic.

Dlaczego w zasadzie mamy sie z podobng nieufnoscig odnosi¢ do, badz co badz, samego
siebie? Czy rzeczywiscie w tym przypadku lepiej wiedzie¢ mniej niz wiecej?...

Gtdwng przyczyng, dla ktorej zasade ograniczonego zaufania uznaje sie za powszechnie
stuszng, jest fakt, iz wprowadza ona sporo porzadku do kazdego kodu. Chroni tez przed
wieloma btedami spowodowanymi np. nadaniem jakiej$ zmiennej wartosci spoza
dopuszczalnego zakresu czy tez wywotania funkcji w ztym kontekscie lub z
nieprawidlowymi parametrami.

Nagtoéwki sg tez pewnego rodzaju ,spisem tresci” kodu zrédtowego modutu czy biblioteki.
Zawierajg najczesciej deklaracje wszystkich typow oraz funkcji, wiec moga niekiedy
stuzy¢ za prowizoryczna dokumentacje®® danego fragmentu programu, szczegdlnie
przydatna w jego dalszym tworzeniu.

Z tego tez powodu pliki nagtdéwkowe sg najczesciej pierwszymi sktadnikami aplikacji, na
ktérych programista koncentruje swojg uwage. Pdzniej stanowig one rowniez podstawe
do pisania wtasciwego kodu algorytmow.

My takze zaczniemy kodowanie naszego programu od pliku game.h; gotowy nagtowek
bedzie nam potem doskonatg pomocg naukowg :)

Tresé pliku nagtdwkowego

W nagtéwku game.h umiescimy przerézne deklaracje wiekszosci twordw
programistycznych, wchodzacych w sktad naszej aplikacji. Beda to chociazby zmienne
oraz funkcje.

Rozpoczniemy jednak od wpisania don definicji trzech typdw wyliczeniowych, ktore
ustalilismy podczas projektowania programu. Chodzi naturalnie o SIGN, FIELD i
GAMESTATE:

enum SIGN { SGN_CIRCLE, SGN_CROSS };
enum FIELD { FLD EMPTY, FLD CIRCLE, FLD CROSS };
enum GAMESTATE { GS_NOTSTARTED, GS MOVE, GS_WON, GS_DRAW };

Jest to powszechny zwyczaj w C++. Powyzsze linijki moglibySmy wszakze z rdwnym
powodzeniem umiesci¢c wewnatrz modutu game.cpp. Wyodrebnienie ich w pliku
nagtdwkowym ma jednak swoje uzasadnienie: wtasne typy zmiennych sg bowiem takimi
zasobami, z ktorych najczesciej korzysta wieksza cze$¢ danego programu. Jako kod
wspotdzielony (ang. shared) sq wiec idealnym kandydatem do umieszczenia w
odpowiednim nagtowku.

W dalszej czesci pomyslimy juz o konkretnych funkcjach, ktorym powierzymy zadanie
kierowania nasza grq. Pamietamy z fazy projektowania, iz przewidzieliSmy przynajmniej
dwie takie funkcje: odpowiedzialng za rozpoczecie gry oraz za przebieg rozgrywki, czyli
wykonywanie ruchdéw i sprawdzanie ich skutku. Mozemy jeszcze dotozy¢ do nich algorytm
Lfysujacy” (jesli mozna tak powiedzie¢ w odniesieniu do konsoli) aktualny stan planszy.

%9 Nie chodzi tu o podrecznik uzytkownika programu, ale raczej o jego dokumentacje techniczna, czyli opis
dziatania aplikacji od strony programisty.

Zlozone zmienne 175

Teraz sprecyzujemy nieco nasze pojecie o tych funkcjach. Do pliku nagtdwkowego
wpiszemy bowiem ich prototypy:

// prototypy funkcji

// rozpoczecie gry
bool StartGry();

// wykonanie ruchu
bool Ruch (unsigned) ;

// rysowanie planszy
bool RysujPlansze();

Coz to takiego? Prototypy, zwane tez deklaracjami funkcji, sg jakby ich nagtowkami
oddzielonymi od bloku zasadniczego kodu (ciata). Majac prototyp funkcji, posiadamy
informacje o jej nazwie, typach parametréw oraz typie zwracanej wartosci. Sg one
wystarczajace do jej wywotania, aczkolwiek nic nie mdéwig o faktycznych czynnosciach,
jakie dana funkcja wykonuje.

Prototyp (deklaracja) funkcji to wstepne okreslenie jej nagtdwka. Stanowi on
informacje dla kompilatora i programisty o sposobie, w jaki funkcja moze by¢ wywotana.

Z punktu widzenia kodera dotaczajacego pliki nagtdwkowe prototyp jest furtkg do
skarbca, przez ktérg mozna przejs¢ jedynie z zawigzanymi oczami. Niesie wiedze o tym,
co prototypowana funkcja robi, natomiast nie daje zadnych wskazowek o sposobie, w
jaki to czyni. Niemniej jest on nieodzowny, aby rzeczong funkcje méc wywotac.

Warto wiedzie¢, ze dotychczas znana nam forma funkcji jest zaréwno jej prototypem
(deklaracjq), jak i definicja (implementacjq). Prezentuje bowiem petnie wiadomosci
potrzebnych do jej wywotania, a poza tym zawiera wykonywalny kod funkcji.

Dla nas, przysztych autoréw zadeklarowanych witasnie funkcji, prototyp jest kolejng
okazjg do zastanowienia sie nad kodem poszczegolnych procedur programu. Precyzujac
ich parametry i zwracane wartosci, budujemy wiec solidne fundamenty pod ich niedalekie
zaprogramowanie.

Dla formalnosci zerknijmy jeszcze na sktladnie prototypu funkcji:
typ zwracanej wartosSci/void nazwa funkcji([typ parametru [nazwal, ...]1);
Oprécz uderzajacego podobienstwa do jej nagtdwka rzuca sie w oczy rowniez fakt, iz na

etapie deklaracji nie jest konieczne podawanie nazw ewentualnych parametréw funkcji.
Dla kompilatora w zupetnosci bowiem wystarczajq ich typy.

Juz ktérys raz z kolei uczulam na konczacy instrukcje srednik. Bez niego kompilator
bedzie oczekiwat bloku kodu funkcji, a przeciez istota prototypu jest jego niepodawanie.

Wtasciwy kod gry

Zastanowienie moze budzi¢ powdd, dla ktérego zadna z trzech powyzszych funkcji nie
zostata zadeklarowana jako void. Przeciez zgodnie z tym, co ustalili§my podczas
projektowania wszystkie majg przede wszystkim wykonywac jakies dziatania, a nie
oblicza¢ wartosci.

To rzeczywiscie prawda. Rezultat zwracany przez te funkcje ma jednak inng role - bedzie
informowat o powodzeniu lub niepowodzeniu danej operacji. Typ bool zapewnia tutaj

176 Podstawy programowania

najprostszg mozliwg obstuge ewentualnych bledéw. Warto o niej pomysleé¢ nawet
wtedy, gdy pozornie nic ztego nie moze sie zdarzy¢. Wyrabiamy sobie w ten sposdb
dobre nawyki programistyczne, ktére zaprocentujg w przysztych, znacznie wiekszych
aplikacjach.

A co z parametrami tych funkcji, a doktadniej z jedynym argumentem procedury Ruch () ?
Wydaje mi sie, iz tatwo jest dociec jego znaczenia: to bowiem elementarna wielkos$¢,
opisujaca posuniecie zamierzone przez gracza. Jej sens zostat juz zaprezentowany przy
okazji projektu interfejsu uzytkownika: chodzi po prostu o wprowadzony z klawiatury
numer pola, na ktorym ma by¢ postawione koétko lub krzyzyk.

Zaczynamy

Skoro wiemy juz doktadnie, jak wygladajg wizytowki naszych funkcji oraz z grubsza
znamy nalezyte algorytmy ich dziatania, napisanie odpowiedniego kodu powinno by¢ po
prostu dziecinng igraszka, prawda?... :) Dobre samopoczucie moze sie jednak okazac
przedwczesne, gdyz na twoim obecnym poziomie zaawansowania zadanie to wcale nie
nalezy do najtatwiejszych. Nie zostawie cie jednak bez pomocy!

Dla szczegdlnie ambitnych proponuje aczkolwiek samodzielne dokonczenie catego
programu, a nastepnie poréwnanie go z kodem dotgczonym do kursu. Samodzielne
rozwigzywanie problemodw jest bowiem istotg i najlepszg drogq nauki programowania!
Podczas zmagania sie z tym wyzwaniem mozesz jednak (i zapewne bedziesz musiat)
korzysta¢ z innych zrédet informacji na temat programowania w C++, na przyktad MSDN.
Wiadomosciami, ktére niemal na pewno okazg ci sie przydatne, sg dokfadne informacje o
plikach nagtéwkowych i zwigzanej z nimi dyrektywie #include oraz stowie kluczowym
extern. Poszukaj ich w razie napotkania nieprzewidzianych trudnosci...

Jezeli poradzisz sobie z tym niezwykle trudnym zadaniem, bedziesz mogt by¢ z siebie
niewypowiedzianie dumny :D Nagrodg bedzie tez cenne doswiadczenie, ktérego nie
zdobedziesz inng drogq!

Mamy wiec zamiar pisac instrukcje stanowigce blok kodu funkcji, przeto powinnismy
umiesci¢ je wewnatrz modutu, a nie pliku nagtéwkowego. Dlatego tez chwilowo
porzucamy game.h i otwieramy nieskazony jeszcze zadnym znakiem plik game.cpp.
Nie znaczy to wszak, ze nie bedziemy naszego nagtéwka w ogdle potrzebowac.
Przeciwnie, jest ona nam niezbedny - zawiera przeciez definicje trzech typow
wyliczeniowych, bez ktérych nie zdotamy sie obejsc.

Powinnismy zatem dotaczy¢ go do naszego modutu przy pomocy poznanej jakis czas
temu i stosowanej nieustannie dyrektywy #include:

#include "game.h"

Zwréémy uwage, iz, inaczej niz to mamy w zwyczaju, ujeliSmy nazwe pliku
nagtéwkowego w cudzystowy zamiast nawiasow ostrych. Jest to konieczne; w ten
sposob nalezy zaznaczac¢ nasze wiasne nagtowki, aby odroézni¢ je od ,fabrycznych”
(iostream, cmath itp.)

Nazwe dotaczanego pliku nagtdwkowego nalezy umieszcza¢ w cudzystowach ("), jesli
jest on w tym samym katalogu co modut, do ktérego chcemy go dofgczy¢. Moze byc¢ on
takze w jego poblizu (nad- lub podkatalogu) - wtedy uzywa sie wzglednej Sciezki do pliku
(np. "..\plik.h").

Dotaczenie witasnego nagtowka nie zwalnia nas jednak od wykonania tej samej czynnosci
na dwoch innych tego typu plikach:

#include <iostream>
#include <ctime>

Zlozone zmienne 177

Sg one konieczne do prawidtowego funkcjonowania kodu, ktéry napiszemy za chwile.

Deklarujemy zmienne

Wiaczajac plik nagtdwkowy game.h mamy do dyspozycji zdefiniowane w nim typy SIGN,
FIELD i GAMESTATE. Logiczne bedzie wiec zadeklarowanie nalezgcych don zmiennych
g aPlansza, g StanGry i g AktualnyGracz:

FIELD g aPlansza([3][3] = { { FLD EMPTY, FLD EMPTY, FLD EMPTY },

{ FLD EMPTY, FLD EMPTY, FLD EMPTY },

{ FLD _EMPTY, FLD EMPTY, FLD EMPTY } };
GAMESTATE g StanGry = GS _NOTSTARTED;
SIGN g AktualnyGracz;

Skorzystamy z nich niejednokrotnie w kodzie modutu game.cpp, zatem powyzsze linijki
nalezy umiesci¢ poza wszelkimi funkcjami.

Funkcja startGry ()

Nie jest to trudne, skoro nie napisaliSmy jeszcze absolutnie zadnej funkcji :) Niezwtocznie
wiec zabieramy sie do pracy. Rozpoczniemy od tej procedury, ktéra najszybciej da o
sobie zna¢ w gotowym programie - czyli StartGry ().

Jak pamietamy, jej rolg jest przede wszystkim wylosowanie gracza, ktory rozpocznie
rozgrywke. Wczesniej jednak przydatoby sie, aby funkcja sprawdzita, czy jest
wywotywana w odpowiednim momencie - gdy gra faktycznie sie jeszcze nie zaczeta:

if (g_StanGry != GS NOTSTARTED) return false;

Jezeli warunek ten nie zostanie spetniony, funkcja zwrdci wartos¢ wskazujaca na
niepowodzenie swych dziatan.
Jakich dziatan? Nietrudno zapisac je w postaci kodu C++:

// losujemy gracza, ktdéry bedzie zaczynatl
srand (static cast<unsigned>(time (NULL))) ;
g AktualnyGracz = (rand() % 2 == 0 ? SGN_CIRCLE : SGN_CROSS) ;

// ustawiamy stan gry na ruch graczy
g_StanGry = GS_MOVE;

Losowanie liczby z przedziatu <0; 2) jest nam czynnoscig na wskro$ znajoma. W
potaczeniu z operatorem warunkowym ?: pozwala na realizacje pierwszego z celéw
funkcji. Drugi jest tak elementarny, ze w ogdle nie wymaga komentarza. W koncu nie od
dzi$ stykamy sie z przypisaniem wartosci do zmiennej :)

To juz wszystko, co byto przewidziane do zrobienia przez naszg funkcje startGry (). W
petni usatysfakcjonowani mozemy wiec zakonczy¢ ja zwrdceniem informacji o
pozytywnym rezultacie podjetych akcji:

return true;

Wywotujacy otrzyma wiec wiadomos¢ o tym, ze czynnosci zlecone funkcji zostaty
zakonczone z sukcesem.

Funkcja Ruch ()

Kolejng funkcja, na ktérej spocznie nasz wzrok, jest Ruch () . Ma ona za zadanie umiescic¢
w podanym polu znak aktualnego gracza (kotko lub krzyzyk) oraz sprawdzic¢ stan planszy
pod katem ewentualnej wygranej ktéregos z graczy lub remisu. Catkiem sporo do
zrobienia, zatem do pracy, rodacy! ;D

178 Podstawy programowania

Pamietamy oczywiscie, ze rzeczona funkcja ma przyjmowac jeden parametr typu
unsigned, wiec jej szkielet wygladac bedzie nastepujaco:

bool Ruch (unsigned uNumerPola)

{
//
}

Na poczatku dokonamy tutaj podobnej co poprzednio kontroli ewentualnego btedu w
postaci ztego stanu gry. Dodamy jeszcze warunek sprawdzajqcy, czy zadany numer pola
zawiera sie w przedziale <1; 9>. Cato$¢ wyglada nastepujaco:

if (g _StanGry != GS MOVE) return false;
if (! (uNumerPola >= 1 && uNumerPola <= 9)) return false;

Jezeli punkt wykonania pokona obydwie te przeszkody, nalezatoby uczynic ruch, o ktory
uzytkownik (za posrednictwem parametru uNumerPola) prosi. W tym celu konieczne jest
przeliczenie, zamieniajgce pojedynczy numer pola (z zakresu od 1 do 9) na dwa indeksy
naszej tablicy g aPlansza (kazdy z przedziatu od 0 do 2). Pomocy moze nam tu udzieli¢
wizualny diagram, na przyktad taki:

Schemat 15. Numerowanie pél planszy do gry w koétko i krzyzyk

Odpowiednie formutki, wyliczajace wspoétrzedng pionowg (uy) i pozioma (ux) mozna
napisa¢, wykorzystujac dzielenie catkowitoliczbowe oraz reszte z niego:

unsigned uY = (uNumerPola - 1) /
unsigned uX (uNumerPola - 1) %

Odjecie jedynki jest spowodowane faktem, iz w C++ tablice sq indeksowane od zera
(poza tym jest to dobra okazja do przypomnienia tej waznej kwestii :D).

Majac juz obliczone oba indeksy, mozemy sprébowac postawi¢ symbol aktualnego gracza
w podanym polu. Uda sie to jednak wytacznie wtedy, gdy nikt nas tutaj nie uprzedzit - a
wiec kiedy wskazane pole jest puste, co kontrolujemy dodatkowym testem:

if (g_aPlansza[uY] [uX] == FLD_ EMPTY)

// wstaw znak aktualnego gracza w podanym polu
else

return false;

Jesli owa kontrola sie powiedzie, musimy zrealizowac¢ zamierzenie i wstawic¢ kotko lub
krzyzyk - zaleznie do tego, ktéry gracz jest teraz uprawniony do ruchu - w zadanie
miejsce. Informacje o aktualnym graczu przechowuje rzecz jasna zmienna

g _AktualnyGracz. Niemozliwe jest jednak jej zwykte przypisanie w rodzaju:

g _aPlansza[uY] [uX] = g AktualnyGracz;

Zlozone zmienne 179

Wystapitby tu bowiem konflikt typdw, gdyz FIELD i SIGN sg typami wyliczeniowymi, nijak
ze sobg niekompatybilnymi. CzyzbySmy musieli zatem uciec sie do topornej instrukcji
switch?

Odpowiedz na szczescie brzmi nie. Inne, lepsze rozwigzanie polega na ,dopasowaniu” do
siebie statych obu typow, reprezentujacych kétko i krzyzyk. Niech bedg one sobie réwne;
w tym celu zmodyfikujemy definicje FIELD (w pliku game.h):

enum FIELD { FLD EMPTY,
FLD CIRCLE SGN_CIRCLE,
FLD CROSS = SGN_CROSS };

Po tym zabiegu cata operacja sprowadza sie do zwykiego rzutowania:

g _aPlanszaluY] [uX] = static_cast<FIELD>(g AktualnyGracz);

Liczbowe wartosci obu zmiennych bedg sie zgadzad, ale interpretacja kazdej z nich
bedzie odmienna. Tak czy owak, osiggneliSmy obrany cel, wiec wszystko jest w
porzadku :)

Niedtugo zresztg ponownie skorzystamy z tej prostej i efektywnej sztuczki.

Nasza funkcja wykonuje juz potowe zadan, do ktérych jg przeznaczyliSmy. Niestety,
mniejszg potowe :D Oto bowiem mamy przed sobg znacznie powazniejsze wyzwanie niz
kilka i£'éw, a mianowicie zaprogramowanie algorytmu lustrujgcego plansze i
stwierdzajgcego na jej podstawie ewentualng wygrang ktéregos z graczy lub remis.
Trzeba wiec zakasac rekawy i wytezyc intelekt...

Zajmijmy sie na razie wykrywaniem zwyciestw. Doskonale chyba wiemy, ze do wygranej
W naszej grze potrzebne jest graczowi utworzenie z wtasnych znakéw linii poziomej,
pionowej lub ukosnej, obejmujacej trzy pola. tacznie mamy wiec osiem mozliwych linii, a
dla kazdej po trzy pola opisane dwiema wspotrzednymi. Daje nam to, bagatelka, 48
warunkéw do zakodowania, czyli 8 makabrycznych instrukcji i f z sze$ciocztonowymi (!)
wyrazeniami logicznymi w kazdej! Brr, brzmi to wrecz okropnie...
Jak to jednak nierzadko bywa, istnieje rozwigzanie alternatywne, ktore jest z reguty
lepsze :) Tym razem jest nim uzycie tablicy przegladowej, w ktorg wpiszemy wszystkie
wygrywajace zestawy pol: osiem linii po trzy pola po dwie wspotrzedne daje nam
ostatecznie taka oto, nieco zakrecona, statg®’:

const LINIE[][3][2] = { },
s
s
} 4

{ by
{
{
{
boo A
{
{
{

{
bro A
bro A
bro A
b A

{

{

{

} }, // gbrna pozioma

} },// $rod. pozioma

} },// dolna pozioma

} }, // lewa pionowa

} }, // $rod. pionowa

} }, // prawa pionowa

} }, // p. backslashowa
} } }; // p. slashowa

s
y
y

s
y
y

Aﬁﬁﬁﬁ,ﬁ,ﬁ,ﬁ
N U U U
NOOOoOONR O
NS S~ s S~~~
OCONRFR OO OO
e ke
S 0~ S~ o~ o~ o~~~
PR NR O
ONNNNNEFO
~ S~ S~ S~ S~~~ S
NN R ONNN

Przy jej deklarowaniu korzystaliSmy z faktu, iz w takich wypadkach pierwszy wymiar
tablicy mozna poming¢, lecz rownie poprawne byloby wpisanie tam 8 explicité.

A zatem mamy juz tablice przegladowa... Przydatoby sie wiec jako$ jg przegladac :)
Oprécz tego mamy jednak dodatkowy cel, czyli znalezienie linii wypetnionej tymi samymi
znakami, nasze przegladanie bedzie wobec tego nieco skomplikowane i przedstawia sie
nastepujgco:

€0 Brak nazwy typu w deklaracji zmiennej sprawia, iz bedzie naleze¢ ona do domy$inego typu int. Tutaj
oznacza to, ze elementy naszej tablicy beda liczbami catkowitymi.

180 Podstawy programowania

FIELD Pole, ZgodnePole;
unsigned uLiczbaZgodnychPol;
for (int 1 = 0; 1 < 8; ++1)
{

// 1 przebiega po kolejnych mozliwych liniach (jest ich osiem)

// zerujemy zmienne pomocnicze
Pole = ZgodnePole = FLD EMPTY; // obie zmienne == FLD EMPTY
ulLiczbaZgodnychPol = 0;

for (int j = 0; j < 3; ++3)
{
// 7 przebiega po trzech polach w kazdej linii

// pobieramy rzeczone pole
// to zdecydowanie najbardziej pogmatwane wyrazenie :)
Pole = g aPlansza[LINIE[i][j][0]] [LINIE[i][J]I[1]];

// Jesli sprawdzane pole rdzne od tego, ktdre ma sie zgadzac...
if (Pole != ZgodnePole)
{

// to zmieniamy zgadzane pole na to aktualne
ZgodnePole = Pole;
ulLiczbaZgodnychPol = 1;

else
// jesli natomiast oba pola sie zgadzaja, no to
// inkrementujemy licznik takich zgodnych pdl
++uliczbaZgodnychPol;
}

// teraz sprawdzamy, czy udato nam sie zgodzié¢ linie
if (uliczbaZgodnychPol == 3 && ZgodnePole != FLD EMPTY)
{

// Jezeli tak, no to ustawiamy stan gry na wygrang
g StanGry = GS_WON;

// przerywamy petle i funkcje
return true;

}

»~No nie” - powiesz pewnie - ,Teraz to juz przesadzite$!” ;) Ja jednak upieram sie, iz nie
catkiem masz racje, a podany algorytm tylko wyglada strasznie, lecz w istocie jest bardzo
prosty.

Na poczatek deklarujemy sobie trzy zmienne pomocnicze, ktére wydatnie przydadzg sie
w catej operacji. Szczegdlng role spetnia tu uLiczbaZgodnychPol; jej nazwa mowi wiele.
Zmienna ta bedzie przechowywata liczbe identycznych pol w aktualnie badanej linii -
wartos¢ rowna 3 stanie sie wiec podstawg do stwierdzenia obecnosci wygrywajacej
kombinacji znakdéw.

Dalej przystepujemy do sprawdzania wszystkich o$miu interesujgcych sytuacii,
determinujgcych ewentualne zwyciestwo. Na scene wkracza wiec petla for; na poczatku
jej cyklu dokonujemy zerowania wartosci zmiennych pomocniczych, aby potem... wpas¢ w
kolejng petle :) Ta jednak bedzie przeskakiwata po trzech polach kazdej ze sprawdzanych
linii:

for (int j = 0; J < 3; ++3)
{
Pole = g aPlansza[LINIE([i] [j][O]] [LINIE[i][J]1[1]];

Zlozone zmienne 181

if (Pole != ZgodnePole)

{
ZgodnePole = Pole;
ulLiczbaZgodnychPol = 1;

}
else
++uliczbaZgodnychPol;

}

Koszmarnie wygladajaca pierwsza linijka bloku powyzszej petli nie bedzie wydawac sie az
tak straszne, jesli uswiadomimy sobie, iz LINIE[i][j][0] oraz LINIE[i][j][1] to
odpowiednio: wspotrzedna pionowa oraz pozioma j-tego pola i-tej potencjalnie
wygrywajacej linii. Stusznie wiec uzywamy ich jako indekséw tablicy g aPlansza,
pobierajac stan pola do sprawdzenia.

Nastepujaca dalej instrukcja warunkowa rozstrzyga, czy owe pole zgadza sie z
ewentualnymi poprzednimi - tzn. jezeli na przyktad poprzednio sprawdzane pole
zawierato kotko, to aktualne takze powinno miesci¢ ten symbol. W przypadku gdy
warunek ten nie jest spetniony, sekwencja zgodnych pél ,urywa sie”, co oznacza w tym
wypadku wyzerowanie licznika uLiczbaZgodnychPol. Sytuacja przeciwstawna - gdy
badane pole jest juz ktoryms z kolei kétkiem lub krzyzykiem - skutkuje naturalnie
zwiekszeniem tegoz licznika o jeden.

Po zakonczeniu catej petli (czyli wykonaniu trzech cykli, po jednym dla kazdego pola)
nastepuje kontrola otrzymanych rezultatéw. Najwazniejszym z nich jest wspomniany
licznik uLiczbaZgodnychPol, ktorego wartos¢ konfrontujemy z tréjka. Jednoczesnie
sprawdzamy, czy ,zgodzone” pole nie jest przypadkiem polem pustym, bo przeciez z
takiej zgodnosci nic nam nie wynika. Oba te testy wykonuje instrukcja:

if (ulLiczbaZgodnychPol == 3 && ZgodnePole != FLD EMPTY)

Spetnienie tego warunku daje pewnosé, iz mamy do czynienia z prawidlowg sekwencjg
trzech kotek lub krzyzykow. Stusznie wiec mozemy wtedy przyznac palme zwyciestwa
aktualnemu graczowi i zakonczy¢ catg funkcje:

g _StanGry = GS_WON;
return true;

W przeciwnym wypadku nasza gtéwna petla sie zapetla w swym kolejnym cyklu i bada w
nim kolejng ustalong linie symboli - i tak az do znalezienia pasujqcej kolumny, rzedu lub
przekatnej albo wyczerpania sie tablicy przegladowej LINIE.

Uff?... Nie, to jeszcze nie wszystko! Nie zapominajmy przeciez, ze zwyciestwo nie jest
jedynym mozliwych rozstrzygnieciem rozgrywki. Drugim jest remis - zapetnienie
wszystkich pél planszy symbolami graczy bez utworzenia zadnej wygrywajacej linii.

Jak obstuzy¢ taka sytuacje? Wbrew pozorom nie jest to wcale trudne, gdyz mozemy
wykorzystac do tego fakt, iz przebycie przez program poprzedniej, wariackiej petli
oznacza nieobecnos$¢ na planszy zadnych utozen zapewniajacych zwyciestwo. Niejako ,z
miejsca” mamy wiec spetniony pierwszy warunek konieczny do remisu.

Drugi natomiast - szczelne wypetnienie catej planszy - jest bardzo tatwy do sprawdzenia i
wymagania jedynie zliczenia wszystkich niepustych jej pol:

unsigned ulLiczbaZapelnionychPol = 0;

for (int 1 = 0; 1 < 3; ++1i)
for (int j = 0; j < 3; ++3)
if (g _aPlanszali][j] != FLD_ EMPTY)
++ulLiczbaZapelnionychPol;

182 Podstawy programowania

Jezeli jakim$ dziwnym sposobem ilo$¢ ta wyniesie 9, znaczyc¢ to bedzie, ze gra musi sie
zakonczy¢ z powodu braku wolnych miejsc :) W takich okolicznosciach wynikiem
rozgrywki bedzie tylko mato satysfakcjonujacy remis:

if (uliczbaZapelnionychPol == 3*3)
{

g _StanGry = GS_DRAW;

return true;

}

W taki oto sposéb wykryliSmy i obstuzyliSmy obydwie sytuacje ,wyjatkowe”, konczace
gre - zwyciestwo jednego z graczy lub remis. Pozostato nam jeszcze zajecie sie bardziej
zwyczajnym rezultatem wykonania ruchu, kiedy to nie powoduje on zadnych
dodatkowych efektéw. Nalezy wtedy przekaza¢ prawo do posuniecia drugiemu graczowi,
co tez czynimy:

g _AktualnyGracz = (g _AktualnyGracz == SGN_CIRCLE ?
SGN _CROSS : SGN CIRCLE) ;

Przy pomocy operatora warunkowego zmieniamy po prostu znak aktualnego gracza na
przeciwny (z kétka na krzyzyk i odwrotnie), osiggajac zamierzony skutek.

Jest to jednoczesnie ostatnia czynnos¢ funkcji Ruch () ! Wreszcie, po dtugich bojach i
bolach gtowy ;) mozemy jg zakonczy¢ zwrdceniem bezwarunkowo pozytywnego wyniku:

return true;
a nastepnie udac sie po cos$ do jedzenia ;-)

Funkcja RysujPlansze ()

Jako ostatnig napiszemy funkcje, ktérej zadaniem bedzie wyswietlenie na ekranie (czyli w
oknie konsoli) biezacego stanu gry:

KOLKO I KRZYZYK

Podagj numer pola, w ktorym
chcesz postawic kolko: _

Screen 34. Ekran gry w kétko i krzyzyk

Najwazniejsza jego sktadowg bedzie naturalnie ostawiona plansza, o zajecie ktdrej toczg
boje nasi dwaj gracze. Oprdcz niej mozna jednak wyroznic takze kilka innych elementdw.
Wszystkie one bedg ,rysowane” przez funkcje RysujPlansze (). Niezwtocznie wiec
rozpocznijmy jej implementacje!

Tradycyjnie juz pierwsze linijki sgq szukaniem dziury w catym, czyli potencjalnego btedu.
Tym razem usterkg bedzie wywotanie kodowanej wtasnie funkcji przez rozpoczeciem
wiasciwego pojedynku, gdyz w tej sytuacji nie ma w zasadzie nic do pokazania. Logiczng
konsekwencjq jest wtedy przerwanie funkcji:

if (g_StanGry == GS_NOTSTARTED) return false;

Zlozone zmienne 183

Jako ze jednak wierzymy w rozsadek programisty wywotujgcego pisang teraz funkcje
(czyli nomen-omen w swoéj wiasny :D), przejdzmy raczej do kodowania jej wtasciwej
czesci ,rysujacej”.

Od czego zaczniemy? Odpowiedz nie jest szczegdlnie trudna; co ciekawe, w przypadku
kazdej innej gry i jej odpowiedniej funkcji bytaby taka sama. Rozpoczniemy bowiem od
wyczyszczenia catego ekranu (czyli konsoli) - tak, aby mie¢ wolny obszar dziatania.
Dokonamy tego poprzez polecenie systemowe CLS, ktére wywotamy funkcjg C++ o
nazwie system() :

system ("cls");

Majac oczyszczone przedpole przystepujemy do zasadniczego rysowania. Ze wzgledu na
specyfike tekstowej konsoli zmuszeni jesteSmy do zapetniania jej wierszami, od gory do
dotu. Nie powinno nam to jednak zbytnio przeszkadzac.

Na samej gérze umiescimy tytut naszej gry, staty i niezmienny. Kod odpowiedzialny za te
czynnos¢ przedstawia sie wiec raczej trywialnie:

std::cout << " KOLKO I KRZYZYK " << std::endl;
std::cout << "--mmmmmmm oo " << std::endl;
std::cout << std::endl;

Zadnych wrazen pocieszam jednak, iz dalej bedzie juz ciekawiej :) Oto mianowicie
przystepujemy do prezentacji planszy w postaci tekstowej - z zaznaczonymi kotkami i
krzyzykami postawionymi przez graczy oraz numerami wolnych pol. Operacje tg
przeprowadzamy w sposéb nastepujacy:

std::cout <<« " ————- " << std::endl;
for (int 1 = 0; 1 < 3; ++1)
{

// lewa cze$é ramki

std::cout << " "y

// wiersz
for (int j = 0; j < 3; ++73)
{
if (g _aPlanszali][j] == FLD_EMPTY)
// numer pola
std::cout << 1 * 3 + 3 + 1;
else
// tutaj wyswietlamy kdétko lub krzyzyk... ale jak? :)
}

// prawa czeéé ramki
std::cout << "|" << std::endl;

}
std::cout <<« " ————- " << std::endl;
std::cout << std::endl;

Caty kod to oczywiscie znowu dwie zagniezdzone petle for - staty element pracy z
dwuwymiarowag tablicg. Zewnetrzna przebiega po poszczegdlnych wierszach planszy, zas
wewnetrzna po jej pojedynczych polach.

Wyswietlenie takiego pola oznacza pokazanie albo jego numerku (jezeli jest puste), albo
duzej litery O lub X, symulujacej wstawione wen koétko lub krzyzyk. Numerek wyliczamy
poprzez prostg formutke 1 * 3 + j + 1 (dodanie jedynki to znowuz kwestia indeksow
liczonych od zera), w ktérej i jest numerem wiersza, zas j - kolumny. Céz jednak zrobié
z drugim przypadkiem - zajetym polem? Musimy przeciez rozrézni¢ kétka i krzyzyki...
Mozna oczywiscie skorzystac z instrukcji i £ lub operatora ?:, jednak juz raz
zastosowaliSmy lepsze rozwigzanie. Dopasujmy mianowicie state typu FIELD (kazdy

184 Podstawy programowania

element tablicy g aPlansza nalezy przeciez do tego typu) do znakdéw 'o' i "x'.
Przypatrzmy sie najpierw definicji rzeczonego typu:

enum FIELD { FLD EMPTY,
FLD CIRCLE = SGN_CIRCLE,
FLD CROSS = SGN_CROSS };

Wida¢ nim skutek pierwszego zastosowania sztuczki, z ktérej chcemy znowu skorzystac.
Dotyczy on zresztq interesujacych nas statych FLD CIRCLE i FLD CROSS, réwnych
odpowiednio SGN CIRCLE i SGN CROSS. Czy to oznacza, iz z triku nici?

Bynajmniej nie. Nie mozemy wprawdzie bezposrednio zmieni¢ wartosci interesujacych
nas statych, ale mozliwe jest ,siegniecie do zroédet” i zmodyfikowanie SGN CIRCLE oraz
SGN_CROSS, zadeklarowanych w typie SIGN:

enum SIGN { SGN CIRCLE = 'O', SGN CROSS = 'X' };

Tq drogq, posrednio, zmienimy tez wartosci statych FLD CIRCLE i FLD CROSS, przypisujac
im kody ANSI wielkich liter ,0” i ,X". Teraz juz mozemy skorzysta¢ z rzutowania na typ
char, by wyswietli¢ niepuste pole planszy:

std::cout << static cast<char>(g aPlanszali] []])
Kod rysujacy obszar rozgrywki jest tym samym skonczony.

Pozostat nam jedynie komunikat o stanie gry, wyswietlany najnizej. Zaleznie od
biezacych warunkow (wartosci zmiennej g StanGry) moze on przyjmowac forme prosby
0 wpisanie kolejnego ruchu lub tez zwyczajnej informacji o wygranej lub remisie:

switch (g _StanGry)
{
case GS MOVE:
// prosba o nastepny ruch
std::cout << "Podaj numer pola, w ktorym" << std::endl;
std::cout << '"chcesz postawic ";
std::cout << (g AktualnyGracz == SGN CIRCLE ?
"kolko" : "krzyzyk") << ": ";
break;
case GS_WON:
// informacja o wygranej
std::cout << "Wygral gracz stawiajacy ";
std::cout << (g AktualnyGracz == SGN CIRCLE ?
"kolka" : "krzyzyki") << "IM;
break;
case GS_DRAW:
// informacja o remisie
std::cout << "Remis!";
break;

}
Analizy powyzszego kodu mozesz z tatwoéciq dokonaé samodzielnie®?.

Na tymze elemencie ,scenografii” koiczymy naszg funkcje RysujPlansze (), wienczac jg
oczywiscie zwyczajowym oddaniem wartosci true:

61 A jakze! Juz coraz rzadziej bede omawiat podobnie elementarne kody zrddtowe, bedace prostym
wykorzystaniem doskonale ci znanych konstrukcji jezyka C++. Jezeli solennie przyktadates sie do nauki, nie
powinno by¢ to dla ciebie zadng niedogodnoscig, za$ w zamian pozwoli na dogtebne zajecie sie nowymi
zagadnieniami bez koncentrowania wiekszej uwagi na banatach.

Zlozone zmienne 185

return true;

Mozemy na koniec zauwazy¢, iz piszac tg funkcje uporaliSmy sie jednoczesnie z
elementem programu o nazwie ,interfejs uzytkownika” :D

Funkcja main (), czyli sktadamy program

By¢ moze trudno w to uwierzy¢, ale mamy za sobg zaprogramowanie wszystkich funkcji
sterujgcych przebiegiem gry! Zanim jednak bedziemy mogli cieszy¢ sie dziatajgcym
programem musimy wypeitni¢ kodem gtéwng funkcje aplikacji, od ktorej zacznie sie jej
wykonywanie - main ().

W tym celu zostawmy juz wymeczony modut game.cpp i wrocmy do main.cpp, w ktérym
czeka nietkniety szkielet funkcji main (). Poprzedzimy go najpierw dyrektywami
dotaczenia niezbednych nagtowkéw - takze naszego wiasnego, game.h:

#include <iostream>
#include <conio.h>
#include "game.h"

Wiasne pliki nagtéwkowe najlepiej umieszczac na koncu szeregu instrukcji #include,
dotaczajac je po tych pochodzacych od kompilatora.

Teraz juz mozemy zajac sie trescig najwazniejszej funkcji w naszym programie.
Zaczniemy od nastepujacego wywotania:

StartGry();

Spowoduje ono rozpoczecie rozgrywki - jak pamietamy, oznacza to miedzy innymi
wylosowanie gracza, ktéremu przypadnie pierwszy ruch, oraz ustawienie stanu gry na
GS_MOVE.

Od tego momentu zaczyna sie wiec zabawa, a nam przypada obowigzek jej prawidtowego
poprowadzenia. Wywigzemy sie z niego w nieznany dotgd sposoéb - uzyjemy petli
nieskonczonej:

for (;;)
{

//
}

Konstrukcja ta wcale nie jest taka dziwna, a w grach spotyka sie jg bardzo czesto. Istota
petli nieskonczonej jest czesciowo zawarta w jej nazwie, a po czes$ci mozna jg
wydedukowa¢ ze skfadni. Mianowicie, nie posiada ona zadnego warunku zakonczenia®?,
wiec w zasadzie wykonywataby sie do konca swiata i o jeden dzien dtuzej ;) Aby tego
unikna¢, nalezy gdzies wewnatrz jej bloku umiesci¢ instrukcje break;, ktdéra spowoduje
przerwanie tego zakletego kregu. Uczynimy to, kodujac kolejne instrukcje w tejze petli.
Najpierw funkcja RysujPlansze () wyswietli nam aktualny stan rozgrywki:

RysujPlansze () ;
Pokaze wiec tytut gry, plansze oraz dolny komunikat - komunikat, ktory przez wiekszo$c

czasu bedzie prosba o kolejny ruch. By sprawdzi¢, czy tak jest w istocie, porownamy
zmienng opisujaca stan gry z wartoscig GS_MOVE:

62 Zwanego tez czasem warunkiem terminalnym.

186 Podstawy programowania

if (g _StanGry == GS MOVE)
{

unsigned uNumerPola;
std::cin >> uNumerPola;
Ruch (uNumerPola);

}

Pozytywny wynik wspomnianego testu stusznie sktania nas do uzycia strumienia wejscia i
pobrania od uzytkownika numeru pola, w ktore chce wstawi¢ swoje kétko lub krzyzyk.
Przekazujemy go potem do funkcji Ruch (), serca naszej gry.

Nastepujace po sobie posuniecia graczy, czyli kolejne cykle petli, doprowadza w koncu do
rozstrzygniecia rozgrywki - czyjejs wygranej albo obustronnego remisu. I to jest wiasnie
warunek, na ktéry czekamy:

else if (g StanGry == GS WON || g StanGry == GS_DRAW)
break;

Przerywamy wtedy petle, zostawiajgc na ekranie koncowy stan planszy oraz odpowiedni
komunikat. Aby uzytkownicy mieli szanse go zobaczy¢, stosujemy rzecz jasna funkcje
getch():

getch () ;

Po odebraniu wcisniecia dowolnego klawisza program moze sie juz ze spokojem
zamknac ;)

Uroki kompilacji

Fanfary! Zdaje sie, ze wiasnie zakonczyliSmy kodowanie naszego wielkiego projektu!
Nareszcie zatem mozemy przeprowadzi¢ jego kompilacje i uzyska¢ gotowy do
uruchomienia plik wykonywalny.

Zrobmy wiec to! Uruchom Visual Studio (jezeli je przypadkiem zamknates), otwdrz swaéj
projekt, zamknij drzwi i okna, wyprowadz zwierzeta domowe, wtgcz automatyczng
sekretarke i wcisnij klawisz F7 (lub wybierz pozycje menu Build|Build Solution)...

Xk k%

Co sie stato? Wyglada na to, ze nie wszystko udato sie tak dobrze, jak tego
oczekiwalismy. Zamiast dziatajacej aplikacji kompilator uraczyt nas czterema btedami:

c:\Programy\TicTacToe\main.cpp(20) : error C2065: 'g_StanGry' : undeclared identifier

c:\Programy\TicTacToe\main.cpp(20) : error C2677: binary '==": no global operator found which takes
type 'GAMESTATE' (or there is no acceptable conversion)
c:\Programy\TicTacToe\main.cpp(28) : error C2677: binary '==": no global operator found which takes
type 'GAMESTATE' (or there is no acceptable conversion)
c:\Programy\TicTacToe\main.cpp(28) : error C2677: binary '==": no global operator found which takes

type 'GAMESTATE' (or there is no acceptable conversion)

Wszystkie one dotyczg tego samego, ale najwiecej méwi nam pierwszy z nich.
Dwukrotnie klikniecie na dotyczacy go komunikat przeniesie nas bowiem do linijki:

if (g_StanGry == GS_MOVE)

Wystepuje w niej nazwa zmiennej g _StanGry, ktéra, sadzac po owym komunikacie, jest
tutaj uznawana za niezadeklarowana...

Ale dlaczego?! Przeciez z pewnoscig umiescilismy jej deklaracje w kodzie programu. Co
wiecej, stale korzystaliSmy z tejze zmiennej w funkcjach startGry (), Ruch () i

Zlozone zmienne 187

RysujPlansze (), do ktérych kompilator nie ma najmniejszych zastrzezen. Czyzby wiec
tutaj dopadfa go nagta amnezja?

Wyjasnienie tego, jak by sie wydawato, dos¢ dziwnego zjawiska jest jednak w miare
logiczne. Otéz g StanGry zostata zadeklarowana wewnatrz modutu game.cpp, wiec jej
zasieg ogranicza sie jedynie do tegoz modutu. Funkcja main (), znajdujgca sie w pliku
main.cpp, jest poza tym zakresem, zatem dla niej rzeczona zmienna po prostu nie
istnieje. Nic dziwnego, iz kompilator staje sie wobec nieznanej nazwy g StanGry
zupetnie bezradny.

Nasuwa sie oczywiscie pytanie: jak zaradzi¢ temu problemowi? Co zrobié, aby nasza
zmienna byta dostepna wewnatrz funkcji main () ?... Chyba najszybciej pomysle¢ mozna o
przeniesieniu jej deklaracji w obszar wspélny dla obu modutéw game.cpp oraz main.cpp.
Takim wspotdzielonym terenem jest naturalnie plik nagtdwkowy game.h. Czy nalezy wiec
umiesci¢ tam deklaracje GAMESTATE g StanGry = GS NOTSTARTED;?

Niestety, nie jest to poprawne. Musimy bowiem wiedzie¢, Zze zmienna nie moze
rezydowac wewngatrz nagtéwka! Jej prawidtowe zdefiniowanie powinno by¢ zawsze
umieszczone w module kodu. W przeciwnym razie kazdy modut, ktéry dotaczy plik
nagtéwkowy z definicjg zmiennej, stworzy swojg wlasna kopie tejze! U nas znaczytoby
to, ze zaréwno main.cpp, jak i game.cpp posiadajg zmienne o nazwach g StanGry, ale sq
one od siebie catkowicie niezalezne i ,nie wiedzg o sobie nawzajem”!

Definicja musi zatem pozosta¢ na swoim miejscu, ale plik nagtéwkowy niewatpliwie nam
sie przyda. Mianowicie, wpiszemy don nastepujaca linijke:

extern GAMESTATE g StanGry;

Jest to tak zwana deklaracja zapowiadajaca zmiennej. Jej zadaniem jest
poinformowanie kompilatora, ze gdzie$ w programie®® istnieje zmienna o podanej nazwie
i typie. Deklaracja ta nie tworzy zadnego nowego bytu ani nie rezerwuje dlafh miejsca w
pamieci operacyjnej, lecz jedynie zapowiada (stad nazwa), iz czynnosc¢ ta zostanie
wykonana. Obietnica ta moze by¢ spetniona podczas kompilacji lub (tak jak u nas)
dopiero w czasie linkowania.

Z praktycznego punktu widzenia deklaracja extern (ang. external - zewnetrzny) petni
bardzo podobng role, co prototyp funkcji. Podaje bowiem jedynie minimum informacji,
potrzebnych do skorzystania z deklarowanego tworu bez marudzenia kompilatora, a
jednoczesnie odkfada jego witasciwg definicje w inne miejsce i/lub czas.

Deklaracja zapowiadajaca (ang. forward declaration) to czesciowe okreslenie jakiego$
programistycznego bytu. Nie definiuje doktadnie wszystkich jego aspektéw, ale wystarcza
do skorzystania z niego wewnatrz zakresu umieszczenia deklaracji.

Przyktadem moze by¢ prototyp funkcji czy uzycie stowa extern dla zmiennej.

Umieszczenie powyzszej deklaracji w pliku nagtdwkowym game.h udostepnia zatem
zmienng g StanGry wszystkim modutom, ktdre dotacza wspomniany nagtowek. Tym
samym jest juz ona znana takze funkcji main (), wiec ponowna kompilacja powinna

przebiec bez zadnych problemow.

Czujny czytelnik zauwazyt pewnie, ze dos¢ swobodnie operuje terminami ,deklaracja”
oraz ,definicja”, uzywajac ich zamiennie. Niektorzy purysci kazg jednak je rozrdézniac.
Wedtug nich jedynie to, co nazwalismy przed momentem ,, deklaracja zapowiadajacg”,
mozna nazwac krétko ,deklaracjq”. ,Definicja” ma byc¢ za to doktadne sprecyzowanie
cech danego obiektu, oraz, przede wszystkim, przygotowanie dla niego miejsca w
pamieci operacyjnej.

63 Méwigc $cidle: gdzie$ poza biezacym zakresem.

188 Podstawy programowania

Zgodnie z takg terminologig instrukcje w rodzaju int nx; czy float fY; miatyby by¢
.definicjami zmiennych”, natomiast extern int nX; oraz extern float fY; -
»~deklaracjami”. Osobiscie twierdze, ze jest to jeden z najjaskrawszych przyktadow
szukania dziury w catym i préb niezmiernego gmatwania programistycznego stownika.
Czy ktokolwiek przeciez méwi o ,definicjach zmiennych”? Pojecie to brzmi tym bardziej
sztucznie, ze owe ,definicje” nie przynoszg zadnych dodatkowych informacji w stosunku
do ,deklaracji”, a sktadniowo sg od nich nawet krétsze!

Jak wiec w takiej sytuacji nie nazwac spierania sie o nazewnictwo zwyczajnym
malkontenctwem? :)

Uruchamiamy aplikacje

To niemalze niewiarygodne, jednak stato sie faktem! ZakonczyliSmy w koncu
programowanie naszej gry! Wreszcie mozesz wiec uzy¢ klawisza F5, by cieszy¢ tym oto
wspaniatym widokiem:

KOLKO I KRZYZYK

Podaj numer pola,. w ktorym
chcesz postawic kolko: _

Screen 35. Gra w ,,Kétko i krzyzyk” w akcji

A po kilkunastominutowym, zastuzonym relaksie przy wtasnorecznie napisanej grze
przejdz do dalszej czesci tekstu :)

Whnioski

Stworzytes$ wiasnie (przy drobnej pomocy :D) swdj pierwszy w miare powazny program,
w dodatku to, co lubimy najbardziej - czyli gre. Zdobyte przy tej okazji doswiadczenie
jest znacznie cenniejsze od najlepszego nawet, lecz tylko teoretycznego wykiadu.

Warto wiec podsumowac naszg prace, a przy okazji odpowiedzie¢ na pewne ogdlne
pytania, ktére by¢ moze przyszty ci na mysl podczas realizacji tego projektu.

Dziwaczne projektowanie

Tworzenie naszej gry rozpoczeliSmy od jej doktadnego zaprojektowania. Miato ono na
celu wykreowanie komputerowego modelu znanej od dziesiecioleci gry dwuosobowej i
zaadaptowanie go do potrzeb kodowania w C++.
W tym celu podzielilismy sobie zadanie na trzy czesci:

> okreslenie struktur danych wykorzystywanych przez aplikacje

» sprecyzowanie wykonywanych przez nig czynnosci

» stworzenie interfejsu uzytkownika

Aby zrealizowac pierwsze dwie, musieliSmy przyjac¢ dos$¢ dziwng i raczej nienaturalng
droge rozumowania. Nalezato bowiem zapomniec o takich ,namacalnych” obiektach jak
plansza, gracz czy rozgrywka. Zamiast tego méwiliSmy o pewnych danych, na ktérych
program miat wykonywac jakie$ operacje.

Te dwa Swiaty - statycznych informacji oraz dynamicznych dziatan - rozdzielity nam owe
»Naturalne” obiekty zwigzane z grg i kazaty oddzielnie zajmowac sie ich cechami (jak np.
symbole graczy) oraz realizowanymi przezen czynnosciami (np. wykonanie ruchu).

Zlozone zmienne 189

Podejscie to, zwane programowaniem strukturalnym, mogto by¢ dla ciebie trudne do
zrozumienia i sztuczne. Nie martw sie tym, gdyz podobnie uwaza wiekszo$¢
wspotczesnych koderéw! Czy to znaczy, ze programowanie jest udreka?

Domyslasz sie pewnie, ze wszystko co niedawno uczyniliSmy, datoby sie zrobi¢ bardziej
naturalnie i intuicyjne. Masz w tym catkowitg racje! Juz w nastepnym rozdziale poznamy
znacznie wygodniejszg i przyjazniejszg technike programowania, ktory zblizy kodowanie
do ludzkiego sposobu myslenia.

Dos¢ skomplikowane algorytmy

Kiedy juz uporalismy sie z projektowaniem, przyszedt czas na uruchomienie naszego
ulubionego $rodowiska programistycznego i wpisanie kodu tworzonej aplikacji.

Jakkolwiek wiekszos¢ uzytych przy tym konstrukcji jezyka C++ byta ci znana od dawna,
a duza czes¢ pozostatej mniejszosci wprowadzona w tym rozdziale, sam kod nie nalezat z
pewnoscig do elementarnych. Réznica miedzy poprzednimi, przyktadowymi programami
byta znaczaca i widoczna niemal przez caty czas.

Na czym ona polegata? Po prostu jezyk programowania przestat tu by¢ celem, a stat sie
$rodkiem. Juz nie tylko prezyt swe ,muskuty” i prezentowat szeroki wachlarz mozliwosci.
Stat sie w pokornym stugg, ktory spetniat nasze wymagania w imie wyzszego dazenia,
ktéorym byto napisanie dziatajacej i sensownej aplikacji.

Oczywiste jest wiec, iz zaczeliSmy wymagac wiecej takze od siebie. Pisane algorytmy nie
byty juz trywialnymi przepisami, wywazajacymi otwarte drzwi. Wyzyny w tym wzgledzie
osiggneliSmy chyba przy sprawdzaniu stanu planszy w poszukiwaniu ewentualnych

sekwencji wygrywajacych. Zadanie to byto swoiste i unikalne dla naszego kodu, dlatego
tez wymagato nieszablonowych rozwigzan. Takich, z jakimi bedziesz sie czesto spotykat.

Organizacja kodu

Ostatnia uwaga dotyczy porzadku, jaki wprowadziliSmy w nasz kod zrodtowy. Zamiast
pojedynczego modutu zastosowaliSmy dwa i zintegrowalismy je przy pomocy wtasnego
pliku nagtéwkowego.

Nie obylo sie rzecz jasna bez drobnych problemoéw, ale ogdlnie zrobiliSmy to w catkowicie
poprawny i efektywny sposdéb. Nie mozna tez zapominac o tym, ze jednoczesnie
poznali$my kolejny skrawek informacji na temat programowania w C++, tym razem
dotyczacy dyrektywy #include, prototypow funkcji oraz modyfikatora extern.

Drogi samodzielny programisto - ty, ktéry dokonczytes kod gry od momentu, w ktérym
rozstaliSmy sie nagtéwkiem game.h, bez zagladania do dalszej czesci tekstu!

Jezeli udato ci sie dokonac tego z zachowaniem zatozonej funkcjonalnosci programu oraz
podziatu kodu na trzy odrebne pliki, to naprawde chyle czota :) Znaczy to, ze jestes
wrecz idealnym kandydatem na swietnego programiste, gdyz sam potrafite$ rozwigzac
postawiony przed tobg szereg problemow oraz znalazte$ brakujace ci informacje w
odpowiednich Zrddtach. Gratulacje!

Aby jednak unikna¢ ewentualnych ktopotéw ze zrozumieniem dalszej czesci kursu,
doradzam powrdt do opuszczonego fragmentu tekstu i przeczytanie chociaz tych
urywkoéw, ktére dostarczajg wspomnianych nowych informacji z zakresu jezyka C++.

Podsumowanie

Dotarlismy (wreszcie!) do konca tego rozdziatu. Nabytes w nim bardzo duzo wiadomosci
na temat modelowania ztozonych struktur danych w C++.

190 Podstawy programowania

ZaczeliSmy od prezentacji tablic, czyli zestawow okreslonej liczby tych samych
elementéw, opatrzonych wspdlng nazwa. PoznaliSmy sposoby ich deklaracji oraz uzycia w
programie, a takze mozliwe zastosowania.

Dalej zajeliSmy sie definiowaniem nowych, wtasnych typédw danych. Wsrod nich byty typy
wyliczeniowe, dopuszczajace jedynie kilka mozliwych wartosci, oraz agregaty w rodzaju
struktur, zamykajace kilka pojedynczych informacji w jedng catos¢. Zetknelismy sie przy
tym z wieloma przyktadami ich zastosowania w programowaniu.

Wreszcie, na ukoronowanie tego i kilku poprzednich rozdziatéw stworzyliSmy catkiem
spory i catkiem skomplikowany program, bedacy w dodatku gra! MieliSmy niepowtarzalng
okazje na zastosowanie zdobytych ostatnimi czasy umiejetnosci w praktyce.

Kolejny rozdziat przyniesie nam natomiast zupetnie nowe spojrzenie na programowanie w
C++.

Pytania i zadania

Jako ze mamy za juz sobg sporo wyczerpujacego kodowania, nie zadam zbyt wielu
programéw do samodzielnego napisania. Nie uciekniesz jednak od pytan sprawdzajacych
wiedze!)

Pytania
1. Co to jest tablica? Jak deklarujemy tablice?
2. W jaki sposdb uzywamy petli for oraz tablic?
3. Jak C++ obstuguje tablice wielowymiarowe? Czym sg one w istocie?
4. Czym sg i do czego stuzg typy wyliczeniowe? Dlaczego sg lepsze od zwyktych

statych?

5. Jak definiujemy typy strukturalne?
6. Jaka drogg mozna dostac sie do pojedynczych pdl struktury?
Cwiczenia

1. Napisz program, ktory pozwoli uzytkownikowi na wprowadzenie dowolnej ilosci
liczb (ilos¢ tg bedzie podawat na poczatku) i obliczenie ich $redniej arytmetycznej.
Podawane liczby przechowuj w 100-elementowej tablicy (wykorzystasz zen tylko
czest).

(Trudne) Mozesz tez zrobi¢ tak, by program nie pytat o ilos¢ liczb, lecz prosit o
kolejne az do wpisania innych znakow.

(Bardzo trudne) Czy mozna jako$ zapobiec marnotrawstwu pamieci,
zwigzanemu z tak duza, lecz uzywang tylko czesciowo tablicg? Jak?

2. Stworz aplikacje, ktéra bedzie pokazywata liczbe dni do korica biezgcego roku.
Wykorzystaj w niej strukture tm i funkcje localtime () w taki sam sposdb, jak w
przykfadzie Biorhytm.

3. (Trudne) W naszej grze w kotko i krzyzyk jest ukryta pewna usterka. Objawia sie
wtedy, gdy gracz wpisze cos innego niz liczbe jako numer pola. Sprébuj naprawic
ten btad; niech program reaguje tak samo, jak na warto$¢ spoza przedziatu
<1; 9>.

Wskazdwka: zadanie jest podobne do trudniejszego wariantu ¢éwiczenia 1.

4. (Bardzo trudne) Ulepsz napisang gre. Niech rozmiar planszy nie bedzie zawsze
wynosit 3x3, lecz mogt by¢ zdefiniowany jako stata w pliku game.h.

Wskazdwka: poniewaz plansza pozostanie kwadratem, warunkiem zwyciestwa
bedzie nadal utozenie linii poziomej, pionowej lub ukosnej z wtasnych symboli.
Modyfikacji musi jednak ulec algorytm sprawdzania planszy (ten straszny :D) oraz
sposéb numerowania i rysowania pol.

