
6
OBIEKTY

Łyżka nie istnieje…

Neo w filmie „Matrix”

Lektura kilku ostatnich rozdziałów dała ci spore pojęcie o programowaniu w języku C++,
ze szczególnym uwzględnieniem sposób realizacji w nim pewnych algorytmów oraz
użycia takich konstrukcji jak pętle czy instrukcje warunkowe. Zapoznałeś się także z
możliwościami, jakie oferuje ten język w zakresie manipulowania bardziej złożonymi
porcjami informacji.

Wreszcie, miałeś sposobność realizacji konkretnej aplikacji - poczynając od jej
zaprojektowania, a na kodowaniu i ostatecznej kompilacji skończywszy. Wierzę, iż samo
programowanie było wtedy raczej zrozumiałe - chociaż nie pisaliśmy już wówczas
trywialnego kodu.
Podejrzewam jednak, że wstępne konstruowanie programu nosiło dla ciebie znamiona co
najmniej dziwnej czynności; wspominałem o tym zresztą w podsumowaniu całego
naszego projektu, obiecując pokazanie w niniejszym rozdziale znacznie przyjaźniejszej,
naturalniejszej i, jak sądzę, przyjemniejszej techniki programowania. Przyszedł czas, by
spełnić tę obietnicę.

Zatem nie tracąc czasu, zajmijmy się tym wyczekiwanym tęsknie zagadnieniem :)

Przedstawiamy klasy i obiekty
Poznamy teraz sposób kodowania znany jako programowanie obiektowe (ang. object-
oriented programming - OOP), które spełnia wszystkie niedawno złożone przeze mnie
obietnice. Nie dziwi więc, iż jest to najszerzej stosowana przez dzisiejszych programistów
technika projektowania i implementacji programów.

Nie zawsze jednak tak było; myślę zatem, że warto przyjrzeć się drodze, jaką pokonał
fach o nazwie programowanie komputerów - od początku aż do chwili obecnej. Dzięki
temu będziemy mogli lepiej docenić używane przez siebie narzędzia, z C++ na czele :)

Skrawek historii
Pomysł programowania komputerów jest nawet starszy niż one same. Zanim bowiem
powstały pierwsze maszyny zdolne do wykonywania sekwencji obliczeń, istniało już wiele
teoretycznych modeli, wedle których miałyby funkcjonować64.

Mało zachęcające początki
Nie dziwi więc, iż pojawienie się „mózgów elektronowych”, jak wtedy nazywano
komputery, na wielu uniwersytetach w latach 50. wywołało spory entuzjazm. Mnóstwo

64 Najbardziej znanym jest maszyna Turinga.

Podstawy programowania 192

ludzi zaczęło zajmować się oprogramowywaniem tych wielkich i topornych urządzeń. Była
to praca na wskroś heroiczna - zważywszy, że „pisanie” programów oznaczało wtedy
odpowiednie dziurkowanie zwykłych papierowych kart i przepuszczanie je przez
wnętrzności maszyny. Najmniejszy błąd zmuszał do uruchamiania programu od początku,
co zazwyczaj skutkowało trafieniem na koniec kolejki oczekujących na możliwość
skorzystania z drogocennej mocy obliczeniowej.

Fotografia 1. ENIAC - pierwsza maszyna licząca nazwana komputerem, skonstruowana w

1946 roku. Był to doprawdy cud techniki - przy poborze mocy równym zaledwie 130 kW mógł
wykonać aż 5 tysięcy obliczeń na sekundę (ok. milion razy mniej niż współczesne komputery).

(zdjęcie pochodzi z serwisu Internetowe Muzeum Starych Programów i Komputerów)

Zwyczaj jej starannego wydzielania utrzymał się przez wiele lat, choć z czasem techniki
programistyczne uległy usprawnieniu. Kiedy koderzy (a właściwie hakerzy, bo w tych
czasach głównie maniacy zajmowali się komputerami) dostali wreszcie do dyspozycji
monitory i klawiatury (prymitywne i prawie w ogóle niepodobne do dzisiejszych cacek),
programowanie zaczęło bardziej przypominać znajomą nam czynność i stało się nieco
łatwiejsze. Jednakże określenie „przyjazne” było jeszcze zdecydowanie przedwczesne :)
Zakodowanie programu oznaczało najczęściej konieczność wklepywania długich rzędów
numerków, czyli jego kodu maszynowego. Dopiero później pojawiły się bardziej
zrozumiałe, lecz nadal niezbyt przyjazne języki asemblera, w których liczbowe
instrukcje procesora zastąpiono ich słownymi odpowiednikami. Cały czas było to jednak
operowanie na bardzo niskim poziomie abstrakcji, ściśle związanym ze sprzętem.
Listingi były więc mało czytelne i podobne np. do poniższego:

mov ah, 4Ch
int 21h

Przyznasz chyba, że odgadnięcie działania tegoż kodu wymaga nielichych zdolności
profetycznych65 ;)

Wyższy poziom
Nie dziwi więc, że kiedy tylko potencjał komputerów na to pozwolił (a stało się to na
początku lat 70.), powstały znacznie wygodniejsze w użyciu języki programowania
wysokiego poziomu (algorytmiczne), zwane też językami drugiej generacji.
Zawierały one, tak oczywiste dla nas, lecz wówczas nowatorskie, konstrukcje w rodzaju
instrukcji warunkowych czy pętli. Nie były też zależne od konkretnej platformy
sprzętowej, co czyniło programy w nich napisane wielce przenośnymi. Tak narodziło się
programowanie strukturalne.

65 Nie robi on jednak nic szczególnego, gdyż po prostu kończy działanie programu :) O dziwo, te dwie linijki
powinny funkcjonować na prawie wszystkich dzisiejszych pecetach z systemami DOS lub Windows!

http://386.bajo.pl/

Obiekty 193

W tym okresie stworzone zostały znane i używane do dziś języki - Pascal, C czy BASIC.
Programowanie stało się łatwiejsze, bardziej dostępne i popularniejsze - również wśród
niewielkiej jeszcze grupy użytkowników domowych komputerów. Pociągnęło to za sobą
także rozwój oprogramowania: pojawiły się systemy operacyjne w rodzaju Unixa, DOSa
czy Windows (wszystkie napisane w C), rosła też liczba przeznaczonych dlań aplikacji.
Chociaż niekiedy pisano jeszcze drobne fragmenty kodu w asemblerze, ogromna
większość projektów była już realizowana wedle zasad programowania strukturalnego.

Można w zasadzie powiedzieć, że z posiadanymi umiejętnościami sytuujemy się właśnie
w tym punkcie historii. Wprawdzie używamy języka C++, ale dotychczas korzystaliśmy
jedynie z tych jego możliwości, które były dostępne także w C.
To się oczywiście wkrótce zmieni :)

Skostniałe standardy
Czasy świetności metod programowania strukturalnego trwały zaskakująco długo, bo aż
kilkanaście lat. Może to się wydawać dziwne - szczególnie w odniesieniu do,
przywoływanego już niejednokrotnie, wyjątkowo sztucznego projektowania kodu przy
użyciu tychże metod. Jeżeli dodamy do tego fakt, iż już wtedy istniała całkiem pokaźna
liczba języków trzeciej generacji, pozwalających na programowanie obiektowe66,
sytuacja jawi się wręcz niedorzecznie. Dlaczego koderzy nie porzucili swych wysłużonych
i topornych instrumentów przez tak długi okres?…

„Winowajcą” jest głównie język C, który zdążył przez ten czas urosnąć do rangi niemal
jedynego słusznego języka programowania. Jako że był on narzędziem, którego używano
nawet do pisania systemów operacyjnych, istniało mnóstwo jego kompilatorów oraz
ogromna liczba stworzonych w nim programów. Zmiana tak silnie zakorzenionego
standardu była w zasadzie niemożliwa, toteż przez wiele lat nikt się jej nie podjął.

Obiektów czar
Aż tu w 1983 roku duński programista Bjarne Stroustrup zaprezentował stworzony przez
siebie język C++. Miał on niezaprzeczalną zaletę (język, nie jego twórca ;D): łączył
składnię C (przez co zachowywał kompatybilność z istniejącymi aplikacjami) z
możliwościami programowania zorientowanego obiektowo.
Fakt ten sprawił, że C++ zaczął powoli wypierać swego poprzednika, zajmując czołowe
miejsce wśród używanych języków programowania. Zajmuje je zresztą do dziś.

Obiektowych następców dorobiły się też dwa pozostałe języki strukturalne. Pascal
wyewoluował w Object Pascala, który jest podstawą dla popularnego środowiska Delphi.
BASIC’iem natomiast zaopiekował się Microsoft, tworząc z niego Visual Basic; dopiero
jednak ostatnie wersje tego języka (oznaczone jako .NET) można nazwać w pełni
obiektowymi.

Co dalej?
Zaraz, w takim razie programowanie obiektowe i nasz ulubiony język C++ mają już z
górą dwadzieścia lat - w świecie komputerów to przecież cały eon! Czy zatem technologii
tej nie czeka rychły schyłek?…

Możnaby tak przypuszczać, gdyby istniała inna, równorzędna wobec OOPu technika
programowania. Dotychczas jednak nikt nie wynalazł niczego takiego i nie zanosi się na
to w przewidywalnej przyszłości :) Programowanie obiektowe ma się dzisiaj co najmniej

66 Były to na przykład LISP albo Smalltalk.

Podstawy programowania 194

tak samo dobrze (a nawet znacznie lepiej), jak w chwili swego powstania i trudno sobie
nawet wyobrazić jego ewentualny zmierzch.

Naturalnie, zawsze można się z tym nie zgodzić :) Niektórzy przekonują nawet, iż istnieje
coś takiego jak języki czwartej generacji, zwane również deklaratywnymi. Zaliczają do
nich na przykład SQL (język zapytań do baz danych) czy XSL (transformacje XML).
Nie da się jednak ukryć faktu, że obszar zastosowań każdego z tych języków jest bardzo
specyficzny i ograniczony. Jeżeli bowiem kiedykolwiek będzie możliwe tworzenie
zwykłych aplikacji przy pomocy następców tychże języków, to lada dzień zbędni staną się
także sami programiści ;))

Pierwszy kontakt
Nadeszła wreszcie pora, kiedy poznamy podstawowe założenia osławionego
programowania obiektowego. Być może dowiemy się też, dlaczego jest takie wspaniałe ;)

Obiektowy świat
Z nazwy tej techniki programowania nietrudno wywnioskować, że jej najważniejszym
pojęciem jest obiekt. Tworząc obiekty i definiując ich nowe rodzaje można zbudować
dowolny program.

Wszystko jest obiektem
Ale czym w istocie jest taki obiekt? W języku potocznym słowo to może przecież oznaczać
w zasadzie wszystko. Obiektem można nazwać lampę stojącą na biurku, drzewo za
oknem, sąsiedni dom, samochód na ulicy, a nawet całe miasto. Jakkolwiek czasem będzie
to dość dziwny sposób nazewnictwa, ale jednak należy go uznać za całkowicie
dopuszczalny.

Rysunek 3, 4 i 5. Obiekty otaczają nas z każdej strony

Myśląc o programowaniu, znaczenie terminu ‘obiekt’ nie ulega zasadniczej zmianie. Także
tutaj obiektem może być praktycznie wszystko. Różnica polega jednak na tym, iż
programista występuje wówczas w roli stwórcy, pana i władcy wykreowanego „świata”.
Wprowadzając nowe obiekty i zapewniając współpracę między nimi, tworzy działający
system, podporządkowany realizacji określonego zadania.

Zanotujmy więc pierwsze spostrzeżenie:

Obiekt może reprezentować cokolwiek. Programista wykorzystuje obiekty jako cegiełki,
z których buduje gotowy program.

Obiekty 195

Określenie obiektu
Przed chwilą wykazaliśmy, że programowanie nie jest wcale tak oderwane od
rzeczywistości, jak się powszechnie sądzi :D Faktycznie techniki obiektowe powstały
właśnie dlatego, żeby przybliżyć nieco kodowanie do prawdziwego świata.

O ile jednak w odniesieniu do niego możemy swobodnie używać dość enigmatycznego
stwierdzenia, że „obiektem może być wszystko”, o tyle programowanie nie znosi przecież
żadnych nieścisłości. Obiekt musi więc dać się jasno zdefiniować i w jednoznaczny sposób
reprezentować w programie.
Wydawać by się mogło, iż to duże ograniczenie. Ale czy tak jest naprawdę?…

Wiele wskazuje na to, że nie. Pojęcie obiektu w rozumieniu programistycznym jest
bowiem na tyle elastyczne, że mieści w sobie niemal wszystko, co tylko można sobie
wymarzyć. Mianowicie:

Obiekt składa się z opisujących go danych oraz może wykonywać ustalone czynności.

Podobnie jak omówione niedawno struktury, obiekty zawierają pola, czyli zmienne. Ich
rolą jest przechowywanie pewnych informacji o obiekcie - jego charakterystyki.
Oczywiście, liczba i typy pól mogą być swobodnie definiowane przez programistę.
Oprócz tego obiekt może wykonywać na sobie pewne działania, a więc uruchamiać
zaprogramowane funkcje; nazywamy je metodami albo funkcjami składowymi.
Czynią one obiekt tworem aktywnym - nie jest on jedynie pojemnikiem na dane, lecz
może samodzielnie nimi manipulować.

Co to wszystko oznacza w praktyce? Najlepiej będzie, jeżeli prześledzimy to na
przykładzie.
Załóżmy, że chcemy mieć w programie obiekt jadącego samochodu (bo może piszemy
właśnie grę wyścigową?). Ustalamy więc dla niego pola, które będą go określały, oraz
metody, które będzie mógł wykonywać.
Polami mogą być widoczne cechy auta: jego marka czy kolor, a także te mniej rzucające
się w oczy, lecz pewnie ważne dla nas: długość, waga, aktualna prędkość i maksymalna
szybkość. Natomiast metodami uczynimy czynności, jakie nasz samochód mógłby
wykonywać: przyspieszenie, hamowanie albo skręt.
W ten oto prosty sposób stworzymy więc komputerową reprezentację samochodu. W
naszej grze moglibyśmy mieć wiele takich aut i nic nie stałoby na przeszkodzie, aby
każde miało np. inny kolor czy markę. Kiedy zaś dla jednego z nich wywołalibyśmy
metodę skrętu czy hamowania, zmieniłaby się prędkość tylko tego jednego samochodu
- zupełnie tak, jakby kierowca poruszył kierownicą lub wcisnął hamulec.

Schemat 16. Przykładowy obiekt samochodu

W idei obiektu widać zatem przeciwieństwo programowania strukturalnego. Tam
musieliśmy rozdzielać dane programu od jego kodu, co przy większych projektach
prowadziłoby do sporego bałaganu. W programowaniu obiektowym jest zgoła odwrotnie:
tworzymy niewielkie cząstki, będące połączeniem informacji oraz działania. Są one

Podstawy programowania 196

niemal „namacalne”, dlatego łatwiej jest nam myśleć o nich o składnikach programu,
który budujemy.

Zapiszmy zatem drugie spostrzeżenie:

Obiekty zawierają zmienne, czyli pola, oraz mogą wykonywać dla siebie ustalone
funkcje, które zwiemy metodami.

Obiekt obiektowi nierówny
Zestaw pól i metod rzadko jest charakterystyczny dla pojedynczego obiektu. Najczęściej
istnieje wiele obiektów, każdy z właściwymi sobie wartościami pól. Łączy je jednak
przynależność do jednego i tego samego rodzaju, który nazywamy klasą.

Klasy wprowadzają więc pewną systematykę w świat obiektów. Byty należące do tej
samej klasy są bowiem do siebie podobne: mają ten sam pakiet pól oraz mogą
wykonywać na sobie te same metody. Informacje te zawarte są w definicji klasy i
wspólne dla wszystkich wywodzących się z niej obiektów.
Klasa jest zatem czymś w rodzaju wzorca - matrycy, wedle którego „produkowane” są
kolejne obiekty (instancje) w programie. Mogą one różnić się od siebie, ale tylko co do
wartości poszczególnych pól; wszystkie będą jednak należeć do tej samej klasy i będą
mogły wykonywać na sobie te same metody.

Kot o czarnej sierści i kot o białej sierści to przecież jeden i ten sam gatunek Felis catus…

Schemat 17. Definicja klasy oraz kilka należących doń obiektów (jej instancji)

W programowaniu obiektowym zadaniem twórcy jest przede wszystkim zaprojektowanie
modelu klas programu, zawierającego definicję wszystkich klas występujących w
aplikacji. Podczas działania programu będą z nich tworzone obiekty, których współpraca
ma zapewnić realizację celów aplikacji (przynajmniej w teorii ;D).

Obiekty 197

Zatem zamiast zajmować się oddzielnie danymi oraz kodem, bierzemy pod uwagę ich
odpowiednie połączenia - obiekty, „aktywne struktury”. Definiując odpowiednie klasy
oraz umieszczając w programie instrukcje kreujące obiekty tych klas, budujemy nasz
program kawałek po kawałku.
Być może brzmi to teraz trochę tajemniczo, lecz niedługo zobaczysz, iż w gruncie rzeczy
jest bardzo proste.

Sformułujmy na koniec ostatnie spostrzeżenie:

Każdy obiekt należy do pewnej klasy. Definicja klasy zawiera pola, z których składa się
ów obiekt, oraz metody, którymi dysponuje.

Co na to C++?
Zakończmy na razie te nieco zbyt teoretyczne dywagacje i zajmijmy się tym, co
programiści lubią najbardziej, czyli kodowaniem :) Zobaczymy, jak C++ radzi sobie z
ideą programowania obiektowego. Na razie spojrzymy na to zagadnienie przez kilka
prostych przykładów, by później zagłębić się w nie nieco bardziej.

Definiowanie klas
Pierwszym i bardzo ważnym etapem tworzenia kodu opartego na idei OOP jest, jak sobie
powiedzieliśmy, zdefiniowanie odpowiednich klas. W C++ jest to całkiem proste.

Klasy są tu de facto nowymi typami danych, podobnymi w pewnym sensie do struktur67.
Dlatego też naturalnym miejscem umieszczania ich definicji są pliki nagłówkowe -
umożliwia to łatwe wykorzystanie klasy w obrębie całego programu.
Spójrzmy zatem na przykładową definicję typu obiektów, który pary razy przewijał się w
tekście:

class CCar
{
 private:
 float m_fMasa;
 COLOR m_Kolor;

 VECTOR2 m_vPozycja;
 public:
 VECTOR2 vPredkosc;

 //---

 // metody
 void Przyspiesz(float fIle);
 void Hamuj(float fIle);
 void Skrec(float fKat);
};

Zastosowanie tu typy danych COLOR i VECTOR2 mają charakter umowny. Powiedzmy, że
COLOR w jakiś sposób reprezentuje kolor, zaś VECTOR2 jest dwuwymiarowym wektorem (o
współrzędnych x i y).

Porównanie do struktury jest całkiem na miejscu, chociaż pojawiło nam się kilka nowych
elementów, w tym najbardziej oczywiste zastąpienie słowa kluczowego struct przez
class.

67 W C++ różnica między klasą a strukturą jest zresztą czysto kosmetyczna.

Podstawy programowania 198

Najważniejsze dla nas jest jednak pojawienie się deklaracji metod klasy. Mają one tutaj
formę prototypów funkcji, więc będą musiały być zaimplementowane gdzie indziej (jak -
o tym niedługo powiemy). Równie dobrze wszak można wpisywać kod krótkich metod
bezpośrednio w definicji ich klasy.
Oprócz tego mamy w naszej klasie także pewne pola, które deklarujemy w identyczny
sposób jak zmienne czy pola w strukturach. To one stanowią treść obiektów, należących
do definiowanej klasy.

Nietrudno zauważyć, że cała definicja jest podzielona na dwie części poprzez etykiety
private i public. Być może domyślasz , cóż mogą one znaczyć; jeżeli tak, to punkt dla
ciebie :) A jeśli nie, nic straconego - niedługo wyjaśnimy ich działanie. Chwilowo możesz
je więc zignorować.

Implementacja metod
Zdefiniowanie typu obiektowego, czyli klasy, nie jest najczęściej ostatnim etapem jego
określania. Jeżeli bowiem umieściliśmy weń prototypy jakichś metod, nieodzowne jest
wpisanie ich kodu w którymś z modułów programu. Zobaczmy zatem, jak należy to
robić.

Przede wszystkim należy udostępnić owemu modułowi definicję klasy, co prawie zawsze
oznacza konieczność dołączenia zawierającego ją pliku nagłówkowego. Jeśli zatem nasza
klasa jest zdefiniowana w pliku klasa.h, to w module kodu musimy umieścić dyrektywę:

#include "klasa.h"

Potem możemy już przystąpić do implementacji metod.

Ich kody wprowadzamy w niemal ten sam sposób, który stosujemy dla zwykłych funkcji.
Jedyna różnica tkwi bowiem w nagłówkach tychże metod, na przykład:

void CCar::Przyspiesz(float fIle)
{
 // tutaj kod metody
}

Zamiast więc samej nazwy funkcji mamy tutaj także nazwę odpowiedniej klasy,
umieszczoną wcześniej. Oba te miana rozdzielamy znanym już skądinąd operatorem
zasięgu ::.
Dalej następuje zwyczajowa lista parametrów i wreszcie zasadnicze ciało metody.
Wewnątrz tego bloku zamieszczamy instrukcje, składające się na kod danej funkcji.

Tworzenie obiektów
Posiadając zdefiniowaną i zaimplementowaną klasę, możemy pokusić się o stworzenie
paru przynależnych jej obiektów.

Istnieje przynajmniej kilka sposobów na wykonanie tej czynności, z których najprostszy
nie różni się niczym od zadeklarowania struktury i wygląda chociażby tak:

CCar Samochod;

Kod ten spowoduje zadeklarowanie nowej zmiennej Samochod typu CCar oraz
stworzenie obiektu należącego do tej klasy. Podkreślam to, gdyż moment tworzenia
obiektu nie jest wcale taką błahą sprawą i może powodować różne akcje. Powiemy sobie
o tym niedługo.

Obiekty 199

Mając już obiekt (a więc instancję klasy), jesteśmy w stanie operować na wartościach
jego pól oraz wywoływać przynależne jego klasie metody. Posługujemy się tu znajomym
operatorem kropki (.):

// przypisanie wartości polu
Samochod.vPredkosc.x = 100.0;
Samochod.vPredkosc.y = 50.0;

// wywołanie metody obiektu
Samochod.Przyspiesz (10.0);

Czy nie spotkaliśmy już kiedyś czegoś podobnego?… Zdaje się, że tak. Przy okazji
łańcuchów znaków pojawiła się bowiem konstrukcja typu strTekst.length(), której
użyliśmy do pobrania długości napisu strTekst.
Było to nic innego jak tylko wywołanie metody length() dla obiektu strTekst! Napisy w
C++ są więc obiektami, pochodzącymi od klasy std::string. Oprócz length()
posiadają zresztą wiele innych metod, ułatwiających pracę z nimi. Większość poznamy
podczas omawiania Biblioteki Standardowej.

Kod wygląda zatem całkiem logicznie i spójnie; łatwo bowiem znaleźć wszystkie
instrukcje dotyczące obiektu Samochod, bo zaczynają się one od jego nazwy. To jedna
(choć może mało znacząca) z licznych zalet programowania obiektowego, które poznasz
wkrótce i na które z utęsknieniem czekasz ;)

W tym podrozdziale zaliczyliśmy pierwsze spotkanie z programowaniem zorientowanym
obiektowo. Mamy więc już jakieś pojęcie o klasach, obiektach oraz ich polach i metodach
- także w odniesieniu do języka C++.

Dalsza część rozdziału będzie miała charakter systematyzacyjno-uzupełniający :)
Wyjaśnimy i uporządkujemy sobie większość szczegółów dotyczących definiowania klas
oraz tworzenia obiektów. Informuję przeto, iż absencja na tym ważnym wykładzie będzie
zdecydowanie nierozsądna!

Obiekty i klasy w C++
Szczycąc się chlubnym mianem języka w pełni obiektowego, C++ posiada wszystko, co
niezbędne do praktycznej realizacji idei programowanie zorientowanego obiektowo. Teraz
właśnie przyjrzymy się dokładnie tym konstrukcjom językowym - wytłumaczymy sobie
ich działanie oraz sposób użycia.

Klasa jako typ obiektowy
Wiemy już, że pisanie programu zgodnie z filozofią OOP polega na definiowaniu i
implementowaniu odpowiednich klas oraz tworzeniu z nich obiektów i manipulowaniu
nimi. Klasa jest więc dla nas pojęciem kluczowym, które na początek wypadałoby
wyjaśnić:

Klasa to złożony typ zmiennych, składający się z pól, przechowujących dane, oraz
posiadający metody, wykonujące zaprogramowane czynności.

Zmienne należące do owych typów obiektowych nazywamy oczywiście obiektami.

Podstawy programowania 200

Każdy obiekt posiada swój własny pakiet opisujących go pól, które rezydują w pamięci
operacyjnej w identyczny sposób jak pola struktur. Metody są natomiast kodem
wspólnym dla całej klasy, zatem w czasie działania programu istnieje w pamięci tylko
jedna ich kopia, wywoływana w razie potrzeby na rzecz różnych obiektów. Jest to, jak
sądzę, dość oczywiste: tworzenie odrębnych kopii tych samych przecież funkcji dla
każdego nowego obiektu byłoby niewątpliwie szczytem absurdu.

Dwa etapy określania klasy
Skoro dowiedzieliśmy się dokładnie, czym są klasy i jak (w teorii) działają, spójrzmy na
sposoby ich wykorzystania w języku C++. Zaczniemy rzecz jasna od wprowadzania do
programu własnych typów obiektowych, gdyż bez tego ani rusz :)

Na początek warto przypomnieć, iż klasa jest typem (podobnie jak struktura czy enum),
więc właściwym dla niej miejscem byłby zawsze plik nagłówkowy. Jednocześnie jednak
zawiera ona kod swoich funkcji składowych, czyli metod, co czyni ją przynależną do
jakiegoś modułu (bo tylko wewnątrz modułów można umieszczać funkcje).
Te dwa przeciwstawne stanowiska sprawiają, że określenie klasy jest najczęściej
rozdzielone na dwie części:

 definicję, wstawianą w pliku nagłówkowym, w której określamy pola klasy oraz
wpisujemy prototypy jej metod

 implementację, umieszczaną w module, będącą po prostu kodem wcześniej
zdefiniowanych metod

Układ ten nie dość, że działa nadzwyczaj dobrze, to jeszcze realizuje jeden z postulatów
programowania obiektowego, jakim jest ukrywanie niepotrzebnych szczegółów.
Tymi szczegółami będzie tutaj kod poszczególnych metod, którego znajomość nie jest
wcale potrzebna do korzystania z klasy.

Co więcej, może on nie być w ogóle dostępny w postaci pliku .cpp, a jedynie w wersji
skompilowanej! Tak jest chociażby w przypadku biblioteki DirectX, o czym przekonasz się
za czas jakiś.

Domyślasz się zatem, że za chwilę skoncentrujemy się na tych dwóch etapach określania
klasy, a więc na definicji i implementacji. Jakkolwiek nie brzmi to zbyt odkrywczo, jednak
masz tutaj całkowitą słuszność :D

Czasem, jeszcze przed definicją klasy musimy poinformować kompilator, że dana nazwa
jest faktycznie klasą. Robimy tak na przykład wtedy, gdy obiekt klasy A odwołuje się do
klasy B, zaś B do A. Używamy wtedy deklaracji zapowiadającej, pisząc po prostu
class A; lub class B;.
Takie przypadki są dosyć rzadkie, ale warto wiedzieć, jak sobie z nimi radzić. O tym
sposobie wspomnimy zresztą nieco dokładniej, gdy będziemy zajmować się klasami
zaprzyjaźnionymi.

Definicja klasy
Jest to konieczna i często pierwsza czynność przy wprowadzaniu do programu nowej
klasy. Jej definicja precyzuje bowiem zawarte w niej pola oraz deklaracje metod, którymi
klasa będzie dysponowała.

Informacje te są niezbędne, aby móc utworzyć obiekt danej klasy; dlatego też
umieszczamy je niemal zawsze w pliku nagłówkowym - miejscu należnym własnym
typom danych.
Składnia definicji klasy wygląda natomiast następująco:

class nazwa_klasy

Obiekty 201

{
 [specyfikator_dostępu:]
 [pola]
 [metody]
};

Nie widać w niej zbytnich restrykcji, gdyż faktycznie jest ona całkiem swobodna.
Kolejność poszczególnych elementów (pól lub metod) nie jest ściśle ustalona i może być
w zasadzie dowolnie zmieniana. Najlepiej jednak zachować w tym względzie jakiś
porządek, grupując np. pola i metody w zwarte grupy.
Na razie wszakże trudno byłoby stosować się do tych rad, skoro nie omówiliśmy
dokładnie wszystkich części definicji klasy. Czym prędzej więc naprawiamy ten błąd :)

Kontrola dostępu do składowych klasy
Fraza oznaczona jako specyfikator_dostępu pewnie nie mówi ci zbyt wiele, chociaż
spotkaliśmy się już z nią w którejś z przykładowych klas. Przyjmowała ona tam formę
private lub public, dzieląc cała definicję na jakby dwie odrębne sekcje. Nietrudno
wywnioskować, iż podział ten nie ma jedynie charakteru wizualnego, ale powoduje dalej
idące konsekwencje. Jakie?…

Nazwa specyfikator_dostępu, chociaż brzmi może nieco sztucznie (jak zresztą wiele
terminów w programowaniu :)), dobrze oddaje rolę, jaką ta konstrukcja pełni. Otóż
specyfikuje ona właśnie prawa dostępu do części składowych klasy (czyli pól lub
metod), wyróżniając ich dwa rodzaje: prywatne (ang. private) oraz publiczne
(ang. public).
Różnica między nimi jest znacząca i bardzo ważna, gdyż wpływa na to, które elementy
klasy są widoczne tylko w ramach jej samej, a które także na zewnątrz. Te pierwsze
nazywamy więc prywatnymi, zaś drugie publicznymi.

Prywatne składowe klasy (wpisane po słowie private: w jej definicji) są dostępne
jedynie wewnątrz samej klasy, tj. tylko dla jej własnych metod.

Publiczne składowe klasy (wpisane po słowie public: w jej definicji) widoczne są
zawsze i wszędzie - nie tylko dla samej klasy (jej metod), ale na zewnątrz - np. dla jej
obiektów.

Danym specyfikatorem objęte są wszystkie następujące po nim części klasy, aż do jej
końca lub… kolejnego specyfikatora :) Ich ilość nie jest bowiem niczym ograniczona.

Nic więc nie stoi na przeszkodzie, aby nie było ich wcale! W takiej sytuacji wszystkie
składowe będą miały domyślne reguły dostępu. W przypadku klas (definiowanych
poprzez class) jest to dostęp prywatny, natomiast dla typów strukturalnych68 (słówko
struct) - dostęp publiczny.
Trudno uwierzyć, ale w C++ jest to jedyna różnica pomiędzy klasami a strukturami!
Słowa class i struct są więc niemal synonimami; jest to rzecz niespotykana w innych
językach programowania, w których te dwie konstrukcje są zupełnie odrębne.

Dla skuteczniejszego rozwiania z powyższego opisu możliwej mgły niejasności, spójrzmy
na ten oto przykładowy program i klasę:

// DegreesCalc - kalkulator temperatur

// typ wyliczeniowy określający skalę temperatur

68 A także dla unii, chociaż jak wiemy, funkcjonują one inaczej niż struktury i klasy.

Podstawy programowania 202

enum SCALE {SCL_CELSIUS = 'c', SCL_FAHRENHEIT = 'f', SCL_KELVIN = 'k'};

class CDegreesCalc
{
 private:
 // temperatura w stopniach Celsjusza
 double m_fStopnieC;
 public:
 // ustawienie i pobranie temperatury
 void UstawTemperature(double fTemperatura, SCALE Skala);
 double PobierzTemperature(SCALE Skala);
};

// ------------------------- funkcja main()-----------------------------

void main()
{
 // zapytujemy o skalę, w której będzie wprowadzona wartość
 char chSkala;
 std::cout << "Wybierz wejsciowa skale temperatur" << std::endl;
 std::cout << "(c - Celsjusza, f - Fahrenheita, k - Kelwina): ";
 std::cin >> chSkala;
 if (chSkala != 'c' && chSkala != 'f' && chSkala != 'k') return;

 // zapytujemy o rzeczoną temperaturę
 float fTemperatura;
 std::cout << "Podaj temperature: ";
 std::cin >> fTemperatura;

 // deklarujemy obiekt kalkulatora i przekazujemy doń temp.
 CDegreesCalc Kalkulator;
 Kalkulator.UstawTemperature (fTemperatura,
 static_cast<SCALE>(chSkala));

 // pokazujemy wynik - czyli temperaturę we wszystkich skalach
 std::cout << std::endl;
 std::cout << "- stopnie Celsjusza: "
 << Kalkulator.PobierzTemperature(SCL_CELSIUS) << std::endl;
 std::cout << "- stopnie Fahrenheita: "
 << Kalkulator.PobierzTemperature(SCL_FAHRENHEIT) << std::endl;
 std::cout << "- kelwiny: "
 << Kalkulator.PobierzTemperature(SCL_KELVIN) << std::endl;

 // czekamy na dowolny klawisz
 getch();
}

Cała aplikacja jest prostym programem przeliczającym między trzema skalami
temperatur:

Screen 36. Kalkulator przeliczający wartości temperatur

Obiekty 203

Jej pełny kod, z implementacją metod klasy CDegreesCalc, znaleźć można w programach
przykładowych. Nas jednak bardziej interesuje forma definicji tejże klasy oraz podział jej
składowych na prywatne oraz publiczne.
Widzimy więc wyraźnie, iż klasa posiada jedno prywatne pole - jest nim m_fStopnieC, w
którym zapisywana jest temperatura w wewnętrznie używanej, wygodnej skali Celsjusza.
Oprócz niego mamy jeszcze dwie publiczne metody - UstawTemperature() oraz
PobierzTemperature(), dzięki którym uzyskujemy dostęp do naszego prywatnego pola.
Jednocześnie oferują nam jednak dodatkową funkcjonalność, jaką jest dokonywanie
przeliczania pomiędzy wartościami wyrażonymi w różnych miarach.

To bardzo częsta sytuacja, gdy prywatne pole klasy „obudowane” jest publicznymi
metodami, zapewniającymi doń dostęp. Daje to wiele pożytecznych możliwości, jak
choćby kontrola przypisywanej polu wartości czy tworzenie pól tylko do odczytu.
Jednocześnie „prywatność” pola chroni je przed przypadkową, niepożądaną ingerencją z
zewnątrz.
Takie zjawisko wyodrębniania pewnych fragmentów kodu nazywamy hermetyzacją.

Jak wiemy, prywatne składowe klasy nie są dostępne poza nią samą. Kiedy więc
tworzymy nasz obiekt:

CDegreesCalc Kalkulator;

jesteśmy niejako „skazani” na korzystanie tylko z jego publicznych metod; próba
odwołania się do prywatnego pola (poprzez Kalkulator.m_fStopnieC) skończy się
bowiem błędem kompilacji.
Fakt ten wcale nas jednak nie ogranicza, lecz zabezpiecza przed niepowołanym dostępem
do wewnętrznych informacji klasy, które z zasady powinny być do jej wyłącznej
dyspozycji. Do komunikacji z otoczeniem istnieją za to dwie publiczne metody, i to z nich
właśnie będziemy korzystać w funkcji main().

Najpierw więc wywołujemy funkcję składową UstawTemperature(), podając jej wpisaną
przez użytkownika wartość oraz wybraną skalę69:

Kalkulator.UstawTemperature (fTemperatura, static_cast<SCALE>(chSkala));

W tym momencie w ogóle nie interesują nas działania, które zostaną na tych danych
podjęte - jest to wewnętrzna sprawa klasy CDegreesCalc (podobnie zresztą jak jej pole
m_fStopnieC). Ważne jest, że w ich następstwie możemy użyć drugiej metody,
PobierzTemperature(), do uzyskania podanej wcześniej wartości w wybranej przez
siebie, nowej skali:

std::cout << "- stopnie Celsjusza: "
 << Kalkulator.PobierzTemperature(SCL_CELSIUS) << std::endl;
// itd.

Wszystkie kwestie dotyczące szczegółowych aspektów przeliczania owych wartości są
zatem szczelnie poukrywane. Kod funkcji main() jest klarowny i wolny od niepotrzebnych
detali, co nie zmienia faktu, iż w razie potrzeby możliwe jest zajęcie się nimi. Wystarczy
przecież rzucić okiem implementacje metod klasy CDegreesCalc.

Zaprowadzanie porządku poprzez ograniczanie dostępu do pewnych elementów klasy to
jedna z reguł, a jednocześnie zalet programowania obiektowego. Do jej praktycznej

69 Znowu stosujemy tu technikę odpowiedniego dobrania wartości typu wyliczeniowego, przez co unikamy
instrukcji switch.

Podstawy programowania 204

realizacji służą w C++ poznane specyfikatory private oraz public. W miarę nabywania
doświadczenia w pracy z klasami będziesz je coraz efektywniej stosował w swoim
własnym kodzie.

Deklaracje pól
Pola są właściwą treścią każdego obiektu klasy, to one stanowią jego reprezentację w
pamięci operacyjnej. Pod tym względem nie różnią się niczym od znanych ci już pól w
strukturach i są po prostu zwykłymi zmiennymi, zgrupowanymi w jedną, kompleksową
całość.

Jako miejsce na przechowywanie wszelkiego rodzaju danych, pola mają kluczowe
znaczenie dla obiektów i dlatego powinny być chronione przez niepowołanym dostępem z
zewnątrz. Przyjęło się więc, że w zasadzie wszystkie pola w klasach deklaruje się jako
prywatne; ich nazwy zwykle poprzedza się też przedrostkiem m_, aby odróżnić je od
zmiennych lokalnych:

class CFoo70
{
 private:
 int m_nJakasLiczba;
 std::string m_strJakisNapis;

Dostęp do danych zawartych w polach musi się zatem odbywać za pomocą
dedykowanych metod. Rozwiązanie to ma wiele rozlicznych zalet: pozwala chociażby na
tworzenie pól, które można jedynie odczytywać, daje sposobność wykrywania
niedozwolonych wartości (np. indeksów przekraczających rozmiary tablic itp.) czy też
podejmowania dodatkowych akcji podczas operacji przypisywania.
Rzeczone funkcje mogą wyglądać chociażby tak:

 public:
 int JakasLiczba() { return m_nJakasLiczba; }
 void JakasLiczba(int nLiczba) { m_nJakasLiczba = nLiczba; }
 std::string JakisNapis() { return m_strJakisNapis; }
};

Nazwałem je tu identycznie jak odpowiadające im pola, pomijając jedynie przedrostki71.
Niektórzy stosują nazwy w rodzaju Pobierz...()/Ustaw...() czy też z angielskiego -
Get...()/Set...(). Leży to całkowicie w zakresie upodobań programisty.
Użycie naszych metod „dostępowych” może zaś przedstawiać się na przykład tak:

CFoo Foo;
Foo.JakasLiczba (10); // przypisanie 10 do pola m_nJakasLiczba
std::cout << Foo.JakisNapis(); // wyświetlenie pola m_strJakisNapis

Zauważmy przy okazji, że pole m_strJakisNapis może być tutaj jedynie odczytane, gdyż
nie przewidzieliśmy metody do nadania mu jakiejś wartości. Takie postępowanie jest
często pożądane, ale zależy rzecz jasna od konkretnej sytuacji, a tu jest jedynie
przykładem.

Wielkim mankamentem C++ jest brak wsparcia dla tzw. właściwości (ang. properties),
czyli „nakładek” na pola klas, imitujących zmienne i pozwalających na użycie bardziej

70 foo oraz bar to takie dziwne nazwy, stosowane przez programistów najczęściej w przykładowych kodach, dla
bliżej nieokreślonych bytów, nie mających żadnego praktycznego sensu i służących jedynie w celach
prezentacyjnych. Mają one tę zaletę, że nie można ich pomylić tak łatwo, jak np. litery A, B, C, D itp.
71 Sprawia to, że funkcje odpowiadające temu samemu polu, a służące do zapisu i odczytu, są przeciążone.

Obiekty 205

naturalnej składni (choćby operatora =) niż dedykowane metody.
Wiele kompilatorów udostępnia więc tego rodzaju funkcjonalność we własnym zakresie -
w Visual C++ jest to konstrukcja __declspec(property(...)), o której możesz
przeczytać w MSDN. Nie dorównuje ona jednak podobnym mechanizmom znanym z
Delphi.

Metody i ich prototypy
Metody czynią klasy. To dzięki swym funkcjom składowym pasywne zbiory danych,
którymi są struktury, stają się aktywnymi obiektami.

Z praktycznego punktu widzenia metody niewiele różnią się od zwyczajnych funkcji -
oczywiście poza faktem, iż są deklarowane zawsze wewnątrz jakiejś klasy:

class CFoo
{
 public:
 void Metoda();
 int InnaMetoda(int);
 // itp.
};

Deklaracje te mogą mieć formę prototypów funkcji, a stworzone w ten sposób metody
wymagać jeszcze implementacji, czyli wpisania ich kodu. Czynnością tą zajmiemy się
dokładnie w następnym paragrafie.
Warto jednak wiedzieć, że dopuszczalne jest także wprowadzanie kodu metod
bezpośrednio wewnątrz bloku class. Robiliśmy tak zresztą w przypadku metod
dostępowych do pól, a w podobnych sytuacjach rozwiązanie to sprawdza się bardzo
dobrze. Nie należy aczkolwiek postępować w ten sposób z długimi metodami,
zawierającymi skomplikowane algorytmy, gdyż może to spowodować znaczący wzrost
rozmiaru wynikowego pliku EXE.

Kompilator traktuje bowiem takie funkcje jako inline, tzn. rozwijane w miejscu
wywołania, i wstawia cały ich kod przy każdym odwołaniu się do nich. Dla krótkich,
jednolinijkowych metod jest to dobre rozwiązanie, przyspieszające działanie programu.
Dla dłuższych nie musi wcale takie być.
Dokładniejszych informacji na ten temat oraz o samych funkcjach inline tradycyjnie
można znaleźć w MSDN.

To jeszcze nie koniec zabawy z metodami :) Niektóre z nich można mianowicie uczynić
stałymi. Zabieg ten sprawia, że funkcja, na której go zaaplikujemy, nie może
modyfikować żadnego z pól klasy72, a tylko je co najwyżej odczytywać.
Po co komu takie udziwnienie? Teoretycznie jest to pewna wskazówka dla kompilatora,
który być może uczyni nam w zamian łaskę poczynienia jakichś optymalizacji.
Praktycznie jest to też pewien sposób na zabezpieczenie się przed omyłkowym
zmodyfikowaniem obiektu w metodzie, która wcale nie miała czegoś takiego robić.
Jednym słowem korzyści są piorunujące ;)
Uczynienie jakiejś metody stałą jest banalnie proste: wystarczy tylko dodać za listą jej
parametrów magiczne słówko const, np.:

class CFoo
{
 private:

72 No może nie całkiem żadnego; istnieje pewien drobny wyjątek od tej reguły, ale jest on na tyle drobny i na
tyle sproadycznie stosowany, że nie wyjaśniam go bliżej i odsyłam tylko purystów do stosownego wyjaśnienia w
MSDN.

Podstawy programowania 206

 int m_nPole;
 public:
 int Pole() const { return m_nPole; }
};

Funkcja Pole() (będąca de facto obudową dla zmiennej m_nPole) będzie tutaj słusznie
metodą stałą.

Dla szczególnie zainteresowanych polecam lekturę uzupełniającą o stałych metodach,
znajdującą się w miejscu wiadomym :)

Konstruktory i destruktory
Przebąkiwałem już parokrotnie o procesie tworzenia obiektów, podkreślają przy tym
znaczenie tego procesu. Za chwilę wyjaśni się, dlatego jest to takie ważne…

Decydując się na zastosowanie technik obiektowych w konkretnym programie musimy
mieć na uwadze fakt, iż oznacza to zdefiniowane przynajmniej kilku klas oraz instancji
tychże. Istotą OOPu jest poza tym odpowiednia komunikacja między obiektami:
wymiana danych, komunikatów, podejmowanie działań zmierzających do realizacji
danego zdania, itp. Aby zapewnić odpowiedni przepływ informacji, krystalizuje się mniej
lub bardziej rozbudowana hierarchia obiektów, kiedy to jeden obiekt zawiera w sobie
drugi, czyli jest jego właścicielem. To dość naturalne: większość otaczających nas
rzeczy można przecież rozłożyć na części, z których się składają (gorzej może być z
powtórnym złożeniem ich w całość :D).
Konsekwencje tego stanu rzeczy dla procesu tworzenie (i niszczenia) obiektów są raczej
oczywiste: kreacja obiektu zbiorczego musi pociągnąć za sobą stworzenie jego
składników; podobnie jest też z jego destrukcją. Jasne, można te kwestie zostawić
kompilatorowi, ale paradoksalnie czyni to kod trudniejszym do zrozumienia, pisania i
konserwacji73.

C++ oferuje nam na szczęście możliwość podjęcia odpowiednich działań zarówno
podczas tworzenia obiektu, jak i jego niszczenia. Korzystamy z niej, wprowadzając do
naszej klasy dwa specjalne rodzaje metod - są to tytułowe konstruktory oraz
destruktory.

Konstruktor to specyficzna funkcja składowa klasy, wywoływana zawsze podczas
tworzenia należącego doń obiektu.

Typowym zadaniem konstruktora jest zainicjowanie pól ich początkowymi wartościami,
przydzielenie pamięci wykorzystywanej przez obiekt czy też uzyskanie jakichś kluczowych
danych z zewnątrz.
Deklaracja konstruktora jest w C++ bardzo prosta. Metoda ta nie zwraca bowiem żadnej
wartości (nawet void!), a jej nazwa odpowiada nazwie zawierającej ją klasy. Wygląda
więc mniej więcej tak:

class CFoo
{
 private:
 // jakieś przykładowe pole...
 float m_fPewnePole;
 public:
 // no i przyszła pora na konstruktora ;-)
 CFoo() { m_fPewnePole = 0.0; }

73 Wbrew pozorom to racjonalna reguła: im więcej jest rzeczy, które kompilator robi „za plecami” programisty,
tym bardziej zagmatwany jest kod - choćby nawet był krótszy.

Obiekty 207

};

Zazwyczaj też konstruktor nie przyjmuje żadnych parametrów, co nie znaczy jednak, że
nie może tego czynić. Często są to na przykład startowe dane przypisywane do pól:

class CSomeObject
{
 private:
 // jakiś rodzaj współrzędnych
 float m_fX, m_fY;
 public:
 // konstruktory
 CSomeObject() { m_fX = m_fY = 0.0; }
 CSomeObject(float fX, float fY) { m_fX = fX; m_fY = fY; }
};

Posiadanie takiego parametryzowanego konstruktora ma pewien wpływ na sposób
tworzenia obiektów, gdyż musimy wtedy podać dlań odpowiednie wartości. Dokładniej
wyjaśnimy to w następnym paragrafie.
Warto też wiedzieć, że klasa może posiadać kilka konstruktorów - tak jak na powyższym
przykładzie. Działają one wtedy podobnie jak funkcje przeciążane; decyzja, który z nich
faktycznie zostanie wywołany, zależy więc od instrukcji tworzącej obiekt.

Z wiadomych względów konstruktory czynimy zawsze metodami publicznymi.
Umieszczenie ich w sekcji private dałoby bowiem dość dziwny efekt: taka klasa nie
mogłaby być normalnie instancjowana, tzn. niemożliwe byłoby utworzenie z niej obiektu
w zwykły sposób.

OK, konstruktory mają zatem niebagatelną rolą, jaką jest powoływania do życia nowych
obiektów. Doskonale jednak wiemy, że nic nie jest wieczne i nawet najdłużej działający
program kiedyś będzie musiał być zakończony, a jego obiekty zniszczone. Tą niechlubną
robotą zajmuje się kolejny, wyspecjalizawany rodzaj metod - destruktory.

Destruktor jest specjalną metodą, przywoływaną podczas niszczenia obiektu
zawierającej ją klasy.

W naszych przykładowych klasach destruktor nie miałby wiele do zrobienia - zgoła nic,
ponieważ żaden z prezentowanych obiektów nie wykonywał czynności, po których
należałoby sprzątać. To się wszak niedługo zmieni, zatem poznanie destruktorów z
pewnością nie będzie szkodliwe :)
Postać destruktora jest także niezwykle prosta i w dodatku zawsze identyczna. Funkcja ta
nie bierze bowiem żadnych parametrów (bo i jakie miałaby brać?) i niczego nie zwraca.
Jej nazwą jest zaś nazwa zawierającej klasy poprzedzona znakiem tyldy (~).

Nazewnictwo destruktorów to jedna z niewielu rzeczy, za które twórcom C++ należą się
tęgie baty :D O co dokładnie chodzi?
Otóz teoretycznie znak tyldy uzyskujemy za pomocą klawisza Shift oraz tego
znajdującego się w lewym górnym rogu alfanumerycznej części klawiatury. Problem
polega na tym, że po pierwszym jego użyciu żądany znak nie pojawia się na ekranie.
Dzieje się tak dlatego, iż dawniej za jego pomocą uzyskiwało się litery specyficzne dla
pewnych języków, z kreseczkami - np. ś, é czy ó.
Fakt ten możnaby zignorować, jako że większość liter nie posiada swoich
„kreseczkowych” odpowiedników, więc wciśnięcie ich klawiszy po znaku tyldy powoduje
pojawienie się zarówno osławionego szlaczka, jak i samej litery. Do tej grupy nie należy
jednak litera C, którą to przyjęło się pisać na początku nazw klas. Zamiast więc żądanej
sekwencji ~C uzyskujemy… Ć!
Jak sobie z tym radzić? Ja nawykłem do dwukrotnego przyciskania klawisza tyldy, a

Podstawy programowania 208

następnie usuwania nadmiarowego znaku. Możliwe jest też użycie jakiejś „neutralnej”
litery w miejsce C, a następnie skasowanie jej. Chyba najlepsze jest jednak wciskanie
klawisza tyldy, a następnie spacji - wprawdzie to dwa przyciśnięcia, ale w ich wyniku
otrzymujemy sam wężyk.

Klasa wyposażona w odpowiedni destruktor może zatem jawić się następująco:

class CBar
{
 public:
 // konstruktor i destruktor
 CBar() { /* czynności startowe */ } // konstruktor
 ~CBar() { /* czynności kończące */ } // destruktor
};

Jako że jego forma jest ściśle określona, jedna klasa może posiadać tylko jeden
destruktor.

Coś jeszcze?
Pola, zwykłe metody oraz konstruktory i destruktory to zdecydowanie najczęściej
spotykane i chyba najważniejsze elementy klas. Aczkolwiek nie jedyne; w dalszej części
tego kursu poznamy jeszcze składowe statyczne, funkcje przeciążające operatory oraz
tzw. deklaracje przyjaźni (naprawdę jest coś takiego! :D). Poznane tutaj składniki klasy
będą jednak zawsze miały największe znaczenie.

Można jeszcze wspomnieć, że wewnątrz klasy (a także struktury i unii) możemy
zdefiniować… kolejną klasę! Taką definicję nazywamy wtedy zagnieżdżoną. Technika ta
nie jest stosowana zbyt często, więc zainteresowani poczytają o niej w MSDN :)
Podobnie zresztą jest z innymi typami, określanymi poprzez enum czy typedef.

Implementacja metod
Definicja klasy jest zazwyczaj tylko połową sukcesu i nie stanowie wcale końca jej
określania. Dzieje się tak przynajmniej wtedy, gdy umieścimy w niej jakieś prototypy
metod, bez podawania ich kodu.

Uzupełnieniem definicji klasy jest wówczas jej implementacja, a dokładniej owych
prototypowanych funkcji składowych. Polega ona rzecz jasna na wprowadzeniu instrukcji
składających się na kod tychże metod w jednym z modułów programu.
Operację tę rozpoczynamy od dołączenia do rzeczonego modułu pliku nagłówkowego z
definicją naszej klasy, np.:

#include "klasa.h"

Potem możemy już zająć się każdą z niezaimplementowanych metod; postępujemy tutaj
bardzo podobnie, jak w przypadku zwykłych, globalnych funkcji. Składnia metody
wygląda bowiem następująco:

[typ_wartości/void] nazwa_klasy::nazwa_metody([parametry]) [const]
{
 instrukcje
}

Nowym elementem jest w niej nazwa_klasy, do której należy dana funkcja. Wpisanie jej
jest konieczne: po pierwsze mówi ona kompilatorowi, że ma do czynienia z metodą klasy,
a nie zwyczajną funkcją; po drugie zaś pozwala bezbłędnie zidentyfikować macierzystą
klasę danej metody.

Obiekty 209

Między nazwą klasy a nazwą metody widoczny jest operator zasięgu ::, z którym już raz
mieliśmy przyjemność się spotkać. Teraz możemy oglądać go w nowej, chociaż zbliżonej
roli.

Zaleca się, aby bloki metod tyczące się jednej klasy umieszczać w zwartej grupie, jeden
pod drugim. Czyni to kod lepiej zorganizowanym.

Dwie jeszcze nowości można zauważyć w nagłówku metody. Zaznaczyłem mianowicie
typ_zwracanej_wartości lub void jako jego nieobowiązkową część. Faktycznie może
ona być zbędna - ale tylko w przypadku konstruktora tudzież destruktora klasy. Dla
zwykłych funkcji składowych musi ona nadal występować.
Ostatnią różnicą jest ewentualny modyfikator const, który, jak pamiętamy, czyni metodę
stałą. Jego obecność w tym miejscu powinna się pokrywać z występowaniem także w
prototypie funkcji. Niezgodność w tej kwestii zostanie srodze ukarana przez kompilator :)

Oczywiście większością implementacji metody będzie blok jej instrukcji, tradycyjnie
zawarty między nawiasami klamrowymi. Cóż ciekawego można o nim powiedzieć?
Bynajmniej niewiele: nie różni się prawie wcale od analogicznych bloków globalnych
funkcji. Dodatkowo jednak ma on dostęp do wszystkich pól i metod swojej klasy - tak,
jakby były one jego zmiennymi albo funkcjami lokalnymi.

Wskaźnik this
Z poziomu metody mamy dostęp do jeszcze jednej, bardzo ważnej i przydatnej
informacji. Chodzi tutaj o obiekt, na rzecz którego nasza metoda jest wywoływana;
mówiąc ściśle, o odwołanie (wskaźnik) do niego.
Cóż to znaczy?… Przypomnijmy sobie zatem którąś z przykładowych klas,
prezentowanych na poprzednich stronach. Gdybyśmy wywołali jakąś jej metodę,
przypuśćmy że w ten sposób:

CFoo Foo;
Foo.JakasMetoda();

to wewnątrz bloku funkcji CFoo::JakasMetoda() moglibyśmy użyć omawianego
wskaźnika, by zyskać pełen wgląd w obiekt Foo! Czasem mówi się więc, iż jest to
dodatkowy, specjalny parametr metody - występuje przecież w jej wywołaniu.

Ów wyjątkowy wskaźnik, o którym traktuje powyższy opis, nazywa się this („to”).
Używamy go zawsze wtedy, gdy potrzebujemy odwołać się do obiektu jako całości, a nie
tylko do poszczególnych pól. Najczęściej oznacza to przekazanie go do jakiejś funkcji,
zwykle konstruktora innego obiektu.
Jako że jest to wskaźnik, a nie obiekt explicité, korzystanie z niego różni się nieco od
postępowania z „normalnymi” zmiennymi obiektowymi. Więcej na ten temat powiemy
sobie w dalszej części tego rozdziału, zaś całkowicie wyjaśnimy w rozdziale 8, Wskaźniki.

Dla dociekliwych zawsze jednak istnieje MSDN :]

Praca z obiektami
Nawet dziesiątki wyśmienitych klas nie stanowią jeszcze gotowego programu, a jedynie
pewien rodzaj reguł, wedle których będzie on realizowany. Wprowadzenie tych reguł w
życie wymaga przeto stworzenia obiektów na podstawie zdefiniowanych klas.

W C++ mamy dwa główne sposoby „obchodzenia” się z obiektami; różnią się one pod
wieloma względami, inne jest też zastosowanie każdego z nich. Naturalną i rozsądną
koleją rzeczy będzie więc przyjrzenie się im obu :)

Podstawy programowania 210

Zmienne obiektowe
Pierwszą strategię znamy już bardzo dobrze, używaliśmy jej bowiem niejednokrotnie nie
tylko dla samych obiektów, lecz także dla wszystkich innych zmiennych.
W tym trybie korzystamy z klasy dokładnie tak samo, jak ze wszystkich innych typów w
C++ - czy to wbudowanych, czy też definiowanych przez nas samych (jak enum’y,
struktury itd.).

Deklarowanie zmiennych i tworzenie obiektów
Zaczynamy oczywiście od deklaracji zmiennej, niebędącej dla nas żadną niespodzianką:

CFoo Obiekt;

Powyższa linijka kodu wykonuje jednak znacznie więcej czynności, niż jest to widoczne
na pierwszy czy nawet drugi rzut oka. Ona mianowicie:

 wprowadza nam nową zmienną Obiekt typu CFoo. Nie jest to rzecz jasna żadna
nowość, ale dla porządku warto o tym przypomnieć.

 tworzy w pamięci operacyjnej obszar, w którym będą przechowywane pola
obiektu. To także nie jest zaskoczeniem: pola, jako bądź co bądź zmienne,
muszą rezydować gdzieś w pamięci, więc robią to w identyczny sposób jak pola
struktur.

 wywołuje konstruktor klasy CFoo (czyli procedurę CFoo::CFoo()), by dokończył
aktu kreacji obiektu. Po jego zakończeniu możemy uznać nasz obiekt za
ostatecznie stworzony i gotowy do użycia.

Te trzy etapy są niezbędne, abyśmy mogli bez problemu korzystać z stworzonego
obiektu. W tym przypadku są one jednak realizowane całkowicie automatycznie i nie
wymagają od nas żadnej uwagi. Przekonamy się później, że nie zawsze tak jest i, co
ciekawe, wcale nie będziemy tym zmartwieni :D

Muszę jeszcze wspomnieć o pewnym drobnym wymaganiu, stawianym nam przez
kompilator, któremu chcemy podać wiersz kodu umieszczony na początku paragrafu.
Otóż klasa CFoo musi tutaj posiadać bezparametrowy konstruktor, albo też nie mieć
wcale procedury tego rodzaju (wtedy etap z jej wywoływaniem zostanie po prostu
pominięty).
W innym przypadku potrzebne jest jeszcze przekazanie odpowiednich parametrów
konstruktorowi, który takowych wymaga. Konieczność tą realizujemy podobną metodą,
co wywołanie zwyczajnej funkcji:

CFoo Foo(10, "jakiś tekst"); // itp.

Czy nie przypomina nam to czegoś?… Ależ oczywiście - identycznie postępowaliśmy z
łańcuchami znaków (czyli obiektami klasy std::string), tworząc je chociażby tak:

#include <string>
std::string strBuffer("Jakie te obiekty są proste! ;-)");

Widzimy więc, że znany nam i lubiany typ std::string wyjątkowo podpada pod zasady
programowania obiektowego :)

Żonglerka obiektami
Zadeklarowane przed chwilą zmienne obiektowe są w istocie takimi samymi zmiennymi,
jak wszystkie inne w programach C++. Możliwe jest zatem przeprowadzanie nań
operacji, którym podlegają na przykład liczby całkowite, napisy czy tablice.

Obiekty 211

Nie mam tu wcale na myśli jakichś złożonych manipulacji, wymagających
skomplikowanych algorytmów, lecz całkiem zwyczajnych i codziennych, jak przypisanie
czy przekazywanie do funkcji.
Czy można powiedzieć cokolwiek ciekawego o tak trywialnych czynnościach? Okazuje się,
że tak. Zwrócimy wprawdzie uwagę na dość oczywiste fakty z nimi związane, lecz
znajomość owych „banałów” okaże się później niezwykle przydatna. Przy okazji będzie to
dobra okazja to powtórzenia nabytej wiedzy, a tego przecież nigdy dość :D

Na użytek dalszych wyjaśnień zdefiniujemy sobie taką oto klasę lampy:

class CLamp
{
 private:
 COLOR m_Kolor; // kolor lampy
 bool m_bWlaczona; // czy lampa świeci się?
 public:
 // konstruktory
 CLamp() { m_Kolor = COLOR_WHITE; }
 CLamp(COLOR Kolor) { m_Kolor = Kolor; }

 //---

 // metody
 void Wlacz() { m_bWlaczona = true; }
 void Wylacz() { m_bWlaczona = false; }

 //---

 // metody dostępowe do pól
 COLOR Kolor() const { return m_Kolor; }
 bool Wlaczona() const { return m_bWlaczona; }
};

Klasa ta jest znakomitą syntezą wszystkich wiadomości przekazanych w tym
podrozdziale. Jeżeli więc nie rozumiesz do końca znaczenia któregoś z jej elementów,
powinieneś powrócić do poświęconemu mu miejsca w tekście.

Natychmiast też zadeklarujemy i stworzymy dwa obiekty należące do naszej klasy:

CLamp Lampa1(COLOR_RED), Lampa2(COLOR_GREEN);

Tym sposobem mamy więc lampy, sztuk dwie, w kolorze czerwonym oraz zielonym.
Moglibyśmy użyć ich metod, aby je obie włączyć; zrobimy jednak coś dziwniejszego -
przypiszemy jedną lampę do drugiej:

Lampa1 = Lampa2;

„A co to za dziwadło?”, słusznie pomyślisz. Taka operacja jest jednak całkowicie
poprawna i daje dość ciekawe rezultaty. By ją dobrze zrozumieć musimy pamiętać, że
Lampa1 oraz Lampa2 są to przede wszystkim zmienne, zmienne które przechowują
pewne wartości. Fakt, że tymi wartościami są obiekty, które w dodatku interpretujemy
w sposób prawie realny, nie ma tutaj większego znaczenia.
Pomyślmy zatem, jaki efekt spowodowałby ten kod, gdybyśmy zamiast klasy CLamp użyli
jakiegoś zwykłego, skalaranego typu?…

int nLiczba1 = 10, nLiczba2 = 20;
nLiczba1 = nLiczba2;

Podstawy programowania 212

Dawna wartośc zmiennej, do której nastąpiło przypisanie, zostałaby zapomniana i obie
zmienne zawierałyby tę samą liczbę.
Dla obiektów rzecz ma się identycznie: po wykonaniu przypisania zarówno Lampa1, jak i
Lampa2 reprezentować będą obiekty zielonych lamp. Czerwona lampa, pierwotnie zawarta
w zmiennej Lampa1, zostanie zniszczona74, a w jej miejsce pojawi się kopia zawartości
zmiennej Lampa2.

Nie bez powodu zaakcentowałem wyżej słowo „kopia”. Obydwa obiekty są bowiem od
siebie całkowicie niezależne. Jeżeli włączylibyśmy jeden z nich:

Lampa1.Wlacz();

drugi nie zmieniłby się wcale i nie obdarzył nas swym własnym światłem.

Możemy więc podsumować nasz wywód krótką uwagą na temat zmiennych obiektowych:

Zmienne obiektowe przechowuje obiekty w ten sam sposób, w jaki czynią to zwykłe
zmienne ze swoimi wartościami. Identycznie odbywa się też przypisywanie75 takich
zmiennych - tworzone są wtedy odpowiednie kopie obiektów.

Wspominałem, że wszystko to może wydawać się naturalne, oczywiste i niepodważalne.
Konieczne było jednak dokładne wyjaśnienie w tym miejscu tych z pozoru prostych
zjawisk, gdyż drugi sposób postępowania z obiektami (który poznamy za moment)
wprowadza w tej materii istotne zmiany.

Dostęp do składników
Kontrolowanie obiektu jako całości ma rozliczne zastosowania, ale jednak znacznie
częściej będziemy używać tylko jego pojedynczych składników, czyli pól lub metod.

Doskonale wiemy już, jak się to robi: z pomocą przychodzi nam zawsze operator
wyłuskania - kropka (.). Stawiamy więc go po nazwie obiektu, by potem wpisać nazwę
wybranego elementu, do którego chcemy się odwołać.

Pamiętajmy, że posiadamy wtedy dostęp jedynie do składowych publicznych klasy, do
której należy obiekt.

Dalsze postępowanie zależy już od tego, czy naszą uwagę zwróciliśmy na pole, czy na
metodę. W tym pierwszym, rzadszym przypadku nie odczujemy żadnej różnicy w
stosunku do pól w strukturach - i nic dziwnego, gdyż nie ma tu rzeczywiście najmniejszej
rozbieżności :) Wywołanie metody jest natomiast łudząco zbliżone do uruchomienia
zwyczajnej funkcji - tyle że w grę wchodzą tutaj nie tylko jej parametry, ale także obiekt,
na rzecz którego daną metodę wywołujemy.

Jak wiemy, jest on potem dostępny wewnątrz metody poprzez wskaźnik this.

Niszczenie obiektów
Każdy stworzony obiekt musi prędzej czy poźniej zostać zniszczony, aby móc odzyskać
zajmowaną przez niego pamięć i spokojnie zakończyć program. Dotyczy to także
zmiennych obiektowych, lecz dzieje się to trochę jakby za plecami programisty.

74 W pełnym znaczeniu tego słowa - z wywołaniem destruktora i późniejszym zwolnieniem pamięci.
75 To samo można zresztą powiedzieć o wszystkich operacjach podobnych do przypisania, tj. inicjalizacji oraz
przekazywaniu do funkcji.

Obiekty 213

Zauważmy bowiem, iż w żadnym z naszych dotychczasowych programów,
wykorzystujących techniki obiektowe, nie pojawiły się instrukcje, które jawnie
odpowiadałyby za niszczenie stworzonych obiektów. Nie oznacza to bynajmniej, że
zalegają one w pamięci operacyjnej76, zajmując ją niepotrzebnie. Po prostu kompilator
sam dba o to, by ich destrukcja nastąpiła w stosownej chwili.

A zatem kiedy jest ona faktycznie dokonywana? Nietrudno jest obmyślić odpowiedź na to
pytanie, jeżeli przypomnimy sobie pojęcie zasięgu zmiennej. Powiedzieliśmy sobie ongiś,
iż jest to taki obszar kodu programu, w którym dana zmienna jest dostępna. Dostępna -
to znaczy zadeklarowana, z przydzieloną dla siebie pamięcią, a w przypadku zmiennej
obiektowej - posiadająca również obiekt stworzony poprzez konstruktor klasy.
Moment opuszczenia zasięgu zmiennej przez punkt wykonania programu jest więc
kresem jej istnienia. Jeśli nieszczęsna zmienna była obiektową, do akcji wkracza
destruktor klasy (jeżeli został określony), sprzątając ewentualny bałagan po obiekcie i
niszcząc go. Dalej następuje już tylko zwolnienie pamięci zajmowanej przez zmienną i
jej kariera kończy się w niebycie :)

Zapamiętajmy więc, że:

Wyjście programu poza zasięg zmiennej obiektowej niszczy zawarty w niej obiekt.

Podsumowanie
Prezentowane tu własności zmiennych obiektowych być może wyglądają na nieznane i
niespotkane wcześniej. Naprawdę jednak nie są niczym szczególnym, gdyż spotykaliśmy
się z nimi od samego początku nauki programowania - w większości (z wyłączeniem
wyłuskiwania składników) dotyczą one bowiem wszystkich zmiennych!
Teraz wszakże omówiliśmy je sobie nieco dokładniej, koncentrując się przede wszystkim
na „życiu” obiektów - chwilach ich tworzenia i niszczenia oraz operacjach na nich. Mając
ugruntowaną tę więdzę, będzie nam łatwiej zmierzyć się z drugim sposobem stosowania
obiektów, który jest przedstawiony w następnym paragrafie.

Wskaźniki na obiekty
Przyznam szczerze: miałem pewne wątpliwości, czy słuszne jest zajmowanie się
wskaźnikami na obiekty już w tej chwili, bez dogłebnego przedstawienia samych
wskaźników. Tę naruszoną przeze mnie kolejność zachowałaby pewnie większość
autorów kursów czy książek o C++.
Ja jednak postawiłem sobie za cel nauczenie czytelnika programowania w języku C++ (i
to w konkretnym celu!), nie zaś samego języka C++. Narzuca to nieco inny porządek
treści, skoncentrowany w pierwszej kolejności na najpotrzebniejszych zagadnieniach
praktycznych, a dopiero potem na pozostałych możliwościach języka. Do tych „kwestii
pierwszej potrzeby” niewątpliwie należy zaliczyć ideę programowania obiektowego,
wskaźniki spychając tym samym na nieco dalszy plan.
Jednocześnie jednak nie mogę przy okazji OOPu pominąć milczeniem tematu wskaźników
na obiekty, które są praktycznie niezbędne do poprawnego konstruowania aplikacji z
wykorzystaniem klas. Dlatego też pojawia się on właśnie teraz; mimo wszystko ufam, że
zrozumienie go nie będzie dla ciebie wielkim kłopotem.

Po tak „zachęcającym” wstępie nie będę zdziwiony, jeżeli w tej chwili duża część
czytelników zakończy lekturę ;-) Skrycie wierzę jednak, że ambitnym kandydatom na
programistów gier żadne wskaźniki nie będą straszne, a już na pewno nie przelękną się
ich obiektowych odmian. Nie bedziemy zatem tracić więcej czasu oraz miejsca i
natychmiast przystąpimy do dzieła.

76 Zjawisko to nazywamy wyciekiem pamięci i jest ono wysoce niepożądane, zaś interesować nas będzie
bardziej w rozdziale traktującym o wskaźnikach.

Podstawy programowania 214

Deklarowanie wskaźników i tworzenie obiektów
Od czegóż to mielibyśmy zacząć, jeżeli nie od jakiejś zmiennej? W końcu bez zmiennych
nie ma obiektów, a bez obiektów nie ma programowania (obiektowego :D). Zadeklarujmy
więc na początek taką oto dziwną zmienną:

CFoo* pFoo;

Wszystko byłoby tu znajome, gdyby nie ta gwiazdka przy nazwie klasy CFoo. To właśnie
ona sprawia, że pFoo nie jest zmienną obiektową, ale właśnie wskaźnikiem na obiekt,
w tym przypadku obiekt klasy CFoo.

To ważne stwierdzenie - pFoo nie jest tutaj obiektem, on może co najwyżej na taki obiekt
wskazywać. Innymi słowy, może być jedynie odwołaniem do obiektu, połączeniem z
nim - ale zmienna ta nie będzie nigdy sama przechowywać żadnych danych, należących
do owego obiektu. Będzie raczej czymś w rodzaju pozycji w spisie treści, odnoszącej się
do rozdziału w książce.
Niniejsza linijka kodu nie tworzy więc żadnego obiektu, a jedynie przygotowuje nań
miejsce w programie. Właściwa kreacja musi nastąpić później i wygląda nieco inaczej niż
to, do czego przywykliśmy:

pFoo = new CFoo;

Słówko new („nowy”, niektórzy każą je zwać operatorem) służy właśnie do utworzenia
obiektu. Wykonuje ono prawie wszystkie czynności potrzebne do realizacji tego procesu,
a więc przydziela odpowiednią ilość pamięci dla naszego obiektu i wywołuje konstruktor
jego klasy.
Czym zatem zasługuje sobie na odrębność? Podstawową różnicą jest to, że tworzony
obiekt jest umieszczany w dowolnym miejscu pamięci, a nie w którejś z naszych
zmiennych (a już na pewno nie w pFoo!). Nie oznacza to jednakże, iż nie mamy o nim
żadnych informacji i nie możemy z niego normalnie korzystać. Otóż pFoo staje się tutaj
łącznikiem z naszym odległym tworem; za pośrednictwem tego wskaźnika mamy
bowiem pełną swobodę dostępu do stworzonego obiektu. Jak się wkrótce przekonasz,
możliwe jest przy jego pomocy odwoływanie się do składników obiektu (pól i metod) w
niemal taki sam sposób, jak w przypadku zmiennych obiektowych.

Schemat 18. Wskaźnik na obiekt jest pewnego rodzaju kluczem do niego

Jeden dla wszystkich, wszystkie do jednego
Ogromne i ważne różnice ujawniają się dopiero podczas manipulowania kilkoma takimi
wskaźnikami. Mam tu na myśli przede wszystkim instrukcje przypisania, rozważane już
dokładnie dla zmiennych obiektowych. Teraz podobne eksperymenta będziemy
dokonywali na wskaźnikach; zobaczymy, dokąd nas one zaprowadzą…

Do naszych celów po raz kolejny spożytkujemy zdefiniowaną w poprzednim paragrafie
klasę CLamp. Zaczniemy jednak od zadeklarowania wskaźnika na obiekt tej klasy z
jednoczesnym stworzeniem obiektu lampy:

Obiekty 215

CLamp* pLampa1 = new CLamp;

Przypominam, iż w ten sposób powołaliśmy do życia obiekt, który został umieszczony
gdzieś w pamięci, a wskaźnik pLampa1 jest tylko odwołaniem do niego.
Dalszej części nietrudno się domyśleć. Wprowadzamy sobie zatem drugi wskaźnik i
przypisujemy doń ten pierwszy, o tak:

CLamp* pLampa2 = pLampa1;

Mamy teraz dwa takie same wskaźniki… Czy to znaczy, iż posiadamy także parę
identycznych obiektów?

Otóż nie! Nasza lampa nadal egzystuje samotnie, bowiem skopiowaliśmy jedynie samo
odwołanie do niej. Obecnie użycie zarówno wskaźnika pLampa1, jak i pLampa2 będzie
uzyskaniem dostępu do jednego i tego samego obiektu.
To znacząca modyfikacja w stosunku do zmiennych obiektowych. Tam każda
reprezentowała i przechowywała swój własny obiekt, a instrukcje przypisywania między
nimi powodowały wykonywanie kopii owych obiektów.
Tutaj natomiast mamy tylko jeden obiekt, za to wiele dróg dostępu do niego, czyli
wskaźników. Przypisywanie między nimi dubluje jedynie te drogi, zaś sam obiekt
pozostaje niewzruszony.

Podsumowując:

Wskaźnik na obiekt jest jedynie odwołaniem do niego. Wykonanie przypisania do
wskaźnika może więc co najwyżej skopiować owo odwołanie, pozostawiając docelowy
obiekt całkowicie niezmienionym.

Mówiąc obrazowo, uzyskiwanie dodatkowego wskaźnika do obiektu jest jak wyrobienie
sobie dodatkowego klucza do tego samego zamka. Choćbyśmy mieli ich cały brelok,
wszystkie będą otwierały tylko jedne i te same drzwi.

Schemat 19. Możemy mieć wiele wskaźników do tego samego obiektu

Dostęp do składników
Cały czas napomykam, że wskaźnik jest pewnego rodzaju łączem do obiektu.
Wypadałoby więc wresznie połączyć się z tym obiektem, czyli uzyskać dostęp do jego
składników.

Operacja ta nie jest zbytnio skomplikowana, gdyż by ją wykonać posłużymy się znaną już
koncepcją operatora wyłuskania. W przypadku wskaźników nie jest nim jednak
kropka, ale strzałka (->). Otrzymujemy ją, wpisując kolejno dwa znaki: myślnika oraz
symbolu większości.
Aby zatem włączyć naszą lampę, wystarczy wywołać jej odpowiednią metodę przy
pomocy któregoś z dwóch wskaźników oraz poznanego właśnie operatora:

Podstawy programowania 216

pLampa1->Wlacz();

Możemy także sprawdzić, czy drugi wskaźnik istotnie odwołuje się do tego samego
obiektu co pierwszy. Wystarczy wywołać za jego pomocą metodę Wlaczona():

pLampa2->Wlaczona();

Nie będzie niespodzianką fakt, iż zwróci ona wartość true.

Zbierzmy więc w jednym miejscu informacje na temat obu operatorów wyłuskania:

Operator kropki (.) pozwala uzyskać dostęp do składników obiektu zawartego w
zmiennej obiektowej.

Operator strzałki (->) wykonuje analogiczną operację dla wskaźnika na obiekt.

Jak najlepiej zapamiętać i rozróżniać te dwa operatory? Proponuję prosty sposób:

 pamiętamy, że zmienna obiektowa przechowuje obiekt jako swoją wartość. Mamy
go więc dosłownie „na wyciągnięcie ręki” i nie potrzebujemy zbytnio się wysilać,
aby uzyskać dostęp do jego składników. Służący temu celowi operator może więc
być bardzo mały, tak mały jak… punkt :)

 kiedy zaś używamy wskaźnika na obiekt, wtedy nasz byt jest daleko stąd.
Potrzebujemy wówczas odpowiednio dłuższego, dwuznakowego operatora, który
dodatkowo wskaże nam (strzałka!) właściwą drogę do poszukiwanego obiektu.

Takie wyjaśnienie powinno być w miarę pomocne w przyswojeniu sobie znaczenia oraz
zastosowania obu operatorów.

Niszczenie obiektów
Wszelkie obiekty kiedyś należy zniszczyć; czynność ta, oprócz wyrabiania dobrego
nawyku sprzątania po sobie, zwalnia pamięć operacyjną, które te obiekty zajmowały. Po
zniszczeniu wszystkich możliwe jest bezpieczne zakończenie programu.

Podobnie jak tworzenie, tak i niszczenie obiektów dostępnych poprzez wskaźniki nie jest
wykonywane automatycznie. Wymagana jest do tego odrębna instrukcja - na szczęście
nie wygląda ona na wielce skomplikowaną i przedstawia się następująco:

delete pFoo; // pFoo musi tu być wskaźnikiem na istniejący obiekt

delete („usuń”, podobnie jak new jest uważane za operator) dokonuje wszystkich
niezbędnych czynności potrzebnych do zniszczenia obiektu reprezentowanego przez
wskaźnik. Wywołuje więc jego destruktor, a następnie zwalnia pamięć zajętą przez
obiekt, który kończy wtedy definitywnie swoje istnienie.

To tyle jeśli chodzi o życiorys obiektu. Co się jednak dzieje z samym wskaźnikiem? Otóż
nadal wskazuje on na miejsce w pamięci, w którym jeszcze niedawno egzystował nasz
obiekt. Teraz jednak już go tam nie ma; wszelkie próby odwołania się do tego obszaru
skończą się więc błedem, zwanym naruszeniem zasad dostępu (ang. access violation).
Pamiętajmy zatem, iż:

Nie należy próbować uzyskać dostępu do zniszczonego (lub niestworzonego) obiektu
poprzez wskaźnik na niego. Spowoduje to bowiem błąd wykonania programu i jego
awaryjne zakończenie.

Musimy być także świadomi, że w momencie usuwania obiektu traci ważność nie tylko
ten wskaźnik, którego użyliśmy do dokonania aktu zniszczenia, ale też wszystkie inne

Obiekty 217

wskaźniki odnoszące się do tego obiektu! To zresztą naturalne, skoro co do jednego
wskazują one na tą samą, nieaktualną już lokację w pamięci.

Stosowanie wskaźników na obiekty
Wczytując się w powyższy opis i spoglądając nań krytycznym okiem można uznać, że
stosowanie wskaźników na obiekty jest tylko niepotrzebnym zawracaniam sobie głowy i
utrudnianiem życia. Nie dość, że trzeba samemu dbać o tworzenie i niszczenie obiektów,
to jeszcze nasz program może się niechybnie „wysypać”, jeśli spróbujemy odwołać się do
nieistniejącego obiektu. I gdzie są te obiecane korzyści?…
Taka ocena jest naturalnie mocno niesprawiedliwa, a moim zadaniem jest przekonanie
cię, iż wskaźniki są nie tylko przydatne w programowaniu obiektowym, ale wydają się
wręcz niezbędne.

Przypomnijmy sobie najpierw, cóż ciekawego powiedzieliśmy o obiektach na samych
początku rozdziału. Mianowicie wyjaśniliśmy sobie, że są to drobne cegiełki, z których
programista buduje swoją aplikację.
To całkiem dobre porównanie, gdyż kryje w sobie jeszcze jeden ukryty sens: niewiele
można zrobić z zestawem cegieł, jeżeli nie będziemy dysponowali jakimś spoiwem,
łączącym je w calość. Rolę łączników spełniają właśnie wskaźniki.

Każdy obiekt, aby być użytecznym, powinien być jakoś połączony z innym obiektem. To
w zasadzie dosyć oczywista prawda, jednak na początku można sobie nie całkiem zdawać
z niej sprawę.
Takie relacje najprościej realizować za pomocą wskaźników. Sposób, w jaki łączą one
obiekty, jest bardzo prosty: otóż jeden z nich powinien posiadać pole, będące
wskaźnikiem na drugi obiekt. Ów drugi koniec łącza może, jak wiemy, istnieć w
dowolnym miejscu pamięci, co więcej - możliwe jest, by „dochodził” do niego więcej niż
jeden wskaźnik! W ten sposób obiekty mogą brać udział w dowolnej liczbie wzajemnych
relacji.

Schemat 20. Działanie aplikacji opiera się na zależnościach między obiektami

Tak to wygląda w teorii, ale ponieważ jeden przykład wart jest tysiąca słów, najlepiej
będzie, jeżeli przyjrzysz się takowemu przykładowi. Przypuśćmy więc, że jesteśmy w
trakcie pisania gry podobnej do sławnego Lode Runnera: należy w niej zebrać wszystkie
przedmioty znajdujące się na planszy (zazwyczaj są to monety albo inne bogactwa), aby
awansować do kolejnego etapu. Jakie obiekty i jakie zależności należałoby w tym
przypadku stworzyć?
Najlepiej zacząć od tego największego i najważniejszego, grupującego wszystkie inne -
na przykład samego etapu. Podrzędnym w stosunku do niego będzie obiekt gracza oraz,
rzecz jasna, pewna ilość obiektów monet (zapewne umieszczonych w tablicy albo innym
tego rodzaju pojemniku). Do tego dodamy pewnie jeszcze kilku wrogów; ostatecznie
nasz prosty model przedstawiać się będzie następująco:

Podstawy programowania 218

Schemat 21. Fragment przykładowego diagramu powiązań obiektów w grze

Dzięki temu, że obiekt etapu posiadą dostęp (naturalnie poprzez wskaźnik) do obiektów
gracza czy też wrogów, może chociażby uaktualniać ich pozycję na ekranie w odpowiedzi
na wciskanie klawiszy na klawiaturze lub upływ czasu. Odpowiednie rozkazy będzie
zapewne otrzymywał „z góry”, tj. od obiektu nadrzędnego wobec niego -
najprawdopodobniej jest to główny obiekt gry.

W podobny sposób, o wiele naturalniejszy niż w programowaniu strukturalnym,
projektujemy model obiektowy każdego w zasadzie programu. Nie musimy już rozdzielać
swoich koncepcji na dane i kod, wystarczy że stworzymy odpowiednie klasy oraz obiekty i
zapewnimy powiązania między nimi. Rzecz jasna, z wykorzystaniem wskaźników na
obiekty :)

Podsumowanie
Kończący się rozdział był nieco krótszy niż parę poprzednich. Podejrzewam jednak, że
przebrnięcie przez niego zajęło ci może nawet więcej czasu i było o wiele trudniejsze.
Wszystko dlatego że poznawaliśmy tutaj zupełnie nową koncepcję programowania, która
wprawdzie ideowo jest o wiele bliższa człowiekowi niż techniki strukturalne, ale w zamian
wymaga od razu przyswojenia sobie sporej porcji nowych wiadomości i pojęć. Nie martw
się zatem, jeśli nie były one dla ciebie całkiem jasne; zawsze przecież możesz wrócić do
trudniejszych fragmentów tekstu w przyszłości (ponowne przeczytanie całego rozdziału
jest naturalnie również dopuszczalne :D).

Nasze spotkanie z programowaniem obiektowym będziemy zresztą kontynuowali w
następnym rozdziale, w którym to ostatecznie wyjaśni się, dlaczego jest ono takie
wspaniałe ;)

Pytania i zadania
Nowopoznane, arcyważne zagadnienie wymaga oczywiście odpowiedniego powtórzenia.
Nie krępuj się więc i odpowiedz na poniższe pytania :)

Pytania
1. Czym są obiekty i jaka jest ich rola w programowaniu z użyciem technik OOP?
2. Jakie etapy obejmuje wprowadzenie do programu nowej klasy?

Obiekty 219

3. Jakie składniki możemy umieścić w definicji klasy?
4. (Trudne) Które składowe klasa posiada zawsze, niezależnie od tego czy je

zdefiniujemy, czy nie?
5. W jaki sposób możemy z wnętrza metody uzyskać dostęp do obiektu, na rzecz

którego została ona wywołana?
6. Czym różni się użycie wskaźnika na obiekt od zmiennej obiektowej?
7. Jak odrębne obiekty w programie mogą „wiedzieć” o sobie nawzajem i

przekazywać między sobą informacje?

Ćwiczenia
1. Zdefiniuj prostą klasę reprezentującą książkę.
2. Napisz program podobny do przykładu DegreesCalc, ale przeliczający między

jednostkami informacji (bajtami, kilobajtami itd.).

