PROGRAMOWANIE
OBIEKTOWE

Gdyby murarze budowali domy tak,

jak programisci piszq programy,

to jeden dzieciot zniszczytby catq cywilizacje.
ze zbioru prawd o oprogramowaniu

Witam cie serdecznie, drogi Czytelniku! Powitanie to jest tutaj jak najbardziej wskazane.
Twoja obecnos$¢ wskazuje bowiem, ze nadzwyczaj szybko wydostates sie spod sterty
nowych wiadomosci, ktdrymi obarczytem cie w poprzednim rozdziale :) A nie byto to
wcale takie proste, zwazywszy Ze poznates tam zupetnie nowg technike programowania,
opierajgca sie na catkiem innych zasadach niz te dotychczas ci znane.

Mimo to mogtes uczué pewien niedosyt. Owszem, idea OOPu byla tam przedstawiona
jako w miare naturalna, a nawet intuicyjna (w kazdym razie bardziej niz programowanie
strukturalne). Potrzeba jednak sporej dozy optymizmu, aby uznac jg na tym etapie za
cos$ rewolucyjnego, co faktycznie zmienia sposéb myslenia o programowaniu (a
jednoczesnie znacznie je utatwia).

By w petni przekonad sie do tej koncepcji, trzeba o niej wiedzie¢ nieco wiecej; kluczowe
informacje na ten temat sg zawarte w tym oto rozdziale. Sqdze wiec, ze chocby z tego
powodu bedzie on dla ciebie bardzo interesujacy :D

Zajmiemy sie w nim dwoma niezwykle waznymi zagadnieniami programowania
obiektowego: dziedziczeniem oraz metodami wirtualnymi. Na nich wtasnie opiera sie cata
jego potega, pozwalajaca tworzy¢ efektowne i efektywne programy.

Zobaczymy zresztg, jak owo tworzenie wyglada w rzeczywistosci. Koncowg czesé
rozdziatu poswiecitem bowiem na zestaw rad i wskazéwek, ktore, jak sadze, okaza sie
pomocne w projektowaniu aplikacji opartych na modelu OOP.

Kontynuujmy zatem poznawanie wspaniatego $wiata programowania obiektowego :)

Dziedziczenie

Drugim powodem, dla ktérego techniki obiektowe zyskaty taka popularnos$¢’’, jest
znaczacy postep w kwestii ponownego wykorzystywania raz napisanego kodu oraz
rozszerzania i dostosywania go do wtasnych potrzeb.

Cecha ta lezy u samych podstaw OOPu: program konstruowany jako zbiér
wspotdziatajacych obiektow nie jest juz bowiem monolitem, Scistym potgaczeniem danych i
wykonywanych nan operacji. ,Rozdrobniona” struktura zapewnia mu zatem
modularnosé: nie jest trudno doda¢ do gotowej aplikacji nowg funkcje czy tez

77 Pierwszym jest wspominana nie raz ,naturalno$¢” programowania, bez koniecznoéci podziatu na dane i kod.

222 Podstawy programowania

wyodrebni¢ z niej jeden podsystem i uzy¢ go w kolejnej produkcji. Utatwia to i
przyspiesza realizacje kolejnych projektow.

. Wszystko zalezy jednak od umiejetnosci i do$wiadczenia programisty. Nawet stosujac

- techniki obiektowe mozna stworzy¢ program, ktérego elementy beda ze soba tak $cisle
. zespolone, ze proba ich uzycia w nastepnej aplikacji bedzie przypominata wciskanie

' stonia do szklanej butelki.

Istnieje jeszcze jedna przyczyna, dla ktérej kod oparty na programowaniu obiektowym
tatwiej poddaje sie ,recyklingowi”, majacemu przygotowac go do ponownego uzycia. Jest
nim wiasnie tytutowy mechanizm dziedziczenia.

Korzysci ptynace z jego stosowania nie ograniczajg sie jednakze tylko do wtdérnego
~Przerobu” juz istniejacego kodu. Przeciwnie, jest to fundamentalny aspekt OOPu
niezmiernie utatwiajacy i uprzyjemniajqcy projektowanie kazdej w zasadzie aplikacji. W
pofaczeniu z technologig funkcji wirtualnych oraz polimorfizmu daje on niezwykle
szerokie mozliwosci, o ktdrych szczegdtowo traktuje praktycznie caty niniejszy rozdziat.

Rozpoczniemy zatem od doktadnego opisu tego bardzo pozytecznego mechanizmu
programistycznego.

O powstawaniu klas drogg doboru naturalnego

Cztowiek jest takg dziwng istotg, ktéra bardzo lubi posiada¢ uporzadkowany i
usystematyzowany obraz $Swiata. Wprowadzanie porzadku i pewnej hierarchii co do
postrzeganych zjawisk i przedmiotow jest dla nas niemal naturalng potrzeba.

Chyba najlepiej przejawia sie to w klasyfikacji biologicznej. Widzac na przyktad psa
wiemy przeciez, ze nie tylko nalezy on do gatunku zwanego psem domowym, lecz takze
do gromady znanej jako ssaki (wraz z konmi, stoniami, lwami, matpami, ludzmi i catg
resztg tej menazerii). Te z kolei, razem z gadami, ptakami czy rybami nalezg do kolejnej,
znacznie wiekszej grupy organizmow zwanych po prostu zwierzetami.

Nasz pies jest zatem jednoczes$nie psem domowym, ssakiem i zwierzeciem:

ZWIERZETA

ryby ptaki

%

Schemat 22. Klasyfikacja zwierzat jako przykitad hierarchii typéw obiektow

Programowanie obiektowe 223

Gdyby byt obiektem w programie, wtedy musiatby naleze¢ az do trzech klas naraz’®!
Bytoby to oczywiscie niemozliwe, jezeli wszystkie miatyby by¢ wobec siebie rownorzedne.
Tutaj jednak tak nie jest: wystepuje miedzy nimi hierarchia, jedna klasa pochodzi od
drugiej. Zjawisko to nazywamy wiasnie dziedziczeniem.

Dziedziczenie (ang. inheritance) to tworzenie nowej klasy na podstawie jednej lub kilku
istniejgcych wczesniej klas bazowych.

Wszystkie klasy, ktére powstajg w ten sposdb (nazywamy je pochodnymi), posiadajg
pewne elementy wspdlne. Czesci te sg dziedziczone z klas bazowych, gdyz tam wtasnie
zostaty zdefiniowane.

Ich zbiér moze jednak zosta¢ poszerzony o pola i metody specyficzne dla klas
pochodnych. Beda one wtedy wspdétistnie¢ z ,,dorobkiem” pochodzacym od klas
bazowych, ale mogg oferowac¢ dodatkowa funkcjonalnos¢.

Tak w teorii wyglada system dziedziczenia w programowaniu obiektowym. Najlepiej
bedzie, jezeli teraz przyjrzymy sie, jak w praktyce moze wygladac jego zastosowanie.

Od prostoty do komplikacji, czyli ewolucja

Powrd¢my wiec do naszego przyktadu ze zwierzetami. Chcac stworzy¢ programowy
odpowiednik zaproponowanej hierarchii, musielibysmy zdefiniowa¢ najpierw odpowiednie
klasy bazowe. Nastepnie odziedziczylibysmy ich pola i metody w klasach
pochodnych i dodali nowe, wtasciwe tylko im. Powstate klasy same mogtyby by¢ potem
bazami dla kolejnych, jeszcze bardziej wyspecjalizowanych typow.

Idac dalej ta drogg dotarlibyémy wreszcie do takich klas, z ktérych sensowne byloby juz
tworzenie normalnych obiektow.

Pojecie klas bazowych i klas pochodnych jest zatem wzgledne: dana klasa moze
. wprawdzie pochodzi¢ od innych, ale jednoczesnie by¢ baza dla kolejnych klas. W ten
| sposdb ustala sie wielopoziomowa hierarchia, podobna zwykle do drzewka.

Ilustracja tego procesu moze by¢ ponizszy diagram:

ZWierze

Masa
Wiek

Patrz
Oddychaj

A)

[|
Ryba Ssak Ptak
Phyri Biegnij Led

T T
Pies domowy

Rasa
Kolor siersci

Szzekaj
Aportuj

Schemat 23. Hierarchia klas zwierzat

78 A raczej do siedmiu lub odmiu, gdyz dla prostoty pominatem tu wiekszo$¢ pozioméw systematyki.

224 Podstawy programowania

Wszystkie przedstawione na nim klasy wywodzga sie z jednej, nadrzednej wobec
wszystkich: jest nig naturalnie klasa Zwierze. Dziedziczy z niej kazda z pozostatych klas -
bezposrednio, jak Ryba, Ssak oraz Ptak, lub posrednio - jak Pies domowy.

Tak oto tworzy sie kilkupoziomowa klasyfikacja oparta na mechanizmie dziedziczenia.

Z klasy bazowej do pochodnej, czyli dziedzictwo przodkdow

O podstawowe]j konsekwencji takiego rozwigzania zdgzytem juz wczesniej wspomniec.
Jest nig mianowicie przekazywanie pdl oraz metod pochodzacych z klasy bazowej do
wszystkich klas pochodnych, ktére sie z niej wywodzg. Zatem:

Klasa pochodna zawiera pola i metody odziedziczone po klasach bazowych. Moze takze
posiada¢ dodatkowe, unikalne dla siebie sktadowe - nie jest to jednak obowigzkiem.

Przesledzmy teraz sposdb, w jaki odbywa sie odziedziczanie sktadowych na przyktadzie
naszej prostej hierarchii klas zwierzat.

U jej podstawy lezy ,najbardziej bazowa” klasa Zwierze. Zawiera ona dwa pola,
okreslajace mase i wiek zwierzecia, oraz metody odpowiadajace za takie czynnosci jak
widzenie i oddychanie. Skltadowe te mogty zosta¢ umieszczone tutaj, gdyz dotyczg one
wszystkich interesujacych nas zwierzat i bedg miaty sens w kazdej z klas pochodnych.
Tymi klasami, bezposrednio dziedziczacymi od klasy Zwierze, sa Ryba, Ssak oraz Ptak.
Kazda z nich niejako ,z miejsca” otrzymuje zestaw pol i metod, ktorymi legitymowato
sie bazowe Zwierze. Klasy te wprowadzajq jednak takze dodatkowe, wltasne metody: i
tak Ryba moze ptywa¢é, Ssak biegac¢’®, za$ Ptak lata¢. Nie ma w tym nic dziwnego,
nieprawdaz? :)

Wreszcie, z klasy Ssak dziedziczy najbardziej interesujaca nas klasa, czyli Pies domowy.
Przejmuje ona wszystkie pola i metody z klasy Ssak, a wiec posrednio takze z klasy
Zwierze. Uzupetnia je przy tym o kolejne sktadowe, wiasciwe tylko sobie.

Ostatecznie wiec klasa Pies domowy zawiera znacznie wiecej pdl i metod niz mogtoby sie
Z poczatku wydawac:

Pies domowy

Elegm]

Szezekaj
Aportuj

Schemat 24. Sktadowe klasy Pies domowy

7® Delfiny musza mi wybaczyé nieuwzglednienie ich w tym przykfadzie :D

Programowanie obiektowe 225

Wykazuje poza tym pewng budowe wewnetrzng: niektdre jej pola i metody mozemy
bowiem okresli¢ jako wiasne i unikalne, zas inne sg odziedziczone po klasie bazowej i
moga by¢ wspdlne dla wielu klas. Nie sprawia to jednak zadnej réznicy w korzystaniu z
nich: funkcjonuja one identycznie, jakby byty zawarte bezposrednio wewnatrz klasy.

Obiekt o kilku klasach, czyli zmienno$¢ gatunkowa

Oczywiscie klas nie definiuje sie dla samej przyjemnosci ich definiowania, lecz dla
tworzenia z nich obiektow. Jezeli wiec posiadalibysmy przedstawiong wyzej hierarchie w
jakims$ prawdziwym programie, to z pewnoscig pojawityby sie w nim takze instancje
zaprezentowanych klas, czyli odpowiednie obiekty.

W ten sposob wracamy do problemu postawionego na samym poczatku: jak obiekt moze
naleze¢ do kilku klas naraz? Roznica polega wszak na tym, ze mamy juz jego gotowe
rozwigzanie :) Otéz nasz obiekt psa nalezatby przede wszystkim do klasy Pies
domowy; to wiasnie tej nazwy uzylibysmy, by zadeklarowac reprezentujaca go zmienng
czy tez pokazujacy nan wskaznik. Jednoczes$nie jednak bytby on typu Ssak oraz typu
Zwierze, i mogtby wystepowaé w tych miejscach programu, w ktérych bytby wymagany
jeden z owych typow.

Fakt ten jest przyczyngq istnienia w programowaniu obiektowym zjawiska zwanego
polimorfizmem. Poznamy je dokfadnie jeszcze w tym rozdziale.

Dziedziczenie w C++

Pozyskawszy ogdlne informacje o dziedziczeniu jako takim, mozemy zobaczy¢, jak idea
ta zostata przetozona na nasz nieoceniony jezyk C++ :) Dowiemy sie wiec, w jaki sposdb
definiujemy nowe klasy w oparciu o juz istniejgce oraz jakie dodatkowe efekty sgq z tym
zwigzane.

Podstawy

Mechanizm dziedziczenia jest w C++ bardzo rozbudowany, o wiele bardziej niz w
wiekszosci pozostalych jezykéw zorientowanych obiektowo®. Udostepnia on kilka
szczegdblnych mozliwosci, ktére by¢ moze nie sg zawsze niezbedne, ale pozwalajg na duzg
swobode w definiowaniu hierarchii klas. Poznanie ich wszystkich nie jest konieczne, aby
sprawnie korzysta¢ z dobrodziejstw programowania obiektowego, jednak wiemy
doskonale, ze wiedza jeszcze nikomu nie zaszkodzita :D

Zaczniemy oczywiscie od najbardziej elementarnych zasad dziedziczenia klas oraz
przyjrzymy sie przyktadom ilustrujgcym ich wykorzystanie.

Definicja klasy bazowej i specyfikator protected

Jak pamietamy, definicja klasy skfada sie przede wszystkim z listy deklaracji jej pél oraz
metod, podzielonych na kilka czesci wedle specyfikatoréw praw dostepu. Najczesciej
kazdy z tych specyfikatoréw wystepuje co najwyzej w jednym egzemplarzu, przez co
sktadnia definicji klasy wyglada nastepujaco:

class nazwa klasy
{
[private:]
[deklaracje prywatne]
[protected:]
[deklaracje chronione]
[public:]

80 Doréwnuja mu chyba tylko rozwigzania znane z Javy.

226 Podstawy programowania

[deklaracje publiczne]
}i

Nieprzypadkowo pojawit sie tu nowy specyfikator, protected. Jego wprowadzenie
zwigzane jest $cisle z pojeciem dziedziczenia. Pojecie to wplywa zresztg na dwa pozostate
rodzaje praw dostepu do sktadowych klasy.

Zbierzmy wiec je wszystkie w jednym miejscu, wyjasniajac definitywnie znaczenie kazdej
z etykiet:

» private: poprzedza deklaracje sktadowych, ktére majg by¢ dostepne jedynie dla
metod definiowanej klasy. Oznacza to, iz nie mozna sie do nich dosta¢, uzywajac
obiektu lub wskaznika na niego oraz operatorow wytuskania . lub ->.

Ta wylacznosc znaczy réwniez, ze prywatne sktadowe nie sa dziedziczone i nie
ma do nich dostepu w klasach pochodnych, gdyz nie wchodzg w ich skiad.

» specyfikator protected (,chronione”) takze nie pozwala, by uzytkownicy obiektéw
naszej klasy ,grzebali” w opatrzonych nimi polach i metodach. Jak sama nazwa
wskazuje, sq one chronione przed takim dostepem z zewnatrz.

Jednak w przeciwienstwie do deklaracji private, sktadowe zaznaczone przez
protected sg dziedziczone i wystepuja w klasach pochodnych, bedac
dostepnymi dla ich wiasnych metod.

Pamietajmy zatem, ze zarédwno private, jak i protected nie pozwala, aby oznaczone
nimi sktadowe klasy byty dostepne na zewnatrz. Ten drugi specyfikator zezwala jednak
na dziedziczenie pdl i metod.

» public jest najbardziej liberalnym specyfikatorem. Nie tylko pozwala na
odziedziczanie swych sktadowych, ale takze na udostepnianie ich szerokiej rzeszy
obiektéw poprzez operatory wytuskania.

Powyzsze opisy brzmig moze nieco sucho i niestrawnie, dlatego przyjrzymy sie jakiemus
przyktadowi, ktory bedzie bardziej przemawiat do wyobrazni. Mamy wiec takg oto klase
prostokata:

class CRectangle
{
private:
// wymiary prostokata
float m fSzerokosc, m_ fWysokosc;
protected:
// pozycja na ekranie
float m fX, m fY;

public:
// konstruktor
CRectangle () {mfX =m fY = 0.0;
m fSzerokosc = m fWysokosc = 10.0; }
/e
// metody
float Pole() const { return m fSzerokosc * m fWysokosc; }
float Obwod() const { return 2 * (m_fSzerokosc+m fWysokosc); }

}s

Opisujg go cztery liczby, wyznaczajace jego pozycje oraz wymiary. Wspotrzedne X oraz Y
uczynitem tutaj polami chronionymi, zas szerokos$¢ oraz wysokos$¢ - prywatnymi.
Dlaczego wtasnie tak?...

Otdz powyzsza klasa bedzie rowniez bazg dla nastepnej. Pamietamy z geometrii, ze
szczegdlnym rodzajem prostokata jest kwadrat. Ma on wszystkie boki o tej samej
dtugosci, zatem nielogiczne jest stosowan do nich pojecia szerokosci i wysokosci.

Programowanie obiektowe 227

Wielko$¢ kwadratu okresla bowiem tylko jedna liczba, wiec defincja odpowiadajacej mu
klasy moze wyglada¢ nastepujaco:

class CSquare : public CRectangle // dziedziczenie z CRectangle

{
private:
// zamiast szerokos$ci 1 wysoko$ci mamy tylko diugo$é boku
float m_ fDlugoscBoku;

// pola m fX i m fY sa dziedziczone z klasy bazowej, wiec nie ma
// potrzeby ich powtdrnego deklarowania

public:
// konstruktor
CSquare { m_fDlugoscBoku = 10.0; }

// nowe metody
float Pole() const { return m fDlugoscBoku * m_ fDlugoscBoku; }
float Obwod() const { return 4 * m fDlugoscBoku; }

}i

Dziedziczy ona z CRectangle, CcO zostato zaznaczone w pierwszej linijce, ale postac tej
frazy chwilowo nas nie interesuje :) Skoncentrujmy sie raczej na konsekwencjach owego
dziedziczenia.

Porozmawiajmy najpierw o nieobecnych. Pola m fSzerokosc Oraz m fWysokosc byly w
klasie bazowej oznaczone jako prywatne, zatem ich zasieg ogranicza sie jedynie do tej
klasy. W pochodnej csquare nie ma juz po nich sladu; zamiast tego pojawia sie bardziej
naturalne pole m_fDlugoscBoku z sensowng dla kwadratu wielkoscia.

Zwigzane sg z nig takze dwie nowe-stare metody, zastepujace te z CRectangle. Do
obliczania pola i obwodu wykorzystujemy bowiem samag dtugos¢ boku kwadratu, nie zas
»~jego” szerokosc i wysokos¢, ktérych w klasie w ogdle nie ma.

W definicji csquare nie ma takze deklaracjim fx oraz m_ £Y. Nie znaczy to jednak, ze
klasa tych pol nie posiada, gdyz zostaty one po prostu odziedziczone z bazowej
CRectangle. Stato sie tak oczywiscie za sprawg specyfikatora protected.

Co wiec powinniémy o nim pamietac¢? Otdz:

Nalezy uzywac specyfikatora protected, kiedy chcemy uchroni¢ sktadowe przed
dostepem z zewnatrz, ale jednoczesnie miec¢ je do dyspozycji w klasach pochodnych.

Definicja klasy pochodnej

Dopiero posiadajac zdefiniowang klase bazowg mozemy przystgpi¢ do okreslania
dziedziczacej z niej klasy pochodnej. Jest to konieczne, bo w przeciwnym wypadku
kazaliby$smy kompilatorowi korzystac¢ z czegos, o czym nie miatby wystarczajacych
informaciji.

Skfadnie definicji klasy pochodnej mozemy pogladowo przedstawi¢ w ten sposob:

class nazwa klasy [: [specyfikatory]l [nazwa klasy bazowejl [, ...]1]

{
deklaracje skitadowych

}i

Poniewaz z sekwencjgq deklaracji skiadowych spotkaliSmy sie juz nie raz i nie dwa
razy, skupimy sie jedynie na pierwszej linijce podanego schematu.

228 Podstawy programowania

To w niej wtasnie podajemy klasy bazowe, z ktérych chcemy dziedziczy¢. Czynimy to,
wpisujac dwukropek po nazwie definiowanej wtasnie klasy i podajac dalej liste jej klas
bazowych, oddzielonych przecinkami. Zwykle nie bedzie ona zbyt dluga, gdyz w
wiekszosci przypadkéw wystarczajgce jest pojedyncze dziedziczenie, zaktadajace tylko
jedna klase bazowa.

Istotne sg natomiast kolejne specyfikatory, ktdre opcjonalnie mozemy umiesci¢ przed
kazda nazwa klasy bazowej. Wptywajg one na proces dziedziczenia, a doktadniej na
prawa dostepu, na jakich klasa pochodna otrzymuje skftadowe klasy bazowej.

Kiedy zas mowa o tychze prawach, natychmiast przypominamy sobie o stéwkach
private, protected i public, nieprawdaz? ;) Rzeczywiscie, specyfikatory
dziedziczenia wystepujq zasadniczo w liczbie trzech sztuk i sq identyczne z tymi
wystepujacymi wewnatrz bloku klasy. O ile jednak tamte pojawiajgq sie w prawie kazdej
sytuacji i klasie, o tyle tutaj specyfikator public ma niemal catkowity monopol, a uzycie
pozostatych dwdch nalezy do niezmiernie rzadkich wyjatkow.

Dlaczego tak jest? Ot6z w 99.9% przypadkdw nie ma najmniejszej potrzeby zmiany praw
dostepu do sktadowych odziedziczonych po klasie bazowej. Jezeli wiec ktdres z nich
zostaty tam zadeklarowane jako protected, a inne jako public, to prawie zawsze
zyczymy sobie, aby w klasie pochodnej zachowaty te same prawa. Zastosowanie
dziedziczenia public czyni zado$¢ tym zadaniom, dlatego wtasnie jest ono tak czesto
stosowane.

O pozostatych dwéch specyfikatorach mozesz przeczyta¢ w MSDN. Generalnie ich
dziatanie nie jest specjalnie skomplikowane, gdyz nadajg sktadowym klasy bazowej
prawa dostepu witasciwe swoim ,etykietowym” odpowiednikom. Tak wiec dziedziczenie
protected czyni wszystkie sktadowe klasy bazowej chronionymi w klasie pochodnej, zas
private sprowadza je do dostepu prywatnego.

Formalnie rzecz ujmujac, stosowanie specyfikatorow dziedziczenia jest nieobowigzkowe.
W praktyce jednak trudno korzystac z tego faktu, poniewaz pominiecie ich jest
réwnoznacznie z zastosowaniem specyfikatora private® - nie za$ naturalnego public!
Niestety, ale tak wtasnie jest i trzeba sie z tym pogodzi¢.

Nie zapominaj wiec o specyfikatorze public, gdyz jego brak przed nazwa klasy bazowej
jest niemal na pewno btedem.

Dziedziczenie pojedyncze

Najprostszg i jednoczesnie najczesciej wystepujacg w dziedziczeniu sytuacja jest ta, w
ktérej mamy do czynienia tylko z jedna klasa bazowa. Wszystkie dotychczas pokazane
przyktady reprezentowaly to zagadnienie; nazywamy je dziedziczeniem pojedynczym
lub jednokrotnym (ang. single inheritance).

Proste przypadki

Najprostsze sytuacje, w ktéorych mamy do czynienia z tym rodzajem dziedziczenia, sg
czesto spotykane w programach. Polegajg one na tym, iz jedna klasa jest tworzona na
podstawie drugiej poprzez zwyczajne rozszerzenie zbioru pdl i metod.

Ilustracjg bedzie tu kolejny przyktad geometryczny :)

class CEllipse // elipsa, klasa bazowa

{

81 Zaktadajac, ze méwimy o klasach deklaroanych poprzez stowo class. W przypadku struktur (stowo struct),
ktore s w C++ niemal tozsame z klasami, to public jest domyslnym specyfikatorem - zaréwno dziedziczenia,
jak i dostepu do sktadowych.

Programowanie obiektowe 229

private:
// wiekszy 1 mniejszy promien elipsy
float m fWiekszyPromien;
float m fMniejszyPromien;
protected:
// wspbirzedne na ekranie
float m fX, m fY;

public:
// konstruktor
CEllipse() {m fX =m fY = 0.0;
m fWiekszyPromien = m fMniejszyPromien = 10.0; }
/)
// metody
float Pole() const
{ return PI * m fWiekszyPromien * m fMniejszyPromien; }
}i
class CCircle : public CEllipse // koto, klasa pochodna
{
private:

// promien kolta
float m fPromien;

public:
// konstruktor
CCircle() (m fPromien = 10.0; }
/=
// metody
float Pole() const { return PI * m fPromien * m fPromien; }

float Obwod() const { return 2 * PI * m fPromien; }

bi

Jest on podobny do wariantu z prostokatem i kwadratem. Tutaj klasa cCircle jest
pochodng od CEllipse, zatem dziedziczy wszystkie jej sktadowe, ktore nie sg prywatne.
Uzupetnia ponadto ich zbiér o dodatkowa metode obwod (), obliczajaca dtugos¢ okregu
okalajacego nasze koto.

Sztafeta pokolen

Hierarchia klas nierzadko nie konczy sie na jednej klasie pochodnej, lecz siega nawet
bardziej wgtab. Nowo stworzona klasa moze by¢ bowiem bazowa dla kolejnych, te zas -
dla nastepnych, itd.

Na samym poczatku spotkaliSmy sie zresztg z takim przypadkiem, gdzie klasami byty
rodzaje zwierzat. Sprébujemy teraz przetozy¢ tamten uktad na jezyk C++.
Zaczynamy oczywiscie od klasy, z ktérej wszystkie inne biorg swoj poczatek - cAnimal:

class CAnimal // Zwierze
{
protected:
// pola klasy
float m fMasa;
unsigned m uWiek;
public:
// konstruktor
CAnimal () { m uWiek = 0; }

230

Podstawy programowania

}i

// metody
void Patrz();
void Oddychaij () ;

// metody dostepowe do pdl

float Masa() const { return m fMasa; }
void Masa (float fMasa) { m fMasa = fMasa; }
unsigned Wiek () const { return m uWiek; }

Jej postad nie jest chyba niespodzianka: mamy tutaj wszystkie ustalone wczesniej,
publiczne metody oraz pola, ktére oznaczyliSmy jako protected. Zrobilismy tak, bo
chcemy, by byly one przekazywane do klas pochodnych od cAnimal.

A skoro juz wspomniali$my o klasach pochodnych, pomysimy o ich definicjach.
Zwazywszy, ze kazda z nich wprowadza tylko jedng nowg metode, powinny one by¢
raczej proste - i istotnie takie sq:

class CFish : public CAnimal // Ryba

{

}s

public:

void Plyn();

class CMammal : public CAnimal // Ssak

{

bi

public:

void Biegnij () ;

class CBird : public CAnimal // Ptak

{

}i

public:

void Lec();

Nie zapominamy rzecz jasna, ze oprocz widocznych powyzej deklaracji zawierajg one
takze wszystkie sktadowe wziete od klasy CAnimal. Powtarzam to tak czesto, ze chyba
nie masz juz co do tego zadnych watpliwosci :D

Ostatnig klasg z naszego drzewa gatunkowego byt, jak pamietamy, Pies domowy.
Definicja jego klasy takze jest dosy¢ prosta:

class CHomeDog : public CMammal // Pies domowy

{

protected:

// nowe pola
RACE m Rasa;
COLOR m_KolorSiersci;

public:

// metody
void Aportuj();
void Szczekaj () ;

// metody dostepowe do pdl
RACE Rasa() const { return m Rasa; }
COLOR KolorSiersci() const { return m KolorSiersci; }

Programowanie obiektowe 231

Jak zwykle typy RACE i COLOR sq mocnho umowne. Ten pierwszy byiby zapewne
- odpowiednim enum’em.

Wiemy jednakze, iz kryje sie za nig cate bogactwo pdl i metod odziedziczonych po
klasach bazowych. Dotyczy to zaréwno bezposredniego przodka klasy CHomeDog, czyli
CMammal, jak i jej posredniej bazy - canimal. Jedyng znaczaca tutaj réznicg pomiedzy
tymi dwoma klasami jest fakt, ze pierwsza wystepuje w definicji CHomeDog, za$ druga nie.

Ptaskie hierarchie

Oprocz rozbudowanych, wielopoziomowych relacji typu baza-pochodna w powszechnym
zastosowaniu sg tez takie modele, w ktdérych z jednej klasy bazowej dziedziczy wiele klas
pochodnych. Jest to tzw. ptaska hierarchia i wyglada np. w ten sposéb:

| Figura szachowa |

| | | I l |

| Pionek | |5k::-czel-c:| | Goniec | | Wieza | |Hetman | | Krél |

1621kl

Schemat 25. Plaska hierarchia klas figur szachowych
(ilustracje pochodza z serwisu David Howell Chess)

Po przetozeniu jej na jezyk C++ otrzymaliby$Smy co$ w tym rodzaju:

// klasa bazowa
class CChessPiece { /* definicja */ }; // Figura szachowa

// klasy pochodne

class CPawn : public CChessPiece { /* ... */ }; // Pionek
class CKnight : public CChessPiece { /* ... */ }; // Skoczek?®
class CBishop : public CChessPiece { /* ... */ }; // Goniec
class CRook : public CChessPiece { /* ... */ }; // Wieza
class CQueen : public CChessPiece { /* ... */ }; // Hetman
class CKing : public CChessPiece { /* ... */ }; // Krdol

Oprocz logicznego uporzadkowania rozwigzanie to ma tez inne zalety. Jesli bowiem
zadeklarowaliby$smy wskaznik na obiekt klasy cchessPiece, to poprzez niego
mogliby$my odwotywac sie do obiektow krérejkolwiek z klas pochodnych. Jest to jedna z
licznych pozytywnych konsekwencji polimorfizmu, ktore zresztg poznamy wkrétce. W tym
przypadku oznaczataby ona, ze za obstuge kazdej z szesciu figur szachowych
odpowiadatby najprawdopodobniej jeden i ten sam kod.

82 Nazwy klas nie sg ttumaczeniami z jezyka polskiego, lecz po prostu angielskimi nazwami figur szachowych.

http://www.davidhowellchess.com/

232 Podstawy programowania

Mozna zauwazyc, ze bazowa klasa cchessPiece nie bedzie tutaj stuzy¢ do tworzenia
obiektow, lecz tylko do wyprowadzania z niej kolejnych klas. Sprawia to, ze bytaby ona
dobrym kandydatem na tzw. klase abstrakcyjng. O tym zagadnieniu bedziemy mowic
przy okazji metod wirtualnych.

Podsumowanie

Mysle, ze po takiej ilosci przyktaddéw oraz opiséw koncepcja tworzenia klas pochodnych
poprzez dziedziczenie powinna by¢ ci juz doskonale znana :) Nie nalezy ona wszakze do
trudnych; wazne jest jednak, by poznac zwigzane z nig niuanse w jezyku C++.

O dziedziczeniu pojedynczym mozna takze poczytac¢ nieco w MSDN.

Dziedziczenie wielokrotne

Skoro mozliwe jest dziedziczenie z wykorzystaniem jednej klasy bazowej, to raczej
naturalne jest rozszerzenie tego zjawiska takze na przypadki, w ktérej z kilku klas
bazowych tworzymy jedng klase pochodnag. Mowimy wtedy o dziedziczeniu
wielokrotnym (ang. multiple inheritance).

C++ jest jednym z niewielu jezykdéw, ktore udostepniajg taka mozliwosé. Nie $Swiadczy to
jednak o jego niebotycznej wyzszosci nad nimi. Tak naprawde technika dziedziczenia
wielokrotnego nie daje zadnych nadzwyczajnych korzysci, a jej uzycie jest przy tym dos¢
skomplikowane. Decydujac sie na jej wykorzystanie nalezy wiec posiadac¢ catkiem spore
doswiadczenie w programowaniu.

Jakkolwiek zatem dziedziczenie wielokrotne bywa czasem przydatnym narzedziem,
stosowanie go (przynajmniej powszechne) w tworzonych aplikacjach nie jest zalecane.
Jezeli pojawia sie taka koniecznos$¢, nalezy wtedy najprawdopodobniej zweryfikowaé swaoj
projekt; w wiekszosci sytuacji te same, a nawet lepsze efekty mozna osiggnac nie
korzystajac z tego wielce watpliwego rozwigzania.

Dla szczegodlnie zainteresowanych i odwaznych istnieje oczywiscie opis w MSDN.

Putapki dziedziczenia

Chociaz idea dziedziczenia jest teoretycznie catkiem prosta do zrozumienia, jej
praktyczne zastosowanie moze niekiedy nastrecza¢ pewnych problemdéw. Sg one
zazwyczaj specyficzne dla konkretnego jezyka programowania, jako ze wystepuja w tym
wzgledzie pewne réznice miedzy nimi.

W tym paragrafie zajmiemy sie takimi wtasnie drobnymi niuansami, ktore sg zwigzane z
dziedziczeniem klas w jezyku C++. Sekcja ta ma raczej charakter formalnego
uzupetnienia, dlatego poczatkujacy programisci mogg jg ze spokojem pomina¢ -
szczegdlnie podczas pierwszego kontaktu z tekstem.

Co nie jest dziedziczone?

Wydawatoby sie, ze klasa pochodna powinna przejmowac wszystkie sktadowe pochodzace
z klasy bazowej - oczywiscie z wyjatkiem tych oznaczonych jako private. Tak jednak nie
jest, gdyz w trzech przypadkach nie miatoby to sensu. Owe trzy ,nieprzechodnie”
skfadniki klas to:
> konstruktory. Zadaniem konstruktora jest zazwyczaj inicjalizacja pdl klasy na ich
poczatkowe wartosci, stworzenie wewnetrznych obiektow czy tez alokacja
dodatkowej pamieci. Czynnosci te prawie zawsze wymagajg zatem dostepu do
prywatnych pdl klasy. Jezeli wiec konstruktor z klasy bazowej zostatby ,,wrzucony”
do klasy pochodnej, to utracitby z nimi niezbedne pofaczenie - wszak ,zostatyby”
one w klasie bazowej! Z tego tez powodu konstruktory nie sg dziedziczone.

Programowanie obiektowe 233

» destruktory. Sprawa wyglada tu podobnie jak punkt wyzej. Dziatanie
destruktorow najczesciej takze opiera sie na polach prywatnych, a skoro one nie
sq dziedziczone, zatem destruktor tez nie powinien przechodzi¢ do klas
pochodnych.

. Dos¢ ciekawym uzasadnieniem niedziedziczenia konstruktordw i destruktoréw sa takze
' same ich nazwy, odpowiadajace klasie, w ktérej zostaty zadeklarowane. Gdyby zatem
. przekazac je klasom pochodnych, wtedy zasada ich nazewnictwa zostataby ztamana.

. Chociaz trudno odmédwi¢ temu podejsciu pomystowoséci, nie ma zadnego powodu, by

' uznad je za btedne.

> przeciazony operator przypisania (=). Zagadnienie przecigzania operatoréow
omoéwimy doktadnie w jednym z przysztych rozdziatow. Na razie zapamietaj, ze
sktadowa ta odpowiada za sposob, w jaki obiekt jest kopiowany z jednej zmiennej
do drugiej. Taki transfer zazwyczaj rowniez wymaga dostepu do pdl prywatnych
klasy, co od razu wyklucza dziedziczenie.

Ze wzgledu na specjalne znaczenie konstruktoréw i destruktorow, ich funkcjonowanie w
warunkach dziedziczenia jest dos¢ specyficzne. Nieco dalej zostato ono blizej opisane.

Obiekty kompozytowe

Sposdb, w jaki C++ realizuje pomyst dziedziczenia, jest sam w sobie dosy¢ interesujacy.
Wiekszos$¢ koderow uczacych sie tego jezyka z poczatku catkiem logicznie przypusza, ze
kompilator zwyczajnie pobiera deklaracje z klasy bazowej i wstawia je do pochodnej,
ewentualne powtdrzenia rozwigzujac na korzysc tej drugiej.

Swego czasu tez tak myslatem i, niestety, mylitem sie: faktyczna prawda jest bowiem
nieco bardziej zakrecona :)

Otéz wewnetrznie uzywana przez kompilator definicja klasy pochodnej jest identyczna z
tg, ktérag wpisujemy do kodu; nie zawiera zadnych pél i metod pochodzacych z klas
bazowych! Jakim wiec cudem sg one dostepne?

Odpowiedz jest raczej zaskakujgca: podczas tworzenia obiektu klasy pochodnej
dokonywana jest takze kreacja obiektu klasy bazowej, ktory staje sie jego czescia.
Zatem nasz obiekt pochodny to tak naprawde obiekt bazowy plus dodatkowe pola,
zdefiniowane w jego wtasnej klasie. Przy bardziej rozbudowanej hierarchii klas zaczyna
on przypominac cebule:

posradnia : r
klasa bazowa - "l CIndirectBase |
R 5 A
CIndirectBase
' -bezp{:rérednia.-: :
Kiaca bazos W CDirectBase | N—
CDernved
............ |
ka=sa .
pochodna @ 'l CDerived |
hierarchia klas obiekt klasy CDerived

Schemat 26. Obiekt klasy pochodnej zawiera w sobie obiekty klas bazowych

Praktyczne konsekwencje tego stanu rzeczy sg zwigzane chociazby z konstruowaniem i
niszczeniem tych wewnetrznych obiektow.

234 Podstawy programowania

W C++ obowigzuje zasada, iz najpierw wywotywany jest konstruktor ,najbardziej
bazowej” klasy danego obiektu, a potem te stojace kolejno nizej w hierarchii. Poniewaz
klasa moze posiadac wiecej niz jeden konstruktor, kompilator musiatby podja¢ decyzje,
ktéry z nich powinien zosta¢ uzyty. Nie robi tego jednak, lecz oczekuje, ze zawsze®?
bedzie obecny domysiny konstruktor bezparametrowy.

Dlatego tez kazda klasa, z ktdrej bedg dziedziczyty inne, powinna posiadac taki wiasnie
bezparametrowy (domysiny) konstruktor.

Podobny problem nie istnieje dla destruktoréw, gdyz one nigdy nie posiadajq
parametrow. Podczas niszczenia obiektu sg one wywotywane w kolejnosci od tego z klasy
pochodnej do tych z klas bazowych.

Xk k

Konczacy sie podrozdziat opisywat mechanizm dziedziczenia - jedng z podstaw techniki
programowania zorientowanego obiektowego. Mogtes wiec dowiedzie¢ sie, w jaki sposob
tworzy¢ nowe klasy na podstawie juz istniejgcych i projektowac ich hierarchie, obrazujace
naturalne zwigzki typu ,0g0t-szczegdt”.

W nastepnej kolejnosci poznamy zalety metod wirtualnych oraz porozmawiamy sobie o
najwiekszym osiggnieciu OOPu, czyli polimorfizmie. Bedzie wiec bardzo ciekawie :D

Metody wirtualne i polimorfizm

Dziedziczenie jest oczywiscie niezwykle waznym, a wrecz niezbednym skadnikiem
programowania obiektowego. Stanowi jednak tylko podstawe dla dwéch kolejnych
technik, majacych duzo wieksze znaczenie i pozwalajgcych na o wiele efektywniejsze
pisanie kodu. Mam tu na mysli tytutowe metody wirtualne oraz czeSciowo bazujacy na
nich polimorfizm. Wszystkie te dziwne terminy zostang wkrétce wyjasnione, zatem nie
wpadajmy zbyt pochopnie w panike ;)

Wirtualne funkcje sktadowe

Idea dziedziczenia w znanej nam dotad postaci jest nastawiona przede wszystkim na
uzupetnianie definicji klas bazowych o kolejne sktadowe w klasach pochodnych. Tylko
czasami zastepowalismy juz istniejgce metody ich nowymi wersjami, wtasciwymi dla
tworzonych klas.

Takie sytuacje sg jednak w praktyce dosyc¢ czeste - albo raczej korzystne jest
prowokowanie takich sytuacji, gdyz niejednokrotnie dajg one $wietne rezultaty i
niespotykane wczesniej mozliwosci przy niewielkim nakfadzie pracy. Oczywiscie dzieje sie
tak tylko wtedy, gdy mamy odpowiednie podejscie do sprawy...

To samo, ale inaczej

Raz jeszcze zajmijmy sie naszg hierarchig klas zwierzat. Tym razem skierujemy uwage
na metode Oddychaj z klasy Zwierze.

Jej obecnos$c¢ u szczytu diagramu, w klasie, z ktérej poczatek biorg wszystkie inne, jest z
pewnoscig uzasadniona. Kazde zwierze, niezaleznie od gatunku, musi przeciez pobierac z
otoczenia tlen niezbedny do zycia, a proces ten nazywamy potocznie wtasnie
oddychaniem. Jest to bezdyskusyjne.

83 Konieczno$¢ te mozna obej$¢ stosujac tzw. listy inicjalizacyjne, o ktérych dowiesz sie za jaki$ czas.

Programowanie obiektowe 235

Mniej oczywisty jest natomiast fakt, ze ,techniczny” przebieg tej czynnosci moze sie
zasadniczo rozni¢ u poszczegodlnych zwierzat. Te zyjgce na ladzie uzywajg do tego
narzadow zwanych ptucami, zas zwierzeta wodne - chociazby ryby - majg w tym celu
wyksztatcone skrzela, funkcjonujace na zupetnie innej zasadzie.

Spostrzezenia te nietrudno przetozy¢ na blizszy nam spos6b myslenia, zwigzany
bezposrednio z programowaniem. Oto wiec klasy wywodzace sie do Zwierzecia powinny
w inny sposob implementowa¢ metode Oddychaj; jej tres¢ musi by¢ odmienna
przynajmniej dla Ryby, a i Ssak oraz Gad majq przeciez wiasne patenty na proces
oddychania.

Rzeczona metoda podpada zatem pod redefinicje w kazdej z klas dziedziczacych od
klasy Zwierze:

Zwierze

Masa
Wiek
Patrz
Oddychaj

L

[1
Ryba Ssak Ptak

Oddychaj Oddychaj Oddychaj
Phyn Biegnij Led

Schemat 27. Przedefiniowanie metody z klasy bazowej w klasach pochodnych

Deklaracja metody wirtualnej

Teoretycznie klasa Zwierze mogtaby by¢ catkowicie ,,nieSwiadoma” tego, ze jedna z jej
metod jest definiowana w inny sposdb w klasie pochodnej. Lepiej jednak, abysmy
przewidzieli takg koniecznos¢ i poczynili odpowiedni krok. Jest nim uczynienie funkcji
Oddychaj metodg wirtualng w klasie Zwierze.

Metoda wirtualna jest przygotowana na zastgpienie siebie przez nowa wersje,
zdefiniowang w klasie pochodnej.

Aby dang funkcje sktadowga zadeklarowac jako wirtualng, nalezy poprzedzi¢ jej prototyp
stowem kluczowym virtual:

#include <iostream>

class CAnimal

{
// (pomijamy pozostate skiadowe klasy)

public:
virtual void Oddychaj ()
{ std::cout << "Oddycham..." << std::endl; }
}s

W ten sposob przygotowujemy jg na ewentualne ustgpienie miejsca bardziej
wyspecjalizowanym wersjom, podanym w klasach pochodnych. Skorzystanie z
mechanizmu metod wirtualnych jest tutaj lepszym rozwigzaniem niz zignorowanie go,
gdyz uaktywnia to mozliwosci polimorfizmu zwigzane z obiektami. Zapoznamy sie z nimi
w dalszej czesci tekstu.

236 Podstawy programowania

Przedefiniowanie metody wirtualnej

Celem wprowadzenia funkcji wirtualnej oddychaj () do klasy canimal byto, jak to
zaznaczyliSmy na poczatku, jej pézniejsze przedefiniowanie (ang. override) w klasach
pochodnych. Operacji tej dokonujemy prostg drogg, bowiem zwyczajnie definiujemy
nowg wersje metody w owych klasach:

class CFish : public CAnimal
{
public:
void Oddychaj () // redefinicja metody wirtualne]
{ std::cout << "Oddycham skrzelami..." << std::endl; }
void Plyn () ;
}i

class CMammal : public CAnimal
{
public:
void Oddychaj () // jak wyze]j
{ std::cout << "Oddycham ptucami..." << std::endl; }
void Biegnij () ;

bi

class CBird : public CAnimal
{
public:
void Oddychaj () // 1 znowu jak wyze] :)
{ std::cout << "Oddycham ptucami..." << std::endl; }
void Lec () ;

}s

Kompilator sam ,domysla sie”, ze nasza metody jest tak naprawde redefinicjg metody
wirtualnej z klasy bazowej. Mozemy jednak wyraznie to zaznaczy¢ poprzez ponowne
zastosowanie stowa virtual.

Wedtug mnie jest to mato szczesliwe rozwigzanie sktadniowe, poniewaz moze czesto
powodowac pomyiki. Nie sposdb bowiem odrézni¢ deklaracji przedefiniowanej metody
wirtualnej od jej pierwotnej wersji (jezeli jeszcze raz uzyliSmy virtual) lub od zwyklej
funkcji sktadowej (gdy nie skorzystaliSmy ze wspomnianego stéwka).

Bardziej przejrzyscie rozwigzano to na przyktad w Delphi, gdzie nowag wersje metody
wirtualnej trzeba opatrzy¢ frazg override;.

Nowa wersja metody catkowicie zastepuje starg, ktéra jest jednak dostepna i w razie
potrzeby mozemy jg wywotaé. Stuzy do tego konstrukcja:

nazwa_ klasy bazowej::nazwa metody ([parametryl) ;
W powyzszym przypadku bytoby to wywotanie CAnimal: :0ddychaj ().

W Visual C++ zamiast nazwy klasy bazowej mozliwe jest uzycie specjalnego stowa
kluczowego super, opisanego tutaj.

Pojedynek: metody wirtualne przeciwko zwyktym

Czytajac powyzsze objasnienie metod wirtualnych, zadawate$ sobie zapewne proste
pytanie o gtebokiej tresci, a mianowicie: ,,Po co mi to?” ;-) Najlepsza odpowiedzig na nie
bedzie wyjasnienie rdznicy pomiedzy zwyktymi oraz wirtualnymi metodami.

Programowanie obiektowe 237

Postuzy nam do tego nastepujacy kod, tworzacy obiekt jednej z klasy pochodnych i
wywotujacy jego metode oddychaj () :

CAnimal* pZwierzak = new CMammal;
pZwierzak->0ddychaj () ;
delete pZwierzak;

Zauwazmy, ze wskaznik pzwierzak, poprzez ktéry odwotujemy sie do naszego obiektu,
jest zasadniczo wskaznikiem na klase canimal. Stwarzany przez nas (poprzez instrukcje
new) obiekt nalezy natomiast do klasy cMammal. Wszystko jest jednak w porzadku. Klasa
CMammal dziedziczy od klasy cAnimal, zatem kazdy obiekt nalezacy do tej pierwszej
jednoczesnie jest takze obiektem tej drugiej. WyjasniliSmy to sobie catkiem niedawno,
prezentujac dziedziczenie.

Zajmijmy sie raczej druga linijkg powyzszego kodu, zawierajacg wywotanie interesujgcej
nas metody oddychaj (). Rdéznica miedzy zwyktymi a wirtualnymi funkcjami sktadowymi
bedzie miata okazje uwidoczni¢ sie wtasnie tutaj. Wszystko bowiem zalezy od tego, jaka
metodaq jest rzeczona funkcja oddychaj (), za$ rezultatem rozwazanej instrukcji moze
by¢ zaréwno wywofanie CAnimal: :0ddychaij (), jak i CMammal: :0ddychaj () ! Dowiedzmy
sie wiec, kiedy zajdzie kazda z tych sytuacji.

tatwiejszym przypadkiem jest chyba ,niewirtualnos¢” rozpatrywanej metody. Kiedy jest
ona zwyczajng funkcjq sktadowg, wtedy kompilator nie traktuje jej w zaden specjalny
sposob. Co to jednak w praktyce oznacza?...

To dosy¢ proste. W takich bowiem wypadkach decyzja, ktéra metoda jest rzeczywiscie
wywotywana, zostaje podjeta juz na etapie kompilacji programu. Nazywamy jq wtedy
wczesnym wigzaniem (ang. early binding) funkcji. Do jej podjecia sq zatem
wykorzystane jedynie te informacje, ktére sg znane w momencie kompilacji programu;
u nas jest to typ wskaznika pzZwierzak, czyli CAnimal. Nie jest przeciez mozliwe
ustalenie, na jaki obiekt bedzie on faktycznie wskazywat - owszem, moze on naleze¢ do
klasy canimal, jednak réwnie dobrze do jej pochodnej, na przyktad cMammal. Wiedza ta
nie jest jednak dostepna podczas kompilacji®*, dlatego tez tutaj zostaje asekuracyjnie
wykorzystany jedynie znany typ cAnimal. Faktycznie wywotywana metoda bedzie wiec
CAnimal: :0ddychaj ()!

Huh, to raczej nie jest to, o co nam chodzito. Skoro juz tworzymy obiekt klasy cMammal,
to w zasadzie logiczne jest, ze zalezy nam na wywotaniu funkcji pochodzacej z tej wtasnie
klasy, a nie z jej bazy! Spotyka nas jednak przykra niespodzienka...

Czy uchroni od niej zastosowanie metod wirtualnych? Domyslasz sie zapewne, iz tak
wiasnie bedzie, i na dodatek masz tutaj absolutng racje :) Kiedy uzyjemy magicznego
stowka virtual, kompilator wstrzyma sie z decyzjg co do faktycznie przywotywanej
metody. Jej podjecie nastgpi dopiero w stosowanej chwili podczas dzialania gotowej
aplikacji; nazywamy to p6znym wiazaniem (ang. /ate binding) funkcji. W tym
momencie bedzie oczywiscie wiadome, jaki obiekt naprawde kryje sie za naszym
wskaznikiem pzwierzak i to jego wersja metody zostanie wywofana. Uzyskamy zatem
skutek, o jaki nam chodzito, czyli wywotanie funkcji CMammal: :0ddychaij ().

Prezentowany tu problem wyraznie podpada juz pod idee polimorfizmu, ktore
wyczerpujgco poznamy niebawem.

Wirtualny destruktor

Atrybut virtual mozemy przytaczy¢ do kazdej zwyczajnej metody, a nawet takiej
niezupetnie zwyczajnej :) Czasami zresztg zastosowanie go jest niemal powinnoscia...

84 Tak naprawde kompilator moze w ogdle nie wiedzieé, ze canimal posiada jakie$ klasy pochodne!

238 Podstawy programowania

Jezeli chodzi o konstruktory, to stosowanie tego modyfikatora w stosunku do nich nie ma
zbyt wielkiego sensu. Sg one przeciez domyslinie ,jakby wirtualne”: wywotanie
konstruktora z klasy pochodnej powoduje przeciez uruchomienie takze konstruktoréw z
klas bazowych. Ich przedefiniowanie nie jest przy tym niczym nadzwyczajnym, tak wiec
uzycie stowa virtual w tym przypadku mija sie z celem.

Zupetnie inaczej sprawa ma sie z destruktorami. Tutaj uzycie omawianego modyfikatora
jest nie tylko mozliwe, ale tez prawie zawsze konieczne i zalecane. Nieobecnos¢
wirtualnego destruktora w klasie bazowej moze bowiem prowadzi¢ do tzw. wyciekdw
pamieci, czyli bezpowrotnej utraty zaalokowanej pamieci operacyjnej.

Dlaczego tak sie dzieje? Do wyjasnienia postuzymy sie po raz kolejny naszymi
wystuzonymi klasami zwierzat :D Przypuscémy, ze czujemy potrzebe, aby doktadniej
odpowiadaty one rzeczywistosci; by nie byly tylko zbiorami danych, ale tez zawieraty
obiektowe odpowiedniki narzadow wewnetrznych, na przyktad serca czy ptuc. Poczynimy
wiec najpierw pewne zmiany w bazowej klasie CAnimal:

// klasa serca
class CHeart { /* ... */ };

// bazowa klasa zwierzat
class CAnimal

{

// (pomijamy nieistotne, pozostale skitadowe)

protected:
CHeart* m pSerce;
public:
// konstruktor i destruktor
CAnimal () { m pSerce = new CHeart; }
~CAnimal () { delete m pSerce; }

}s

Serce jest oczywiscie organem, ktory posiada kazde zwierze, zatem obecnos$¢ wskaznika
na obiekt klasy CHeart jest tu uzasadniona. Odwotuje sie on do obiektu tworzonego w
konstruktorze, a niszczonego w destruktorze klasy canimal.

Naturalnie, nie samym sercem zwierze zyje :) Ssaki na przykfad potrzebujq jeszcze ptuc:

// klasa ptuc
class CLungs { /* ... */ };

// klasa ssakéw
class CMammal : public CAnimal

{

protected:
CLungs* m _pPluca;
public:
// konstruktor i destruktor
CMammal () { m pPluca = new CLungs; }
~CMammal () { delete m pPluca; }

}i

Podobnie jak wczesniej, obiekt specjalnej klasy jest tworzony w konstruktorze i zwalniany
w destruktorze cMammal. W ten sposob nasze ssaki sg zaopatrzone zaréwno w serce
(otrzymane od canimal), jak i niezbedne ptuca, tak wiec pozyja sobie jeszcze troche i
beda mogty nadal stuzy¢ nam jako przyktad ;)

OK, gdzie zatem tkwi problem?... Powréémy teraz do trzech linijek kodu, za pomoca
ktorych rozstrzygnelismy pojedynek miedzy wirtualnymi a niewirtualnymi metodami:

Programowanie obiektowe 239

CAnimal* pZwierzak = new CMammal;
pZwierzak->0ddychaj () ;
delete pZwierzak;

Przypomnijmy, ze pzwierzak jest tu zasadniczo zmienng typu ,wskaznik na obiekt klasy
CAnimal”, ale tak naprawde wskazuje na obiekt nalezacy do pochodnej cMammal. Ow
obiekt musi oczywiscie zosta¢ usuniety, za co powinna odpowiadac ostatnia linijka...

No wiasnie - powinna. Szkoda tylko, ze tego nie robi. To zresztg nie jest jej wina,
przyczyna jest wtasnie brak wirtualnego destruktora.

Jak bowiem wiemy, zniszczenie obiektu oznacza w pierwszej kolejnosci wywotanie tej
kluczowej metody. Podlega ono identycznym regutom, jakie stosujq sie do wszystkich
innych metod, a wiec takze efektom zwigzanym z wirtualnoscig oraz wczesnym i pdznym
wigzaniem. Jezeli wiec nasz destruktor nie bedzie oznaczony jako virtual, to kompilator
potraktuje go jako zwyczajng metode i zastosuje wobec niej technike wczesnego
wigzania. Zasugeruje sie po prostu typem zmiennej pzwierzak (ktéorym jest CAnimal*, a
wiec wskaznik na obiekt klasy canimal) i wywota wytgcznie destruktor klasy bazowej
CAnimal! Destruktor ten wprawdzie usunie serce naszego ssaka, ale nie zrobi tego z
ptucami, bo i nie ma przeciez o nich zielonego pojecia.

Nie dos¢ zatem, ze tracimy przez to pamiec¢ przeznaczong na tenze narzad, to jeszcze
pozwalamy, by wokoét fruwaty nam organy pozbawione wtascicieli ;D

To oczywiscie tylko obrazowy dowcip, jednak konsekwencje niepetnego zniszczenia
obiektdw moga by¢ duzo powazniejsze, szczegdlnie jesli ich skfadniki odwotywaty sie do
siebie nawzajem. Wezmy choc¢by wspomniane ptuca - powinny one przeciez dostarczac
tlen do serca, a jezeli samo serce juz nie istnieje, no to zaczynajq sie nieliche problemy...

Rozwigzanie problemu jest rzecz jasna nadzwyczaj proste - wystarczy uczyni¢ destruktor
klasy bazowej canimal metoda wirtualng:

class CAnimal

{

// (oszczednos$é¢ jest cnota, wiec znowu pomijamy reszte sktadowych :D)

public:
virtual ~CAnimal () { delete m pSerce; }

bi

Wtedy tez operator delete bedzie usuwat obiekt, na ktéry faktycznie wskazuje podany
mu wskaznik. My zas uchronimy sie od perfidnych btedow.

Pamietaj zatem, aby zawsze umieszcza¢ wirtualny destruktor w klasie bazowej.

Zaczynamy od zera... dostownie

Deklarujac metody opatrzone modyfikatorem virtual, tworzymy grunt pod ich przyszia,
ponowng implementacje w klasach dziedziczacych. Mozna tez powiedzie¢, iz w pewnym
sensie zmieniamy charakter zawierajacej je klasy: jej rolg nie jest juz przede wszystkim
tworzenie obiektéw, gdyz réwnie wazne staje sie stuzenie jako baza dla klas pochodnych.

Niekiedy stuszne jest pdjscie jeszcze dalej, to znaczy catkowite pozbawienie klasy
mozliwosci tworzenia z niej obiektdw. Ma to nierzadko rozsadne uzasadnienie i takimi
wiasnie przypadkami zajmiemy sie w tym paragrafie.

240 Podstawy programowania

Czysto wirtualne metody

Wirtualna funkcja skladowa umieszczona w klasie bazowej jest przygotowana na to, aby
ustgpi¢ miejsca swej bardziej wyspecjalizowanej wersji, zdefiniowanej w klasie
pochodnej. Nie zmienia to jednak faktu, iz musiataby ona jako$ implementowac
czynnosé, ktérej przebiegu czesto nie sposdb ustali¢ na tym etapie.

Posiadamy dobry przykifad, ilustrujacy takg wtasnie sytuacje. Chodzi mianowicie o
metode Canimal: :0ddychaj (). Wewnatrz klasy bazowej, z ktérej majq dopiero
dziedziczy¢ konkretne grupy zwierzat, niemozliwe jest przeciez ustalenie uniwersalnego
sposobu oddychania. Sensowna implementacja tej metody jest wiec w zasadzie
niemozliwa.

Sprawia to, iz jest ona wys$wienitym kandydatem na czysto wirtualng funkcje
sktadowa.

Metody nazywane czysto wirtualnymi (ang. pure virtual) nie posiadaja zadnej
implementacji i sq przeznaczone do przedefiniowania w klasach pochodnych.

Deklaracja takiej metody ma dos¢ osobliwg postac¢. Oczywiscie z racji nie posiadania
zadnego kodu zbedne stajq sie nawiasy klamrowe wyznaczajace jej blok, zatem catos$c
przypomina zwykty prototyp funkcji. Samo oznaczenie, czynigce dang metode czysto
wirtualng, jest jednak raczej niecodzienne:

class CAnimal

{

// (definicja klasy jest skromna z przyczyn oszczednosciowych :))

public:
virtual void Oddychaj () = 0;
}i

Jest nim wystepujaca na koncu fraza = 0;. Kojarzy sie ona troche z domysing wartoscig,
funkcji, ale interpretacja taka upada w obliczu niezwracania przez metode oddychaj ()
zadnego rezultatu. Faktycznie funkcjg czysto wirtualng mozemy w ten sposéb uczynic
kazda wirtualng metode, niezaleznie od tego, czy zwraca jaka$ wartos¢ i jakiego jest ona
typu. Sekwencja = 0; jest wiec po prostu takim dziwnym oznaczeniem, stosowanym dla
tego rodzaju metod. Trzeba sie z nim zwyczajnie pogodzi¢ :)

Tworcy C++ wyraznie nie chcieli wprowadzac tutaj dodatkowego stowa kluczowego, ale w
tym przypadku trudno sie z nimi zgodzi¢. Osobiscie uwazam, ze deklaracja w formie na
przyktad pure virtual void Oddychaj () ; bytaby znacznie bardziej przejrzysta.

Po dokonaniu powyzszej operacji metoda CAnimal: :0ddychaj () staje sie zatem czysto
wirtualng funkcjg sktadowa. W tej postaci okresla juz tylko samg czynnosé, bez
podawania zadnego algorytmu jej wykonania. Zostanie on ustalony dopiero w klasach
dziedziczacych od cAnimal.

Mozna aczkolwiek podac¢ implementacje metody czysto wirtualnej, jednak bedzie ona
mogta by¢ wykorzystywana tylko w kodzie metod klas pochodnych, ktére jg
przedefiniowujgq, w formie klasa bazowa::nazwa metody ([parametryl)

Abstrakcyjne klasy bazowe

Nie widac¢ tego na pierwszy, drugi, ani nawet na dziesiaty rzut oka, ale zadeklarowanie
jakiej$ metody jako czysto wirtualnej powoduje jeszcze jeden, dodatkowy efekt. Ot6z
klasa, w ktorej takg funkcje stworzymy, staje sie klasa abstrakcyjna.

Programowanie obiektowe 241

Klasa abstrakcyjna zawiera przynajmniej jedng czysto wirtualng metode i z jej powodu
nie jest przeznaczona do instancjowania (tworzenia z niej obiektéw), a jedynie do
wyprowadzania zen klas pochodnych.

Ze wzgledu na wyzej wymieniong definicje czysto wirtualne funkcje sktadowe okresla sie
niekiedy mianem metod abstrakcyjnych. Nazwa ta jest szczegdlnie popularna wsrod
programistéw jezyka Object Pascal.

Takie klasy budujg zawsze najwyzsze pietra w hierarchiach i sq podstawami dla bardziej
wyspecjalizowanych typéw. W naszym przypadku mamy tylko jedng taka klase, z ktérej
dziedziczg wszystkie inne. Nazywa sie CAnimal, jednak dobry zwyczaj programistyczny
nakazuje, aby klasy abstrakcyjne miaty nazwy zaczynajace sie od litery 1. ROznig sie one
bowiem znacznie od pozostatych klas. Zatem baza w naszej hierarchii bedzie od tej pory
zwac sie TAnimal.

C++ bardzo dostownie traktuje regute, iz klasy abstrakcyjne nie sg przeznaczone do
instancjowania. Proba utworzenia z nich obiektu zakonczy sie bowiem btedem;
kompilator nie pozwoli na obecnos¢ czysto wirtualnej metody w klasie tworzonego
obiektu.

Mozliwe jest natomiast zadeklarowanie wskaznika na obiekt takiej klasy i przypisanie mu
obiektu klasy potomnej, tak wiec ponizszy kod bedzie jak najbardziej poprawny:

IAnimal* pZwierze = new CBird;
pZwierze->0ddychaj () ;
delete pZwierze;

Wywotanie metody oddychaij () jest tu takze dozwolone. Wprawdzie w bazowej klasie
IAnimal jest ona czysto wirtualna, jednak w cBird, do obiektu ktéorej odwotuje sie nasz
wskaznik, posiada ona odpowiednig implementacje.

Wydawatoby sie, ze C++ reaguje nieco zbyt alergicznie na probe utworzenia obiektu
klasy abstrakcyjnej - w koricu sama kreacja nie jest niczym niepoprawnym. W ten sposéb
jednak mamy pewnos$¢, ze podczas dziatania programu wszystko bedzie dziataé
poprawnie i Zze omytkowo nie zostanie wywotana metoda z nieokreslong implementacja.

Polimorfizm

Gdyby programowanie obiektowe poréwnac do wysokiego budynku, to u jego
fundamentéw lezatyby pojecia ,klasy” i ,,obiektu”, sSrodkowe pietra budowatoby
»dziedziczenie” oraz ,metody wirtualne”, zas u samego szczytu sytuowatby sie
~polimorfizm”. Jest to bowiem najwieksze osiggniecie tej metody programowania.

Z terminem tym spotykaliSmy sie przelotnie juz pare razy, ale teraz wreszcie wyjasnimy
sobie wszystko od poczatku do konca. Zacznijmy choéby od samego stowa: ‘polimorfizm’
pochodzi od greckiego wyrazu polymorphos, oznaczajacego ‘wieloksztattny’ lub
‘wielopostaciowy’. W programowaniu bedzie sie wiec odnosi¢ do takich twordéw, ktére
mozna interpretowac na rézne sposoby - a wiec nalezgcych jednoczesnie do kilku réznych
typow (klas).

Polimorfizm w programowaniu obiektowym oznacza wykorzystanie tego samego kodu
do operowania na obiektach przynaleznych réznym klasom, dziedziczacym od siebie.

Zjawisko to jest zatem Scisle zwigzane z klasami i dziedziczeniem, aczkolwiek w C++ nie
dotyczy ono kazdej klasy, a jedynie okreslonych typow polimorficznych.

242 Podstawy programowania

| Typ polimorficzny to w C++ klasa zawierajaca przynajmniej jedng metode wirtualna.

W praktyce wiekszosc¢ klas, do ktérych chcieliby$smy stosowac techniki polimorfizmu,
spetnia ten warunek. W szczegdlnosci tg wymagang metodg wirtualng moze by¢
chociazby destruktor.

Wszystko to brzmi bardzo tadnie, ale trudno nie zadac¢ sobie pytania o praktyczne
korzysci zwigzane z wykorzystaniem polimorfizmu. Dlatego tez moim celem bedzie teraz
drobiazgowa odpowiedz na to pytanie - innymi stowy, wreszcie doczekates sie
konkretéw ;D

Ogdlny kod do szczegdlnych zastosowan

Zjawisko polimorfizmu pozwala na znaczne uproszczenie wiekszosci algorytmow, w
ktérych duzg role odgrywa zarzadzanie wieloma réznymi obiektami. Nie chodzi tu wcale o
jakie$ skomplikowane operacje sortowania, wyszukiwania, kompresiji itp., tylko o czesto
spotykane operacje wykonywania tej samej czynnosci dla wielu obiektéw réznych
rodzajow.

Opis ten jest w zatozeniu dos¢ ogolny, bowiem sposéb, w jaki uzywa sie obiektowych
technik polimorfizmu jest $cisle zwigzany z konkretnymi programami. Postaram sie
jednak przytoczy¢ w miare klarowne przyktady takich rozwigzan, aby$ miat chociaz
ogolne pojecie o tej metodzie programowania i mogt jg stosowac we wtasnych
aplikacjach.

Sprowadzanie do bazy

Prosty przypadek wykorzystania polimorfizmu opiera sie na elementarnej i rozsadnej
zasadzie, ktorg nie raz juz sprawdziliSmy w praktyce. Mianowicie:

Wskaznik na obiekt klasy bazowej moze wskazywac takze na obiekt ktérejkolwiek z jego
klas pochodnych.

Bezposrednie przetozenie tej reguty na konkretne zastosowanie programistyczne jest
dos¢ proste. Przypusémy wiec, ze mamy takg oto hierarchie klas:

#include <string>
#include <ctime>

// klasa dowolnego dokumentu
class CDocument

{

protected:
// podstawowe dane dokumentu
std::string m strAutor; // autor dokumentu
std::string m strTytul; // tytul dokumentu
tm m Data; // data stworzenia
public:
// konstruktory
CDocument ()
{m strAutor = m strTytul = "?22?";
time t Czas = time(NULL); m Data = *localtime (&Czas); }
CDocument (std::string strTytul)
{ CDocument () ; m strTytul = strTytul; }

CDocument (std::string strAutor, std::string strTytul)
{ CDocument () ;

m_ strAutor strAutor;
m strTytul = strTytul; }

I~

Programowanie obiektowe

// metody dostepowe do pdl

std::string Autor () const { return m strAutor; }
std::string Tytul () const { return m strTytul; }
tm Data () const { return m Data; }

// dokument internetowy
class COnlineDocument : public CDocument

{
protected:

std::string m strURL; // adres internetowy dokumentu

public:
// konstruktory

COnlineDocument (std::string strAutor, std::string strTytul)

{ m _strAutor = strAutor; m strTytul = strTytul;
COnlineDocument (std::string strAutor,
std::string strTytul,
std::string strURL)

{ m strAutor = strAutor;
m strTytul = strTytul;
m_strURL = strURL; }
e
// metody dostepowe do pdl
std::string URL() const { return m strURL; }
}i
// ksiazka

class CBook : public CDocument
{
protected:
std::string m strISBN; // numer ISBN ksiazki
public:
// konstruktory
CBook (std::string strAutor, std::string strTytul)

{ m _strAutor = strAutor; m strTytul = strTytul;

CBook (std::string strAutor,
std::string strTytul,
std::string strISBN)

{ m_strAutor = strAutor;
m strTytul = strTytul;
m strISBN = strISBN; }

// metody dostepowe do pdl
std::string ISBN() const { return m strISBN; }

bi

}

Z klasy Ccbhocument, reprezentujacej dowolny dokument, dziedzicza dwie nastepne:
COnlineDocument, odpowiadajgca tekstom dostepnym przez Internet, oraz CBook,

opisujaca ksigzki.

Napiszmy réowniez odpowiednig funkcje, wyswietlajgca podstawowe informacje o

podanym dokumencie:

#include <iostream>

244 Podstawy programowania

void PokazDaneDokumentu (CDocument* pDokument)
{
// wyswietlenie autora
std::cout << "AUTOR: ";
std::cout << pDokument->Autor () << std::endl;

// pokazanie tytulu dokumentu

// (sekwencja \" wstawia cudzysidéw do napisu)

std::cout << "TYTUL: ";

std::cout << "\"" << pDokument->Tytul () << "\"" << std::endl;

// data utworzenia dokumentu
// (pDokument->Data () zwraca strukture typu tm, do ktdrej pdl

// mozna dosta¢ sie tak samo, jak do wszystkich innych - za
// pomoca operatora wyiluskania . (kropki))
std::cout << "DATA : ";

std::cout << pDokument->Data().tm mday << "."
<< (pDokument->Data () .tm mon + 1) << "."
<< (pDokument->Data () .tm year + 1900) << std::endl;
}

Bierze ona jeden parametr, bedacy zasadniczo wskaznikiem na obiekt typu cbocument. W
jego charakterze moze jednak wystepowac takze wskazanie na ktorys z obiektéw
potomnych, zatem ponizszy kod bedzie absolutnie prawidtowy:

COnlineDocument* pTutorial = new COnlineDocument ("Xion", // autor
"Od zera do gier kodera", // tytul
"http://avocado.risp.pl"); // URL

PokazDaneDokumentu (pTutorial);
delete pTutorial;

W pierwszej linijce moznaby réwnie dobrze uzy¢ typu wskazujacego na obiekt
Chocument, gdyz wskaznik pTutorial i tak zostanie potraktowany w ten sposéb przy
przekazywaniu go do funkcji PokazDaneDokumentu () .

Efektem jego dziatania powyzszego listingu bedzie na przyktad taki oto widok:

"0d zera do gier kodera'
I 6.3.2004

Screen 37. Informacje o dokumencie uzyskane z uzyciem prostego polimorfizmu

Brak tu informacji o adresie internetowym dokumentu, poniewaz nalezy on do
sktadowych specyficznych dla klasy conlineDocument. Funkcja PokazDaneDokumentu ()
zostata natomiast stworzona do pracy z obiektami CDocument, zatem wykorzystuje
jedynie informacje zawarte w klasie bazowej. Nie przeszkadza to jednak w przekazaniu
jej obiektu klasy pochodnej - w takim przypadku dodatkowe dane zostang po prostu
zignorowane.

To raczej mato satysfakcjonujgce rozwigzanie, ale lepsze skutki wymagajg juz uzycia
metod wirtualnych. Uczynimy to w kolejnym przykfadzie.

Naturalnie, podobny rezultat otrzymaliby$my podajac naszej funkcji obiekt klasy cBook
czy tez jakiejkolwiek innej dziedziczacej od cDocument. Kod procedury jest wiec
uniwersalny i moze by¢ stosowany do wielu réznych rodzajow obiektéw.

Eureka! Na tym przeciez polega polimorfizm :)

Programowanie obiektowe 245

Mozliwe ze zauwazytes, iz zadna z tych przykfadowych klas nie jest tutaj typem
polimorficznym, a jednak podany wyzej kod dziata bez zarzutu. Powodem tego jest jego
wzgledna prostota. Doktadniej mdéwigc, nie jest konieczne sprawdzanie poprawnosci
typdw podczas dziatania programu, bo wystarczajaca jest zwykta kontrola, dokonywana
zwyczajowo podczas kompilacji kodu.

Klasy wiedzg same, co nalezy robic

Z poprzednim przyktadem zwigzany jest pewien mankament, nietrudno zresztg
zauwazalny. Niezaleznie od tego, jakie dodatkowe dane o dokumencie zadeklarujemy w
klasach pochodnych, nasza funkcja wyswietli tylko i wytgcznie te przewidziane w klasie
Chocument. Nie uzyskamy wiec nic ponad autora, tytut oraz date stworzenia dokumentu.

Trzeba jednak przyznad, ze sami niejako jesteSmy sobie winni. Wyodrebniajac czynnosé
prezentacji obiektu poza sam obiekt postgpiliSmy niezgodnie z ideg OOPu, ktéra nakazuje
taczy¢ dane i operujacy na nich kod.

Zatem przyktad z poprzedniego paragrafu to zdecydowanie zty przykiad :D

O wiele lepszym rozwigzaniem jest dodanie do klasy cDocument odpowiedniej metody,
odpowiedzialnej za czynnos$¢ wypisywania. A juz catkowitym ideatem bedzie uczynienie
jej funkcjg wirtualng - wtedy klasy dziedziczace od Chocument bedg mogty ustali¢ wtasny
spos6b prezentacji swoich danych.

Wszystkie te doskonate pomysty praktycznie realizuje ponizszy program przykfadowy:

// Polymorphism - wykorzystanie techniki polimorfizmu

// *** documents.h ***

class CDocument

{
// (wiekszos$é sktadowych wycieto z powodu zbyt duzej objetosdci)

public:
virtual void PokazDane () ;

bi

// (reszty klas nieuwzgledniono z powodu dziury budzetowe]j ;D)
// (za$ ich implementacje sa w pliku documents.cpp)

// *** main.cpp ***

#include <iostream>
#include <conio.h>
#include "documents.h"

void main ()

{

// wskaznik na obiekty dokumentdw
CDocument* pDokument;

// pierwszy dokument - internetowy
std::cout << std::endl << "--- 1. pozycja ---" << std::endl;
pDokument = new COnlineDocument ("Regedit",
"Cyfrowe przetwarzanie tekstu",
"http://programex.risp.pl/?"

246 Podstawy programowania

strona=cyfrowe przetwarzanie tekstu
)

pDokument->PokazDane () ;

delete pDokument;

// drugi dokument - ksiazka
std::cout << std::endl << "--- 2. pozycja ---" << std::endl;
pDokument = new CBook ("Sam Williams",

pDokument->PokazDane () ;
delete pDokument;

getch () ;
}

Wynikiem jego dziatania bedzie ponizsze zestawienie:

POLIMORFIZH

pozycja ——

Regedit

"Cyfrowe przetwarzanie tekstu'

6.3.2004

http: - 7programex.rizp.pl - Tztrona=cuf rowe_przetwarzanie_tekstu

pozycja ——

Sam Williams

" obronie wolnosci'
6.3.2004
§3-7361-247-5

Screen 38. Aplikacja prezentujaca polimorfizm z wykorzystaniem metod wirtualnych

Zauwazmy, ze za wysSwietlenie obu widniejacych na nim pozycji odpowiada wywotanie
pozornie tej samej funkcji:

pDokument->PokazDane () ;

Polimorficzny mechanizm metod wirtualnych sprawia jednak, ze zawsze wywotywana jest
odpowiednia wersja procedury pokazDane () - odpowiednia dla kolejnych obiektéw, na
ktére wskazuje pbokument.

Tutaj mamy wprawdzie tylko dwa takie obiekty, ale nietrudno wyobrazi¢ sobie
analogiczne dziatanie dla wiekszej ich liczby, np.:

CDocument* apDokumenty[100];

for (unsigned i = 0; i < 100; ++1i)
apDokumenty[i]->PokazDane () ;

Poszczegolne elementy tablicy apDokumenty mogg wskazywac na obiekty dowolnych
klas, dziedziczacych od Chocument, a i tak kod wyswietlajacy ich dane bedzie ograniczat
sie do wywotania zaledwie jednej metody! I to wtasnie jest piekne :D

Mozliwe zastosowania takiej techniki mozna mnozy¢ w nieskornczonos$¢, zas w grach jest
po prostu nieoceniona. Pomysimy tylko, ze za pomoca podobnej tablicy i prostej petli
mozemy wykonac¢ dowolng czynnosé na zestawie przerdznych obiektdw. Rysowanie,
wys$wietlanie, kontrola animacji - wszystko to mozemy wykona¢ poprzez jedng instrukcje!
Niezaleznie od tego, jak bardzo bytaby rozbudowana hierarchia naszych klas (np.

Programowanie obiektowe 247

jednostek w grze strategicznej, wrogéow w grze RPG, i tak dalej), zastosowanie
polimorfizmmu z metodami wirtualnymi upraszcza kod wiekszosci operacji do podobnie
trywialnych konstrukcji jak powyzsza.

Od tej pory do nas nalezy wiec tylko zdefiniowanie odpowiedniego modelu klas i ich
metod, gdyz zarzadzanie poszczegdlnymi obiektami staje sie, jak wida¢, banalne. Co
wazniejsze, zastosowanie technik obiektowych nie tylko upraszcza kod, ale tez pozwala
na znacznie wiekszg elastycznosc.

Pamietaj, ze praktyka czyni mistrza! Poznanie teoretycznych aspektéw programowania
obiektowego jest wprawdzie niezbedne, ale najwiecej wartosciowych umiejetnosci
zdobedziesz podczas samodzielnego projektowania i kodowania programoéw. Wtedy
szybko przekonasz sig, ze stosowanie technik polimorfizmu jest prawie ze intuicyjne -
nawet jesli teraz nie jeste$ zbytnio tego pewien.

Typy pod kontrolg

Uniwersalny kod dla wszystkich klas w hierarchii jest bardzo wygodnym rozwigzaniem.
Okazjonalnie jednak zdarza sie, ze trzeba w nim uwzglednic takze bardziej szczegétowe
przypadki, co oznacza koniecznosc sprawdzania faktycznego typu obiektéw, na ktére
wskazujg nasze wskazniki.

Na szczescie C++ oferuje proste mechanizmy, umozliwiajace realizacje tego zadania.

Operator dynamic cast

Konwersja wskaznika do klasy pochodnej na wskaznik do klasy bazowej jest czynnoscig
dos¢ naturalng, wiec przebiega catkowicie automatycznie. Niepotrzebne jest nawet
zastosowanie jakiej$ formy rzutowania. Nie powinno to wcale dziwi¢ - w koncu na tym
polega sama idea dziedziczenia, ze obiekt klasy potomnej jest takze obiektem
przynaleznym klasie bazowej.

Inaczej jest z konwersjg w odwrotng strone - ta nie zawsze musi sie przeciez powiesc.
C++ powinien wiec udostepniac jakis sposdb na sprawdzenie, czy taka zamiana jest
mozliwa, no i na samo jej przeprowadzanie. Do tych celdw stuzy operator rzutowania
dynamic cast.

Jest to drugi z operatoréw rzutowania, jakie mamy okazje poznac¢. Zostat on
wprowadzony do jezyka C++ po to, by umozliwi¢ kompleksowg obstuge typow
polimorficznych w zakresie konwersji ,w dot” hierarchii klas. Jego przeznaczenie jest
zatem nastepujace:

Operator dynamic cast stuzy do rzutowania wskaznika do obiektu klasy bazowej na
wskaznik do obiektu klasy pochodnej.

PowiedzieliSmy sobie réwniez, Zze taka konwersja niekoniecznie musi by¢ mozliwa. Rolg
omawianego operatora jest wiec takze sprawdzanie, czy rzeczywiscie mamy do czynienia
z wskaznikiem do obiektu potomnego, przechowywanym przez zmienng bedacq
wskaznikiem do typu bazowego.

Uff, wszystko to wydaje sie bardzo zakrecone, zatem najlepiej bedzie, jezeli przyjrzymy
sie odpowiednim przyktadom. Po raz kolejny postuzymy sie przy tym naszg ulubiong
systematyka klas zwierzat i napiszemy takg oto funkcje:

#include <stdlib.h> // zeby uzy¢é rand() 1 srand()
#include <ctime> // zeby uzyé time ()

IAnimal* StworzLosoweZwierze ()

{

// zainicjowanie generatora liczb losowych

248 Podstawy programowania

srand (static cast<unsigned>(time (NULL))) ;

// wylosowanie liczby 1 stworzenie obiektu zwierza
switch (rand() % 4)

{

0 return new CFish;

case 1 return new CMammal;

case 2 return new CBird;

case 3: return new CHomeDog;

default: return NULL;

case

}

Losuje ona liczbe i na jej podstawie tworzy obiekt jednej z czterech, zdefiniowanych jakis
czas temu, klas zwierzat. Nastepnie zwraca wskaznik do niego jako wynik swego
dziatania. Rezultat ten jest rzecz jasna typu IAnimal*, aby mdgt,pomiesci¢” odwotania
do jakiegokolwiek zwierzecia, dziedziczacego z klasy bazowej IAnimal.

Powyzsza funkcja jest bardzo prostym wariantem tzw. fabryki obiektéw (ang. object
factory). Takie fabryki to najczesciej osobne obiekty, ktére tworza zalezne do siebie byty
np. na podstawie statych wyliczeniowych, przekazywanych swoim metodom. Metody
takie mogg wiec zwrdcic¢ wiele réznych rodzajow obiektéw, dlatego deklaruje sie je z
uzyciem wskaznikow na klasy bazowe - u nas jest to TAnimal*.

Wywotanie tej funkcji zwraca nam wiec dowolne zwierze i zdawatoby sie, ze nijak nie
potrafimy sprawdzi¢, do jakiej klasy ono faktycznie nalezy. Z pomocg przychodzi nam
jednak operator dynamic cast, dzigki ktéremu mozmue sprébowac rzutowania
otrzymanego wskaznika na przyktad do typu cMammal*:

IAnimal* pZwierze = StworzLosoweZwierze();
CMammal* pSsak = dynamic cast<CMammal*>(pZwierze);

Taka proba powiedzie sie jednak tylko w $rednio potowie przypadkéw (dlaczego?®®). Co
zatem bedzie, jezeli pzwierze odnosi sie do innego rodzaju zwierzat?...
Ot6z w takim przypadku otrzymamy prostg informacje o btedzie, mianowicie:

dynamic_cast zwroci wskaznik pusty (o wartosci NULL), jezeli niemozliwe bedzie
dokonanie podanego rzutowania.

Aby ja wychwyci¢ potrzebujemy oczywiscie dodatkowego warunku, poréwnujgcego
zmienng pSsak z tg specjalng wartoscig NULL (bedacq zresztg de facto zerem):

if (pSsak != NULL) // sprawdzenie, czy rzutowanie powiodlo sie
{
// OK - rzeczywiscie mamy do czynienia z obiektem klasy CMammal.
// pSsak moze by¢é tu uzyty tak samo, jak kazdy inny wskaznik
// na obiekt klasy CMammal, na przyktad:
pSsak->Biegnij () ;

Warunek if (pSsak != NULL) moze by¢ zastgpiony przez if (pSsak). Wowczas
kompilator dokona automatycznej zamiany wartosci pSsak na logiczng, co da fatsz, jezeli
| jest ona réwna zeru (czyli NULL) oraz prawde w kazdej innej sytuacji.

85 Obiekt klasy CMammal jest tworzony zaréwno poprzez new CMammal, jak i new CHomeDog. Klasa CHomeDog
dziedziczy przeciez po klasie cMammal.

Programowanie obiektowe 249

Mozliwe jest nawet wieksze skondensowanie kodu. Wystarczy wstawié linijke z
rzutowaniem bezsposrednio do warunku if, tzn. zastosowac instrukcje:
if (CMammal* pSsak = dynamic cast<CMammal*>(pZwierzak))

Pojedynczy znak = jest tutaj umieszczony celowo, gdyz w ten sposob cate przypisanie
reprezentuje wynik rzutowania, ktory zostaje potem niejawnie przyréwnany do zera.

Kontrola otrzymanego wyniku rzutowania jest konieczna; jezeli bowiem sprébowalismy
zastosowac operator wytuskania -> do pustego wskaznika, spowodowalibysmy btad
ochrony pamieci (access violation).

Nalezy wiec zawsze sprawdzac, czy rzutowanie dynamic cast powiodio sie, poprzez
porownanie otrzymanego wskaznika z wartoscig NULL.

I to jest w zasadzie wszystko, co nalezy wiedzie¢ o operatorze dynamic cast :)

Incydentalnie trafiajq sie sytuacje, w ktérych zastosowanie omawianego operatora
wymaga wigczenia specjalnej opcji kompilatora, uaktywniajgcej informacje o typie
podczas dziatania programu. Sg to rzadkie przypadki i prawie zawsze dotycza
wielodziedziczenia, niemniej warto wiedzie¢, ze takie niespodzianki moga sie czasem
przytrafic.

Sposdb wiaczenia informacji o typie w czasie dziatania programu jest opisany w
nastepnym paragrafie.

Blizszych szczegdétow na temat rzutowania dynamic cast mozna doszukac sie w MSDN.

typeid i informacje o typie podczas dziatania programu

Oprécz dynamic cast - operatora, ktéry pozwala sprawdzi¢, czy dany wskaznik do klasy
bazowej wskazuje tez na obiekt klasy pochodnej - C++ dysponuje nieco bardziej
zaawansowanymi konstrukcjami, dostarczajgcymi wiadomosci o typach obiektow i
wyrazen w programie. S to tak zwane informacje o typie czasu wykonania

(ang. Run-Time Type Information), oznaczane angielskim skrotowcem RTTI.

Znajomosc¢ opisywanej tu czesci RTTI, czyli operatora typeid, generalnie nie jest tak

potrzebna, jak umiejetnos¢ postugiwania sie operatorami rzutowania, ale daje kilka
\ bardzo ciekawych mozliwosci, najczesciej nieosiggalnych inng drogg. Mozesz aczkolwiek
| tymczasowo poming¢ ten paragraf, by wrdci¢ do niego poézniej.

Skorzystanie z RTTI wymaga podjecia dwoch wstepnych krokow:
» wigczenia odpowiedniej opcji kompilatora:

5
[m] =]
= _— — . 25 CjC++
=2 @ Solution "Paolvrmorphism' {1 project)
Bl zeneral
= I=k
_g' ; Optimization
=) E| Preprocessar
& Rebuild Code Generation
iy A
. ' " Properties I Eriable Run-Time Type Info REERERLY j

Screen 39, 40 i 41. Trzy kroki do wiaczenia RTTI w Visual Studio .NET

250 Podstawy programowania

W Visual Studio. NET nalezy w tym celu rozwing¢ zaktadke Solution Explorer,
klikng¢ prawym przyciskiem myszy na nazwe swojego projektu i z menu
podrecznego wybrac Properties. W pojawiajacym sie oknie dialogowym trzeba
teraz przejs¢ do strony C/C++|Language i przy opcji Enable Run-Time Type Info
ustawi¢ wariant Yes (/GR).

> dotaczenia do kodu standardowego nagtdowka typeinfo, czyli dodania dyrektywy:
#include <typeinfo>

W zamian za te wysitki otrzymamy mozliwo$¢ korzystania z operatora typeid,
pobierajacego informacje o typie podanego mu wyrazenia. Skfadnia jego uzycia jest
nastepujaca:

typeid (wyrazenie) .informacja

Faktycznie instrukcja typeid (wyrazenie) zwraca strukture, nalezacq do wbudowanego
typu std: :type info. Struktura ta opisuje typ wyrazenia i zawiera takie oto sktadowe:

informacja opis

Jest to nazwa typu w czytelnej i przyjaznej dla cztowieka formie. Mozemy
ja przechowywac i operowac nig tak, jak kazdym innym napisem. Przyktad:

#include <typeinfo>
#include <iostream>
#include <ctime>

name ()
int nX = 10; float fY = 3.14;
time t Czas = time(NULL); tm Data = *localtime (&Czas);
std::cout << typeid (nX) .name(); // wynik: "int"
std::cout << typeid(fY) .name () ; // wynik: "float"
std::cout << typeid(Data).name(); // wynik: "struct tm"

Zwraca nazwe typu wewnetrznie uzywang przez kompilator. Taka nazwa

raw_name () L . . . Y
- Nie jest czytelna dla cztowieka, ale moze ewentualnie stuzy¢ w celach

poréwnawczych.

Tabela 11. Informacje dostepne poprzez operator typeid

Oprocz pobierania nazwy typu w postaci ciggu znakdéw mozemy uzywac operatorow ==
oraz !'= do poréwnywania typoéw dwoch wyrazen, na przykiad:

unsigned uX;

if (typeid(uX) == typeid(unsigned))

std::cout << "Swietnie, nasz kompilator dziata ;D";
if (typeid(uX) != typeid(uX / 0.618))

std::cout << "No prosze, tutaj tez jest dobrze :)";

typeid mogtby wiec stuzy¢é nam do sprawdzania klasy, do ktorej nalezy polimorficzny
obiekt wskazywany przez wskaznik. Sprawdzmy zatem, jak by to mogto wyglada¢:

IAnimal* pZwierze = new CBird;
std::cout << typeid(pZwierze) .name () ;

Po wykonaniu tego kodu spotka nas raczej przykra niespodzienka - zamiast

oczekiwanego rezultatu "class CBird *" otrzymamy "class IAnimal *"! Wyglada na
to, ze faktyczny typ obiektu, do ktorego odwotuje sie pZwierze, nie zostat w ogdle wziety
pod uwage.

musi by¢ unikalna, dlatego zawiera rézne ,dekoracyjne” znaki, jak ? czy @.

Programowanie obiektowe 251

Przypuszczenia te sg stuszne. Otz typeid jest ,leniwym” operatorem i zawsze idzie po
najmniejszej linii oporu. Typ wyrazenia pzZwierze mogt zas okresli¢ nie siegajac nawet do
mechanizmoéw polimorficznych, poniewaz wyraznie zadeklarowali$my go jako IAnimalx*.
Aby zmusi¢ krngbrny operator do wiekszego wysitku, musimy mu poda¢ sam obiekt, a
nie wskaznik na niego, co czynimy w ten sposéb:

std::cout << typeid(*pZwierze) .name () ;

O wystepujacym tu operatorze dereferencji - gwiazdce (*) powiemy sobie blizej, gdy
przejdziemy do doktadnego omawiania wskaznikéw jako takich. Na razie zapamietaj, ze
przy jego pomocy ,wytawiamy” obiekt poprzez wskaznik do niego.

Naturalnie, teraz powyzszy kod zwrdci prawidtowy wynik "class cBird".

Petny opis operatora typeid znajduje sie oczywiscie w MSDN.,

Alternatywne rozwigzania

RTTI jest czesto zbyt ciezkq armata, wytoczong przeciw problemowi pobierania informacji
o klasie obiektu podczas dziatania aplikacji. Przy niewielkim naktadzie pracy mozna
samemu wykonac¢ znacznie mniejszy, acz nierzadko wystarczajacy system.

' Po co? Decydujgacym argumentem moze by¢ szybkos¢. Wbudowane mechanizmy RTTI,
| jak dynamic cast i typeid, sg dosy¢ wolne (szczegdlnie dotyczy to tego pierwszego).
- Wiasne, bardziej poreczne rozwigzanie moze miec spory wptyw na wydajnos¢.

Do tego celu mogg postuzy¢ metody wirtualne oraz odpowiedni typ wyliczeniowy,
posiadajacy liste wartosci odpowiadajacych poszczegdlnym klasom. W przypadku naszych
zwierzat mogtby on wygladac na przyktad tak:

enum ANIMAL { A BASE, // bazowa klasa IAnimal
A FISH, // klasa CFish
A MAMMAL, // klasa CMammal
A BIRD, // klasa CBird
A HOMEDOG }; // klasa CHomeDog

Teraz wystarczy tylko zdefiniowac proste metody wirtualne, ktére bedg zwracaty state
wiasciwe swoim klasom:

// (pomingtem pozostate sktadowe klas)

class IAnimal
{
public:
virtual ANIMAL Typ() const { return A BASE; }
}i

class CFish : public IAnimal
{
public:
ANIMAL Typ() const { return A FISH: }
}i

class CMammal : public IAnimal
{
public:
ANIMAL Typ() const { return A MAMMAL; }

252 Podstawy programowania

}i

class CBird : public IAnimal

{
public:
ANIMAL Typ() const { return A BIRD; }

}s

class CHomeDog : public CMammal

{
public:
ANIMAL Typ() const { return A HOMEDOG; }

}i

Po zastosowaniu tego rozwigzania mozemy chociazby uzy¢ instrukcji switch, by wykonad
kod zalezny od typu obiektu:

IAnimal* pZwierzak = StworzLosoweZwierze () ;

switch (pZwierzak->Typ())
{

case A FISH: static cast<CFish*>(pZwierzak)->Plyn(); break;
case A BIRD: static cast<CBird*>(pZwierzak)->Lec(); break;
case A MAMMAL: static cast<CMammal*>(pZwierzak)->Biegnij(); break;

case A HOMEDOG: static cast<CHomeDog*> (pZwierzak)->Szczeka]j(); break;

Podobne sprawdzenie, dokonywane przy uzyciu dynamic cast lub typeid, wymagatoby
wielopietrowej instrukcji if. Tutaj wystarczy bardziej naturalny switch, za$ do
formalnego rzutowania mozemy uzy¢ prostego static cast, ktére dziata szybciej niz
mechanizmy RTTI.

Trzeba jednak pamieta¢, ze aby bezpiecznie stosowac static cast do rzutowania w dot
hierarchii klas, musimy mie¢ pewnos¢, ze taka operacja jest faktycznie wykonalna. Tutaj
sprawdzamy rzeczywisty typ obiektu®, zatem wszystko jest w porzadku, lecz w innych
przypadkach nalezy skorzysta¢ z dynamic cast.

Systemy identyfikacji i zarzadzania typami, podobne do powyzszego, sq w praktyce
uzywane bardzo czesto, szczegdlnie w wielkich projektach. Najbardziej zaawansowane
warianty umozliwiajg nawet tworzenie obiektéw na podstawie nazwy klasy
przechowywanej jako napis lub tez dynamiczne odtworzenie hierarchii klas podczas
dziatania programu. Trzeba jednak przyzna¢, iz jest to nierzadko sztuka dla samej sztuki,
bez wielkiego praktycznego znaczenia.

~ROwnowaga przede wszystkim” - pamietajmy te sentencje :D

Xk k

Gratulacje! Wiasnie poznate$ wszystkie teoretyczne zatozenia programowania
obiektowego i ich praktyczna realizacje w C++. Wykorzystujac zdobytg wiedze, bedziesz
mogt efektywnie programowac aplikacje z uzyciem filozofii OOP.

86 Sprawdzenie przy uzyciu typeid takze upowazniatoby nas do stosowania static_cast podczas rzutowania.

Programowanie obiektowe 253

Stucham? Méwisz, ze to wcale nie jest takie proste? Zgadza sie, na poczatku myslenie w
kategoriach obiektowych moze rzeczywiscie sprawiac ci trudnosci. Pomyslatem wiec, ze
dobrze bedzie poswieci¢ nieco czasu takze na zagadnienia zwigzane z samym
projektowaniem aplikacji z uzyciem poznanych technik. Zajmiemy sie tym w
nadchodzacym podrozdziale.

Projektowanie zorientowane obiektowo

A miato byc tak pieknie... Programowanie obiektowe miato by¢ przeciez wyjatkowo
naturalnym sposobem kodowania, a poprzednie paragrafy raczej nie bardzo o tym
przekonywaty, prawda? Jezeli rzeczywiscie odnosisz takie wrazenie, to by¢ moze
zwyczajnie utonates w powodzi szczegétdow, dodajmy - niezbednych szczegotow,
koniecznych do stosowania OOPu w praktyce. Czas jednak wyptyna¢ na powierzchnie i
ponownie spojrze¢ na zagadnienie bardziej catosciowo. Temu celowi bedzie stuzy¢
niniejszy podrozdziat.

Wiele podrecznikéw opisujgcych programowanie obiektowe (czy nawet programowanie
jako takie) wspomina skapo, jezeli w ogdle, o praktycznym stosowaniu prezentowanych
mechanizmow, czyli po prostu o projektowaniu aplikacji z uzyciem omawianych technik.
Moznaby to wybaczy¢ tym publikacjom, ktorych gtéwnym celem jest ,jedynie” kompletny
opis danego jezyka. Jezeli jednak mowimy o materiatach dla catkiem poczatkujacych,
bedacych w zatozeniu wprowadzeniem w $wiat programowania, wtedy zdecydowanie
niewskazane jest pomijanie praktycznych stron projektowania i kodowania aplikacji. Na
co bowiem przyda sie znajomos$¢ budowy miotka, jesli nie utatwi to zadania, jakim jest
wbicie gwozdzia? :)

Staram sie wiec unikna¢ tego btedu i przedstawiam programowanie obiektowe takze od
strony programisty-praktyka. Mam jednoczes$nie nadzieje, ze w ten sposéb przynajmniej
czesciowo uchronie cie przed wywazaniem otwartych drzwi w poszukiwaniu informacji w
gruncie rzeczy oczywistych - ktére jednak wcale takie nie sg, gdy sie ich nie posiada.
Naturalnie, nic nie zastgpi doswiadczenia zdobytego samodzielnie podczas prawdziwego
kodowania. Prezentowana tutaj wiedza teoretyczno-praktyczna moze by¢ jednak bardzo
pomocnym punktem startowym, utatwiajgcym koderskie zycie przynajmniej na jego
poczatku.

Co6z wiec znajdziemy w aktualnym podrozdziale? Zatuje, ale nie bedzie to przeglad
kolejnych krokow, jakie nalezy czyni¢ programujac konkretng aplikacje. Zamiast na mniej
lub bardziej trywialnym programiku skoncentrujemy sie raczej na ogélnym procesie
budowania wewnetrznej, obiektowej struktury programu - czyli na tak zwanym
modelowaniu klas i ich zwigzkéw. Najpierw poznamy zatem trzy podstawowe rodzaje
obiektow albo, jak kto woli, rél, w ktérych one wystepujg. Dalej zajmiemy sie kwestig
definiowania odpowiednich klas - ich interfejsu i implementacji, a wreszcie zwigzkami
pomiedzy nimi, dzieki ktéorym programy stworzone wediug zasad OOPu mogq poprawnie
funkcjonowac.

Znajomos¢ powyzszego zestawu zagadnien powinna znacznie poprawic¢ twoje szanse w
starciu z problemami projektowymi, zwigzanymi z programowaniem obiektowym. By¢
moze ich rozwigzywanie nie bedzie juz wéwczas wiedzg tajemna, ale normalng i, co
wazniejsze, satysfakcjonujacg czescig pracy kodera.

Nie przedtuzajac juz wiecej zacznijmy zatem wiasciwg tresc tego podrozdziatu.

Rodzaje obiektow

Kazdy program zawiera w mniejszej lub wiekszej czesci nowatorskie rozwigzania,
stanowigce gtowne wyzwanie stojace przed jego tworca. Niemniej jednak pewne cechy

254 Podstawy programowania

prawie zawsze pozostajg state - a do nich nalezy takze podziat obiektow sktadowych
aplikacji na trzy fundamentalne grupy.

Podziat ten jest bardzo ogdlny i niezbyt sztywny, ale przez to stosuje sie w zasadzie do
kazdego projektu. Bedzie on zresztg punktem wyjscia dla nieco bardziej szczegdtowych
kwestii, opisanych pdzniej.

Pomdéwmy wiec kolejno o kazdym rodzaju z owej podstawowej trojki.

Singletony

Wiekszos$¢ obiektéw jest przeznaczonych do istnienia w wielu egzemplarzach, réznigcych
sie przechowywanymi danymi, lecz wykonujacych te same dziatania poprzez metody.
Istniejg jednakze wyjatki od tej reguty, a nalezg do nich wtasénie singletony.

Singleton (‘jedynak’) to klasa, ktorej jedyna instancja (obiekt) spetnia kluczowg role w
catym programie.

W danym momencie dziatania aplikacji istnieje wiec co najwyzej jeden egzemplarz
klasy, bedacej singletonem.

Obiekty takie sq dostownie jedyne w swoim rodzaju i dlatego zwykle przechowujg one
najwazniejsze dane programu oraz wykonajg wiekszo$¢ newralgicznych czynnosci.
Najczesciej sq tez ,,rodzicami” i wiascicielami pozostatych obiektéw.

W jakich sytuacjach przydajg sie takie twory? Otéz jezeli podzieliliby$my nasz projekt na
jakies sktadowe (sposob podziatu jest zwykle sprawg mocno subiektywng), to dobrymi
kandydatami na singletony bytyby przede wszystkim te sktadniki, ktore obejmowatyby
najszerszy zakres funkcji. Moze to byc¢ obiekt aplikacji jako takiej albo tez
reprezentacje poszczegdlnych podsystemoéw - w grach bytyby to: grafika, dzwiek, sie¢,
Al, itd., w edytorach: moduty obstugi plikéw, dokumentéw, formatowania itp.

Niekiedy zastosowanie singletonéw wymuszajg warunki zewnetrzne, np. jakies
dodatkowe biblioteki, uzywane przez program. Tak jest chociazby w przypadku funkcji
Windows API odpowiedzialnych za zarzadzanie oknami.

Sitq rzeczy singletony stanowia tez , punkty zaczepienia” dla catego modelu klas, gdyz ich
pola sg w wiekszosci odwotaniami do innych obiektdw: niekiedy do wielu drobnych, ale
czesciej do kilku kolejnych zarzadcow, czyli nastepnego, nizszego poziomu hierarchii
zawierania sie obiektéw.

O relacji zawierania sie (agregacji) bedziemy jeszcze szerzej mowic.

Przyktady wykorzystania

Najbardziej oczywistym przykfadem singletonu moze by¢ catosciowy obiekt programu,
a wiec klasa w rodzaju CApplication czy CGame. Bedzie ona nadrzednym obiektem
wobec wszystkich innych, a takze przechowywata bedzie globalne dane dotyczace
aplikacji jako catosci. To moze by¢ chociazby sSciezka do jej katalogu, ale takze kluczowe
informacje otrzymane od bibliotek Windows API, DirectX czy jakichkolwiek innych.

Jezeli chodzi o inne mozliwe singletony, to z pewnoscig bedg to zarzadcy poszczegolnych
modutdw; w grach sg to obiekty klas o tak wiele mowigcych nazwach jak
CGraphicsSystem, CSoundSystem, CNetworkSystem itp., podobne twory mozna tez
wyrdzni¢ w programach uzytkowych.

Wszystkie te klasy wystepuja w pojedynczych instancjach, gdyz unikatowa jest ich rola.
Kwestig otwartg jest natomiast ich ewentualna podlegtos¢ najbardziej nadrzednemu
obiektowi aplikacji - na przyktad w ten sposob:

Programowanie obiektowe 255

class CGame

{
private:
CGraphicsSystem* m pGFX;
CSoundSystem* m pSFX;
CNetworkSystem* m pNet;
// itd.

// (reszte sktadowych pominiemy)
}i

// Jjedna jedyna instancja powyzsze] klasy
extern CGame* g pGra; /7Y

Réwnie dobrze mogg by¢ bowiem samodzielnymi obiektami, dostepnymi poprzez swoje
wiasne zmienne globalne - bez posrednictwa obiektu gtéwnego. Obydwa podejscia sq w
zasadzie réwnie dobre (moze z lekkim wskazaniem na pierwsze, jako ze nie zapewnia
takiej swobody w dostepie do podsysteméw z zewnatrz).

Dlaczego jednak w ogdle stosowac singletony, jezeli i tak bedg one tylko pojedynczymi
kopiami swoich pél? Przeciez podobne efekty mozna uzyskac stosujac zmienne globalne
oraz zwyczajne funkcje w miejsce pdél i metod takiego obiektu-jedynaka.

To jednak tylko czes¢ prawdy. Namnozenie zmiennych i funkcji poza zasadnicza,
obiektowgq strukturg programu narusza zasady OOPu, i to az podwdjnie. Po pierwsze, nie
unikniemy w ten sposoéb wyraznego oddzielenia danych od kodu, a po drugie nie
zapewnimy im ochrony przed niepowotanym dostepem, co zwieksza ryzyko btedéw.
Wreszcie, mieszamy wtedy dwa style programowania, a to nieuchronnie prowadzi do
bataganu w kodzie, jego niespojnosci, trudnosci w rozbudowie i konserwacji oraz catej
rzeszy innych plag, przy ktérych te egipskie mogq zdawac sie dziecinng igraszka ;D

Uzywanie singletondw jest zatem nieodzowne. Przydatoby sie wiec znalez¢ jakis dobry
sposéb ich implementacji, bo chyba domyslasz sie, ze zwykie zmienne globalne nie sg
tutaj szczytem marzen. No, a jesli nawet nie zastanowites sie nad tym, to wtasnie masz
precedens poréwnawczy - przedstawie bowiem nieco lepszg droge na realizacje pomystu
pojedynczych obiektow w C++.

Praktyczna implementacja z uzyciem sktadowych statycznych

Nawet najlepszy pomyst nie jest zbyt wiele wart, jezeli nie mozna jego skutkéw zobaczy¢
w dziataniu. Singletony mozna na szczescie zaimplementowac az na kilka sposobdw,
réznigcych sie wygoda i bezpieczenstwem.

Najprostszy, z wykorzystaniem globalnego wskaznika na obiekt lub globalnej zmiennej
obiektowej, posiada kilka wad, zwigzanych przede wszystkim z kontrolg nad tworzeniem
oraz niszczeniem obiektu. Dlatego lepiej zastosowac tutaj inne rozwigzanie, oparte na
skfadowych statycznych klas.

Statyczne skladowe sg przypisane do klasy jako catosci, a nie do jej poszczegdlnych
instancji (obiektow).

Deklarujemy je przy pomocy stowa kluczowego static. Wéwczas petni wiec ono inng
funkcje niz ta, ktérg znaliSmy dotychczas.

87 pamietajmy, ze zmienne zadeklarowane w pliku nagtéwkowym z uzyciem extern wymagajg jeszcze
przydzielenia do odpowiedniego modutu kodu poprzez deklaracje bez wspomnianego stéwka. Powyzszy sposéb
nie jest zresztg najlepsza metodg na zaimplementowanie singletonu - bardziej odpowiednig poznamy za chwile.

256 Podstawy programowania

Podstawowa cecha sktadowych statycznych jest to, ze do skorzystania z nich nie jest
potrzebny zaden obiekt macierzystej klasy. Odwotujemy sie do nich, podajac po prostu
nazwe klasy oraz oznaczenie sktadowej, w ten oto sposob:

nazwa _klasy::sktadowa statyczna

Mozliwe jest takze tradycyjne uzycie obiektu danej klasy lub wskaznika na niego oraz
operatorow wytuskania . lub ->. We wszystkich przypadkach efekt bedzie ten sam.
Musimy jakkolwiek pamieta¢, ze nadal obowigzujq tutaj specyfikatory praw dostepu, wiec
jesli powyzszy kod umiescimy poza metodami klasy, to bedzie on poprawny tylko dla
sktadowych zadeklarowanych jako public.

Blizsze poznanie statycznych elementéw klas wymaga rozrdznienia sposrdéd nich pdl i
metod. Dziatanie modyfikatora static jest bowiem nieco inne dla danych oraz dla kodu.
I tak statyczne pola sg czyms$ w rodzaju zmiennych globalnych dla klasy. Mozna sie do
nich odwotywac z kazdej metody, a takze z klas pochodnych i/lub z zewnatrz - zgodnie ze
specyfikatorami praw dostepu. Kazde odniesienie do statycznego pola bedzie jednak
dostepem do tej samej zmiennej, rezydujgcej w tym samym miejscu pamieci. W
szczegdlnosci poszczegdlne obiekty danej klasy nie beda posiadaty wtasnej kopii takiego
pola, bo bedzie ono istniato tylko w jednym egzemplarzu.

Podobienstwo do zmiennych globalnych przejawia sie w jeszcze jednym aspekcie:
mianowicie statyczne pola muszg zosta¢ w podobny sposéb przydzielone do ktéregos z
modutéw kodu w programie. Ich deklaracja w klasie jest bowiem odpowiednikiem
deklaracji extern dla zwyktych zmiennych. Odpowiednia definicja w module wyglada zas
nastepujgco:

typ nazwa klasy::nazwa pola [= wartosc¢ poczatkowal;

Kwalifikatora nazwa klasy:: mozemy tutaj wyjatkowo uzy¢ nawet wtedy, kiedy nasze
pole nie jest publiczne. Spostrzezmy tez, iz nie korzystamy juz ze stowa static, jako ze
poza definicjg klasy ma ono odmienne znaczenie.

Statycznos¢ metod polega natomiast na ich niezaleznosci od jakiegokolwiek obiektu
danej klasy. Metody opatrzone kwalifikatorem static mozemy bowiem wywotywac¢ bez
koniecznosci posiadania instancji klasy. W zamian za to musimy jednak
zaakceptowac fakt, iz nie posiadamy dostepu do wszelkich niestatycznych sktadnikéw
(zaréwno pol, jak i metod) naszej klasy. To aczkolwiek dos$¢ naturalne: jesli wywotanie
funkcji statycznej moze obejs¢ sie bez obiektu, to skad moglibysmy go wzig¢, aby
skorzystac z niestatycznej sktadowej, ktdra przeciez takiego obiektu wymaga? Otéz
wiasnie nie mamy skad, gdyz w metodach statycznych nie jest dostepny wskaznik
this, reprezentujacy aktualny obiekt klasy.

No dobrze, ale w jaki sposob statyczne sktadowe klas moggq nam pomdéc w implementacji
singletonow?... Cdz, to dosy¢ proste. Zauwaz, ze takie sktadowe sg unikalne w skali catej
klasy - tak samo, jak unikalny jest pojedynczy obiekt singletonu. Mozemy zatem uzy¢
ich, by sprawowac¢ kontrole nad naszym jedynym i wyjatkowym obiektem.

Najpierw zadeklarujemy wiec statyczne pole, ktorego zadaniem bedzie przechowywanie
wskaznika na 6w kluczowy obiekt:

// *** plik nagtdwkowy ***

// klasa singletonu
class CSingleton

{

private:

Programowanie obiektowe 257

// statyczne pole, przechowujace wskaznik na nasz jedyny obiekt
static CSingleton* ms pObiekt; // &8

// (tutaj beda dalsze skiadowe klasy)
}i

// *** modut kodu ***
// trzeba rzecz jasna dotaczy¢ tutaj nagitdwek z definicja klasy

// inicjujemy pole wartos$cia zerowa (NULL)
CSingleton* CSingleton::ms_pObiekt = NULL;

Deklaracje pola umiesciliSmy w sekcji private, aby chronié je przed niepowotang
zmiang. W takiej sytuacji potrzebujemy jednak metody dostepowej do niego, ktora
zresztg takze bedzie statyczna:

// *** wewnatrz klasy CSingleton ***

public:
static CSingleton* Obiekt ()
{

// tworzymy obiekt, Jjezelil jeszcze nie istnieje
// (tzn. jes$li wskazZnik ms pObiekt ma poczatkowa wartos¢ NULL)
if (ms_pObiekt == NULL) CSingleton();

// zwracamy wskaznik na nasz obiekt
return ms_pObiekt;

Oprécz samego zwracania wskaznika metoda ta sprawdza, czy zadany przez nasz obiekt
faktycznie istnieje; jezeli nie, jest tworzony. Jego kreacja nastepuje wiec przy pierwszym
uzyciu.

Odbywa sie ona poprzez bezposrednie wywotanie konstruktora... ktérego na razie nie
mamy (jest domysiny)! Czym predzej naprawmy zatem to niedopatrzenie, przy okazji
definiujac takze destruktor:

// *** wewnatrz klasy CSingleton ***

private:

CSingleton () { ms pObiekt = this; }
public:

~CSingleton () { ms pObiekt = NULL; }

Spore zdziwienie moze budzi¢ niepublicznos¢ konstruktora. W ten sposob jednak
zabezpieczamy sie przed utworzeniem wiecej niz jednej kopii naszego singletonu.
Uprawniona do wywotania prywatnego konstruktora jest bowiem tylko sktadowa klasy,
czyli metoda csingleton: :0Obiekt (). Wszelkie zewnetrzne proby stworzenia obiektu
klasy csingleton zakonczg sie wiec btedem kompilacji, zas jedyny jego egzemplarz
bedzie dostepny wytacznie poprzez wspomniang metode.

Powyzszy sposob jest zatem odpowiedni dla obiektu stojgcego na samym szczycie
hierarchii w aplikacji, a wiec dla klas w rodzaju CApplication, CApp CzZYy CGame. Jezeli zas
chcemy mie¢ wygodny dostep do obiektéw lezacych nizej, zawartych wewnatrz innych,
wtedy nie mozemy oczywiscie uczyni¢ konstruktora prywatnym. Wowczas warto wiec
skorzystac z innych rozwigzan, ktérych jednak nie chciatem tutaj przedstawiac ze

88 przedrostek s_ wskazuje, ze dana zmienna jest statyczna. Tutaj zostat on potaczony ze zwyczajowym m_,
dodawanym do nazw prywatnych pal.

258 Podstawy programowania

wzgledu koniecznos$¢ znacznie wiekszej znajomosci jezyka C++ do ich poprawnego
zastosowania®.

Musimy jeszcze pamietaé, aby usungc obiekt, gdy juz nie bedzie nam potrzebny - robimy
to w zwyczajny sposbb, poprzez operator delete:

delete CSingleton::0Obiekt () ;

To konieczne - skoro chcemy zachowac kontrole nad tworzeniem obiektu, to musimy
takze wzig¢ na siebie odpowiedzialno$¢ za jego zniszczenie.

Na koniec wypadatoby zastanowi¢ sie, czy stosowanie powyzszego rozwigzania (albo
podobnych, gdyz istnieje ich wiecej) jest na pewno konieczne. By¢ moze sadzisz, ze
mozna sie spokojnie bez nich oby¢ - i chwilowo masz rzeczywiscie racje! Kiedy nasze
programy sg zdeterminowane od poczatku do konca, zawarte w catosci w funkcji main (),
tatwo jest zapanowac nad zyciem singletonu. Gdy jednak rozpoczniemy programowac
aplikacje okienkowe dla Windows, sterowane zewnetrznymi zdarzeniami, wtedy przebieg
programu nie bedzie juz taki oczywisty. Powyzszy sposdb na implementacje singletonu
bedzie wowczas znacznie uzyteczniejszy.

Obiekty zasadnicze

Drugi rodzaj obiektow skupia te, ktére stanowig najwiekszy oraz najwazniejszy fragment
modelu w kazdym programie. Obiekty zasadnicze sg jego zywotng tkanka, wykonujacq
wszelkie zadania przewidziane w aplikacji.

Obiekty zasadnicze to gtéwny budulec programu stworzonego wedtug zasad OOP.
Wchodzac w zaleznosci miedzy sobg oraz przekazujac dane, realizujg one wszystkie
funkcje aplikacji.

Budowanie sieci takich obiektow jest wiec lwig czescig procesu tworzenia obiektowej
struktury programu. Definiowanie odpowiednich klas, zwigzkéw miedzy nimi, korzystanie
z dziedziczenia, metod wirtualnych i polimorfizmu - wszystko to dotyczy witasnie obiektow
zasadniczych. Zagadnienie ich wiasciwego stosowania jest zatem niezwykle szerokie -
zajmiemy sie nim doktadniej w kolejnych paragrafach tego podrozdziatu.

Obiekty narzedziowe

Ostatnia grupa obiektéw jest oczkiem w gtowie programistéw, zajmujacych sie jedynie
~klepaniem kodu” wedle projektu ustalonego przez kogos innego. Z kolei owi projektanci
w ogdle nie zajmujg sie nimi, koncentrujac sie wytacznie na obiektach zasadniczych.

W swojej karierze jako tworcy oprogramowania bedziesz jednak czesto wcielat sie w obie
role, dlatego znajomos¢ wszystkich rodzajoéw obiektow z pewnoscig okaze sie pomocna.

Czym wiec sg obiekty nalezgce do opisywanego rodzaju? Naturalnie, najlepiej wyjasni to
odpowiednia definicja :D

Obiekty narzedziowe, zwane tez pomocniczymi lub konkretnymi®®, reprezentujg
pewien nieskomplikowany typ danych. Zawierajq pola stuzace przechowywaniu jego
danych oraz metody do wykonywania nan prostych operaciji.

89 Jeden z najlepszych sposobdw zostat opisany w rozdziale 1.3, Automatyczne singletony, ksiazki Peretki
programowania gier, tom 1.
% Autorem tej ostatniej, dziwnej nazwy jest Bjarne Stroustrup i tylko dlatego ja tutaj podaje :)

Programowanie obiektowe 259

Nazwa tej grupy obiektow dobrze oddaje ich role: sg one tylko pomocniczym
konstrukcjami, utatwiajagcymi realizacje niektorych algorytmow. Czesto zresztg traktuje
sie je podobnie jak typy podstawowe - zwiaszcza w C++.

Obiekty narzedziowe posiadajg wszakze kilka znaczacych cech:

> istniejg same dla siebie i nie wchodzg w interakcje z innymi, rownolegle
istniejgcymi obiektami. Mogq je wprawdzie zawiera¢ w sobie, ale nie komunikujg
sie samodzielnie z otoczeniem

» ich czas zycia jest ograniczony do zakresu, w ktorym zostaty zadeklarowane.
Zazwyczaj tworzy sie je poprzez zmienne obiektowe, w takiej tez postaci (a nie
poprzez wskazniki) zwracajg je funkcje

» nierzadko zawierajg publiczne pola, jezeli mozliwe jest ich bezpieczne ustawianie
na dowolne wartosci. W takim wypadku typy narzedziowe definiuje sie zwykle
przy uzyciu stowa struct, gdyz uwalnia to od stosowania specyfikatora public,
ktéry w typach strukturalnych jest domysinym (w klasach, definiowanych poprzez
class, domysine prawa to private; poza tym oba stowa kluczowe niczym sie od
siebie nie rézniq)

> posiadajg najczesciej kilka konstruktoréw, ale ich przeznaczenie ogranicza sie
zazwyczaj do wstepnego ustawienia pdl na wartosci podane w parametrach.
Destruktory sg natomiast rzadko uzywane - zwykle wtedy, gdy obiekt sam alokuje
dodatkowg pamiec i musi jg zwolnié

» metody obiektdw narzedziowych sg zwykle proste obliczeniowo i krotkie w zapisie.
Ich implementacja jest wiec umieszczana bezposrednio w definicji klasy.
Bezwzglednie stosuje sie tez metody state, jezeli jest to mozliwe

> obiekty nalezace do opisywanego rodzaju prawie nigdy nie wymagajq uzycia
dziedziczenia, a wiec takze metod wirtualnych i polimorfizmu

> jezeli ma to sens, na rzecz tego rodzaju obiektow dokonywane jest
przetadowywanie operatoréw, aby mogty by¢ uzyte w stosunku do nich. O tej
technice programistycznej bedziemy méwi¢ w jednym z dalszych rozdziatéw

» nazewnictwo klas narzedziowych jest zwykle takie samo, jak normalnych typéw
sklarnych. Nie stosuje sie wiec zwyczajowego przedrostka c, a calg nazwe
zapisuje tq sama wielkoscia liter - matymi (jak w Bibliotece Standardowej C++)
lub wielkimi (wedtug konwencji Microsoftu)

Bardzo wiele typéw danych moze by¢ reprezentowanych przy pomocy odpowiednich
obiektéw narzedziowych. Z jednym z takich obiektéw masz zresztg stale do czynienia:
jest nim typ std::string, bedgcy niczym innym jak wiasnie klasg, ktorej rolg jest
odpowiednie ,,opakowanie” fancucha znakéw w przyjazny dla programisty interfejs.

| Takie obudowywanie nazywamy enkapsulacja.

Klasa ta jest takze czescig Standardowej Biblioteki Typéw C++, ktérg poznamy
szczegdétowo po zakonczeniu nauki samego jezyka. Nalezg do niej takze inne typy, ktore
Z pewnoscig mozemy uznac za narzedziowe, jak na przyktad std: :complex,
reprezentujacy liczbe zespolong czy std: :bitset, bedacy ciggiem bitdw.

Matematyka dostarcza zresztg najwiekszej liczby kandydatéw na potencjalne obiekty
narzedziowe. Wystarczy pomysle¢ o wektorach, macierzach, punktach, prostokatach,
prostych, powierzchniach i jeszcze wielu innych pojeciach. Nie sg one przy tym jedynie
obrazowym przyktadem, lecz niedzownym elementem programowania - gier w
szczegodlnosci. Wiekszos$¢ bibliotek zawiera je wiec gotowe do uzycia; sporo programistow
definiuje dlan jednak witasne klasy.

Zobaczmy zatem, jak moze wygladac taki typ w przypadku tréjwymiarowego wektora:
#include <cmath>

struct VECTOR3

260

Podstawy programowania

// wspbirzedne wektora
float x, vy, z;

// konstruktory

VECTORS3 () ({(x =y =2z 0.0; }
VECTOR3 (float fX, float fY, float f7) { x = £fX; y = £fY; z = £7; }
/] m e
// metody

float Dlugosc () const { return sgrt(x * x + y * y + 2z * z); }

void Normalizuj ()

{
float fDlugosc = Dlugosc();

// dzielimy kazda wspdirzedna przez diugosé
x /= fDlugosc; y /= fDlugosc; z /= fDlugosc;

// tutaj mozna by sie pokusié o przetadowanie operatordédw +, -, *, /,
// =, +=, -=, *=, /=, == 1 != tak, zeby przy ich pomocy wykonywac

// dziatania na wektorach. Poniewaz na razie tego nie umiemy, wiec
// musimy z tym poczekaé :)

bi

Najwiecej kontrowersji wzbudza pewnie to, ze pola %, y, z sq publicznie dostepne. Ma to
jednak solidne uzasadnienie: ich zmiana jest rzeczg naturalng dla wektora, zas zakres
dopuszczalnych wartosci nie jest niczym ograniczony (moga nimi by¢ dowolne liczby
rzeczywiste). Ochrona, ktorg zwykle zapewniamy przy pomocy metod dostepowych,
bytaby zatem niepotrzebnym posrednikiem.

Uzycie powyzszej klasy/struktury (jak kto woli...) wymaga oczywiscie utworzenia jej
instancji. Przy prostym zestawie danych, jaki ona reprezentuje, nie potrzeba jednak
poswiecac pieczotowitej uwagi na tworzenie i niszczenie obiektow, zatem wystarczg nam
zwykte zmienne obiektowe zamiast wskaznikdw. Nawet wiecej - mozemy potraktowac
VECTOR3 identycznie jak typy wbudowane i napisa¢ na przyktad funkcje obliczajaca oba
rodzaje iloczynéw wektordw:

float IloczynSkalarny (VECTOR3 vWektorl, VECTOR3 vWektor2)

{
// 1loczyn skalarany jest suma iloczyndéw odpowiednich wspdirzednych
// obu wektordw

return (vWektorl.x * vWektor2.x
+ vWektorl.y * vWektor2.y
+ vWektorl.z * vWektor2.z);

}

VECTOR3 IloczynWektorowy (VECTOR3 vWektorl, VECTOR3 vWektor?2)

{
VECTOR3 vWynik;

// iloczyn wektorowy ma za to bardziej skomplikowana formulke :)
viWynik.x = vWektorl.y * vWektor2.z - vWektor2.y * vWektorl.z;
vWWynik.y = vWektor2.x * vWektorl.z - vWektorl.x * vWektorl.z;
viWynik.z viWektorl.x * vWektor2.y - vWektor2.x * vWektorl.y;

Programowanie obiektowe 261

return vWynik;

}

Te operacje majq zresztg niezliczone zastosowania w programowaniu tréjwymiarowych
| gier, zatem ich implementacja ma gteboki sens :)

Spokojnie mozemy w tych funkcjach pobierac i zwracac¢ obiekty typu vECTOR3. Koszt
obliczeniowy tych dziatan bedzie bowiem niemal taki sam, jak dla pojedynczych liczb.

W przypadku parametréw funkcji stosujemy jednak referencje, ktére optymalizujg kod,
uwalniajac od przekazania nawet tych skromnych kilkunastu bajtéw. Zapoznamy sie z
nimi w nastepnym rozdziale.

tancuchy znakow czy wymysty matematykow to nie sg naturalnie wszystkie koncepcje,
ktére mozna i trzeba realizowac jako obiekty narzedziowe. Do innych nalezg chociazby
wszelkie reprezentacje daty i czasu, kolorow, numeréw o okreslonym formacie oraz
wszystkie pozostate, nieelementarne typy danych.

Szczegolnym przypadkiem obiektéw pomocniczych sg tak zwane inteligentne wskazniki
(ang. smart pointers). Ich zadaniem jest zapewnienie dodatkowej funkcjonalnosci
zwyktym wskaznikom - obejmuje to na przyktad zwolnienie wskazywanej przez nie
pamieci w sytuacjach wyjatkowych czy tez zliczanie odwotan do ,,opakowanych” nimi
obiektéw.

Definiowanie odpowiednich klas

Tworzenie obiektowego modelu programu przebiega zwykle dwuetapowo. Jednym z
zadan jest identyfikacja klas, ktore bedg sie nan sktadaty, oraz pdl i metod, ktére zostang
zawarte w ich definicjach. Drugim jest okreslenie zwigzkéw pomiedzy tymi klasami,
dzieki ktérym aplikacja mogtaby realizowac zaplanowane czynnosci.

Przestrzeganie powyzszej kolejnosci nie jest Scisle konieczne. Oczywiscie, majac juz kilka
zdefiniowanych klas, mozna pewnie prosciej potaczy¢ je wtasciwymi relacjami. Réwnie
dobre jest jednak wyjscie od tychze relacji i korzystanie z nich przy definiowaniu klas.
Obydwa wspomniane procesy czesto wiec odbywajg sie jednoczesnie.

Poniewaz jednak lepiej jest opisa¢ kazdy z nich osobno, zatem od ktorego$ nalezy
zaczac :) Zdecydowatem tedy, ze najpierw poszukamy wtasciwych klas oraz ich
skfadowych, a dopiero potem zajmiemy sie fqczeniem ich w odpowiedni model.

Zaprojektowanie kompletnego zbioru klas oznacza konieczno$¢ dopracowywania dwéch
aspektéw kazdej z nich:

> abstrakcji, czyli opisu tego, co dana klasa ma robi¢

> implementacji, to znaczy okreslenia, jak ma to robi¢

Teraz naturalnie zajmiemy sie kolejno obydowami kwestiami.

Abstrakcja

Jezeli masz pomyst na gre, aplikacje uzytkowg czy tez jakikolwiek inny produkt
programisty, to chyba najgorsza rzecza, jaka mozesz zrobié, jest natychmiastowe
rozpoczecie jego kodowania. Stusznie mowi sie, ze co nagle, to po diable; niezbedne jest
wiec stworzenie model abstrakcyjnego zanim przystgpi sie do wtasciwego
programowania.

Model abstrakcyjny powinien opisywac zatozone dziatanie programu bez precyzowania
szczegotdw implementacyjnych.

262 Podstawy programowania

Sama nazwa wskazuje zreszta, ze taki model powinien abstrahowa¢ od kodu. Jego
zadaniem jest bowiem odpowiedz na pytanie ,Co program ma robic¢?”, a w przypadku
technik obiektowych, ,Jakich klas bedzie do tego potrzebowat i jakie czynnosci beda
przez nie wykonywane?”.

Tym kluczowym sprawom poswiecimy rzecz jasna nieco miejsca.

Identyfikacja klas

Klasy i obiekty stanowig sktadniki, z ktérych budujemy program. Aby wiec rozpoczac te
budowe, nalezatoby mie¢ przynajmniej kilka takich cegietek. Trzeba zatem
zidentyfikowa¢ mozliwe klasy w projekcie.

Musze cie niestety zmartwi¢, gdyz w zasadzie nie ma uniwersalnego i zawsze
skutecznego przepisu, ktory pozwatby na wykrycie wszelkich klas, potrzebnych do
realizacji programu. Nie powinno to zresztg dziwic¢: dzisiejsze programy dotykajg przeciez
prawie wszystkich nauk i dziedzin zycia, wiec podanie niezawodnego sposobu na
skonstruowanie kazdej aplikacji jest zadaniem poréwnywalnym z opracowaniem metody
pisania ksigzek, ktére zawsze bedg bestsellerami, lub tez krecenia filméw, ktore na
pewno otrzymajg Oscara. To oczywiscie nie jest mozliwe, niemniej dziedzina informatyka
poswiecona projektowaniu aplikacji (zwana inzynieria oprogramowania) poczynita w
ostatnich latach duze postepy.

Chociaz nadal najlepsza gwarancjg sukcesu jest posiadane doswiadczenie, intuicja oraz
odrobina szczescia, to jednak poczatkujacy adept sztuki tworzenia programow (taki jak
ty :)) nie pozostanie bez pomocy. Programowanie obiektowe zostato przeciez wymyslone
wiasnie po to, aby utatwi¢ nie tylko kodowanie programoéw, ale takze ich projektowanie -
a na to sktada sie réwniez wynajdywanie klas odpowiednich dla realizowanej aplikaciji.
Otéz sama idea OOPu jest tutaj sporym usprawnieniem. Postep, ktéry ona przynosi, jest
bowiem zwigzany z oparciem budowy programu o rzeczowniki, zamiast czasownikéw,
wiasciwym programowaniu strukturalnemu. Myslenie kategoriami tworéw, bytéw,
przedmiotéw, urzadzen - ogdlnie obiektéw, jest naturalne dla ludzkiego umystu. Na
rzeczownikach opiera sie takze jezyk naturalny, i to w kazdej czesci $wiata.

Réwniez w programowaniu bardziej intuicyjne jest podejscie skoncentrowane na
wykonawcach czynnosci, a nie na czynnosciach jako takich. Przykfadowo, poréwnaj
dwa ponizsze, abstrakcyjne kody:

// 1. kod strukturalny
hPrinter = GetPrinter();
PrintText (hPrinter, "Hello world!™);

// 2. kod obiektowy
pPrinter = GetPrinter();
pPrinter->PrintText ("Hello world!");

Mimo ze oba wygladajq podobnie, to wyraznie wida¢, ze w kodzie strukturalnym
wazniejsza jest sama czynno$¢ drukowania, zas jej wykonawca (drukarka) jest kwestig
drugorzedna. Natomiast kod obiektowy wyraznie jg wyrdznia, a wywotanie metody
PrintText () mozna przyrownac do wcisniecia przycisku zamiast wykonywania jakiejs
mato trafiajgcej do wyobrazni operacji.

Jezeli masz watpliwosé, ktére podejscie jest wrasciwsze, to pomysl, co zobaczysz, patrzac
na to urzadzenie obok monitora - czynno$¢ (drukowanie) czy przedmiot (drukarke)®'?...

No, ale dosy¢ juz tych luznych dygresji. MieliSmy przeciez zaja¢ sie poszukiwaniem
wiasciwych klas dla naszych programéw obiektowych. Odejscie od tematu w poprzednim

%1 Oczywiscie nie dotyczy to tych, ktérzy drukarki nie maja, bo oni nic nie zobacza :D

Programowanie obiektowe 263

akapicie byto jednak tylko pozorne, gdyz ,niechcacy” znalezliSmy catkiem prosty i
logiczny sposdb, wspomagajacy identyfikacje klas.

Mianowicie, powiedzieliSmy sobie, ze OOP przesuwa srodek ciezkosci programowania z
czasownikow na rzeczowniki. Te z kolei sg takze podstawg jezyka naturalnego,
uzywanego przez ludzi. Prowadzi to do prostego wniosku i jednoczesnie drogi do catkiem
dobrego rozwigzania dreczacego nas problemu:

Skuteczng pomocg w poszukiwaniu klas odpowiednich dla tworzonego programu moze
by¢ opis jego funkcjonowania w jezyku naturalnym.

Taki opis stosunkowo tatwo jest sporzadzi¢, pomaga on tez w uporzadkowaniu pomystu
na program, czyli klarowanym wyrazeniu, o co nam wiasciwie chodzi :) Przykfad takiego
raportu moze wygladac choc¢by w ten sposéb:

Program Graph jest aplikacjg przeznaczong do rysowania wszelkiego rodzaju schematdw i diagramow
graficznych. Powinien on udostepnia¢ szerokg palete przyktadowych ksztattdw, uzywanych w takich
rysunkach: blokéw, strzatek, drzew, etykiet tekstowych, figur geometrycznych itp. Edytowany przez
uzytkownika dokument powinien by¢ ponadto zapisywalny do pliku oraz eksportowalny do kilku
formatéw plikéw graficznych.

Nie jest to z pewnoscig zbyt szczegdtowa dokumentacja, ale na jej podstawie mozemy
tatwo wyrdznic sporg ilos¢ klas. Nalezg do nich przede wszystkim:

» dokument

» schemat

» rozne rodzaje obiektéw umieszczanych na schematach

Warto tez zauwazy¢, ze powyzszy opis ukrywa tez nieco informacji o zwigzkach miedzy
klasami, np. to, ze schemat zawiera w sobie umieszczone przez uzytkownika ksztatty.

Zbidr ten z pewnoscig nie jest kompletny, ale stanowi catkiem dobre osiggniecie na
poczatek. Daje tez pewne dalsze wskazdwki co do mozliwych kolejnych klas, jakimi moga
by¢ poszczegodlne typy ksztattdw sktadajgcych sie na schemat.

Tak wiec analiza opisu w jezyku naturalnym jest dosy¢ efektywnym sposobem na
wyszukiwanie potencjalnych klas, sktadajacych sie na program. Skuteczno$¢ tej metody
zalezy rzecz jasna w pewnym stopniu od umiejetnosci tworcy aplikacji, lecz jej
stosowanie szybko przyczynia sie takze do podniesienia poziomu biegtosci w
projektowaniu programow.

Analizowanie opisu funkcjonalnego programu nie jest oczywiscie jedynym sposobem
poszukiwania klas. Do pozostatych nalezy chociazby sprawdzanie klasycznej ,listy
kontrolnej”, zawierajacej czesto wystepujace klasy lub tez proba okreslenia dziatania
jakiej$ konkretnej funkcji i wykrycia zwigzanych z nig klas.

Abstrakcja klasy

Kiedy juz w przyblizeniu znamy kilka klas z naszej aplikacji, mozemy sprébowac okresli¢
je blizej. Pamietajmy przy tym, ze definicja klasy sktada sie z dwdch koncepcyjnych
czesci:
> publicznego interfejsu, dostepnego dla uzytkownikéw klasy
> prywatnej implementacji, okreslajacej sposob realizacji zachowan okreslonych w
interfejsie

Cafq sztukg w modelowaniu pojedynczej klasy jest skoncentrowanie sie na pierwszym z
tych skfadnikdw, bedacym jej abstrakcja. Oznacza to zdefiniowanie roli, spetnianej
przez klase, bez doktadnego wgltebiania sie w to, jak bedzie ona te role odgrywata.

264 Podstawy programowania

Taka abstrakcja moze by¢ rowniez przedstawiona w postaci krétkiego, najczesciej
jednozdaniowego opisu w jezyku naturalnym, np.:

Klasa Dokument reprezentuje pojedynczy schemat, ktdry moze by¢ edytowany przez uzytkownika przy
uzyciu naszego programu.

Zauwazmy, ze powyzsze streszczenie nic nie mowi choéby o formie, w jakiej nasz
dokument-schemat bedzie przechowywany w pamieci. Czy to bedzie bitmapa, rysunek
wektorowy, zbidér innych obiektow albo moze jeszcze cos innego?... Wszystkie te
odpowiedzi moga by¢ poprawne, jednak na etapie okreslania abstrakcji klasy sg one poza
obszarem naszego zainteresowania.

Abstrakcja klasy jest okresleniem roli, jakg ta klasa petni w programie.

Jawne formutowanie opisu podobnego do powyzszego moze wydawac sie niepotrzebne,
skoro i tak przeciez bedzie on wymagat uszczegodtowienia. Posiadanie go daje jednak
mozliwos$c¢ prostej kontroli poprawnosci definicji klasy. Jezeli nie spetnia ona zatozonych
rol, to najprawdopodobniej zawiera btedy.

Sktadowe interfejsu klasy

Publiczny interfejs klasy to zbior metod, ktére mogg wywotywac jej uzytkownicy. Jego
okreslenie jest drugim etapem definiowania klasy i wyznacza zadania, jakie nalezy
wykonac¢ podczas jej implementacji.

Nasza klasa Dokument bedzie naturalnie zawierata kilka publicznych metod. Co ciekawe,
sporo informacji o nich mozemy ,wyciagnaé¢” i wydedukowac z juz raz analizowanego
opisu catego programu. Na jego podstawie dajg sie sprecyzowac takie funkcje jak:
» Otworz - otwierajacq dokument zapisany w pliku
» Zapisz - zachowujgca dokument w postaci pliku
> Eksportuj - metoda eksportujgca dokument do pliku graficznego z mozliwoscig
wyboru docelowego formatu

Z pewnoscia w toku dalszego projektowania aplikacji (by¢ moze w trakcie definicji
kolejnych klas albo ich zwigzkéw?) mozna by znalez¢ takze inne metody, ktérych
umieszczenie w klasie bedzie stusznym posunieciem. W kazdej sytuacji musimy jednak
pamietaé, aby postac klasy zgadzata sie z jej abstrakcja.

Moéwie o tym, gdyz nie powinienes zapominaé, ze projektowanie jest procesem ,
cyklicznym, w ktdrym moze wystepowac wiele iteracji oraz kilka podej$¢ do tego samego |
problemu. |

Implementacja

Implementacja klasy wyznacza droge, po jakiej przebiega realizacja zadan klasy,
okreslonych w abstrakcji oraz przyblizonych poprzez jej interfejs. Sktadajq sie na nig
wszystkie wewnetrzne skfadniki klasy, niedostepne jej uzytkownikéw - a wiec prywatne
pola, a takze kod poszczegoinych metod.

Dogmaty Scistej inzynierii oprogramowania mowiag, aby doktadne implementacje
poszczegolnych metod (zwane specyfikacjami algorytmow) byty dokonywane jeszcze
podczas projektowania programu. Do tego celu najczesciej uzywa sie pseudokodu, o
ktérym juz kiedys wspominatem. W nim zwykle zapisuje sie wstepne wersje algorytméw
metod.

Jednak wedtug mnie ma to sens chyba tylko wtedy, kiedy nad projektem pracuje wiele
0s6b albo gdy nie jestesmy zdecydowani, w jakim jezyku programowania bedziemy go
ostatecznie realizowac. Wydaje sie, ze obie sytuacje na razie nas nie dotyczq :)

Programowanie obiektowe 265

W praktyce wiec implementacja klasy jest dokonywana podczas programowania, czyli po
prostu pisania jej kodu. Mozna by zatem spierac sie, czy faktycznie nalezy ona jeszcze do
procesu projektowania. Osobiscie uwazam, ze to po prostu jego przedtuzenie, praktyczna
kontynuacja, realizacja - roznie mozna to nazywac, ale generalnie chodzi po prostu o
zaoszczedzenie sobie pracy. Laczenie projektowania z programowaniem jest w tym
wypadku uzasadnione.

abstrakcja

interfejs implementacja

e

o |*_ e projektowanie
h\-"'\-n.

prog ramaowanie

Schemat 28. Proces tworzenia klasy

Odktadanie implementacji na koniec projektowania, w zasadzie ,na styk” z kodowaniem
programu, jest zwykle konieczne. Zaimplementowanie klasy oznacza przeciez
zadeklarowanie i zdefiniowanie wszystkich jej skladowych - pdl i metod, publicznych i
prywatnych. Do tego wymagana jest juz petna wiedza o klasie - nie tylko o tym, co ma
robi¢, jak ma to robi¢, ale takze o jej zwigzkach z innymi klasami.

Zwigzki miedzy klasami

Potegg programowania obiektowego nie sg autonomiczne obiekty, ale wspotpracujace ze
sobg klasy. Kazda musi wiec wchodzi¢ z innymi przynajmniej w jedng relacje, czyli
zwigzek.

Obecnie zapoznamy sie z trzema rodzajami takich zwigzkéw. Spajajg one obiekty
poszczegdlnych klas i umozliwiajg realizacje zatozonych funkcji programu.

Dziedziczenie i zawieranie sie

Pierwsze dwa typy relacji bedziemy rozpatrywac razem z tego wzgledu, iz przy ich okazji
czesto wystepujg pewne nieporzumienia. Nie zawsze jest bowiem oczywiste, ktérego z
nich nalezy uzy¢ w niektorych sytuacjach. Postaram sie wiec rozwiac te watpliwosci,
zanim jeszcze zdazysz o nich pomyslec ;)

Zwigzek generalizacji-specjalizacji

Relacja ta jest niczym innym, jak tylko znanym ci juz dobrze dziedziczeniem.
Generalizacja-specjalizacja (ang. is-a relationship) to po prostu bardziej uczona nazwa
dla tego zwigzku.

266 Podstawy programowania

W dziedziczeniu wystepujg dwie klasy, z ktorych jedna jest nadrzedna, za$ druga
podrzedna. Ta pierwsza to klasa bazowa, czyli generalizacja; reprezentuje ona szeroki
zbior jakichs obiektéw. Wsrdd nich mozna jednak wyrdzni¢ takie, ktore zastugujg na
odrebny typ, czyli klase pochodng - specjalizacje.

Schemat 29. Ilustracja zwiqzku generalizacji-specjalizacji

Klasa bazowa jest czesto nazywana nadtypem, zas pochodna - podtypem. Na
schemacie bardzo dobrze wida¢, dlaczego :D

Najistotniejszg konsekwencjq uzycia tego rodzaju relacji jest przejecie przez klase
pochodng catej funkcjonalnosci, zawartej w klasie bazowej. Jako ze jest ona jej bardziej
szczegdtowym wariantem, mozliwe jest tez rozszerzenie odziedziczonych mozliwosci, lecz
nigdy - ich ograniczenie.

Klasa pochodna jest wiec po prostu pewnym rodzajem klasy bazowej.

Zwigzek agregacji

Agregacja (ang. has-a relationship) sugeruje zawieranie sie jednego obiektu w innym.
Mowigc inaczej, obiekt bedacy catoscig sktada sie z okreslonej liczby obiektdw-
sktadnikéw.

obiekt

N sktadnik

ey sktadnik

skiadnik

Schemat 30. Ilustracja zwiazku agregacji

Przykfaddw na podobne zachowanie nie trzeba daleko szuka¢. Wystarczy chociazby
rozejrzec sie po dysku twardym we wtasnym komputerze: nie dos$¢, ze zawiera on foldery

Programowanie obiektowe 267

i pliki, to jeszcze same foldery mogg zawierac inne foldery i pliki. Podobne zjawisko
wystepuje tez na przykiad dla kluczy i wartosci w Rejestrze Windows.

Implementacja tej relacji w C++ oznacza umieszczenie w deklaracji obiektu agregatu
pola, ktore bedzie reprezentowato jego sktadnik, np.:

// sktadnik
class CIngredient { /* ... */ };

// obiekt nadrzedny
class CAggregate
{
private:
// pole ze sktadowym skladnikiem
CIngredient* m pSkladnik;
public:
// konstruktor i destruktor
CAggregate () { m_pSkladnik = new CIngredient; }
~CAggregate () { delete m pSkladnik; }
}i

Mozna by tu takze zastosowac zmienng obiektowa, ale wtedy zwigzek statby sie
obligatoryjny, czyli musiat zawsze wystepowad. Natomiast w przypadku wskaznika
istnienie obiektu nie jest konieczne przez caty czas, wiec moze by¢ on tworzony i
niszczony w razie potrzeby.

Trzeba jednak uwaza¢, aby po kazdym zniszczeniu obiektu ustawia¢ jego wskaznik na
wartos¢ NULL. W ten sposob bedziemy mogli tatwo sprawdzac¢, czy nasz sktadnik istnieje,
czy tez nie. Unikniemy wiec bteddéw ochrony pamieci.

Odwieczny problem: by¢ czy miec?

Rozrdznienie pomiedzy dziedziczeniem a zawieraniem moze czasami nastrecza¢ pewnych
trudnosci. W takich sytuacjach istnieje na szczescie jedno proste rozwigzanie.

Otéz jezeli relacje pomiedzy dwoma obiektami lepiej opisuje okreslenie ,ma” (,zawiera”,
»Sktada sie” itp.), to nalezy zastosowac agregacje. Kiedy natomiast klasy sg naturalnie
potaczone poprzez stwierdzenie ,jest”, wtedy odpowiedniejszym rozwigzaniem jest
dziedziczenie.

Co to znaczy? Doktadnie to, co widzisz i o czym myslisz. Nalezy po prostu sprawdzic¢,
ktére ze sformutowan:

Klasal jest rodzajem KlasaZ.
Klasal zawiera obiekt typu KlasaZ.

jest poprawne, wstawiajgc oczywiscie nazwy swoich klas w oznaczonych miejscach, np.:

Kwadrat jest rodzajem Figury.
Samochod zawiera obiekt typu Kofo.

Mamy wiec kolejny przyktad na to, ze programowanie obiektowe jest bliskie ludzkiemu
sposobowi myslenia, co moze nas tylko cieszy¢ :)

Zwigzek asocjacji

Najbardziej ogdlnym zwigzkiem miedzy klasami jest przyporzadkowanie, czyli wtasnie
asocjacja (ang. uses-a relationship). Obiekty, ktorych klasy sq potgczone taka relacja,
posiadajg po prostu mozliwos¢ wymiany informacji miedzy soba podczas dziatania
programu.

268 Podstawy programowania

Praktyczna realizacja takiego zwigzku to zwykle uzycie przynajmniej jednego wskaznika,
a najprostszy wariant wyglada w ten sposdb:

class CFoo { /* ... */ };

class CBRar
{
private:
// wskaznik do potaczonego obiektu klasy CFoo
CFoo* m_pFoo;
public:
void UstanowRelacje (CFoo* pFoo) { m pFoo = pFoo; }
}i

tatwo tutaj zauwazy¢, ze zawieranie sie jest szczegdlnym przypadkiem asocjacji dwéch
obiektow.

Pofaczenie klas moze oczywiscie przybiera¢ znacznie bardziej pogmatwane formy, my zas
powinni$my je wszystkie doktadnie pozna¢ :D Pomdéwmy wiec o dwéch aspektach tego
rodzaju zwigzkéw: krotnosci oraz kierunkowosci.

Krotnos¢ zwigzku

Pod dziwng nazwa krotnosci kryje sie po prostu liczba obiektoéw, biorgcych udziat w
relacji. Trzeba bowiem wiedzie¢, ze przy asocjacji dwdch klas mozliwe sg rézne ilosci
obiektéw, wystepujacych z kazdej strony. Klasy sg przeciez tylko typami, z nich sg
dopiero tworzone wtasciwe obiekty, ktére w czasie dziatania aplikacji bedg sie ze sobg
komunikowaty i wykonywaty zadania programu.

Mozemy wiec wyrozni¢ cztery ogolne rodzaje krotnosci zwigzku:

> jeden do jednego. W takim przypadku pojedynczemu obiektowi jednej z klas
odpowiada rowniez pojedynczy obiekt drugiej klasy. Przyporzadkowanie jest
zatem jednoznaczne.

Z takimi relacjami mamy do czynienia bardzo czesto. Wezmy na przyktad dowolng
liste 0s6b - uczniow, pracownikéw itp. Kazdemu numerowi odpowiada tam jedno
nazwisko oraz kazde nazwisko ma swadj unikalny numer. Podobnie ,dziata” tez
choc¢by tablica znakéw ANSI.

» jeden do wielu. Tutaj pojedynczy obiekt jednej z klas jest przyporzadkowany
kilku obiektom drugiej klasy. Wyglada to podobnie, jak wtozenie skarpety do kilku
szuflad naraz - by¢ moze w prawdziwym $wiecie bytoby to trudne, ale w
programowaniu wszystko jest mozliwe ;)

> wiele do jednego. Ten rodzaj zwigzku oznacza, ze kilka obiektéow jednej z klas
jest potaczonych z pojedynczym obiektem drugiej klasy.

Dobrym przyktadem sg tu rozdziaty w ksigzce, ktérych moze by¢ wiele w jednej
publikacji. Kazdy z nich jest jednak przynalezny tylko jednemu tomowi.

> wiele do wielu. Najbardziej rozbudowany rodzaj relacji to ztgczenie wielu
obiektéw od jednej z klas oraz wielu obiektéw drugiej klasy.

Wracajac do przyktadu z ksigzkami mozemy stwierdzié, ze zwigzek miedzy
autorem a jego dzietem jest wtasnie takim typem relacji. Dany twdrca moze
przeciez napisac kilka ksigzek, a jednoczesnie jedno wydawnictwo moze by¢
redagowane przez wielu autorow.

Implementacja wielokrotnych zwigzkéw polega zwykle na tablicy lub innej tego typu
strukturze, przechowujacej wskazniki do obiektéw danej klasy. Doktadny sposdb
zakodowania relacji zalezy rzecz jasna takze od tego, jaka ilo$¢ obiektow rozumiemy pod
pojeciem ,wiele”...

Programowanie obiektowe 269

Pojedyncze zwigzki sg natomiast z powodzeniem programowane za pomoca poél,
bedacych wskaznikami na obiekty.

Widzimy wiec, ze poznanie obstugi obiektéw poprzez wskazniki w poprzednim rozdziale
. byto zdecydowanie dobrym pomystem :)

Tam i (by¢ moze) z powrotem

Gdy do obiektu jakiejs klasy dodamy pole - wskaznik na obiekt innej klasy, wtedy
utworzymy miedzy nimi relacje asocjacji. Zwigzek ten bedzie jednokierunkowy, gdyz
jedynie obiekt posiadajacy wskaznik stanie sie jego aktywna czescig i bedzie inicjowat
komunikacje z drugim obiektem. Ten drugi obiekt moze w zasadzie ,nie wiedziet”, ze jest
czescig relacji!

W zwiazku jednokierunkowym z pierwszego obiektu mozemy otrzymac drugi, lecz
odwrotna sytuacja nie jest mozliwa.

Naturalnie, niekiedy bedziemy potrzebowali obustronnego, wzajemnego dostepu do
obiektéw relacji. W takim przypadku nalezy zastosowac zwigzek dwukierunkowy.

W zwigzku dwukierunkowym oba obiekty maja do siebie wzajemny dostep.

Taka sytuacja czesto utatwia pisanie bardziej skomplikowanego kodu oraz organizacje
przeplywu danych. Jej implementacja napotyka jednak ma pewng, zdawatoby sie
nieprzekraczalng przeszkode. Popatrzmy bowiem na taki oto kod:

class CFoo

{
private:
// wskaznik do potaczonego obiektu CBar
CBar* m_pBar;

}i

class CBar

{
private:
// wskaznik do potaczonego obiektu CFoo
CFoo* m_pFoo;

}s

Zdawatoby sie, ze poprawnie realizuje on zwigzek dwukierunkowy klas CFoo i CBar. Proba
jego kompilacji skonczy sie jednak niepowodzeniem, a to z powodu wskaznika na obiekt
klasy cBar, zadeklarowanego wewnatrz cFoo. Kompilator analizuje bowiem kod
sekwencyjnie, wiersz po wierszu, zatem na etapie definicji CFoo nie ma jeszcze bladego
pojecia o klasie cBar, wiec nie pozwala na zadeklarowanie wskaznika do niej.

tatwo przewidzie¢, ze zamiana obu definicji miejscami w niczym tu nie pomoze.
Dochodzimy do paradoksu: aby zdefiniowaé pierwszg klase, potrzebujemy drugiej klasy,
zas by zdefniowac drugg klasg, potrzebujemy definicji pierwszej klasy! Sytuacja wydaje
sie by¢ zupetnie bez wyjscia...

A jednak rozwigzanie istnieje, i jest do tego bardzo proste. Skoro kompilator nie wie, ze
CBar jest klasg, trzeba mu o tym zawczasu powiedzie¢. Aby jednak znowu nie wpasé w
btedne koto, nie udzielimy o cBar zadnych blizszych informacji; zamiast definicji
zastosujemy deklaracje zapowiadajaca:

class CBar; // rzeczona deklaracja

270 Podstawy programowania

// (dalej definicje obu klas, Jjak w kodzie wyzej)

Po tym zabiegu kompilator bedzie juz wiedziat, ze cBar jest typem (doktadnie klasq) i
pozwoli na zadeklarowanie odpowiedniego wskaznika jako pola klasy CcFoo.

Niektdrzy, by unikna¢ takich sytuacji, od razu deklarujg deklarujg wszystkie klasy przed
ich zdefiniowaniem. ‘

Widzimy wiec, ze zwigzki dwukierunkowe, jakkolwiek wygodniejsze niz jednokierunkowe,
wymagajg nieco wiecej uwagi. Sq tez zwykle mniej wydajne przy faczeniu nim duzej
liczby obiektow. Prowadzi to do prostego wniosku:

Nie nalezy stosowac zwigzkow dwukierunkowych, jezeli w konkretnym przypadku
wystarczg relacje jednokierunkowe.

Xk k

Projektowanie aplikacji nawet z uzyciem technik obiektowych nie zawsze jest prostym
zadaniem. Ten podrozdziat powinien jednak stanowié jakgs pomoc w tym zakresie. Nie da
sie jednak ukry¢, ze praktyka jest zawsze najlepszym nauczycielem, dlatego
zdecydowanie nie powiniene$ jej unika¢ :) Samodzielne zaprojektowanie i wykonanie
chocby prostego programu obiektowego bedzie bardziej pouczajace niz lektura
najobszerniejszych podrecznikdéw.

Konczacy sie podrozdziat w wielu miejscach dotykat zagadnien inzynierii
oprogramowania. Jezeli chciatbys$ poszerzy¢ swojg wiedze na ten temat (a warto), to
zapraszam do Materiatu Pomocniczego C, Podstawy inzynierii oprogramowania.

Podsumowanie

Kolejny bardzo dtugi i bardzo wazny rozdziat :) Zawiera on bowiem dokonczenie opisu
techniki programowania obiektowego.

RozpoczeliSmy od mechanizmu dziedziczenia oraz jego roli w ponownym
wykorzystywaniu kodu. ZobaczyliSmy tez, jak tworzy¢ proste i bardziej ztozone hierarchie
klasy.

Dalej byto nawet ciekawiej: dzieki metodom wirtualnym i polimorfizmu przekonalismy
sie, ze programowanie z uzyciem technik obiektowych jest efektywniejsze i prostsze niz
dotychczas.

Na koniec zostates$ tez obdarzony sporg porcjg informaciji z zakresu projektowania
aplikacji. Dowiedziate$ sie wiec o rodzajach obiektéw, sposobach znajdowania wiasciwych
klas oraz zwigzkach miedzy nimi.

W nastepnym rozdziale - ostatnim w podstawowym kursie C++ - przypatrzymy sie

wskaznikom jako takim, juz niekoniecznie w kontekscie OOPu. Poméwimy tez o pamieci,
jej alokowaniu i zwalnianiu.

Pytania i zadania

Na konicu rozdziatu nie moze naturalnie zabrakna¢ odpowiedniego pakietu pytan oraz
¢wiczen :)

Programowanie obiektowe 271

Pytania

1.

A

®NOU AW

o.

Na czym polega mechanizm dziedziczenia i jakie zjawisko jest jego gtéwnym
skutkiem?

Jaka jest roznica miedzy specyfikatorami praw dostepu do skladowych, private
oraz protected?

Co nazywamy ptaskag hierarchig klas?

Czym rozni sie metoda wirtualna od zwykiej?

Co jest szczegolng cechg klasy abstrakcyjnej?

Kiedy klasa jest typem polimorficznym?

Na czym polegajq polimorficzne zachowania klas w C++7?

Co to jest RTTI? Na jakie dwa sposoby mechanizm ten umozliwia sprawdzenie
klasy obiektu, na ktéry wskazuje dany wskaznik?

Jakie trzy rodzaje obiektéw mozna wyrdzni¢ w programie?

10. Czym jest abstrakcja klasy, a czym jej implementacja?
11. Podaj trzy typy relacji miedzy klasami.

Cwiczenia

1.
2.

Zaprojektuj dowolng, dwupoziomowgq hierarchie klas.

(Trudne) Napisz obiektowg wersje gry Kétko i krzyzyk z rozdziatu 1.5.
Wskazdwki: dobrym kandydatem na obiekt jest oczywiscie plansza. Zdefiniuj tez
klase graczy, przechowujacg ich imiona (niech program pyta sie o nie na poczatku
gry).

