
5
ZŁOŻONE ZMIENNE

Mylić się jest rzeczą ludzką,

ale żeby naprawdę coś spaprać
 potrzeba komputera.

Edward Morgan Forster

Dzisiaj prawie żaden normalny program nie przechowuje swoich danych jedynie w
prostych zmiennych - takich, jakimi zajmowaliśmy się do tej pory (tzw. skalarnych).
Istnieje mnóstwo różnych sytuacji, w których są one po prostu niewystarczające, a
konieczne stają się bardziej skomplikowane konstrukcje. Wspomnijmy choćby o mapach
w grach strategicznych, tabelach w arkuszach kalkulacyjnych czy bazach danych
adresowych - wszystkie te informacje mają zbyt złożoną naturę, aby dały się przedstawić
przy pomocy pojedynczych zmiennych.

Szanujący się język programowania powinien więc udostępniać odpowiednie konstrukcje,
służące do przechowywania takich nieelementarnych typów danych. Naturalnie, C++
posiada takowe mechanizmy - zapoznamy się z nimi w niniejszym rozdziale.

Tablice
Jeżeli nasz zestaw danych składa się z wielu drobnych elementów tego samego
rodzaju, jego najbardziej naturalnym ekwiwalentem w programowaniu będzie tablica.

Tablica (ang. array) to zespół równorzędnych zmiennych, posiadających wspólną nazwę.
Jego poszczególne elementy są rozróżnianie poprzez przypisane im liczby - tak zwane
indeksy.

Każdy element tablicy jest więc zmienną należącą do tego samego typu. Nie ma tutaj
żadnych ograniczeń: może to być liczba (w matematyce takie tablice nazywamy
wektorami), łańcuch znaków (np. lista uczniów lub pracowników), pojedynczy znak,
wartość logiczna czy jakikolwiek inny typ danych.

W szczególności, elementem tablicy może być także… inna tablica! Takimi podwójnie
złożonymi przypadkami zajmiemy się nieco dalej.

Po tej garści ogólnej wiedzy wstępnej, czas na coś przyjemniejszego - czyli przykłady :)

Proste tablice
Zadeklarowanie tablicy przypomina analogiczną operację dla zwykłych (skalarnych)
zmiennych. Może zatem wyglądać na przykład tak:

int aKilkaLiczb[5];

Podstawy programowania 144

Jak zwykle, najpierw piszemy nazwę wybranego typu danych, a później oznaczenie samej
zmiennej (w tym przypadku tablicy - to także jest zmienna). Nowością jest tu para
nawiasów kwadratowych, umieszczona na końcu deklaracji. Wewnątrz niej wpisujemy
rozmiar tablicy, czyli ilość elementów, jaką ma ona zawierać. U nas jest to 5, a zatem z
tylu właśnie liczb (każdej typu int) będzie składała się nasza świeżo zadeklarowana
tablica.

Skoro żeśmy już wprowadzili nową zmienną, należałoby coś z nią uczynić - w końcu
niewykorzystana zmienna to zmarnowana zmienna :) Nadajmy więc jakieś wartości jej
kolejnym elementom:

aKilkaLiczb[0] = 1;
aKilkaLiczb[1] = 2;
aKilkaLiczb[2] = 3;
aKilkaLiczb[3] = 4;
aKlikaLiczb[4] = 5;

Tym razem także korzystamy z nawiasów kwadratowych. Teraz jednak używamy ich, aby
uzyskać dostęp do konkretnego elementu tablicy, identyfikowanego przez
odpowiedni indeks. Niewątpliwie bardzo przypomina to docieranie do określonego
znaku w zmiennej tekstowej (typu std::string), aczkolwiek w przypadku tablic możemy
mieć do czynienia z dowolnym rodzajem danych.
Analogia do łańcuchów znaków przejawia się w jeszcze jednym fakcie - są nim oczywiście
indeksy kolejnych elementów tablicy. Identycznie jak przy napisach, liczymy je bowiem
od zera; tutaj są to kolejno 0, 1, 2, 3 i 4. Na postawie tego przykładu możemy więc
sformułować bardziej ogólną zasadę:

Tablica mieszcząca n elementów jest indeksowana wartościami 0, 1, 2, …, n - 2, n - 1.

Z regułą tą wiąże się też bardzo ważne ostrzeżenie:

W tablicy n-elementowej nie istnieje element o indeksie równym n. Próba dostępu do
niego jest bardzo częstym błędem, zwanym przekroczeniem indeksów (ang. subscript
out of bounds).

Poniższa linijka kodu spowodowałaby zatem błąd podczas działania programu i jego
awaryjne zakończenie:

aKilkaLiczb[5] = 6; // BŁĄD!!!

Pamiętaj więc, byś zwracał baczną uwagę na indeksy tablic, którymi operujesz.

Przekroczenie indeksów to jeden z przedstawicieli licznej rodziny błędów, noszących
wspólne miano „pomyłek o jedynkę”. Większość z nich dotyczy właśnie tablic, inne można
popełnić choćby przy pracy z liczbami pseudolosowymi: najwredniejszym jest chyba
warunek w rodzaju rand() % 10 == 10, który nigdy nie może być spełniony (pomyśl,
dlaczego53!).

Krytyczne spojrzenie na zaprezentowany kilka akapitów wyżej kawałek kodu może
prowadzić do wniosku, że idea tablic nie ma większego sensu. Przecież równie dobrze
możnaby zadeklarować 5 zmiennych i zająć się każdą z nich osobno - podobnie jak
czynimy to teraz z elementami tablicy:

53 Reszta z dzielenia przez 10 może być z nazwy równa jedynie liczbom 0, 1, ..., 8, 9, zatem nigdy nie zrówna
się z samą dziesiątką. Programista chciał tu zapewne uzyskać wartość z przedziału <1; 10>, ale nie dodał
jedynki do wyrażenia - czyli pomylił się o nią :)

Złożone zmienne 145

int nLiczba1, nLiczba2, nLiczba3, nLiczba4, nLiczba5;

nLiczba1 = 1;
nLiczba2 = 2;
// itd.

Takie rozumowanie jest pozornie słuszne… ale na szczęście, tylko pozornie! :D Użycie
pięciu instrukcji - po jednej dla każdego elementu tablicy - nie było bowiem najlepszym
rozwiązaniem. O wiele bardziej naturalnym jest odpowiednia pętla for:

for (int i = 0; i < 5; ++i) // drugim warunkiem może być też i <= 4
 aKilkaLiczb[i] = i + 1;

Jej zalety są oczywiste: niezależnie od tego, czy nasza tablica składa się z pięciu,
pięciuset czy pięciu tysięcy elementów, przytoczona pętla jest w każdym przypadku
niemal identyczna!
Tajemnica tego faktu tkwi rzecz jasna w indeksowaniu tablicy licznikiem pętli, i.
Przyjmuje on odpowiednie wartości (od zera do rozmiaru tablicy minus jeden), które
pozwalają zająć się całością tablicy przy pomocy jednej tylko instrukcji!
Taki manewr nie byłby możliwy, gdybyśmy używali tutaj pięciu zmiennych, zastępujących
tablice. Ich „indeksy” (będące de facto częścią nazw) musiałyby być bowiem stałymi
wartościami, wpisanymi bezpośrednio do kodu. Nie dałoby się zatem skorzystać z pętli
for w podobny sposób, jak to uczyniliśmy w przypadku tablic.

Inicjalizacja tablicy
Kiedy w tak szczegółowy i szczególny sposób zajmujemy się tablicami, łatwo możemy
zapomnieć, iż w gruncie rzeczy są to takie same zmienne, jak każde inne. Owszem,
składają się z wielu pojedynczych elementów („podzmiennych”), ale nie przeszkadza to w
wykonywaniu nań większości znanych nam operacji. Jedną z nich jest inicjalizacja.

Dzięki niej możemy chociażby deklarować tablice będące stałymi.

Tablicę możemy zainicjalizować w bardzo prosty sposób, unikając przy tym wielokrotnych
przypisań (po jednym dla każdego elementu):

int aKilkaLiczb[5] = { 1, 2, 3, 4, 5 };

Kolejne wartości wpisujemy w nawiasie klamrowym, oddzielając je przecinkami. Zostaną
one umieszczone w następujących po sobie elementach tablicy, poczynając od początku.
Tak więc aKilkaLiczb[0] będzie miał wartość 1, aKilkaLiczb[1] - 2, itd. Uzyskamy
identyczny efekt, jak w przypadku poprzednich pięciu przypisań.

Interesującą nowością w inicjalizacji tablic jest możliwość pominięcia ich rozmiaru:

std::string aSystemyOperacyjne[] = {"Windows", "Linux", "BeOS", "QNX"};

W takiej sytuacji kompilator „domyśli się” prawidłowej wielkości tablicy na podstawie
ilości elementów, jaką wpisaliśmy wewnątrz nawiasów klamrowych (w tzw.
inicjalizatorze). Tutaj będą to oczywiście cztery napisy.

Inicjalizacja jest więc całkiem dobrym sposobem na wstępne ustawienie wartości
kolejnych elementów tablicy - szczególnie wtedy, gdy nie jest ich zbyt wiele i nie są one
ze sobą jakoś związane. Dla dużych tablic nie jest to jednak efektywna metoda; w takich
wypadkach lepiej użyć odpowiedniej pętli for.

Podstawy programowania 146

Przykład wykorzystania tablicy
Wiemy już, jak teoretycznie wygląda praca z tablicami w języku C++, zatem naturalną
koleją rzeczy będzie teraz uważne przyglądnięcie się odpowiedniemu przykładowi. Ten
(spory :)) kawałek kodu wygląda następująco:

// Lotto - użycie prostej tablicy liczb

const unsigned ILOSC_LICZB = 6;
const int MAKSYMALNA_LICZBA = 49;

void main()
{
 // deklaracja i wyzerowanie tablicy liczb
 unsigned aLiczby[ILOSC_LICZB];
 for (int i = 0; i < ILOSC_LICZB; ++i)
 aLiczby[i] = 0;

 // losowanie liczb
 srand (static_cast<int>(time(NULL)));
 for (int i = 0; i < ILOSC_LICZB;)
 {
 // wylosowanie liczby
 aLiczby[i] = rand() % MAKSYMALNA_LICZBA + 1;

 // sprawdzenie, czy się ona nie powtarza
 bool bPowtarzaSie = false;
 for (int j = 0; j < i; ++j)
 {
 if (aLiczby[j] == aLiczby[i])
 {
 bPowtarzaSie = true;
 break;
 }
 }

 // jeżeli się nie powtarza, przechodzimy do następnej liczby
 if (!bPowtarzaSie) ++i;
 }

 // wyświetlamy wylosowane liczby
 std::cout << "Wyniki losowania:" << std::endl;
 for (int i = 0; i < ILOSC_LICZB; ++i)
 std::cout << aLiczby[i] << " ";

 // czekamy na dowolny klawisz
 getch();
}

Huh, trzeba przyznać, iż z pewnością nie należy on do elementarnych :) Nie jesteś już
jednak zupełnym nowicjuszem w sztuce programowania, więc zrozumienie go nie
przysporzy ci wielkich kłopotów. Na początek spróbuj zobaczyć tę przykładową aplikację
w działaniu:

Screen 30. Wysyłanie kuponów jest od dzisiaj zbędne ;-)

Złożone zmienne 147

Nie potrzeba przenikliwości Sherlocka Holmesa, by wydedukować, że program ten
dokonuje losowania zestawu liczb według zasad znanej powszechnie gry loteryjnej. Te
reguły są determinowane przez dwie stałe, zadeklarowane na samym początku kodu:

const unsigned ILOSC_LICZB = 6;
const int MAKSYMALNA_LICZBA = 49;

Ich nazwy są na tyle znaczące, iż dokumentują się same. Wprowadzenie takich stałych
ma też inne wyraźne zalety, o których wielokrotnie już wspominaliśmy. Ewentualna
zmiana zasad losowania będzie ograniczała się jedynie do modyfikacji tychże dwóch
linijek, mimo że te kluczowe wartości są wielokrotnie używane w całym programie.

Najważniejszą zmienną w naszym kodzie jest oczywiście tablica, która przechowuje
wylosowane liczby. Deklarujemy i inicjalizujemy ją zaraz na wstępie funkcji main():

unsigned aLiczby[ILOSC_LICZB];
for (int i = 0; i < ILOSC_LICZB; ++i)
 aLiczby[i] = 0;

Posługując się tutaj pętlą for, ustawiamy wszystkie jej elementy na wartość 0. Zero jest
dla nas neutralne, gdyż losowane liczby będą przecież wyłącznie dodatnie.

Identyczny efekt (wyzerowanie tablicy) można uzyskać stosując funkcję memset(), której
deklaracja jest zawarta w nagłówku memory.h. Użylibyśmy jej w następujący sposób:
memset (aLiczby, 0, sizeof(aLiczby));
Analogiczny skutek spowodowałaby także specjalna funkcja ZeroMemory() z windows.h:
ZeroMemory (aLiczby, sizeof(aLiczby));
Nie użyłem tych funkcji w kodzie przykładu, gdyż wyjaśnienie ich działania wymaga
wiedzy o wskaźnikach na zmienne, której jeszcze nie posiadasz. Chwilowo jesteśmy więc
zdani na swojską pętlę :)

Po wyzerowaniu tablicy przeznaczonej na generowane liczby możemy przystąpić do
właściwej czynności programu, czyli ich losowania. Rozpoczynamy je od niezbędnego
wywołania funkcji srand():

srand (static_cast<int>(time(NULL)));

Po dopełnieniu tej drobnej formalności możemy już zająć się po kolei każdą wartością,
którą chcemy uzyskać. Znowuż czynimy to poprzez odpowiednią pętlę for:

for (int i = 0; i < ILOSC_LICZB;)
{
 // ...
}

Jak zwykle, przebiega ona po wszystkich elementach tablicy aLiczby. Pewną
niespodzianką może być tu nieobecność ostatniej części tej instrukcji, którą jest
zazwyczaj inkrementacja licznika. Jej brak spowodowany jest koniecznością sprawdzania,
czy wylosowana już liczba nie powtarza się wśród wcześniej wygenerowanych. Z tego
też powodu program będzie niekiedy zmuszony do kilkakrotnego „obrotu” pętli przy tej
samej wartości licznika i losowania za każdym razem nowej liczby, aż do skutku.

Rzeczone losowane przebiega tradycyjną i znaną nam dobrze drogą:

aLiczby[i] = rand() % MAKSYMALNA_LICZBA + 1;

Podstawy programowania 148

Uzyskana w ten sposób wartość jest zapisywana w tablicy aLiczby pod i-tym indeksem,
abyśmy mogli ją później łatwo wyświetlić. W powyższym wyrażeniu obecna jest także
stała, zadeklarowana wcześniej na początku programu.
Wspominałem już parę razy, że konieczna jest kontrola otrzymanej tą metodą wartości
pod kątem jej niepowtarzalności. Musimy po prostu sprawdzać, czy nie wystąpiła już ona
przy poprzednich losowaniach. Jeżeli istotnie tak się stało, to z pewnością znajdziemy ją
we wcześniej „przerobionej” części tablicy. Niezbędne poszukiwania realizuje kolejny
fragment listingu:

bool bPowtarzaSie = false;
for (int j = 0; j < i; ++j)
{
 if (aLiczby[j] == aLiczby[i])
 {
 bPowtarzaSie = true;
 break;
 }
}

if (!bPowtarzaSie) ++i;

Wprowadzamy tu najpierw pomocniczą zmienną (flagę) logiczną, zainicjalizowaną
wstępnie wartością false (fałsz). Będzie ona niosła informację o tym, czy faktycznie
mamy do czynienia z duplikatem którejś z wcześniejszych liczb.
Aby się o tym przekonać, musimy dokonać ponownego przeglądnięcia części tablicy.
Robimy to poprzez, a jakże, kolejną pętlę for :) Aczkolwiek tym razem interesują nas
wszystkie elementy tablicy występujące przed tym aktualnym, o indeksie i. Jako
warunek pętli wpisujemy więc j < i (j jest licznikiem nowej pętli).
Koncentrując się na niuansach zagnieżdżonej instrukcji for nie zapominajmy, że jej
celem jest znalezienie ewentualnego bliźniaka wylosowanej kilka wierszy wcześniej
liczby. Zadanie to wykonujemy poprzez odpowiednie porównanie:

if (aLiczby[j] == aLiczby[i])

aLiczby[i] (i-ty element tablicy aLiczby) reprezentuje oczywiście liczbę, której
szukamy; jak wiemy doskonale, uzyskaliśmy ją w sławetnym losowaniu :D Natomiast
aLiczby[j] (j-ta wartość w tablicy) przy każdym kolejnym przebiegu pętli oznacza
jeden z przeszukiwanych elementów. Jeżeli zatem wśród nich rzeczywiście jest
wygenerowana, „aktualna” liczba, niniejszy warunek instrukcji if z pewnością ją wykryje.
Co powinniśmy zrobić w takiej sytuacji? Otóż nic skomplikowanego - mianowicie,
ustawiamy naszą zmienną logiczną na wartość true (prawda), a potem przerywamy
pętlę for:

bPowtarzaSie = true;
break;

Jej dalsze działanie nie ma bowiem najmniejszego sensu, gdyż jeden duplikat liczby w
zupełności wystarcza nam do szczęścia :)
W tym momencie jesteśmy już w posiadaniu arcyważnej informacji, który mówi nam, czy
wartość wylosowana na samym początku cyklu głównej pętli jest istotnie unikatowa, czy
też konieczne będzie ponowne jej wygenerowanie. Ową wiadomość przydałoby się teraz
wykorzystać - robimy to w zaskakująco prosty sposób:

if (!bPowtarzaSie) ++i;

Jak widać, właśnie tutaj trafiła brakująca inkrementacja licznika pętli, i. Zatem odbywa
się ona wtedy, kiedy uzyskana na początku liczba losowa spełnia nasz warunek

Złożone zmienne 149

niepowtarzalności. W innym przypadku licznik zachowuje swą aktualną wartość, więc
wówczas będzie przeprowadzona kolejna próba wygenerowania unikalnej liczby. Stanie
się to w następnym cyklu pętli.
Inaczej mówiąc, jedynie fałszywość zmiennej bPowtarzaSie uprawnia pętlę for do
zajęcia się dalszymi elementami tablicy. Inna sytuacja zmuszą ją bowiem do wykonania
kolejnego cyklu na tej samej wartości licznika i, a więc także na tym samym
elemencie tablicy wynikowej. Czyni to aż do otrzymania pożądanego rezultatu, czyli
liczby różnej od wszystkich poprzednich.

Być może nasunęła ci się wątpliwość, czy takie kontrolowanie wylosowanej liczby jest aby
na pewno konieczne. Skoro prawidłowo zainicjowaliśmy generator wartości losowych
(przy pomocy srand()), to przecież nie powinien on robić nam świństw, którymi z
pewnością byłyby powtórzenia wylosowywanych liczb. Jeżeli nawet istnieje jakaś szansa
na otrzymanie duplikatu, to jest ona zapewne znikomo mała…
Otóż nic bardziej błędnego! Sama potencjalna możliwość wyniknięcia takiej sytuacji
jest wystarczającym powodem, żeby dodać do programu zabezpieczający przed nią kod.
Przecież nie chcielibyśmy, aby przyszły użytkownik (niekoniecznie tego programu, ale
naszych aplikacji w ogóle) otrzymał produkt, który raz działa dobrze, a raz nie!
Inna sprawa, że prawdopodobieństwo wylosowania powtarzających się liczb nie jest tu
wcale takie małe. Możesz spróbować się o tym przekonać54…

Na finiszu całego programu mamy jeszcze wyświetlanie uzyskanego pieczołowicie
wyniku. Robimy to naturalnie przy pomocy adekwatnego for’a, który tym razem jest o
wiele mniej skomplikowany w porównaniu z poprzednim :)
Ostatnia instrukcja, getch();, nie wymaga już nawet żadnego komentarza. Na niej też
kończy się wykonywanie naszej aplikacji, a my możemy również zakończyć tutaj jej
omawianie. I odetchnąć z ulgą ;)

Uff! To wcale nie było takie łatwe, prawda? Wszystko dlatego, że postawiony problem
także nie należał do trywialnych. Analiza algorytmu, służącego do jego rozwiązania,
powinna jednak bardziej przybliżyć ci sposób konstruowania kodu, realizującego
konkretne zadanie.

Mamy oto przejrzysty i, mam nadzieję, zrozumiały przykład na wykorzystanie tablic w
programowaniu. Przyglądając mu się dokładnie, mogłeś dobrze poznać zastosowanie
tandemu tablica + pętla for do wykonywania dosyć skomplikowanych czynności na
złożonych danych. Jeszcze nie raz użyjemy tego mechanizmu, więc z pewnością będziesz
miał szansę na jego doskonałe opanowanie :)

Więcej wymiarów
Dotychczasowym przedmiotem naszego zainteresowania były tablice jednowymiarowe,
czyli takie, których poszczególne elementy są identyfikowane poprzez jeden indeks.
Takie struktury nie zawsze są wystarczające. Pomyślmy na przykład o szachownicy,
planszy do gry w statki czy mapach w grach strategicznych. Wszystkie te twory
wymagają większej liczby wymiarów i nie dają się przedstawić w postaci zwykłej,
ponumerowanej listy.

54 Wyliczenie jest bardzo proste. Załóżmy, że losujemy n liczb, z których największa może być równa a. Wtedy
pierwsze losowanie nie może rzecz jasna skutkować duplikatem. W drugim jest na to szansa równa 1/a (gdyż
mamy już jedną liczbę), w trzecim - 2/a (bo mamy już dwie liczby), itd. Dla n liczb całościowe
prawdopodobieństwo wynosi zatem (1 + 2 + 3 + ... + n-1)/a, czyli n(n - 1)/2a.
U nas n = 6, zaś a = 49, więc mamy 6(6 - 1)/(2*49) ≈ 30,6% szansy na otrzymanie zestawu liczb, w którym
przynajmniej jedna się powtarza. Gdybyśmy nie umieścili kodu sprawdzającego, wtedy przeciętnie co czwarte
uruchomienie programu dawałoby nieprawidłowe wyniki. Byłaby to ewidentna niedoróbka.

Podstawy programowania 150

Naturalnie, tablice wielowymiarowe mogłyby być z powodzeniem symulowane poprzez ich
jednowymiarowe odpowiedniki oraz formuły służące do przeliczania indeksów. Trudno
jednak uznać to za wygodne rozwiązanie. Dlatego też C++ radzi sobie z tablicami
wielowymiarowymi w znacznie prostszy i bardziej przyjazny sposób. Warto więc przyjrzeć
się temu wielkiemu dobrodziejstwu ;)

Deklaracja i inicjalizacja
Domyślasz się może, iż aby zadeklarować tablicę wielowymiarową, należy podać więcej
niż jedną liczbę określającą jej rozmiar. Rzeczywiście tak jest:

int aTablica[4][5];

Linijka powyższa tworzy nam dwuwymiarową tablicę o wymiarach 4 na 5, zawierającą
elementy typu int. Możemy ją sobie wyobrazić w sposób podobny do tego:

Schemat 8. Wyobrażenie tablicy dwuwymiarowej 4×5

Widać więc, że początkowa analogia do szachownicy była całkiem na miejscu :)

Nasza dziewicza tablica wymaga teraz nadania wstępnych wartości swoim elementom.
Jak pamiętamy, przy korzystaniu z jej jednowymiarowych kuzynów intensywnie
używaliśmy do tego odpowiednich pętli for. Nic nie stoi na przeszkodzie, aby podobnie
postąpić i w tym przypadku:

for (int i = 0; i < 4; ++i)
 for (int j = 0; j < 5; ++j)
 aTablica[i][j] = i + j;

Teraz jednak mamy dwa wymiary tablicy, zatem musimy zastosować dwie zagnieżdżone
pętle. Ta bardziej zewnętrzna przebiega nam po czterech kolejnych wierszach tablicy,
natomiast wewnętrzna zajmuje się każdym z pięciu elementów wybranego wcześniej
wiersza. Ostatecznie, przy każdym cyklu zagnieżdżonej pętli liczniki i oraz j mają
odpowiednie wartości, abyśmy mogli za ich pomocą uzyskać dostęp do każdego z
dwudziestu (4 * 5) elementów tablicy.

Znamy wszakże jeszcze inny środek, służący do wstępnego ustawiania zmiennych -
chodzi oczywiście o inicjalizację. Zobaczyliśmy niedawno, że możliwe jest zaprzęgnięcie
jej do pracy także przy tablicach jednowymiarowych. Czy będziemy mogli z niej
skorzystać również teraz, gdy dodaliśmy do nich następne wymiary?…
Jak to zwykle w C++ bywa, odpowiedź jest pozytywna :) Inicjalizacja tablicy
dwuwymiarowej wygląda bowiem następująco:

int aTablica[4][5] = { { 0, 1, 2, 3, 4 },
 { 1, 2, 3, 4, 5 },

Złożone zmienne 151

 { 2, 3, 4, 5, 6 },
 { 3, 4, 5, 6, 7 } };

Opiera się ona na tej samej zasadzie, co analogiczna operacja dla tablic
jednowymiarowych: kolejne wartości oddzielamy przecinkami i umieszczamy w
nawiasach klamrowych. Tutaj są to cztery wiersze naszej tabeli.
Jednak każdy z nich sam jest niejako odrębną tablicą! W taki też sposób go traktujemy:
ostateczne, liczbowe wartości elementów podajemy albowiem wewnątrz
zagnieżdżonych nawiasów klamrowych. Dla przejrzystości rozmieszczamy je w
oddzielnych linijkach kodu, co sprawia, że całość łudząco przypomina wyobrażenie tablicy
dwuwymiarowej jako prostokąta podzielonego na pola.

Schemat 9. Inicjalizacja tablicy dwuwymiarowej 4×5

Otrzymany efekt jest zresztą taki sam, jak ten osiągnięty przez dwie wcześniejsze,
zagnieżdżone pętle.

Warto również wiedzieć, że inicjalizując tablicę wielowymiarową możemy pominąć
wielkość pierwszego wymiaru:

 int aTablica[][5] = { { 0, 1, 2, 3, 4 },
 { 1, 2, 3, 4, 5 },
 { 2, 3, 4, 5, 6 },
 { 3, 4, 5, 6, 7 } };

Zostanie on wtedy wywnioskowany z inicjalizatora.

Tablice w tablicy
Sposób obsługi tablic wielowymiarowych w C++ różni się zasadniczo od podobnych
mechanizmów w wielu innych językach. Tutaj bowiem nie są one traktowane wyjątkowo,
jako byty odrębne od swoich jednowymiarowych towarzyszy. Powoduje to, że w C++
dozwolone są pewne operacje, na które nie pozwala większość pozostałych języków
programowania.

Dzieje się to za przyczyną dość ciekawego pomysłu potraktowania tablic
wielowymiarowych jako zwykłych tablic jednowymiarowych, których elementami są…
inne tablice! Brzmi to trochę topornie, ale w istocie nie jest takie trudne, jak być może
wygląda :)
Najprostszy przykład tego faktu, z jakim mieliśmy już do czynienia, to konstrukcja
dwuwymiarowa. Z punktu widzenia C++ jest ona jednowymiarową tablicą swoich
wierszy; zwróciliśmy zresztą na to uwagę, dokonując jej inicjalizacji. Każdy z owych
wierszy jest zaś także jednowymiarową tablicą, tym razem składającą się już ze
zwykłych, skalarnych elementów.
Zjawisko to (oraz kilka innych ;D) nieźle obrazuje poniższy diagram:

Podstawy programowania 152

Schemat 10. Przedstawienie tablicy dwuwymiarowej jako tablicy tablic

Uogólniając, możemy stwierdzić, iż:

Każda tablica n-wymiarowa składa się z odpowiedniej liczby tablic (n-1)-wymiarowych.

Przykładowo, dla trzech wymiarów będziemy mieli tablicę, składającą się z tablic
dwuwymiarowych, które z kolei zbudowane są z jednowymiarowych, a te dopiero z
pojedynczych skalarów. Nietrudne, prawda? ;)

Zadajesz sobie pewnie pytanie: cóż z tego? Czy ma to jakieś praktyczne znaczenie i
zastosowanie w programowaniu?…
Pospieszam z odpowiedzią, brzmiącą jak zawsze „ależ oczywiście!” :)) Ujęcie tablic w
takim stylu pozwala na ciekawą operację wybrania jednego z wymiarów i przypisania
go do innej, pasującej tablicy. Wygląda to mniej więcej tak:

// zadeklarowanie tablicy trój- i dwuwymiarowej
int aTablica3D[2][2][2] = { { { 1, 2 },
 { 2, 3 } },
 { { 3, 4 },
 { 4, 5 } } };
int aTablica2D[2][2];

// przypisanie drugiej "płaszczyzny" tablicy aTablica3D do aTablica2D
aTablica2D = aTablica3D[1];

// aTablica2D zawiera teraz liczby: { { 3, 4 }, { 4, 5 } }

Przykład ten ma w zasadzie charakter ciekawostki, lecz przyjrzenie mu się z pewnością
nikomu nie zaszkodzi :D

Złożone zmienne 153

Nieco praktyczniejsze byłoby odwołanie do części tablicy - tak, żeby możliwa była jej
zmiana niezależnie od całości (np. przekazanie do funkcji). Takie działanie wymaga
jednak poznania wskaźników, a to stanie się dopiero w rozdziale 8.

Poznaliśmy właśnie tablice jako sposób na tworzenie złożonych struktur, składających się
z wielu elementów. Ułatwiają one (lub wręcz umożliwiają) posługiwanie się złożonymi
danymi, jakich nie brak we współczesnych aplikacjach. Znajomość zasad
wykorzystywania tablic z pewnością zatem zaprocentuje w przyszłości :)

Także w tym przypadku niezawodnym źródłem uzupełniających informacji jest MSDN.

Nowe typy danych
Wachlarz dostępnych w C++ typów wbudowanych jest, jak wiemy, niezwykle bogaty. W
połączeniu z możliwością fuzji wielu pojedynczych zmiennych do postaci wygodnych w
użyciu tablic, daje nam to szerokie pole do popisu przy konstruowaniu własnych
sposobów na przechowywanie danych.

Nabyte już doświadczenie oraz tytuł niniejszego podrozdziału sugeruje jednak, iż nie jest
to wcale kres potencjału używanego przez nas języka. Przeciwnie: C++ oferuje nam
możliwość tworzenia swoich własnych typów zmiennych, odpowiadających bardziej
konkretnym potrzebom niż zwykłe liczby czy napisy.
Nie chodzi tu wcale o znaną i prostą instrukcję typedef, która umie jedynie produkować
nowe nazwy dla już istniejących typów. Mam bowiem na myśli znacznie potężniejsze
narzędzia, udostępniające dużo większe możliwości w tym zakresie.

Czy znaczy to również, że są one trudne do opanowania? Według mnie siedzący tutaj
diabeł wcale nie jest taki straszny, jakim go malują ;D Absolutnie więc nie ma się czego
bać!

Wyliczania nadszedł czas
Pierwszym z owych narzędzi, z którymi się zapoznamy, będą typy wyliczeniowe
(ang. enumerated types). Ujrzymy ich możliwe zastosowania oraz techniki użytkowania,
a rozpoczniemy od przykładu z życia wziętego :)

Przydatność praktyczna
W praktyce często zdarza się sytuacja, kiedy chcemy ograniczyć możliwy zbiór wartości
zmiennej do kilku(nastu/dziesięciu) ściśle ustalonych elementów. Jeżeli, przykładowo,
tworzylibyśmy grę, w której pozwalamy graczowi jedynie na ruch w czterech kierunkach
(góra, dół, lewo, prawo), z pewnością musielibyśmy przechowywać w jakiś sposób jego
wybór. Służąca do tego zmienna przyjmowałaby więc jedną z czterech określonych
wartości.
Jak możnaby osiągnąć taki efekt? Jednym z rozwiązań jest zastosowanie stałych, na
przykład w taki sposób:

const int KIERUNEK_GORA = 1;
const int KIERUNEK_DOL = 2;
const int KIERUNEK_LEWO = 3;
const int KIERUNEK_PRAWO = 4;

int nKierunek;

Podstawy programowania 154

nKierunek = PobierzWybranyPrzezGraczaKierunek();

switch (nKierunek)
{
 case KIERUNEK_GORA: // porusz graczem w górę
 case KIERUNEK_DOL: // porusz graczem w dół
 case KIERUNEK_LEWO: // porusz graczem w lewo
 case KIERUNEK_PRAWO: // porusz graczem w prawo
 default: // a to co za kierunek? :)
}

Przy swoim obecnym stanie koderskiej wiedzy mógłbyś z powodzeniem użyć tego
sposobu. Skoro jednak prezentujemy go w miejscu, z którego zaraz przejdziemy do
omawiania nowych zagadnień, nie jest on pewnie zbyt dobry :)
Najpoważniejszym chyba mankamentem jest zupełna nieświadomość kompilatora co do
specjalnego znaczenia zmiennej nKierunek. Traktuje ją więc identycznie, jak każdą inną
liczbę całkowitą, pozwalając choćby na przypisanie podobne do tego:

nKierunek = 10;

Z punktu widzenia składni C++ jest ono całkowicie poprawne, ale dla nas byłby to
niewątpliwy błąd. 10 nie oznacza bowiem żadnego z czterech ustalonych kierunków, więc
wartość ta nie miałaby w naszym programie najmniejszego sensu!

Jak zatem podejść do tego problemu? Najlepszym wyjściem jest zdefiniowanie nowego
typu danych, który będzie pozwalał na przechowywanie tylko kilku podanych wartości.
Czynimy to w sposób następujący55:

enum DIRECTION { DIR_UP, DIR_DOWN, DIR_LEFT, DIR_RIGHT };

Tak oto stworzyliśmy typ wyliczeniowy zwany DIRECTION. Zmienne, które zadeklarujemy
jako należące do tegoż typu, będą mogły przyjmować jedynie wartości wpisane przez
nas w jego definicji. Są to DIR_UP, DIR_DOWN, DIR_LEFT i DIR_RIGHT, odpowiadające
umówionym kierunkom. Pełnią one funkcję stałych - z tą różnicą, że nie musimy
deklarować ich liczbowych wartości (gdyż i tak używać będziemy jedynie tych
symbolicznych nazw).

Mamy więc nowy typ danych, wypadałoby zatem skorzystać z niego i zadeklarować jakąś
zmienną:

DIRECTION Kierunek = PobierzWybranyPrzezGraczaKierunek();

switch (Kierunek)
{
 case DIR_UP: // ...
 case DIR_DOWN: // ...
 // itd.
}

Deklaracja zmiennej należącej do naszego własnego typu nie różni się w widoczny sposób
od podobnego działania podejmowanego dla typów wbudowanych. Możemy również
dokonać jej inicjalizacji, co też od razu czynimy.

55 Nowe typy danych będę nazywał po angielsku, aby odróżnić je od zmiennych czy funkcji.

Złożone zmienne 155

Kod ten będzie poprawny oczywiście tylko wtedy, gdy funkcja
PobierzWybranyPrzezGraczaKierunek() będzie zwracała wartość będącą także typu
DIRECTION.

Wszelkie wątpliwości powinna rozwiać instrukcja switch. Widać wyraźnie, że użyto jej w
identyczny sposób jak wtedy, gdy korzystano jeszcze ze zwykłych stałych,
deklarowanych oddzielnie.

Na czym więc polega różnica? Otóż tym razem niemożliwe jest przypisanie w rodzaju:

Kierunek = 20;

Kompilator nie pozwoli na nie, gdyż zmienna Kierunek podlega ograniczeniom swego
typu DIRECTION. Określając go, ustaliliśmy, że może on reprezentować wyłącznie jedną
z czterech podanych wartości, a 20 niewątpliwie nie jest którąś z nich :)
Tak więc teraz bezmyślny program kompilujący jest po naszej stronie i pomaga nam jak
najwcześniej wyłapywać błędy związane z nieprawidłowymi wartościami niektórych
zmiennych.

Definiowanie typu wyliczeniowego
Nie od rzeczy będzie teraz przyjrzenie się kawałkowi kodu, który wprowadza nam nowy
typ wyliczeniowy. Oto i jego składnia:

enum nazwa_typu { stała_1 [= wartość_1],
 stała_2 [= wartość_2],
 stała_3 [= wartość_3],
 ...
 stała_n [= wartość_n] };

Słowo kluczowe enum (ang. enumerate - wyliczać) pełni rolę informującą: mówi, zarówno
nam, jak i kompilatorowi, iż mamy tu do czynienia z definicją typu wyliczeniowego.
Nazwę, którą chcemy nadać owemu typowi, piszemy zaraz za tym słowem; przyjęło się,
aby używać do tego wielkich liter alfabetu.

Potem następuje częsty element w kodzie C++, czyli nawiasy klamrowe. Wewnątrz nich
umieszczamy tym razem listę stałych - dozwolonych wartości typu wyliczeniowego.
Jedynie one będą dopuszczone przez kompilator do przechowywania przez zmienne
należące do definiowanego typu.
Tutaj również zaleca się, tak jak w przypadku zwykłych stałych (tworzonych poprzez
const), używanie wielkich liter. Dodatkowo, dobrze jest dodać do każdej nazwy
odpowiedni przedrostek, powstały z nazwy typu, na przykład:

// przykładowy typ określający poziom trudności jakiejś gry
enum DIFFICULTY { DIF_EASY, DIF_MEDIUM, DIF_HARD };

Widać to było także w przykładowym typie DIRECTION.

Nie zapominajmy o średniku na końcu definicji typu wyliczeniowego!

Warto wiedzieć, że stałe, które wprowadzamy w definicji typu wyliczeniowego,
reprezentują liczby całkowite i tak też są przez kompilator traktowane. Każdej z nich
nadaje on kolejną wartość, poczynając zazwyczaj od zera.
Najczęściej nie przejmujemy się, jakie wartości odpowiadają poszczególnym stałym.
Czasem jednak należy mieć to na uwadze - na przykład wtedy, gdy planujemy
współpracę naszego typu z jakimiś zewnętrznymi bibliotekami. W takiej sytuacji możemy

Podstawy programowania 156

wyraźnie określić, jakie liczby są reprezentowane przez nasze stałe. Robimy to, wpisując
wartość po znaku = i nazwie stałej.
Przykładowo, w zaprezentowanym na początku typie DIRECTION moglibyśmy przypisać
każdemu wariantowi kod liczbowy odpowiedniego klawisza strzałki:

enum DIRECTION { DIR_UP = 38,
 DIR_DOWN = 40,
 DIR_LEFT = 37,
 DIR_RIGHT = 39 };

Nie trzeba jednak wyraźnie określać wartości dla wszystkich stałych; możliwe jest ich
sprecyzowanie tylko dla kilku. Dla pozostałych kompilator dobierze wtedy kolejne liczby,
poczynając od tych narzuconych, tzn. zrobi coś takiego:

enum MYENUM { ME_ONE, // 0
 ME_TWO = 12, // 12
 ME_THREE, // 13
 ME_FOUR, // 14
 ME_FIVE = 26, // 26
 ME_SIX, // 27
 ME_SEVEN }; // 28

Zazwyczaj nie trzeba o tym pamiętać, bo lepiej jest albo całkowicie zostawić
przydzielanie wartości w gestii kompilatora, albo samemu dobrać je dla wszystkich
stałych i nie utrudniać sobie życia ;)

Użycie typu wyliczeniowego
Typy wyliczeniowe zalicza się do typów liczbowych, podobnie jak int czy unsigned. Mimo
to nie jest możliwe bezpośrednie przypisanie do zmiennej takiego typu liczby zapisanej
wprost. Kompilator nie przepuści więc instrukcji podobnej do tej:

enum DECISION { YES = 1, NO = 0, DONT_KNOW = -1 };
DECISION Decyzja = 0;

Zrobi tak nawet pomimo faktu, iż 0 odpowiada tutaj jednej ze stałych typu DECISION.
C++ dba bowiem, aby typów enum używać zgodnie z ich przeznaczeniem, a nie jako
zamienników dla zmiennych liczbowych. Powoduje to, że:

Do zmiennych wyliczeniowych możemy przypisywać wyłącznie odpowiadające im stałe.
Niemożliwe jest nadanie im „zwykłych” wartości liczbowych.

Jeżeli jednak koniecznie potrzebujemy podobnego przypisania (bo np. odczytaliśmy liczbę
z pliku lub uzyskaliśmy ją za pomocą jakiejś zewnętrznej funkcji), możemy salwować się
rzutowaniem przy pomocy static_cast:

// zakładamy, że OdczytajWartosc() zwraca liczbę typu int lub podobną
Decyzja = static_cast<DECISION>(OdczytajWartosc());

Pamiętajmy aczkolwiek, żeby w zwykłych sytuacjach używać zdefiniowanych stałych.
Inaczej całkowicie wypaczalibyśmy ideę typów wyliczeniowych.

Zastosowania
Ewentualni fani programów przykładowych mogą czuć się zawiedzeni, gdyż nie
zaprezentuję żadnego krótkiego, kilkunastolinijkowego, dobitnego kodu obrazującego
wykorzystanie typów wyliczeniowych w praktyce. Powód jest dość prosty: taki przykład
miałby złożoność i celowość porównywalną do banalnych aplikacji dodających dwie liczby,

Złożone zmienne 157

z którymi stykaliśmy się na początku kursu. Zamiast tego pomówmy lepiej o
zastosowaniach opisywanych typów w konstruowaniu „normalnych”, przydatnych
programów - także gier.

Do czego więc mogą przydać się typy wyliczeniowe? Tak naprawdę sposobów na ich
konkretne użycie jest więcej niż ziaren piasku na pustyni; równie dobrze moglibyśmy,
zadać pytanie w rodzaju „Jakie zastosowanie ma instrukcja if?” :) Wszystko bowiem
zależy od postawionego problemu oraz samego programisty. Istnieje jednak co najmniej
kilka ogólnych sytuacji, w których skorzystanie z typów wyliczeniowych jest wręcz
naturalne:

 Przechowywanie informacji o stanie jakiegoś obiektu czy zjawiska.
Przykładowo, jeżeli tworzymy grę przygodową, możemy wprowadzić nowy typ
określający aktualnie wykonywaną przez gracza czynność: chodzenie, rozmowa,
walka itd. Stosując przy tym instrukcję switch będziemy mogli w każdej klatce
podejmować odpowiednie kroki sterujące konwersacją czy wymianą ciosów.
Inny przykład to choćby odtwarzacz muzyczny. Wiadomo, że może on w danej
chwili zajmować się odgrywaniem jakiegoś pliku, znajdować się w stanie pauzy
czy też nie mieć wczytanego żadnego utworu i czekać na polecenia użytkownika.
Te możliwe stany są dobrym materiałem na typ wyliczeniowy.

Wszystkie te i podobne sytuacje, z którymi można sobie radzić przy pomocy enum’ów, są
przypadkami tzw. automatów o skończonej liczbie stanów (ang. finite state machine).
Pojęcie to ma szczególne zastosowanie przy programowaniu sztucznej inteligencji, zatem
jako (przyszły) programista gier będziesz się z nim czasem spotykał.

 Ustawianie parametrów o ściśle określonym zbiorze wartości.
Był już tu przytaczany dobry przykład na wykorzystanie typów wyliczeniowych
właśnie w tym celu. Jest to oczywiście kwestia poziomu trudności jakiejś gry;
zapisanie wyboru użytkownika wydaje się najbardziej naturalne właśnie przy
użyciu zmiennej wyliczeniowej.
Dobrym reprezentantem tej grupy zastosowań może być również sposób
wyrównywania akapitu w edytorach tekstu. Ustawienia: „do lewej”, do prawej”,
„do środka” czy „wyjustowanie” są przecież świetnym materiałem na odpowiedni
enum.

 Przekazywanie jednoznacznych komunikatów w ramach aplikacji.
Nie tak dawno temu poznaliśmy typ bool, który może być używany między innymi
do informowania o powodzeniu lub niepowodzeniu jakiejś operacji (zazwyczaj
wykonywanej przez osobną funkcję). Taka czarno-biała informacja jest jednak
mało użyteczna - w końcu jeżeli wystąpił jakiś błąd, to wypadałoby wiedzieć o nim
coś więcej.
Tutaj z pomocą przychodzą typy wyliczeniowe. Możemy bowiem zdefiniować sobie
taki, który posłuży nam do identyfikowania ewentualnych błędów. Określając
odpowiednie stałe dla braku pamięci, miejsca na dysku, nieistnienia pliku i innych
czynników decydujących o niepowodzeniu pewnych działań, będziemy mogli je
łatwo rozróżniać i raczyć użytkownika odpowiednimi komunikatami.

To tylko niektóre z licznych metod wykorzystywania typów wyliczeniowych w
programowaniu. W miarę rozwoju swoich umiejętności sam odkryjesz dla nich mnóstwo
specyficznych zastosowań i będziesz często z nich korzystał w pisanych kodach.

Upewnij się zatem, że dobrze rozumiesz, na czym one polegają i jak wygląda ich użycie
w C++. To z pewnością sowicie zaprocentuje w przyszłości.
A kiedy uznasz, iż jesteś już gotowy, będziemy mogli przejść dalej :)

Podstawy programowania 158

Kompleksowe typy
Tablice, opisane na początku tego rozdziału, nie są jedynym sposobem na modelowanie
złożonych danych. Chociaż przydają się wtedy, gdy informacje mają jednorodną postać
zestawu identycznych elementów, istnieje wiele sytuacji, w których potrzebne są inne
rozwiązania…

Weźmy chociażby banalny, zdawałoby się, przykład książki adresowej. Na pierwszy rzut
oka jest ona idealnym materiałem na prostą tablicę, której elementami byłyby jej kolejne
pozycje - adresy.
Zauważmy jednak, że sama taka pojedyncza pozycja nie daje się sensownie przedstawić
w postaci jednej zmiennej. Dane dotyczące jakiejś osoby obejmują przecież jej imię,
nazwisko, ewentualnie pseudonim, adres e-mail, miejsce zamieszkania, telefon… Jest to
przynajmniej kilka elementarnych informacji, z których każda wymagałaby oddzielnej
zmiennej.

Podobnych przypadków jest w programowaniu mnóstwo i dlatego też dzisiejsze języki
posiadają odpowiednie mechanizmy, pozwalające na wygodne przetwarzanie informacji o
budowie hierarchicznej. Domyślasz się zapewne, że teraz właśnie rzucimy okiem na
ofertę C++ w tym zakresie :)

Typy strukturalne i ich definiowanie
Wróćmy więc do naszego problemu książki adresowej, albo raczej listy kontaktów -
najlepiej internetowych. Każda jej pozycja mogłaby się składać z takich oto trzech
elementów:

 nicka tudzież imienia i nazwiska danej osoby
 jej adresu e-mail
 numeru identyfikacyjnego w jakimś komunikatorze internetowym

Na przechowywanie tychże informacji potrzebujemy zatem dwóch łańcuchów znaków (po
jednym na nick i adres) oraz jednej liczby całkowitej. Znamy oczywiście odpowiadające
tym rodzajom danych typy zmiennych w C++: są to rzecz jasna std::string oraz int.
Możemy więc użyć ich do utworzenia nowego, złożonego typu, reprezentującego w
całości pojedynczy kontakt:

struct CONTACT
{
 std::string strNick;
 std::string strEmail;
 int nNumerIM;
};

W ten właśnie sposób zdefiniowaliśmy typ strukturalny.

Typy strukturalne (zwane też w skrócie strukturami56) to zestawy kilku zmiennych,
należących do innych typów, z których każda posiada swoją własną i unikalną nazwę.
Owe „podzmienne” nazywamy polami struktury.

Nasz nowonarodzony typ strukturalny składa się zatem z trzech pól, zaś każde z nich
przechowuje jedynie elementarną informację. Zestawione razem reprezentują jednak
złożoną daną o jakiejś osobie.

56 Zazwyczaj strukturami nazywamy już konkretne zmienne; u nas byłyby to więc rzeczywiste dane kontaktowe
jakiejś osoby (czyli zmienne należące do zdefiniowanego właśnie typu CONTACT). Czasem jednak pojęć „typ
strukturalny” i „struktura” używa się zamiennie, a ich szczegółowe znaczenie zależy od kontekstu.

Złożone zmienne 159

Struktury w akcji
Nie zapominajmy, że zdefiniowane przed chwilą „coś” o nazwie CONTACT jest nowym
typem, a więc możemy skorzystać z niego tak samo, jak z innych typów w języku C++
(wbudowanych lub poznanych niedawno enum’ów). Zadeklarujmy więc przy jego użyciu
jakąś przykładową zmienną:

CONTACT Kontakt;

Logiczne byłoby teraz nadanie jej pewnej wartości… Pamiętamy jednak, że powyższy
Kontakt to tak naprawdę trzy zmienne w jednym (coś jak szampon
przeciwłupieżowy ;D). Niemożliwe jest zatem przypisanie mu zwykłej, „pojedynczej”
wartości, właściwej typom skalarnym.
Możemy za to zająć się osobno każdym z jego pól. Są one znanymi nam bardzo dobrze
tworami programistycznymi (napisem i liczbą), więc nie będziemy mieli z nimi
najmniejszych kłopotów. Cóż zatem zrobić, aby się do nich dobrać?…

Skorzystamy ze specjalnego operatora wyłuskania, będącego zwykłą kropką (.).
Pozwala on między innymi na uzyskanie dostępu do określonego pola w strukturze.
Użycie go jest bardzo proste i dobrze widoczne na poniższym przykładzie:

// wypełnienie struktury danymi
Kontakt.strNick = "Hakier";
Kontakt.strEmail = "gigahaxxor@abc.pl";
Kontakt.nNumerIM = 192837465;

Postawienie kropki po nazwie struktury umożliwia nam niejako „wejście w jej głąb”. W
dobrych środowiskach programistycznych wyświetlana jest nawet lista wszystkich jej pól,
jakby na potwierdzenie tego faktu oraz ułatwienie pisania dalszego kodu. Po kropce
wprowadzamy więc nazwę pola, do którego chcemy się odwołać.
Wykonawszy ten prosty zabieg możemy zrobić ze wskazanym polem wszystko, co się
nam żywnie podoba. W przykładzie powyżej czynimy doń zwykłe przypisanie wartości,
lecz równie dobrze mogłoby to być jej odczytanie, użycie w wyrażeniu, przekazanie do
funkcji, itp. Nie ma bowiem żadnej praktycznej różnicy w korzystaniu z pola struktury i
ze zwykłej zmiennej tego samego typu - oczywiście poza faktem, iż to pierwsze jest tylko
częścią większej całości.
Sądzę, że wszystko to powinno być dla ciebie w miarę jasne :)

Co uważniejsi czytelnicy (czyli pewnie zdecydowana większość ;D) być może zauważyli, iż
nie jest to nasze pierwsze spotkanie z kropką w C++. Gdy zajmowaliśmy się dokładniej
łańcuchami znaków, używaliśmy formułki napis.length() do pobrania długości tekstu.
Czy znaczy to, że typ std::string również należy do strukturalnych?… Cóż, sprawa jest
generalnie dosyć złożona, jednak częściowo wyjaśni się już w następnym rozdziale. Na
razie wiedz, że cel użycia operatora wyłuskania był tam podobny do aktualnie
omawianego (czyli „wejścia w środek” zmiennej), chociaż wtedy nie chodziło nam wcale o
odczytanie wartości jakiegoś pola. Sugerują to zresztą nawiasy wieńczące wyrażenie…
Pozwól jednak, abym chwilowo z braku czasu i miejsca nie zajmował się bliżej tym
zagadnieniem. Jak już nadmieniłem, wrócimy do niego całkiem niedługo, zatem uzbrój
się w cierpliwość :)

Spoglądając krytycznym okiem na trzy linijki kodu, które wykonują przypisania wartości
do kolejnych pól struktury, możemy nabrać pewnych wątpliwości, czy aby składnia C++
jest rzeczywiście taka oszczędna, jaką się zdaje. Przecież wyraźnie widać, iż musieliśmy
tutaj za w każdym wierszu wpisywać nieszczęsną nazwę struktury, czyli Kontakt! Nie
dałoby się czegoś z tym zrobić?
Kilka języków, w tym np. Delphi i Visual Basic, posiada bloki with, które odciążają nieco

Podstawy programowania 160

palce programisty i zezwalają na pisanie jedynie nazw pól struktur. Jakkolwiek jest to
niewątpliwie wygodne, to czasem powoduje dość nieoczekiwane i niełatwe do wykrycia
błędy logiczne. Wydaje się, że brak tego rodzaju instrukcji w C++ jest raczej rozsądnym
skutkiem bilansu zysków i strat, co jednak nie przeszkadza mi osobiście uważać tego za
pewien feler :D

Istnieje jeszcze jedna droga nadania początkowych wartości polom struktury, a jest nią
naturalnie znana już szeroko inicjalizacja :) Ponieważ podobnie jak w przypadku tablic
mamy tutaj do czynienia ze złożonymi zmiennymi, należy tedy posłużyć się odpowiednią
formą inicjalizatora - taką, jak podana poniżej:

// inicjalizacja struktury
CONTACT Kontakt = { "MasterDisaster", "md1337@ajajaj.com.pl", 3141592 };

Używamy więc w znajomy sposób nawiasów klamrowych, umieszczając wewnątrz nich
wyrażenia, które mają być przypisane kolejnym polom struktury. Należy przy tym
pamiętać, by zachować taki sam porządek pól, jaki został określony w definicji typu
strukturalnego. Inaczej możemy spodziewać się niespodziewanych błędów :)

Kolejność pól w definicji typu strukturalnego oraz w inicjalizacji należącej doń struktury
musi być identyczna.

Uff, zdaje się, że w ferworze poznawania szczegółowych aspektów struktur
zapomnieliśmy już całkiem o naszym pierwotnym zamyśle. Przypominam więc, iż było
nim stworzenie elektronicznej wersji notesu z adresami, czyli po prostu listy
internetowych kontaktów.
Nabyta wiedza nie pójdzie jednak na marne, gdyż teraz potrafimy już z łatwością
wymyślić stosowne rozwiązanie pierwotnego problemu. Zasadniczą listą będzie po prostu
odpowiednia tablica struktur:

const unsigned LICZBA_KONTAKTOW = 100;
CONTACT aKontakty[LICZBA_KONTAKTOW];

Jej elementami staną się dane poszczególnych osób zapisanych w naszej książce
adresowej. Zestawione w jednowymiarową tablicę będą dokładnie tym, o co nam od
początku chodziło :)

Schemat 11. Obrazowy model tablicy struktur

Metody obsługi takiej tablicy nie różnią się wiele od porównywalnych sposobów dla tablic
składających się ze „zwykłych” zmiennych. Możemy więc łatwo napisać przykładową,
prostą funkcję, która wyszukuje osobę o danym nicku:

int WyszukajKontakt(std::string strNick)
{
 // przebiegnięcie po całej tablicy kontaktów przy pomocy pętli for
 for (unsigned i = 0; i < LICZBA_KONTAKTOW; ++i)
 // porównywanie nicku każdej osoby z szukanym

Złożone zmienne 161

 if (aKontakty[i].strNick == strNick)
 // zwrócenie indeksu pasującej osoby
 return i;

 // ewentualnie, jeśli nic nie znaleziono, zwracamy -1
 return -1;
}

Zwróćmy w niej szczególną uwagę na wyrażenie, poprzez które pobieramy pseudonimy
kolejnych osób na naszej liście. Jest nim:

aKontakty[i].strNick

W zasadzie nie powinno być ono zaskoczeniem. Jak wiemy doskonale, aKontakty[i]
zwraca nam i-ty element tablicy. U nas jest on strukturą, zatem dostanie się do jej
konkretnego pola wymaga też użycia operatora wyłuskania. Czynimy to i uzyskujemy
ostatecznie oczekiwany rezultat, który porównujemy z poszukiwanym nickiem.
W ten sposób przeglądamy naszą tablicę aż do momentu, gdy faktycznie znajdziemy
poszukiwany kontakt. Wtedy też kończymy funkcję i oddajemy indeks znalezionego
elementu jako jej wynik. W przypadku niepowodzenia zwracamy natomiast -1, która to
liczba nie może być indeksem tablicy w C++.
Cała operacja wyszukiwania nie należy więc do szczególnie skomplikowanych :)

Odrobina formalizmu - nie zaszkodzi!
Przyszedł właśnie czas na uporządkowanie i usystematyzowanie posiadanych informacji o
strukturach. Największym zainteresowaniem obdarzymy przeto reguły składniowe języka,
towarzyszące ich wykorzystaniu.
Mimo tak groźnego wstępu nie opuszczaj niniejszego paragrafu, bo taka absencja z
pewnością nie wyjdzie ci na dobre :)

Typ strukturalny definiujemy, używając słowa kluczowego struct (ang. structure -
struktura). Składnia takiej definicji wygląda następująco:

struct nazwa_typu
{
 typ_pola_1 nazwa_pola_1;
 typ_pola_2 nazwa_pola_2;
 typ_pola_3 nazwa_pola_3;
 ...
 typ_pola_n nazwa_pola_n;
};

Kolejne wiersze wewnątrz niej łudząco przypominają deklaracje zmiennych i tak też
można je traktować. Pola struktury są przecież zawartymi w niej „podzmiennymi”.
Całość tej listy pól ujmujemy oczywiście w stosowne do C++ nawiasy klamrowe.

Pamiętajmy, aby za końcowym nawiasem koniecznie umieścić średnik. Pomimo
zbliżonego wyglądu definicja typu strukturalnego nie jest przecież funkcją i dlatego nie
można zapominać o tym dodatkowym znaku.

Przykład wykorzystania struktury
To prawda, że używanie struktur dotyczy najczęściej dość złożonych zbiorów danych.
Tym bardziej wydawałoby się, iż trudno o jakiś nietrywialny przykład zastosowania tegoż
mechanizmu językowego w prostym programie.
Jest to jednak tylko część prawdy. Struktury występują bowiem bardzo często zarówno w
standardowej bibliotece C++, jak i w innych, często używanych kodach - Windows API

Podstawy programowania 162

czy DirectX. Służą one nierzadko jako sposób na przekazywanie do i z funkcji dużej ilości
wymaganych informacji. Zamiast kilkunastu parametrów lepiej przecież użyć jednego,
kompleksowego, którym znacznie wygodniej jest operować.

My posłużymy się takim właśnie typem strukturalnym oraz kilkoma funkcjami
pomocniczymi, aby zrealizować naszą prostą aplikację. Wszystkie te potrzebne elementy
znajdziemy w pliku nagłówkowym ctime, gdzie umieszczona jest także definicja typu tm:

struct tm
{
 int tm_sec; // sekundy
 int tm_min; // minuty
 int tm_hour; // godziny
 int tm_mday; // dzień miesiąca
 int tm_mon; // miesiąc (0..11)
 int tm_year; // rok (od 1900)
 int tm_wday; // dzień tygodnia (0..6, gdzie 0 == niedziela)
 int tm_yday; // dzień roku (0..365, gdzie 0 == 1 stycznia)
 int tm_isdst; // czy jest aktywny czas letni?
};

Patrząc na nazwy jego pól oraz komentarze do nich, nietrudno uznać, iż typ ten ma za
zadanie przechowywać datę i czas w formacie przyjaznym dla człowieka. To zaś prowadzi
do wniosku, iż nasz program będzie wykonywał czynność związaną w jakiś sposób z
upływem czasu. Istotnie tak jest, gdyż jego przeznaczeniem stanie się obliczanie
biorytmu.

Biorytm to modny ostatnio zestaw parametrów, które określają aktualne możliwości
psychofizyczne każdego człowieka. Według jego zwolenników, nasz potencjał fizyczny,
emocjonalny i intelektualny waha się okresowo w cyklach o stałej długości,
rozpoczynających się w chwili narodzin.

-100

-50

0

50

100

04
-0

1-
07

04
-0

1-
08

04
-0

1-
09

04
-0

1-
10

04
-0

1-
11

04
-0

1-
12

04
-0

1-
13

04
-0

1-
14

04
-0

1-
15

04
-0

1-
16

04
-0

1-
17

04
-0

1-
18

04
-0

1-
19

04
-0

1-
20

04
-0

1-
21

04
-0

1-
22

04
-0

1-
23

04
-0

1-
24

04
-0

1-
25

04
-0

1-
26

04
-0

1-
27

04
-0

1-
28

04
-0

1-
29

04
-0

1-
30

04
-0

1-
31

04
-0

2-
01

04
-0

2-
02

04
-0

2-
03

04
-0

2-
04

04
-0

2-
05

04
-0

2-
06

fizyczny emocjonalny intelektualny

Wykres 1. Przykładowy biorytm autora tego tekstu :-)

Możliwe jest przy tym określenie liczbowej wartości każdego z trzech rodzajów biorytmu
w danym dniu. Najczęściej przyjmuje się w tym celu przedział „procentowy”, obejmujący
liczby od -100 do +100.
Same obliczenia nie są szczególnie skomplikowane. Patrząc na wykres biorytmu, widzimy
bowiem wyraźnie, iż ma on kształt trzech sinusoid, różniących się jedynie okresami.
Wynoszą one tyle, ile długości trwania poszczególnych cykli biorytmu, a przedstawia je
poniższa tabelka:

cykl długość
fizyczny 23 dni

Złożone zmienne 163

cykl długość
emocjonalny 28 dni
intelektualny 33 dni

Tabela 10. Długości cykli biorytmu

Uzbrojeni w te informacje możemy już napisać program, który zajmie się liczeniem
biorytmu. Oczywiście nie przedstawi on wyników w postaci wykresu (w końcu mamy do
dyspozycji jedynie konsolę), ale pozwoli zapoznać się z nimi w postaci liczbowej, która
także nas zadowala :)
Spójrzmy zatem na ten spory kawałek kodu:

// Biorhytm - pobieranie aktualnego czasu w postaci struktury
// i użycie go do obliczania biorytmu

// typ wyliczeniowy, określający rodzaj biorytmu
enum BIORHYTM { BIO_PHYSICAL = 23,
 BIO_EMOTIONAL = 28,
 BIO_INTELECTUAL = 33 };

// pi :)
const double PI = 3.1415926538;

//--

// funkcja wyliczająca dany rodzaj biorytmu
double Biorytm(double fDni, BIORHYTM Cykl)
{
 return 100 * sin((2 * PI / Cykl) * fDni);
}

// funkcja main()
void main()
{
 /* trzy struktury, przechowujące datę urodzenia delikwenta,
 aktualny czas oraz różnicę pomiędzy nimi */
 tm DataUrodzenia = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
 tm AktualnyCzas = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
 tm RoznicaCzasu = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };

 /* pytamy użytkownika o datę urodzenia */

 std::cout << "Podaj date urodzenia" << std::endl;

 // dzień
 std::cout << "- dzien: ";
 std::cin >> DataUrodzenia.tm_mday;

 // miesiąc - musimy odjąć 1, bo użytkownik poda go w systemie 1..12
 std::cout << "- miesiac: ";
 std::cin >> DataUrodzenia.tm_mon;
 DataUrodzenia.tm_mon--;

 // rok - tutaj natomiast musimy odjąć 1900
 std::cout << "- rok: ";
 std::cin >> DataUrodzenia.tm_year;
 DataUrodzenia.tm_year -= 1900;

 /* obliczamy liczbę przeżytych dni */

Podstawy programowania 164

 // pobieramy aktualny czas w postaci struktury
 time_t Czas = time(NULL);
 AktualnyCzas = *localtime(&Czas);

 // obliczamy różnicę między nim a datą urodzenia
 RoznicaCzasu.tm_mday = AktualnyCzas.tm_mday - DataUrodzenia.tm_mday;
 RoznicaCzasu.tm_mon = AktualnyCzas.tm_mon - DataUrodzenia.tm_mon;
 RoznicaCzasu.tm_year = AktualnyCzas.tm_year - DataUrodzenia.tm_year;

 // przeliczamy to na dni
 double fPrzezyteDni = RoznicaCzasu.tm_year * 365.25
 + RoznicaCzasu.tm_mon * 30.4375
 + RoznicaCzasu.tm_mday;

 /* obliczamy biorytm i wyświelamy go */

 // otóż i on
 std::cout << std::endl;
 std::cout << "Twoj biorytm" << std::endl;
 std::cout << "- fizyczny: " << Biorytm(fPrzezyteDni, BIO_PHYSICAL)
 << std::endl;
 std::cout << "- emocjonalny: " << Biorytm(fPrzezyteDni,

BIO_EMOTIONAL) << std::endl;
 std::cout << "- intelektualny: " << Biorytm(fPrzezyteDni,

BIO_INTELECTUAL) << std::endl;

 // czekamy na dowolny klawisz
 getch();
}

Jaki jest efekt tego, pokaźnych rozmiarów, listingu? Są nim trzy wartości określające
dzisiejszy biorytm osoby o podanej dacie urodzenia:

Screen 31. Efekt działania aplikacji obliczającej biorytm

Za jego wyznaczenie odpowiada prosta funkcja Biorytm() wraz towarzyszącym jej
typem wyliczeniowym, określającym rodzaj biorytmu:

enum BIORHYTM { BIO_PHYSICAL = 23,
 BIO_EMOTIONAL = 28,
 BIO_INTELECTUAL = 33 };

double Biorytm(double fDni, BIORHYTM Cykl)
{
 return 100 * sin((2 * PI / Cykl) * fDni);
}

Złożone zmienne 165

Godną uwagi sztuczką, jaką tu zastosowano, jest nadanie stałym typu BIORHYTM
wartości, będących jednocześnie długościami odpowiednich cykli biorytmu. Dzięki temu
funkcja zachowuje przyjazną postać wywołania, na przykład Biorytm(liczba_dni,
BIO_PHYSICAL), a jednocześnie unikamy instrukcji switch wewnątrz niej.

Sama formułka licząca opiera się na ogólnym wzorze sinusoidy, tj.:

⎟
⎠
⎞

⎜
⎝
⎛ ⋅= x

T
Axf π2sin)(

w którym A jest jej amplitudą, zaś T - okresem.
U nas okresem jest długość trwania poszczególnych cykli biorytmu, zaś amplituda 100
powoduje „rozciągnięcie” przedziału wartości do zwyczajowego <-100; +100>.

Stanowiąca większość kodu długa funkcja main() dzieli się na trzy części.

W pierwszej z nich pobieramy od użytkownika jego datę urodzenia i zapisujemy ją w
strukturze o nazwie… DataUrodzenia :) Zauważmy, że używamy tutaj jej pól jako
miejsca docelowego dla strumienia wejścia w identyczny sposób, jak to czyniliśmy dla
pojedynczych zmiennych.
Po pobraniu musimy jeszcze odpowiednio zmodyfikować dane - tak, żeby spełniały
wymagania podane w komentarzach przy definicji typu tm (chodzi tu o numerowanie
miesięcy od zera oraz liczenie lat począwszy od roku 1900).

Kolejnym zadaniem jest obliczenie ilości dni, jaką dany osobnik przeżył już na tym
świecie. W tym celu musimy najpierw pobrać aktualny czas, co też czynią dwie poniższe
linijki:

time_t Czas = time(NULL);
AktualnyCzas = *localtime(&Czas);

W pierwszej z nich znana nam już funkcja time() uzyskuje czas w wewnętrznym
formacie C++57. Dopiero zawarta w drugim wierszu funkcja localtime()konwertuje go
na zdatną do wykorzystania strukturę, którą przypisujemy do zmiennej AktualnyCzas.

Troszkę udziwnioną postać tej funkcji musisz na razie niestety zignorować :)

Dalej obliczamy różnicę między oboma czasami (zapisanymi w DataUrodzenia i
AktualnyCzas), odejmując od siebie liczby dni, miesięcy i lat. Otrzymany tą drogą wiek
użytkownika musimy na koniec przeliczyć na pojedyncze dni, za co odpowiada
wyrażenie:

double fPrzezyteDni = RoznicaCzasu.tm_year * 365.25
 + RoznicaCzasu.tm_mon * 30.4375
 + RoznicaCzasu.tm_mday;

Zastosowane tu liczby 365.25 i 30.4375 są średnimi ilościami dni w roku oraz w
miesiącu. Uwalniają nas one od konieczności osobnego uwzględniania lat przestępnych w
przeprowadzanych obliczeniach.

Wreszcie, ostatnie wiersze kodu obliczają biorytm, wywołując trzykrotnie funkcję o tej
nazwie, i prezentują wyniki w klarownej postaci w oknie konsoli.

57 Jest to liczba sekund, które upłynęły od północy 1 stycznia 1970 roku.

Podstawy programowania 166

Działanie programu kończy się zaś na tradycyjnym getch(), które oczekuje na
przyciśnięcie dowolnego klawisza. Po tym fakcie następuje już definitywny i nieodwołalny
koniec :D

Tak oto przekonaliśmy się, że struktury warto znać nawet wtedy, gdy nie planujemy
tworzenia aplikacji manewrujących skomplikowanymi danymi. Nie zdziw się zatem, że w
dalszym ciągu tego kursu będziesz je całkiem często spotykał.

Unie
Drugim, znacznie rzadziej spotykanym rodzajem złożonych typów są unie.

Są one w pewnym sensie podobne do struktur, gdyż ich definicje stanowią także listy
poszczególnych pól:

union nazwa_typu
{
 typ_pola_1 nazwa_pola_1;
 typ_pola_2 nazwa_pola_2;
 typ_pola_3 nazwa_pola_3;
 ...
 typ_pola_n nazwa_pola_n;
};

Identycznie wyglądają również deklaracje zmiennych, należących do owych typów
„unijnych”, oraz odwołania do ich pól. Na czym więc polegają różnice?…

Przypomnijmy sobie, że struktura jest zestawem kilku odrębnych zmiennych,
połączonych w jeden kompleks. Każde jego pole zachowuje się dokładnie tak, jakby było
samodzielną zmienną, i posłusznie przechowuje przypisane mu wartości. Rozmiar
struktury jest zaś co najmniej sumą rozmiarów wszystkich jej pól.
Unia opiera się na nieco innych zasadach. Zajmuje bowiem w pamięci jedynie tyle
miejsca, żeby móc pomieścić swój największy element. Nie znaczy to wszak, iż w jakiś
nadprzyrodzony sposób potrafi ona zmieścić w takim okrojonym obszarze wartości
wszystkich pól. Przeciwnie, nawet nie próbuje tego robić. Zamiast tego obszary pamięci
przeznaczone na wartości pól unii zwyczajnie nakładają się na siebie. Powoduje to, że:

W danej chwili tylko jedno pole unii zawiera poprawną wartość.

Do czego mogą się przydać takie dziwaczne twory? Cóż, ich zastosowania są dość
swoiste, więc nieczęsto będziesz zmuszony do skorzystania z nich.
Jednym z przykładów może być jednak chęć zapewnienia kilku dróg dostępu do tych
samych danych:

union VECTOR3
{
 // w postaci trójelementowej tablicy
 float v[3];

 // lub poprzez odpowiednie zmienne x, y, z
 struct
 {
 float x, y, z;
 };
};

Złożone zmienne 167

W powyższej unii, która ma przechowywać trójwymiarowy wektor, możliwe są dwa
sposoby na odwołanie się do jego współrzędnych: poprzez pola x, y oraz z lub indeksy
odpowiedniej tablicy v. Oba są równoważne:

VECTOR3 vWektor;

// poniższe dwie linijki robią to samo
vWektor.x = 1.0; vWektor.y = 5.0; vWektor.z = 0.0;
vWektor.v[0] = 1.0; vWektor.v[1] = 5.0; vWektor.v[2] = 0.0;

Taka unię możemy więc sobie obrazowo przedstawić chociażby poprzez niniejszy
rysunek:

Schemat 12. Model przechowywania unii w pamięci operacyjnej

Elementy tablicy v oraz pola x, y, z niejako „wymieniają” między sobą wartości.
Oczywiście jest to tylko pozorna wymiana, gdyż tak naprawdę chodzi po prostu o
odwoływanie się do tego samego adresu w pamięci, jednak różnymi drogami.

Wewnątrz naszej unii umieściliśmy tzw. anonimową strukturę (nieopatrzoną żadną
nazwą). Musieliśmy to zrobić, bo jeżeli wpisalibyśmy float x, y, z; bezpośrednio do
definicji unii, każde z tych pól byłoby zależne od pozostałych i tylko jedno z nich miałoby
poprawną wartość. Struktura natomiast łączy je w integralną całość.

Można zauważyć, że struktury i unie są jakby odpowiednikiem operacji logicznych -
koniunkcji i alternatywy - w odniesieniu do budowania złożonych typów danych.
Struktura pełni jak gdyby funkcję operatora && (pozwalając na niezależne istnienie
wszystkim obejmowanym sobą zmiennym), zaś unia - operatora || (dopuszczając
wyłącznie jedną daną). Zagnieżdżając frazy struct i union wewnątrz definicji
kompleksowych typów możemy natomiast uzyskać bardziej skomplikowane kombinacje.
Naturalnie, rodzi się pytanie „Po co?”, ale to już zupełnie inna kwestia ;)

Więcej informacji o uniach zainteresowani znajdą w MSDN.

Lektura kończącego się właśnie podrozdziału dała ci możliwość rozszerzania wachlarza
standardowych typów C++ o takie, które mogą ci ułatwić tworzenie przyszłych aplikacji.
Poznałeś więc typy wyliczeniowe, struktury oraz unie, uwalniając całkiem nowe
możliwości programistyczne. Na pewno niejednokrotnie będziesz z nich korzystał.

Większy projekt
Doszedłszy do tego miejsca w lekturze niniejszego kursu posiadłeś już dosyć dużą wiedzę
programistyczną. Pora zatem na wykorzystanie jej w praktyce: czas stworzyć jakąś

Podstawy programowania 168

większą aplikację, a ponieważ docelowo mamy zajmować się programowaniem gier, więc
będzie nią właśnie gra.

Nie możesz wprawdzie liczyć na oszałamiające efekty graficzne czy dźwiękowe, gdyż
chwilowo potrafimy operować jedynie konsolą, lecz nie powinno cię to mimo wszystko
zniechęcać. Środki tekstowe okażą się bowiem całkowicie wystarczające dla naszego
skromnego projektu.

Projektowanie
Cóż więc chcemy napisać? Otóż będzie to produkcja oparta na wielce popularnej i
lubianej grze w kółko i krzyżyk :) Zainteresujemy się jej najprostszym wariantem, w
którym dwoje graczy stawia naprzemian kółka i krzyżyki na planszy o wymiarach 3×3.
Celem każdego z nich jest utworzenie linii z trzech własnych symboli - poziomej,
pionowej lub ukośnej.

Rysunek 2. Rozgrywka w kółko i krzyżyk

Nasza gra powinna pokazywać rzeczoną planszę w czasie rozgrywki, umożliwiać
wykonywanie graczom kolejnych ruchów oraz sprawdzać, czy któryś z nich przypadkiem
nie wygrał :)
I taki właśnie efekt będziemy chcieli osiągnąć, tworząc ten program w C++. Najpierw
jednak, skoro już wiemy, co będziemy pisać, zastanówmy się, jak to napiszemy.

Struktury danych w aplikacji
Pierwszym zadaniem jest określenie struktur danych, wykorzystywanych przez
program. Oznacza to ustalenie zmiennych, które przewidujemy w naszej aplikacji oraz
danych, jakie mają one przechowywać. Ponieważ wiemy już niemal wszystko na temat
sposobów organizowania informacji w C++, nasze instrumentarium w tym zakresie
będzie bardzo szerokie. Zatem do dzieła!

Chyba najbardziej oczywistą potrzebą jest konieczność stworzenia jakiejś programowej
reprezentacji planszy, na której toczy się rozgrywka. Patrząc na nią, nietrudno jest
znaleźć odpowiednią drogę do tego celu: wręcz idealna wydaje się bowiem tablica
dwuwymiarowa o rozmiarze 3×3.
Sama wielkość to jednak nie wszystko - należy także określić, jakiego typu elementy
ma zawierać ta tablica. Aby to uczynić, pomyślmy, co się dzieje z planszą podczas
rozgrywki. Na początku zawiera ona wyłącznie puste pola; potem kolejno pojawiają się w
nich kółka lub krzyżyki… Czy już wiesz, jaki typ będzie właściwy?… Naturalnie, chodzi tu o
odpowiedni typ wyliczeniowy, dopuszczający jedynie trzy możliwe wartości: pole puste,
kółko lub krzyżyk. To było od początku oczywiste, prawda? :)

Złożone zmienne 169

Ostatecznie plansza będzie wyglądać w ten sposób:

enum FIELD { FLD_EMPTY, FLD_CIRCLE, FLD_CROSS };
FIELD g_aPlansza[3][3] = { { FLD_EMPTY, FLD_EMPTY, FLD_EMPTY },
 { FLD_EMPTY, FLD_EMPTY, FLD_EMPTY },
 { FLD_EMPTY, FLD_EMPTY, FLD_EMPTY } };

Inicjalizacja jest tu odzwierciedleniem faktu, iż na początku wszystkie jej pola są puste.

Plansza to jednakowoż nie wszystko. W naszej grze będzie się przecież coś dziać: gracze
dokonywać będą swych kolejnych posunięć. Potrzebujemy więc zmiennych opisujących
przebieg rozgrywki.
Ich wyodrębnienie nie jest już takie łatwe, aczkolwiek nie powinniśmy mieć z tym
wielkich kłopotów. Musimy mianowicie pomyśleć o grze w kółko i krzyżyk jako o procesie
przebiegającym etapami, według określonego schematu. To nas doprowadzi do
pierwszej zmiennej, określającej aktualny stan gry:

enum GAMESTATE { GS_NOTSTARTED, // gra nie została rozpoczęta
 GS_MOVE, // gra rozpoczęta, gracze wykonują ruchy
 GS_WON, // gra skończona, wygrana któregoś gracza
 GS_DRAW }; // gra skończona, remis
GAMESTATE g_StanGry = GS_NOTSTARTED;

Wyróżniliśmy tutaj cztery fazy:

 początkowa - właściwa gra jeszcze się nie rozpoczęła, czynione są pewne
przygotowania (o których wspomnimy nieco dalej)

 rozgrywka - uczestniczący w niej gracze naprzemiennie wykonują ruchy. Jest to
zasadnicza część całej gry i trwa najdłużej.

 wygrana - jeden z graczy zdołał ułożyć linię ze swoich symboli i wygrał partię
 remis - plansza została szczelnie zapełniona znakami zanim którykolwiek z graczy

zdołał zwyciężyć

Czy to wystarczy? Nietrudno się domyśleć, że nie. Nie przewidzieliśmy bowiem żadnego
sposobu na przechowywanie informacji o tym, który z graczy ma w danej chwili
wykonać swój ruch. Czym prędzej zatem naprawimy swój błąd:

enum SIGN { SGN_CIRCLE, SGN_CROSS };
SIGN g_AktualnyGracz;

Zauważmy, iż nie posiadamy o graczach żadnych dodatkowych wiadomości ponad fakt,
jakie znaki (kółko czy krzyżyk) stawiają oni na planszy. Informacja ta jest zatem
jedynym kryterium, pozwalającym na ich odróżnienie - toteż skrzętnie z niej korzystamy,
deklarując zmienną odpowiedniego typu wyliczeniowego.

Zamodelowanie właściwych struktur danych kontrolujących przebieg gry to jedna z
ważniejszych czynności przy jej projektowaniu. W naszym przypadku są one bardzo
proste (jedynie dwie zmienne), jednak zazwyczaj przyjmują znacznie bardziej
skomplikowaną formę. W swoim czasie zajmiemy się dokładniej tym zagadnieniem.

Zdaje się, że to już wszystkie zmienne, jakich będziemy potrzebować w naszym
programie. Czas zatem zająć się jego drugą, równie ważną częścią, czyli kodem
odpowiedzialnym za właściwe funkcjonowanie.

Działanie programu
Przed chwilą wprowadziliśmy sobie dwie zmienne, które będą nam pomocne w
zaprogramowaniu przebiegu naszej gry od początku aż do końca. Teraz właśnie

Podstawy programowania 170

zajmiemy się tymże „szlakiem” programu, czyli sposobem, w jaki będzie on działał i
prowadził rozgrywkę. Możemy go zilustrować na diagramie podobnym do poniższego:

Schemat 13. Przebieg gry w kółko i krzyżyk

Widzimy na nim, w jaki sposób następuje przejście pomiędzy poszczególnymi stanami
gry, a więc kiedy i jak ma się zmieniać wartość zmiennej g_StanGry. Na tej podstawie
moglibyśmy też określić funkcje, które są konieczne do napisania oraz ogólne czynności,
jakie powinny one wykonywać.

Powyższy rysunek jest uproszczonym diagramem przejść stanów. To jeden z wielu
rodzajów schematów, jakie można wykonać podczas projektowania programu.

Potrzebujemy jednak bardziej szczegółowego opisu. Lepiej jest też wykonać go teraz,
podczas projektowania aplikacji, niż przekładać do czasu faktycznego programowania.
Przy okazji uściślania przebiegu programu postaramy się uwzględnić w nim także
pominięte wcześniej, „drobne” szczegóły - jak choćby określenie aktualnego gracza i jego
zmiana po każdym wykonanym ruchu.
Nasz nowy szkic może zatem wyglądać tak:

Schemat 14. Działanie programu do gry w kółko i krzyżyk

Złożone zmienne 171

Można tutaj zauważyć czwórkę potencjalnych kandydatów na funkcje - są to sekwencje
działań zawarte w zielonych polach. Faktycznie jednak dla dwóch ostatnich (wygranej
oraz remisu) byłoby to pewnym nadużyciem, gdyż zawarte w nich operacje można z
powodzeniem dołączyć do funkcji obsługującej rozgrywkę. Są to bowiem jedynie
przypisania do zmiennej.

Ostatecznie mamy przewidziane dwie zasadnicze funkcje programu:

 rozpoczęcie gry, realizowane na początku. Jej zadaniem jest przygotowanie
rozgrywki, czyli przede wszystkim wylosowanie gracza zaczynającego

 rozgrywka, a więc wykonywanie kolejnych ruchów przez graczy

Skoro wiemy już, jak nasza gra ma działać „od środka”, nie od rzeczy będzie zajęcie się
metodą jej komunikacji z żywymi użytkownikami-graczami.

Interfejs użytkownika
Hmm, jaki interfejs?…

Zazwyczaj pojęcie to utożsamiamy z okienkami, przyciskami, pola tekstowymi, paskami
przewijania i innymi zdobyczami graficznych systemów operacyjnych. Tymczasem termin
ten ma bardziej szersze znaczenie:

Interfejs użytkownika to sposób, w jaki aplikacja prowadzi dialog z obsługującymi ją
osobami. Obejmuje to zarówno pobieranie od nich danych wejściowych, jak i prezentację
wyników pracy.

Niewątpliwie więc możemy czuć się uprawnieni, aby nazwać naszą skromną konsolę
pełnowartościowym środkiem do realizacji interfejsu użytkownika! Pozwala ona przecież
zarówno na uzyskiwanie informacji od osoby siedzącej za klawiaturą, jak i na
wypisywanie przeznaczonych dla niej komunikatów programu.

Jak zatem mógłby wyglądać interfejs naszego programu?… Twoje dotychczasowe, bogate
doświadczenie z aplikacjami konsolowymi powinny ułatwić ci odpowiedź na to pytanie.
Informacja, którą prezentujemy użytkownikowi, to oczywiście aktualny stan planszy. Nie
będzie ona wprawdzie miała postaci rysunkowej, jednakże zwykły tekst całkiem dobrze
sprawdzi się w roli „grafiki”.
Po wyświetleniu bieżącego stanu rozgrywki można poprosić o gracza o wykonanie
swojego ruchu. Gdybyśmy mogli obsłużyć myszkę, wtedy posunięcie byłoby po prostu
kliknięciem, ale w tym wypadku musimy zadowolić się poleceniem wpisanym z
klawiatury.

Ostatecznie wygląd naszego programu może być podobny do poniższego:

Screen 32. Interfejs użytkownika naszej gry

Przy okazji zauważyć można jedno z rozwiązań problemu pt. „Jak umożliwić wykonywanie
ruchów, posługując się jedynie klawiaturą?” Jest nim tutaj ponumerowanie kolejnych
elementów tablicy-planszy liczbami od 1 do 9, a następnie prośba do gracza o podanie
jednej z nich. To chyba najwygodniejsza forma gry, jaką potrafimy osiągnąć w tych
niesprzyjających, tekstowych warunkach…

Podstawy programowania 172

Metodami na przeliczanie pomiędzy zwyczajnymi, dwoma współrzędnymi tablicy oraz tą
jedną „nibywspółrzędną” zajmiemy się podczas właściwego programowania.

Na tym możemy już zakończyć wstępne projektowanie naszego projektu :) Ustaliliśmy
sposób jego działania, używane przezeń struktury danych, a nawet interfejs użytkownika.
Wszystko to ułatwi nam pisanie kodu całej aplikacji, które to rozpoczniemy już za chwilę.

To był tylko skromny i bardzo nieformalny wstęp do dziedziny informatyki zwanej
inżynierią oprogramowania. Zajmuje się ona projektowaniem wszelkiego rodzaju
programów, poczynając każdy od pomysłu i prowadząc poprzez model, kod, testowanie i
wreszcie użytkowanie. Jeżeli chciałbyś się dowiedzieć więcej na ten interesujący i
przydatny temat, zapraszam do Materiału Pomocniczego C, Podstawy inżynierii
oprogramowania (aczkolwiek zalecam najpierw skończenie tej części kursu).

Kodowanie
Nareszcie możemy uruchomić swoje ulubione środowisko programistyczne, wspierające
ulubiony język programowania C++ i zacząć właściwe programowanie zaprojektowanej
już gry. Uczyń to więc, stwórz w nim nowy projekt, nazywając go dowolnie58, i czekaj na
dalsze rozkazy ;D

Kilka modułów i własne nagłówki
Na początek utworzymy i dodamy do projektu wszystkie pliki, z jakich docelowo ma się
składać. Zgadza się - pliki. Pisany przez nas program może okazać się całkiem duży,
dlatego rozsądnie będzie podzielić jego kod pomiędzy kilka odrębnych modułów.
Utrzymamy wtedy jego względny porządek oraz skrócimy czas kolejnych kompilacji.

Zwyczajowo zaczniemy od pliku main.cpp, w którym umieścimy główną funkcję
programu, main(). Chwilowo jednak nie wypełnimy ją żadną treścią:

void main()
{

}

Zamiast tego wprowadzimy do projektu jeszcze jeden moduł, w którym wpiszemy
właściwy kod naszej gry. Przy pomocy opcji menu Project|Add New Item dodaj więc do
aplikacji drugi już plik typu C++ File (.cpp) i nazwij go game.cpp. W tym module znajdą
się wszystkie zasadnicze funkcje programu.

To jednak nie wszystko! Na deser zostawiłem bowiem pewną nowość, z którą nie
mieliśmy okazji się do tej pory zetknąć. Stworzymy mianowicie swój własny plik
nagłówkowy, idący w parze ze świeżo dodanym modułem game.cpp. Uczynimy to
podobny sposób, co dotychczas - z tą różnicą, iż tym razem zmienimy typ dodawanego
pliku na Header File (.h).

58 Kompletny kod całej aplikacji jest zawarty w przykładach do tego rozdziału i opatrzony nazwą TicTacToe.

Złożone zmienne 173

Screen 33. Dodawanie pliku nagłówkowego do projektu

Po co nam taki własny nagłówek? W jakim celu w ogóle tworzyć nagłówki we własnych
projektach?…
Na powyższe pytania istnieje dosyć prosta odpowiedź. Aby ją poznać przypomnijmy
sobie, dlaczego dołączamy do naszych programów nagłówki w rodzaju iostream czy
conio.h. Hmm?…
Tak jest - dzięki nim jesteśmy w stanie korzystać z takich dobrodziejstw języka C++ jak
strumienie wejścia i wyjścia czy łańcuchy znaków. Generalizując, można powiedzieć, że
nagłówki udostępniają pewien kod wszystkim modułom, które dołączą je przy pomocy
dyrektywy #include.

Dotychczas nie zastanawialiśmy się zbytnio nad miejscem, w którym egzystuje kod
wykorzystywany przez nas za pośrednictwem nagłówków. Faktycznie może on znajdować
się „tuż obok” - w innym module tego samego projektu (i tak będzie u nas), lecz równie
dobrze istnieć jedynie w skompilowanej postaci, na przykład biblioteki DLL.
W przypadku dodanego właśnie nagłówka game.h mamy jednak niczym nieskrępowany
dostęp do odpowiadającego mu modułu game.cpp. Zdawałoby się zatem, że plik
nagłówkowy jest tu całkowicie zbędny, a z kodu zawartego we wspomnianym module
moglibyśmy z powodzeniem korzystać bezpośrednio.

Nic bardziej błędnego! Za użyciem pliku nagłówkowego przemawia wiele argumentów, a
jednym z najważniejszych jest zasada ograniczonego zaufania. Według niej każda
cząstka programu powinna posiadać dostęp jedynie do tych jego fragmentów, które są
niezbędne do jej prawidłowego funkcjonowania.
U nas tą cząstką będzie funkcja main(), zawarta w module main.cpp. Nie napisaliśmy jej
jeszcze, ale potrafimy już określić, czego będzie potrzebowała do swego poprawnego
działania. Bez wątpienia będą dlań konieczne funkcje odpowiedzialne za wykonywanie
posunięć wskazanych przez graczy czy też procedury wyświetlające aktualny stan
rozgrywki. Sposób, w jaki te zadania są realizowane, nie ma jednak żadnego znaczenia!

Podstawy programowania 174

Podobnie przecież nie jesteśmy zobligowani do wiedzy o szczegółach funkcjonowania
strumieni konsoli, a mimo to stale z nich korzystamy.

Plik nagłówkowy pełni więc rolę swoistej zasłony, przykrywającej nieistotne detale
implementacyjne, oraz klucza do tych zasobów programistycznych (typów, funkcji,
zmiennych, itd.), którymi rzeczywiście chcemy się dzielić.

Dlaczego w zasadzie mamy się z podobną nieufnością odnosić do, bądź co bądź, samego
siebie? Czy rzeczywiście w tym przypadku lepiej wiedzieć mniej niż więcej?…
Główną przyczyną, dla której zasadę ograniczonego zaufania uznaje się za powszechnie
słuszną, jest fakt, iż wprowadza ona sporo porządku do każdego kodu. Chroni też przed
wieloma błędami spowodowanymi np. nadaniem jakiejś zmiennej wartości spoza
dopuszczalnego zakresu czy też wywołania funkcji w złym kontekście lub z
nieprawidłowymi parametrami.

Nagłówki są też pewnego rodzaju „spisem treści” kodu źródłowego modułu czy biblioteki.
Zawierają najczęściej deklaracje wszystkich typów oraz funkcji, więc mogą niekiedy
służyć za prowizoryczną dokumentację59 danego fragmentu programu, szczególnie
przydatną w jego dalszym tworzeniu.
Z tego też powodu pliki nagłówkowe są najczęściej pierwszymi składnikami aplikacji, na
których programista koncentruje swoją uwagę. Później stanowią one również podstawę
do pisania właściwego kodu algorytmów.

My także zaczniemy kodowanie naszego programu od pliku game.h; gotowy nagłówek
będzie nam potem doskonałą pomocą naukową :)

Treść pliku nagłówkowego
W nagłówku game.h umieścimy przeróżne deklaracje większości tworów
programistycznych, wchodzących w skład naszej aplikacji. Będą to chociażby zmienne
oraz funkcje.

Rozpoczniemy jednak od wpisania doń definicji trzech typów wyliczeniowych, które
ustaliliśmy podczas projektowania programu. Chodzi naturalnie o SIGN, FIELD i
GAMESTATE:

enum SIGN { SGN_CIRCLE, SGN_CROSS };
enum FIELD { FLD_EMPTY, FLD_CIRCLE, FLD_CROSS };
enum GAMESTATE { GS_NOTSTARTED, GS_MOVE, GS_WON, GS_DRAW };

Jest to powszechny zwyczaj w C++. Powyższe linijki moglibyśmy wszakże z równym
powodzeniem umieścić wewnątrz modułu game.cpp. Wyodrębnienie ich w pliku
nagłówkowym ma jednak swoje uzasadnienie: własne typy zmiennych są bowiem takimi
zasobami, z których najczęściej korzysta większa część danego programu. Jako kod
współdzielony (ang. shared) są więc idealnym kandydatem do umieszczenia w
odpowiednim nagłówku.

W dalszej części pomyślimy już o konkretnych funkcjach, którym powierzymy zadanie
kierowania naszą grą. Pamiętamy z fazy projektowania, iż przewidzieliśmy przynajmniej
dwie takie funkcje: odpowiedzialną za rozpoczęcie gry oraz za przebieg rozgrywki, czyli
wykonywanie ruchów i sprawdzanie ich skutku. Możemy jeszcze dołożyć do nich algorytm
„rysujący” (jeśli można tak powiedzieć w odniesieniu do konsoli) aktualny stan planszy.

59 Nie chodzi tu o podręcznik użytkownika programu, ale raczej o jego dokumentację techniczną, czyli opis
działania aplikacji od strony programisty.

Złożone zmienne 175

Teraz sprecyzujemy nieco nasze pojęcie o tych funkcjach. Do pliku nagłówkowego
wpiszemy bowiem ich prototypy:

// prototypy funkcji
//------------------

// rozpoczęcie gry
bool StartGry();

// wykonanie ruchu
bool Ruch(unsigned);

// rysowanie planszy
bool RysujPlansze();

Cóż to takiego? Prototypy, zwane też deklaracjami funkcji, są jakby ich nagłówkami
oddzielonymi od bloku zasadniczego kodu (ciała). Mając prototyp funkcji, posiadamy
informacje o jej nazwie, typach parametrów oraz typie zwracanej wartości. Są one
wystarczające do jej wywołania, aczkolwiek nic nie mówią o faktycznych czynnościach,
jakie dana funkcja wykonuje.

Prototyp (deklaracja) funkcji to wstępne określenie jej nagłówka. Stanowi on
informację dla kompilatora i programisty o sposobie, w jaki funkcja może być wywołana.

Z punktu widzenia kodera dołączającego pliki nagłówkowe prototyp jest furtką do
skarbca, przez którą można przejść jedynie z zawiązanymi oczami. Niesie wiedzę o tym,
co prototypowana funkcja robi, natomiast nie daje żadnych wskazówek o sposobie, w
jaki to czyni. Niemniej jest on nieodzowny, aby rzeczoną funkcję móc wywołać.

Warto wiedzieć, że dotychczas znana nam forma funkcji jest zarówno jej prototypem
(deklaracją), jak i definicją (implementacją). Prezentuje bowiem pełnię wiadomości
potrzebnych do jej wywołania, a poza tym zawiera wykonywalny kod funkcji.

Dla nas, przyszłych autorów zadeklarowanych właśnie funkcji, prototyp jest kolejną
okazją do zastanowienia się nad kodem poszczególnych procedur programu. Precyzując
ich parametry i zwracane wartości, budujemy więc solidne fundamenty pod ich niedalekie
zaprogramowanie.

Dla formalności zerknijmy jeszcze na składnię prototypu funkcji:

typ_zwracanej_wartości/void nazwa_funkcji([typ_parametru [nazwa], ...]);

Oprócz uderzającego podobieństwa do jej nagłówka rzuca się w oczy również fakt, iż na
etapie deklaracji nie jest konieczne podawanie nazw ewentualnych parametrów funkcji.
Dla kompilatora w zupełności bowiem wystarczają ich typy.

Już któryś raz z kolei uczulam na kończący instrukcję średnik. Bez niego kompilator
będzie oczekiwał bloku kodu funkcji, a przecież istotą prototypu jest jego niepodawanie.

Właściwy kod gry
Zastanowienie może budzić powód, dla którego żadna z trzech powyższych funkcji nie
została zadeklarowana jako void. Przecież zgodnie z tym, co ustaliliśmy podczas
projektowania wszystkie mają przede wszystkim wykonywać jakieś działania, a nie
obliczać wartości.
To rzeczywiście prawda. Rezultat zwracany przez te funkcje ma jednak inną rolę - będzie
informował o powodzeniu lub niepowodzeniu danej operacji. Typ bool zapewnia tutaj

Podstawy programowania 176

najprostszą możliwą obsługę ewentualnych błędów. Warto o niej pomyśleć nawet
wtedy, gdy pozornie nic złego nie może się zdarzyć. Wyrabiamy sobie w ten sposób
dobre nawyki programistyczne, które zaprocentują w przyszłych, znacznie większych
aplikacjach.

A co z parametrami tych funkcji, a dokładniej z jedynym argumentem procedury Ruch()?
Wydaje mi się, iż łatwo jest dociec jego znaczenia: to bowiem elementarna wielkość,
opisująca posunięcie zamierzone przez gracza. Jej sens został już zaprezentowany przy
okazji projektu interfejsu użytkownika: chodzi po prostu o wprowadzony z klawiatury
numer pola, na którym ma być postawione kółko lub krzyżyk.

Zaczynamy
Skoro wiemy już dokładnie, jak wyglądają wizytówki naszych funkcji oraz z grubsza
znamy należyte algorytmy ich działania, napisanie odpowiedniego kodu powinno być po
prostu dziecinną igraszką, prawda?… :) Dobre samopoczucie może się jednak okazać
przedwczesne, gdyż na twoim obecnym poziomie zaawansowania zadanie to wcale nie
należy do najłatwiejszych. Nie zostawię cię jednak bez pomocy!

Dla szczególnie ambitnych proponuję aczkolwiek samodzielne dokończenie całego
programu, a następnie porównanie go z kodem dołączonym do kursu. Samodzielne
rozwiązywanie problemów jest bowiem istotą i najlepszą drogą nauki programowania!
Podczas zmagania się z tym wyzwaniem możesz jednak (i zapewne będziesz musiał)
korzystać z innych źródeł informacji na temat programowania w C++, na przykład MSDN.
Wiadomościami, które niemal na pewno okażą ci się przydatne, są dokładne informacje o
plikach nagłówkowych i związanej z nimi dyrektywie #include oraz słowie kluczowym
extern. Poszukaj ich w razie napotkania nieprzewidzianych trudności…
Jeżeli poradzisz sobie z tym niezwykle trudnym zadaniem, będziesz mógł być z siebie
niewypowiedzianie dumny :D Nagrodą będzie też cenne doświadczenie, którego nie
zdobędziesz inną drogą!

Mamy więc zamiar pisać instrukcje stanowiące blok kodu funkcji, przeto powinniśmy
umieścić je wewnątrz modułu, a nie pliku nagłówkowego. Dlatego też chwilowo
porzucamy game.h i otwieramy nieskażony jeszcze żadnym znakiem plik game.cpp.
Nie znaczy to wszak, że nie będziemy naszego nagłówka w ogóle potrzebować.
Przeciwnie, jest ona nam niezbędny - zawiera przecież definicje trzech typów
wyliczeniowych, bez których nie zdołamy się obejść.
Powinniśmy zatem dołączyć go do naszego modułu przy pomocy poznanej jakiś czas
temu i stosowanej nieustannie dyrektywy #include:

#include "game.h"

Zwróćmy uwagę, iż, inaczej niż to mamy w zwyczaju, ujęliśmy nazwę pliku
nagłówkowego w cudzysłowy zamiast nawiasów ostrych. Jest to konieczne; w ten
sposób należy zaznaczać nasze własne nagłówki, aby odróżnić je od „fabrycznych”
(iostream, cmath itp.)

Nazwę dołączanego pliku nagłówkowego należy umieszczać w cudzysłowach (""), jeśli
jest on w tym samym katalogu co moduł, do którego chcemy go dołączyć. Może być on
także w jego pobliżu (nad- lub podkatalogu) - wtedy używa się względnej ścieżki do pliku
(np. "..\plik.h").

Dołączenie własnego nagłówka nie zwalnia nas jednak od wykonania tej samej czynności
na dwóch innych tego typu plikach:

#include <iostream>
#include <ctime>

Złożone zmienne 177

Są one konieczne do prawidłowego funkcjonowania kodu, który napiszemy za chwilę.

Deklarujemy zmienne
Włączając plik nagłówkowy game.h mamy do dyspozycji zdefiniowane w nim typy SIGN,
FIELD i GAMESTATE. Logiczne będzie więc zadeklarowanie należących doń zmiennych
g_aPlansza, g_StanGry i g_AktualnyGracz:

FIELD g_aPlansza[3][3] = { { FLD_EMPTY, FLD_EMPTY, FLD_EMPTY },
 { FLD_EMPTY, FLD_EMPTY, FLD_EMPTY },
 { FLD_EMPTY, FLD_EMPTY, FLD_EMPTY } };
GAMESTATE g_StanGry = GS_NOTSTARTED;
SIGN g_AktualnyGracz;

Skorzystamy z nich niejednokrotnie w kodzie modułu game.cpp, zatem powyższe linijki
należy umieścić poza wszelkimi funkcjami.

Funkcja StartGry()
Nie jest to trudne, skoro nie napisaliśmy jeszcze absolutnie żadnej funkcji :) Niezwłocznie
więc zabieramy się do pracy. Rozpoczniemy od tej procedury, która najszybciej da o
sobie znać w gotowym programie - czyli StartGry().
Jak pamiętamy, jej rolą jest przede wszystkim wylosowanie gracza, który rozpocznie
rozgrywkę. Wcześniej jednak przydałoby się, aby funkcja sprawdziła, czy jest
wywoływana w odpowiednim momencie - gdy gra faktycznie się jeszcze nie zaczęła:

if (g_StanGry != GS_NOTSTARTED) return false;

Jeżeli warunek ten nie zostanie spełniony, funkcja zwróci wartość wskazującą na
niepowodzenie swych działań.
Jakich działań? Nietrudno zapisać je w postaci kodu C++:

// losujemy gracza, który będzie zaczynał
srand (static_cast<unsigned>(time(NULL)));
g_AktualnyGracz = (rand() % 2 == 0 ? SGN_CIRCLE : SGN_CROSS);

// ustawiamy stan gry na ruch graczy
g_StanGry = GS_MOVE;

Losowanie liczby z przedziału <0; 2) jest nam czynnością na wskroś znajomą. W
połączeniu z operatorem warunkowym ?: pozwala na realizację pierwszego z celów
funkcji. Drugi jest tak elementarny, że w ogóle nie wymaga komentarza. W końcu nie od
dziś stykamy się z przypisaniem wartości do zmiennej :)
To już wszystko, co było przewidziane do zrobienia przez naszą funkcję StartGry(). W
pełni usatysfakcjonowani możemy więc zakończyć ją zwróceniem informacji o
pozytywnym rezultacie podjętych akcji:

return true;

Wywołujący otrzyma więc wiadomość o tym, że czynności zlecone funkcji zostały
zakończone z sukcesem.

Funkcja Ruch()

Kolejną funkcją, na której spocznie nasz wzrok, jest Ruch(). Ma ona za zadanie umieścić
w podanym polu znak aktualnego gracza (kółko lub krzyżyk) oraz sprawdzić stan planszy
pod kątem ewentualnej wygranej któregoś z graczy lub remisu. Całkiem sporo do
zrobienia, zatem do pracy, rodacy! ;D

Podstawy programowania 178

Pamiętamy oczywiście, że rzeczona funkcja ma przyjmować jeden parametr typu
unsigned, więc jej szkielet wyglądać będzie następująco:

bool Ruch(unsigned uNumerPola)
{
 // ...
}

Na początku dokonamy tutaj podobnej co poprzednio kontroli ewentualnego błędu w
postaci złego stanu gry. Dodamy jeszcze warunek sprawdzający, czy zadany numer pola
zawiera się w przedziale <1; 9>. Całość wygląda następująco:

if (g_StanGry != GS_MOVE) return false;
if (!(uNumerPola >= 1 && uNumerPola <= 9)) return false;

Jeżeli punkt wykonania pokona obydwie te przeszkody, należałoby uczynić ruch, o który
użytkownik (za pośrednictwem parametru uNumerPola) prosi. W tym celu konieczne jest
przeliczenie, zamieniające pojedynczy numer pola (z zakresu od 1 do 9) na dwa indeksy
naszej tablicy g_aPlansza (każdy z przedziału od 0 do 2). Pomocy może nam tu udzielić
wizualny diagram, na przykład taki:

Schemat 15. Numerowanie pól planszy do gry w kółko i krzyżyk

Odpowiednie formułki, wyliczające współrzędną pionową (uY) i poziomą (uX) można
napisać, wykorzystując dzielenie całkowitoliczbowe oraz resztę z niego:

unsigned uY = (uNumerPola - 1) / 3;
unsigned uX = (uNumerPola - 1) % 3;

Odjęcie jedynki jest spowodowane faktem, iż w C++ tablice są indeksowane od zera
(poza tym jest to dobra okazja do przypomnienia tej ważnej kwestii :D).
Mając już obliczone oba indeksy, możemy spróbować postawić symbol aktualnego gracza
w podanym polu. Uda się to jednak wyłącznie wtedy, gdy nikt nas tutaj nie uprzedził - a
więc kiedy wskazane pole jest puste, co kontrolujemy dodatkowym testem:

if (g_aPlansza[uY][uX] == FLD_EMPTY)
 // wstaw znak aktualnego gracza w podanym polu
else
 return false;

Jeśli owa kontrola się powiedzie, musimy zrealizować zamierzenie i wstawić kółko lub
krzyżyk - zależnie do tego, który gracz jest teraz uprawniony do ruchu - w żądanie
miejsce. Informację o aktualnym graczu przechowuje rzecz jasna zmienna
g_AktualnyGracz. Niemożliwe jest jednak jej zwykłe przypisanie w rodzaju:

g_aPlansza[uY][uX] = g_AktualnyGracz;

Złożone zmienne 179

Wystąpiłby tu bowiem konflikt typów, gdyż FIELD i SIGN są typami wyliczeniowymi, nijak
ze sobą niekompatybilnymi. Czyżbyśmy musieli zatem uciec się do topornej instrukcji
switch?
Odpowiedź na szczęście brzmi nie. Inne, lepsze rozwiązanie polega na „dopasowaniu” do
siebie stałych obu typów, reprezentujących kółko i krzyżyk. Niech będą one sobie równe;
w tym celu zmodyfikujemy definicję FIELD (w pliku game.h):

enum FIELD { FLD_EMPTY,
 FLD_CIRCLE = SGN_CIRCLE,
 FLD_CROSS = SGN_CROSS };

Po tym zabiegu cała operacja sprowadza się do zwykłego rzutowania:

g_aPlansza[uY][uX] = static_cast<FIELD>(g_AktualnyGracz);

Liczbowe wartości obu zmiennych będą się zgadzać, ale interpretacja każdej z nich
będzie odmienna. Tak czy owak, osiągnęliśmy obrany cel, więc wszystko jest w
porządku :)

Niedługo zresztą ponownie skorzystamy z tej prostej i efektywnej sztuczki.

Nasza funkcja wykonuje już połowę zadań, do których ją przeznaczyliśmy. Niestety,
mniejszą połowę :D Oto bowiem mamy przed sobą znacznie poważniejsze wyzwanie niż
kilka if’ów, a mianowicie zaprogramowanie algorytmu lustrującego planszę i
stwierdzającego na jej podstawie ewentualną wygraną któregoś z graczy lub remis.
Trzeba więc zakasać rękawy i wytężyć intelekt…

Zajmijmy się na razie wykrywaniem zwycięstw. Doskonale chyba wiemy, że do wygranej
w naszej grze potrzebne jest graczowi utworzenie z własnych znaków linii poziomej,
pionowej lub ukośnej, obejmującej trzy pola. Łącznie mamy więc osiem możliwych linii, a
dla każdej po trzy pola opisane dwiema współrzędnymi. Daje nam to, bagatelka, 48
warunków do zakodowania, czyli 8 makabrycznych instrukcji if z sześcioczłonowymi (!)
wyrażeniami logicznymi w każdej! Brr, brzmi to wręcz okropnie…
Jak to jednak nierzadko bywa, istnieje rozwiązanie alternatywne, które jest z reguły
lepsze :) Tym razem jest nim użycie tablicy przeglądowej, w którą wpiszemy wszystkie
wygrywające zestawy pól: osiem linii po trzy pola po dwie współrzędne daje nam
ostatecznie taką oto, nieco zakręconą, stałą60:

const LINIE[][3][2] = { { { 0,0 }, { 0,1 }, { 0,2 } }, // górna pozioma
 { { 1,0 }, { 1,1 }, { 1,2 } },// środ. pozioma
 { { 2,0 }, { 2,1 }, { 2,2 } },// dolna pozioma
 { { 0,0 }, { 1,0 }, { 2,0 } }, // lewa pionowa
 { { 0,1 }, { 1,1 }, { 2,1 } }, // środ. pionowa
 { { 0,2 }, { 1,2 }, { 2,2 } }, // prawa pionowa
 { { 0,0 }, { 1,1 }, { 2,2 } }, // p. backslashowa
 { { 2,0 }, { 1,1 }, { 0,2 } } }; // p. slashowa

Przy jej deklarowaniu korzystaliśmy z faktu, iż w takich wypadkach pierwszy wymiar
tablicy można pominąć, lecz równie poprawne byłoby wpisanie tam 8 explicité.
A zatem mamy już tablicę przeglądową… Przydałoby się więc jakoś ją przeglądać :)
Oprócz tego mamy jednak dodatkowy cel, czyli znalezienie linii wypełnionej tymi samymi
znakami, nasze przeglądanie będzie wobec tego nieco skomplikowane i przedstawia się
następująco:

60 Brak nazwy typu w deklaracji zmiennej sprawia, iż będzie należeć ona do domyślnego typu int. Tutaj
oznacza to, że elementy naszej tablicy będą liczbami całkowitymi.

Podstawy programowania 180

FIELD Pole, ZgodnePole;
unsigned uLiczbaZgodnychPol;
for (int i = 0; i < 8; ++i)
{
 // i przebiega po kolejnych możliwych liniach (jest ich osiem)

 // zerujemy zmienne pomocnicze
 Pole = ZgodnePole = FLD_EMPTY; // obie zmienne == FLD_EMPTY
 uLiczbaZgodnychPol = 0;

 for (int j = 0; j < 3; ++j)
 {
 // j przebiega po trzech polach w każdej linii

 // pobieramy rzeczone pole
 // to zdecydowanie najbardziej pogmatwane wyrażenie :)
 Pole = g_aPlansza[LINIE[i][j][0]][LINIE[i][j][1]];

 // jeśli sprawdzane pole różne od tego, które ma się zgadzać...
 if (Pole != ZgodnePole)
 {
 // to zmieniamy zgadzane pole na to aktualne
 ZgodnePole = Pole;
 uLiczbaZgodnychPol = 1;
 }
 else
 // jeśli natomiast oba pola się zgadzają, no to
 // inkrementujemy licznik takich zgodnych pól
 ++uLiczbaZgodnychPol;
 }

 // teraz sprawdzamy, czy udało nam się zgodzić linię
 if (uLiczbaZgodnychPol == 3 && ZgodnePole != FLD_EMPTY)
 {
 // jeżeli tak, no to ustawiamy stan gry na wygraną
 g_StanGry = GS_WON;

 // przerywamy pętlę i funkcję
 return true;
 }
}

„No nie” - powiesz pewnie - „Teraz to już przesadziłeś!” ;) Ja jednak upieram się, iż nie
całkiem masz rację, a podany algorytm tylko wygląda strasznie, lecz w istocie jest bardzo
prosty.
Na początek deklarujemy sobie trzy zmienne pomocnicze, które wydatnie przydadzą się
w całej operacji. Szczególną rolę spełnia tu uLiczbaZgodnychPol; jej nazwa mówi wiele.
Zmienna ta będzie przechowywała liczbę identycznych pól w aktualnie badanej linii -
wartość równa 3 stanie się więc podstawą do stwierdzenia obecności wygrywającej
kombinacji znaków.
Dalej przystępujemy do sprawdzania wszystkich ośmiu interesujących sytuacji,
determinujących ewentualne zwycięstwo. Na scenę wkracza więc pętla for; na początku
jej cyklu dokonujemy zerowania wartości zmiennych pomocniczych, aby potem… wpaść w
kolejną pętlę :) Ta jednak będzie przeskakiwała po trzech polach każdej ze sprawdzanych
linii:

for (int j = 0; j < 3; ++j)
{
 Pole = g_aPlansza[LINIE[i][j][0]][LINIE[i][j][1]];

Złożone zmienne 181

 if (Pole != ZgodnePole)
 {
 ZgodnePole = Pole;
 uLiczbaZgodnychPol = 1;
 }
 else
 ++uLiczbaZgodnychPol;
}

Koszmarnie wyglądająca pierwsza linijka bloku powyższej pętli nie będzie wydawać się aż
tak straszne, jeśli uświadomimy sobie, iż LINIE[i][j][0] oraz LINIE[i][j][1] to
odpowiednio: współrzędna pionowa oraz pozioma j-tego pola i-tej potencjalnie
wygrywającej linii. Słusznie więc używamy ich jako indeksów tablicy g_aPlansza,
pobierając stan pola do sprawdzenia.
Następująca dalej instrukcja warunkowa rozstrzyga, czy owe pole zgadza się z
ewentualnymi poprzednimi - tzn. jeżeli na przykład poprzednio sprawdzane pole
zawierało kółko, to aktualne także powinno mieścić ten symbol. W przypadku gdy
warunek ten nie jest spełniony, sekwencja zgodnych pól „urywa się”, co oznacza w tym
wypadku wyzerowanie licznika uLiczbaZgodnychPol. Sytuacja przeciwstawna - gdy
badane pole jest już którymś z kolei kółkiem lub krzyżykiem - skutkuje naturalnie
zwiększeniem tegoż licznika o jeden.
Po zakończeniu całej pętli (czyli wykonaniu trzech cykli, po jednym dla każdego pola)
następuje kontrola otrzymanych rezultatów. Najważniejszym z nich jest wspomniany
licznik uLiczbaZgodnychPol, którego wartość konfrontujemy z trójką. Jednocześnie
sprawdzamy, czy „zgodzone” pole nie jest przypadkiem polem pustym, bo przecież z
takiej zgodności nic nam nie wynika. Oba te testy wykonuje instrukcja:

if (uLiczbaZgodnychPol == 3 && ZgodnePole != FLD_EMPTY)

Spełnienie tego warunku daje pewność, iż mamy do czynienia z prawidłową sekwencją
trzech kółek lub krzyżyków. Słusznie więc możemy wtedy przyznać palmę zwycięstwa
aktualnemu graczowi i zakończyć całą funkcję:

g_StanGry = GS_WON;
return true;

W przeciwnym wypadku nasza główna pętla się zapętla w swym kolejnym cyklu i bada w
nim kolejną ustaloną linię symboli - i tak aż do znalezienia pasującej kolumny, rzędu lub
przekątnej albo wyczerpania się tablicy przeglądowej LINIE.

Uff?… Nie, to jeszcze nie wszystko! Nie zapominajmy przecież, że zwycięstwo nie jest
jedynym możliwych rozstrzygnięciem rozgrywki. Drugim jest remis - zapełnienie
wszystkich pól planszy symbolami graczy bez utworzenia żadnej wygrywającej linii.
Jak obsłużyć taką sytuację? Wbrew pozorom nie jest to wcale trudne, gdyż możemy
wykorzystać do tego fakt, iż przebycie przez program poprzedniej, wariackiej pętli
oznacza nieobecność na planszy żadnych ułożeń zapewniających zwycięstwo. Niejako „z
miejsca” mamy więc spełniony pierwszy warunek konieczny do remisu.
Drugi natomiast - szczelne wypełnienie całej planszy - jest bardzo łatwy do sprawdzenia i
wymagania jedynie zliczenia wszystkich niepustych jej pól:

unsigned uLiczbaZapelnionychPol = 0;

for (int i = 0; i < 3; ++i)
 for (int j = 0; j < 3; ++j)
 if (g_aPlansza[i][j] != FLD_EMPTY)
 ++uLiczbaZapelnionychPol;

Podstawy programowania 182

Jeżeli jakimś dziwnym sposobem ilość ta wyniesie 9, znaczyć to będzie, że gra musi się
zakończyć z powodu braku wolnych miejsc :) W takich okolicznościach wynikiem
rozgrywki będzie tylko mało satysfakcjonujący remis:

if (uLiczbaZapelnionychPol == 3*3)
{
 g_StanGry = GS_DRAW;
 return true;
}

W taki oto sposób wykryliśmy i obsłużyliśmy obydwie sytuacje „wyjątkowe”, kończące
grę - zwycięstwo jednego z graczy lub remis. Pozostało nam jeszcze zajęcie się bardziej
zwyczajnym rezultatem wykonania ruchu, kiedy to nie powoduje on żadnych
dodatkowych efektów. Należy wtedy przekazać prawo do posunięcia drugiemu graczowi,
co też czynimy:

g_AktualnyGracz = (g_AktualnyGracz == SGN_CIRCLE ?
 SGN_CROSS : SGN_CIRCLE);

Przy pomocy operatora warunkowego zmieniamy po prostu znak aktualnego gracza na
przeciwny (z kółka na krzyżyk i odwrotnie), osiągając zamierzony skutek.
Jest to jednocześnie ostatnia czynność funkcji Ruch()! Wreszcie, po długich bojach i
bólach głowy ;) możemy ją zakończyć zwróceniem bezwarunkowo pozytywnego wyniku:

return true;

a następnie udać się po coś do jedzenia ;-)

Funkcja RysujPlansze()
Jako ostatnią napiszemy funkcję, której zadaniem będzie wyświetlenie na ekranie (czyli w
oknie konsoli) bieżącego stanu gry:

Screen 34. Ekran gry w kółko i krzyżyk

Najważniejszą jego składową będzie naturalnie osławiona plansza, o zajęcie której toczą
boje nasi dwaj gracze. Oprócz niej można jednak wyróżnić także kilka innych elementów.
Wszystkie one będą „rysowane” przez funkcję RysujPlansze(). Niezwłocznie więc
rozpocznijmy jej implementację!

Tradycyjnie już pierwsze linijki są szukaniem dziury w całym, czyli potencjalnego błędu.
Tym razem usterką będzie wywołanie kodowanej właśnie funkcji przez rozpoczęciem
właściwego pojedynku, gdyż w tej sytuacji nie ma w zasadzie nic do pokazania. Logiczną
konsekwencją jest wtedy przerwanie funkcji:

if (g_StanGry == GS_NOTSTARTED) return false;

Złożone zmienne 183

Jako że jednak wierzymy w rozsądek programisty wywołującego pisaną teraz funkcję
(czyli nomen-omen w swój własny :D), przejdźmy raczej do kodowania jej właściwej
części „rysującej”.
Od czego zaczniemy? Odpowiedź nie jest szczególnie trudna; co ciekawe, w przypadku
każdej innej gry i jej odpowiedniej funkcji byłaby taka sama. Rozpoczniemy bowiem od
wyczyszczenia całego ekranu (czyli konsoli) - tak, aby mieć wolny obszar działania.
Dokonamy tego poprzez polecenie systemowe CLS, które wywołamy funkcją C++ o
nazwie system():

system ("cls");

Mając oczyszczone przedpole przystępujemy do zasadniczego rysowania. Ze względu na
specyfikę tekstowej konsoli zmuszeni jesteśmy do zapełniania jej wierszami, od góry do
dołu. Nie powinno nam to jednak zbytnio przeszkadzać.
Na samej górze umieścimy tytuł naszej gry, stały i niezmienny. Kod odpowiedzialny za tę
czynność przedstawia się więc raczej trywialnie:

std::cout << " KOLKO I KRZYZYK " << std::endl;
std::cout << "---------------------" << std::endl;
std::cout << std::endl;

Żądnych wrażeń pocieszam jednak, iż dalej będzie już ciekawiej :) Oto mianowicie
przystępujemy do prezentacji planszy w postaci tekstowej - z zaznaczonymi kółkami i
krzyżykami postawionymi przez graczy oraz numerami wolnych pól. Operację tą
przeprowadzamy w sposób następujący:

std::cout << " -----" << std::endl;
for (int i = 0; i < 3; ++i)
{
 // lewa część ramki
 std::cout << " |";

 // wiersz
 for (int j = 0; j < 3; ++j)
 {
 if (g_aPlansza[i][j] == FLD_EMPTY)
 // numer pola
 std::cout << i * 3 + j + 1;
 else
 // tutaj wyświetlamy kółko lub krzyżyk... ale jak? :)
 }

 // prawa część ramki
 std::cout << "|" << std::endl;
}
std::cout << " -----" << std::endl;
std::cout << std::endl;

Cały kod to oczywiście znowu dwie zagnieżdżone pętle for - stały element pracy z
dwuwymiarową tablicą. Zewnętrzna przebiega po poszczególnych wierszach planszy, zaś
wewnętrzna po jej pojedynczych polach.
Wyświetlenie takiego pola oznacza pokazanie albo jego numerku (jeżeli jest puste), albo
dużej litery O lub X, symulującej wstawione weń kółko lub krzyżyk. Numerek wyliczamy
poprzez prostą formułkę i * 3 + j + 1 (dodanie jedynki to znowuż kwestia indeksów
liczonych od zera), w której i jest numerem wiersza, zaś j - kolumny. Cóż jednak zrobić
z drugim przypadkiem - zajętym polem? Musimy przecież rozróżnić kółka i krzyżyki…
Można oczywiście skorzystać z instrukcji if lub operatora ?:, jednak już raz
zastosowaliśmy lepsze rozwiązanie. Dopasujmy mianowicie stałe typu FIELD (każdy

Podstawy programowania 184

element tablicy g_aPlansza należy przecież do tego typu) do znaków 'O' i 'X'.
Przypatrzmy się najpierw definicji rzeczonego typu:

enum FIELD { FLD_EMPTY,
 FLD_CIRCLE = SGN_CIRCLE,
 FLD_CROSS = SGN_CROSS };

Widać nim skutek pierwszego zastosowania sztuczki, z której chcemy znowu skorzystać.
Dotyczy on zresztą interesujących nas stałych FLD_CIRCLE i FLD_CROSS, równych
odpowiednio SGN_CIRCLE i SGN_CROSS. Czy to oznacza, iż z triku nici?
Bynajmniej nie. Nie możemy wprawdzie bezpośrednio zmienić wartości interesujących
nas stałych, ale możliwe jest „sięgnięcie do źródeł” i zmodyfikowanie SGN_CIRCLE oraz
SGN_CROSS, zadeklarowanych w typie SIGN:

enum SIGN { SGN_CIRCLE = 'O', SGN_CROSS = 'X' };

Tą drogą, pośrednio, zmienimy też wartości stałych FLD_CIRCLE i FLD_CROSS, przypisując
im kody ANSI wielkich liter „O” i „X”. Teraz już możemy skorzystać z rzutowania na typ
char, by wyświetlić niepuste pole planszy:

std::cout << static_cast<char>(g_aPlansza[i][j]);

Kod rysujący obszar rozgrywki jest tym samym skończony.

Pozostał nam jedynie komunikat o stanie gry, wyświetlany najniżej. Zależnie od
bieżących warunków (wartości zmiennej g_StanGry) może on przyjmować formę prośby
o wpisanie kolejnego ruchu lub też zwyczajnej informacji o wygranej lub remisie:

switch (g_StanGry)
{
 case GS_MOVE:
 // prośba o następny ruch
 std::cout << "Podaj numer pola, w ktorym" << std::endl;
 std::cout << "chcesz postawic ";
 std::cout << (g_AktualnyGracz == SGN_CIRCLE ?
 "kolko" : "krzyzyk") << ": ";
 break;
 case GS_WON:
 // informacja o wygranej
 std::cout << "Wygral gracz stawiajacy ";
 std::cout << (g_AktualnyGracz == SGN_CIRCLE ?
 "kolka" : "krzyzyki") << "!";
 break;
 case GS_DRAW:
 // informacja o remisie
 std::cout << "Remis!";
 break;
}

Analizy powyższego kodu możesz z łatwością dokonać samodzielnie61.

Na tymże elemencie „scenografii” kończymy naszą funkcję RysujPlansze(), wieńcząc ją
oczywiście zwyczajowym oddaniem wartości true:

61 A jakże! Już coraz rzadziej będę omawiał podobnie elementarne kody źródłowe, będące prostym
wykorzystaniem doskonale ci znanych konstrukcji języka C++. Jeżeli solennie przykładałeś się do nauki, nie
powinno być to dla ciebie żadną niedogodnością, zaś w zamian pozwoli na dogłębne zajęcie się nowymi
zagadnieniami bez koncentrowania większej uwagi na banałach.

Złożone zmienne 185

return true;

Możemy na koniec zauważyć, iż pisząc tą funkcję uporaliśmy się jednocześnie z
elementem programu o nazwie „interfejs użytkownika” :D

Funkcja main(), czyli składamy program
Być może trudno w to uwierzyć, ale mamy za sobą zaprogramowanie wszystkich funkcji
sterujących przebiegiem gry! Zanim jednak będziemy mogli cieszyć się działającym
programem musimy wypełnić kodem główną funkcję aplikacji, od której zacznie się jej
wykonywanie - main().

W tym celu zostawmy już wymęczony moduł game.cpp i wróćmy do main.cpp, w którym
czeka nietknięty szkielet funkcji main(). Poprzedzimy go najpierw dyrektywami
dołączenia niezbędnych nagłówków - także naszego własnego, game.h:

#include <iostream>
#include <conio.h>
#include "game.h"

Własne pliki nagłówkowe najlepiej umieszczać na końcu szeregu instrukcji #include,
dołączając je po tych pochodzących od kompilatora.

Teraz już możemy zająć się treścią najważniejszej funkcji w naszym programie.
Zaczniemy od następującego wywołania:

StartGry();

Spowoduje ono rozpoczęcie rozgrywki - jak pamiętamy, oznacza to między innymi
wylosowanie gracza, któremu przypadnie pierwszy ruch, oraz ustawienie stanu gry na
GS_MOVE.
Od tego momentu zaczyna się więc zabawa, a nam przypada obowiązek jej prawidłowego
poprowadzenia. Wywiążemy się z niego w nieznany dotąd sposób - użyjemy pętli
nieskończonej:

for (;;)
{
 // ...
}

Konstrukcja ta wcale nie jest taka dziwna, a w grach spotyka się ją bardzo często. Istota
pętli nieskończonej jest częściowo zawarta w jej nazwie, a po części można ją
wydedukować ze składni. Mianowicie, nie posiada ona żadnego warunku zakończenia62,
więc w zasadzie wykonywałaby się do końca świata i o jeden dzień dłużej ;) Aby tego
uniknąć, należy gdzieś wewnątrz jej bloku umieścić instrukcję break;, która spowoduje
przerwanie tego zaklętego kręgu. Uczynimy to, kodując kolejne instrukcje w tejże pętli.
Najpierw funkcja RysujPlansze() wyświetli nam aktualny stan rozgrywki:

RysujPlansze();

Pokaże więc tytuł gry, planszę oraz dolny komunikat - komunikat, który przez większość
czasu będzie prośbą o kolejny ruch. By sprawdzić, czy tak jest w istocie, porównamy
zmienną opisującą stan gry z wartością GS_MOVE:

62 Zwanego też czasem warunkiem terminalnym.

Podstawy programowania 186

if (g_StanGry == GS_MOVE)
{
 unsigned uNumerPola;
 std::cin >> uNumerPola;
 Ruch (uNumerPola);
}

Pozytywny wynik wspomnianego testu słusznie skłania nas do użycia strumienia wejścia i
pobrania od użytkownika numeru pola, w które chce wstawić swoje kółko lub krzyżyk.
Przekazujemy go potem do funkcji Ruch(), serca naszej gry.
Następujące po sobie posunięcia graczy, czyli kolejne cykle pętli, doprowadzą w końcu do
rozstrzygnięcia rozgrywki - czyjejś wygranej albo obustronnego remisu. I to jest właśnie
warunek, na który czekamy:

else if (g_StanGry == GS_WON || g_StanGry == GS_DRAW)
 break;

Przerywamy wtedy pętlę, zostawiając na ekranie końcowy stan planszy oraz odpowiedni
komunikat. Aby użytkownicy mieli szansę go zobaczyć, stosujemy rzecz jasna funkcję
getch():

getch();

Po odebraniu wciśnięcia dowolnego klawisza program może się już ze spokojem
zamknąć ;)

Uroki kompilacji
Fanfary! Zdaje się, że właśnie zakończyliśmy kodowanie naszego wielkiego projektu!
Nareszcie zatem możemy przeprowadzić jego kompilację i uzyskać gotowy do
uruchomienia plik wykonywalny.
Zróbmy więc to! Uruchom Visual Studio (jeżeli je przypadkiem zamknąłeś), otwórz swój
projekt, zamknij drzwi i okna, wyprowadź zwierzęta domowe, włącz automatyczną
sekretarkę i wciśnij klawisz F7 (lub wybierz pozycję menu Build|Build Solution)…

Co się stało? Wygląda na to, że nie wszystko udało się tak dobrze, jak tego
oczekiwaliśmy. Zamiast działającej aplikacji kompilator uraczył nas czterema błędami:

c:\Programy\TicTacToe\main.cpp(20) : error C2065: 'g_StanGry' : undeclared identifier
c:\Programy\TicTacToe\main.cpp(20) : error C2677: binary '==' : no global operator found which takes
type 'GAMESTATE' (or there is no acceptable conversion)
c:\Programy\TicTacToe\main.cpp(28) : error C2677: binary '==' : no global operator found which takes
type 'GAMESTATE' (or there is no acceptable conversion)
c:\Programy\TicTacToe\main.cpp(28) : error C2677: binary '==' : no global operator found which takes
type 'GAMESTATE' (or there is no acceptable conversion)

Wszystkie one dotyczą tego samego, ale najwięcej mówi nam pierwszy z nich.
Dwukrotnie kliknięcie na dotyczący go komunikat przeniesie nas bowiem do linijki:

if (g_StanGry == GS_MOVE)

Występuje w niej nazwa zmiennej g_StanGry, która, sądząc po owym komunikacie, jest
tutaj uznawana za niezadeklarowaną…
Ale dlaczego?! Przecież z pewnością umieściliśmy jej deklarację w kodzie programu. Co
więcej, stale korzystaliśmy z tejże zmiennej w funkcjach StartGry(), Ruch() i

Złożone zmienne 187

RysujPlansze(), do których kompilator nie ma najmniejszych zastrzeżeń. Czyżby więc
tutaj dopadła go nagła amnezja?

Wyjaśnienie tego, jak by się wydawało, dość dziwnego zjawiska jest jednak w miarę
logiczne. Otóż g_StanGry została zadeklarowana wewnątrz modułu game.cpp, więc jej
zasięg ogranicza się jedynie do tegoż modułu. Funkcja main(), znajdująca się w pliku
main.cpp, jest poza tym zakresem, zatem dla niej rzeczona zmienna po prostu nie
istnieje. Nic dziwnego, iż kompilator staje się wobec nieznanej nazwy g_StanGry
zupełnie bezradny.
Nasuwa się oczywiście pytanie: jak zaradzić temu problemowi? Co zrobić, aby nasza
zmienna była dostępna wewnątrz funkcji main()?… Chyba najszybciej pomyśleć można o
przeniesieniu jej deklaracji w obszar wspólny dla obu modułów game.cpp oraz main.cpp.
Takim współdzielonym terenem jest naturalnie plik nagłówkowy game.h. Czy należy więc
umieścić tam deklarację GAMESTATE g_StanGry = GS_NOTSTARTED;?
Niestety, nie jest to poprawne. Musimy bowiem wiedzieć, że zmienna nie może
rezydować wewnątrz nagłówka! Jej prawidłowe zdefiniowanie powinno być zawsze
umieszczone w module kodu. W przeciwnym razie każdy moduł, który dołączy plik
nagłówkowy z definicją zmiennej, stworzy swoją własną kopię tejże! U nas znaczyłoby
to, że zarówno main.cpp, jak i game.cpp posiadają zmienne o nazwach g_StanGry, ale są
one od siebie całkowicie niezależne i „nie wiedzą o sobie nawzajem”!

Definicja musi zatem pozostać na swoim miejscu, ale plik nagłówkowy niewątpliwie nam
się przyda. Mianowicie, wpiszemy doń następującą linijkę:

extern GAMESTATE g_StanGry;

Jest to tak zwana deklaracja zapowiadająca zmiennej. Jej zadaniem jest
poinformowanie kompilatora, że gdzieś w programie63 istnieje zmienna o podanej nazwie
i typie. Deklaracja ta nie tworzy żadnego nowego bytu ani nie rezerwuje dlań miejsca w
pamięci operacyjnej, lecz jedynie zapowiada (stąd nazwa), iż czynność ta zostanie
wykonana. Obietnica ta może być spełniona podczas kompilacji lub (tak jak u nas)
dopiero w czasie linkowania.
Z praktycznego punktu widzenia deklaracja extern (ang. external - zewnętrzny) pełni
bardzo podobną rolę, co prototyp funkcji. Podaje bowiem jedynie minimum informacji,
potrzebnych do skorzystania z deklarowanego tworu bez marudzenia kompilatora, a
jednocześnie odkłada jego właściwą definicję w inne miejsce i/lub czas.

Deklaracja zapowiadająca (ang. forward declaration) to częściowe określenie jakiegoś
programistycznego bytu. Nie definiuje dokładnie wszystkich jego aspektów, ale wystarcza
do skorzystania z niego wewnątrz zakresu umieszczenia deklaracji.
Przykładem może być prototyp funkcji czy użycie słowa extern dla zmiennej.

Umieszczenie powyższej deklaracji w pliku nagłówkowym game.h udostępnia zatem
zmienną g_StanGry wszystkim modułom, które dołączą wspomniany nagłówek. Tym
samym jest już ona znana także funkcji main(), więc ponowna kompilacja powinna
przebiec bez żadnych problemów.

Czujny czytelnik zauważył pewnie, że dość swobodnie operuję terminami „deklaracja”
oraz „definicja”, używając ich zamiennie. Niektórzy puryści każą jednak je rozróżniać.
Według nich jedynie to, co nazwaliśmy przed momentem „deklaracja zapowiadającą”,
można nazwać krótko „deklaracją”. „Definicją” ma być za to dokładne sprecyzowanie
cech danego obiektu, oraz, przede wszystkim, przygotowanie dla niego miejsca w
pamięci operacyjnej.

63 Mówiąc ściśle: gdzieś poza bieżącym zakresem.

Podstawy programowania 188

Zgodnie z taką terminologią instrukcje w rodzaju int nX; czy float fY; miałyby być
„definicjami zmiennych”, natomiast extern int nX; oraz extern float fY; -
„deklaracjami”. Osobiście twierdzę, że jest to jeden z najjaskrawszych przykładów
szukania dziury w całym i prób niezmiernego gmatwania programistycznego słownika.
Czy ktokolwiek przecież mówi o „definicjach zmiennych”? Pojęcie to brzmi tym bardziej
sztucznie, że owe „definicje” nie przynoszą żadnych dodatkowych informacji w stosunku
do „deklaracji”, a składniowo są od nich nawet krótsze!
Jak więc w takiej sytuacji nie nazwać spierania się o nazewnictwo zwyczajnym
malkontenctwem? :)

Uruchamiamy aplikację
To niemalże niewiarygodne, jednak stało się faktem! Zakończyliśmy w końcu
programowanie naszej gry! Wreszcie możesz więc użyć klawisza F5, by cieszyć tym oto
wspaniałym widokiem:

Screen 35. Gra w „Kółko i krzyżyk” w akcji

A po kilkunastominutowym, zasłużonym relaksie przy własnoręcznie napisanej grze
przejdź do dalszej części tekstu :)

Wnioski
Stworzyłeś właśnie (przy drobnej pomocy :D) swój pierwszy w miarę poważny program,
w dodatku to, co lubimy najbardziej - czyli grę. Zdobyte przy tej okazji doświadczenie
jest znacznie cenniejsze od najlepszego nawet, lecz tylko teoretycznego wykładu.

Warto więc podsumować naszą pracę, a przy okazji odpowiedzieć na pewne ogólne
pytania, które być może przyszły ci na myśl podczas realizacji tego projektu.

Dziwaczne projektowanie
Tworzenie naszej gry rozpoczęliśmy od jej dokładnego zaprojektowania. Miało ono na
celu wykreowanie komputerowego modelu znanej od dziesięcioleci gry dwuosobowej i
zaadaptowanie go do potrzeb kodowania w C++.
W tym celu podzieliliśmy sobie zadanie na trzy części:

 określenie struktur danych wykorzystywanych przez aplikację
 sprecyzowanie wykonywanych przez nią czynności
 stworzenie interfejsu użytkownika

Aby zrealizować pierwsze dwie, musieliśmy przyjąć dość dziwną i raczej nienaturalną
drogę rozumowania. Należało bowiem zapomnieć o takich „namacalnych” obiektach jak
plansza, gracz czy rozgrywka. Zamiast tego mówiliśmy o pewnych danych, na których
program miał wykonywać jakieś operacje.
Te dwa światy - statycznych informacji oraz dynamicznych działań - rozdzieliły nam owe
„naturalne” obiekty związane z grą i kazały oddzielnie zajmować się ich cechami (jak np.
symbole graczy) oraz realizowanymi przezeń czynnościami (np. wykonanie ruchu).

Złożone zmienne 189

Podejście to, zwane programowaniem strukturalnym, mogło być dla ciebie trudne do
zrozumienia i sztuczne. Nie martw się tym, gdyż podobnie uważa większość
współczesnych koderów! Czy to znaczy, że programowanie jest udręką?
Domyślasz się pewnie, że wszystko co niedawno uczyniliśmy, dałoby się zrobić bardziej
naturalnie i intuicyjne. Masz w tym całkowitą rację! Już w następnym rozdziale poznamy
znacznie wygodniejszą i przyjaźniejszą technikę programowania, który zbliży kodowanie
do ludzkiego sposobu myślenia.

Dość skomplikowane algorytmy
Kiedy już uporaliśmy się z projektowaniem, przyszedł czas na uruchomienie naszego
ulubionego środowiska programistycznego i wpisanie kodu tworzonej aplikacji.

Jakkolwiek większość użytych przy tym konstrukcji języka C++ była ci znana od dawna,
a duża część pozostałej mniejszości wprowadzona w tym rozdziale, sam kod nie należał z
pewnością do elementarnych. Różnica między poprzednimi, przykładowymi programami
była znacząca i widoczna niemal przez cały czas.
Na czym ona polegała? Po prostu język programowania przestał tu być celem, a stał się
środkiem. Już nie tylko prężył swe „muskuły” i prezentował szeroki wachlarz możliwości.
Stał się w pokornym sługą, który spełniał nasze wymagania w imię wyższego dążenia,
którym było napisanie działającej i sensownej aplikacji.

Oczywiste jest więc, iż zaczęliśmy wymagać więcej także od siebie. Pisane algorytmy nie
były już trywialnymi przepisami, wyważającymi otwarte drzwi. Wyżyny w tym względzie
osiągnęliśmy chyba przy sprawdzaniu stanu planszy w poszukiwaniu ewentualnych
sekwencji wygrywających. Zadanie to było swoiste i unikalne dla naszego kodu, dlatego
też wymagało nieszablonowych rozwiązań. Takich, z jakimi będziesz się często spotykał.

Organizacja kodu
Ostatnia uwaga dotyczy porządku, jaki wprowadziliśmy w nasz kod źródłowy. Zamiast
pojedynczego modułu zastosowaliśmy dwa i zintegrowaliśmy je przy pomocy własnego
pliku nagłówkowego.

Nie obyło się rzecz jasna bez drobnych problemów, ale ogólnie zrobiliśmy to w całkowicie
poprawny i efektywny sposób. Nie można też zapominać o tym, że jednocześnie
poznaliśmy kolejny skrawek informacji na temat programowania w C++, tym razem
dotyczący dyrektywy #include, prototypów funkcji oraz modyfikatora extern.

Drogi samodzielny programisto - ty, który dokończyłeś kod gry od momentu, w którym
rozstaliśmy się nagłówkiem game.h, bez zaglądania do dalszej części tekstu!
Jeżeli udało ci się dokonać tego z zachowaniem założonej funkcjonalności programu oraz
podziału kodu na trzy odrębne pliki, to naprawdę chylę czoła :) Znaczy to, że jesteś
wręcz idealnym kandydatem na świetnego programistę, gdyż sam potrafiłeś rozwiązać
postawiony przed tobą szereg problemów oraz znalazłeś brakujące ci informacje w
odpowiednich źródłach. Gratulacje!
Aby jednak uniknąć ewentualnych kłopotów ze zrozumieniem dalszej części kursu,
doradzam powrót do opuszczonego fragmentu tekstu i przeczytanie chociaż tych
urywków, które dostarczają wspomnianych nowych informacji z zakresu języka C++.

Podsumowanie
Dotarliśmy (wreszcie!) do końca tego rozdziału. Nabyłeś w nim bardzo dużo wiadomości
na temat modelowania złożonych struktur danych w C++.

Podstawy programowania 190

Zaczęliśmy od prezentacji tablic, czyli zestawów określonej liczby tych samych
elementów, opatrzonych wspólną nazwą. Poznaliśmy sposoby ich deklaracji oraz użycia w
programie, a także możliwe zastosowania.
Dalej zajęliśmy się definiowaniem nowych, własnych typów danych. Wśród nich były typy
wyliczeniowe, dopuszczające jedynie kilka możliwych wartości, oraz agregaty w rodzaju
struktur, zamykające kilka pojedynczych informacji w jedną całość. Zetknęliśmy się przy
tym z wieloma przykładami ich zastosowania w programowaniu.
Wreszcie, na ukoronowanie tego i kilku poprzednich rozdziałów stworzyliśmy całkiem
spory i całkiem skomplikowany program, będący w dodatku grą! Mieliśmy niepowtarzalną
okazję na zastosowanie zdobytych ostatnimi czasy umiejętności w praktyce.

Kolejny rozdział przyniesie nam natomiast zupełnie nowe spojrzenie na programowanie w
C++.

Pytania i zadania
Jako że mamy za już sobą sporo wyczerpującego kodowania, nie zadam zbyt wielu
programów do samodzielnego napisania. Nie uciekniesz jednak od pytań sprawdzających
wiedzę! :)

Pytania
1. Co to jest tablica? Jak deklarujemy tablice?
2. W jaki sposób używamy pętli for oraz tablic?
3. Jak C++ obsługuje tablice wielowymiarowe? Czym są one w istocie?
4. Czym są i do czego służą typy wyliczeniowe? Dlaczego są lepsze od zwykłych

stałych?
5. Jak definiujemy typy strukturalne?
6. Jaką drogą można dostać się do pojedynczych pól struktury?

Ćwiczenia
1. Napisz program, który pozwoli użytkownikowi na wprowadzenie dowolnej ilości

liczb (ilość tą będzie podawał na początku) i obliczenie ich średniej arytmetycznej.
Podawane liczby przechowuj w 100-elementowej tablicy (wykorzystasz zeń tylko
część).
(Trudne) Możesz też zrobić tak, by program nie pytał o ilość liczb, lecz prosił o
kolejne aż do wpisania innych znaków.
(Bardzo trudne) Czy można jakoś zapobiec marnotrawstwu pamięci,
związanemu z tak dużą, lecz używaną tylko częściowo tablicą? Jak?

2. Stwórz aplikację, która będzie pokazywała liczbę dni do końca bieżącego roku.
Wykorzystaj w niej strukturę tm i funkcję localtime() w taki sam sposób, jak w
przykładzie Biorhytm.

3. (Trudne) W naszej grze w kółko i krzyżyk jest ukryta pewna usterka. Objawia się
wtedy, gdy gracz wpisze coś innego niż liczbę jako numer pola. Spróbuj naprawić
ten błąd; niech program reaguje tak samo, jak na wartość spoza przedziału
<1; 9>.
Wskazówka: zadanie jest podobne do trudniejszego wariantu ćwiczenia 1.

4. (Bardzo trudne) Ulepsz napisaną grę. Niech rozmiar planszy nie będzie zawsze
wynosił 3×3, lecz mógł być zdefiniowany jako stała w pliku game.h.
Wskazówka: ponieważ plansza pozostanie kwadratem, warunkiem zwycięstwa
będzie nadal ułożenie linii poziomej, pionowej lub ukośnej z własnych symboli.
Modyfikacji musi jednak ulec algorytm sprawdzania planszy (ten straszny :D) oraz
sposób numerowania i rysowania pól.

