
7
PROGRAMOWANIE

OBIEKTOWE

Gdyby murarze budowali domy tak,
jak programiści piszą programy,

to jeden dzięcioł zniszczyłby całą cywilizację.
ze zbioru prawd o oprogramowaniu

Witam cię serdecznie, drogi Czytelniku! Powitanie to jest tutaj jak najbardziej wskazane.
Twoja obecność wskazuje bowiem, że nadzwyczaj szybko wydostałeś się spod sterty
nowych wiadomości, którymi obarczyłem cię w poprzednim rozdziale :) A nie było to
wcale takie proste, zważywszy że poznałeś tam zupełnie nową technikę programowania,
opierającą się na całkiem innych zasadach niż te dotychczas ci znane.

Mimo to mogłeś uczuć pewien niedosyt. Owszem, idea OOPu była tam przedstawiona
jako w miarę naturalna, a nawet intuicyjna (w każdym razie bardziej niż programowanie
strukturalne). Potrzeba jednak sporej dozy optymizmu, aby uznać ją na tym etapie za
coś rewolucyjnego, co faktycznie zmienia sposób myślenia o programowaniu (a
jednocześnie znacznie je ułatwia).
By w pełni przekonać się do tej koncepcji, trzeba o niej wiedzieć nieco więcej; kluczowe
informacje na ten temat są zawarte w tym oto rozdziale. Sądzę więc, że choćby z tego
powodu będzie on dla ciebie bardzo interesujący :D

Zajmiemy się w nim dwoma niezwykle ważnymi zagadnieniami programowania
obiektowego: dziedziczeniem oraz metodami wirtualnymi. Na nich właśnie opiera się cała
jego potęga, pozwalająca tworzyć efektowne i efektywne programy.
Zobaczymy zresztą, jak owo tworzenie wygląda w rzeczywistości. Końcową część
rozdziału poświęciłem bowiem na zestaw rad i wskazówek, które, jak sądzę, okażą się
pomocne w projektowaniu aplikacji opartych na modelu OOP.

Kontynuujmy zatem poznawanie wspaniałego świata programowania obiektowego :)

Dziedziczenie
Drugim powodem, dla którego techniki obiektowe zyskały taką popularność77, jest
znaczący postęp w kwestii ponownego wykorzystywania raz napisanego kodu oraz
rozszerzania i dostosywania go do własnych potrzeb.
Cecha ta leży u samych podstaw OOPu: program konstruowany jako zbiór
współdziałających obiektów nie jest już bowiem monolitem, ścisłym połączeniem danych i
wykonywanych nań operacji. „Rozdrobniona” struktura zapewnia mu zatem
modularność: nie jest trudno dodać do gotowej aplikacji nową funkcję czy też

77 Pierwszym jest wspominana nie raz „naturalność” programowania, bez konieczności podziału na dane i kod.

Podstawy programowania 222

wyodrębnić z niej jeden podsystem i użyć go w kolejnej produkcji. Ułatwia to i
przyspiesza realizację kolejnych projektów.

Wszystko zależy jednak od umiejętności i doświadczenia programisty. Nawet stosując
techniki obiektowe można stworzyć program, którego elementy będą ze sobą tak ściśle
zespolone, że próba ich użycia w następnej aplikacji będzie przypominała wciskanie
słonia do szklanej butelki.

Istnieje jeszcze jedna przyczyna, dla której kod oparty na programowaniu obiektowym
łatwiej poddaje się „recyklingowi”, mającemu przygotować go do ponownego użycia. Jest
nim właśnie tytułowy mechanizm dziedziczenia.
Korzyści płynące z jego stosowania nie ograniczają się jednakże tylko do wtórnego
„przerobu” już istniejącego kodu. Przeciwnie, jest to fundamentalny aspekt OOPu
niezmiernie ułatwiający i uprzyjemniający projektowanie każdej w zasadzie aplikacji. W
połączeniu z technologią funkcji wirtualnych oraz polimorfizmu daje on niezwykle
szerokie możliwości, o których szczegółowo traktuje praktycznie cały niniejszy rozdział.

Rozpoczniemy zatem od dokładnego opisu tego bardzo pożytecznego mechanizmu
programistycznego.

O powstawaniu klas drogą doboru naturalnego
Człowiek jest taką dziwną istotą, która bardzo lubi posiadać uporządkowany i
usystematyzowany obraz świata. Wprowadzanie porządku i pewnej hierarchii co do
postrzeganych zjawisk i przedmiotów jest dla nas niemal naturalną potrzebą.

Chyba najlepiej przejawia się to w klasyfikacji biologicznej. Widząc na przykład psa
wiemy przecież, że nie tylko należy on do gatunku zwanego psem domowym, lecz także
do gromady znanej jako ssaki (wraz z końmi, słoniami, lwami, małpami, ludźmi i całą
resztą tej menażerii). Te z kolei, razem z gadami, ptakami czy rybami należą do kolejnej,
znacznie większej grupy organizmów zwanych po prostu zwierzętami.
Nasz pies jest zatem jednocześnie psem domowym, ssakiem i zwierzęciem:

Schemat 22. Klasyfikacja zwierząt jako przykład hierarchii typów obiektów

Programowanie obiektowe 223

Gdyby był obiektem w programie, wtedy musiałby należeć aż do trzech klas naraz78!
Byłoby to oczywiście niemożliwe, jeżeli wszystkie miałyby być wobec siebie równorzędne.
Tutaj jednak tak nie jest: występuje między nimi hierarchia, jedna klasa pochodzi od
drugiej. Zjawisko to nazywamy właśnie dziedziczeniem.

Dziedziczenie (ang. inheritance) to tworzenie nowej klasy na podstawie jednej lub kilku
istniejących wcześniej klas bazowych.

Wszystkie klasy, które powstają w ten sposób (nazywamy je pochodnymi), posiadają
pewne elementy wspólne. Części te są dziedziczone z klas bazowych, gdyż tam właśnie
zostały zdefiniowane.
Ich zbiór może jednak zostać poszerzony o pola i metody specyficzne dla klas
pochodnych. Będą one wtedy współistnieć z „dorobkiem” pochodzącym od klas
bazowych, ale mogą oferować dodatkową funkcjonalność.

Tak w teorii wygląda system dziedziczenia w programowaniu obiektowym. Najlepiej
będzie, jeżeli teraz przyjrzymy się, jak w praktyce może wyglądać jego zastosowanie.

Od prostoty do komplikacji, czyli ewolucja
Powróćmy więc do naszego przykładu ze zwierzętami. Chcąc stworzyć programowy
odpowiednik zaproponowanej hierarchii, musielibyśmy zdefiniować najpierw odpowiednie
klasy bazowe. Następnie odziedziczylibyśmy ich pola i metody w klasach
pochodnych i dodali nowe, właściwe tylko im. Powstałe klasy same mogłyby być potem
bazami dla kolejnych, jeszcze bardziej wyspecjalizowanych typów.
Idąc dalej tą drogą dotarlibyśmy wreszcie do takich klas, z których sensowne byłoby już
tworzenie normalnych obiektów.

Pojęcie klas bazowych i klas pochodnych jest zatem względne: dana klasa może
wprawdzie pochodzić od innych, ale jednocześnie być bazą dla kolejnych klas. W ten
sposób ustala się wielopoziomowa hierarchia, podobna zwykle do drzewka.

Ilustracją tego procesu może być poniższy diagram:

Schemat 23. Hierarchia klas zwierząt

78 A raczej do siedmiu lub ośmiu, gdyż dla prostoty pominąłem tu większość poziomów systematyki.

Podstawy programowania 224

Wszystkie przedstawione na nim klasy wywodzą się z jednej, nadrzędnej wobec
wszystkich: jest nią naturalnie klasa Zwierzę. Dziedziczy z niej każda z pozostałych klas -
bezpośrednio, jak Ryba, Ssak oraz Ptak, lub pośrednio - jak Pies domowy.
Tak oto tworzy się kilkupoziomowa klasyfikacja oparta na mechanizmie dziedziczenia.

Z klasy bazowej do pochodnej, czyli dziedzictwo przodków
O podstawowej konsekwencji takiego rozwiązania zdążyłem już wcześniej wspomnieć.
Jest nią mianowicie przekazywanie pól oraz metod pochodzących z klasy bazowej do
wszystkich klas pochodnych, które się z niej wywodzą. Zatem:

Klasa pochodna zawiera pola i metody odziedziczone po klasach bazowych. Może także
posiadać dodatkowe, unikalne dla siebie składowe - nie jest to jednak obowiązkiem.

Prześledźmy teraz sposób, w jaki odbywa się odziedziczanie składowych na przykładzie
naszej prostej hierarchii klas zwierząt.

U jej podstawy leży „najbardziej bazowa” klasa Zwierzę. Zawiera ona dwa pola,
określające masę i wiek zwierzęcia, oraz metody odpowiadające za takie czynności jak
widzenie i oddychanie. Składowe te mogły zostać umieszczone tutaj, gdyż dotyczą one
wszystkich interesujących nas zwierząt i będą miały sens w każdej z klas pochodnych.
Tymi klasami, bezpośrednio dziedziczącymi od klasy Zwierzę, są Ryba, Ssak oraz Ptak.
Każda z nich niejako „z miejsca” otrzymuje zestaw pól i metod, którymi legitymowało
się bazowe Zwierzę. Klasy te wprowadzają jednak także dodatkowe, własne metody: i
tak Ryba może pływać, Ssak biegać79, zaś Ptak latać. Nie ma w tym nic dziwnego,
nieprawdaż? :)
Wreszcie, z klasy Ssak dziedziczy najbardziej interesująca nas klasa, czyli Pies domowy.
Przejmuje ona wszystkie pola i metody z klasy Ssak, a więc pośrednio także z klasy
Zwierzę. Uzupełnia je przy tym o kolejne składowe, właściwe tylko sobie.

Ostatecznie więc klasa Pies domowy zawiera znacznie więcej pól i metod niż mogłoby się
z początku wydawać:

Schemat 24. Składowe klasy Pies domowy

79 Delfiny muszą mi wybaczyć nieuwzględnienie ich w tym przykładzie :D

Programowanie obiektowe 225

Wykazuje poza tym pewną budowę wewnętrzną: niektóre jej pola i metody możemy
bowiem określić jako własne i unikalne, zaś inne są odziedziczone po klasie bazowej i
mogą być wspólne dla wielu klas. Nie sprawia to jednak żadnej różnicy w korzystaniu z
nich: funkcjonują one identycznie, jakby były zawarte bezpośrednio wewnątrz klasy.

Obiekt o kilku klasach, czyli zmienność gatunkowa
Oczywiście klas nie definiuje się dla samej przyjemności ich definiowania, lecz dla
tworzenia z nich obiektów. Jeżeli więc posiadalibyśmy przedstawioną wyżej hierarchię w
jakimś prawdziwym programie, to z pewnością pojawiłyby się w nim także instancje
zaprezentowanych klas, czyli odpowiednie obiekty.

W ten sposób wracamy do problemu postawionego na samym początku: jak obiekt może
należeć do kilku klas naraz? Różnica polega wszak na tym, że mamy już jego gotowe
rozwiązanie :) Otóż nasz obiekt psa należałby przede wszystkim do klasy Pies
domowy; to właśnie tej nazwy użylibyśmy, by zadeklarować reprezentującą go zmienną
czy też pokazujący nań wskaźnik. Jednocześnie jednak byłby on typu Ssak oraz typu
Zwierzę, i mógłby występować w tych miejscach programu, w których byłby wymagany
jeden z owych typów.
Fakt ten jest przyczyną istnienia w programowaniu obiektowym zjawiska zwanego
polimorfizmem. Poznamy je dokładnie jeszcze w tym rozdziale.

Dziedziczenie w C++
Pozyskawszy ogólne informacje o dziedziczeniu jako takim, możemy zobaczyć, jak idea
ta została przełożona na nasz nieoceniony język C++ :) Dowiemy się więc, w jaki sposób
definiujemy nowe klasy w oparciu o już istniejące oraz jakie dodatkowe efekty są z tym
związane.

Podstawy
Mechanizm dziedziczenia jest w C++ bardzo rozbudowany, o wiele bardziej niż w
większości pozostalych języków zorientowanych obiektowo80. Udostępnia on kilka
szczególnych możliwości, które być może nie są zawsze niezbędne, ale pozwalają na dużą
swobodę w definiowaniu hierarchii klas. Poznanie ich wszystkich nie jest konieczne, aby
sprawnie korzystać z dobrodziejstw programowania obiektowego, jednak wiemy
doskonale, że wiedza jeszcze nikomu nie zaszkodziła :D

Zaczniemy oczywiście od najbardziej elementarnych zasad dziedziczenia klas oraz
przyjrzymy się przykładom ilustrującym ich wykorzystanie.

Definicja klasy bazowej i specyfikator protected
Jak pamiętamy, definicja klasy składa się przede wszystkim z listy deklaracji jej pól oraz
metod, podzielonych na kilka części wedle specyfikatorów praw dostępu. Najczęściej
każdy z tych specyfikatorów występuje co najwyżej w jednym egzemplarzu, przez co
składnia definicji klasy wygląda następująco:

class nazwa_klasy
{
 [private:]
 [deklaracje_prywatne]
 [protected:]
 [deklaracje_chronione]
 [public:]

80 Dorównują mu chyba tylko rozwiązania znane z Javy.

Podstawy programowania 226

 [deklaracje_publiczne]
};

Nieprzypadkowo pojawił się tu nowy specyfikator, protected. Jego wprowadzenie
związane jest ściśle z pojęciem dziedziczenia. Pojęcie to wpływa zresztą na dwa pozostałe
rodzaje praw dostępu do składowych klasy.
Zbierzmy więc je wszystkie w jednym miejscu, wyjaśniając definitywnie znaczenie każdej
z etykiet:

 private: poprzedza deklaracje składowych, które mają być dostępne jedynie dla
metod definiowanej klasy. Oznacza to, iż nie można się do nich dostać, używając
obiektu lub wskaźnika na niego oraz operatorów wyłuskania . lub ->.
Ta wyłączność znaczy również, że prywatne składowe nie są dziedziczone i nie
ma do nich dostępu w klasach pochodnych, gdyż nie wchodzą w ich skład.

 specyfikator protected („chronione”) także nie pozwala, by użytkownicy obiektów
naszej klasy „grzebali” w opatrzonych nimi polach i metodach. Jak sama nazwa
wskazuje, są one chronione przed takim dostępem z zewnątrz.
Jednak w przeciwieństwie do deklaracji private, składowe zaznaczone przez
protected są dziedziczone i występują w klasach pochodnych, będąc
dostępnymi dla ich własnych metod.

Pamiętajmy zatem, że zarówno private, jak i protected nie pozwala, aby oznaczone
nimi składowe klasy były dostępne na zewnątrz. Ten drugi specyfikator zezwala jednak
na dziedziczenie pól i metod.

 public jest najbardziej liberalnym specyfikatorem. Nie tylko pozwala na
odziedziczanie swych składowych, ale także na udostępnianie ich szerokiej rzeszy
obiektów poprzez operatory wyłuskania.

Powyższe opisy brzmią może nieco sucho i niestrawnie, dlatego przyjrzymy się jakiemuś
przykładowi, który będzie bardziej przemawiał do wyobraźni. Mamy więc taką oto klasę
prostokąta:

class CRectangle
{
 private:
 // wymiary prostokąta
 float m_fSzerokosc, m_fWysokosc;
 protected:
 // pozycja na ekranie
 float m_fX, m_fY;
 public:
 // konstruktor
 CRectangle() { m_fX = m_fY = 0.0;
 m_fSzerokosc = m_fWysokosc = 10.0; }

 //---

 // metody
 float Pole() const { return m_fSzerokosc * m_fWysokosc; }
 float Obwod() const { return 2 * (m_fSzerokosc+m_fWysokosc); }
};

Opisują go cztery liczby, wyznaczające jego pozycję oraz wymiary. Współrzędne X oraz Y
uczyniłem tutaj polami chronionymi, zaś szerokość oraz wysokość - prywatnymi.
Dlaczego właśnie tak?…
Otóż powyższa klasa będzie również bazą dla następnej. Pamiętamy z geometrii, że
szczególnym rodzajem prostokąta jest kwadrat. Ma on wszystkie boki o tej samej
długości, zatem nielogiczne jest stosowań do nich pojęcia szerokości i wysokości.

Programowanie obiektowe 227

Wielkość kwadratu określa bowiem tylko jedna liczba, więc defincja odpowiadającej mu
klasy może wyglądać następująco:

class CSquare : public CRectangle // dziedziczenie z CRectangle
{
 private:
 // zamiast szerokości i wysokości mamy tylko długość boku
 float m_fDlugoscBoku;

 // pola m_fX i m_fY są dziedziczone z klasy bazowej, więc nie ma
 // potrzeby ich powtórnego deklarowania

 public:
 // konstruktor
 CSquare { m_fDlugoscBoku = 10.0; }

 //---

 // nowe metody
 float Pole() const { return m_fDlugoscBoku * m_fDlugoscBoku; }
 float Obwod() const { return 4 * m_fDlugoscBoku; }
};

Dziedziczy ona z CRectangle, co zostało zaznaczone w pierwszej linijce, ale postać tej
frazy chwilowo nas nie interesuje :) Skoncentrujmy się raczej na konsekwencjach owego
dziedziczenia.
Porozmawiajmy najpierw o nieobecnych. Pola m_fSzerokosc oraz m_fWysokosc były w
klasie bazowej oznaczone jako prywatne, zatem ich zasięg ogranicza się jedynie do tej
klasy. W pochodnej CSquare nie ma już po nich śladu; zamiast tego pojawia się bardziej
naturalne pole m_fDlugoscBoku z sensowną dla kwadratu wielkością.
Związane są z nią także dwie nowe-stare metody, zastępujące te z CRectangle. Do
obliczania pola i obwodu wykorzystujemy bowiem samą długość boku kwadratu, nie zaś
„jego” szerokośc i wysokość, których w klasie w ogóle nie ma.

W definicji CSquare nie ma także deklaracji m_fX oraz m_fY. Nie znaczy to jednak, że
klasa tych pól nie posiada, gdyż zostały one po prostu odziedziczone z bazowej
CRectangle. Stało się tak oczywiście za sprawą specyfikatora protected.
Co więc powinniśmy o nim pamiętać? Otóż:

Należy używać specyfikatora protected, kiedy chcemy uchronić składowe przed
dostępem z zewnątrz, ale jednocześnie mieć je do dyspozycji w klasach pochodnych.

Definicja klasy pochodnej
Dopiero posiadając zdefiniowaną klasę bazową możemy przystąpić do określania
dziedziczącej z niej klasy pochodnej. Jest to konieczne, bo w przeciwnym wypadku
kazalibyśmy kompilatorowi korzystać z czegoś, o czym nie miałby wystarczających
informacji.

Składnię definicji klasy pochodnej możemy poglądowo przedstawić w ten sposób:

class nazwa_klasy [: [specyfikatory] [nazwa_klasy_bazowej] [, ...]]
{
 deklaracje_składowych
};

Ponieważ z sekwencją deklaracji_składowych spotkaliśmy się już nie raz i nie dwa
razy, skupimy się jedynie na pierwszej linijce podanego schematu.

Podstawy programowania 228

To w niej właśnie podajemy klasy bazowe, z których chcemy dziedziczyć. Czynimy to,
wpisując dwukropek po nazwie definiowanej właśnie klasy i podając dalej listę jej klas
bazowych, oddzielonych przecinkami. Zwykle nie będzie ona zbyt długa, gdyż w
większości przypadków wystarczające jest pojedyncze dziedziczenie, zakładające tylko
jedną klasę bazową.

Istotne są natomiast kolejne specyfikatory, które opcjonalnie możemy umieścić przed
każdą nazwą_klasy_bazowej. Wpływają one na proces dziedziczenia, a dokładniej na
prawa dostępu, na jakich klasa pochodna otrzymuje składowe klasy bazowej.
Kiedy zaś mowa o tychże prawach, natychmiast przypominamy sobie o słówkach
private, protected i public, nieprawdaż? ;) Rzeczywiście, specyfikatory
dziedziczenia występują zasadniczo w liczbie trzech sztuk i są identyczne z tymi
występującymi wewnątrz bloku klasy. O ile jednak tamte pojawiają się w prawie każdej
sytuacji i klasie, o tyle tutaj specyfikator public ma niemal całkowity monopol, a użycie
pozostałych dwóch należy do niezmiernie rzadkich wyjątków.
Dlaczego tak jest? Otóż w 99.9% przypadków nie ma najmniejszej potrzeby zmiany praw
dostępu do składowych odziedziczonych po klasie bazowej. Jeżeli więc któreś z nich
zostały tam zadeklarowane jako protected, a inne jako public, to prawie zawsze
życzymy sobie, aby w klasie pochodnej zachowały te same prawa. Zastosowanie
dziedziczenia public czyni zadość tym żądaniom, dlatego właśnie jest ono tak często
stosowane.

O pozostałych dwóch specyfikatorach możesz przeczytać w MSDN. Generalnie ich
działanie nie jest specjalnie skomplikowane, gdyż nadają składowym klasy bazowej
prawa dostępu właściwe swoim „etykietowym” odpowiednikom. Tak więc dziedziczenie
protected czyni wszystkie składowe klasy bazowej chronionymi w klasie pochodnej, zaś
private sprowadza je do dostępu prywatnego.

Formalnie rzecz ujmując, stosowanie specyfikatorów dziedziczenia jest nieobowiązkowe.
W praktyce jednak trudno korzystać z tego faktu, ponieważ pominięcie ich jest
równoznacznie z zastosowaniem specyfikatora private81 - nie zaś naturalnego public!
Niestety, ale tak właśnie jest i trzeba się z tym pogodzić.

Nie zapominaj więc o specyfikatorze public, gdyż jego brak przed nazwą klasy bazowej
jest niemal na pewno błędem.

Dziedziczenie pojedyncze
Najprostszą i jednocześnie najczęściej występującą w dziedziczeniu sytuacją jest ta, w
której mamy do czynienia tylko z jedną klasa bazową. Wszystkie dotychczas pokazane
przykłady reprezentowały to zagadnienie; nazywamy je dziedziczeniem pojedynczym
lub jednokrotnym (ang. single inheritance).

Proste przypadki
Najprostsze sytuacje, w których mamy do czynienia z tym rodzajem dziedziczenia, są
często spotykane w programach. Polegają one na tym, iż jedna klasa jest tworzona na
podstawie drugiej poprzez zwyczajne rozszerzenie zbioru pól i metod.
Ilustracją będzie tu kolejny przykład geometryczny :)

class CEllipse // elipsa, klasa bazowa
{

81 Zakładając, że mówimy o klasach deklaroanych poprzez słowo class. W przypadku struktur (słowo struct),
które są w C++ niemal tożsame z klasami, to public jest domyślnym specyfikatorem - zarówno dziedziczenia,
jak i dostępu do składowych.

Programowanie obiektowe 229

 private:
 // większy i mniejszy promień elipsy
 float m_fWiekszyPromien;
 float m_fMniejszyPromien;
 protected:
 // współrzędne na ekranie
 float m_fX, m_fY;
 public:
 // konstruktor
 CEllipse() { m_fX = m_fY = 0.0;
 m_fWiekszyPromien = m_fMniejszyPromien = 10.0; }

 //---

 // metody
 float Pole() const
 { return PI * m_fWiekszyPromien * m_fMniejszyPromien; }
};

class CCircle : public CEllipse // koło, klasa pochodna
{
 private:
 // promień koła
 float m_fPromien;
 public:
 // konstruktor
 CCircle() (m_fPromien = 10.0; }

 //---

 // metody
 float Pole() const { return PI * m_fPromien * m_fPromien; }
 float Obwod() const { return 2 * PI * m_fPromien; }
};

Jest on podobny do wariantu z prostokątem i kwadratem. Tutaj klasa CCircle jest
pochodną od CEllipse, zatem dziedziczy wszystkie jej składowe, które nie są prywatne.
Uzupełnia ponadto ich zbiór o dodatkową metodę Obwod(), obliczającą długość okręgu
okalającego nasze koło.

Sztafeta pokoleń
Hierarchia klas nierzadko nie kończy się na jednej klasie pochodnej, lecz sięga nawet
bardziej wgłąb. Nowo stworzona klasa może być bowiem bazową dla kolejnych, te zaś -
dla następnych, itd.

Na samym początku spotkaliśmy się zresztą z takim przypadkiem, gdzie klasami były
rodzaje zwierząt. Spróbujemy teraz przełożyć tamten układ na język C++.
Zaczynamy oczywiście od klasy, z której wszystkie inne biorą swój początek - CAnimal:

class CAnimal // Zwierzę
{
 protected:
 // pola klasy
 float m_fMasa;
 unsigned m_uWiek;
 public:
 // konstruktor
 CAnimal() { m_uWiek = 0; }

Podstawy programowania 230

 //---

 // metody
 void Patrz();
 void Oddychaj();

 // metody dostępowe do pól
 float Masa() const { return m_fMasa; }
 void Masa(float fMasa) { m_fMasa = fMasa; }
 unsigned Wiek() const { return m_uWiek; }
};

Jej postać nie jest chyba niespodzianką: mamy tutaj wszystkie ustalone wcześniej,
publiczne metody oraz pola, które oznaczyliśmy jako protected. Zrobiliśmy tak, bo
chcemy, by były one przekazywane do klas pochodnych od CAnimal.

A skoro już wspomnialiśmy o klasach pochodnych, pomyślmy o ich definicjach.
Zważywszy, że każda z nich wprowadza tylko jedną nową metodę, powinny one być
raczej proste - i istotnie takie są:

class CFish : public CAnimal // Ryba
{
 public:
 void Plyn();
};

class CMammal : public CAnimal // Ssak
{
 public:
 void Biegnij();
};

class CBird : public CAnimal // Ptak
{
 public:
 void Lec();
};

Nie zapominamy rzecz jasna, że oprócz widocznych powyżej deklaracji zawierają one
także wszystkie składowe wzięte od klasy CAnimal. Powtarzam to tak często, że chyba
nie masz już co do tego żadnych wątpliwości :D

Ostatnią klasą z naszego drzewa gatunkowego był, jak pamiętamy, Pies domowy.
Definicja jego klasy także jest dosyć prosta:

class CHomeDog : public CMammal // Pies domowy
{
 protected:
 // nowe pola
 RACE m_Rasa;
 COLOR m_KolorSiersci;
 public:
 // metody
 void Aportuj();
 void Szczekaj();

 // metody dostępowe do pól
 RACE Rasa() const { return m_Rasa; }
 COLOR KolorSiersci() const { return m_KolorSiersci; }
};

Programowanie obiektowe 231

Jak zwykle typy RACE i COLOR są mocno umowne. Ten pierwszy byłby zapewne
odpowiednim enum’em.

Wiemy jednakże, iż kryje się za nią całe bogactwo pól i metod odziedziczonych po
klasach bazowych. Dotyczy to zarówno bezpośredniego przodka klasy CHomeDog, czyli
CMammal, jak i jej pośredniej bazy - CAnimal. Jedyną znacząca tutaj różnicą pomiędzy
tymi dwoma klasami jest fakt, że pierwsza występuje w definicji CHomeDog, zaś druga nie.

Płaskie hierarchie
Oprócz rozbudowanych, wielopoziomowych relacji typu baza-pochodna w powszechnym
zastosowaniu są też takie modele, w których z jednej klasy bazowej dziedziczy wiele klas
pochodnych. Jest to tzw. płaska hierarchia i wygląda np. w ten sposób:

Schemat 25. Płaska hierarchia klas figur szachowych
(ilustracje pochodzą z serwisu David Howell Chess)

Po przełożeniu jej na język C++ otrzymalibyśmy coś w tym rodzaju:

// klasa bazowa
class CChessPiece { /* definicja */ }; // Figura szachowa

// klasy pochodne
class CPawn : public CChessPiece { /* ... */ }; // Pionek
class CKnight : public CChessPiece { /* ... */ }; // Skoczek82
class CBishop : public CChessPiece { /* ... */ }; // Goniec
class CRook : public CChessPiece { /* ... */ }; // Wieża
class CQueen : public CChessPiece { /* ... */ }; // Hetman
class CKing : public CChessPiece { /* ... */ }; // Król

Oprócz logicznego uporządkowania rozwiązanie to ma też inne zalety. Jeśli bowiem
zadeklarowalibyśmy wskaźnik na obiekt klasy CChessPiece, to poprzez niego
moglibyśmy odwoływać się do obiektów krórejkolwiek z klas pochodnych. Jest to jedna z
licznych pozytywnych konsekwencji polimorfizmu, które zresztą poznamy wkrótce. W tym
przypadku oznaczałaby ona, że za obsługę każdej z sześciu figur szachowych
odpowiadałby najprawdopodobniej jeden i ten sam kod.

82 Nazwy klas nie są tłumaczeniami z języka polskiego, lecz po prostu angielskimi nazwami figur szachowych.

http://www.davidhowellchess.com/

Podstawy programowania 232

Można zauważyć, ze bazowa klasa CChessPiece nie będzie tutaj służyć do tworzenia
obiektów, lecz tylko do wyprowadzania z niej kolejnych klas. Sprawia to, że byłaby ona
dobrym kandydatem na tzw. klasę abstrakcyjną. O tym zagadnieniu będziemy mówić
przy okazji metod wirtualnych.

Podsumowanie
Myślę, że po takiej ilości przykładów oraz opisów koncepcja tworzenia klas pochodnych
poprzez dziedziczenie powinna być ci już doskonale znana :) Nie należy ona wszakże do
trudnych; ważne jest jednak, by poznać związane z nią niuanse w języku C++.

O dziedziczeniu pojedynczym można także poczytać nieco w MSDN.

Dziedziczenie wielokrotne
Skoro możliwe jest dziedziczenie z wykorzystaniem jednej klasy bazowej, to raczej
naturalne jest rozszerzenie tego zjawiska także na przypadki, w której z kilku klas
bazowych tworzymy jedną klasę pochodną. Mówimy wtedy o dziedziczeniu
wielokrotnym (ang. multiple inheritance).

C++ jest jednym z niewielu języków, które udostępniają taką możliwość. Nie świadczy to
jednak o jego niebotycznej wyższości nad nimi. Tak naprawdę technika dziedziczenia
wielokrotnego nie daje żadnych nadzwyczajnych korzyści, a jej użycie jest przy tym dość
skomplikowane. Decydując się na jej wykorzystanie należy więc posiadać całkiem spore
doświadczenie w programowaniu.
Jakkolwiek zatem dziedziczenie wielokrotne bywa czasem przydatnym narzędziem,
stosowanie go (przynajmniej powszechne) w tworzonych aplikacjach nie jest zalecane.
Jeżeli pojawia się taka konieczność, należy wtedy najprawdopodobniej zweryfikować swój
projekt; w większości sytuacji te same, a nawet lepsze efekty można osiągnąć nie
korzystając z tego wielce wątpliwego rozwiązania.

Dla szczególnie zainteresowanych i odważnych istnieje oczywiście opis w MSDN.

Pułapki dziedziczenia
Chociaż idea dziedziczenia jest teoretycznie całkiem prosta do zrozumienia, jej
praktyczne zastosowanie może niekiedy nastręczać pewnych problemów. Są one
zazwyczaj specyficzne dla konkretnego języka programowania, jako że występują w tym
względzie pewne różnice między nimi.

W tym paragrafie zajmiemy się takimi właśnie drobnymi niuansami, które są związane z
dziedziczeniem klas w języku C++. Sekcja ta ma raczej charakter formalnego
uzupełnienia, dlatego początkujący programiści mogą ją ze spokojem pominąć -
szczególnie podczas pierwszego kontaktu z tekstem.

Co nie jest dziedziczone?
Wydawałoby się, że klasa pochodna powinna przejmować wszystkie składowe pochodzące
z klasy bazowej - oczywiście z wyjątkiem tych oznaczonych jako private. Tak jednak nie
jest, gdyż w trzech przypadkach nie miałoby to sensu. Owe trzy „nieprzechodnie”
składniki klas to:

 konstruktory. Zadaniem konstruktora jest zazwyczaj inicjalizacja pól klasy na ich
początkowe wartości, stworzenie wewnętrznych obiektów czy też alokacja
dodatkowej pamięci. Czynności te prawie zawsze wymagają zatem dostępu do
prywatnych pól klasy. Jeżeli więc konstruktor z klasy bazowej zostałby „wrzucony”
do klasy pochodnej, to utraciłby z nimi niezbędne połączenie - wszak „zostałyby”
one w klasie bazowej! Z tego też powodu konstruktory nie są dziedziczone.

Programowanie obiektowe 233

 destruktory. Sprawa wygląda tu podobnie jak punkt wyżej. Działanie
destruktorów najczęściej także opiera się na polach prywatnych, a skoro one nie
są dziedziczone, zatem destruktor też nie powinien przechodzić do klas
pochodnych.

Dość ciekawym uzasadnieniem niedziedziczenia konstruktorów i destruktorów są także
same ich nazwy, odpowiadające klasie, w której zostały zadeklarowane. Gdyby zatem
przekazać je klasom pochodnych, wtedy zasada ich nazewnictwa zostałaby złamana.
Chociaż trudno odmówić temu podejściu pomysłowości, nie ma żadnego powodu, by
uznać je za błędne.

 przeciążony operator przypisania (=). Zagadnienie przeciążania operatorów
omówimy dokładnie w jednym z przyszłych rozdziałów. Na razie zapamiętaj, że
składowa ta odpowiada za sposób, w jaki obiekt jest kopiowany z jednej zmiennej
do drugiej. Taki transfer zazwyczaj również wymaga dostępu do pól prywatnych
klasy, co od razu wyklucza dziedziczenie.

Ze względu na specjalne znaczenie konstruktorów i destruktorów, ich funkcjonowanie w
warunkach dziedziczenia jest dość specyficzne. Nieco dalej zostało ono bliżej opisane.

Obiekty kompozytowe
Sposób, w jaki C++ realizuje pomysł dziedziczenia, jest sam w sobie dosyć interesujący.
Większość koderów uczących się tego języka z początku całkiem logicznie przypusza, że
kompilator zwyczajnie pobiera deklaracje z klasy bazowej i wstawia je do pochodnej,
ewentualne powtórzenia rozwiązując na korzyść tej drugiej.
Swego czasu też tak myślałem i, niestety, myliłem się: faktyczna prawda jest bowiem
nieco bardziej zakręcona :)

Otóż wewnętrznie używana przez kompilator definicja klasy pochodnej jest identyczna z
tą, którą wpisujemy do kodu; nie zawiera żadnych pól i metod pochodzących z klas
bazowych! Jakim więc cudem są one dostępne?
Odpowiedź jest raczej zaskakująca: podczas tworzenia obiektu klasy pochodnej
dokonywana jest także kreacja obiektu klasy bazowej, który staje się jego częścią.
Zatem nasz obiekt pochodny to tak naprawdę obiekt bazowy plus dodatkowe pola,
zdefiniowane w jego własnej klasie. Przy bardziej rozbudowanej hierarchii klas zaczyna
on przypominać cebulę:

Schemat 26. Obiekt klasy pochodnej zawiera w sobie obiekty klas bazowych

Praktyczne konsekwencje tego stanu rzeczy są związane chociażby z konstruowaniem i
niszczeniem tych wewnętrznych obiektów.

Podstawy programowania 234

W C++ obowiązuje zasada, iż najpierw wywoływany jest konstruktor „najbardziej
bazowej” klasy danego obiektu, a potem te stojące kolejno niżej w hierarchii. Ponieważ
klasa może posiadać więcej niż jeden konstruktor, kompilator musiałby podjąć decyzję,
który z nich powinien zostać użyty. Nie robi tego jednak, lecz oczekuje, że zawsze83
będzie obecny domyślny konstruktor bezparametrowy.

Dlatego też każda klasa, z której będą dziedziczyły inne, powinna posiadać taki właśnie
bezparametrowy (domyślny) konstruktor.

Podobny problem nie istnieje dla destruktorów, gdyż one nigdy nie posiadają
parametrów. Podczas niszczenia obiektu są one wywoływane w kolejności od tego z klasy
pochodnej do tych z klas bazowych.

Kończący się podrozdział opisywał mechanizm dziedziczenia - jedną z podstaw techniki
programowania zorientowanego obiektowego. Mogłeś więc dowiedzieć się, w jaki sposób
tworzyć nowe klasy na podstawie już istniejących i projektować ich hierarchie, obrazujące
naturalne związki typu „ogół-szczegół”.

W następnej kolejności poznamy zalety metod wirtualnych oraz porozmawiamy sobie o
największym osiągnięciu OOPu, czyli polimorfizmie. Będzie więc bardzo ciekawie :D

Metody wirtualne i polimorfizm
Dziedziczenie jest oczywiście niezwykle ważnym, a wręcz niezbędnym skadnikiem
programowania obiektowego. Stanowi jednak tylko podstawę dla dwóch kolejnych
technik, mających dużo większe znaczenie i pozwalających na o wiele efektywniejsze
pisanie kodu. Mam tu na myśli tytułowe metody wirtualne oraz częściowo bazujący na
nich polimorfizm. Wszystkie te dziwne terminy zostaną wkrótce wyjaśnione, zatem nie
wpadajmy zbyt pochopnie w panikę ;)

Wirtualne funkcje składowe
Idea dziedziczenia w znanej nam dotąd postaci jest nastawiona przede wszystkim na
uzupełnianie definicji klas bazowych o kolejne składowe w klasach pochodnych. Tylko
czasami zastępowaliśmy już istniejące metody ich nowymi wersjami, właściwymi dla
tworzonych klas.
Takie sytuacje są jednak w praktyce dosyć częste - albo raczej korzystne jest
prowokowanie takich sytuacji, gdyż niejednokrotnie dają one świetne rezultaty i
niespotykane wcześniej możliwości przy niewielkim nakładzie pracy. Oczywiście dzieje się
tak tylko wtedy, gdy mamy odpowiednie podejście do sprawy…

To samo, ale inaczej
Raz jeszcze zajmijmy się naszą hierarchią klas zwierząt. Tym razem skierujemy uwagę
na metodę Oddychaj z klasy Zwierzę.

Jej obecność u szczytu diagramu, w klasie, z której początek biorą wszystkie inne, jest z
pewnością uzasadniona. Każde zwierzę, niezależnie od gatunku, musi przecież pobierać z
otoczenia tlen niezbędny do życia, a proces ten nazywamy potocznie właśnie
oddychaniem. Jest to bezdyskusyjne.

83 Konieczność tę można obejść stosując tzw. listy inicjalizacyjne, o których dowiesz się za jakiś czas.

Programowanie obiektowe 235

Mniej oczywisty jest natomiast fakt, że „techniczny” przebieg tej czynności może się
zasadniczo różnić u poszczególnych zwierząt. Te żyjące na lądzie używają do tego
narządów zwanych płucami, zaś zwierzęta wodne - chociażby ryby - mają w tym celu
wykształcone skrzela, funkcjonujące na zupełnie innej zasadzie.

Spostrzeżenia te nietrudno przełożyć na bliższy nam sposób myślenia, związany
bezpośrednio z programowaniem. Oto więc klasy wywodzące się do Zwierzęcia powinny
w inny sposób implementować metodę Oddychaj; jej treść musi być odmienna
przynajmniej dla Ryby, a i Ssak oraz Gad mają przecież własne patenty na proces
oddychania.
Rzeczona metoda podpada zatem pod redefinicję w każdej z klas dziedziczących od
klasy Zwierzę:

Schemat 27. Przedefiniowanie metody z klasy bazowej w klasach pochodnych

Deklaracja metody wirtualnej
Teoretycznie klasa Zwierzę mogłaby być całkowicie „nieświadoma” tego, że jedna z jej
metod jest definiowana w inny sposób w klasie pochodnej. Lepiej jednak, abyśmy
przewidzieli taką konieczność i poczynili odpowiedni krok. Jest nim uczynienie funkcji
Oddychaj metodą wirtualną w klasie Zwierzę.

Metoda wirtualna jest przygotowana na zastąpienie siebie przez nową wersję,
zdefiniowaną w klasie pochodnej.

Aby daną funkcję składową zadeklarować jako wirtualną, należy poprzedzić jej prototyp
słowem kluczowym virtual:

#include <iostream>

class CAnimal
{
 // (pomijamy pozostałe składowe klasy)

 public:
 virtual void Oddychaj()
 { std::cout << "Oddycham..." << std::endl; }
};

W ten sposób przygotowujemy ją na ewentualne ustąpienie miejsca bardziej
wyspecjalizowanym wersjom, podanym w klasach pochodnych. Skorzystanie z
mechanizmu metod wirtualnych jest tutaj lepszym rozwiązaniem niż zignorowanie go,
gdyż uaktywnia to możliwości polimorfizmu związane z obiektami. Zapoznamy się z nimi
w dalszej części tekstu.

Podstawy programowania 236

Przedefiniowanie metody wirtualnej
Celem wprowadzenia funkcji wirtualnej Oddychaj() do klasy CAnimal było, jak to
zaznaczyliśmy na początku, jej późniejsze przedefiniowanie (ang. override) w klasach
pochodnych. Operacji tej dokonujemy prostą drogą, bowiem zwyczajnie definiujemy
nową wersję metody w owych klasach:

class CFish : public CAnimal
{
 public:
 void Oddychaj() // redefinicja metody wirtualnej
 { std::cout << "Oddycham skrzelami..." << std::endl; }
 void Plyn();
};

class CMammal : public CAnimal
{
 public:
 void Oddychaj() // jak wyżej
 { std::cout << "Oddycham płucami..." << std::endl; }
 void Biegnij();
};

class CBird : public CAnimal
{
 public:
 void Oddychaj() // i znowu jak wyżej :)
 { std::cout << "Oddycham płucami..." << std::endl; }
 void Lec();
};

Kompilator sam „domyśla się”, że nasza metody jest tak naprawdę redefinicją metody
wirtualnej z klasy bazowej. Możemy jednak wyraźnie to zaznaczyć poprzez ponowne
zastosowanie słowa virtual.

Według mnie jest to mało szczęśliwe rozwiązanie składniowe, ponieważ może często
powodować pomyłki. Nie sposób bowiem odróżnić deklaracji przedefiniowanej metody
wirtualnej od jej pierwotnej wersji (jeżeli jeszcze raz użyliśmy virtual) lub od zwykłej
funkcji składowej (gdy nie skorzystaliśmy ze wspomnianego słówka).
Bardziej przejrzyście rozwiązano to na przykład w Delphi, gdzie nową wersję metody
wirtualnej trzeba opatrzyć frazą override;.

Nowa wersja metody całkowicie zastępuje starą, która jest jednak dostępna i w razie
potrzeby możemy ją wywołać. Służy do tego konstrukcja:

nazwa_klasy_bazowej::nazwa_metody([parametry]);

W powyższym przypadku byłoby to wywołanie CAnimal::Oddychaj().

W Visual C++ zamiast nazwy_klasy_bazowej możliwe jest użycie specjalnego słowa
kluczowego __super, opisanego tutaj.

Pojedynek: metody wirtualne przeciwko zwykłym
Czytając powyższe objaśnienie metod wirtualnych, zadawałeś sobie zapewne proste
pytanie o głębokiej treści, a mianowicie: „Po co mi to?” ;-) Najlepszą odpowiedzią na nie
będzie wyjaśnienie różnicy pomiędzy zwykłymi oraz wirtualnymi metodami.

Programowanie obiektowe 237

Posłuży nam do tego następujący kod, tworzący obiekt jednej z klasy pochodnych i
wywołujący jego metodę Oddychaj():

CAnimal* pZwierzak = new CMammal;
pZwierzak->Oddychaj();
delete pZwierzak;

Zauważmy, że wskaźnik pZwierzak, poprzez który odwołujemy się do naszego obiektu,
jest zasadniczo wskaźnikiem na klasę CAnimal. Stwarzany przez nas (poprzez instrukcję
new) obiekt należy natomiast do klasy CMammal. Wszystko jest jednak w porządku. Klasa
CMammal dziedziczy od klasy CAnimal, zatem każdy obiekt należący do tej pierwszej
jednocześnie jest także obiektem tej drugiej. Wyjaśniliśmy to sobie całkiem niedawno,
prezentując dziedziczenie.
Zajmijmy się raczej drugą linijką powyższego kodu, zawierającą wywołanie interesującej
nas metody Oddychaj(). Różnica między zwykłymi a wirtualnymi funkcjami składowymi
będzie miała okazję uwidocznić się właśnie tutaj. Wszystko bowiem zależy od tego, jaką
metodą jest rzeczona funkcja Oddychaj(), zaś rezultatem rozważanej instrukcji może
być zarówno wywołanie CAnimal::Oddychaj(), jak i CMammal::Oddychaj()! Dowiedzmy
się więc, kiedy zajdzie każda z tych sytuacji.

Łatwiejszym przypadkiem jest chyba „niewirtualność” rozpatrywanej metody. Kiedy jest
ona zwyczajną funkcją składową, wtedy kompilator nie traktuje jej w żaden specjalny
sposób. Co to jednak w praktyce oznacza?…
To dosyć proste. W takich bowiem wypadkach decyzja, która metoda jest rzeczywiście
wywoływana, zostaje podjęta już na etapie kompilacji programu. Nazywamy ją wtedy
wczesnym wiązaniem (ang. early binding) funkcji. Do jej podjęcia są zatem
wykorzystane jedynie te informacje, które są znane w momencie kompilacji programu;
u nas jest to typ wskaźnika pZwierzak, czyli CAnimal. Nie jest przecież możliwe
ustalenie, na jaki obiekt będzie on faktycznie wskazywał - owszem, może on należeć do
klasy CAnimal, jednak równie dobrze do jej pochodnej, na przykład CMammal. Wiedza ta
nie jest jednak dostępna podczas kompilacji84, dlatego też tutaj zostaje asekuracyjnie
wykorzystany jedynie znany typ CAnimal. Faktycznie wywoływaną metodą będzie więc
CAnimal::Oddychaj()!

Huh, to raczej nie jest to, o co nam chodziło. Skoro już tworzymy obiekt klasy CMammal,
to w zasadzie logiczne jest, że zależy nam na wywołaniu funkcji pochodzącej z tej właśnie
klasy, a nie z jej bazy! Spotyka nas jednak przykra niespodzienka…
Czy uchroni od niej zastosowanie metod wirtualnych? Domyślasz się zapewne, iż tak
właśnie będzie, i na dodatek masz tutaj absolutną rację :) Kiedy użyjemy magicznego
słówka virtual, kompilator wstrzyma się z decyzją co do faktycznie przywoływanej
metody. Jej podjęcie nastąpi dopiero w stosowanej chwili podczas działania gotowej
aplikacji; nazywamy to późnym wiązaniem (ang. late binding) funkcji. W tym
momencie będzie oczywiście wiadome, jaki obiekt naprawdę kryje się za naszym
wskaźnikiem pZwierzak i to jego wersja metody zostanie wywołana. Uzyskamy zatem
skutek, o jaki nam chodziło, czyli wywołanie funkcji CMammal::Oddychaj().

Prezentowany tu problem wyraźnie podpada już pod idee polimorfizmu, które
wyczerpująco poznamy niebawem.

Wirtualny destruktor
Atrybut virtual możemy przyłączyć do każdej zwyczajnej metody, a nawet takiej
niezupełnie zwyczajnej :) Czasami zresztą zastosowanie go jest niemal powinnością…

84 Tak naprawdę kompilator może w ogóle nie wiedzieć, że CAnimal posiada jakieś klasy pochodne!

Podstawy programowania 238

Jeżeli chodzi o konstruktory, to stosowanie tego modyfikatora w stosunku do nich nie ma
zbyt wielkiego sensu. Są one przecież domyślnie „jakby wirtualne”: wywołanie
konstruktora z klasy pochodnej powoduje przecież uruchomienie także konstruktorów z
klas bazowych. Ich przedefiniowanie nie jest przy tym niczym nadzwyczajnym, tak więc
użycie słowa virtual w tym przypadku mija się z celem.

Zupełnie inaczej sprawa ma się z destruktorami. Tutaj użycie omawianego modyfikatora
jest nie tylko możliwe, ale też prawie zawsze konieczne i zalecane. Nieobecność
wirtualnego destruktora w klasie bazowej może bowiem prowadzić do tzw. wycieków
pamięci, czyli bezpowrotnej utraty zaalokowanej pamięci operacyjnej.
Dlaczego tak się dzieje? Do wyjaśnienia posłużymy się po raz kolejny naszymi
wysłużonymi klasami zwierząt :D Przypuśćmy, że czujemy potrzebę, aby dokładniej
odpowiadały one rzeczywistości; by nie były tylko zbiorami danych, ale też zawierały
obiektowe odpowiedniki narządów wewnętrznych, na przykład serca czy płuc. Poczynimy
więc najpierw pewne zmiany w bazowej klasie CAnimal:

// klasa serca
class CHeart { /* ... */ };

// bazowa klasa zwierząt
class CAnimal
{
 // (pomijamy nieistotne, pozostałe składowe)

 protected:
 CHeart* m_pSerce;
 public:
 // konstruktor i destruktor
 CAnimal() { m_pSerce = new CHeart; }
 ~CAnimal() { delete m_pSerce; }
};

Serce jest oczywiście organem, który posiada każde zwierzę, zatem obecność wskaźnika
na obiekt klasy CHeart jest tu uzasadniona. Odwołuje się on do obiektu tworzonego w
konstruktorze, a niszczonego w destruktorze klasy CAnimal.
Naturalnie, nie samym sercem zwierzę żyje :) Ssaki na przykład potrzebują jeszcze płuc:

// klasa płuc
class CLungs { /* ... */ };

// klasa ssaków
class CMammal : public CAnimal
{
 protected:
 CLungs* m_pPluca;
 public:
 // konstruktor i destruktor
 CMammal() { m_pPluca = new CLungs; }
 ~CMammal() { delete m_pPluca; }
};

Podobnie jak wcześniej, obiekt specjalnej klasy jest tworzony w konstruktorze i zwalniany
w destruktorze CMammal. W ten sposób nasze ssaki są zaopatrzone zarówno w serce
(otrzymane od CAnimal), jak i niezbędne płuca, tak więc pożyją sobie jeszcze trochę i
będą mogły nadal służyć nam jako przykład ;)

OK, gdzie zatem tkwi problem?… Powróćmy teraz do trzech linijek kodu, za pomocą
których rozstrzygnęliśmy pojedynek między wirtualnymi a niewirtualnymi metodami:

Programowanie obiektowe 239

CAnimal* pZwierzak = new CMammal;
pZwierzak->Oddychaj();
delete pZwierzak;

Przypomnijmy, że pZwierzak jest tu zasadniczo zmienną typu „wskaźnik na obiekt klasy
CAnimal”, ale tak naprawdę wskazuje na obiekt należący do pochodnej CMammal. Ów
obiekt musi oczywiście zostać usunięty, za co powinna odpowiadać ostatnia linijka…

No właśnie - powinna. Szkoda tylko, że tego nie robi. To zresztą nie jest jej wina,
przyczyną jest właśnie brak wirtualnego destruktora.
Jak bowiem wiemy, zniszczenie obiektu oznacza w pierwszej kolejności wywołanie tej
kluczowej metody. Podlega ono identycznym regułom, jakie stosują się do wszystkich
innych metod, a więc także efektom związanym z wirtualnością oraz wczesnym i późnym
wiązaniem. Jeżeli więc nasz destruktor nie będzie oznaczony jako virtual, to kompilator
potraktuje go jako zwyczajną metodę i zastosuje wobec niej technikę wczesnego
wiązania. Zasugeruje się po prostu typem zmiennej pZwierzak (którym jest CAnimal*, a
więc wskaźnik na obiekt klasy CAnimal) i wywoła wyłącznie destruktor klasy bazowej
CAnimal! Destruktor ten wprawdzie usunie serce naszego ssaka, ale nie zrobi tego z
płucami, bo i nie ma przecież o nich zielonego pojęcia.
Nie dość zatem, że tracimy przez to pamięć przeznaczoną na tenże narząd, to jeszcze
pozwalamy, by wokół fruwały nam organy pozbawione właścicieli ;D

To oczywiście tylko obrazowy dowcip, jednak konsekwencje niepełnego zniszczenia
obiektów mogą być dużo poważniejsze, szczególnie jeśli ich składniki odwoływały się do
siebie nawzajem. Weźmy choćby wspomniane płuca - powinny one przecież dostarczać
tlen do serca, a jeżeli samo serce już nie istnieje, no to zaczynają się nieliche problemy…

Rozwiązanie problemu jest rzecz jasna nadzwyczaj proste - wystarczy uczynić destruktor
klasy bazowej CAnimal metodą wirtualną:

class CAnimal
{
 // (oszczędność jest cnotą, więc znowu pomijamy resztę składowych :D)

 public:
 virtual ~CAnimal() { delete m_pSerce; }
};

Wtedy też operator delete będzie usuwał obiekt, na który faktycznie wskazuje podany
mu wskaźnik. My zaś uchronimy się od perfidnych błędów.

Pamiętaj zatem, aby zawsze umieszczać wirtualny destruktor w klasie bazowej.

Zaczynamy od zera… dosłownie
Deklarując metody opatrzone modyfikatorem virtual, tworzymy grunt pod ich przyszłą,
ponowną implementację w klasach dziedziczących. Można też powiedzieć, iż w pewnym
sensie zmieniamy charakter zawierającej je klasy: jej rolą nie jest już przede wszystkim
tworzenie obiektów, gdyż równie ważne staje się służenie jako baza dla klas pochodnych.

Niekiedy słuszne jest pójście jeszcze dalej, to znaczy całkowite pozbawienie klasy
możliwości tworzenia z niej obiektów. Ma to nierzadko rozsądne uzasadnienie i takimi
właśnie przypadkami zajmiemy się w tym paragrafie.

Podstawy programowania 240

Czysto wirtualne metody
Wirtualna funkcja składowa umieszczona w klasie bazowej jest przygotowana na to, aby
ustąpić miejsca swej bardziej wyspecjalizowanej wersji, zdefiniowanej w klasie
pochodnej. Nie zmienia to jednak faktu, iż musiałaby ona jakoś implementować
czynność, której przebiegu często nie sposób ustalić na tym etapie.

Posiadamy dobry przykład, ilustrujący taką właśnie sytuację. Chodzi mianowicie o
metodę CAnimal::Oddychaj(). Wewnątrz klasy bazowej, z której mają dopiero
dziedziczyć konkretne grupy zwierząt, niemożliwe jest przecież ustalenie uniwersalnego
sposobu oddychania. Sensowna implementacja tej metody jest więc w zasadzie
niemożliwa.
Sprawia to, iż jest ona wyświenitym kandydatem na czysto wirtualną funkcję
składową.

Metody nazywane czysto wirtualnymi (ang. pure virtual) nie posiadają żadnej
implementacji i są przeznaczone do przedefiniowania w klasach pochodnych.

Deklaracja takiej metody ma dość osobliwą postać. Oczywiście z racji nie posiadania
żadnego kodu zbędne stają się nawiasy klamrowe wyznaczające jej blok, zatem całość
przypomina zwykły prototyp funkcji. Samo oznaczenie, czyniące daną metodę czysto
wirtualną, jest jednak raczej niecodzienne:

class CAnimal
{
 // (definicja klasy jest skromna z przyczyn oszczędnościowych :))

 public:
 virtual void Oddychaj() = 0;
};

Jest nim występująca na końcu fraza = 0;. Kojarzy się ona trochę z domyślną wartością
funkcji, ale interpretacja taka upada w obliczu niezwracania przez metodę Oddychaj()
żadnego rezultatu. Faktycznie funkcją czysto wirtualną możemy w ten sposób uczynić
każdą wirtualną metodę, niezależnie od tego, czy zwraca jakąś wartość i jakiego jest ona
typu. Sekwencja = 0; jest więc po prostu takim dziwnym oznaczeniem, stosowanym dla
tego rodzaju metod. Trzeba się z nim zwyczajnie pogodzić :)

Twórcy C++ wyraźnie nie chcieli wprowadzać tutaj dodatkowego słowa kluczowego, ale w
tym przypadku trudno się z nimi zgodzić. Osobiście uważam, że deklaracja w formie na
przykład pure virtual void Oddychaj(); byłaby znacznie bardziej przejrzysta.

Po dokonaniu powyższej operacji metoda CAnimal::Oddychaj() staje się zatem czysto
wirtualną funkcją składową. W tej postaci określa już tylko samą czynność, bez
podawania żadnego algorytmu jej wykonania. Zostanie on ustalony dopiero w klasach
dziedziczących od CAnimal.

Można aczkolwiek podać implementację metody czysto wirtualnej, jednak będzie ona
mogła być wykorzystywana tylko w kodzie metod klas pochodnych, które ją
przedefiniowują, w formie klasa_bazowa::nazwa_metody([parametry]).

Abstrakcyjne klasy bazowe
Nie widać tego na pierwszy, drugi, ani nawet na dziesiąty rzut oka, ale zadeklarowanie
jakiejś metody jako czysto wirtualnej powoduje jeszcze jeden, dodatkowy efekt. Otóż
klasa, w której taką funkcję stworzymy, staje się klasą abstrakcyjną.

Programowanie obiektowe 241

Klasa abstrakcyjna zawiera przynajmniej jedną czysto wirtualną metodę i z jej powodu
nie jest przeznaczona do instancjowania (tworzenia z niej obiektów), a jedynie do
wyprowadzania zeń klas pochodnych.

Ze względu na wyżej wymienioną definicję czysto wirtualne funkcje składowe określa się
niekiedy mianem metod abstrakcyjnych. Nazwa ta jest szczególnie popularna wśród
programistów języka Object Pascal.

Takie klasy budują zawsze najwyższe piętra w hierarchiach i są podstawami dla bardziej
wyspecjalizowanych typów. W naszym przypadku mamy tylko jedną taką klasę, z której
dziedziczą wszystkie inne. Nazywa się CAnimal, jednak dobry zwyczaj programistyczny
nakazuje, aby klasy abstrakcyjne miały nazwy zaczynające się od litery I. Różnią się one
bowiem znacznie od pozostałych klas. Zatem baza w naszej hierarchii będzie od tej pory
zwać się IAnimal.

C++ bardzo dosłownie traktuje regułę, iż klasy abstrakcyjne nie są przeznaczone do
instancjowania. Próba utworzenia z nich obiektu zakończy się bowiem błędem;
kompilator nie pozwoli na obecność czysto wirtualnej metody w klasie tworzonego
obiektu.
Możliwe jest natomiast zadeklarowanie wskaźnika na obiekt takiej klasy i przypisanie mu
obiektu klasy potomnej, tak więc poniższy kod będzie jak najbardziej poprawny:

IAnimal* pZwierze = new CBird;
pZwierze->Oddychaj();
delete pZwierze;

Wywołanie metody Oddychaj() jest tu także dozwolone. Wprawdzie w bazowej klasie
IAnimal jest ona czysto wirtualna, jednak w CBird, do obiektu której odwołuje się nasz
wskaźnik, posiada ona odpowiednią implementację.

Wydawałoby się, że C++ reaguje nieco zbyt alergicznie na próbę utworzenia obiektu
klasy abstrakcyjnej - w końcu sama kreacja nie jest niczym niepoprawnym. W ten sposób
jednak mamy pewność, że podczas działania programu wszystko będzie działać
poprawnie i że omyłkowo nie zostanie wywołana metoda z nieokreśloną implementacją.

Polimorfizm
Gdyby programowanie obiektowe porównać do wysokiego budynku, to u jego
fundamentów leżałyby pojęcia „klasy” i „obiektu”, środkowe piętra budowałoby
„dziedziczenie” oraz „metody wirtualne”, zaś u samego szczytu sytuowałby się
„polimorfizm”. Jest to bowiem największe osiągnięcie tej metody programowania.

Z terminem tym spotykaliśmy się przelotnie już parę razy, ale teraz wreszcie wyjaśnimy
sobie wszystko od początku do końca. Zacznijmy choćby od samego słowa: ‘polimorfizm’
pochodzi od greckiego wyrazu polýmorphos, oznaczającego ‘wielokształtny’ lub
‘wielopostaciowy’. W programowaniu będzie się więc odnosić do takich tworów, które
można interpretować na różne sposoby - a więc należących jednocześnie do kilku różnych
typów (klas).

Polimorfizm w programowaniu obiektowym oznacza wykorzystanie tego samego kodu
do operowania na obiektach przynależnych różnym klasom, dziedziczącym od siebie.

Zjawisko to jest zatem ściśle związane z klasami i dziedziczeniem, aczkolwiek w C++ nie
dotyczy ono każdej klasy, a jedynie określonych typów polimorficznych.

Podstawy programowania 242

Typ polimorficzny to w C++ klasa zawierająca przynajmniej jedną metodę wirtualną.

W praktyce większość klas, do których chcielibyśmy stosować techniki polimorfizmu,
spełnia ten warunek. W szczególności tą wymaganą metodą wirtualną może być
chociażby destruktor.

Wszystko to brzmi bardzo ładnie, ale trudno nie zadać sobie pytania o praktyczne
korzyści związane z wykorzystaniem polimorfizmu. Dlatego też moim celem będzie teraz
drobiazgowa odpowiedź na to pytanie - innymi słowy, wreszcie doczekałeś się
konkretów ;D

Ogólny kod do szczególnych zastosowań
Zjawisko polimorfizmu pozwala na znaczne uproszczenie większości algorytmów, w
których dużą rolę odgrywa zarządzanie wieloma różnymi obiektami. Nie chodzi tu wcale o
jakieś skomplikowane operacje sortowania, wyszukiwania, kompresji itp., tylko o często
spotykane operacje wykonywania tej samej czynności dla wielu obiektów różnych
rodzajów.

Opis ten jest w założeniu dość ogólny, bowiem sposób, w jaki używa się obiektowych
technik polimorfizmu jest ściśle związany z konkretnymi programami. Postaram się
jednak przytoczyć w miarę klarowne przykłady takich rozwiązań, abyś miał chociaż
ogólne pojęcie o tej metodzie programowania i mógł ją stosować we własnych
aplikacjach.

Sprowadzanie do bazy
Prosty przypadek wykorzystania polimorfizmu opiera się na elementarnej i rozsądnej
zasadzie, którą nie raz już sprawdziliśmy w praktyce. Mianowicie:

Wskaźnik na obiekt klasy bazowej może wskazywać także na obiekt którejkolwiek z jego
klas pochodnych.

Bezpośrednie przełożenie tej reguły na konkretne zastosowanie programistyczne jest
dość proste. Przypuśćmy więc, że mamy taką oto hierarchię klas:

#include <string>
#include <ctime>

// klasa dowolnego dokumentu
class CDocument
{
 protected:
 // podstawowe dane dokumentu
 std::string m_strAutor; // autor dokumentu
 std::string m_strTytul; // tytuł dokumentu
 tm m_Data; // data stworzenia
 public:
 // konstruktory
 CDocument()
 { m_strAutor = m_strTytul = "???";
 time_t Czas = time(NULL); m_Data = *localtime(&Czas); }
 CDocument(std::string strTytul)
 { CDocument(); m_strTytul = strTytul; }
 CDocument(std::string strAutor, std::string strTytul)
 { CDocument();
 m_strAutor = strAutor;
 m_strTytul = strTytul; }

Programowanie obiektowe 243

 //---

 // metody dostępowe do pól
 std::string Autor() const { return m_strAutor; }
 std::string Tytul() const { return m_strTytul; }
 tm Data() const { return m_Data; }
};

// --

// dokument internetowy
class COnlineDocument : public CDocument
{
 protected:
 std::string m_strURL; // adres internetowy dokumentu
 public:
 // konstruktory
 COnlineDocument(std::string strAutor, std::string strTytul)
 { m_strAutor = strAutor; m_strTytul = strTytul; }
 COnlineDocument (std::string strAutor,
 std::string strTytul,
 std::string strURL)
 { m_strAutor = strAutor;
 m_strTytul = strTytul;
 m_strURL = strURL; }

 //---

 // metody dostępowe do pól
 std::string URL() const { return m_strURL; }
};

// książka
class CBook : public CDocument
{
 protected:
 std::string m_strISBN; // numer ISBN książki
 public:
 // konstruktory
 CBook(std::string strAutor, std::string strTytul)
 { m_strAutor = strAutor; m_strTytul = strTytul; }
 CBook (std::string strAutor,
 std::string strTytul,
 std::string strISBN)
 { m_strAutor = strAutor;
 m_strTytul = strTytul;
 m_strISBN = strISBN; }

 //---

 // metody dostępowe do pól
 std::string ISBN() const { return m_strISBN; }
};

Z klasy CDocument, reprezentującej dowolny dokument, dziedziczą dwie następne:
COnlineDocument, odpowiadająca tekstom dostępnym przez Internet, oraz CBook,
opisująca książki.
Napiszmy również odpowiednią funkcję, wyświetlającą podstawowe informacje o
podanym dokumencie:

#include <iostream>

Podstawy programowania 244

void PokazDaneDokumentu(CDocument* pDokument)
{
 // wyświetlenie autora
 std::cout << "AUTOR: ";
 std::cout << pDokument->Autor() << std::endl;

 // pokazanie tytułu dokumentu
 // (sekwencja \" wstawia cudzysłów do napisu)
 std::cout << "TYTUL: ";
 std::cout << "\"" << pDokument->Tytul() << "\"" << std::endl;

 // data utworzenia dokumentu
 // (pDokument->Data() zwraca strukturę typu tm, do której pól
 // można dostać się tak samo, jak do wszystkich innych - za
 // pomocą operatora wyłuskania . (kropki))
 std::cout << "DATA : ";
 std::cout << pDokument->Data().tm_mday << "."
 << (pDokument->Data().tm_mon + 1) << "."
 << (pDokument->Data().tm_year + 1900) << std::endl;
}

Bierze ona jeden parametr, będący zasadniczo wskaźnikiem na obiekt typu CDocument. W
jego charakterze może jednak występować także wskazanie na któryś z obiektów
potomnych, zatem poniższy kod będzie absolutnie prawidłowy:

COnlineDocument* pTutorial = new COnlineDocument("Xion", // autor
 "Od zera do gier kodera", // tytuł
 "http://avocado.risp.pl"); // URL
PokazDaneDokumentu (pTutorial);
delete pTutorial;

W pierwszej linijce możnaby równie dobrze użyć typu wskazującego na obiekt
CDocument, gdyż wskaźnik pTutorial i tak zostanie potraktowany w ten sposób przy
przekazywaniu go do funkcji PokazDaneDokumentu().

Efektem jego działania powyższego listingu będzie na przykład taki oto widok:

Screen 37. Informacje o dokumencie uzyskane z użyciem prostego polimorfizmu

Brak tu informacji o adresie internetowym dokumentu, ponieważ należy on do
składowych specyficznych dla klasy COnlineDocument. Funkcja PokazDaneDokumentu()
została natomiast stworzona do pracy z obiektami CDocument, zatem wykorzystuje
jedynie informacje zawarte w klasie bazowej. Nie przeszkadza to jednak w przekazaniu
jej obiektu klasy pochodnej - w takim przypadku dodatkowe dane zostaną po prostu
zignorowane.

To raczej mało satysfakcjonujące rozwiązanie, ale lepsze skutki wymagają już użycia
metod wirtualnych. Uczynimy to w kolejnym przykładzie.

Naturalnie, podobny rezultat otrzymalibyśmy podając naszej funkcji obiekt klasy CBook
czy też jakiejkolwiek innej dziedziczącej od CDocument. Kod procedury jest więc
uniwersalny i może być stosowany do wielu różnych rodzajów obiektów.

Eureka! Na tym przecież polega polimorfizm :)

Programowanie obiektowe 245

Możliwe że zauważyłeś, iż żadna z tych przykładowych klas nie jest tutaj typem
polimorficznym, a jednak podany wyżej kod działa bez zarzutu. Powodem tego jest jego
względna prostota. Dokładniej mówiąc, nie jest konieczne sprawdzanie poprawności
typów podczas działania programu, bo wystarczająca jest zwykła kontrola, dokonywana
zwyczajowo podczas kompilacji kodu.

Klasy wiedzą same, co należy robić
Z poprzednim przykładem związany jest pewien mankament, nietrudno zresztą
zauważalny. Niezależnie od tego, jakie dodatkowe dane o dokumencie zadeklarujemy w
klasach pochodnych, nasza funkcja wyświetli tylko i wyłącznie te przewidziane w klasie
CDocument. Nie uzyskamy więc nic ponad autora, tytuł oraz datę stworzenia dokumentu.

Trzeba jednak przyznać, że sami niejako jesteśmy sobie winni. Wyodrębniając czynność
prezentacji obiektu poza sam obiekt postąpiliśmy niezgodnie z ideą OOPu, która nakazuje
łączyć dane i operujący na nich kod.

Zatem przykład z poprzedniego paragrafu to zdecydowanie zły przykład :D

O wiele lepszym rozwiązaniem jest dodanie do klasy CDocument odpowiedniej metody,
odpowiedzialnej za czynność wypisywania. A już całkowitym ideałem będzie uczynienie
jej funkcją wirtualną - wtedy klasy dziedziczące od CDocument będą mogły ustalić własny
sposób prezentacji swoich danych.
Wszystkie te doskonałe pomysły praktycznie realizuje poniższy program przykładowy:

// Polymorphism - wykorzystanie techniki polimorfizmu

// *** documents.h ***

class CDocument
{
 // (większość składowych wycięto z powodu zbyt dużej objętości)

 public:
 virtual void PokazDane();
};

// (reszty klas nieuwzględniono z powodu dziury budżetowej ;D)
// (zaś ich implementacje są w pliku documents.cpp)

// *** main.cpp ***

#include <iostream>
#include <conio.h>
#include "documents.h"

void main()
{
 // wskaźnik na obiekty dokumentów
 CDocument* pDokument;

 // pierwszy dokument - internetowy
 std::cout << std::endl << "--- 1. pozycja ---" << std::endl;
 pDokument = new COnlineDocument("Regedit",
 "Cyfrowe przetwarzanie tekstu",
 "http://programex.risp.pl/?"

Podstawy programowania 246

 "strona=cyfrowe_przetwarzanie_tekstu"
);
 pDokument->PokazDane();
 delete pDokument;

 // drugi dokument - książka
 std::cout << std::endl << "--- 2. pozycja ---" << std::endl;
 pDokument = new CBook("Sam Williams",
 "W obronie wolnosci",
 "83-7361-247-5");
 pDokument->PokazDane();
 delete pDokument;

 getch();
}

Wynikiem jego działania będzie poniższe zestawienie:

Screen 38. Aplikacja prezentująca polimorfizm z wykorzystaniem metod wirtualnych

Zauważmy, że za wyświetlenie obu widniejących na nim pozycji odpowiada wywołanie
pozornie tej samej funkcji:

pDokument->PokazDane();

Polimorficzny mechanizm metod wirtualnych sprawia jednak, że zawsze wywoływana jest
odpowiednia wersja procedury PokazDane() - odpowiednia dla kolejnych obiektów, na
które wskazuje pDokument.

Tutaj mamy wprawdzie tylko dwa takie obiekty, ale nietrudno wyobrazić sobie
analogiczne działanie dla większej ich liczby, np.:

CDocument* apDokumenty[100];

for (unsigned i = 0; i < 100; ++i)
 apDokumenty[i]->PokazDane();

Poszczególne elementy tablicy apDokumenty mogą wskazywać na obiekty dowolnych
klas, dziedziczących od CDocument, a i tak kod wyświetlający ich dane będzie ograniczał
się do wywołania zaledwie jednej metody! I to właśnie jest piękne :D

Możliwe zastosowania takiej techniki można mnożyć w nieskończoność, zaś w grach jest
po prostu nieoceniona. Pomyślmy tylko, że za pomocą podobnej tablicy i prostej pętli
możemy wykonać dowolną czynność na zestawie przeróżnych obiektów. Rysowanie,
wyświetlanie, kontrola animacji - wszystko to możemy wykonać poprzez jedną instrukcję!
Niezależnie od tego, jak bardzo byłaby rozbudowana hierarchia naszych klas (np.

Programowanie obiektowe 247

jednostek w grze strategicznej, wrogów w grze RPG, i tak dalej), zastosowanie
polimorfizmu z metodami wirtualnymi upraszcza kod większości operacji do podobnie
trywialnych konstrukcji jak powyższa.
Od tej pory do nas należy więc tylko zdefiniowanie odpowiedniego modelu klas i ich
metod, gdyż zarządzanie poszczególnymi obiektami staje się, jak widać, banalne. Co
ważniejsze, zastosowanie technik obiektowych nie tylko upraszcza kod, ale też pozwala
na znacznie większą elastyczność.

Pamiętaj, że praktyka czyni mistrza! Poznanie teoretycznych aspektów programowania
obiektowego jest wprawdzie niezbędne, ale najwięcej wartościowych umiejętności
zdobędziesz podczas samodzielnego projektowania i kodowania programów. Wtedy
szybko przekonasz się, że stosowanie technik polimorfizmu jest prawie że intuicyjne -
nawet jeśli teraz nie jesteś zbytnio tego pewien.

Typy pod kontrolą
Uniwersalny kod dla wszystkich klas w hierarchii jest bardzo wygodnym rozwiązaniem.
Okazjonalnie jednak zdarza się, że trzeba w nim uwzględnić także bardziej szczegółowe
przypadki, co oznacza koniecznośc sprawdzania faktycznego typu obiektów, na które
wskazują nasze wskaźniki.
Na szczęście C++ oferuje proste mechanizmy, umożliwiające realizację tego zadania.

Operator dynamic_cast
Konwersja wskaźnika do klasy pochodnej na wskaźnik do klasy bazowej jest czynnością
dość naturalną, więc przebiega całkowicie automatycznie. Niepotrzebne jest nawet
zastosowanie jakiejś formy rzutowania. Nie powinno to wcale dziwić - w końcu na tym
polega sama idea dziedziczenia, że obiekt klasy potomnej jest także obiektem
przynależnym klasie bazowej.
Inaczej jest z konwersją w odwrotną stronę - ta nie zawsze musi się przecież powieść.
C++ powinien więc udostępniać jakiś sposób na sprawdzenie, czy taka zamiana jest
możliwa, no i na samo jej przeprowadzanie. Do tych celów służy operator rzutowania
dynamic_cast.

Jest to drugi z operatorów rzutowania, jakie mamy okazję poznać. Został on
wprowadzony do języka C++ po to, by umożliwić kompleksową obsługę typów
polimorficznych w zakresie konwersji „w dół” hierarchii klas. Jego przeznaczenie jest
zatem następujące:

Operator dynamic_cast służy do rzutowania wskaźnika do obiektu klasy bazowej na
wskaźnik do obiektu klasy pochodnej.

Powiedzieliśmy sobie również, że taka konwersja niekoniecznie musi być możliwa. Rolą
omawianego operatora jest więc także sprawdzanie, czy rzeczywiście mamy do czynienia
z wskaźnikiem do obiektu potomnego, przechowywanym przez zmienną będącą
wskaźnikiem do typu bazowego.

Uff, wszystko to wydaje się bardzo zakręcone, zatem najlepiej będzie, jeżeli przyjrzymy
się odpowiednim przykładom. Po raz kolejny posłużymy się przy tym naszą ulubioną
systematyką klas zwierząt i napiszemy taką oto funkcję:

#include <stdlib.h> // żeby użyć rand() i srand()
#include <ctime> // żeby użyć time()

IAnimal* StworzLosoweZwierze()
{
 // zainicjowanie generatora liczb losowych

Podstawy programowania 248

 srand (static_cast<unsigned>(time(NULL)));

 // wylosowanie liczby i stworzenie obiektu zwierza
 switch (rand() % 4)
 {
 case 0: return new CFish;
 case 1: return new CMammal;
 case 2: return new CBird;
 case 3: return new CHomeDog;
 default: return NULL;
 }
}

Losuje ona liczbę i na jej podstawie tworzy obiekt jednej z czterech, zdefiniowanych jakiś
czas temu, klas zwierząt. Następnie zwraca wskaźnik do niego jako wynik swego
działania. Rezultat ten jest rzecz jasna typu IAnimal*, aby mógł „pomieścić” odwołania
do jakiegokolwiek zwierzęcia, dziedziczącego z klasy bazowej IAnimal.

Powyższa funkcja jest bardzo prostym wariantem tzw. fabryki obiektów (ang. object
factory). Takie fabryki to najczęściej osobne obiekty, które tworzą zależne do siebie byty
np. na podstawie stałych wyliczeniowych, przekazywanych swoim metodom. Metody
takie mogą więc zwrócić wiele różnych rodzajów obiektów, dlatego deklaruje się je z
użyciem wskaźników na klasy bazowe - u nas jest to IAnimal*.

Wywołanie tej funkcji zwraca nam więc dowolne zwierzę i zdawałoby się, że nijak nie
potrafimy sprawdzić, do jakiej klasy ono faktycznie należy. Z pomocą przychodzi nam
jednak operator dynamic_cast, dzięki któremu możmue spróbować rzutowania
otrzymanego wskaźnika na przykład do typu CMammal*:

IAnimal* pZwierze = StworzLosoweZwierze();
CMammal* pSsak = dynamic_cast<CMammal*>(pZwierze);

Taka próba powiedzie się jednak tylko w średnio połowie przypadków (dlaczego?85). Co
zatem będzie, jeżeli pZwierze odnosi się do innego rodzaju zwierząt?…
Otóż w takim przypadku otrzymamy prostą informację o błędzie, mianowicie:

dynamic_cast zwróci wskaźnik pusty (o wartości NULL), jeżeli niemożliwe będzie
dokonanie podanego rzutowania.

Aby ją wychwycić potrzebujemy oczywiście dodatkowego warunku, porównującego
zmienną pSsak z tą specjalną wartością NULL (będącą zresztą de facto zerem):

if (pSsak != NULL) // sprawdzenie, czy rzutowanie powiodło się
{
 // OK - rzeczywiście mamy do czynienia z obiektem klasy CMammal.
 // pSsak może być tu użyty tak samo, jak każdy inny wskaźnik
 // na obiekt klasy CMammal, na przykład:
 pSsak->Biegnij();
}

Warunek if (pSsak != NULL) może być zastąpiony przez if (pSsak). Wówczas
kompilator dokona automatycznej zamiany wartości pSsak na logiczną, co da fałsz, jeżeli
jest ona równa zeru (czyli NULL) oraz prawdę w każdej innej sytuacji.

85 Obiekt klasy CMammal jest tworzony zarówno poprzez new CMammal, jak i new CHomeDog. Klasa CHomeDog
dziedziczy przecież po klasie CMammal.

Programowanie obiektowe 249

Możliwe jest nawet większe skondensowanie kodu. Wystarczy wstawić linijkę z
rzutowaniem bezspośrednio do warunku if, tzn. zastosować instrukcję:
if (CMammal* pSsak = dynamic_cast<CMammal*>(pZwierzak))
Pojedynczy znak = jest tutaj umieszczony celowo, gdyż w ten sposób całe przypisanie
reprezentuje wynik rzutowania, który zostaje potem niejawnie przyrównany do zera.

Kontrola otrzymanego wyniku rzutowania jest konieczna; jeżeli bowiem spróbowaliśmy
zastosować operator wyłuskania -> do pustego wskaźnika, spowodowalibyśmy błąd
ochrony pamięci (access violation).

Należy więc zawsze sprawdzać, czy rzutowanie dynamic_cast powiodło się, poprzez
porównanie otrzymanego wskaźnika z wartością NULL.

I to jest w zasadzie wszystko, co należy wiedzieć o operatorze dynamic_cast :)

Incydentalnie trafiają się sytuacje, w których zastosowanie omawianego operatora
wymaga włączenia specjalnej opcji kompilatora, uaktywniającej informacje o typie
podczas działania programu. Są to rzadkie przypadki i prawie zawsze dotyczą
wielodziedziczenia, niemniej warto wiedzieć, że takie niespodzianki mogą się czasem
przytrafić.
Sposób włączenia informacji o typie w czasie działania programu jest opisany w
następnym paragrafie.

Bliższych szczegółow na temat rzutowania dynamic_cast można doszukać się w MSDN.

typeid i informacje o typie podczas działania programu

Oprócz dynamic_cast - operatora, który pozwala sprawdzić, czy dany wskaźnik do klasy
bazowej wskazuje też na obiekt klasy pochodnej - C++ dysponuje nieco bardziej
zaawansowanymi konstrukcjami, dostarczającymi wiadomości o typach obiektów i
wyrażeń w programie. Są to tak zwane informacje o typie czasu wykonania
(ang. Run-Time Type Information), oznaczane angielskim skrótowcem RTTI.

Znajomość opisywanej tu części RTTI, czyli operatora typeid, generalnie nie jest tak
potrzebna, jak umiejętność posługiwania się operatorami rzutowania, ale daje kilka
bardzo ciekawych możliwości, najczęściej nieosiągalnych inną drogą. Możesz aczkolwiek
tymczasowo pominąć ten paragraf, by wrócić do niego później.

Skorzystanie z RTTI wymaga podjęcia dwóch wstępnych kroków:

 włączenia odpowiedniej opcji kompilatora:

1.

2.

3.

Screen 39, 40 i 41. Trzy kroki do włączenia RTTI w Visual Studio .NET

Podstawy programowania 250

W Visual Studio. NET należy w tym celu rozwinąć zakładkę Solution Explorer,
kliknąć prawym przyciskiem myszy na nazwę swojego projektu i z menu
podręcznego wybrać Properties. W pojawiającym się oknie dialogowym trzeba
teraz przejść do strony C/C++|Language i przy opcji Enable Run-Time Type Info
ustawić wariant Yes (/GR).

 dołączenia do kodu standardowego nagłówka typeinfo, czyli dodania dyrektywy:
#include <typeinfo>

W zamian za te wysiłki otrzymamy możliwość korzystania z operatora typeid,
pobierającego informację o typie podanego mu wyrażenia. Składnia jego użycia jest
następująca:

typeid(wyrażenie).informacja

Faktycznie instrukcja typeid(wyrażenie) zwraca strukturę, należącą do wbudowanego
typu std::type_info. Struktura ta opisuje typ wyrażenia i zawiera takie oto składowe:

informacja opis

name()

Jest to nazwa typu w czytelnej i przyjaznej dla człowieka formie. Możemy
ją przechowywać i operować nią tak, jak każdym innym napisem. Przykład:

#include <typeinfo>
#include <iostream>
#include <ctime>

int nX = 10; float fY = 3.14;
time_t Czas = time(NULL); tm Data = *localtime(&Czas);

std::cout << typeid(nX).name(); // wynik: "int"
std::cout << typeid(fY).name(); // wynik: "float"
std::cout << typeid(Data).name(); // wynik: "struct tm"

raw_name()

Zwraca nazwę typu wewnętrznie używaną przez kompilator. Taka nazwa
musi być unikalna, dlatego zawiera różne „dekoracyjne” znaki, jak ? czy @.

Nie jest czytelna dla człowieka, ale może ewentualnie służyć w celach
porównawczych.

Tabela 11. Informacje dostępne poprzez operator typeid

Oprócz pobierania nazwy typu w postaci ciągu znaków możemy używać operatorów ==
oraz != do porównywania typów dwóch wyrażeń, na przykład:

unsigned uX;

if (typeid(uX) == typeid(unsigned))
 std::cout << "Świetnie, nasz kompilator działa ;D";
if (typeid(uX) != typeid(uX / 0.618))
 std::cout << "No proszę, tutaj też jest dobrze :)";

typeid mógłby więc służyć nam do sprawdzania klasy, do której należy polimorficzny
obiekt wskazywany przez wskaźnik. Sprawdźmy zatem, jak by to mogło wyglądać:

IAnimal* pZwierze = new CBird;
std::cout << typeid(pZwierze).name();

Po wykonaniu tego kodu spotka nas raczej przykra niespodzienka - zamiast
oczekiwanego rezultatu "class CBird *" otrzymamy "class IAnimal *"! Wygląda na
to, że faktyczny typ obiektu, do którego odwołuje się pZwierze, nie został w ogóle wzięty
pod uwagę.

Programowanie obiektowe 251

Przypuszczenia te są słuszne. Otóż typeid jest „leniwym” operatorem i zawsze idzie po
najmniejszej linii oporu. Typ wyrażenia pZwierze mógł zaś określić nie sięgając nawet do
mechanizmów polimorficznych, ponieważ wyraźnie zadeklarowaliśmy go jako IAnimal*.
Aby zmusić krnąbrny operator do większego wysiłku, musimy mu podać sam obiekt, a
nie wskaźnik na niego, co czynimy w ten sposób:

std::cout << typeid(*pZwierze).name();

O występującym tu operatorze dereferencji - gwiazdce (*) powiemy sobie bliżej, gdy
przejdziemy do dokładnego omawiania wskaźników jako takich. Na razie zapamiętaj, że
przy jego pomocy „wyławiamy” obiekt poprzez wskaźnik do niego.
Naturalnie, teraz powyższy kod zwróci prawidłowy wynik "class CBird".

Pełny opis operatora typeid znajduje się oczywiście w MSDN.

Alternatywne rozwiązania
RTTI jest często zbyt ciężką armatą, wytoczoną przeciw problemowi pobierania informacji
o klasie obiektu podczas działania aplikacji. Przy niewielkim nakładzie pracy można
samemu wykonać znacznie mniejszy, acz nierzadko wystarczający system.

Po co? Decydującym argumentem może być szybkość. Wbudowane mechanizmy RTTI,
jak dynamic_cast i typeid, są dosyć wolne (szczególnie dotyczy to tego pierwszego).
Własne, bardziej poręczne rozwiązanie może mieć spory wpływ na wydajność.

Do tego celu mogą posłużyć metody wirtualne oraz odpowiedni typ wyliczeniowy,
posiadający listę wartości odpowiadających poszczególnym klasom. W przypadku naszych
zwierząt mógłby on wyglądać na przykład tak:

enum ANIMAL { A_BASE, // bazowa klasa IAnimal
 A_FISH, // klasa CFish
 A_MAMMAL, // klasa CMammal
 A_BIRD, // klasa CBird
 A_HOMEDOG }; // klasa CHomeDog

Teraz wystarczy tylko zdefiniować proste metody wirtualne, które będą zwracały stałe
właściwe swoim klasom:

// (pominąłem pozostałe składowe klas)

class IAnimal
{
 public:
 virtual ANIMAL Typ() const { return A_BASE; }
};

// ----------------------bezpośrednie pochodne --------------------------

class CFish : public IAnimal
{
 public:
 ANIMAL Typ() const { return A_FISH: }
};

class CMammal : public IAnimal
{
 public:
 ANIMAL Typ() const { return A_MAMMAL; }

Podstawy programowania 252

};

class CBird : public IAnimal
{
 public:
 ANIMAL Typ() const { return A_BIRD; }
};

// ----------------------- pośrednie pochodne ----------------------------

class CHomeDog : public CMammal
{
 public:
 ANIMAL Typ() const { return A_HOMEDOG; }
};

Po zastosowaniu tego rozwiązania możemy chociażby użyć instrukcji switch, by wykonać
kod zależny od typu obiektu:

IAnimal* pZwierzak = StworzLosoweZwierze();

switch (pZwierzak->Typ())
{
 case A_FISH: static_cast<CFish*>(pZwierzak)->Plyn(); break;
 case A_BIRD: static_cast<CBird*>(pZwierzak)->Lec(); break;
 case A_MAMMAL: static_cast<CMammal*>(pZwierzak)->Biegnij(); break;
 case A_HOMEDOG: static_cast<CHomeDog*>(pZwierzak)->Szczekaj(); break;
}

Podobne sprawdzenie, dokonywane przy użyciu dynamic_cast lub typeid, wymagałoby
wielopiętrowej instrukcji if. Tutaj wystarczy bardziej naturalny switch, zaś do
formalnego rzutowania możemy użyć prostego static_cast, które działa szybciej niż
mechanizmy RTTI.

Trzeba jednak pamiętać, że aby bezpiecznie stosować static_cast do rzutowania w dół
hierarchii klas, musimy mieć pewność, że taka operacja jest faktycznie wykonalna. Tutaj
sprawdzamy rzeczywisty typ obiektu86, zatem wszystko jest w porządku, lecz w innych
przypadkach należy skorzystać z dynamic_cast.

Systemy identyfikacji i zarządzania typami, podobne do powyższego, są w praktyce
używane bardzo często, szczególnie w wielkich projektach. Najbardziej zaawansowane
warianty umożliwiają nawet tworzenie obiektów na podstawie nazwy klasy
przechowywanej jako napis lub też dynamiczne odtworzenie hierarchii klas podczas
działania programu. Trzeba jednak przyznać, iż jest to nierzadko sztuka dla samej sztuki,
bez wielkiego praktycznego znaczenia.

„Równowaga przede wszystkim” - pamiętajmy tę sentencję :D

Gratulacje! Właśnie poznałeś wszystkie teoretyczne założenia programowania
obiektowego i ich praktyczną realizację w C++. Wykorzystując zdobytą wiedzę, będziesz
mógł efektywnie programować aplikacje z użyciem filozofii OOP.

86 Sprawdzenie przy użyciu typeid także upoważniałoby nas do stosowania static_cast podczas rzutowania.

Programowanie obiektowe 253

Słucham? Mówisz, że to wcale nie jest takie proste? Zgadza się, na początku myślenie w
kategoriach obiektowych może rzeczywiście sprawiać ci trudności. Pomyślałem więc, że
dobrze będzie poświęcić nieco czasu także na zagadnienia związane z samym
projektowaniem aplikacji z użyciem poznanych technik. Zajmiemy się tym w
nadchodzącym podrozdziale.

Projektowanie zorientowane obiektowo
A miało być tak pięknie… Programowanie obiektowe miało być przecież wyjątkowo
naturalnym sposobem kodowania, a poprzednie paragrafy raczej nie bardzo o tym
przekonywały, prawda? Jeżeli rzeczywiście odnosisz takie wrażenie, to być może
zwyczajnie utonąłeś w powodzi szczegółów, dodajmy - niezbędnych szczegółów,
koniecznych do stosowania OOPu w praktyce. Czas jednak wypłynąć na powierzchnię i
ponownie spojrzeć na zagadnienie bardziej całościowo. Temu celowi będzie służyć
niniejszy podrozdział.

Wiele podręczników opisujących programowanie obiektowe (czy nawet programowanie
jako takie) wspomina skąpo, jeżeli w ogóle, o praktycznym stosowaniu prezentowanych
mechanizmów, czyli po prostu o projektowaniu aplikacji z użyciem omawianych technik.
Możnaby to wybaczyć tym publikacjom, których głównym celem jest „jedynie” kompletny
opis danego języka. Jeżeli jednak mówimy o materiałach dla całkiem początkujących,
będących w założeniu wprowadzeniem w świat programowania, wtedy zdecydowanie
niewskazane jest pomijanie praktycznych stron projektowania i kodowania aplikacji. Na
co bowiem przyda się znajomość budowy młotka, jeśli nie ułatwi to zadania, jakim jest
wbicie gwoździa? :)

Staram się więc uniknąć tego błędu i przedstawiam programowanie obiektowe także od
strony programisty-praktyka. Mam jednocześnie nadzieję, że w ten sposób przynajmniej
częściowo uchronię cię przed wyważaniem otwartych drzwi w poszukiwaniu informacji w
gruncie rzeczy oczywistych - które jednak wcale takie nie są, gdy się ich nie posiada.
Naturalnie, nic nie zastąpi doświadczenia zdobytego samodzielnie podczas prawdziwego
kodowania. Prezentowana tutaj wiedza teoretyczno-praktyczna może być jednak bardzo
pomocnym punktem startowym, ułatwiającym koderskie życie przynajmniej na jego
początku.
Cóż więc znajdziemy w aktualnym podrozdziale? Żałuję, ale nie będzie to przegląd
kolejnych kroków, jakie należy czynić programując konkretną aplikację. Zamiast na mniej
lub bardziej trywialnym programiku skoncentrujemy się raczej na ogólnym procesie
budowania wewnętrznej, obiektowej struktury programu - czyli na tak zwanym
modelowaniu klas i ich związków. Najpierw poznamy zatem trzy podstawowe rodzaje
obiektów albo, jak kto woli, ról, w których one występują. Dalej zajmiemy się kwestią
definiowania odpowiednich klas - ich interfejsu i implementacji, a wreszcie związkami
pomiędzy nimi, dzięki którym programy stworzone według zasad OOPu mogą poprawnie
funkcjonować.

Znajomość powyższego zestawu zagadnień powinna znacznie poprawić twoje szanse w
starciu z problemami projektowymi, związanymi z programowaniem obiektowym. Być
może ich rozwiązywanie nie będzie już wówczas wiedzą tajemną, ale normalną i, co
ważniejsze, satysfakcjonującą częścią pracy kodera.
Nie przedłużając już więcej zacznijmy zatem właściwą treść tego podrozdziału.

Rodzaje obiektów
Każdy program zawiera w mniejszej lub większej części nowatorskie rozwiązania,
stanowiące główne wyzwanie stojące przed jego twórcą. Niemniej jednak pewne cechy

Podstawy programowania 254

prawie zawsze pozostają stałe - a do nich należy także podział obiektów składowych
aplikacji na trzy fundamentalne grupy.

Podział ten jest bardzo ogólny i niezbyt sztywny, ale przez to stosuje się w zasadzie do
każdego projektu. Będzie on zresztą punktem wyjścia dla nieco bardziej szczegółowych
kwestii, opisanych później.
Pomówmy więc kolejno o każdym rodzaju z owej podstawowej trójki.

Singletony
Większość obiektów jest przeznaczonych do istnienia w wielu egzemplarzach, różniących
się przechowywanymi danymi, lecz wykonujących te same działania poprzez metody.
Istnieją jednakże wyjątki od tej reguły, a należą do nich właśnie singletony.

Singleton (‘jedynak’) to klasa, której jedyna instancja (obiekt) spełnia kluczową rolę w
całym programie.

W danym momencie działania aplikacji istnieje więc co najwyżej jeden egzemplarz
klasy, będącej singletonem.

Obiekty takie są dosłownie jedyne w swoim rodzaju i dlatego zwykle przechowują one
najważniejsze dane programu oraz wykonają większość newralgicznych czynności.
Najczęściej są też „rodzicami” i właścicielami pozostałych obiektów.
W jakich sytuacjach przydają się takie twory? Otóż jeżeli podzielilibyśmy nasz projekt na
jakieś składowe (sposób podziału jest zwykle sprawą mocno subiektywną), to dobrymi
kandydatami na singletony byłyby przede wszystkim te składniki, które obejmowałyby
najszerszy zakres funkcji. Może to być obiekt aplikacji jako takiej albo też
reprezentacje poszczególnych podsystemów - w grach byłyby to: grafika, dźwięk, sieć,
AI, itd., w edytorach: moduły obsługi plików, dokumentów, formatowania itp.

Niekiedy zastosowanie singletonów wymuszają warunki zewnętrzne, np. jakieś
dodatkowe biblioteki, używane przez program. Tak jest chociażby w przypadku funkcji
Windows API odpowiedzialnych za zarządzanie oknami.

Siłą rzeczy singletony stanowią też „punkty zaczepienia” dla całego modelu klas, gdyż ich
pola są w większości odwołaniami do innych obiektów: niekiedy do wielu drobnych, ale
częściej do kilku kolejnych zarządców, czyli następnego, niższego poziomu hierarchii
zawierania się obiektów.

O relacji zawierania się (agregacji) będziemy jeszcze szerzej mówić.

Przykłady wykorzystania
Najbardziej oczywistym przykładem singletonu może być całościowy obiekt programu,
a więc klasa w rodzaju CApplication czy CGame. Będzie ona nadrzędnym obiektem
wobec wszystkich innych, a także przechowywała będzie globalne dane dotyczące
aplikacji jako całości. To może być chociażby ścieżka do jej katalogu, ale także kluczowe
informacje otrzymane od bibliotek Windows API, DirectX czy jakichkolwiek innych.

Jeżeli chodzi o inne możliwe singletony, to z pewnością będą to zarządcy poszczególnych
modułów; w grach są to obiekty klas o tak wiele mówiących nazwach jak
CGraphicsSystem, CSoundSystem, CNetworkSystem itp., podobne twory można też
wyróżnić w programach użytkowych.
Wszystkie te klasy występują w pojedynczych instancjach, gdyż unikatowa jest ich rola.
Kwestią otwartą jest natomiast ich ewentualna podległość najbardziej nadrzędnemu
obiektowi aplikacji - na przykład w ten sposób:

Programowanie obiektowe 255

class CGame
{
 private:
 CGraphicsSystem* m_pGFX;
 CSoundSystem* m_pSFX;
 CNetworkSystem* m_pNet;
 // itd.

 // (resztę składowych pominiemy)
};

// jedna jedyna instancja powyższej klasy
extern CGame* g_pGra; // 87

Równie dobrze mogą być bowiem samodzielnymi obiektami, dostępnymi poprzez swoje
własne zmienne globalne - bez pośrednictwa obiektu głównego. Obydwa podejścia są w
zasadzie równie dobre (może z lekkim wskazaniem na pierwsze, jako że nie zapewnia
takiej swobody w dostępie do podsystemów z zewnątrz).

Dlaczego jednak w ogóle stosować singletony, jeżeli i tak będą one tylko pojedynczymi
kopiami swoich pól? Przecież podobne efekty można uzyskać stosując zmienne globalne
oraz zwyczajne funkcje w miejsce pól i metod takiego obiektu-jedynaka.
To jednak tylko część prawdy. Namnożenie zmiennych i funkcji poza zasadniczą,
obiektową strukturą programu narusza zasady OOPu, i to aż podwójnie. Po pierwsze, nie
unikniemy w ten sposób wyraźnego oddzielenia danych od kodu, a po drugie nie
zapewnimy im ochrony przed niepowołanym dostępem, co zwiększa ryzyko błędów.
Wreszcie, mieszamy wtedy dwa style programowania, a to nieuchronnie prowadzi do
bałaganu w kodzie, jego niespójności, trudności w rozbudowie i konserwacji oraz całej
rzeszy innych plag, przy których te egipskie mogą zdawać się dziecinną igraszką ;D

Używanie singletonów jest zatem nieodzowne. Przydałoby się więc znaleźć jakiś dobry
sposób ich implementacji, bo chyba domyślasz się, że zwykłe zmienne globalne nie są
tutaj szczytem marzeń. No, a jeśli nawet nie zastanowiłeś się nad tym, to właśnie masz
precedens porównawczy - przedstawię bowiem nieco lepszą drogę na realizację pomysłu
pojedynczych obiektów w C++.

Praktyczna implementacja z użyciem składowych statycznych
Nawet najlepszy pomysł nie jest zbyt wiele wart, jeżeli nie można jego skutków zobaczyć
w działaniu. Singletony można na szczęście zaimplementować aż na kilka sposobów,
różniących się wygodą i bezpieczeństwem.

Najprostszy, z wykorzystaniem globalnego wskaźnika na obiekt lub globalnej zmiennej
obiektowej, posiada kilka wad, związanych przede wszystkim z kontrolą nad tworzeniem
oraz niszczeniem obiektu. Dlatego lepiej zastosować tutaj inne rozwiązanie, oparte na
składowych statycznych klas.

Statyczne składowe są przypisane do klasy jako całości, a nie do jej poszczególnych
instancji (obiektów).

Deklarujemy je przy pomocy słowa kluczowego static. Wówczas pełni więc ono inną
funkcję niż ta, którą znaliśmy dotychczas.

87 Pamiętajmy, że zmienne zadeklarowane w pliku nagłówkowym z użyciem extern wymagają jeszcze
przydzielenia do odpowiedniego modułu kodu poprzez deklarację bez wspomnianego słówka. Powyższy sposób
nie jest zresztą najlepszą metodą na zaimplementowanie singletonu - bardziej odpowiednią poznamy za chwilę.

Podstawy programowania 256

Podstawową cechą składowych statycznych jest to, że do skorzystania z nich nie jest
potrzebny żaden obiekt macierzystej klasy. Odwołujemy się do nich, podając po prostu
nazwę klasy oraz oznaczenie składowej, w ten oto sposób:

nazwa_klasy::składowa_statyczna

Możliwe jest także tradycyjne użycie obiektu danej klasy lub wskaźnika na niego oraz
operatorów wyłuskania . lub ->. We wszystkich przypadkach efekt będzie ten sam.
Musimy jakkolwiek pamiętać, że nadal obowiązują tutaj specyfikatory praw dostępu, więc
jeśli powyższy kod umieścimy poza metodami klasy, to będzie on poprawny tylko dla
składowych zadeklarowanych jako public.

Bliższe poznanie statycznych elementów klas wymaga rozróżnienia spośród nich pól i
metod. Działanie modyfikatora static jest bowiem nieco inne dla danych oraz dla kodu.
I tak statyczne pola są czymś w rodzaju zmiennych globalnych dla klasy. Można się do
nich odwoływać z każdej metody, a także z klas pochodnych i/lub z zewnątrz - zgodnie ze
specyfikatorami praw dostępu. Każde odniesienie do statycznego pola będzie jednak
dostępem do tej samej zmiennej, rezydującej w tym samym miejscu pamięci. W
szczególności poszczególne obiekty danej klasy nie będą posiadały własnej kopii takiego
pola, bo będzie ono istniało tylko w jednym egzemplarzu.
Podobieństwo do zmiennych globalnych przejawia się w jeszcze jednym aspekcie:
mianowicie statyczne pola muszą zostać w podobny sposób przydzielone do któregoś z
modułów kodu w programie. Ich deklaracja w klasie jest bowiem odpowiednikiem
deklaracji extern dla zwykłych zmiennych. Odpowiednia definicja w module wygląda zaś
następująco:

typ nazwa_klasy::nazwa_pola [= wartość_początkowa];

Kwalifikatora nazwa_klasy:: możemy tutaj wyjątkowo użyć nawet wtedy, kiedy nasze
pole nie jest publiczne. Spostrzeżmy też, iż nie korzystamy już ze słowa static, jako że
poza definicją klasy ma ono odmienne znaczenie.

Statyczność metod polega natomiast na ich niezależności od jakiegokolwiek obiektu
danej klasy. Metody opatrzone kwalifikatorem static możemy bowiem wywoływać bez
konieczności posiadania instancji klasy. W zamian za to musimy jednak
zaakceptować fakt, iż nie posiadamy dostępu do wszelkich niestatycznych składników
(zarówno pól, jak i metod) naszej klasy. To aczkolwiek dość naturalne: jeśli wywołanie
funkcji statycznej może obejść się bez obiektu, to skąd moglibyśmy go wziąć, aby
skorzystać z niestatycznej składowej, która przecież takiego obiektu wymaga? Otóż
właśnie nie mamy skąd, gdyż w metodach statycznych nie jest dostępny wskaźnik
this, reprezentujący aktualny obiekt klasy.

No dobrze, ale w jaki sposób statyczne składowe klas mogą nam pomóc w implementacji
singletonów?… Cóż, to dosyć proste. Zauważ, że takie składowe są unikalne w skali całej
klasy - tak samo, jak unikalny jest pojedynczy obiekt singletonu. Możemy zatem użyć
ich, by sprawować kontrolę nad naszym jedynym i wyjątkowym obiektem.
Najpierw zadeklarujemy więc statyczne pole, którego zadaniem będzie przechowywanie
wskaźnika na ów kluczowy obiekt:

// *** plik nagłówkowy ***

// klasa singletonu
class CSingleton
{
 private:

Programowanie obiektowe 257

 // statyczne pole, przechowujące wskaźnik na nasz jedyny obiekt
 static CSingleton* ms_pObiekt; // 88

 // (tutaj będą dalsze składowe klasy)
};

// *** moduł kodu ***
// trzeba rzecz jasna dołączyć tutaj nagłówek z definicją klasy

// inicjujemy pole wartością zerową (NULL)
CSingleton* CSingleton::ms_pObiekt = NULL;

Deklarację pola umieściliśmy w sekcji private, aby chronić je przed niepowołaną
zmianą. W takiej sytuacji potrzebujemy jednak metody dostępowej do niego, która
zresztą także będzie statyczna:

// *** wewnątrz klasy CSingleton ***

public:
 static CSingleton* Obiekt()
 {
 // tworzymy obiekt, jeżeli jeszcze nie istnieje
 // (tzn. jeśli wskaźnik ms_pObiekt ma początkową wartość NULL)
 if (ms_pObiekt == NULL) CSingleton();

 // zwracamy wskaźnik na nasz obiekt
 return ms_pObiekt;
 }

Oprócz samego zwracania wskaźnika metoda ta sprawdza, czy żądany przez nasz obiekt
faktycznie istnieje; jeżeli nie, jest tworzony. Jego kreacja następuje więc przy pierwszym
użyciu.
Odbywa się ona poprzez bezpośrednie wywołanie konstruktora… którego na razie nie
mamy (jest domyślny)! Czym prędzej naprawmy zatem to niedopatrzenie, przy okazji
definiując także destruktor:

// *** wewnątrz klasy CSingleton ***

private:
 CSingleton() { ms_pObiekt = this; }
public:
 ~CSingleton() { ms_pObiekt = NULL; }

Spore zdziwienie może budzić niepubliczność konstruktora. W ten sposób jednak
zabezpieczamy się przed utworzeniem więcej niż jednej kopii naszego singletonu.
Uprawniona do wywołania prywatnego konstruktora jest bowiem tylko składowa klasy,
czyli metoda CSingleton::Obiekt(). Wszelkie zewnętrzne próby stworzenia obiektu
klasy CSingleton zakończą się więc błędem kompilacji, zaś jedyny jego egzemplarz
będzie dostępny wyłącznie poprzez wspomnianą metodę.

Powyższy sposób jest zatem odpowiedni dla obiektu stojącego na samym szczycie
hierarchii w aplikacji, a więc dla klas w rodzaju CApplication, CApp czy CGame. Jeżeli zaś
chcemy mieć wygodny dostęp do obiektów leżących niżej, zawartych wewnątrz innych,
wtedy nie możemy oczywiście uczynić konstruktora prywatnym. Wówczas warto więc
skorzystać z innych rozwiązań, których jednak nie chciałem tutaj przedstawiać ze

88 Przedrostek s_ wskazuje, że dana zmienna jest statyczna. Tutaj został on połączony ze zwyczajowym m_,
dodawanym do nazw prywatnych pól.

Podstawy programowania 258

względu konieczność znacznie większej znajomości języka C++ do ich poprawnego
zastosowania89.

Musimy jeszcze pamiętać, aby usunąć obiekt, gdy już nie będzie nam potrzebny - robimy
to w zwyczajny sposób, poprzez operator delete:

delete CSingleton::Obiekt();

To konieczne - skoro chcemy zachować kontrolę nad tworzeniem obiektu, to musimy
także wziąć na siebie odpowiedzialność za jego zniszczenie.

Na koniec wypadałoby zastanowić się, czy stosowanie powyższego rozwiązania (albo
podobnych, gdyż istnieje ich więcej) jest na pewno konieczne. Być może sądzisz, że
można się spokojnie bez nich obyć - i chwilowo masz rzeczywiście rację! Kiedy nasze
programy są zdeterminowane od początku do końca, zawarte w całości w funkcji main(),
łatwo jest zapanować nad życiem singletonu. Gdy jednak rozpoczniemy programować
aplikacje okienkowe dla Windows, sterowane zewnętrznymi zdarzeniami, wtedy przebieg
programu nie będzie już taki oczywisty. Powyższy sposób na implementację singletonu
będzie wówczas znacznie użyteczniejszy.

Obiekty zasadnicze
Drugi rodzaj obiektów skupia te, które stanowią największy oraz najważniejszy fragment
modelu w każdym programie. Obiekty zasadnicze są jego żywotną tkanką, wykonującą
wszelkie zadania przewidziane w aplikacji.

Obiekty zasadnicze to główny budulec programu stworzonego według zasad OOP.
Wchodząc w zależności między sobą oraz przekazując dane, realizują one wszystkie
funkcje aplikacji.

Budowanie sieci takich obiektów jest więc lwią częścią procesu tworzenia obiektowej
struktury programu. Definiowanie odpowiednich klas, związków między nimi, korzystanie
z dziedziczenia, metod wirtualnych i polimorfizmu - wszystko to dotyczy właśnie obiektów
zasadniczych. Zagadnienie ich właściwego stosowania jest zatem niezwykle szerokie -
zajmiemy się nim dokładniej w kolejnych paragrafach tego podrozdziału.

Obiekty narzędziowe
Ostatnia grupa obiektów jest oczkiem w głowie programistów, zajmujących się jedynie
„klepaniem kodu” wedle projektu ustalonego przez kogoś innego. Z kolei owi projektanci
w ogóle nie zajmują się nimi, koncentrując się wyłącznie na obiektach zasadniczych.
W swojej karierze jako twórcy oprogramowania będziesz jednak często wcielał się w obie
role, dlatego znajomość wszystkich rodzajów obiektów z pewnością okaże się pomocna.

Czym więc są obiekty należące do opisywanego rodzaju? Naturalnie, najlepiej wyjaśni to
odpowiednia definicja :D

Obiekty narzędziowe, zwane też pomocniczymi lub konkretnymi90, reprezentują
pewien nieskomplikowany typ danych. Zawierają pola służące przechowywaniu jego
danych oraz metody do wykonywania nań prostych operacji.

89 Jeden z najlepszych sposobów został opisany w rozdziale 1.3, Automatyczne singletony, książki Perełki
programowania gier, tom 1.
90 Autorem tej ostatniej, dziwnej nazwy jest Bjarne Stroustrup i tylko dlatego ją tutaj podaję :)

Programowanie obiektowe 259

Nazwa tej grupy obiektów dobrze oddaje ich rolę: są one tylko pomocniczym
konstrukcjami, ułatwiającymi realizację niektórych algorytmów. Często zresztą traktuje
się je podobnie jak typy podstawowe - zwłaszcza w C++.

Obiekty narzędziowe posiadają wszakże kilka znaczacych cech:

 istnieją same dla siebie i nie wchodzą w interakcje z innymi, równolegle
istniejącymi obiektami. Mogą je wprawdzie zawierać w sobie, ale nie komunikują
się samodzielnie z otoczeniem

 ich czas życia jest ograniczony do zakresu, w którym zostały zadeklarowane.
Zazwyczaj tworzy się je poprzez zmienne obiektowe, w takiej też postaci (a nie
poprzez wskaźniki) zwracają je funkcje

 nierzadko zawierają publiczne pola, jeżeli możliwe jest ich bezpieczne ustawianie
na dowolne wartości. W takim wypadku typy narzędziowe definiuje się zwykle
przy użyciu słowa struct, gdyż uwalnia to od stosowania specyfikatora public,
który w typach strukturalnych jest domyślnym (w klasach, definiowanych poprzez
class, domyślne prawa to private; poza tym oba słowa kluczowe niczym się od
siebie nie różnią)

 posiadają najczęściej kilka konstruktorów, ale ich przeznaczenie ogranicza się
zazwyczaj do wstępnego ustawienia pól na wartości podane w parametrach.
Destruktory są natomiast rzadko używane - zwykle wtedy, gdy obiekt sam alokuje
dodatkową pamięć i musi ją zwolnić

 metody obiektów narzedziowych są zwykle proste obliczeniowo i krótkie w zapisie.
Ich implementacja jest więc umieszczana bezpośrednio w definicji klasy.
Bezwzględnie stosuje się też metody stałe, jeżeli jest to możliwe

 obiekty należące do opisywanego rodzaju prawie nigdy nie wymagają użycia
dziedziczenia, a więc także metod wirtualnych i polimorfizmu

 jeżeli ma to sens, na rzecz tego rodzaju obiektów dokonywane jest
przeładowywanie operatorów, aby mogły być użyte w stosunku do nich. O tej
technice programistycznej będziemy mówić w jednym z dalszych rozdziałów

 nazewnictwo klas narzędziowych jest zwykle takie samo, jak normalnych typów
sklarnych. Nie stosuje się więc zwyczajowego przedrostka C, a całą nazwę
zapisuje tą samą wielkością liter - małymi (jak w Bibliotece Standardowej C++)
lub wielkimi (według konwencji Microsoftu)

Bardzo wiele typów danych może być reprezentowanych przy pomocy odpowiednich
obiektów narzędziowych. Z jednym z takich obiektów masz zresztą stale do czynienia:
jest nim typ std::string, będący niczym innym jak właśnie klasą, której rolą jest
odpowiednie „opakowanie” łańcucha znaków w przyjazny dla programisty interfejs.

Takie obudowywanie nazywamy enkapsulacją.

Klasa ta jest także częścią Standardowej Biblioteki Typów C++, którą poznamy
szczegółowo po zakończeniu nauki samego języka. Należą do niej także inne typy, które
z pewnością możemy uznać za narzędziowe, jak na przykład std::complex,
reprezentujący liczbę zespoloną czy std::bitset, będący ciągiem bitów.
Matematyka dostarcza zresztą największej liczby kandydatów na potencjalne obiekty
narzędziowe. Wystarczy pomyśleć o wektorach, macierzach, punktach, prostokątach,
prostych, powierzchniach i jeszcze wielu innych pojęciach. Nie są one przy tym jedynie
obrazowym przykładem, lecz niedzownym elementem programowania - gier w
szczególności. Większość bibliotek zawiera je więc gotowe do użycia; sporo programistów
definiuje dlań jednak własne klasy.

Zobaczmy zatem, jak może wyglądać taki typ w przypadku trójwymiarowego wektora:

#include <cmath>

struct VECTOR3

Podstawy programowania 260

{
 // współrzędne wektora
 float x, y, z;

 //---

 // konstruktory
 VECTOR3() { x = y = z = 0.0; }
 VECTOR3(float fX, float fY, float fZ) { x = fX; y = fY; z = fZ; }

 //---

 // metody
 float Dlugosc() const { return sqrt(x * x + y * y + z * z); }
 void Normalizuj()
 {
 float fDlugosc = Dlugosc();

 // dzielimy każdą współrzędną przez długość
 x /= fDlugosc; y /= fDlugosc; z /= fDlugosc;
 }

 //---

 // tutaj można by się pokusić o przeładowanie operatorów +, -, *, /,
 // =, +=, -=, *=, /=, == i != tak, żeby przy ich pomocy wykonywać
 // działania na wektorach. Ponieważ na razie tego nie umiemy, więc
 // musimy z tym poczekać :)
};

Najwięcej kontrowersji wzbudza pewnie to, że pola x, y, z są publicznie dostępne. Ma to
jednak solidne uzasadnienie: ich zmiana jest rzeczą naturalną dla wektora, zaś zakres
dopuszczalnych wartości nie jest niczym ograniczony (mogą nimi być dowolne liczby
rzeczywiste). Ochrona, którą zwykle zapewniamy przy pomocy metod dostępowych,
byłaby zatem niepotrzebnym pośrednikiem.
Użycie powyższej klasy/struktury (jak kto woli…) wymaga oczywiście utworzenia jej
instancji. Przy prostym zestawie danych, jaki ona reprezentuje, nie potrzeba jednak
poświęcać pieczołowitej uwagi na tworzenie i niszczenie obiektów, zatem wystarczą nam
zwykłe zmienne obiektowe zamiast wskaźników. Nawet więcej - możemy potraktować
VECTOR3 identycznie jak typy wbudowane i napisać na przykład funkcję obliczającą oba
rodzaje iloczynów wektorów:

float IloczynSkalarny(VECTOR3 vWektor1, VECTOR3 vWektor2)
{
 // iloczyn skalarany jest sumą iloczynów odpowiednich współrzędnych
 // obu wektorów

 return (vWektor1.x * vWektor2.x
 + vWektor1.y * vWektor2.y
 + vWektor1.z * vWektor2.z);
}

VECTOR3 IloczynWektorowy(VECTOR3 vWektor1, VECTOR3 vWektor2)
{
 VECTOR3 vWynik;

 // iloczyn wektorowy ma za to bardziej skomplikowaną formułkę :)
 vWynik.x = vWektor1.y * vWektor2.z - vWektor2.y * vWektor1.z;
 vWynik.y = vWektor2.x * vWektor1.z - vWektor1.x * vWektor1.z;
 vWynik.z = vWektor1.x * vWektor2.y - vWektor2.x * vWektor1.y;

Programowanie obiektowe 261

 return vWynik;
}

Te operacje mają zresztą niezliczone zastosowania w programowaniu trójwymiarowych
gier, zatem ich implementacja ma głęboki sens :)

Spokojnie możemy w tych funkcjach pobierać i zwracać obiekty typu VECTOR3. Koszt
obliczeniowy tych działań będzie bowiem niemal taki sam, jak dla pojedynczych liczb.

W przypadku parametrów funkcji stosujemy jednak referencje, które optymalizują kod,
uwalniając od przekazania nawet tych skromnych kilkunastu bajtów. Zapoznamy się z
nimi w następnym rozdziale.

Łańcuchy znaków czy wymysły matematyków to nie są naturalnie wszystkie koncepcje,
które można i trzeba realizować jako obiekty narzędziowe. Do innych należą chociażby
wszelkie reprezentacje daty i czasu, kolorów, numerów o określonym formacie oraz
wszystkie pozostałe, nieelementarne typy danych.

Szczególnym przypadkiem obiektów pomocniczych są tak zwane inteligentne wskaźniki
(ang. smart pointers). Ich zadaniem jest zapewnienie dodatkowej funkcjonalności
zwykłym wskaźnikom - obejmuje to na przykład zwolnienie wskazywanej przez nie
pamięci w sytuacjach wyjątkowych czy też zliczanie odwołań do „opakowanych” nimi
obiektów.

Definiowanie odpowiednich klas
Tworzenie obiektowego modelu programu przebiega zwykle dwuetapowo. Jednym z
zadań jest identyfikacja klas, które będą się nań składały, oraz pól i metod, które zostaną
zawarte w ich definicjach. Drugim jest określenie związków pomiędzy tymi klasami,
dzięki którym aplikacja mogłaby realizować zaplanowane czynności.
Przestrzeganie powyższej kolejności nie jest ściśle konieczne. Oczywiście, mając już kilka
zdefiniowanych klas, można pewnie prościej połączyć je właściwymi relacjami. Równie
dobre jest jednak wyjście od tychże relacji i korzystanie z nich przy definiowaniu klas.
Obydwa wspomniane procesy często więc odbywają się jednocześnie.
Ponieważ jednak lepiej jest opisać każdy z nich osobno, zatem od któregoś należy
zacząć :) Zdecydowałem tedy, że najpierw poszukamy właściwych klas oraz ich
składowych, a dopiero potem zajmiemy się łączeniem ich w odpowiedni model.

Zaprojektowanie kompletnego zbioru klas oznacza konieczność dopracowywania dwóch
aspektów każdej z nich:

 abstrakcji, czyli opisu tego, co dana klasa ma robić
 implementacji, to znaczy określenia, jak ma to robić

Teraz naturalnie zajmiemy się kolejno obydowami kwestiami.

Abstrakcja
Jeżeli masz pomysł na grę, aplikację użytkową czy też jakikolwiek inny produkt
programisty, to chyba najgorszą rzeczą, jaką możesz zrobić, jest natychmiastowe
rozpoczęcie jego kodowania. Słusznie mówi się, że co nagle, to po diable; niezbędne jest
więc stworzenie model abstrakcyjnego zanim przystąpi się do właściwego
programowania.

Model abstrakcyjny powinien opisywać założone działanie programu bez precyzowania
szczegółów implementacyjnych.

Podstawy programowania 262

Sama nazwa wskazuje zresztą, że taki model powinien abstrahować od kodu. Jego
zadaniem jest bowiem odpowiedź na pytanie „Co program ma robić?”, a w przypadku
technik obiektowych, „Jakich klas będzie do tego potrzebował i jakie czynności będą
przez nie wykonywane?”.
Tym kluczowym sprawom poświęcimy rzecz jasna nieco miejsca.

Identyfikacja klas
Klasy i obiekty stanowią składniki, z których budujemy program. Aby więc rozpocząć tę
budowę, należałoby mieć przynajmniej kilka takich cegiełek. Trzeba zatem
zidentyfikować możliwe klasy w projekcie.

Muszę cię niestety zmartwić, gdyż w zasadzie nie ma uniwersalnego i zawsze
skutecznego przepisu, który pozwałby na wykrycie wszelkich klas, potrzebnych do
realizacji programu. Nie powinno to zresztą dziwić: dzisiejsze programy dotykają przecież
prawie wszystkich nauk i dziedzin życia, więc podanie niezawodnego sposobu na
skonstruowanie każdej aplikacji jest zadaniem porównywalnym z opracowaniem metody
pisania książek, które zawsze będą bestsellerami, lub też kręcenia filmów, które na
pewno otrzymają Oscara. To oczywiście nie jest możliwe, niemniej dziedzina informatyka
poświęcona projektowaniu aplikacji (zwana inżynierią oprogramowania) poczyniła w
ostatnich latach duże postępy.

Chociaż nadal najlepszą gwarancją sukcesu jest posiadane doświadczenie, intuicja oraz
odrobina szczęścia, to jednak początkujący adept sztuki tworzenia programów (taki jak
ty :)) nie pozostanie bez pomocy. Programowanie obiektowe zostało przecież wymyślone
właśnie po to, aby ułatwić nie tylko kodowanie programów, ale także ich projektowanie -
a na to składa się również wynajdywanie klas odpowiednich dla realizowanej aplikacji.
Otóż sama idea OOPu jest tutaj sporym usprawnieniem. Postęp, który ona przynosi, jest
bowiem związany z oparciem budowy programu o rzeczowniki, zamiast czasowników,
właściwym programowaniu strukturalnemu. Myślenie kategoriami tworów, bytów,
przedmiotów, urządzeń - ogólnie obiektów, jest naturalne dla ludzkiego umysłu. Na
rzeczownikach opiera się także język naturalny, i to w każdej części świata.
Również w programowaniu bardziej intuicyjne jest podejście skoncentrowane na
wykonawcach czynności, a nie na czynnościach jako takich. Przykładowo, porównaj
dwa poniższe, abstrakcyjne kody:

// 1. kod strukturalny
hPrinter = GetPrinter();
PrintText (hPrinter, "Hello world!");

// 2. kod obiektowy
pPrinter = GetPrinter();
pPrinter->PrintText ("Hello world!");

Mimo że oba wyglądają podobnie, to wyraźnie widać, że w kodzie strukturalnym
ważniejsza jest sama czynność drukowania, zaś jej wykonawca (drukarka) jest kwestią
drugorzedną. Natomiast kod obiektowy wyraźnie ją wyróżnia, a wywołanie metody
PrintText() można przyrównać do wciśnięcia przycisku zamiast wykonywania jakiejś
mało trafiającej do wyobraźni operacji.
Jeżeli masz wątpliwość, które podejście jest właściwsze, to pomyśl, co zobaczysz, patrząc
na to urządzenie obok monitora - czynność (drukowanie) czy przedmiot (drukarkę)91?…

No, ale dosyć już tych luźnych dygresji. Mieliśmy przecież zająć się poszukiwaniem
właściwych klas dla naszych programów obiektowych. Odejście od tematu w poprzednim

91 Oczywiście nie dotyczy to tych, którzy drukarki nie mają, bo oni nic nie zobaczą :D

Programowanie obiektowe 263

akapicie było jednak tylko pozorne, gdyż „niechcący” znaleźliśmy całkiem prosty i
logiczny sposób, wspomagający identyfikację klas.
Mianowicie, powiedzieliśmy sobie, że OOP przesuwa środek ciężkości programowania z
czasowników na rzeczowniki. Te z kolei są także podstawą języka naturalnego,
używanego przez ludzi. Prowadzi to do prostego wniosku i jednocześnie drogi do całkiem
dobrego rozwiązania dręczacego nas problemu:

Skuteczną pomocą w poszukiwaniu klas odpowiednich dla tworzonego programu może
być opis jego funkcjonowania w języku naturalnym.

Taki opis stosunkowo łatwo jest sporządzić, pomaga on też w uporządkowaniu pomysłu
na program, czyli klarowanym wyrażeniu, o co nam właściwie chodzi :) Przykład takiego
raportu może wyglądać choćby w ten sposób:

Program Graph jest aplikacją przeznaczoną do rysowania wszelkiego rodzaju schematów i diagramów
graficznych. Powinien on udostępniać szeroką paletę przykładowych kształtów, używanych w takich
rysunkach: bloków, strzałek, drzew, etykiet tekstowych, figur geometrycznych itp. Edytowany przez
użytkownika dokument powinien być ponadto zapisywalny do pliku oraz eksportowalny do kilku
formatów plików graficznych.

Nie jest to z pewnością zbyt szczegółowa dokumentacja, ale na jej podstawie możemy
łatwo wyróżnić sporą ilość klas. Należą do nich przede wszystkim:

 dokument
 schemat
 różne rodzaje obiektów umieszczanych na schematach

Warto też zauważyć, że powyższy opis ukrywa też nieco informacji o związkach między
klasami, np. to, że schemat zawiera w sobie umieszczone przez użytkownika kształty.

Zbiór ten z pewnością nie jest kompletny, ale stanowi całkiem dobre osiągnięcie na
początek. Daje też pewne dalsze wskazówki co do możliwych kolejnych klas, jakimi mogą
być poszczególne typy kształtów składających się na schemat.

Tak więc analiza opisu w języku naturalnym jest dosyć efektywnym sposobem na
wyszukiwanie potencjalnych klas, składających się na program. Skuteczność tej metody
zależy rzecz jasna w pewnym stopniu od umiejętności twórcy aplikacji, lecz jej
stosowanie szybko przyczynia się także do podniesienia poziomu biegłości w
projektowaniu programów.

Analizowanie opisu funkcjonalnego programu nie jest oczywiście jedynym sposobem
poszukiwania klas. Do pozostałych należy chociażby sprawdzanie klasycznej „listy
kontrolnej”, zawierającej często występujące klasy lub też próba określenia działania
jakiejś konkretnej funkcji i wykrycia związanych z nią klas.

Abstrakcja klasy
Kiedy już w przybliżeniu znamy kilka klas z naszej aplikacji, możemy spróbować określić
je bliżej. Pamiętajmy przy tym, że definicja klasy składa się z dwóch koncepcyjnych
części:

 publicznego interfejsu, dostępnego dla użytkowników klasy
 prywatnej implementacji, określającej sposób realizacji zachowań określonych w

interfejsie

Całą sztuką w modelowaniu pojedynczej klasy jest skoncentrowanie się na pierwszym z
tych składników, będącym jej abstrakcją. Oznacza to zdefiniowanie roli, spełnianej
przez klasę, bez dokładnego wgłębiania się w to, jak będzie ona tę rolę odgrywała.

Podstawy programowania 264

Taka abstrakcja może być również przedstawiona w postaci krótkiego, najczęściej
jednozdaniowego opisu w języku naturalnym, np.:

Klasa Dokument reprezentuje pojedynczy schemat, który może być edytowany przez użytkownika przy
użyciu naszego programu.

Zauważmy, że powyższe streszczenie nic nie mówi choćby o formie, w jakiej nasz
dokument-schemat będzie przechowywany w pamięci. Czy to będzie bitmapa, rysunek
wektorowy, zbiór innych obiektów albo może jeszcze coś innego?… Wszystkie te
odpowiedzi mogą być poprawne, jednak na etapie określania abstrakcji klasy są one poza
obszarem naszego zainteresowania.

Abstrakcja klasy jest określeniem roli, jaką ta klasa pełni w programie.

Jawne formułowanie opisu podobnego do powyższego może wydawać się niepotrzebne,
skoro i tak przecież będzie on wymagał uszczegółowienia. Posiadanie go daje jednak
możliwość prostej kontroli poprawności definicji klasy. Jeżeli nie spełnia ona założonych
ról, to najprawdopodobniej zawiera błędy.

Składowe interfejsu klasy
Publiczny interfejs klasy to zbiór metod, które mogą wywoływać jej użytkownicy. Jego
określenie jest drugim etapem definiowania klasy i wyznacza zadania, jakie należy
wykonać podczas jej implementacji.

Nasza klasa Dokument będzie naturalnie zawierała kilka publicznych metod. Co ciekawe,
sporo informacji o nich możemy „wyciągnąć” i wydedukować z już raz analizowanego
opisu całego programu. Na jego podstawie dają się sprecyzować takie funkcje jak:

 Otwórz - otwierającą dokument zapisany w pliku
 Zapisz - zachowująca dokument w postaci pliku
 Eksportuj - metoda eksportująca dokument do pliku graficznego z możliwością

wyboru docelowego formatu

Z pewnościa w toku dalszego projektowania aplikacji (być może w trakcie definicji
kolejnych klas albo ich związków?) można by znaleźć także inne metody, których
umieszczenie w klasie będzie słusznym posunięciem. W każdej sytuacji musimy jednak
pamiętać, aby postać klasy zgadzała się z jej abstrakcją.

Mówię o tym, gdyż nie powinieneś zapominać, że projektowanie jest procesem
cyklicznym, w którym może występować wiele iteracji oraz kilka podejść do tego samego
problemu.

Implementacja
Implementacja klasy wyznacza drogę, po jakiej przebiega realizacja zadań klasy,
określonych w abstrakcji oraz przybliżonych poprzez jej interfejs. Składają się na nią
wszystkie wewnętrzne składniki klasy, niedostępne jej użytkowników - a więc prywatne
pola, a także kod poszczególnych metod.

Dogmaty ścisłej inżynierii oprogramowania mówią, aby dokładne implementacje
poszczególnych metod (zwane specyfikacjami algorytmów) były dokonywane jeszcze
podczas projektowania programu. Do tego celu najczęściej używa się pseudokodu, o
którym już kiedyś wspominałem. W nim zwykle zapisuje się wstępne wersje algorytmów
metod.
Jednak według mnie ma to sens chyba tylko wtedy, kiedy nad projektem pracuje wiele
osób albo gdy nie jesteśmy zdecydowani, w jakim języku programowania będziemy go
ostatecznie realizować. Wydaje się, że obie sytuacje na razie nas nie dotyczą :)

Programowanie obiektowe 265

W praktyce więc implementacja klasy jest dokonywana podczas programowania, czyli po
prostu pisania jej kodu. Można by zatem spierać się, czy faktycznie należy ona jeszcze do
procesu projektowania. Osobiście uważam, że to po prostu jego przedłużenie, praktyczna
kontynuacja, realizacja - różnie można to nazywać, ale generalnie chodzi po prostu o
zaoszczędzenie sobie pracy. Łączenie projektowania z programowaniem jest w tym
wypadku uzasadnione.

Schemat 28. Proces tworzenia klasy

Odkładanie implementacji na koniec projektowania, w zasadzie „na styk” z kodowaniem
programu, jest zwykle konieczne. Zaimplementowanie klasy oznacza przecież
zadeklarowanie i zdefiniowanie wszystkich jej składowych - pól i metod, publicznych i
prywatnych. Do tego wymagana jest już pełna wiedza o klasie - nie tylko o tym, co ma
robić, jak ma to robić, ale także o jej związkach z innymi klasami.

Związki między klasami
Potęgą programowania obiektowego nie są autonomiczne obiekty, ale współpracujące ze
sobą klasy. Każda musi więc wchodzić z innymi przynajmniej w jedną relację, czyli
związek.

Obecnie zapoznamy się z trzema rodzajami takich związków. Spajają one obiekty
poszczególnych klas i umożliwiają realizację założonych funkcji programu.

Dziedziczenie i zawieranie się
Pierwsze dwa typy relacji będziemy rozpatrywać razem z tego względu, iż przy ich okazji
często występują pewne nieporzumienia. Nie zawsze jest bowiem oczywiste, którego z
nich należy użyć w niektórych sytuacjach. Postaram się więc rozwiać te wątpliwości,
zanim jeszcze zdążysz o nich pomyśleć ;)

Związek generalizacji-specjalizacji
Relacja ta jest niczym innym, jak tylko znanym ci już dobrze dziedziczeniem.
Generalizacja-specjalizacja (ang. is-a relationship) to po prostu bardziej uczona nazwa
dla tego związku.

Podstawy programowania 266

W dziedziczeniu występują dwie klasy, z których jedna jest nadrzędna, zaś druga
podrzędna. Ta pierwsza to klasa bazowa, czyli generalizacja; reprezentuje ona szeroki
zbiór jakichś obiektów. Wśród nich można jednak wyróżnić takie, które zasługują na
odrębny typ, czyli klasę pochodną - specjalizację.

Schemat 29. Ilustracja związku generalizacji-specjalizacji

Klasa bazowa jest często nazywana nadtypem, zaś pochodna - podtypem. Na
schemacie bardzo dobrze widać, dlaczego :D

Najistotniejszą konsekwencją użycia tego rodzaju relacji jest przejęcie przez klasę
pochodną całej funkcjonalności, zawartej w klasie bazowej. Jako że jest ona jej bardziej
szczegółowym wariantem, możliwe jest też rozszerzenie odziedziczonych możliwości, lecz
nigdy - ich ograniczenie.
Klasa pochodna jest więc po prostu pewnym rodzajem klasy bazowej.

Związek agregacji
Agregacja (ang. has-a relationship) sugeruje zawieranie się jednego obiektu w innym.
Mówiąc inaczej, obiekt będący całością składa się z określonej liczby obiektów-
składników.

Schemat 30. Ilustracja związku agregacji

Przykładów na podobne zachowanie nie trzeba daleko szukać. Wystarczy chociażby
rozejrzeć się po dysku twardym we własnym komputerze: nie dość, że zawiera on foldery

Programowanie obiektowe 267

i pliki, to jeszcze same foldery mogą zawierać inne foldery i pliki. Podobne zjawisko
występuje też na przykład dla kluczy i wartości w Rejestrze Windows.

Implementacja tej relacji w C++ oznacza umieszczenie w deklaracji obiektu agregatu
pola, które będzie reprezentowało jego składnik, np.:

// składnik
class CIngredient { /* ... */ };

// obiekt nadrzędny
class CAggregate
{
 private:
 // pole ze składowym składnikiem
 CIngredient* m_pSkladnik;
 public:
 // konstruktor i destruktor
 CAggregate() { m_pSkladnik = new CIngredient; }
 ~CAggregate() { delete m_pSkladnik; }
};

Można by tu także zastosować zmienną obiektową, ale wtedy związek stałby się
obligatoryjny, czyli musiał zawsze występować. Natomiast w przypadku wskaźnika
istnienie obiektu nie jest konieczne przez cały czas, więc może być on tworzony i
niszczony w razie potrzeby.

Trzeba jednak uważać, aby po każdym zniszczeniu obiektu ustawiać jego wskaźnik na
wartość NULL. W ten sposób będziemy mogli łatwo sprawdzać, czy nasz składnik istnieje,
czy też nie. Unikniemy więc błędów ochrony pamięci.

Odwieczny problem: być czy mieć?
Rozróżnienie pomiędzy dziedziczeniem a zawieraniem może czasami nastręczać pewnych
trudności. W takich sytuacjach istnieje na szczęście jedno proste rozwiązanie.

Otóż jeżeli relację pomiędzy dwoma obiektami lepiej opisuje określenie „ma” („zawiera”,
„składa się” itp.), to należy zastosować agregację. Kiedy natomiast klasy są naturalnie
połączone poprzez stwierdzenie „jest”, wtedy odpowiedniejszym rozwiązaniem jest
dziedziczenie.
Co to znaczy? Dokładnie to, co widzisz i o czym myślisz. Należy po prostu sprawdzić,
które ze sformułowań:

Klasa1 jest rodzajem Klasa2.
Klasa1 zawiera obiekt typu Klasa2.

jest poprawne, wstawiając oczywiście nazwy swoich klas w oznaczonych miejscach, np.:

Kwadrat jest rodzajem Figury.
Samochód zawiera obiekt typu Koło.

Mamy więc kolejny przykład na to, że programowanie obiektowe jest bliskie ludzkiemu
sposobowi myślenia, co może nas tylko cieszyć :)

Związek asocjacji
Najbardziej ogólnym związkiem między klasami jest przyporządkowanie, czyli właśnie
asocjacja (ang. uses-a relationship). Obiekty, których klasy są połączone taką relacją,
posiadają po prostu możliwość wymiany informacji między sobą podczas działania
programu.

Podstawy programowania 268

Praktyczna realizacja takiego związku to zwykle użycie przynajmniej jednego wskaźnika,
a najprostszy wariant wygląda w ten sposób:

class CFoo { /* ... */ };

class CBar
{
 private:
 // wskaźnik do połączonego obiektu klasy CFoo
 CFoo* m_pFoo;
 public:
 void UstanowRelacje(CFoo* pFoo) { m_pFoo = pFoo; }
};

Łatwo tutaj zauważyć, że zawieranie się jest szczególnym przypadkiem asocjacji dwóch
obiektów.

Połączenie klas może oczywiście przybierać znacznie bardziej pogmatwane formy, my zaś
powinniśmy je wszystkie dokładnie poznać :D Pomówmy więc o dwóch aspektach tego
rodzaju związków: krotności oraz kierunkowości.

Krotność związku
Pod dziwną nazwą krotności kryje się po prostu liczba obiektów, biorących udział w
relacji. Trzeba bowiem wiedzieć, że przy asocjacji dwóch klas możliwe są różne ilości
obiektów, występujących z każdej strony. Klasy są przecież tylko typami, z nich są
dopiero tworzone właściwe obiekty, które w czasie działania aplikacji będą się ze sobą
komunikowały i wykonywały zadania programu.

Możemy więc wyróżnić cztery ogólne rodzaje krotności związku:

 jeden do jednego. W takim przypadku pojedynczemu obiektowi jednej z klas
odpowiada również pojedynczy obiekt drugiej klasy. Przyporządkowanie jest
zatem jednoznaczne.
Z takimi relacjami mamy do czynienia bardzo często. Weźmy na przykład dowolną
listę osób - uczniów, pracowników itp. Każdemu numerowi odpowiada tam jedno
nazwisko oraz każde nazwisko ma swój unikalny numer. Podobnie „działa” też
choćby tablica znaków ANSI.

 jeden do wielu. Tutaj pojedynczy obiekt jednej z klas jest przyporządkowany
kilku obiektom drugiej klasy. Wygląda to podobnie, jak włożenie skarpety do kilku
szuflad naraz - być może w prawdziwym świecie byłoby to trudne, ale w
programowaniu wszystko jest możliwe ;)

 wiele do jednego. Ten rodzaj związku oznacza, że kilka obiektów jednej z klas
jest połączonych z pojedynczym obiektem drugiej klasy.
Dobrym przykładem są tu rozdziały w książce, których może być wiele w jednej
publikacji. Każdy z nich jest jednak przynależny tylko jednemu tomowi.

 wiele do wielu. Najbardziej rozbudowany rodzaj relacji to złączenie wielu
obiektów od jednej z klas oraz wielu obiektów drugiej klasy.
Wracając do przykładu z książkami możemy stwierdzić, że związek między
autorem a jego dziełem jest właśnie takim typem relacji. Dany twórca może
przecież napisać kilka książek, a jednocześnie jedno wydawnictwo może być
redagowane przez wielu autorów.

Implementacja wielokrotnych związków polega zwykle na tablicy lub innej tego typu
strukturze, przechowującej wskaźniki do obiektów danej klasy. Dokładny sposób
zakodowania relacji zależy rzecz jasna także od tego, jaką ilość obiektów rozumiemy pod
pojęciem „wiele”…

Programowanie obiektowe 269

Pojedyncze związki są natomiast z powodzeniem programowane za pomocą pól,
będących wskaźnikami na obiekty.

Widzimy więc, że poznanie obsługi obiektów poprzez wskaźniki w poprzednim rozdziale
było zdecydowanie dobrym pomysłem :)

Tam i (być może) z powrotem
Gdy do obiektu jakiejś klasy dodamy pole - wskaźnik na obiekt innej klasy, wtedy
utworzymy między nimi relację asocjacji. Związek ten będzie jednokierunkowy, gdyż
jedynie obiekt posiadający wskaźnik stanie się jego aktywną częścią i będzie inicjował
komunikację z drugim obiektem. Ten drugi obiekt może w zasadzie „nie wiedzieć”, że jest
częścią relacji!

W związku jednokierunkowym z pierwszego obiektu możemy otrzymać drugi, lecz
odwrotna sytuacja nie jest możliwa.

Naturalnie, niekiedy będziemy potrzebowali obustronnego, wzajemnego dostępu do
obiektów relacji. W takim przypadku należy zastosować związek dwukierunkowy.

W związku dwukierunkowym oba obiekty mają do siebie wzajemny dostęp.

Taka sytuacja często ułatwia pisanie bardziej skomplikowanego kodu oraz organizację
przeplywu danych. Jej implementacja napotyka jednak ma pewną, zdawałoby się
nieprzekraczalną przeszkodę. Popatrzmy bowiem na taki oto kod:

class CFoo
{
 private:
 // wskaźnik do połączonego obiektu CBar
 CBar* m_pBar;
};

class CBar
{
 private:
 // wskaźnik do połączonego obiektu CFoo
 CFoo* m_pFoo;
};

Zdawałoby się, że poprawnie realizuje on związek dwukierunkowy klas CFoo i CBar. Próba
jego kompilacji skończy się jednak niepowodzeniem, a to z powodu wskaźnika na obiekt
klasy CBar, zadeklarowanego wewnątrz CFoo. Kompilator analizuje bowiem kod
sekwencyjnie, wiersz po wierszu, zatem na etapie definicji CFoo nie ma jeszcze bladego
pojęcia o klasie CBar, więc nie pozwala na zadeklarowanie wskaźnika do niej.
Łatwo przewidzieć, że zamiana obu definicji miejscami w niczym tu nie pomoże.
Dochodzimy do paradoksu: aby zdefiniować pierwszą klasę, potrzebujemy drugiej klasy,
zaś by zdefniować drugą klasą, potrzebujemy definicji pierwszej klasy! Sytuacja wydaje
się być zupełnie bez wyjścia…

A jednak rozwiązanie istnieje, i jest do tego bardzo proste. Skoro kompilator nie wie, że
CBar jest klasą, trzeba mu o tym zawczasu powiedzieć. Aby jednak znowu nie wpaść w
błędne koło, nie udzielimy o CBar żadnych bliższych informacji; zamiast definicji
zastosujemy deklarację zapowiadającą:

class CBar; // rzeczona deklaracja

Podstawy programowania 270

// (dalej definicje obu klas, jak w kodzie wyżej)

Po tym zabiegu kompilator będzie już wiedział, że CBar jest typem (dokładnie klasą) i
pozwoli na zadeklarowanie odpowiedniego wskaźnika jako pola klasy CFoo.

Niektórzy, by uniknąć takich sytuacji, od razu deklarują deklarują wszystkie klasy przed
ich zdefiniowaniem.

Widzimy więc, że związki dwukierunkowe, jakkolwiek wygodniejsze niż jednokierunkowe,
wymagają nieco więcej uwagi. Są też zwykle mniej wydajne przy łączeniu nim dużej
liczby obiektów. Prowadzi to do prostego wniosku:

Nie należy stosować związków dwukierunkowych, jeżeli w konkretnym przypadku
wystarczą relacje jednokierunkowe.

Projektowanie aplikacji nawet z użyciem technik obiektowych nie zawsze jest prostym
zadaniem. Ten podrozdział powinien jednak stanowić jakąś pomoc w tym zakresie. Nie da
się jednak ukryć, że praktyka jest zawsze najlepszym nauczycielem, dlatego
zdecydowanie nie powinieneś jej unikać :) Samodzielne zaprojektowanie i wykonanie
choćby prostego programu obiektowego będzie bardziej pouczające niż lektura
najobszerniejszych podręczników.

Kończacy się podrozdział w wielu miejscach dotykał zagadnień inżynierii
oprogramowania. Jeżeli chciałbyś poszerzyć swoją wiedzę na ten temat (a warto), to
zapraszam do Materiału Pomocniczego C, Podstawy inżynierii oprogramowania.

Podsumowanie
Kolejny bardzo długi i bardzo ważny rozdział :) Zawiera on bowiem dokończenie opisu
techniki programowania obiektowego.

Rozpoczęliśmy od mechanizmu dziedziczenia oraz jego roli w ponownym
wykorzystywaniu kodu. Zobaczyliśmy też, jak tworzyć proste i bardziej złożone hierarchie
klasy.
Dalej było nawet ciekawiej: dzięki metodom wirtualnym i polimorfizmu przekonaliśmy
się, że programowanie z użyciem technik obiektowych jest efektywniejsze i prostsze niż
dotychczas.
Na koniec zostałeś też obdarzony sporą porcją informacji z zakresu projektowania
aplikacji. Dowiedziałeś się więc o rodzajach obiektów, sposobach znajdowania właściwych
klas oraz związkach między nimi.

W następnym rozdziale - ostatnim w podstawowym kursie C++ - przypatrzymy się
wskaźnikom jako takim, już niekoniecznie w kontekście OOPu. Pomówimy też o pamięci,
jej alokowaniu i zwalnianiu.

Pytania i zadania
Na końcu rozdziału nie może naturalnie zabraknąć odpowiedniego pakietu pytań oraz
ćwiczeń :)

Programowanie obiektowe 271

Pytania
1. Na czym polega mechanizm dziedziczenia i jakie zjawisko jest jego głównym

skutkiem?
2. Jaka jest różnica między specyfikatorami praw dostępu do składowych, private

oraz protected?
3. Co nazywamy płaską hierarchią klas?
4. Czym różni się metoda wirtualna od zwykłej?
5. Co jest szczegolną cechą klasy abstrakcyjnej?
6. Kiedy klasa jest typem polimorficznym?
7. Na czym polegają polimorficzne zachowania klas w C++?
8. Co to jest RTTI? Na jakie dwa sposoby mechanizm ten umożliwia sprawdzenie

klasy obiektu, na który wskazuje dany wskaźnik?
9. Jakie trzy rodzaje obiektów można wyróżnić w programie?
10. Czym jest abstrakcja klasy, a czym jej implementacja?
11. Podaj trzy typy relacji między klasami.

Ćwiczenia
1. Zaprojektuj dowolną, dwupoziomową hierarchię klas.
2. (Trudne) Napisz obiektową wersję gry Kółko i krzyżyk z rozdziału 1.5.

Wskazówki: dobrym kandydatem na obiekt jest oczywiście plansza. Zdefiniuj też
klasę graczy, przechowującą ich imiona (niech program pyta się o nie na początku
gry).

