OBIEKTY

tyzka nie istnieje...
Neo w filmie ,,Matrix”

Lektura kilku ostatnich rozdziatéw data ci spore pojecie o programowaniu w jezyku C++,
ze szczegollnym uwzglednieniem sposdéb realizacji w nim pewnych algorytméw oraz
uzycia takich konstrukcji jak petle czy instrukcje warunkowe. Zapoznate$ sie takze z
mozliwosciami, jakie oferuje ten jezyk w zakresie manipulowania bardziej ztozonymi
porcjami informacji.

Wreszcie, miate$ sposobnosc realizacji konkretnej aplikacji - poczynajac od jej
zaprojektowania, a na kodowaniu i ostatecznej kompilacji skoficzywszy. Wierze, iz samo
programowanie byto wtedy raczej zrozumiate - chociaz nie pisaliSmy juz wéwczas
trywialnego kodu.

Podejrzewam jednak, ze wstepne konstruowanie programu nosito dla ciebie znamiona co
najmniej dziwnej czynnosci; wspominatem o tym zresztg w podsumowaniu catego
naszego projektu, obiecujgc pokazanie w niniejszym rozdziale znacznie przyjazniejszej,
naturalniejszej i, jak sadze, przyjemniejszej techniki programowania. Przyszedt czas, by
spetnic te obietnice.

Zatem nie tracac czasu, zajmijmy sie tym wyczekiwanym tesknie zagadnieniem :)

Przedstawiamy klasy i obiekty

Poznamy teraz sposdéb kodowania znany jako programowanie obiektowe (ang. object-
oriented programming - OOP), ktére spetnia wszystkie niedawno ztozone przeze mnie
obietnice. Nie dziwi wiec, iz jest to najszerzej stosowana przez dzisiejszych programistow
technika projektowania i implementacji programéw.

Nie zawsze jednak tak byto; mysle zatem, ze warto przyjrze¢ sie drodze, jakg pokonat
fach o nazwie programowanie komputeréw - od poczatku az do chwili obecnej. Dzieki
temu bedziemy mogli lepiej doceni¢ uzywane przez siebie narzedzia, z C++ na czele :)

Skrawek historii

Pomyst programowania komputerédw jest nawet starszy niz one same. Zanim bowiem
powstaly pierwsze maszyny zdolne do wykonywania sekwencji obliczen, istniato juz wiele
teoretycznych modeli, wedle ktérych miatyby funkcjonowac®*.

Mato zachecajgce poczgtki

Nie dziwi wiec, iz pojawienie sie ,mdzgdéw elektronowych”, jak wtedy nazywano
komputery, na wielu uniwersytetach w latach 50. wywotato spory entuzjazm. Mnéstwo

54 Najbardziej znanym jest maszyna Turinga.

192 Podstawy programowania

ludzi zaczeto zajmowac sie oprogramowywaniem tych wielkich i topornych urzadzen. Byta
to praca na wskro$ heroiczna - zwazywszy, ze ,pisanie” programdw oznaczato wtedy
odpowiednie dziurkowanie zwyktych papierowych kart i przepuszczanie je przez
wnetrznosci maszyny. Najmniejszy btad zmuszat do uruchamiania programu od poczatku,
co zazwyczaj skutkowato trafieniem na koniec kolejki oczekujgcych na mozliwos¢
skorzystania z drogocennej mocy obliczeniowej.

Fotografia 1. ENIAC - pierwsza maszyna liczaca nazwana komputerem, skonstruowana w
1946 roku. Byt to doprawdy cud techniki - przy poborze mocy rownym zaledwie 130 kW mogt
wykona¢ az 5 tysiecy obliczen na sekunde (ok. milion razy mniej niz wspoétczesne komputery).
(zdjecie pochodzi z serwisu Internetowe Muzeum Starych Programow i Komputerow)

Zwyczaj jej starannego wydzielania utrzymat sie przez wiele lat, cho¢ z czasem techniki
programistyczne ulegty usprawnieniu. Kiedy koderzy (a wtasciwie hakerzy, bo w tych
czasach gtownie maniacy zajmowali sie komputerami) dostali wreszcie do dyspozycji
monitory i klawiatury (prymitywne i prawie w ogdle niepodobne do dzisiejszych cacek),
programowanie zaczeto bardziej przypomina¢ znajomg nam czynnosc i stato sie nieco
tatwiejsze. Jednakze okreslenie , przyjazne” byto jeszcze zdecydowanie przedwczesne :)
Zakodowanie programu oznaczato najczesciej koniecznos¢ wklepywania diugich rzeddw
numerkéw, czyli jego kodu maszynowego. Dopiero pdzniej pojawity sie bardziej
zrozumiate, lecz nadal niezbyt przyjazne jezyki asemblera, w ktérych liczbowe
instrukcje procesora zastgpiono ich stownymi odpowiednikami. Caty czas byto to jednak
operowanie na bardzo niskim poziomie abstrakcji, scisle zwigzanym ze sprzetem.
Listingi byty wiec mato czytelne i podobne np. do ponizszego:

mov ah, 4Ch
int 21h

Przyznasz chyba, ze odgadniecie dziatania tegoz kodu wymaga nielichych zdolnosci
profetycznych® ;)

Wyzszy poziom

Nie dziwi wiec, ze kiedy tylko potencjat komputeréw na to pozwolit (a stato sie to na
poczatku lat 70.), powstaty znacznie wygodniejsze w uzyciu jezyki programowania
wysokiego poziomu (algorytmiczne), zwane tez jezykami drugiej generacji.
Zawieraty one, tak oczywiste dla nas, lecz woéwczas nowatorskie, konstrukcje w rodzaju
instrukcji warunkowych czy petli. Nie byty tez zalezne od konkretnej platformy
sprzetowej, co czynito programy w nich napisane wielce przeno$nymi. Tak narodzito sie
programowanie strukturalne.

6 Nie robi on jednak nic szczegdlinego, gdyz po prostu koAczy dziatanie programu :) O dziwo, te dwie linijki
powinny funkcjonowac na prawie wszystkich dzisiejszych pecetach z systemami DOS lub Windows!

http://386.bajo.pl/

Obickty 193

W tym okresie stworzone zostaty znane i uzywane do dzi$ jezyki - Pascal, C czy BASIC.
Programowanie stato sie fatwiejsze, bardziej dostepne i popularniejsze - réwniez wsrod
niewielkiej jeszcze grupy uzytkownikéw domowych komputeréw. Pociggneto to za sobg
takze rozwdj oprogramowania: pojawity sie systemy operacyjne w rodzaju Unixa, DOSa
czy Windows (wszystkie napisane w C), rosfa tez liczba przeznaczonych dlan aplikacji.
Chociaz niekiedy pisano jeszcze drobne fragmenty kodu w asemblerze, ogromna
wiekszos¢ projektéw byta juz realizowana wedle zasad programowania strukturalnego.

. Mozna w zasadzie powiedzie¢, ze z posiadanymi umiejetnosciami sytuujemy sie wtasnie
. w tym punkcie historii. Wprawdzie uzywamy jezyka C++, ale dotychczas korzystali$my
| jedynie z tych jego mozliwosci, ktére byty dostepne takze w C.

. To sie oczywiscie wkrétce zmieni :)

Skostniate standardy

Czasy Swietnosci metod programowania strukturalnego trwaty zaskakujgco dtugo, bo az
kilkanascie lat. Moze to sie wydawac dziwne - szczegdlnie w odniesieniu do,
przywotywanego juz niejednokrotnie, wyjatkowo sztucznego projektowania kodu przy
uzyciu tychze metod. Jezeli dodamy do tego fakt, iz juz wtedy istniata catkiem pokazna
liczba jezykdw trzeciej generacji, pozwalajacych na programowanie obiektowe®®,
sytuacja jawi sie wrecz niedorzecznie. Dlaczego koderzy nie porzucili swych wystuzonych
i topornych instrumentéw przez tak dtugi okres?...

~Winowajcq” jest gtdwnie jezyk C, ktory zdazyt przez ten czas urosng¢ do rangi niemal
jedynego stusznego jezyka programowania. Jako ze byt on narzedziem, ktérego uzywano
nawet do pisania systemoéw operacyjnych, istniato mndstwo jego kompilatoréow oraz
ogromna liczba stworzonych w nim programéw. Zmiana tak silnie zakorzenionego
standardu byta w zasadzie niemozliwa, totez przez wiele lat nikt sie jej nie podjat.

Obiektow czar

Az tu w 1983 roku dunski programista Bjarne Stroustrup zaprezentowat stworzony przez
siebie jezyk C++. Miat on niezaprzeczalng zalete (jezyk, nie jego twoérca ;D): tgczyt
sktadnie C (przez co zachowywat kompatybilno$¢ z istniejgcymi aplikacjami) z
mozliwos$ciami programowania zorientowanego obiektowo.

Fakt ten sprawit, ze C++ zaczat powoli wypiera¢ swego poprzednika, zajmujac czotowe
miejsce wsrod uzywanych jezykdw programowania. Zajmuje je zresztg do dzis.

Obiektowych nastepcéw dorobity sie tez dwa pozostate jezyki strukturalne. Pascal
wyewoluowat w Object Pascala, ktory jest podstawg dla popularnego srodowiska Delphi.
BASIC’iem natomiast zaopiekowat sie Microsoft, tworzac z niego Visual Basic; dopiero
jednak ostatnie wersje tego jezyka (oznaczone jako .NET) mozna nazwac¢ w pefni
obiektowymi.

Co dalej?

Zaraz, w takim razie programowanie obiektowe i nasz ulubiony jezyk C++ maja juz z
gbra dwadziescia lat - w Swiecie komputerdw to przeciez caty eon! Czy zatem technologii
tej nie czeka rychty schytek?...

Moznaby tak przypuszczaé, gdyby istniata inna, réwnorzedna wobec OOPu technika
programowania. Dotychczas jednak nikt nie wynalazt niczego takiego i nie zanosi sig¢ na
to w przewidywalnej przyszitosci :) Programowanie obiektowe ma sie dzisiaj co najmniej

66 Byty to na przyktad LISP albo Smalltalk.

194 Podstawy programowania

tak samo dobrze (a nawet znacznie lepiej), jak w chwili swego powstania i trudno sobie
nawet wyobrazi¢ jego ewentualny zmierzch.

Naturalnie, zawsze mozna sie z tym nie zgodzi¢ :) Niektérzy przekonujg nawet, iz istnieje
cos takiego jak jezyki czwartej generacji, zwane rowniez deklaratywnymi. Zaliczajg do
nich na przyktad SQL (jezyk zapytan do baz danych) czy XSL (transformacje XML).

Nie da sie jednak ukry¢ faktu, ze obszar zastosowan kazdego z tych jezykdéw jest bardzo
specyficzny i ograniczony. Jezeli bowiem kiedykolwiek bedzie mozliwe tworzenie
zwyktych aplikacji przy pomocy nastepcéw tychze jezykdw, to lada dzien zbedni stang sie
takze sami programisci ;))

Pierwszy kontakt

Nadeszta wreszcie pora, kiedy poznamy podstawowe zatozenia ostawionego
programowania obiektowego. By¢ moze dowiemy sie tez, dlaczego jest takie wspaniate ;)

Obiektowy swiat

Z nazwy tej techniki programowania nietrudno wywnioskowaé, ze jej najwazniejszym
pojeciem jest obiekt. Tworzac obiekty i definiujgc ich nowe rodzaje mozna zbudowacd
dowolny program.

Wszystko jest obiektem

Ale czym w istocie jest taki obiekt? W jezyku potocznym stowo to moze przeciez oznaczaé
w zasadzie wszystko. Obiektem mozna nazwac lampe stojacg na biurku, drzewo za
oknem, sasiedni dom, samochdd na ulicy, a nawet cate miasto. Jakkolwiek czasem bedzie
to dos¢ dziwny sposdb nazewnictwa, ale jednak nalezy go uznaé za catkowicie
dopuszczalny.

Rysunek 3, 4 i 5. Obiekty otaczaja nas z kazdej strony

Myslac o programowaniu, znaczenie terminu ‘obiekt’ nie ulega zasadniczej zmianie. Takze
tutaj obiektem moze byc¢ praktycznie wszystko. Rdznica polega jednak na tym, iz
programista wystepuje wowczas w roli stworcy, pana i wiadcy wykreowanego ,$wiata”.
Wprowadzajac nowe obiekty i zapewniajac wspotprace miedzy nimi, tworzy dziatajacy
system, podporzadkowany realizacji okreslonego zadania.

Zanotujmy wiec pierwsze spostrzezenie:

Obiekt moze reprezentowac cokolwiek. Programista wykorzystuje obiekty jako cegietki,
z ktérych buduje gotowy program.

Obickty 195

Okreslenie obiektu

Przed chwilg wykazaliSmy, ze programowanie nie jest wcale tak oderwane od
rzeczywistosci, jak sie powszechnie sadzi :D Faktycznie techniki obiektowe powstaty
wiasnie dlatego, zeby przyblizy¢ nieco kodowanie do prawdziwego Swiata.

O ile jednak w odniesieniu do niego mozemy swobodnie uzywac¢ do$¢ enigmatycznego
stwierdzenia, ze ,obiektem moze by¢ wszystko”, o tyle programowanie nie znosi przeciez
zadnych niescistosci. Obiekt musi wiec dac sie jasno zdefiniowac¢ i w jednoznaczny sposéb
reprezentowac¢ w programie.

Wydawac by sie mogto, iz to duze ograniczenie. Ale czy tak jest naprawde?...

Wiele wskazuje na to, ze nie. Pojecie obiektu w rozumieniu programistycznym jest
bowiem na tyle elastyczne, ze miesci w sobie niemal wszystko, co tylko mozna sobie
wymarzy¢. Mianowicie:

Obiekt sktada sie z opisujacych go danych oraz moze wykonywac ustalone czynnosci.

Podobnie jak omoéwione niedawno struktury, obiekty zawierajg pola, czyli zmienne. Ich
rolg jest przechowywanie pewnych informacji o obiekcie - jego charakterystyki.
Oczywiscie, liczba i typy pél mogg by¢ swobodnie definiowane przez programiste.
Oprocz tego obiekt moze wykonywac na sobie pewne dziatania, a wiec uruchamiac
zaprogramowane funkcje; nazywamy je metodami albo funkcjami sktadowymi.
Czynig one obiekt tworem aktywnym - nie jest on jedynie pojemnikiem na dane, lecz
moze samodzielnie nimi manipulowac.

Co to wszystko oznacza w praktyce? Najlepiej bedzie, jezeli przesledzimy to na
przykfadzie.

Zatézmy, ze chcemy mie¢ w programie obiekt jadgcego samochodu (bo moze piszemy
wiasnie gre wyscigowg?). Ustalamy wiec dla niego pola, ktére bedg go okreslaty, oraz
metody, ktére bedzie mdégt wykonywac.

Polami mogg by¢ widoczne cechy auta: jego marka czy kolor, a takze te mniej rzucajace
sie w oczy, lecz pewnie wazne dla nas: dtugos$¢, waga, aktualna predkosc¢ i maksymalna
szybkos$¢. Natomiast metodami uczynimy czynnosci, jakie nasz samochdd maégiby
wykonywac: przyspieszenie, hamowanie albo skret.

W ten oto prosty sposdb stworzymy wiec komputerowg reprezentacje samochodu. W
naszej grze moglibysmy mie¢ wiele takich aut i nic nie staloby na przeszkodzie, aby
kazde miato np. inny kolor czy marke. Kiedy zas dla jednego z nich wywotalibysmy
metode skretu czy hamowania, zmienitaby sie predkos¢ tylko tego jednego samochodu
- zupetnie tak, jakby kierowca poruszyt kierownicg lub wcisngt hamulec.

kalar
Masa 726 kg
Pozycja X 126m | Y. -60m
Pradkasd X30mis | Y40 mis

Przyspiesz |
Hamuj beeeees oy
Skred ;

Schemat 16. Przykladowy obiekt samochodu

W idei obiektu wida¢ zatem przeciwienstwo programowania strukturalnego. Tam
musieliSmy rozdziela¢ dane programu od jego kodu, co przy wiekszych projektach
prowadzitoby do sporego bataganu. W programowaniu obiektowym jest zgota odwrotnie:
tworzymy niewielkie czastki, bedace potaczeniem informacji oraz dziatania. Sg one

196 Podstawy programowania

niemal ,namacalne”, dlatego tatwiej jest nam mysle¢ o nich o skfadnikach programu,
ktéry budujemy.

Zapiszmy zatem drugie spostrzezenie:

Obiekty zawierajg zmienne, czyli pola, oraz moga wykonywac dla siebie ustalone
funkcje, ktore zwiemy metodami.

Obiekt obiektowi nierowny

Zestaw pol i metod rzadko jest charakterystyczny dla pojedynczego obiektu. Najczesciej
istnieje wiele obiektéw, kazdy z wtasciwymi sobie wartosciami poél. Laczy je jednak
przynalezno$¢ do jednego i tego samego rodzaju, ktory nazywamy klasa.

Klasy wprowadzajg wiec pewng systematyke w swiat obiektéw. Byty nalezgce do tej
samej klasy sg bowiem do siebie podobne: majg ten sam pakiet pél oraz mogg
wykonywac na sobie te same metody. Informacje te zawarte sg w definicji klasy i
wspolne dla wszystkich wywodzacych sie z niej obiektéw.

Klasa jest zatem czyms$ w rodzaju wzorca - matrycy, wedle ktérego ,, produkowane” sg
kolejne obiekty (instancje) w programie. Mogg one réznic sie od siebie, ale tylko co do
wartosci poszczegodlnych poél; wszystkie bedg jednak nalezec¢ do tej samej klasy i bedg
mogty wykonywac na sobie te same metody.

Kot o czarnej siersci i kot o biatej siersci to przeciez jeden i ten sam gatunek Felis catus...

klasa

Samochod

kKalor | e
Masa ¢ y

Pozycja o i '? oy
Predkosc ' =

Przyspiesz ety o =
Harmuj
Skred

Kolor Kolar :
:| Masa 614 kg | | Masa Masa 598 kg |:
| Pozycja ¥0m | ¥:20m || Pozyela X-50m | ¥:30m ||Pozycja ¥:0m | ¥-0om |
Predkosd Ki-2mis | Y25 mis | | Predkosd ¥:45mis | Yo0ms | | Predkosé Xoms | Y Dmis

Schemat 17. Definicja klasy oraz kilka nalezacych don obiektow (jej instancji)

W programowaniu obiektowym zadaniem tworcy jest przede wszystkim zaprojektowanie
modelu klas programu, zawierajacego definicje wszystkich klas wystepujacych w
aplikacji. Podczas dziatania programu bedg z nich tworzone obiekty, ktérych wspétpraca
ma zapewni¢ realizacje celdéw aplikacji (przynajmniej w teorii ;D).

Obickty 197

Zatem zamiast zajmowac sie oddzielnie danymi oraz kodem, bierzemy pod uwage ich
odpowiednie potaczenia - obiekty, ,aktywne struktury”. Definiujgc odpowiednie klasy
oraz umieszczajac w programie instrukcje kreujace obiekty tych klas, budujemy nasz
program kawatek po kawatku.

By¢ moze brzmi to teraz troche tajemniczo, lecz niediugo zobaczysz, iz w gruncie rzeczy
jest bardzo proste.

Sformutujmy na koniec ostatnie spostrzezenie:

Kazdy obiekt nalezy do pewnej klasy. Definicja klasy zawiera pola, z ktérych sktada sie
6w obiekt, oraz metody, ktérymi dysponuje.

Co na to C++?

Zakonczmy na razie te nieco zbyt teoretyczne dywagacje i zajmijmy sie tym, co
programisci lubig najbardziej, czyli kodowaniem :) Zobaczymy, jak C++ radzi sobie z
ideg programowania obiektowego. Na razie spojrzymy na to zagadnienie przez kilka
prostych przyktaddéw, by pdzniej zagtebic sie w nie nieco bardziej.

Definiowanie klas

Pierwszym i bardzo waznym etapem tworzenia kodu opartego na idei OOP jest, jak sobie
powiedzieliSmy, zdefiniowanie odpowiednich klas. W C++ jest to catkiem proste.

Klasy sa tu de facto nowymi typami danych, podobnymi w pewnym sensie do struktur®’.
Dlatego tez naturalnym miejscem umieszczania ich definicji sq pliki nagtéwkowe -
umozliwia to fatwe wykorzystanie klasy w obrebie catego programu.

Spéjrzmy zatem na przyktadowag definicje typu obiektow, ktéry pary razy przewijat sie w
tekscie:

class CCar
{
private:
float m fMasa;
COLOR m_Kolor;

VECTORZ m_vPozycja;
public:
VECTOR2 vPredkosc;

// metody
void Przyspiesz (float fIle);
void Hamuj (float fIle);
void Skrec (float fKat);
}i

Zastosowanie tu typy danych COLOR i VECTOR2 majg charakter umowny. Powiedzmy, ze |
| COLOR W jaki$ spos6b reprezentuje kolor, zas VECTOR2 jest dwuwymiarowym wektorem (o |
~ wspotrzednych x i y).

Poréwnanie do struktury jest catkiem na miejscu, chociaz pojawito nam sie kilka nowych
elementow, w tym najbardziej oczywiste zastgpienie stowa kluczowego struct przez
class.

87 W C++ réznica miedzy klasg a strukturg jest zreszta czysto kosmetyczna.

198 Podstawy programowania

Najwazniejsze dla nas jest jednak pojawienie sie deklaracji metod klasy. Majq one tutaj
forme prototypdw funkcji, wiec beda musiaty by¢ zaimplementowane gdzie indziej (jak -
o tym niedtugo powiemy). Réwnie dobrze wszak mozna wpisywac kod krotkich metod
bezposrednio w definicji ich klasy.

Oprocz tego mamy w naszej klasie takze pewne pola, ktére deklarujemy w identyczny
sposéb jak zmienne czy pola w strukturach. To one stanowig tres¢ obiektow, nalezacych
do definiowanej klasy.

Nietrudno zauwazy¢, ze cata definicja jest podzielona na dwie czesci poprzez etykiety
private i public. By¢ moze domyslasz , c6z mogg one znaczy¢; jezeli tak, to punkt dla
ciebie :) A jesli nie, nic straconego - niedtugo wyjasnimy ich dziatanie. Chwilowo mozesz

_ je wiec zignorowac.

Implementacja metod

Zdefiniowanie typu obiektowego, czyli klasy, nie jest najczesciej ostatnim etapem jego
okreslania. Jezeli bowiem umiescilismy wen prototypy jakichs metod, nieodzowne jest
wpisanie ich kodu w ktéryms$ z modutéw programu. Zobaczmy zatem, jak nalezy to
robic.

Przede wszystkim nalezy udostepni¢ owemu modutowi definicje klasy, co prawie zawsze
oznacza koniecznos$¢ dofgczenia zawierajgcego jq pliku nagtéwkowego. Jesli zatem nasza
klasa jest zdefiniowana w pliku kl/asa.h, to w module kodu musimy umiesci¢ dyrektywe:

#include "klasa.h"
Potem mozemy juz przystgpi¢ do implementacji metod.

Ich kody wprowadzamy w niemal ten sam sposéb, ktéry stosujemy dla zwyktych funkcji.
Jedyna rdznica tkwi bowiem w nagtéwkach tychze metod, na przyktad:

void CCar::Przyspiesz (float fIle)

{
// tutaj kod metody

}

Zamiast wiec samej nazwy funkcji mamy tutaj takze nazwe odpowiedniej klasy,
umieszczong wczesniej. Oba te miana rozdzielamy znanym juz skadinad operatorem
zasiegu ::.

Dalej nastepuje zwyczajowa lista parametréw i wreszcie zasadnicze ciato metody.
Wewnatrz tego bloku zamieszczamy instrukcje, sktadajace sie na kod danej funkcji.

Tworzenie obiektow

Posiadajac zdefiniowang i zaimplementowang klase, mozemy pokusic sie o stworzenie
paru przynaleznych jej obiektéw.

Istnieje przynajmniej kilka sposobdéw na wykonanie tej czynnosci, z ktérych najprostszy
nie roézni sie niczym od zadeklarowania struktury i wyglada chociazby tak:

CCar Samochod;

Kod ten spowoduje zadeklarowanie nowej zmiennej Samochod typu CCar oraz
stworzenie obiektu nalezacego do tej klasy. Podkreslam to, gdyz moment tworzenia
obiektu nie jest wcale taka btahg sprawg i moze powodowac rézne akcje. Powiemy sobie
o tym niedtugo.

Obickty 199

Majac juz obiekt (a wiec instancje klasy), jesteSmy w stanie operowac na wartosciach
jego pdl oraz wywotywac przynalezne jego klasie metody. Postugujemy sie tu znajomym
operatorem kropki (.):

// przypisanie wartosci polu
Samochod.vPredkosc.x = 100.0;
Samochod.vPredkosc.y = 50.0;

// wywolanie metody obiektu
Samochod.Przyspiesz (10.0);

Czy nie spotkaliSmy juz kiedys czego$ podobnego?... Zdaje sie, ze tak. Przy okazji
tancuchow znakdéw pojawita sie bowiem konstrukcja typu strTekst.length (), ktérej
uzyliSmy do pobrania dtugosci napisu strTekst.

Byto to nic innego jak tylko wywotanie metody length () dla obiektu strTekst! Napisy w
C++ sg wiec obiektami, pochodzacymi od klasy std::string. Oprocz length ()
posiadajg zresztg wiele innych metod, utatwiajacych prace z nimi. Wiekszo$¢ poznamy
podczas omawiania Biblioteki Standardowej.

Kod wyglada zatem catkiem logicznie i spdjnie; tatwo bowiem znalez¢é wszystkie
instrukcje dotyczace obiektu samochod, bo zaczynajg sie one od jego nazwy. To jedna
(cho¢ moze mato znaczgca) z licznych zalet programowania obiektowego, ktére poznasz
wkrotce i na ktére z utesknieniem czekasz ;)

Xk k

W tym podrozdziale zaliczyliSmy pierwsze spotkanie z programowaniem zorientowanym
obiektowo. Mamy wiec juz jakies$ pojecie o klasach, obiektach oraz ich polach i metodach
- takze w odniesieniu do jezyka C++.

Dalsza czes$¢ rozdziatu bedzie miata charakter systematyzacyjno-uzupetniajacy :)
Wyjasnimy i uporzadkujemy sobie wiekszo$¢ szczegoétdw dotyczacych definiowania klas
oraz tworzenia obiektéw. Informuje przeto, iz absencja na tym waznym wykfadzie bedzie
zdecydowanie nierozsadna!

Obiekty i klasy w C++

Szczycac sie chlubnym mianem jezyka w petni obiektowego, C++ posiada wszystko, co
niezbedne do praktycznej realizacji idei programowanie zorientowanego obiektowo. Teraz
wiasnie przyjrzymy sie dokfadnie tym konstrukcjom jezykowym - wyttumaczymy sobie
ich dziatanie oraz sposoéb uzycia.

Klasa jako typ obiektowy

Wiemy juz, ze pisanie programu zgodnie z filozofig OOP polega na definiowaniu i
implementowaniu odpowiednich klas oraz tworzeniu z nich obiektéw i manipulowaniu
nimi. Klasa jest wiec dla nas pojeciem kluczowym, ktdre na poczatek wypadatoby
wyjasnié:

Klasa to ztozony typ zmiennych, skfadajacy sie z pol, przechowujacych dane, oraz
posiadajacy metody, wykonujace zaprogramowane czynnosci.

Zmienne nalezace do owych typéw obiektowych nazywamy oczywiscie obiektami.

200 Podstawy programowania

Kazdy obiekt posiada swoj wiasny pakiet opisujacych go pol, ktére rezydujg w pamieci
operacyjnej w identyczny sposob jak pola struktur. Metody sg natomiast kodem
wspolnym dla catej klasy, zatem w czasie dziatania programu istnieje w pamieci tylko
jedna ich kopia, wywotywana w razie potrzeby na rzecz ré6znych obiektow. Jest to, jak
sadze, dos¢ oczywiste: tworzenie odrebnych kopii tych samych przeciez funkcji dla
kazdego nowego obiektu bytoby niewatpliwie szczytem absurdu.

Dwa etapy okreslania klasy

Skoro dowiedzieliSmy sie dokfadnie, czym sg klasy i jak (w teorii) dziatajg, spdjrzmy na
sposoby ich wykorzystania w jezyku C++. Zaczniemy rzecz jasna od wprowadzania do
programu wifasnych typow obiektowych, gdyz bez tego ani rusz :)

Na poczatek warto przypomnied, iz klasa jest typem (podobnie jak struktura czy enum),
wiec wtasciwym dla niej miejscem byiby zawsze plik nagtdwkowy. Jednoczesnie jednak
zawiera ona kod swoich funkcji skladowych, czyli metod, co czyni jg przynaleznag do
jakiegos modutu (bo tylko wewnatrz modutdw mozna umieszczac funkcje).
Te dwa przeciwstawne stanowiska sprawiaja, ze okreslenie klasy jest najczesciej
rozdzielone na dwie czesci:
> definicje, wstawiang w pliku nagtdwkowym, w ktérej okreslamy pola klasy oraz
wpisujemy prototypy jej metod
> implementacje, umieszczang w module, bedaca po prostu kodem wczesniej
zdefiniowanych metod

Ukfad ten nie dos$¢, ze dziata nadzwyczaj dobrze, to jeszcze realizuje jeden z postulatéw
programowania obiektowego, jakim jest ukrywanie niepotrzebnych szczego6tow.
Tymi szczegdtami bedzie tutaj kod poszczegdlnych metod, ktérego znajomos¢ nie jest
wcale potrzebna do korzystania z klasy.

Co wiecej, moze on nie by¢ w ogdle dostepny w postaci pliku .cpp, a jedynie w wersji _
skompilowanej! Tak jest chociazby w przypadku biblioteki DirectX, o czym przekonasz sie |
. za czas jakis.

Domyslasz sie zatem, ze za chwile skoncentrujemy sie na tych dwdch etapach okreslania
klasy, a wiec na definicji i implementacji. Jakkolwiek nie brzmi to zbyt odkrywczo, jednak
masz tutaj catkowitg stusznos¢ :D

Czasem, jeszcze przed definicjg klasy musimy poinformowac kompilator, ze dana nazwa
jest faktycznie klasg. Robimy tak na przyktad wtedy, gdy obiekt klasy A odwotuje sie do
klasy B, zas B do A. Uzywamy wtedy deklaracji zapowiadajacej, piszac po prostu

alegs Ap U elass Bg.

Takie przypadki sg dosy¢ rzadkie, ale warto wiedzie¢, jak sobie z nimi radzi¢. O tym
sposobie wspomnimy zresztg nieco dokfadniej, gdy bedziemy zajmowac sie klasami
zaprzyjaznionymi.

Definicja klasy

Jest to konieczna i czesto pierwsza czynnos$¢ przy wprowadzaniu do programu nowej
klasy. Jej definicja precyzuje bowiem zawarte w niej pola oraz deklaracje metod, ktérymi
klasa bedzie dysponowata.

Informacje te sg niezbedne, aby mdc utworzy¢ obiekt danej klasy; dlatego tez
umieszczamy je niemal zawsze w pliku nagtdwkowym - miejscu naleznym witasnym
typom danych.

Sktadnia definicji klasy wyglada natomiast nastepujaco:

class nazwa klasy

Obickty 201

[specyfikator dostepu:]
[polal
[metody]
}i

Nie wida¢ w niej zbytnich restrykcji, gdyz faktycznie jest ona catkiem swobodna.
Kolejnos¢ poszczegdlnych elementow (pol lub metod) nie jest Scisle ustalona i moze by¢
w zasadzie dowolnie zmieniana. Najlepiej jednak zachowaé¢ w tym wzgledzie jakis
porzadek, grupujac np. pola i metody w zwarte grupy.

Na razie wszakze trudno byloby stosowac sie do tych rad, skoro nie oméwiliSmy
doktadnie wszystkich czesci definicji klasy. Czym predzej wiec naprawiamy ten btad :)

Kontrola dostepu do sktadowych klasy

Fraza oznaczona jako specyfikator dostepu pewnie nie méwi ci zbyt wiele, chociaz
spotkalismy sie juz z nig w ktdrej$ z przyktadowych klas. Przyjmowata ona tam forme
private lub public, dzielgc cata definicje na jakby dwie odrebne sekcje. Nietrudno
wywnioskowad, iz podziat ten nie ma jedynie charakteru wizualnego, ale powoduje dalej
idgce konsekwencje. Jakie?...

Nazwa specyfikator dostepu, chociaz brzmi moze nieco sztucznie (jak zresztg wiele
terminéw w programowaniu :)), dobrze oddaje role, jaka ta konstrukcja petni. Otoz
specyfikuje ona wlasnie prawa dostepu do czesci sktadowych klasy (czyli pél lub
metod), wyrdzniajac ich dwa rodzaje: prywatne (ang. private) oraz publiczne

(ang. public).

Réznica miedzy nimi jest znaczaca i bardzo wazna, gdyz wptywa na to, ktére elementy
klasy sg widoczne tylko w ramach jej samej, a ktére takze na zewnatrz. Te pierwsze
nazywamy wiec prywatnymi, za$ drugie publicznymi.

Prywatne sktadowe klasy (wpisane po stowie private: w jej definicji) sq dostepne
jedynie wewnatrz samej klasy, tj. tylko dla jej wtasnych metod.

Publiczne skfadowe klasy (wpisane po stowie public: w jej definicji) widoczne sa
zawsze i wszedzie - nie tylko dla samej klasy (jej metod), ale na zewnatrz - np. dla jej
obiektow.

Danym specyfikatorem objete sg wszystkie nastepujgce po nim czesci klasy, az do jej
konca lub... kolejnego specyfikatora :) Ich ilos¢ nie jest bowiem niczym ograniczona.

Nic wiec nie stoi na przeszkodzie, aby nie byfo ich wcale! W takiej sytuacji wszystkie
sktadowe bedg miaty domysine reguty dostepu. W przypadku klas (definiowanych
poprzez class) jest to dostep prywatny, natomiast dla typdw strukturalnych®® (stéwko
struct) - dostep publiczny.

Trudno uwierzy¢, ale w C++ jest to jedyna réznica pomiedzy klasami a strukturami!
Stowa class i struct sg wiec niemal synonimami; jest to rzecz niespotykana w innych
jezykach programowania, w ktorych te dwie konstrukcje sg zupetnie odrebne.

Dla skuteczniejszego rozwiania z powyzszego opisu mozliwej mgty niejasnosci, spdjrzmy
na ten oto przyktadowy program i klase:

// DegreesCalc - kalkulator temperatur

// typ wyliczeniowy okres$lajacy skale temperatur

8 A takze dla unii, chociaz jak wiemy, funkcjonuja one inaczej niz struktury i klasy.

202 Podstawy programowania

enum SCALE {SCL CELSIUS = 'c', SCL_FAHRENHEIT = 'f', SCL KELVIN = 'k'};

class CDegreesCalc
{
private:
// temperatura w stopniach Celsjusza
double m fStopnieC;
public:
// ustawienie 1 pobranie temperatury
void UstawTemperature (double fTemperatura, SCALE Skala);
double PobierzTemperature (SCALE Skala);

void main ()
{
// zapytujemy o skale, w ktdérej bedzie wprowadzona wartosé
char chSkala;
std::cout << "Wybierz

skale temperatur" << std::endl;

std::cout << " (c - Celsjusza, f - Fahrenheita, k - Kelwina): ";
std::cin >> chSkala;
if (chSkala != 'c¢' && chSkala != '"f' && chSkala != 'k') return;

// zapytujemy o rzeczona temperature
float fTemperatura;

std::cout << "Podaj temperature: ";
std::cin >> fTemperatura;

// deklarujemy obiekt kalkulatora 1 przekazujemy don temp.
CDegreesCalc Kalkulator;
Kalkulator.UstawTemperature (fTemperatura,

static cast<SCALE>(chSkala));

// pokazujemy wynik - czyli temperature we wszystkich skalach
std::cout << std::endl;

std::cout << "- stopnie Celsjusza: "
<< Kalkulator.PobierzTemperature (SCL CELSIUS) << std::endl;
std::cout << "- stopnie Fahrenheita: "
<< Kalkulator.PobierzTemperature (SCL_FAHRENHEIT) << std::endl;
std::cout << "- kelwiny: "

<< Kalkulator.PobierzTemperature (SCL KELVIN) << std::endl;

// czekamy na dowolny klawisz
getch () ;

Cata aplikacja jest prostym programem przeliczajgcym miedzy trzema skalami
temperatur:

KALKULATOR TEMPERATUR

HWyhierz wejsciowa szkale temperatur
c — Celsjusza, f — Fahrenheita, k — HKelwina>»: f
Podaj temperature: 180

— stopnie Celsjus=za: 37.7778
— stopnie Fahrenheita: 166
— kelwiny: 3J18.928

Screen 36. Kalkulator przeliczajacy wartosci temperatur

Obickty 203

Jej petny kod, z implementacjg metod klasy cbegreescalc, znalezé mozna w programach
przyktadowych. Nas jednak bardziej interesuje forma definicji tejze klasy oraz podziat jej
sktadowych na prywatne oraz publiczne.

Widzimy wiec wyraznie, iz klasa posiada jedno prywatne pole - jest nim m_fStopnieC, w
ktérym zapisywana jest temperatura w wewnetrznie uzywanej, wygodnej skali Celsjusza.
Oprocz niego mamy jeszcze dwie publiczne metody - UstawTemperature () oraz
PobierzTemperature (), dzieki ktdrym uzyskujemy dostep do naszego prywatnego pola.
Jednoczesnie oferujg nam jednak dodatkowg funkcjonalnos¢, jaka jest dokonywanie
przeliczania pomiedzy wartosciami wyrazonymi w réznych miarach.

To bardzo czesta sytuacja, gdy prywatne pole klasy ,obudowane” jest publicznymi
metodami, zapewniajgcymi don dostep. Daje to wiele pozytecznych mozliwosci, jak
chocby kontrola przypisywanej polu wartosci czy tworzenie pol tylko do odczytu.
Jednoczesnie ,prywatnosc¢” pola chroni je przed przypadkowa, niepozgdang ingerencjg z
zewnatrz.

Takie zjawisko wyodrebniania pewnych fragmentéw kodu nazywamy hermetyzacja.

Jak wiemy, prywatne sktadowe klasy nie sq dostepne poza nig sama. Kiedy wiec
tworzymy nasz obiekt:

CDegreesCalc Kalkulator;

jestesmy niejako ,skazani” na korzystanie tylko z jego publicznych metod; prdba
odwofania sie do prywatnego pola (poprzez Kalkulator.m fStopnieC) skonczy sie
bowiem btedem kompilacji.

Fakt ten wcale nas jednak nie ogranicza, lecz zabezpiecza przed niepowotanym dostepem
do wewnetrznych informacji klasy, ktore z zasady powinny byc¢ do jej wytacznej
dyspozycji. Do komunikacji z otoczeniem istniejg za to dwie publiczne metody, i to z nich
wiasnie bedziemy korzysta¢ w funkcji main ().

Najpierw wiec wywotujemy funkcje sktadowg UstawTemperature (), podajac jej wpisang
przez uzytkownika wartoé¢ oraz wybrana skale®:

Kalkulator.UstawTemperature (fTemperatura, static cast<SCALE>(chSkala)):;

W tym momencie w ogdle nie interesujq nas dziatania, ktére zostang na tych danych
podjete - jest to wewnetrzna sprawa klasy CcDegreesCalc (podobnie zresztg jak jej pole
m fStopnieC). Wazne jest, ze w ich nastepstwie mozemy uzy¢ drugiej metody,
PobierzTemperature (), do uzyskania podanej wczesniej wartosci w wybranej przez
siebie, nowej skali:
std::cout << "- stopnie Celsjusza: "

<< Kalkulator.PobierzTemperature (SCL CELSIUS) << std::endl;

// itd.

Wszystkie kwestie dotyczace szczegotowych aspektow przeliczania owych wartosci sg
zatem szczelnie poukrywane. Kod funkcji main () jest klarowny i wolny od niepotrzebnych
detali, co nie zmienia faktu, iz w razie potrzeby mozliwe jest zajecie sie nimi. Wystarczy
przeciez rzuci¢ okiem implementacje metod klasy Cbegreescalc.

Zaprowadzanie porzgdku poprzez ograniczanie dostepu do pewnych elementow klasy to
jedna z regut, a jednoczesnie zalet programowania obiektowego. Do jej praktycznej

69 Znowu stosujemy tu technike odpowiedniego dobrania wartosci typu wyliczeniowego, przez co unikamy
instrukcji switch

204 Podstawy programowania

realizacji stuzg w C++ poznane specyfikatory private oraz public. W miare nabywania
doswiadczenia w pracy z klasami bedziesz je coraz efektywniej stosowat w swoim
wiasnym kodzie.

Deklaracje pol

Pola sg witasciwg trescig kazdego obiektu klasy, to one stanowig jego reprezentacje w
pamieci operacyjnej. Pod tym wzgledem nie réznig sie niczym od znanych ci juz pol w
strukturach i sg po prostu zwyktymi zmiennymi, zgrupowanymi w jedng, kompleksowg
catosc.

Jako miejsce na przechowywanie wszelkiego rodzaju danych, pola majg kluczowe
znaczenie dla obiektow i dlatego powinny by¢ chronione przez niepowotanym dostepem z
zewnatrz. Przyjeto sie wiec, ze w zasadzie wszystkie pola w klasach deklaruje sie jako
prywatne; ich nazwy zwykle poprzedza sie tez przedrostkiem m_, aby odrdzni¢ je od
zmiennych lokalnych:

class CFoo’’

{
private:
int m nJakasLiczba;
std::string m strJakisNapis;

Dostep do danych zawartych w polach musi sie zatem odbywac za pomocg
dedykowanych metod. Rozwigzanie to ma wiele rozlicznych zalet: pozwala chociazby na
tworzenie pdl, ktore mozna jedynie odczytywaé, daje sposobnos$¢ wykrywania
niedozwolonych wartosci (np. indeksow przekraczajacych rozmiary tablic itp.) czy tez
podejmowania dodatkowych akcji podczas operacji przypisywania.

Rzeczone funkcje moga wygladac chociazby tak:

public:
int JakasLiczba () { return m nJakasLiczba; }
void JakasLiczba (int nLiczba) { m nJakasLiczba = nLiczba; }
std::string JakisNapis () { return m strJakisNapis; }

bi

Nazwatem je tu identycznie jak odpowiadajace im pola, pomijajac jedynie przedrostki’®.
Niektdrzy stosujg nazwy w rodzaju pobierz... () /Ustaw... () czy tez z angielskiego -
Get...()/Set... (). Lezy to catkowicie w zakresie upodoban programisty.

Uzycie naszych metod ,dostepowych” moze za$ przedstawiac sie na przyktad tak:

CFoo Foo;
Foo.JakasLiczba (10); // przypisanie 10 do pola m nJakasLiczba
std::cout << Foo.JakisNapis(); // wyéwietlenie pola m strJakisNapis

Zauwazmy przy okazji, ze pole m_strJakisNapis moze byc tutaj jedynie odczytane, gdyz
nie przewidzieliSmy metody do nadania mu jakiej$ wartosci. Takie postepowanie jest
czesto pozadane, ale zalezy rzecz jasna od konkretnej sytuacji, a tu jest jedynie
przyktadem.

Wielkim mankamentem C++ jest brak wsparcia dla tzw. wlasciwosci (ang. properties),
czyli ,naktadek” na pola klas, imitujgcych zmienne i pozwalajacych na uzycie bardziej

7% £00 oraz bar to takie dziwne nazwy, stosowane przez programistéw najczesciej w przyktadowych kodach, dla
blizej nieokreslonych bytéw, nie majacych zadnego praktycznego sensu i stuzacych jedynie w celach
prezentacyjnych. Majg one te zalete, ze nie mozna ich pomyli¢ tak fatwo, jak np. litery a, B, C, D itp.

! Sprawia to, ze funkcje odpowiadajace temu samemu polu, a stuzace do zapisu i odczytu, sg przecigzone.

Obickty 205

naturalnej sktadni (cho¢by operatora =) niz dedykowane metody.

Wiele kompilatorow udostepnia wiec tego rodzaju funkcjonalnos¢ we wtasnym zakresie -
w Visual C++ jest to konstrukcja declspec (property(...)), 0 ktdrej mozesz
przeczyta¢c w MSDN. Nie dorownuje ona jednak podobnym mechanizmom znanym z
Delphi.

Metody i ich prototypy

Metody czynig klasy. To dzieki swym funkcjom skladowym pasywne zbiory danych,
ktérymi sqg struktury, stajg sie aktywnymi obiektami.

Z praktycznego punktu widzenia metody niewiele réznig sie od zwyczajnych funkcji -
oczywiscie poza faktem, iz sg deklarowane zawsze wewnatrz jakiejs klasy:

class CFoo
{
public:
void Metoda () ;
int InnaMetoda (int) ;
// itp.
}s

Deklaracje te mogq miec¢ forme prototypow funkcji, a stworzone w ten sposéb metody
wymagac jeszcze implementacji, czyli wpisania ich kodu. Czynnoscig tg zajmiemy sie
doktadnie w nastepnym paragrafie.

Warto jednak wiedzie¢, ze dopuszczalne jest takze wprowadzanie kodu metod
bezposrednio wewnatrz bloku class. Robilismy tak zresztg w przypadku metod
dostepowych do pdl, a w podobnych sytuacjach rozwigzanie to sprawdza sie bardzo
dobrze. Nie nalezy aczkolwiek postepowac¢ w ten sposob z dtugimi metodami,
zawierajgcymi skomplikowane algorytmy, gdyz moze to spowodowac znaczacy wzrost
rozmiaru wynikowego pliku EXE.

Kompilator traktuje bowiem takie funkcje jako inline, tzn. rozwijane w miejscu
wywotania, i wstawia caty ich kod przy kazdym odwotaniu sie do nich. Dla krétkich,
jednolinijkowych metod jest to dobre rozwigzanie, przyspieszajqce dziatanie programu.
Dla dtuzszych nie musi wcale takie byc¢.

Doktadniejszych informacji na ten temat oraz o samych funkcjach inline tradycyjnie
mozna znalez¢ w MSDN.

To jeszcze nie koniec zabawy z metodami :) Niektére z nich mozna mianowicie uczynic
stalymi. Zabieg ten sprawia, ze funkcja, na ktérej go zaaplikujemy, nie moze
modyfikowaé zadnego z pél klasy’?, a tylko je co najwyzej odczytywac.

Po co komu takie udziwnienie? Teoretycznie jest to pewna wskazowka dla kompilatora,
ktéry by¢ moze uczyni nam w zamian taske poczynienia jakich$ optymalizacji.
Praktycznie jest to tez pewien sposdb na zabezpieczenie sie przed omytkowym
zmodyfikowaniem obiektu w metodzie, ktéra wcale nie miata czegos takiego robic.
Jednym stowem korzysci sg piorunujace ;)

Uczynienie jakiej$ metody statg jest banalnie proste: wystarczy tylko dodac za listg jej
parametrow magiczne stéwko const, np.:

class CFoo

{

private:

72 No moze nie catkiem zadnego; istnieje pewien drobny wyjatek od tej reguty, ale jest on na tyle drobny i na
tyle sproadycznie stosowany, ze nie wyjasniam go blizej i odsytam tylko purystéw do stosownego wyjasnienia w
MSDN.

206 Podstawy programowania

int m nPole;
public:
int Pole() const { return m nPole; }

bi

Funkcja pole () (bedaca de facto obudowgq dla zmiennej m nPole) bedzie tutaj stusznie
metodg stata.

Dla szczegdlnie zainteresowanych polecam lekture uzupetniajacag o statych metodach,
znajdujacq sie w miejscu wiadomym :)

Konstruktory i destruktory

Przebakiwatem juz parokrotnie o procesie tworzenia obiektéw, podkreslajg przy tym
znaczenie tego procesu. Za chwile wyjasni sie, dlatego jest to takie wazne...

Decydujac sie na zastosowanie technik obiektowych w konkretnym programie musimy
miec¢ na uwadze fakt, iz oznacza to zdefiniowane przynajmniej kilku klas oraz instancji
tychze. Istotg OOPu jest poza tym odpowiednia komunikacja miedzy obiektami:
wymiana danych, komunikatow, podejmowanie dziatan zmierzajacych do realizacji
danego zdania, itp. Aby zapewni¢ odpowiedni przeptyw informacji, krystalizuje sie mniej
lub bardziej rozbudowana hierarchia obiektéw, kiedy to jeden obiekt zawiera w sobie
drugi, czyli jest jego witascicielem. To dos$¢ naturalne: wiekszo$¢ otaczajgcych nas
rzeczy mozna przeciez roztozy¢ na czesci, z ktérych sie sktadajg (gorzej moze byc¢ z
powtérnym ztozeniem ich w catos¢ :D).

Konsekwencje tego stanu rzeczy dla procesu tworzenie (i niszczenia) obiektéw sg raczej
oczywiste: kreacja obiektu zbiorczego musi pociggna¢ za sobg stworzenie jego
sktadnikéw; podobnie jest tez z jego destrukcja. Jasne, mozna te kwestie zostawic
kompilatorowi, ale paradoksalnie czyni to kod trudniejszym do zrozumienia, pisania i
konserwacji’>.

C++ oferuje nam na szczesScie mozliwos¢ podjecia odpowiednich dziatann zaréwno
podczas tworzenia obiektu, jak i jego niszczenia. Korzystamy z niej, wprowadzajac do
naszej klasy dwa specjalne rodzaje metod - sg to tytutowe konstruktory oraz
destruktory.

Konstruktor to specyficzna funkcja sktadowa klasy, wywotywana zawsze podczas
tworzenia nalezgcego don obiektu.

Typowym zadaniem konstruktora jest zainicjowanie pdl ich poczatkowymi wartosciami,
przydzielenie pamieci wykorzystywanej przez obiekt czy tez uzyskanie jakich$ kluczowych
danych z zewnatrz.

Deklaracja konstruktora jest w C++ bardzo prosta. Metoda ta nie zwraca bowiem zadnej
wartosci (nawet void!), a jej nazwa odpowiada nazwie zawierajgcej jq klasy. Wyglada
wiec mniej wiecej tak:

class CFoo
{
private:
// Jakies$ przyktadowe pole...
float m fPewnePole;
public:
// no i przyszla pora na konstruktora ;-)
CFoo () { m_fPewnePole = 0.0; }

73 Wbrew pozorom to racjonalna reguta: im wiecej jest rzeczy, ktére kompilator robi ,za plecami” programisty,
tym bardziej zagmatwany jest kod - choéby nawet byt krétszy.

Obickty 207

}i

Zazwyczaj tez konstruktor nie przyjmuje zadnych parametréw, co nie znaczy jednak, ze
nie moze tego czynic¢. Czesto sg to na przykiad startowe dane przypisywane do pdl:

class CSomeObject
{
private:
// Jakis$ rodzaj wspdirzednych
float m fX, m fY;

public:
// konstruktory
CSomeObject () {m fX =m fY = 0.0; }
CSomeObject (float £fX, float £fY) {m fX = fX; m fY = fY; }

bi

Posiadanie takiego parametryzowanego konstruktora ma pewien wptyw na sposdb
tworzenia obiektow, gdyz musimy wtedy podac dlan odpowiednie wartosci. Doktadniej
wyjasnimy to w nastepnym paragrafie.

Warto tez wiedzie¢, ze klasa moze posiadac kilka konstruktoréw - tak jak na powyzszym
przykfadzie. Dziatajg one wtedy podobnie jak funkcje przecigzane; decyzja, ktéry z nich
faktycznie zostanie wywotany, zalezy wiec od instrukcji tworzacej obiekt.

Z wiadomych wzgleddéw konstruktory czynimy zawsze metodami publicznymi.
Umieszczenie ich w sekcji private datoby bowiem dos¢ dziwny efekt: taka klasa nie
mogtaby by¢ normalnie instancjowana, tzn. niemozliwe bytoby utworzenie z niej obiektu
w zwykty sposodb.

OK, konstruktory majgq zatem niebagatelng rolg, jakg jest powotywania do zycia nowych
obiektéw. Doskonale jednak wiemy, ze nic nie jest wieczne i nawet najdtuzej dziatajacy
program kiedys$ bedzie musiat by¢ zakoniczony, a jego obiekty zniszczone. Tq niechlubng
robota zajmuje sie kolejny, wyspecjalizawany rodzaj metod - destruktory.

Destruktor jest specjalng metoda, przywotywang podczas niszczenia obiektu
zawierajacej jq klasy.

W naszych przyktadowych klasach destruktor nie miatby wiele do zrobienia - zgota nic,
poniewaz zaden z prezentowanych obiektéw nie wykonywat czynnosci, po ktérych
nalezatoby sprzatac. To sie wszak niedtugo zmieni, zatem poznanie destruktoréw z
pewnoscig nie bedzie szkodliwe :)

Postac destruktora jest takze niezwykle prosta i w dodatku zawsze identyczna. Funkcja ta
nie bierze bowiem zadnych parametrow (bo i jakie miataby brac¢?) i niczego nie zwraca.
Jej nazwa jest zas nazwa zawierajacej klasy poprzedzona znakiem tyldy (~).

Nazewnictwo destruktoréw to jedna z niewielu rzeczy, za ktére twércom C++ naleza sie
tegie baty :D O co doktadnie chodzi?

Otdz teoretycznie znak tyldy uzyskujemy za pomocg klawisza Shift oraz tego
znajdujacego sie w lewym goérnym rogu alfanumerycznej czesci klawiatury. Problem
polega na tym, ze po pierwszym jego uzyciu zadany znak nie pojawia sie na ekranie.
Dzieje sie tak dlatego, iz dawniej za jego pomocg uzyskiwato sie litery specyficzne dla
pewnych jezykoéw, z kreseczkami - np. $, é czy 0.

Fakt ten moznaby zignorowac, jako ze wiekszos¢ liter nie posiada swoich
~kreseczkowych” odpowiednikdéw, wiec wcisniecie ich klawiszy po znaku tyldy powoduje
pojawienie sie zaréwno ostawionego szlaczka, jak i samej litery. Do tej grupy nie nalezy
jednak litera C, ktdéra to przyjeto sie pisa¢ na poczatku nazw klas. Zamiast wiec zadanej
sekwencji ~c uzyskujemy... ¢!

Jak sobie z tym radzi¢? Ja nawyktem do dwukrotnego przyciskania klawisza tyldy, a

208 Podstawy programowania

nastepnie usuwania nadmiarowego znaku. Mozliwe jest tez uzycie jakiej$,neutralnej”
litery w miejsce C, a nastepnie skasowanie jej. Chyba najlepsze jest jednak wciskanie
klawisza tyldy, a nastepnie spacji - wprawdzie to dwa przycisniecia, ale w ich wyniku
otrzymujemy sam wezyk.

Klasa wyposazona w odpowiedni destruktor moze zatem jawic sie nastepujaco:

class CBar

{

public:
// konstruktor 1 destruktor
CBar () { /* czynnos$ci startowe */ } // konstruktor
~CBar () { /* czynnos$ci konhczace */ } // destruktor

}s

Jako ze jego forma jest Scisle okreslona, jedna klasa moze posiadac tylko jeden
destruktor.

Cos jeszcze?

Pola, zwykte metody oraz konstruktory i destruktory to zdecydowanie najczesciej
spotykane i chyba najwazniejsze elementy klas. Aczkolwiek nie jedyne; w dalszej czesci
tego kursu poznamy jeszcze sktadowe statyczne, funkcje przecigzajace operatory oraz
tzw. deklaracje przyjazni (naprawde jest cos takiego! :D). Poznane tutaj sktadniki klasy
beda jednak zawsze miaty najwieksze znaczenie.

Mozna jeszcze wspomniec, ze wewnatrz klasy (a takze struktury i unii) mozemy
zdefiniowac... kolejng klase! Takg definicje nazywamy wtedy zagniezdzong. Technika ta
nie jest stosowana zbyt czesto, wiec zainteresowani poczytajg o niej w MSDN :)
Podobnie zresztg jest z innymi typami, okreslanymi poprzez enum czy typedef.

Implementacja metod

Definicja klasy jest zazwyczaj tylko potowg sukcesu i nie stanowie wcale konca jej
okreslania. Dzieje sie tak przynajmniej wtedy, gdy umiescimy w niej jakie$ prototypy
metod, bez podawania ich kodu.

Uzupetnieniem definicji klasy jest wéwczas jej implementacja, a doktadniej owych
prototypowanych funkcji sktadowych. Polega ona rzecz jasna na wprowadzeniu instrukcji
sktadajacych sie na kod tychze metod w jednym z modutdéw programu.

Operacje te rozpoczynamy od dotaczenia do rzeczonego modutu pliku nagtéwkowego z
definicjg naszej klasy, np.:

#include "klasa.h"

Potem mozemy juz zajac sie kazdg z niezaimplementowanych metod; postepujemy tutaj
bardzo podobnie, jak w przypadku zwyktych, globalnych funkcji. Sktadnia metody
wyglada bowiem nastepujaco:

[typ wartosSci/void] nazwa klasy::nazwa metody([parametry]) [const]

{

instrukcje

}

Nowym elementem jest w niej nazwa klasy, do ktdérej nalezy dana funkcja. Wpisanie jej
jest konieczne: po pierwsze moéwi ona kompilatorowi, ze ma do czynienia z metodg klasy,
a nie zwyczajng funkcja; po drugie zas$ pozwala bezbtednie zidentyfikowaé macierzystg
klase danej metody.

Obickty 209

Miedzy nazwg klasy a nazwg metody widoczny jest operator zasiegu ::, z ktérym juz raz
mieliSmy przyjemno$¢ sie spotkaé. Teraz mozemy oglada¢ go w nowej, chociaz zblizonej
roli.

Zaleca sie, aby bloki metod tyczace sie jednej klasy umieszcza¢ w zwartej grupie, jeden

' pod drugim. Czyni to kod lepiej zorganizowanym.

Dwie jeszcze nowosci mozna zauwazy¢ w nagtdéwku metody. Zaznaczytem mianowicie
typ zwracanej wartosci lub void jako jego nieobowigzkowa czes¢. Faktycznie moze
ona by¢ zbedna - ale tylko w przypadku konstruktora tudziez destruktora klasy. Dla
zwyktych funkcji sktadowych musi ona nadal wystepowac.

Ostatnig rdoznica jest ewentualny modyfikator const, ktéry, jak pamietamy, czyni metode
statg. Jego obecnos$¢ w tym miejscu powinna sie pokrywac z wystepowaniem takze w
prototypie funkcji. Niezgodnos$¢ w tej kwestii zostanie srodze ukarana przez kompilator :)

Oczywiscie wiekszoscig implementacji metody bedzie blok jej instrukcji, tradycyjnie
zawarty miedzy nawiasami klamrowymi. Céz ciekawego mozna o nim powiedzie¢?
Bynajmniej niewiele: nie rézni sie prawie wcale od analogicznych blokéw globalnych
funkcji. Dodatkowo jednak ma on dostep do wszystkich pol i metod swojej klasy - tak,
jakby byty one jego zmiennymi albo funkcjami lokalnymi.

Wskaznik this

Z poziomu metody mamy dostep do jeszcze jednej, bardzo waznej i przydatnej
informacji. Chodzi tutaj o obiekt, na rzecz ktérego nasza metoda jest wywotywana;
modwigc scisle, o odwotanie (wskaznik) do niego.

Cdz to znaczy?... Przypomnijmy sobie zatem ktéras z przyktadowych klas,
prezentowanych na poprzednich stronach. Gdybysmy wywofali jaka$ jej metode,
przypusémy ze w ten sposoéb:

CFoo Foo;
Foo.JakasMetoda () ;

to wewnatrz bloku funkcji CFoo: : JakasMetoda () mogliby$Smy uzy¢é omawianego
wskaznika, by zyskac peten wglad w obiekt Foo! Czasem mdwi sie wiec, iz jest to
dodatkowy, specjalny parametr metody - wystepuje przeciez w jej wywofaniu.

Ow wyjatkowy wskaznik, o ktérym traktuje powyzszy opis, nazywa sie this (,to”).
Uzywamy go zawsze wtedy, gdy potrzebujemy odwotac sie do obiektu jako catosci, a nie
tylko do poszczegolnych pél. Najczesciej oznacza to przekazanie go do jakiej$ funkcji,
zwykle konstruktora innego obiektu.

Jako ze jest to wskaznik, a nie obiekt explicité, korzystanie z niego rézni sie nieco od
postepowania z ,normalnymi” zmiennymi obiektowymi. Wiecej na ten temat powiemy
sobie w dalszej czesci tego rozdziatu, zas catkowicie wyjasnimy w rozdziale 8, Wskazniki.

Dla dociekliwych zawsze jednak istnieje MSDN :]

Praca z obiektami

Nawet dziesigtki wySmienitych klas nie stanowig jeszcze gotowego programu, a jedynie
pewien rodzaj regut, wedle ktérych bedzie on realizowany. Wprowadzenie tych regut w
zycie wymaga przeto stworzenia obiektow na podstawie zdefiniowanych klas.

W C++ mamy dwa gtéwne sposoby ,obchodzenia” sie z obiektami; réznig sie one pod
wieloma wzgledami, inne jest tez zastosowanie kazdego z nich. Naturalng i rozsadng
kolejg rzeczy bedzie wiec przyjrzenie sie im obu :)

210 Podstawy programowania

Zmienne obiektowe

Pierwszg strategie znamy juz bardzo dobrze, uzywaliSmy jej bowiem niejednokrotnie nie
tylko dla samych obiektéw, lecz takze dla wszystkich innych zmiennych.

W tym trybie korzystamy z klasy dokfadnie tak samo, jak ze wszystkich innych typéw w
C++ - czy to wbudowanych, czy tez definiowanych przez nas samych (jak enunm'’y,
struktury itd.).

Deklarowanie zmiennych i tworzenie obiektow

Zaczynamy oczywiscie od deklaracji zmiennej, niebedacej dla nas zadng niespodzianka:
CFoo Obiekt;

PowyzZsza linijka kodu wykonuje jednak znacznie wiecej czynnosci, niz jest to widoczne
na pierwszy czy nawet drugi rzut oka. Ona mianowicie:

» wprowadza nam nowg zmienng Obiekt typu CFoo. Nie jest to rzecz jasna zadna
nowos¢, ale dla porzadku warto o tym przypomniec.

» tworzy w pamieci operacyjnej obszar, w ktérym bedg przechowywane pola
obiektu. To takze nie jest zaskoczeniem: pola, jako badZ co badz zmienne,
muszg rezydowac gdzies w pamieci, wiec robig to w identyczny sposob jak pola
struktur.

> wywotuje konstruktor klasy cFoo (czyli procedure cFoo: :CFoo ()), by dokonczyt
aktu kreacji obiektu. Po jego zakonczeniu mozemy uznac nasz obiekt za
ostatecznie stworzony i gotowy do uzycia.

Te trzy etapy sg niezbedne, abysmy mogli bez problemu korzystac z stworzonego
obiektu. W tym przypadku sg one jednak realizowane catkowicie automatycznie i nie
wymagajg od nas zadnej uwagi. Przekonamy sie pdzniej, ze nie zawsze tak jest i, co
ciekawe, wcale nie bedziemy tym zmartwieni :D

Musze jeszcze wspomnie¢ o pewnym drobnym wymaganiu, stawianym nam przez
kompilator, ktoremu chcemy podac wiersz kodu umieszczony na poczatku paragrafu.
Otéz klasa cFoo musi tutaj posiada¢ bezparametrowy konstruktor, albo tez nie miec
wcale procedury tego rodzaju (wtedy etap z jej wywotywaniem zostanie po prostu
pominiety).

W innym przypadku potrzebne jest jeszcze przekazanie odpowiednich parametréw
konstruktorowi, ktory takowych wymaga. Koniecznos$c¢ tg realizujemy podobng metoda,
co wywotanie zwyczajnej funkcji:

CFoo Foo (10, "jakis tekst"); // itp.

Czy nie przypomina nam to czegos?... Alez oczywiscie - identycznie postepowalismy z
taricuchami znakéw (czyli obiektami klasy std: :string), tworzgc je chociazby tak:

#include <string>
std::string strBuffer ("Jakie te obiekty sa proste! ;-)");

Widzimy wiec, ze znany nam i lubiany typ std: :string wyjatkowo podpada pod zasady
programowania obiektowego :)

Zonglerka obiektami

Zadeklarowane przed chwilg zmienne obiektowe sg w istocie takimi samymi zmiennymi,
jak wszystkie inne w programach C++. Mozliwe jest zatem przeprowadzanie nan
operacji, ktorym podlegaja na przyktad liczby catkowite, napisy czy tablice.

Obickty 211

Nie mam tu wcale na mysli jakich$ ztozonych manipulacji, wymagajacych
skomplikowanych algorytmodw, lecz catkiem zwyczajnych i codziennych, jak przypisanie
czy przekazywanie do funkcji.

Czy mozna powiedzie¢ cokolwiek ciekawego o tak trywialnych czynnosciach? Okazuje sie,
ze tak. Zwrocimy wprawdzie uwage na dos¢ oczywiste fakty z nimi zwigzane, lecz
znajomos¢ owych ,banatdw” okaze sie pézniej niezwykle przydatna. Przy okazji bedzie to
dobra okazja to powtdrzenia nabytej wiedzy, a tego przeciez nigdy dos¢ :D

Na uzytek dalszych wyjasnien zdefiniujemy sobie takg oto klase lampy:

class CLamp

{

private:
COLOR m Kolor; // kolor lampy
bool m bWlaczona; // czy lampa Swieci sie?
public:
// konstruktory
CLamp () { m Kolor = COLOR WHITE; }
CLamp (COLOR Kolor) { m Kolor = Kolor; }
F A
// metody
void Wlacz () { m bWlaczona = true; }
void Wylacz () { m bWlaczona = false; }
/) m e -
// metody dostepowe do pdl
COLOR Kolor () const { return m Kolor; }
bool Wlaczona () const { return m bWlaczona; }

b

Klasa ta jest znakomitg syntezg wszystkich wiadomosci przekazanych w tym
podrozdziale. Jezeli wiec nie rozumiesz do konca znaczenia ktéregos z jej elementéw,
powiniene$ powrdéci¢ do poswieconemu mu miejsca w tekscie.

Natychmiast tez zadeklarujemy i stworzymy dwa obiekty nalezace do naszej klasy:

CLamp Lampal (COLOR RED), LampaZ2 (COLOR GREEN) ;

Tym sposobem mamy wiec lampy, sztuk dwie, w kolorze czerwonym oraz zielonym.
Moglibysmy uzy¢ ich metod, aby je obie wiaczy¢; zrobimy jednak co$ dziwniejszego -
przypiszemy jedng lampe do drugiej:

Lampal = Lampa2;

A co to za dziwadto?”, stusznie pomyslisz. Taka operacja jest jednak catkowicie
poprawna i daje dos¢ ciekawe rezultaty. By jg dobrze zrozumieé¢ musimy pamieta¢, ze
Lampal oraz Lampa?2 S to przede wszystkim zmienne, zmienne ktore przechowujg
pewne wartosci. Fakt, ze tymi wartosciami sg obiekty, ktére w dodatku interpretujemy
w sposoOb prawie realny, nie ma tutaj wiekszego znaczenia.

Pomysimy zatem, jaki efekt spowodowatby ten kod, gdyby$smy zamiast klasy CLamp uzyli
jakiegos$ zwyktego, skalaranego typu?...

int nLiczbal = 10, nLiczba2 = 20;
nLiczbal = nLiczba2;

212 Podstawy programowania

Dawna wartosc zmiennej, do ktérej nastgpito przypisanie, zostataby zapomniana i obie
zmienne zawieratyby te sama liczbe.

Dla obiektéw rzecz ma sie identycznie: po wykonaniu przypisania zaréwno Lampal, jak i
Lampa?2 reprezentowac bedg obiekty zielonych lamp. Czerwona lampa, pierwotnie zawarta
W zmiennej Lampal, zostanie zniszczona’®, a w jej miejsce pojawi sie kopia zawartosci
zmiennej Lampa?2.

Nie bez powodu zaakcentowatem wyzej stowo ,kopia”. Obydwa obiekty sgq bowiem od
siebie catkowicie niezalezne. Jezeli wigczylibysmy jeden z nich:

Lampal.Wlacz () ;
drugi nie zmienitby sie wcale i nie obdarzyt nas swym wtasnym Swiattem.

Mozemy wiec podsumowac nasz wywod krotkg uwagg na temat zmiennych obiektowych:

Zmienne obiektowe przechowuje obiekty w ten sam sposob, w jaki czynig to zwykite
zmienne ze swoimi wartosciami. Identycznie odbywa sie tez przypisywanie’® takich
zmiennych - tworzone sg wtedy odpowiednie kopie obiektow.

Wspominatem, ze wszystko to moze wydawac sie naturalne, oczywiste i niepodwazalne.
Konieczne byto jednak doktadne wyjasnienie w tym miejscu tych z pozoru prostych
zjawisk, gdyz drugi sposob postepowania z obiektami (ktéry poznamy za moment)
wprowadza w tej materii istotne zmiany.

Dostep do sktadnikow

Kontrolowanie obiektu jako catosci ma rozliczne zastosowania, ale jednak znacznie
czesciej bedziemy uzywac tylko jego pojedynczych sktadnikéw, czyli pol lub metod.

Doskonale wiemy juz, jak sie to robi: z pomocg przychodzi nam zawsze operator
wytuskania - kropka (.). Stawiamy wiec go po nazwie obiektu, by potem wpisa¢ nazwe
wybranego elementu, do ktérego chcemy sie odwotaé.

Pamietajmy, ze posiadamy wtedy dostep jedynie do sktadowych publicznych klasy, do
ktorej nalezy obiekt.

Dalsze postepowanie zalezy juz od tego, czy naszg uwage zwrocilismy na pole, czy na
metode. W tym pierwszym, rzadszym przypadku nie odczujemy zadnej réznicy w
stosunku do pdl w strukturach - i nic dziwnego, gdyz nie ma tu rzeczywiscie najmniejszej
rozbieznosci :) Wywotanie metody jest natomiast tudzaco zblizone do uruchomienia
zwyczajnej funkcji - tyle ze w gre wchodzg tutaj nie tylko jej parametry, ale takze obiekt,
na rzecz ktérego dang metode wywotujemy.

Jak wiemy, jest on potem dostepny wewnatrz metody poprzez wskaznik this.

Niszczenie obiektow

Kazdy stworzony obiekt musi predzej czy pozniej zosta¢ zniszczony, aby mdc odzyskac
zajmowang przez niego pamiec i spokojnie zakonczy¢ program. Dotyczy to takze
zmiennych obiektowych, lecz dzieje sie to troche jakby za plecami programisty.

74 W petnym znaczeniu tego stowa - z wywotaniem destruktora i pézniejszym zwolnieniem pamieci.
75 To samo mozna zreszta powiedzie¢ o wszystkich operacjach podobnych do przypisania, tj. inicjalizacji oraz
przekazywaniu do funkcji.

Obickty 213

Zauwazmy bowiem, iz w zadnym z naszych dotychczasowych programow,
wykorzystujacych techniki obiektowe, nie pojawity sie instrukcje, ktére jawnie
odpowiadatyby za niszczenie stworzonych obiektow. Nie oznacza to bynajmniej, ze
zalegajg one w pamieci operacyjnej’®, zajmujac ja niepotrzebnie. Po prostu kompilator
sam dba o to, by ich destrukcja nastgpita w stosownej chwili.

A zatem kiedy jest ona faktycznie dokonywana? Nietrudno jest obmysli¢ odpowiedz na to
pytanie, jezeli przypomnimy sobie pojecie zasiegu zmiennej. PowiedzieliSmy sobie ongis,
iz jest to taki obszar kodu programu, w ktérym dana zmienna jest dostepna. Dostepna -
to znaczy zadeklarowana, z przydzielong dla siebie pamiecig, a w przypadku zmiennej
obiektowej - posiadajgca réwniez obiekt stworzony poprzez konstruktor klasy.

Moment opuszczenia zasiegu zmiennej przez punkt wykonania programu jest wiec
kresem jej istnienia. Jesli nieszczesna zmienna byta obiektowa, do akcji wkracza
destruktor klasy (jezeli zostat okreslony), sprzatajac ewentualny batagan po obiekcie i
niszczac go. Dalej nastepuje juz tylko zwolnienie pamieci zajmowanej przez zmienng i
jej kariera konczy sie w niebycie :)

Zapamietajmy wiec, ze:

Wyjscie programu poza zasieg zmiennej obiektowej niszczy zawarty w niej obiekt.

Podsumowanie

Prezentowane tu wiasnosci zmiennych obiektowych by¢ moze wygladajg na nieznane i
niespotkane wczesniej. Naprawde jednak nie sg niczym szczegdlnym, gdyz spotykalismy
sie z nimi od samego poczatku nauki programowania - w wiekszosci (z wytgczeniem
wytuskiwania skfadnikow) dotyczg one bowiem wszystkich zmiennych!

Teraz wszakze omowiliSmy je sobie nieco dokfadniej, koncentrujac sie przede wszystkim
na ,zyciu” obiektéw - chwilach ich tworzenia i niszczenia oraz operacjach na nich. Majac
ugruntowang te wiedze, bedzie nam tatwiej zmierzy¢ sie z drugim sposobem stosowania
obiektéw, ktoéry jest przedstawiony w nastepnym paragrafie.

Wskazniki na obiekty

Przyznam szczerze: miatem pewne watpliwosci, czy stuszne jest zajmowanie sie
wskaznikami na obiekty juz w tej chwili, bez dogtebnego przedstawienia samych
wskaznikéw. Te naruszong przeze mnie kolejnos¢ zachowataby pewnie wiekszosé
autorow kursow czy ksigzek o C++.

Ja jednak postawitem sobie za cel nauczenie czytelnika programowania w jezyku C++ (i
to w konkretnym celu!), nie zas samego jezyka C++. Narzuca to nieco inny porzadek
tresci, skoncentrowany w pierwszej kolejnosci na najpotrzebniejszych zagadnieniach
praktycznych, a dopiero potem na pozostatych mozliwosciach jezyka. Do tych ,kwestii
pierwszej potrzeby” niewatpliwie nalezy zaliczy¢ idee programowania obiektowego,
wskazniki spychajac tym samym na nieco dalszy plan.

Jednoczesnie jednak nie moge przy okazji OOPu poming¢ milczeniem tematu wskaznikéw
na obiekty, ktore sg praktycznie niezbedne do poprawnego konstruowania aplikacji z
wykorzystaniem klas. Dlatego tez pojawia sie on wiasnie teraz; mimo wszystko ufam, ze
zrozumienie go nie bedzie dla ciebie wielkim kiopotem.

Po tak ,zachecajagcym” wstepie nie bede zdziwiony, jezeli w tej chwili duza czesc
czytelnikdw zakonczy lekture ;-) Skrycie wierze jednak, ze ambitnym kandydatom na
programistow gier zadne wskazniki nie bedg straszne, a juz na pewno nie przelekng sie
ich obiektowych odmian. Nie bedziemy zatem traci¢ wiecej czasu oraz miejsca i
natychmiast przystgpimy do dzieta.

76 Zjawisko to nazywamy wyciekiem pamieci i jest ono wysoce niepozadane, za$ interesowa nas bedzie
bardziej w rozdziale traktujgcym o wskaznikach.

214 Podstawy programowania

Deklarowanie wskaznikow i tworzenie obiektow

Od czegbz to mielibySmy zacza¢, jezeli nie od jakiej$ zmiennej? W koncu bez zmiennych
nie ma obiektow, a bez obiektéw nie ma programowania (obiektowego :D). Zadeklarujmy
wiec na poczatek taka oto dziwng zmiennag:

CFoo* pFoo;

Wszystko bytoby tu znajome, gdyby nie ta gwiazdka przy nazwie klasy CFoo. To wtasnie
ona sprawia, ze pFoo nie jest zmienng obiektowgq, ale wiasnie wskaznikiem na obiekt,
w tym przypadku obiekt klasy CFoo.

To wazne stwierdzenie - pFoo nie jest tutaj obiektem, on moze co najwyzej na taki obiekt
wskazywac. Innymi stowy, moze by¢ jedynie odwotaniem do obiektu, potaczeniem z
nim - ale zmienna ta nie bedzie nigdy sama przechowywa¢ zadnych danych, nalezacych
do owego obiektu. Bedzie raczej czyms$ w rodzaju pozycji w spisie tresci, odnoszacej sie
do rozdziatu w ksigzce.

Niniejsza linijka kodu nie tworzy wiec zadnego obiektu, a jedynie przygotowuje nan
miejsce w programie. Wiasciwa kreacja musi nastgpi¢ pozniej i wyglada nieco inaczej niz
to, do czego przywyklismy:

pFoo = new CFoo;

Stéwko new (,nowy”, niektdrzy kazg je zwac operatorem) stuzy wtasnie do utworzenia
obiektu. Wykonuje ono prawie wszystkie czynnosci potrzebne do realizacji tego procesu,
a wiec przydziela odpowiednig ilo$¢ pamieci dla naszego obiektu i wywotuje konstruktor
jego klasy.

Czym zatem zastuguje sobie na odrebnos$c¢? Podstawowa rdznicg jest to, ze tworzony
obiekt jest umieszczany w dowolnym miejscu pamieci, a nie w ktdrejs z naszych
zmiennych (a juz na pewno nie w pFoo!). Nie oznacza to jednakze, iz nie mamy o nim
zadnych informacji i nie mozemy z niego normalnie korzystaé. Otdz pFoo staje sie tutaj
tacznikiem z naszym odlegtym tworem; za pos$rednictwem tego wskaznika mamy
bowiem petng swobode dostepu do stworzonego obiektu. Jak sie wkrotce przekonasz,
mozliwe jest przy jego pomocy odwotywanie sie do sktadnikéw obiektu (pél i metod) w
niemal taki sam sposdb, jak w przypadku zmiennych obiektowych.

wskaznik %a%

Schemat 18. Wskaznik na obiekt jest pewnego rodzaju kluczem do niego

obiekt

Jeden dla wszystkich, wszystkie do jednego

Ogromne i wazne rdznice ujawniajg sie dopiero podczas manipulowania kilkoma takimi
wskaznikami. Mam tu na mysli przede wszystkim instrukcje przypisania, rozwazane juz
doktadnie dla zmiennych obiektowych. Teraz podobne eksperymenta bedziemy
dokonywali na wskaznikach; zobaczymy, dokad nas one zaprowadza...

Do naszych celdéw po raz kolejny spozytkujemy zdefiniowang w poprzednim paragrafie
klase cLamp. Zaczniemy jednak od zadeklarowania wskaznika na obiekt tej klasy z
jednoczesnym stworzeniem obiektu lampy:

Obickty 215

CLamp* plLampal = new CLamp;

Przypominam, iz w ten sposdb powotaliSmy do zycia obiekt, ktéry zostat umieszczony
gdzies w pamieci, a wskaznik pLampal jest tylko odwotaniem do niego.

Dalszej czesci nietrudno sie domysle¢. Wprowadzamy sobie zatem drugi wskaznik i
przypisujemy don ten pierwszy, o tak:

CLamp* pLampa?2 = pLampal;

Mamy teraz dwa takie same wskazniki... Czy to znaczy, iz posiadamy takze pare
identycznych obiektéw?

Otéz nie! Nasza lampa nadal egzystuje samotnie, bowiem skopiowali$my jedynie samo
odwolanie do niej. Obecnie uzycie zaréwno wskaznika pLampal, jak i pLampa2 bedzie
uzyskaniem dostepu do jednego i tego samego obiektu.

To znaczaca modyfikacja w stosunku do zmiennych obiektowych. Tam kazda
reprezentowata i przechowywata swoj wtasny obiekt, a instrukcje przypisywania miedzy
nimi powodowaty wykonywanie kopii owych obiektow.

Tutaj natomiast mamy tylko jeden obiekt, za to wiele drog dostepu do niego, czyli
wskaznikoéw. Przypisywanie miedzy nimi dubluje jedynie te drogi, zas sam obiekt
pozostaje niewzruszony.

Podsumowujac:

Wskaznik na obiekt jest jedynie odwotaniem do niego. Wykonanie przypisania do
wskaznika moze wiec co najwyzej skopiowa¢ owo odwotanie, pozostawiajgc docelowy
obiekt catkowicie niezmienionym.

Mdwiac obrazowo, uzyskiwanie dodatkowego wskaznika do obiektu jest jak wyrobienie
sobie dodatkowego klucza do tego samego zamka. Cho¢bysmy mieli ich caty brelok,
wszystkie bedg otwieraty tylko jedne i te same drzwi.

wskaznik wskaznik

wskaznik wskaznik

Schemat 19. Mozemy miec wiele wskaznikéw do tego samego obiektu

Dostep do sktadnikow

Caty czas napomykam, ze wskaznik jest pewnego rodzaju taczem do obiektu.
Wypadatoby wiec wresznie potaczyc¢ sie z tym obiektem, czyli uzyska¢ dostep do jego
sktadnikéw.

Operacja ta nie jest zbytnio skomplikowana, gdyz by jg wykonaé postuzymy sie znang juz
koncepcjg operatora wyluskania. W przypadku wskaznikéw nie jest nim jednak
kropka, ale strzatka (->). Otrzymujemy ja, wpisujac kolejno dwa znaki: mysinika oraz
symbolu wiekszosci.

Aby zatem wigczy¢ naszg lampe, wystarczy wywotac jej odpowiednig metode przy
pomocy ktéregos$ z dwdch wskaznikow oraz poznanego wiasnie operatora:

216 Podstawy programowania

plLampal->Wlacz () ;

Mozemy takze sprawdzié, czy drugi wskaznik istotnie odwotuje sie do tego samego
obiektu co pierwszy. Wystarczy wywotac za jego pomocg metode Wlaczona () :

plampa2->Wlaczona () ;
Nie bedzie niespodziankg fakt, iz zwrdci ona wartos¢ true.

Zbierzmy wiec w jednym miejscu informacje na temat obu operatoréw wytuskania:

Operator kropki (.) pozwala uzyska¢ dostep do sktadnikéw obiektu zawartego w
zmiennej obiektowej.

Operator strzalki (->) wykonuje analogiczng operacje dla wskaznika na obiekt.

Jak najlepiej zapamietac i rozrézniac te dwa operatory? Proponuje prosty sposéb:

> pamietamy, ze zmienna obiektowa przechowuje obiekt jako swojg warto$¢. Mamy
go wiec dostownie ,na wyciagniecie reki” i nie potrzebujemy zbytnio sie wysilag,
aby uzyskac dostep do jego sktadnikow. Stuzacy temu celowi operator moze wiec
by¢ bardzo maty, tak maty jak... punkt :)

> kiedy zas$ uzywamy wskaznika na obiekt, wtedy nasz byt jest daleko stad.
Potrzebujemy wowczas odpowiednio dtuzszego, dwuznakowego operatora, ktory
dodatkowo wskaze nam (strzatka!) wtasciwa droge do poszukiwanego obiektu.

Takie wyjasnienie powinno by¢ w miare pomocne w przyswojeniu sobie znaczenia oraz
zastosowania obu operatoréw.

Niszczenie obiektow

Wszelkie obiekty kiedy$ nalezy zniszczy¢; czynnos¢ ta, oprocz wyrabiania dobrego
nawyku sprzatania po sobie, zwalnia pamie¢ operacyjng, ktore te obiekty zajmowaty. Po
zniszczeniu wszystkich mozliwe jest bezpieczne zakonczenie programu.

Podobnie jak tworzenie, tak i niszczenie obiektow dostepnych poprzez wskazniki nie jest
wykonywane automatycznie. Wymagana jest do tego odrebna instrukcja - na szczescie
nie wyglada ona na wielce skomplikowang i przedstawia sie nastepujgco:

delete pFoo; // pFoo musi tu by¢ wskaznikiem na istniejacy obiekt

delete (,usun”, podobnie jak new jest uwazane za operator) dokonuje wszystkich
niezbednych czynnosci potrzebnych do zniszczenia obiektu reprezentowanego przez
wskaznik. Wywotuje wiec jego destruktor, a nastepnie zwalnia pamiec¢ zajetg przez
obiekt, ktory konczy wtedy definitywnie swoje istnienie.

To tyle jesli chodzi o zyciorys obiektu. Co sie jednak dzieje z samym wskaznikiem? Ot6z
nadal wskazuje on na miejsce w pamieci, w ktorym jeszcze niedawno egzystowat nasz
obiekt. Teraz jednak juz go tam nie ma; wszelkie préby odwotania sie do tego obszaru
skonczg sie wiec btedem, zwanym naruszeniem zasad dostepu (ang. access violation).
Pamietajmy zatem, iz:

Nie nalezy probowac uzyskac dostepu do zniszczonego (lub niestworzonego) obiektu
poprzez wskaznik na niego. Spowoduje to bowiem btad wykonania programu i jego
awaryjne zakonczenie.

Musimy by¢ takze swiadomi, ze w momencie usuwania obiektu traci waznos¢ nie tylko
ten wskaznik, ktorego uzyliSmy do dokonania aktu zniszczenia, ale tez wszystkie inne

Obickty 217

wskazniki odnoszace sie do tego obiektu! To zresztg naturalne, skoro co do jednego
wskazujg one na tg sama, nieaktualng juz lokacje w pamieci.

Stosowanie wskaznikow na obiekty

Wczytujac sie w powyzszy opis i spogladajac nan krytycznym okiem mozna uznag, ze
stosowanie wskaznikow na obiekty jest tylko niepotrzebnym zawracaniam sobie glowy i
utrudnianiem zycia. Nie dos¢, ze trzeba samemu dbac o tworzenie i niszczenie obiektow,
to jeszcze nasz program moze sie niechybnie ,wysypac”, jesli sprobujemy odwotac sie do
nieistniejacego obiektu. I gdzie sg te obiecane korzysci?...

Taka ocena jest naturalnie mocno niesprawiedliwa, a moim zadaniem jest przekonanie
cie, iz wskazniki sg nie tylko przydatne w programowaniu obiektowym, ale wydajq sie
wrecz niezbedne.

Przypomnijmy sobie najpierw, c6z ciekawego powiedzieliSmy o obiektach na samych
poczatku rozdziatu. Mianowicie wyjasniliSmy sobie, ze sg to drobne cegietki, z ktérych
programista buduje swojg aplikacje.

To catkiem dobre poréwnanie, gdyz kryje w sobie jeszcze jeden ukryty sens: niewiele
mozna zrobic¢ z zestawem cegiet, jezeli nie bedziemy dysponowali jakim$ spoiwem,
taczacym je w calos¢. Role tacznikdw spetniajg wtasnie wskazniki.

Kazdy obiekt, aby by¢ uzytecznym, powinien by¢ jako$ potaczony z innym obiektem. To
w zasadzie dosy¢ oczywista prawda, jednak na poczatku mozna sobie nie catkiem zdawac
Z niej sprawe.

Takie relacje najprosciej realizowac¢ za pomocg wskaznikow. Sposob, w jaki taczg one
obiekty, jest bardzo prosty: otéz jeden z nich powinien posiadac pole, bedace
wskaznikiem na drugi obiekt. Ow drugi koniec facza moze, jak wiemy, istnie¢ w
dowolnym miejscu pamieci, co wiecej - mozliwe jest, by ,dochodzit” do niego wiecej niz
jeden wskaznik! W ten sposéb obiekty mogg bra¢ udziat w dowolnej liczbie wzajemnych
relacji.

obiekt

obiekt

Schemat 20. Dziatanie aplikacji opiera sie na zaleznosciach miedzy obiektami

Tak to wyglada w teorii, ale poniewaz jeden przykfad wart jest tysigca stéw, najlepiej
bedzie, jezeli przyjrzysz sie takowemu przyktadowi. Przypusémy wiec, ze jesteSmy w
trakcie pisania gry podobnej do stawnego Lode Runnera: nalezy w niej zebrac¢ wszystkie
przedmioty znajdujqce sie na planszy (zazwyczaj sa to monety albo inne bogactwa), aby
awansowac do kolejnego etapu. Jakie obiekty i jakie zaleznosci nalezatoby w tym
przypadku stworzy¢?

Najlepiej zacza¢ od tego najwiekszego i najwazniejszego, grupujacego wszystkie inne -
na przyktad samego etapu. Podrzednym w stosunku do niego bedzie obiekt gracza oraz,
rzecz jasna, pewna ilo$¢ obiektow monet (zapewne umieszczonych w tablicy albo innym
tego rodzaju pojemniku). Do tego dodamy pewnie jeszcze kilku wrogdw; ostatecznie
nasz prosty model przedstawiac sie bedzie nastepujaco:

218 Podstawy programowania

s ")
racZ =
gracz| oneta e

moneta wrog

moneta Wwrog

i
b

—

Schemat 21. Fragment przykladowego diagramu powiazan obiektow w grze

Dzieki temu, Ze obiekt etapu posiadg dostep (naturalnie poprzez wskaznik) do obiektow
gracza czy tez wrogéw, moze chociazby uaktualniac ich pozycje na ekranie w odpowiedzi
na wciskanie klawiszy na klawiaturze lub uptyw czasu. Odpowiednie rozkazy bedzie
zapewne otrzymywat ,z géry”, tj. od obiektu nadrzednego wobec niego -
najprawdopodobniej jest to gtdwny obiekt gry.

W podobny sposdb, o wiele naturalniejszy niz w programowaniu strukturalnym,
projektujemy model obiektowy kazdego w zasadzie programu. Nie musimy juz rozdzielaé
swoich koncepcji na dane i kod, wystarczy ze stworzymy odpowiednie klasy oraz obiekty i
zapewnimy powigzania miedzy nimi. Rzecz jasna, z wykorzystaniem wskaznikow na
obiekty :)

Podsumowanie

Konczacy sie rozdziat byt nieco krotszy niz pare poprzednich. Podejrzewam jednak, ze
przebrniecie przez niego zajeto ci moze nawet wiecej czasu i byto o wiele trudniejsze.
Wszystko dlatego ze poznawalismy tutaj zupetnie nowg koncepcje programowania, ktéra
wprawdzie ideowo jest o wiele blizsza cziowiekowi niz techniki strukturalne, ale w zamian
wymaga od razu przyswojenia sobie sporej porcji nowych wiadomosci i poje¢. Nie martw
sie zatem, jesli nie byly one dla ciebie catkiem jasne; zawsze przeciez mozesz wrécic¢ do
trudniejszych fragmentow tekstu w przysztosci (ponowne przeczytanie catego rozdziatu
jest naturalnie réwniez dopuszczalne :D).

Nasze spotkanie z programowaniem obiektowym bedziemy zreszta kontynuowali w

nastepnym rozdziale, w ktérym to ostatecznie wyjasni sie, dlaczego jest ono takie
wspaniate ;)

Pytania i zadania

Nowopoznane, arcywazne zagadnienie wymaga oczywiscie odpowiedniego powtdrzenia.
Nie krepuj sie wiec i odpowiedz na ponizsze pytania :)

Pytania

1. Czym sg obiekty i jaka jest ich rola w programowaniu z uzyciem technik OOP?
2. Jakie etapy obejmuje wprowadzenie do programu nowej klasy?

Obickty 219

3. Jakie sktadniki mozemy umiesci¢ w definicji klasy?

4. (Trudne) Ktére sktadowe klasa posiada zawsze, niezaleznie od tego czy je
zdefiniujemy, czy nie?

5. W jaki sposob mozemy z wnetrza metody uzyskacé dostep do obiektu, na rzecz
ktérego zostata ona wywotana?

6. Czym rdzni sie uzycie wskaznika na obiekt od zmiennej obiektowej?

7. Jak odrebne obiekty w programie mogg ,wiedzie¢” o sobie nawzajem i
przekazywa¢ miedzy sobga informacje?

Cwiczenia
1. Zdefiniuj prostg klase reprezentujaca ksigzke.

2. Napisz program podobny do przykfadu DegreesCalc, ale przeliczajacy miedzy
jednostkami informacji (bajtami, kilobajtami itd.).

