
8
WSKAŹNIKI

Im bardziej zaglądał do środka,

tym bardziej nic tam nie było.
A. A. Milne „Kubuś Puchatek”

Dwa poprzednie rozdziały upłynęły nam na poznawaniu różnorodnych aspektów
programowania obiektowego. Nawet teraz, w kilkanaście lat po powstaniu, jest ona
czasem uważana może nie za awangardę, ale poważną nowość i „odstępstwo” od
„klasycznych” reguł programowania.
Takie opinie, pojawiające się oczywiście coraz rzadziej, są po części echem dawnej
popularności języka C. Fakt, że C++ zachowuje wszystkie właściwości swego
poprzednika, zdaje się usprawiedliwać podejście, iż są one ważniejsze i bardziej znaczące
niż „dodatki” wprowadzone wraz z dwoma plusami w nazwie języka. Do owych
„dodatków” ma rzecz jasna należeć programowanie obiektowe.

Sprawia to, że ogromna większość kursów i podręczników języka C++ jest
usystematyzowana wedle osobliwej zasady. Otóż mówi ona, że najpierw należy wyłożyć
wszystkie zagadnienia związane z C, a dopiero potem zająć się „nowinkami”, w które
został wyposażony jego następca.
Zastanawiając się nad tym bliżej, można nieomal nabrać wątpliwości, czy w ten sposób
nadal uczymy się przede wszystkim programowania, czy może bardziej zajmują nas już
kwestie formalne danego języka? Jeżeli nawet nie odnosimy takiego wrażenia, to
nietrudno znaleźć szczęśliwsze i bardziej naturalne drogi poznania tajników kodowania.

Pamiętajmy, że programowanie jest raczej praktyczną dziedziną informatyki, a jego
nauka jest w dużej mierze zdobywaniem umiejętności, a nie tylko samej wiedzy. Dlatego
też wymaga ona mniej teoretycznego nastawienia, a więcej wytrwałości w osiąganiu
coraz lepszego „wtajemniczenia” w zagadnienia programistyczne. Naturalną koleją rzeczy
jest więc uszeregowanie tych zagadnień według wzrastającego poziomu trudności czy też
ze względu na ich większą lub mniejszą użyteczność praktyczną.
Takie też założenie przyjąłem w tym kursie. Nie chcę sobie jednak robić autoreklamy
twierdząc, że jest on „inny niż wszystkie” pozostałe; mam nawet nadzieję, że to
określenie jest całkowitą nieprawdą i że istnieje jeszcze mnóstwo innych publikacji,
których autorzy skupili się głównie na nauczaniu programowania, a nie na opisywaniu
języków programowania.

Zatem zgodnie z powyższą tezą kwestie programowania obiektowego, jako niezwykle
ważne same w sobie, wprowadziłem tak wcześnie jak to tylko było możliwe - nie
przywiązując wagi to faktu, czy są one właściwe jeszcze językowi C, czy może już C++.
Bardziej liczyła się bowiem ich rzeczywista przydatność.
Na tej samej zasadzie opieram się także teraz, gdy przyszedł czas na szczegółowe
omówienie wskaźników. To również ważne zagadnienie, którego geneza nie wydaje się
wcale tak bardzo istotna. Najważniejsze, iż są one częścią języka C++, w dodatku jedną
z kluczowych - chociaż może nie najprostszych. Umiejętność właściwego posługiwania się
wskaźnikami oraz pamięcią operacyjną jest więc niebagatelna dla programisty C++.
Opanowaniu przez ciebie tej umiejętności został poświęcony cały niniejszy rozdział.
Możesz więc do woli z niego korzystać :)

Podstawy programowania 274

Ku pamięci
Wskaźniki są ściśle związane z pamięcią komputera - a więc miejscem, w którym
przechowuje on dane. Przydatne będzie zatem przypomnienie sobie (a może dopiero
poznanie?) kilku podstawowych informacji na ten temat.

Rodzaje pamięci
Można wyróżnić wiele rodzajów pamięci, jakimi dysponuje pecet, kierując się różnymi
przesłankami. Najczęściej stosuje się kryteria szybkości i pojemności; są one ważne
nie tylko dla nas, programistów, ale praktycznie dla każdego użytkownika komputera.

Nietrudno przy tym zauważyć, że są one ze sobą wzajemnie powiązane: im większa jest
szybkość danego typu pamięci, tym mniej danych można w niej przechowywać, i na
odwrót. Nie ma niestety pamięci zarówno wydajnej, jak i pojemnej - zawsze potrzebny
jest jakiś kompromis.
Zjawisko to obrazuje poniższy wykres:

Wykres 2. Szybkość oraz pojemność kilku typów pamięci komputera

Zostały na nim umieszczone wszystkie rodzaje pamięci komputera, jakimi się zaraz
dokładnie przyjrzymy.

Rejestry procesora
Procesor jest jednostką obliczeniową w komputerze. Nieszczególnie zatem kojarzy się z
przechowywaniem danych w jakiejś formie pamięci. A jednak posiada on własne jej
zasoby, które są kluczowe dla prawidłowego funkcjonowania całego systemu. Nazywamy
je rejestrami.

Każdy rejestr ma postać pojedynczej komórki pamięci, zaś ich liczba zależy głównie od
modelu procesora (generacji). Wielkość rejestru jest natomiast potocznie znana jako
„bitowość” procesora: najpopularniejsze obecnie jednostki 32-bitowe mają więc rejestry
o wielkości 32 bitów, czyli 4 bajtów.

Ten sam rozmiar mają też w C++ zmienne typu int, i nie jest to bynajmniej
przypadek :)

Większość rejestrów ma ściśle określone znaczenie i zadania do wykonania. Nie są one
więc przeznaczone do reprezentowania dowolnych danych, które by się weń zmieściły.
Zamiast tego pełnią różne ważne funkcje w obrębie całego systemu.
Ze względu na wykonywane przez siebie role, wśród rejestrów procesora możemy
wyróżnić:

Wskaźniki 275

 cztery rejestry uniwersalne (EAX, EBX, ECX i EDX92). Przy ich pomocy procesor
wykonuje operacje arytmetyczne (dodawanie, odejmowanie, mnożenie i
dzielenie). Niektóre wspomagają też wykonywanie programów, np. EAX jest
używany do zwracania wyników funkcji, zaś ECX jako licznik w pętlach.
Rejestry uniwersalne mają więc największe znaczenie dla programistów (głównie
asemblera), gdyż często są wykorzystywane na potrzeby ich aplikacji. Z
pozostałych natomiast korzysta prawie wyłącznie sam procesor.

Każdy z rejestrów uniwersalnych zawiera w sobie mniejsze, 16-bitowe, a te z kolei po
dwa rejestry ośmiobitowe. Mogą one być modyfikowane niezależnie do innych, ale trzeba
oczywiście pamiętać, że zmiana kilku bitów pociąga za sobą pewną zmianę całej wartości.

 rejestry segmentowe pomagają organizować pamięć operacyjną. Dzięki nim
procesor „wie”, w której części RAMu znajduje się kod aktualnie działającego
programu, jego dane itp.

 rejestry wskaźnikowe pokazują na ważne obszary pamięci, jak choćby
aktualnie wykonywana instrukcja programu.

 dwa rejestry indeksowe są używane przy kopiowaniu jednego fragmentu
pamięci do drugiego.

Ten podstawowy zestaw może być oczywiście uzupełniony o inne rejestry, jednak
powyższe są absolutnie niezbędne do pracy procesora.

Najważniejszą cechą wszystkich rejestrów jest błyskawiczny czas dostępu. Ponieważ
ulokowane są w samym procesorze, skorzystanie z nich nie zmusza do odbycia
„wycieczki” wgłąb pamięci operacyjnej i dlatego odbywa się wręcz ekspresowo. Jest to w
zasadzie najszybszy rodzaj pamięci, jakim dysponuje komputer.
Ceną za tę szybkość jest oczywiście znikoma objętość rejestrów - na pewno nie można w
nich przechowywać złożonych danych. Co więcej, ich panem i władcą jest tylko i
wyłącznie sam procesor, zatem nigdy nie można mieć pewności, czy zapisane w nich
informacje nie zostaną zastąpione innymi. Trzeba też pamiętać, że nieumiejętne
manipulowanie innymi rejestrami niż uniwersalne może doprowadzić nawet do
zawieszenia komputera; na tak niskim poziomie nie ma już bowiem żadnych
komunikatów o błędach…

Zmienne przechowywane w rejestrach
Możemy jednak odnieść pewne korzyści z istnienia rejestrów procesora i sprawić, by
zaczęły działać po naszej stronie. Jako niezwykle szybkie porcje pamięci są idealne do
przechowywania małych, ale często i intensywnie używanych zmiennych.

Na dodatek nie musimy wcale martwić się o to, w którym dokładnie rejestrze możemy w
danej chwili zapisać dane oraz czy pozostaną one tam nienaruszone. Czynności te można
bowiem zlecić kompilatorowi: wystarczy jedynie użyć słowa kluczowego register - na
przykład:

register int nZmiennaRejestrowa;

Gdy opatrzymy deklarację zmiennej tym modyfikatorem, to będzie ona w miarę
możliwości przechowywana w którymś z rejestrów uniwersalnych procesora. Powinno to
rzecz jasna przyspieszyć działanie całego programu.

92 Wszystkie nazwy rejestrów odnoszą się do procesorów 32-bitowych.

Podstawy programowania 276

Dostęp do rejestrów
Rejestry procesora, jako związane ścisle ze sprzętem, są rzeczą niskopoziomową. C++
jest zaś językiem wysokiego poziomu i szczyci się niezależnością od platformy
sprzętowej.

Powoduje to, iż nie posiada on żadnych specjalnych mechanizmów, pozwalających
odczytać lub zapisywać dane do rejestrów procesora. Zdecydowała o tym nie tylko
przenośność, ale i bezpieczeństwo - „mieszanie” w tak zaawansowanych obszarach
systemu może bowiem przynieść sporo szkody.

Jedynym sposobem na uzyskanie dostępu do rejestrów jest skorzystanie z wstawek
asemblerowych, ujmowanych w bloki __asm. Można o nich przeczytać w MSDN; używając
ich trzeba jednak mieć świadomość, w co się pakujemy :)

Pamięć operacyjna
Do sensownego funkcjonowania komputera potrzebne jest miejsce, w którym mógłby on
składować kod wykonywanych przez siebie programów (obejmuje to także system
operacyjny) oraz przetwarzane przez nie dane. Jest to stosunkowo spora ilość informacji,
więc wymaga znacznie więcej miejsca niż to oferują rejestry procesora. Każdy komputer
posiada więc osobną pamięć operacyjną, przeznaczoną na ten właśnie cel. Nazywamy
ją często angielskim skrótem RAM (ang. random access memory - pamięć o dostępie
bezpośrednim).

Skąd się bierze pamięć operacyjna?
Pamięć tego rodzaju utożsamiamy zwykle z jedną lub kilkoma elektronicznymi układami
scalonymi (tzw. kośćmi), włożonymi w odpowiednie miejsca płyty głównej peceta.

Fotografia 2. Kilka kości RAM typu DIMM

(zdjęcie pochodzi z serwisu Tom’s Hardware Guide)

Rzeczywiście jest to najważniejsza część tej pamięci (sama zwana jest czasem pamięcią
fizyczną), ale na pewno nie jedyna. Obecnie wiele podzespołów komputerowych posiada
własne zasoby pamięci operacyjnej, przystosowane do wykonywania bardziej
specyficznych zadań.
W szczególności dotyczy to kart graficznych i dźwiękowych, zoptymalizowanych do pracy
z właściwymi im typami danych. Ilość pamięci, w jaką są wyposażane, systematycznie
rośnie.

http://www.tomshardware.com/

Wskaźniki 277

Pamięć wirtualna
Istnieje jeszcze jedno, przebogate źródło dodatkowej pamięci operacyjnej: jest nim dysk
twardy komputera, a ściślej jego część zwana plikiem wymiany (ang. swap file) lub
plikiem stronnicowania (ang. paging file).

Obszar ten służy systemowi operacyjnemu do „udawania”, iż ma pokaźnie więcej pamięci
niż posiada w rzeczywistości. Właśnie dlatego taką symulowaną pamięć nazywamy
wirtualną.
Podobny zabieg jest niewątpliwie konieczny w środowisku wielozadaniowym, gdzie naraz
może być uruchomionych wiele programów. Chociaż w danej chwili pracujemy tylko z
jednym, to pozostałe mogą nadal działać w tle - nawet wówczas, gdy łączna ilość
potrzebnej im pamięci znacznie przekracza fizyczne możliwości komputera.

Ceną za ponadplanowe miejsce jest naturalnie wydajność. Dysk twardy charakteryzuje
się dłuższym czasem dostępu niż układy RAM, zatem wykorzystanie go jako pamięci
operacyjnej musi pociągnąć za sobą spowolnienie działania systemu. Dzieje się jednak
tylko wtedy, gdy uruchamiamy wiele aplikacji naraz.

Mechanizm pamięci wirtualnej, jako niemal niezbędny do działania każdego
nowoczesnego systemu operacyjnego, funkcjonuje zazwyczaj bardzo dobrze. Można
jednak poprawić jego osiągi, odpowiednio ustawiając pewne opcje pliku wymiany. Przede
wszystkim warto umieścić go na nieużywanej zwykle partycji (Linux tworzy nawet sam
odpowiednią partycję) i ustalić stały rozmiar na mniej więcej dwukrotność ilości
posiadanej pamięci fizycznej.

Pamięć trwała
Przydatność komputerów nie wykraczałaby wiele poza zastosowania kalkulatorów, gdyby
swego czasu nie wynaleziono sposobu na trwałe zachowywanie informacji między
kolejnymi uruchomieniami maszyny. Tak narodziły się dyskietki, dyski twarde,
zapisywalne płyty CD, przenośne nośniki „długopisowe” i inne media, służące do
długotrwałego magazynowania danych.
Spośród nich na najwięcej uwagi zasługują dyski twarde, jako że obecnie są niezbędnym
elementem każdego komputera. Zwane są czasem pamięcią trwałą (z wyjaśnionych
wyżej względów) albo masową (z powodu ich dużej pojemności).

Możliwość zapisania dużego zbioru informacji jest aczkolwiek okupiona ślamazarnością
działania. Odczytywanie i zapisywanie danych na dyskach magnetycznych trwa bowiem
zdecydowanie dłużej niż odwołanie do komórki pamięci operacyjnej. Ich wykorzystanie
ogranicza się więc z reguły do jednorazowego wczytywania dużych zestawów danych (na
przykład całych plików) do pamięci operacyjnej, poczynienia dowolnej ilości zmian oraz
powtórnego, trwałego zapisania. Wszelkie operacje np. na otwartych dokumentach są
więc w zasadzie dokonywane na ich kopiach, rezydujących wewnątrz pamięci
operacyjnej.

Nie zajmowaliśmy się jeszcze odczytem i zapisem informacji z plików na dysku przy
pomocy kodu C++. Nie martw się jednak, gdyż ostatecznie poznamy nawet więcej niż
jeden sposób na dokonanie tego. Pierwszy zdarzy się przy okazji omawiania strumieni,
będących częścią Biblioteki Standardowej C++.

Organizacja pamięci operacyjnej
Spośród wszystkich trzech rodzajów pamięci, dla nas w kontekście wskaźników
najważniejsza będzie pamięć operacyjna. Poznamy teraz jej budowę widzianą z
koderskiego punktu widzenia.

Podstawy programowania 278

Adresowanie pamięci
Wygodnie jest wyobrażać sobie pamięć operacyjną jako coś w rodzaju wielkiej tablicy
bajtów. W takiej strukturze każdy element (zmiemy go komórką) powinien dać się
jednoznacznie identyfikować poprzez swój indeks. I tutaj rzeczywiście tak jest - numer
danego bajta w pamięci nazywamy jego adresem.
W ten sposób dochodzimy też do pojęcia wskaźnika:

Wskaźnik (ang. pointer) jest adresem pojedynczej komórki pamięci operacyjnej.

Jest to więc w istocie liczba, interpretowana jako unikalny indeks danego miejsca w
pamięci. Specjalne znaczenie ma tu jedynie wartość zero, interpretowana jako wskaźnik
pusty (ang. null pointer), czyli nieodnoszący się do żadnej konkretnej komórki pamięci.
Wskaźniki służą więc jako łączą do określonych miejsc w pamięci operacyjnej; poprzez
nie możemy odwoływać się do tychże miejsc. Będziemy również potrafili pobierać
wskaźniki na zmienne oraz funkcje, zdefiniowane we własnych aplikacjach, i wykonywać
przy ich pomocy różne wspaniałe rzeczy :)

Zanim jednak zajmiemy się bliżej samymi wskaźnikami w języku C++, poświęćmy nieco
uwagi na to, w jaki sposób systemy operacyjne zajmują się organizacją i systematyzacją
pamięci operacyjnej - czyli jej adresowaniem. Pomoże nam to lepiej zrozumieć działanie
wskaźników.

Epoka niewygodnych segmentów
Dawno, dawno temu (co oznacza przełom lat 80. i 90. ubiegłego stulecia) większość
programistów nie mogła być zbytnio zadowolona z metod, jakich musieli używać, by
obsługiwać większe ilości pamięci operacyjnej. Była ona bowiem podzielona na tzw.
segmenty, każdy o wielkości 64 kilobajtów.
Aby zidentyfikować konkretną komórkę należało więc podać aż dwie opisujące jej liczby:
oczywiście numer segmentu, a także offset, czyli konkretny już indeks w ramach danego
segmentu.

Schemat 31. Segmentowe adresowanie pamięci. Adres zaznaczonej komórki zapisywano zwykle

jako 012A:0007, a więc oddzielając dwukropkiem numer segmentu i offset (oba zapisane w
systemie szesnastkowym). Do ich przechowywania potrzebne były dwie liczby 16-bitowe.

Może nie wydaje się to wielką niedogodnością, ale naprawdę było nią. Przede wszystkim
niemożliwe było operowanie na danych o rozmiarze większym niż owe 64 kB (a więc
chociażby na długich napisach). Chodzi też o fakt, iż to programista musiał martwić się o
rozmieszczenie kodu oraz danych pisanego programu w pamięci operacyjnej. Czas
pokazał, że obowiązek ten z powodzeniem można przerzucić na kompilator - co zresztą
wkrótce stało się możliwe.

Wskaźniki 279

Płaski model pamięci
Dzisiejsze systemy operacyjne mają znacznie wygodniejszy sposób organizacji pamięci
RAM. Jest nim właśnie ów płaski model (ang. flat memory model), likwidujący wiele
mankamentów swego segmentowego poprzednika.

32-bitowe procesory pozwalają mianowicie, by cała pamięć była jednym segmentem.
Taki segment może mieć rozmiar nawet 4 gigabajtów, więc z łatwością zmieszczą się w
nim wszystkie fizyczne i wirtualne zasoby RAMu.
To jednakże nie wszystko. Otóż płaski model umożliwia zgrupowanie wszystkich
dostępnych rodzajów pamięci operacyjnej (kości RAM, plik wymiany, pamięć karty
graficznej, itp.) w jeden ciągły obszar, zwany przestrzenią adresową. Programista nie
musi się przy tym martwić, do jakiego szczególnego typu pamięci odnosi się dany
wskaźnik! Na poziomie języka programowania znikają bowiem wszelkie praktyczne
różnice między nimi: oto mamy jeden, wielki segment całej pamięci operacyjnej i
basta!

Schemat 32. Idea płaskiego modelu pamięci. Adresy składają się tu tylko z offsetów,

przechowywanych jako liczby 32-bitowe. Mogą one odnosić się do jakiegokolwiek rzeczywistego
rodzaju pamięci, na przykład do takich jak na ilustracji.

W Windows dodatkowo każdy proces (program) posiada swoją własną przestrzeń
adresową, niedostępną dla innych. Wymiana danych może więc zachodzi jedynie poprzez
dedykowane do tego mechanizmy. Będziemy o nich mówić, gdy już przejdziemy do
programowania aplikacji okienkowych.

Przy takim modelu pamięci porównanie jej do ogromnej, jednowymiarowej tablicy staje
się najzupełniej słuszne. Wskaźniki można sobie wtedy całkiem dobrze wyobrażać jako
indeksy tej tablicy.

Stos i sterta
Na koniec wspomnimy sobie o dwóch ważnych dla programistów rejonach pamięci
operacyjnych, a więc właśnie o stosie oraz stercie.

Czym jest stos?

Stos (ang. stack) jest obszarem pamięci, który zostaje automatycznie przydzielony do
wykorzystania dla programu.

Podstawy programowania 280

Na stosie egzystują wszystkie zmienne zadeklarowane jawnie w kodzie (szczególne te
lokalne w funkcjach), jest on także używany do przekazywania parametrów do funkcji.

Faktycznie więc można by w ogóle nie wiedzieć o jego istnieniu. Czasem jednak objawia
się ono w dość nieprzyjemny sposób: poprzez błąd przepełnienia stosu (ang. stack
overflow). Występuje on zwykle wtedy, gdy nastąpi zbyt wiele wywołań funkcji.

O stercie
Reszta pamięci operacyjnej nosi oryginalną nazwę sterty.

Sterta (ang. heap) to cała pamięć dostępna dla programu i mogąca być mu przydzielona
do wykorzystania.

Czytając oba opisy (stosu i sterty) pewnie trudno jest wychwycić między nimi jakieś
różnice, jednak w rzeczywistości są one całkiem spore.

Przede wszystkim, rozmiar stosu jest ustalany raz na zawsze podczas kompilacji
programu i nie zmienia się w trakcie jego działania. Wszelkie dane, jako są na nim
przechowywane, muszą więc mieć stały rozmiar - jak na przykład skalarne zmienne,
struktury czy też statyczne tablice.
Kontrolą pamięci sterty zajmuje się natomiast sam programista i dlatego może przyznać
swojej aplikacji odpowiednią jej ilość w danej chwili, podczas działania programu. Jest
to bardzo dobre rozwiązanie, kiedy konieczne jest przetwarzanie zbiorów informacji o
zmiennym rozmiarze.

Terminy ‘stos’ i ‘sterta’ mają w programowaniu jeszcze jedno znaczenie. Tak mianowicie
nazywają się dwie często wykorzystywane struktury danych. Omówimy je przy okazji
poznawania Biblioteki Standardowej C++.

Na tym zakończymy ten krótki wykład o samej pamięci operacyjnej. Część tych
wiadomości była niektórym pewnie doskonale znana, ale chyba każdy miał okazję
dowiedzieć się czegoś nowego :)

Wiedza ta będzie nam teraz szczególnie przydatna, gdyż rozpoczynamy wreszcie
zasadniczą część tego rozdziału, czyli omówienie wskaźników w języku C++: najpierw na
zmienne, a potem wskaźników na funkcje.

Wskaźniki na zmienne
Trudno zliczyć, ile razy stosowaliśmy zmienne w swoich programach. Takie statystyki nie
mają zresztą zbytniego sensu - programowanie bez użycia zmiennych jest przecież tym
samym, co prowadzenie samochodu bez korzystania z kierownicy ;D

Wiele razy przypominałem też, że zmienne rezydują w pamięci operacyjnej. Mechanizm
wskaźników na nie jest więc zupełnie logiczną konsekwencją tego zjawiska. W tym
podrozdziale zajmiemy się właśnie takimi wskaźnikami.

Używanie wskaźników na zmienne
Wskaźnik jest przede wszystkim liczbą - adresem w pamięci, i w takiej też postaci istnieje
w programie. Język C++ ma ponadto ścisłe wymagania dotyczące kontroli typów i z tego
powodu każdy wskaźnik musi mieć dodatkowo określony typ, na jaki wskazuje. Innymi

Wskaźniki 281

słowy, kompilator musi znać odpowiedź na pytanie: „Jakiego rodzaju jest zmienna, na
którą pokazuje dany wskaźnik?”. Dzięki temu potrafi zachowywać kontrolę nad typami
danych w podobny sposób, w jaki czyni to w stosunku do zwykłych zmiennych.

Obejmuje to także rzutowanie między wskaźnikami, o którym też sobie powiemy.

Wiedząc o tym, spójrzmy teraz na ten elementarny przykład deklaracji oraz użycia
wskaźnika:

// deklaracja zmiennej typu int oraz wskaźnika na zmienne tego typu
int nZmienna = 10;
int* pnWskaznik; // nasz wskaźnik na zmienne typu int

// przypisanie adresu zmiennej do naszego wskaźnika i użycie go do
// wyświetlenia jej wartości w konsoli
pnWskaznik = &nZmienna; // pnWskaznik odnosi się teraz do nZmienna
std::cout << *pnWskaznik; // otrzymamy 10, czyli wartość zmiennej

Dobra wiadomość jest taka, iż mimo prostoty ilustruje on większość zagadnień
związanych ze wskaźnikami na zmiennej. Nieco gorszą jest pewnie to, że owa prostota
może dla niektórych nie być wcale taka prosta :) Naturalnie, wyjaśnimy sobie po kolei, co
dzieje się w powyższym kodzie (chociaż komentarze mówią już całkiem sporo).

Oczywiście najpierw mamy deklarację zmiennej (z inicjalizacją), lecz nas interesuje
bardziej sposób zadeklarowania wskaźnika, czyli:

int* pnWskaznik;

Poprzez dodanie gwiazdki (*) do nazwy typu int informujemy kompilator, że oto nie ma
już do czynienia ze zwykłą zmienną liczbową, ale ze wskaźnikiem przeznaczonym do
przechowywania adresu takiej zmiennej. pWskaznik jest więc wskaźnikiem na
zmienne typu int, lub, krócej, wskaźnikiem na (typ) int.

A zatem mamy już zmienną, mamy i wskaźnik. Przydałoby się zmusić je teraz do
współpracy: niech pWskaznik zacznie odnosić się do naszej zmiennej! Aby tak było,
musimy pobrać jej adres i przypisać go do wskaźnika - o tak:

pnWskaznik = &nZmienna;

Zastosowany tutaj operator & służy właśnie w tym celu - do uzyskania adresu miejsca
w pamięci, gdzie egzystuje zmienna. Potem rzecz jasna zostaje on zapisany w
pnWskaznik; odtąd wskazuje on więc na zmienną nZmienna.

Na koniec widzimy jeszcze, że za pośrednictwem wskaźnika możemy dostać się do
zmiennej i użyć jej w ten sam sposób, jaki znaliśmy dotychczas, choćby do wypisania jej
wartości w oknie konsoli:

std::cout << *pnWskaznik;

Jak z pewnością przypuszczasz, operator * nie dokonuje tutaj mnożenia, lecz podejmuje
wartość zmiennej, z którą połączony został pnWskaznik; nazywamy to dereferencją
wskaźnika. W jej wyniku otrzymujemy na ekranie liczbę, którą oryginalnie przypisaliśmy
do zmiennej nZmienna. Bez zastosowania wspomnianego operatora zobaczyliśmy
wartość wskaźnika (a więc adres komórki w pamięci), nie zaś wartość zmiennej, na
którą on pokazuje. To oczywiście wielka różnica.

Podstawy programowania 282

Zaprezentowana próbka kodu faktycznie realizuje zatem zadanie wyświetlenia wartości
zmiennej nZmienna w iście okrężny sposób. Zamiast bezpośredniego przesłania jej do
strumienia wyjścia posługujemy się w tym celu dodatkowym pośrednikiem w postaci
wskaźnika.
Samo w sobie może to budzić wątpliwości co do sensowności korzystania ze wskaźników.
Pomyślmy jednak, że mając wskaźnik możemy umożliwić dostęp do danej zmiennej z
jakiegokolwiek miejsca programu - na przykład z funkcji, do której przekażemy go jako
parametr (w końcu to tylko liczba!). Potrafimy wtedy zaprogramować każdą czynność
(algorytm) i zapewnić jej wykonanie w stosunku do dowolnej ilości zmiennych, pisząc
odpowiedni kod tylko raz.

Więcej przekonania do wskaźników na zmiennej nabierzesz wówczas, gdy poznasz je
bliżej - i temu właśnie zadaniu poświęcimy teraz uwagę.

Deklaracje wskaźników
Stwierdziliśmy, że wskaźniki mogą z powodzeniem odnosić się do zmiennych - albo
ogólnie mówiąc, do danych w programie. Czynią to poprzez przechowywanie numeru
odpowiedniej komórki w pamięci, a zatem pewnej wartości. Sprawia to, że wskaźniki są
w rzeczy samej także zmiennymi.

Wskaźniki w C++ to zmienne należące do specjalnych typów wskaźnikowych.

Taki typ łatwo poznać po obecności przynajmniej jednej gwiazdki w jego nazwie. Jest nim
więc choćby int* - typ zmiennej pWskaznik z poprzedniego przykładu. Zawiera on
jednocześnie informację, na jaki rodzaj danych będzie nasz wskaźnik pokazywał - tutaj
jest to int. Typ wskaźnikowy jest więc typem pochodnym, zdefiniowanym na
podstawie jednego z już wcześniej istniejących.

To definiowanie może się odbywać ad hoc, podczas deklarowania konkretnej zmiennej
(wskaźnika) - tak było w naszym przykładzie i tak też postępuje się najczęściej.
Dozwolone (i przydatne) jest aczkolwiek stworzenie aliasów na typy wskaźnikowe
poprzez instrukcję typedef; standardowe nagłówki systemu Windows zawierają na
przykład wiele takich nazw.

Deklarowanie wskaźników jest zatem niczym innym, jak tylko wprowadzeniem do kodu
nowych zmiennych - tyle tylko, iż mają one swoiste przeznaczenie, inne niż reszta ich
licznych współbraci. Czynność ich deklarowania, a także same typy wskaźnikowe
zasługują przeto na szersze omówienie.

Nieodżałowany spór o gwiazdkę
Dowiedzieliśmy się już, że pisząc gwiazdkę po nazwie jakiegoś typu, uzyskujemy
odpowiedni wskaźnik na ten typ. Potem możemy użyć go, deklarując właściwy wskaźnik;
co więcej, możliwe jest uczynienie tego aż na cztery sposoby:

int* pnWskaznik;
int *pnWskaznik;
int*pnWskaznik;
int * pnWskaznik;

Widać więc, że owa gwiazdka „nie trzyma się” kurczowo nazwy typu (tutaj int) i może
nawet oddzielać go od nazwy deklarowanej zmiennej, bez potrzeby użycia w tym celu
spacji.

Wydawałoby się, że taka swoboda składniowa powinna tylko cieszyć. W rzeczywistości
jednak powoduje najczęściej trudności w rozumieniu kodu napisanego przez innych,

Wskaźniki 283

jeżeli używają oni innego sposobu deklarowania wskaźników niż „nasz”. Dlatego też
wielokrotnie próbowano ustalić jakiś jeden, słuszny wariant w tej materii… i w zasadzie
nigdy się to nie udało!

Podobnie rzecz ma się także z umieszczaniem nawiasów klamrowych po instrukcjach if,
else oraz nagłówkach pętli.

Jeśli więc chodzi o dwa ostatnie sposoby, to generalnie prawie nikt nich nie używa i
raczej nie jest to niespodzianką. Nieużywanie spacji czyni instrukcję mało czytelną, zaś
ich obecność po obu stronach znaku * nieodparcie przywodzi na myśl mnożenie, a nie
deklarację zmiennej.
Co do dwóch pierwszych metod, to w kwestii ich używania panuje niczym niezmącona
dowolność… Poważnie! W kodach, jakie spotkasz, na pewno będziesz miał okazję
zobaczyć obie te składnie. Argumenty stojące za ich wykorzystaniem są niemal tak samo
silne w przypadku każdej z nich - tak przynajmniej twierdzą ich zwolennicy.

Temu problemowi poświęcony jest nawet fragment FAQ autora języka C++.

Zauważyłeś być może, iż w tym kursie używam pierwszej konwencji i będę się tego
konsekwentnie trzymał. Nie chcę jednak nikomu jej narzucać; najlepiej będzie, jeśli sam
wypracujesz sobie odpowiadający ci zwyczaj i, co najważniejsze, będziesz go
konsekwentnie przestrzegał. Nie ma bowiem nic gorszego niż niespójny kod.

Z opisywanym problemem wiąże się jeszcze jeden dylemat, powstający gdy chcemy
zadeklarować kilka zmiennych - na przykład tak:

int* a, b;

Czy w ten sposób otrzymamy dwa wskaźniki (zmienne typu int*)?… Pozostawiam to
zainteresowanym do samodzielnego sprawdzenia93. Odpowiedź nie jest taka oczywista,
jak by się to wydawało na pierwszy rzut oka, zatem stosowanie takiej konstrukcji
pogarsza czytelność kodu i może być przyczyną błędów. Czuje się więc w obowiązku
przestrzec przed nią:

Nie próbuj deklarować kilku wskaźników w jednej instrukcji, oddzielając je przecinkami.

Trzeba niestety przyznać, że język C++ zawiera w sobie jeszcze kilka podobnych
niejasności. Będę zwracał na nie uwagę w odpowiednim czasie i miejscu.

Wskaźniki do stałych
Wskaźniki mają w C++ pewną, dość oryginalną cechę. Mianowicie, nierzadko aplikuje się
do nich modyfikator const, a mimo to cały czas możemy je nazywać zmiennymi.
Dodatkowo, ów modyfikator może być doń zastosowany aż na dwa różne sposoby.

Pierwszy z nich zakłada poprzedzenie nim całej deklaracji wskaźnika, co wygląda mniej
więcej tak:

const int* pnWskaznik;

const, jak wiemy, zmienia nam zmienną w stałą. Tutaj mamy jednak do czynienia ze
wskaźnikiem na zmienną, zatem działanie modyfikatora powoduje jego zmianę we…
wskaźnik na stałą :)

93 Można skorzystać z podanego wcześniej linka do FAQa.

http://www.research.att.com/~bs/bs_faq2.html#whitespace

Podstawy programowania 284

Wskaźnik na stałą (ang. pointer to constant) pokazuje na wartość, która może być
poprzez ten wskaźnik jedynie odczytywana.

Przypatrzmy się, jak wskaźnik na stałą może być wykorzystany w przykładowym kodzie:

// deklaracja zmiennej i wskaźnika do stałej
float fZmienna = 3.141592;
const float* pfWskaznik;

// związanie zmiennej ze wskaźnikiem
pfWskaznik = &fZmienna;

// pokazanie wartości zmiennej poprzez wskaźnik
std::cout << *pfWskaznik;

Przykład ten jest podobny do poprzedniego: za pośrednictwem wskaźnika odczytujemy
tu wartość zmiennej. Dozwolne jest zatem, aby ów wskaźnik był wskaźnikiem na stałą -
jako taki więc go deklarujemy:

const float* pfWskaznik;

Rożnica, jaką czyni modyfikator const, ujawni się przy próbie zapisania wartości do
zmiennej, na którą pokazuje wskaźnik:

*pfWskaznik = 1.0; // BŁĄD! pfWskaznik pokazuje na stałą wartość

Kompilator nie pozwoli na to. Decydując się na zadeklarowanie wskaźnika na stałą (tutaj
typu const float*) uznaliśmy bowiem, że będziemy tylko odczytywać wartość, do której
się on odnosi. Zapisywanie jest oczywiście pogwałceniem tej zasady.

Powyższa linijka byłaby rzecz jasna poprawna, gdyby pfWskaznik był zwykłym
wskaźnikiem typu float*.

Jeżeli wskaźnik na stałą jest dodatkowo wskaźnikiem na obiekt, to na jego rzecz
możliwe jest wywołanie jedynie stałych metod. Nie modyfikują one bowiem pól obiektu.

Wskaźnik na stałą umożliwia więc zabezpieczenie przed niepożądaną modyfikacją
wartości, na którą wskazuje. Z tego wzgledu jest dosyć często wykorzystywany w
praktyce, chociażby przy przekazywaniu parametrów do funkcji.

Stałe wskaźniki
Druga możliwość użycia const powoduje nieco inny efekt. Odmienne jest wówczas także
umiejscowienie modyfikatora w deklaracji wskaźnika:

float* const pfWskaznik;

Takie ustawienie powoduje mianowicie zadeklarowanie stałego wskaźnika zamiast
wskaźnika na stałą.

Stały wskaźnik (ang. const(ant) pointer) jest nieruchomy, na zawsze przywiązany do
jednego adresu pamięci.

Ten jeden jedyny i niezmienny adres możemy określić tylko podczas inicjalizacji
wskaźnika:

float fA;

Wskaźniki 285

float* const pfWskaznik = &fA;

Wszelkie późniejsze próby związania wskaźnika z inną komórką pamięci (czyli inną
zmienną) skończą się niepowodzeniem:

float fB;
pfWskaznik = &fB; // BŁĄD! pfWskaznik jest stałym wskaźnikiem

Zadeklarowanie stałego wskaźnika jest bowiem umową z kompilatorem, na mocy której
zobowiązujemy się nie zmieniać adresu, do którego tenże wskaźnik pokazuje.

Pole zastosowań stałych wskaźników jest, przyznam szczerze, raczej wąskie. Mimo to
mieliśmy już okazję korzystać z tego rodzaju wskaźników - i to niejednokrotnie. Gdzie?
Otóż stałym wskaźnikiem jest this, który, jak pamiętamy, pokazuje wewnątrz metod
klasy na aktualny jej obiekt. Nie ogranicza on w żaden sposób dostępu do tego obiektu,
jednak nie pozwala na zmianę samego wskazania; jest więc trwale związany z tym
obiektem.
Typem wskaźnika this wewnątrz metod klasy klasa jest więc klasa* const.

W przypadku stałych metod wskaźnik this nie pozwala także na modyfikację pól obiektu,
a zatem wskazuje na stałą. Jego typem jest wtedy const klasa* const, czyli mikst obu
rodzajów „stałości” wskaźnika.

Podsumowanie deklaracji wskaźników
Na sam koniec tematu deklarowania wskaźników tradycyjnie podam trochę wskazówek
dotyczacych składni oraz stosowalności praktycznej.

Składnie deklaracji wskaźnika możemy, opierając się na przykładach z poprzednich
paragrafów, przedstawić następująco:

[const] typ* [const] wskaźnik;

Możliwość występowania lub niewystępowania modyfikatora const w aż dwóch miejscach
deklaracji pozwala stwierdzić, że z każdego typu możemy wyprowadzić łącznie nawet
cztery odpowiednie typy wskaźnikowe. Ich charakterystykę przedstawia poniższa
tabelka:

typ wskaźnikowy nazwa dostęp do pamięci zmiana adresu
typ* wskaźnik (zwykły) odczyt i zapis dozwolona

const typ* wskaźnik do stałej wyłącznie odczyt dozwolona
typ* const stały wskaźnik odczyt i zapis niedozwolona

const typ* const stały wskaźnik do stałej wyłącznie odczyt niedozwolona

Tabela 12. Zestawienie typów wskaźnikowych

Czy jest jakiś prosty sposób na zapamiętanie, która deklaracja odpowiada jakiemu
rodzajowi wskaźników? No cóż, może nie jest to banalne, ale w pewien sposób zawsze
można sobie pomóc. Przede wszystkim patrzmy na frazę bezpośrednio za
modyfikatorem const.
Dla stałych wskaźników (przypominam, że to te, które zawsze wskazują na to samo
miejsce w pamięci) deklaracja wygląda tak:

typ* const wskaźnik;

Bezpośrednio po słowie const mamy więc nazwę wskaźnika, co razem daje const
wskaźnik. W wolnym tłumaczeniu znaczy to oczywiście ‘stały wskaźnik’ :)

Podstawy programowania 286

W przypadku wskaźników na stałe forma deklaracji przedstawia się następująco:

const typ* wskaźnik;

Używamy tu const w ten sam sposób, w jaki ze zmiennych czynimy stałe. W tym
przypadku mamy rzecz jasna do czynienia ze ‘wskaźnikiem na zmienną’, a ponieważ
const przemienia nam ‘zmienną’ w ‘stałą’, więc ostatecznie otrzymujemy ‘wskaźnik na
stałą’. Potwierdzenia tego możemy szukać w tabelce.

Niezbędne operatory
Na wszelkich zmiennych można w C++ wykonywać jakieś operacje i wskaźniki nie są w
tym względnie żadnym wyjątkiem. Posiadają nawet własne instrumentarium specjalnych
operatorów, dokonujących na nich pewnych szczególnych działań. To na nich właśnie
skupimy się teraz.

Pobieranie adresu i dereferencja
Wskaźnik powinien na coś wskazywać - to znaczy przechowywać adres jakieś komórki w
pamięci. Taki adres można uzyskać na wiele sposobów, w zależności od tego, jakie
znaczenie ma owa komórka w programie. Dla zmiennych właściwą metodą jest użycie
operatora pobierania adresu, oznaczanego znakiem & (ampersandem).
Popatrzmy na niniejszy przykład:

// zadeklarowanie zmiennej oraz odpowiedniego wskaźnika
unsigned uZmienna;
unsigned* puWskaznik;

// pobranie adresu zmiennej i zapisanie go we wskaźniku
puWskaznik = &uZmienna;

Wyrażenie &uZmienna reprezentuje tutaj wartość liczbową, będącą adresem miejsca w
pamięci, w którym rezyduje zmienna uZmienna. Typem tej zmiennej jest unsigned;
wyrażenie &uZmienna jest natomiast przynależne typowi wskaźnikowemu unsigned*.
Przypisujemy go więc zmiennej tego typu, czyli wskaźnikowi puWskaznik. Odtąd odnosi
się on do naszej zmiennej liczbowej i może być użyty w celu odwołania się do niej.
Prezentowany tu operator & jest więc unarny - żądą tylko jednego argumentu: obiektu,
którego adres ma uzyskać. Zwraca go w wyniku, zaś typem tego rezultatu jest
odpowiedni typ wskaźnikowy - zobaczyliśmy to zresztą na powyższym przykładzie.

Przypominam, że adres zmiennej możemy przypisać jedynie do niestałego
(„ruchomego”) wskaźnika.

Mając wskaźnik, chciałoby się odwołać do komórki w pamięci, czyli zmiennej, na którą on
wskazuje. Potrzebujemy zatem operatora, który dokona czynności odwrotnej niż operator
&, a więc wydobędzie zmienną spod adresu przechowywanego przez wskaźnik. Dokonuje
tego operator dereferencji, symbolem którego jest * (asterisk albo po prostu
gwiazdka). Czynność przez niego wykonywaną nazywamy więc dereferencją wskaźnika.
Wystarczy spojrzeć na poniższy kod, a wszystko stanie się jasne:

// zapisanie wartości w komórce pamięci, na którą pokazuje wskaźnik
*puWskaznik = 123;

// odczytanie i wyświetlenie tej wartości
std::cout << "Wartosc zmiennej uZmienna: " << *puWskaznik;

Widzimy, że operator ten jest także unarny, co w oczywisty sposób różni go od
operatora mnożenia, który w C++ jest przecież reprezentowany przez ten sam znak.

Wskaźniki 287

Argumentem operatora jest naturalnie wskaźnik, przechowujący adres miejsca w
pamięci, do którego chcemy się dostać. W wyniku działania tego operatora otrzymujemy
możliwość odczytania oraz ewentualnie zapisania tam jakiejś wartości.
Typ tej wartości musi się jednak zgadzać z typem wskaźnika: jeżeli u nas był to
unsigned*, to po dereferencji zostanie typ unsigned, akceptujący tylko dodatnie liczby
całkowite. Podobnie z wyrażenia *puWskaznik możemy skorzystać jedynie tam, gdzie
dozwolone są tego rodzaju wartości.

Wyrażenie *pWskaznik jest tu tak zwaną l-wartością (ang. l-value). Nazwa bierze się
stąd, iż taka wartość może występować po lewej (ang. left) stronie operatora
przypisania. Typowymi l-wartościami są więc zmienne, a w ogólności są to wszystkie
wyrażenia, za którymi kryją się konkretne miejsca w pamięci operacyjnej i które nie
zostały opatrzone modyfikatorem const.
Dla odróżnienia, r-wartość (ang. r-value) jest dopuszczalna tylko po prawej (ang. right)
stronie operatora przypisania. Ta grupa obejmuje oczywiście wszystkie l-wartości, a
także liczby, znaki i ich łańcuchy (tzw. stałe dosłowne) oraz wyniki obliczeń z użyciem
wszelkiego rodzaju operatorów (wykorzystujących tymczasowe obiekty).

Pamiętajmy, że zapisanie danych do komórki pokazywanej przez wskaźnik jest możliwe
tylko wtedy, gdy nie jest on wskaźnikiem do stałej.

Natura operatorów & i * sprawia, że najlepiej rozpatrywać je łącznie. Powiedzieliśmy
sobie nawet, że ich funkcjonowanie jest sobie wzajemnie przeciwstawne. Ilustruje to
dobrze poniższy diagram:

Schemat 33. Działanie operatorów: pobrania adresu i dereferencji

Warto również wiedzieć, że pobranie adresu zmiennej oraz dereferencja wskaźnika są
możliwe zawsze, niezależnie od typu tejże zmiennej czy też wskaźnika. Dopiero inne
związane z tym operacje, takie jak zachowanie adresu w zmiennej wskaźnikowej lub
zapisanie wartości w miejscu, do którego odwołuje się wskaźnik, może napotykać
ograniczenia związane z typami zmiennej i/lub stosowanego wskaźnika.

Wyłuskiwanie składników
Trzeci operator wskaźnikowy jest nam już znany od wprowadzenia OOPu. Operator
wyłuskania -> (strzałka) służy do wybierania składników obiektu, na który wskazuje
wskaźnik. Pod pojęciem ‘obiektu’ kryje się tu zarówno instancja klasy, jak i typu
strukturalnego lub unii.

Ponieważ znamy już doskonale tę konstrukcję, na prostym przykładzie prześledzimy
jedynie związek tego operatora z omówionymi przed chwilą & i *.
Załóżmy więc, że mamy taką oto klasę:

Podstawy programowania 288

class CFoo
{
 public:
 int Metoda() const { return 1; }
};

Tworząc dynamicznie jej instancję przy użyciu wskaźnika, możemy wywołać składowe
metody:

// stworzenie obiektu
CFoo* pFoo = new CFoo;

// wywołanie metody
std::cout << pFoo->Metoda();

pFoo jest tu wskaźnikiem, takim samym jak te, z których korzystaliśmy dotąd; wskazuje
na typ złożony - obiekt. Wykorzystując operator -> potrafimy dostać się do tego obiektu i
wywołać jego metodę, co też niejednokrotnie czyniliśmy w przeszłości.
Zwróćmy jednakowoż uwagę, że ten sam efekt osiągnęlibyśmy dokonując dereferencji
naszego wskaźnika i stosując drugi z operatorów wyłuskania - kropkę:

// inna metoda wywołania metody Metoda() ;D
(*pFoo).Metoda();

// zniszczenie obiektu
delete pFoo;

Nawiasy pozwalają nie przejmować się tym, który z operatorów: * czy . ma wyższy
priorytet. Ich wykorzystywanie jest więc zawsze wskazane, o czym zresztą nie raz
wspominam :)

Analogicznie, można instancjować obiekt poprzez zmienną obiektową i mimo to używać
operatora -> celem dostępu do jego składowych:

// zmienna obiektowa
CFoo Foo;

// obie poniższe linijki robią to samo
std::cout << Foo.Metoda();
std::cout << (&Foo)->Metoda();

Tym razem bowiem pobieramy adres obiektu, czyli wskaźnik na niego, i aplikujemy doń
wskaźnikowy operator wyłuskania ->.

Widzimy zatem wyraźnie, że oba operatory wyłuskania mają charakter mocno umowny i
teoretycznie mogą być stosowane zamiennie. W praktyce jednak korzysta się zawsze z
kropki dla zmiennych obiektowych oraz strzałki dla wskaźników, i to z bardzo prostego
powodu: wymuszenie zaakceptowania drugiego z operatorów wiąże się przecież z
dodatkową czynnością pobrania adresu albo dereferencji. Łącznie zatem używamy
wtedy dwóch operatorów zamiast jednego, a to z pewnością może odbić się na
wydajności kodu.

Konwersje typów wskaźnikowych
Dwa poznane operatory nie wyczerpują rzecz jasna asortymentu operacji, jakich możemy
dokonywać na wskaźnikach. Dosyć często zachodzi bowiem potrzeba przypisywania
wskaźników, których typy są w większym lub mniejszym stopniu niezgodne - podobnie

Wskaźniki 289

zresztą jak to czasem bywa dla zwykłych zmiennych. W takich przypadkach z pomocą
przychodzą nam różne metody konwersji typów wskaźnikowych, jakie oferuje C++.

Matka wszystkich wskaźników
Przypomnijmy sobie definicję wskaźnika, jaką podaliśmy na początku rozdziału. Otóż jest
to przede wszystkim adres jakiejś komórki (miejsca) w pamięci. Przy jej płaskim modelu
sprowadza się to do pojedynczej liczby bez znaku.

Na przechowywanie takiej liczby wystarczyłby więc tylko jeden typ zmiennej liczbowej!
C++ oferuje jednak możliwość definiowania własnych typów wskaźnikowych w oparciu o
już istniejące, inne typy. Cel takiego postępowania jest chyba oczywisty: tylko znając typ
wskaźnika możemy dokonać jego dereferencji i uzyskać zmienną, na którą on wskazuje.
Informacja o docelowym typie wskazywanych danych jest więc niezbędna do ich
użytkowania.

Możliwe jest aczkolwiek zadeklarowanie ogólnego wskaźnika (ang. void pointer lub
pointer to void), któremu nie są przypisane żadne informacje o typie. Taki wskaźnik jest
więc jedynie adresem samym w sobie, bez dodatkowych wiadomości o rodzaju danych,
jakie się pod tym adresem znajdują.
Aby zadeklarować taki wskaźnik, zamiast nazwy typu wpisujemy mu void:

void* pWskaznik; // wskaźnik, który może pokazywać na wszystko

Ustalamy tą drogą, iż nasz wskaźnik nie będzie związany z żadnym konkretnym typem
zmiennych. Nic nie wiadomo zatem o komórkach pamięci, do których się on odnosi -
mogą one zawierać dowolne dane.
Brak informacji o typie upośledza jednak podstawowe właściwości wskaźnika. Nie mogąc
określić rodzaju danych, na które pokazuje wskaźnik, kompilator nie może pozwolić na
dostęp do nich. Powoduje to, że:

Niedozwolone jest dokonanie dereferencji ogólnego wskaźnika typu void*.

Cóż bowiem otrzymalibyśmy w jej wyniku? Jakiego typu byłoby wyrażenie *pWskaznik?
void?… Nie jest to przecież żaden konkretny typ danych. Słusznie więc dereferencja
wskaźnika typu void* jest niemożliwa.

Ułomność takich wskaźników nie jest zbytnią zachętą do ich stosowania. Czym więc
zasłużyły sobie na tytuł paragrafu im poświęconego?…
Otóż mają one jedną szczególną i przydatną cechę, związaną z brakiem wiadomości o
typie. Mianowicie:

Wskaźnik typu void* może przechowywać dowolny adres z pamięci operacyjnej.

Możliwe jest zatem przypisanie mu wartości każdego innego wskaźnika (z wyjątkiem
wskaźników na stałe). Poprawny jest na przykład taki oto kod:

int nZmienna;
void* pWskaznik = &nZmienna; // &nZmienna jest zasadniczo typu int*

Fakt, że wskaźnik typu void* to tylko sam adres, bez dodatkowych informacji o typie,
przeznaczonych dla kompilatora, sprawia, że owe informacje są tracone w momencie
przypisania. Wskazywanym w pamięci danym nie dzieje się naturalnie żadna krzywda,
jedynie my tracimy możliwość odwoływania się do nich poprzez dereferencję.

Czy przypadkiem czegoś nam to nie przypomina?… W miarę podobna sytuacja miała
przecież okazję zainstnieć przy okazji programowania obiektowego i polimorfizmu.

Podstawy programowania 290

Wskaźnik do obiektu klasu pochodnej mogliśmy bowiem przypisać do wskaźnika na
obiekt klasy bazowej i używać go potem tak samo, jak każdego innego wskaźnika na
obiekt tej klasy.
Tutaj typ void* jest czymś rodzaju „typu bazowego” dla wszystkich innych typów
wskaźnikowych. Możliwe jest zatem przypisywanie ich wskaźników zmiennym typu
void*. Wówczas tracimy wprawdzie wiedzę o pierwotnym typie wskaźnika, ale
zachowujemy to, co najważniejsze: adres przechowywany przez wskaźnik

Przywracanie do stanu używalności
Cały problem z ogólnymi wskaźnikami polega na tym, że przy ich pomocy nie możemy w
zasadzie zrobić niczego konkretnego. Dereferencja nie wchodzi w grę z powodu
niedostatecznych informacji o typie danych, na które wskaźnik pokazuje. Żeby móc z
tych danych skorzystać, musimy więc przekazać kompilatorowi niezbędne informacje o
ich typie. Dokonujemy tego poprzez rzutowanie.

Operacja rzutowania wskaźnika typu void* na inny typ wskaźnikowy jest przede
wszystkim zabiegiem formalnym. Zarówno przed nią, jak i po niej, mamy bowiem do
czynienia z adresem tej samej komórki w pamięci. Jej zawartość jest jednak inaczej
interpretowana.
Dokonanie takiego rzutowania nie jest trudne - wystarczy posłużyć się standardowym
operatorem static_cast:

// zmienna oraz ogólny wskaźnik, do której zapiszemy jej adres
int nZmienna = 17011987;
void* pVoid = &nZmienna;

// ponowne wykorzystanie owego adresu we wskaźniku na typ unsigned
// stosujemy rzutowanie, aby przypisać mu wskaźnik typu void*
unsigned* puLiczba = static_cast<unsigned*>(pVoid);

// wyświetlenie wartości pokazywanej przez wskaźnik
std::cout << *puLiczba; // wynikiem jest wartość zmiennej nZmienna

W powyższym przykładzie wskaźnik typu int* zostaje najpierw zredukowany do void*,
by potem poprzez rzutowanie zostać zinterpretowany jako unsigned*. Cały czas
pokazuje on oczywiście na to samo miejsce w pamięci, tyle że w toku programu jest ono
traktowane na różne sposoby.

Między palcami kompilatora
Chwileczkę! Przecież tą drogą możemy zwyczajnie oszukać kompilator i sprawić, że
zacznie on traktować jakiś typ danych jako zupełnie inny, nawet całkowicie niezwiązany z
tym oryginalnym!

Istotnie - za pośrednictwem wskaźnika typu void* możliwe jest dosłownie
zinterpretowanie ciągu bitów jako dowolnego typu zmiennych. Dzieje się tak dlatego,
że podczas rzutowania nie jest dokonywane żadne sprawdzenie faktycznej poprawności
typów. static_cast nie działa tak jak dynamic_cast i nie kontroluje sensowności oraz
celowości rzutowania.

Zakres stosowalności dynamic_cast jest zaś, jak pamiętamy, ograniczony tylko do typów
polimorficznych. Skalarne typy podstawowe z pewnościa nimi nie są, dlatego nie możemy
do nich używać tego typu rzutowania.

Potencjalnie więc dostajemy do ręki brzytwę, którą można się nieźle pokaleczyć. W
określonych sytuacjach potrzebne jest jednak takie dosłowne potraktowanie pewnego

Wskaźniki 291

rodzaju danych jako zupełnego innego. Pośrednictwo typu void* w niskopoziomowych
konwersjach między wskaźnikami staje się wtedy kłopotliwe.
Z tego powodu (a także z potrzeby całkowitego zastąpienia rzutowania w stylu C)
wprowadzono do C++ kolejny operator rzutowania - reinterpret_cast. Potrafi on
rzutować dowolny typ wskaźnikowy na dowolny inny typ wskaźnikowy i nie tylko.
Konwersje przy użyciu tego operatora prawie zawsze nie są więc bezpieczne i powinny
być stosowane wyłącznie wtedy, gdy zależy nam na mechanicznej zmianie (bit po
bicie) jednego typu danych w inny.
Jeżeli chodzi o przykłady, to chyba jedynym bezpiecznym zastosowaniem
reinterpret_cast jest zapisanie adresu pamięci ze wskaźnika do zwykłej zmiennej
liczbowej:

int* pnWskaznik;
unsigned uAdres = reinterpret_cast<unsigned>(pnWskaznik);

W innych przypadkach stosowanie tego operatora powinno być wyjątkowo ostrożne i
oszczędne.

Kompletnych informacji o reinterpret_cast dostarcza oczywiście MSDN. Jest tam także
ciekawy artykuł, wyjaśniający dogłębnie różnice między tym operatorem, a zwykłym
rzutowaniem static_cast.

Istnieje jeszcze jeden, czwarty operator rzutowania const_cast. Jego zastosowanie jest
bardzo wąskie i ogranicza się do usuwania modyfikatora const z opatrzonych nim typów
danych. Można więc użyć go, aby zmienić stały wskaźnik lub wskaźnik do stałej w
zwykły.
Bliższe informacje na temat tego operatora można naturalnie znaleźć we wiadomym
źródle :)

Wskaźniki i tablice
Tradycyjnie wskaźników używa się do operacji na tablicach. Celowo piszę tu ‘tradycyjnie’,
gdyż prawie wszystkie te operacje można wykonać także bez użycia wskaźników, więc
korzystanie z nich w C++ nie jest tak popularne jak w jego generacyjnym poprzedniku.
Ponieważ jednak czasem będziemy zmuszeni korzystać z kodu wywodzącego się z czasów
C (na przykład z Windows API), wiedza o zastosowaniu wskaźników w stosunku do tablic
może być przydatna. Obejmuje ona także zagadnienia łańcuchów znaków w stylu C,
którym poświęcimy osobny paragraf.

Już słyszę głosy oburzenia: „Przecież miałeś zajmować się nauczaniem C++, a nie
wywlekaniem jego różnic w stosunku do swego poprzednika!”. Rzeczywiście, to prawda.
Wskaźniki są to dziedziną języka, która najczęściej zmusza nas do podróży w przeszłość.
Wbrew pozorom nie jest to jednak przeszłość zbyt odległa, skoro z powodzeniem wpływa
na teraźniejszość. Z właściwości wskaźników i tablic będziesz bowiem korzystał znacznie
częściej niż sporadycznie.

Tablice jednowymiarowe w pamięci
Swego czasu powiedzieliśmy sobie, że tablice są zespołem wielu zmiennych opatrzonych
tą samą nazwą i identyfikowanych poprzez indeksy. Symbolicznie przedstawialiśmy na
diagramach tablice jednowymiarowe jako równy rząd prostokątów, wyobrażających
kolejne elementy.
To nie był wcale przypadek. Tablice takie mają bowiem ważną cechę:

Kolejne elementy tablicy jednowymiarowej są ułożone obok siebie, w ciągłym
obszarze pamięci.

Podstawy programowania 292

Nie są więc porozrzucane po całej dostępnej pamięci (czyli pofragmentowane), ale
grzecznie zgrupowane w jeden pakiet.

Schemat 34. Ułożenie tablicy jednowymiarowej w pamięci operacyjnej

Dzięki temu kompilator nie musi sobie przechowywać adresów każdego z elementów
tablicy, aby programista mógł się do nich odwoływać. Wystarczy tylko jeden: adres
początku tablicy, jej zerowego elementu.
W kodzie można go łatwo uzyskać w ten sposób:

// tablica i wskaźnik
int aTablica[5];
int* pnTablica;

// pobranie wskaźnika na zerowy element tablicy
pnTablica = &aTablica[0];

Napisałem, że jest to także adres początku samej tablicy, czyli w gruncie rzeczy wartość
kluczowa dla całego agregatu. Dlatego reprezentuje go również nazwa tablicy:

// inny sposób pobrania wskaźnika na zerowy element (początek) tablicy
pnTablica = aTablica;

Wynika stąd, iż:

Nazwa tablicy jest także stałym wskaźnikiem do jej zerowego elementu
(początku).

Stałym - bo jego adres jest nadany raz na zawsze przez kompilator i nie może być
zmieniany w programie.

Wskaźnik w ruchu
Posiadając wskaźnik do jednego z elementów tablicy, możemy z łatwością dostać się do
pozostałych - wykorzystując fakt, iż tablica jest ciągłym obszarem pamięci. Można
mianowicie odpowiednio przesunąć nasz wskaźnik, np.:

pnTablica += 3;

Po tej operacji będzie on pokazywał na 3 elementy dalej niż dotychczas. Ponieważ na
początku wskazywał na początek tablicy (zerowy element), więc teraz zacznie odnosić się
do jej trzeciego elementu.
To ciekawe zjawisko. Wskaźnik jest przecież adresem, liczbą, zatem dodanie do niego
jakiejś liczby powinno skutkować odpowiednim zwiększeniem przechowywanej wartości.
Ponieważ kolejne adresy w pamięci są numerami bajtów, więc pnTablica powinien,
zdawałoby się, przechowywać adres trzeciego bajta, licząc od początku tablicy.
Tak jednak nie jest, gdyż kompilator podczas dokonywania arytmetyki na wskaźnikach
korzysta także z informacji o ich typie. „Skoki” spowodowane dodawaniem liczb
całkowitych następują w odstępach bajtowych równych wielokrotnościom rozmiaru

Wskaźniki 293

zmiennej, na jaką wskazuje wskaźnik. W naszym przypadku pnTablica przesuwa się
więc o 3*sizeof(int) bajtów, a nie o 3 bajty!

Obecnie wskazuje zatem na trzeci element tablicy aTablica. Dokonując dereferencji
wskaźnika, możemy odwołać się do tego elementu:

// obie poniższe linijki są równoważne
*pnTablica = 0;
aTablica[3] = 0;

Wreszcie, dozwolony jest także trzeci sposób:

*(aTablica + 3) = 0;

Używamy w nim wskaźnikowych właściwości nazwy tablicy. Wyrażenie aTablica + 3
odnosi się zatem do jej trzeciego elementu. Jego dereferencja pozwala przypisać temu
elementowi jakąś wartość.

Wydało się więc, że do i-tego elementu tablicy można odwołać się na dwa różne
sposoby:

*(tablica + i)
tablica[i]

W praktyce kompilator sam stosuje tylko pierwszy. Wprowadzenie drugiego miało
oczywiście głęboki sens: jest on zwyczajnie prostszy, nie tylko w zapisie, ale i w
zrozumieniu. Nie wymaga też żadnej wiedzy o wskaźnikach, a ponadto daje większą
elastyczność przy definiowaniu własnych typów danych.

Nie należy jednak zapominać, że oba sposoby są tak samo podatne na błąd przekroczenia
indeksów, który występuje, gdy i wykracza poza przedział <0; rozmiar_tablicy - 1>.

Tablice wielowymiarowe w pamięci
Dla tablic wielowymiarowych sprawa ich rozmieszczenia w pamięci jest nieco bardziej
skomplikowana. W przeciwieństwe do pamięci nie mają one bowiem struktury liniowej,
zatem kompilator ją jakoś symulować (czyli linearyzować tablicę).
Nie jest to specjalnie trudna czynność, ale praktyczny sens jej omawiania jest raczej
wątpliwy. Z tego względu mało kto stosuje wskaźniki do pracy z wielowymiarowymi
tablicami, zaś my nie będziemy tutaj żadnym wyjątkiem od reguły :)

Zainteresowanym mogę wyjaśnić, że wymiary tablicy są układane w pamięci według
kolejności ich zadeklarowania w kodzie, od lewej do prawej. Posuwając się wzdłuż takiej
zlinearyzowanej tablicy najszybciej zmienia się więc ostatni indeks, wolniej przedostatni, i
tak dalej.
Formułka matematyczna służąca do obliczania wskaźnika na element wielowymiarowej
tablicy jest natomiast podana w MSDN.

Łańcuchy znaków w stylu C
Kiedy już omawiamy wskaźniki w odniesieniu do tablic, nadarza się niepowtarzalna
okazja, aby zapoznać się także z łańcuchami znaków w języku C - poprzedniku C++.

Po co? Otóź jak dotąd jest to najcześciej wykorzystywana forma wymiany tekstu między
aplikacjami oraz bibliotekami. Do koronnych przykładów należy choćby Windows API,
której obsługi przecież będziemy się w przyszłości uczyć.

Podstawy programowania 294

Od razu spotka nas tutaj pewna niespodzianka. O ile bowiem C++ posiada wygodny typ
std::string, służący do przechowywania napisów, to C w ogóle takiego typu nie
posiada! Zwyczajnie nie istnieje żaden specjalny typ danych, służący reprezentacji
tekstu.
Zamiast niego stosowanie jest inne podejście do problemu. Napis jest to ciąg znaków, a
więc uporządkowany zbiór kodów ANSI, opisujących te znaki. Dla pojedynczego znaku
istnieje zaś typ char, zatem ich ciąg może być przedstawiany jako odpowiednia tablica.

Łańcuch znaków w stylu C to jednowymiarowa tablica elementów typu char.

Różni się ona jednak on innych tablic. Są one przeznaczone głównie do pracy nad ich
pojedynczymi elementami, natomiast łańcuch znaków jest częściej przetwarzany w
całości, niż znak po znaku.
Sprawia to, że dozwolone są na przykład takie (w gruncie rzeczy trywialne!) operacje:

char szNapis[256] = "To jest jakiś tekst";

Manipulujemy w nich więcej niż jednym elementem tablicy naraz.
Zauważmy jeszcze, że przypisywany ciąg jest krótszy niż rozmiar tablicy (256). Aby
zaznaczyć, gdzie się on kończy, kompilator dodaje zawsze jeszcze jeden, specjalny znak
o kodzie 0, na samym końcu napisu. Z powodu tej właściwości łańcuchy znaków w stylu
C są często nazywane napisami zakończonymi zerem (ang. null-terminated strings).

Dlaczego jednak ten sposób postępowania z tekstem jest zły (został przecież zastąpiony
przez typ std::string)?…
Pierwszą przyczyną są problemy ze zmienną długością napisów. Tekst jest kłopotliwym
rodzajem danych, który może zajmować bardzo różną ilość pamięci, zależnie od liczby
znaków. Rozsądnym rozwiązaniem jest oczywiście przydzielanie mu dokładnie tylu
bajtów, ilu wymaga; do tego potrzebujemy jednak mechanizmów zarządzania pamięcią w
czasie działania programu (poznamy je zresztą w tym rozdziale). Można też statycznie
rezerwować więcej miejsca, niż to jest potrzebne - tak zrobiłem choćby w poprzednim
skrawku przykładowego kodu. Wada tego rozwiązania jest oczywista: spora część
pamięci zwyczajnie się marnuje.
Drugą niedogodnością są utrudnienia w dokonywaniu najprostszych w zasadzie operacji
na tak potraktowanych napisach. Chodzi tu na przykład o konkatenację; wiedząc, jak
proste jest to dla napisów typu std::string, pewnie bez wahania napisalibyśmy coś w
tym rodzaju:

char szImie[] = "Max";
char szNazwisko[] = "Planck";

char szImieINazwisko[] = szImie + " " + szNazwisko; // BŁĄD!

Visual C++ zareagowałby zaś takim oto błędem:

error C2110: '+': cannot add two pointers

Miałby w nim całkowitą słuszność. Rzeczywiście, próbujemy tutaj dodać do siebie dwa
wskaźniki, co jest niedozwolne i pozbawione sensu. Gdzie są jednak te wskaźniki?…
To przede wszystkim szImie i szNazwisko - jako nazwy tablic są przecież wskaźnikami
do swych zerowych elementów. Również spacja " " jest przez kompilator traktowana
jako wskaźnik, podobnie zresztą jak wszystkie napisy wpisane w kodzie explicité.

Porównywanie takich napisów poprzez operator == jest więc niepoprawne!

Wskaźniki 295

Łączenie napisów w stulu C jest naturalnie możliwe, wymaga jednak użycia specjalnych
funkcji w rodzaju strcat(). Inne funkcje są przeznaczone choćby do przypisywania
napisów (str[n]cpy()) czy pobierania ich długości (strlen()). Nietrudno się domyśleć,
że korzystanie z nich nie należy do rzeczy przyjemnych :)

Na całe szczęście ominie nas ta „rozkosz”. Standardowy typ std::string zawiera
bowiem wszystko, co jest niezbędne do programowej obsługi łańcuchów znaków. Co
więcej, zapewnia on także kompatybilnośc z dawnymi rozwiązaniami.
Metoda c_str() (skrót od C string), bo o nią tutaj chodzi, zwraca wskaźnik typu const
char*, którego można użyć wszędzie tam, gdzie wymagany jest napis w stylu C. Nie
musimy przy tym martwić się o późniejsze zwolnienie zajmowanej przez nasz tekst
pamięci - zadba oto sama Biblioteka Standardowa.
Przykładem wykorzystania tego rozwiązania może być wyświetlenie okna komunikatu
przy pomocy funkcji MessageBox() z Windows API:

#include <string>
#include <windows.h>

std::string strKomunikat = "Przykładowy komunikat";
strKomunikat += ".";

MessageBox (NULL, strKomunikat.c_str(), "Komunikat", MB_OK);

O samej funkcji MessageBox() powiemy sobie wszystko, gdy już przejdziemy do
programowania aplikacji okienkowych. Powyższy kod zadziała jednak także w programie
konsolowym.

Drugi oraz trzeci parametr tej funkcji powinien być łańcuchem znaków w stylu C. Możemy
więc skorzystać z metody c_str() dla zmiennej strKomunikat, by uczynić zadość temu
wymaganiu. W sumie więc nie przeszkadza ono zupełnie w normalnym korzystaniu z
dobrodziejstw standardowego typu std::string.

Przekazywanie wskaźników do funkcji
Jedną z ważniejszych płaszczyzn zastosowań wskaźników jest usprawnienie korzystania z
funkcji. Wskaźniki umożliwiają osiągnięcie kilku niespotykanych dotąd możliwości i
optymalizacji.

Dane otrzymywane poprzez parametry
Wskaźnik jest odwołaniem do zmiennej („kluczem” do niej), które ma jedną zasadniczą
zaletę: może mianowicie być przekazywane gdziekolwiek i nadal zachowywać swoją
podstawową rolę. Niezależnie od tego, w którym miejscu programu użyjemy wskaźnika,
będzie on nadal wskazywał na ten sam adres w pamięci, czyli na tą samą zmienną.

Jeżeli więc przekażemy wskaźnik do funkcji, wtedy będzie ona mogła operować na jego
docelowej komórce pamięci. W ten sposób możemy na przykład sprawić, aby funkcja
zwracała więcej niż jedną wartość w wyniku swego działania.
Spójrzmy na prosty przykład takiego zachowania:

// funkcja oblicza całkowity iloraz dwóch liczb oraz jego resztę
int Podziel(int nDzielna, int nDzielnik, int* const pnReszta)
{
 // zapisujemy resztę w miejscu pamięci, na które pokazuje wskaźnik
 *pnReszta = nDzielna % nDzielnik;

 // zwracamy iloraz
 return nDzielna / nDzielnik;

Podstawy programowania 296

}

Ta prosta funkcja dzielenia całkowitego zwraca dwa rezultaty. Pierwszy to zasadniczy
iloraz - jest on oddawany w tradycyjny sposób poprzez return. Natomiast reszta z
dzielenia jest przekazywana poprzez stały wskaźnik pReszta, który funkcja otrzymuje
jako parametr. Dokonuje jego dereferencji i zapisuje żądaną wartość w miejscu, na które
on wskazuje.
Jeżeli pamiętamy o tym, skorzystanie z powyższej funkcji jest raczej proste i przedstawia
się mniej więcej tak:

// Division - dzielenie przy użyciu wskaźnika przekazywanego do funkcji

void main()
{
 // (pominiemy pobranie dzielnej i dzielnika od użytkownika)

 // obliczenie rezultatu
 int nIloraz, nReszta;
 nIloraz = Podziel(nDzielna, nDzielnik, &nReszta);

 // wyświetlenie rezultatu
 std::cout << std::endl;
 std::cout << nDzielna << " / " <<nDzielnik << " = "
 << nIloraz << " r " << nReszta;
 getch();
}

Jako trzeci parametr w wywołaniu funkcji Podziel():

nIloraz = Podziel(nDzielna, nDzielnik, &nReszta);

przekazujemy adres zmiennej (uzyskany oczywiście poprzez operator &). W niej też
znajdziemy potem żądaną resztę i wyświetlimy ją w oknie konsoli:

Screen 42. Dwie wartości zwracane przez jedną funkcję

W podobny sposób działa wiele funkcji z Windows API czy DirectX. Zaletą tego
rozwiązania jest także możliwość oddzielenia zasadniczego wyniku funkcji (zwracanego
przez wskaźnik) od ewentualnej informacji o błędzie czy też sukcesie jego uzyskania
(przekazywanego w tradycyjny sposób).

Oczywiście nic nie stoi na przeszkodzie, aby tą drogą zwracać więcej niż jeden
„dodatkowy” rezultat funkcji. Jeśli jednak ich liczba jest znaczna, lepiej złączyć je w
strukturę niż deklarować po kilkanaście parametrów w nagłówku funkcji.

Zapobiegamy niepotrzebnemu kopiowaniu
Oprócz otrzymywania kilku wyników z jednej funkcji, zastosowanie wskaźników może
mieć też podłoże optymalizacyjne. Pomyślmy, że taki wskaźnik to zawsze jest tylko
zwykła liczba całkowita, zajmująca zaledwie 4 bajty w pamięci. Jednocześnie jednak
może ona odnosić się do bardzo wielkich obiektów.

Wskaźniki 297

Kiedy zaś wywołujemy funkcję z parametrami, wówczas kompilator dokonuje ich
całościowego kopiowania - tak, że w ciele funkcji mamy do czynienia z duplikatami
rzeczywistych parametrów aktualnych funkcji. Mówiliśmy zresztą we właściwym czasie, iż
parametry pełnią w funkcji rolę dodatkowych zmiennych lokalnych.
Aby to zilustrować, weźmy taką oto banalną funkcję:

int Dodaj(int nA, int nB)
{
 nA += nB;
 return nA;
}

Jak widać, dokonujemy w niej modyfikacji jednego z parametrów. Kiedy jednak
wywołamy niniejszą funkcję w sposób podobny do tego:

int nLiczba1 = 1, nLiczba2 = 2;
std::cout << Dodaj(nLiczba1, nLiczba2);
std::cout << nLiczba1; // nadal nLiczba1 == 1 !

zobaczymy, że podana jej zmienna pozostaje nietknięta. Funkcja otrzymała bowiem
tylko jej wartość, która została w tym celu skopiowana.

Trzeba jednak przyznać, że większość funkcji z założenia nie modyfikuje swoich
parametrów, a jedynie odczytuje z nich wartości. W takim przypadku jest im więc
„wszystko jedno”, czy odwołują się do faktycznie istniejących zmiennych, czy też do ich
kopii, istniejących tylko podczas działania funkcji.
Jednak nam, programistom, nie jest wszystko jedno. Stworzenie kopii zmiennych
wymaga bowiem dodatkowego czasu - na przydzielenie odpowiedniej ilości pamięci i
zapisanie w niej pożądanej wartości. Naturalnie, w przypadku typów liczbowych jest to
pomijalnie mały interwał, ale dla większych obiektów (chociażby łańcuchów znaków)
może stać się znaczący. A przecież wcale nie musi tak być!

Możliwe jest zlikwidowanie konieczności tworzenia duplikatów zmiennych dla
wywoływanych funkcji: wystarczy tylko zamiast wartości przekazywać odwołania do
nich, czyli… wskaźniki! Skopiowanie czterech bajtów będzie na pewno znacznie szybsze
niż przemieszczanie ilości danych liczonej na przykład w dziesiątkach kilobajtów.
Zobaczmy więc, jak można przyspieszyć działanie funkcji operujących na dużych
obiektach. Posłużę się tu przykładem na wyszukiwanie pozycji jednego ciągu znaków
wewnątrz innego:

#include <string>

// funkcja przeszukuje drugi napis w poszukiwaniu pierwszego;
// gdy go znajdzie, zwraca indeks pierwszego pasującego znaku,
// w przeciwnym wypadku wartość -1
int Wyszukaj (const std::string* pstrSzukany,
 const std::string* pstrPrzeszukiwany)
{
 // przeszukujemy nasz napis
 for (unsigned i = 0;
 i <= pstrPrzeszukiwany->length() - pstrSzukany->length(); ++i)
 {
 // porównujemy kolejne wycinki napisu (o odpowiedniej długości)
 // z poszukiwanym łańcuchem. Metoda std::string::substr() służy
 // do pobierania wycinka napisu
 if (pstrPrzeszukiwany->substr(i, pstrSzukany->length())
 == *pstrSzukany)
 // jeżeli wycinek zgadza się, to zwracamy jego indeks
 return i;

Podstawy programowania 298

 }

 // w razie niepowodzenia zwracamy -1
 return -1;
}

Przeszukiwany tekst może być bardzo długi - edytory pozwalają na przykład na
poszukiwanie wybranej frazy wewnątrz całego dokumentu, liczącego nieraz wiele
kilobajtów. Nie jest to jednak problemem: dzięki temu, że funkcja operuje na nim
poprzez wskaźnik, pozostaje on cały czas „na swoim miejscu” w pamięci i nie jest
kopiowany. Zysk na wydajność aplikacji może być wtedy znaczny.

W zamian jednakże doświadczamy pewnej niedogodności, związanej ze składnią działań
na wskaźnikach. Aby odwołać się do przekazanego napisu, musimy każdorazowo
dokonywać jego dereferencji; także wywoływanie metod wymaga innego operatora niż
kropka, do której przyzwyczailiśmy się, operując na napisach.
Ale i na to jest rada. Na koniec podrozdziału poznamy bowiem referencje, które
zachowują cechy wskaźników przy jednoczesnym umożliwieniu stosowania zwykłej
składni, właściwej zmiennym.

Dynamiczna alokacja pamięci
Kto wie, czy nie najważniejszym polem do popisu dla wskaźników jest zawłaszczanie
nowej pamięci w trakcie działania programu. Mechanizm ten daje nieosiągalną inaczej
elastyczność aplikacji i pozwala manipulować danymi o zmiennej wielkości. Bez niego
wszystkie programy miałyby z góry narzuczone limity na ilość przetwarzanych informacji,
których nijak nie możnaby przekroczyć.
Koniecznie więc musimy przyjrzeć się temu zjawisku.

Przydzielanie pamięci dla zmiennych
Wszystkie zmienne deklarowane w kodzie mają statycznie przydzieloną pamięć o
stałym rozmiarze. Rezydują one w obszarze pamięci zwanym stosem, który również ma
niezmienną wielkość. Stosując wyłącznie takie zmienne, nie możemy więc przetwarzać
danych cechujących się dużą rozpiętością zajmowanego miejsca w pamięci.

Oprócz stosu istnieje wszak także sterta. Jest to reszta pamięci operacyjnej,
niewykorzystana przez program w momencie jego uruchomienia, ale stanowiąca rezerwę
na przyszłość. Aplikacja może zeń czerpać potrzebną w danej chwili ilość pamięci
(nazywamy to alokacją), wypełniać własnymi danymi i pracować na nich, a po
zakończeniu roboty zwyczajnie oddać ją z powrotem (zwolnić) do wspólnej puli.
Najważniejsze, że o ilości niezbędnego miejsca można zdecydować w trakcie działania
programu, np. obliczyć ją na podstawie liczb pobranych od użytkownika czy też z
jakiegokolwiek innego źródła. Nie jesteśmy więc skazani na stały rozmiar stosu, lecz
możemy dynamicznie przydzielać sobie ze sterty tyle pamięci, ile akurat
potrzebujemy. Zbiory informacji o niestałej wielkości stają się wtedy możliwe do
opanowania.

Alokacja przy pomocy new
Całe to dobrodziejstwo jest ściśle związane z wskaźnikami, gdyż to właśnie za ich pomocą
uzyskujemy nową pamięć, odwołujemy się do niej i wreszcie zwalniamy ją po skończonej
pracy.

Wszystkie te czynności prześledzimy na prostym przykładzie. Weźmy więc sobie
zwyczajny wskaźnik na typ int:

Wskaźniki 299

int* pnLiczba;

Chwilowo nie pokazuje on na żadne sensowne dane. Moglibyśmy oczywiście złączyć go z
jakąś zmienną zadeklarowaną w kodzie (poprzez operator &), lecz nie o to nam teraz
chodzi. Chcemy sobie sami takową zmienną stworzyć - używamy do tego operatora new
(‘nowy’) oraz nazwy typu tworzonej zmiennej:

pnLiczba = new int;

Wynikiem działania tego operatora jest adres, pod którym widnieje w pamięci nasza
świeżo stworzona, nowiutka zmienna. Umieszczamy go zatem w przygotowanym
wskaźniku - odtąd będzie on służył nam do manipulowania wykreowaną zmienną.

Cóż takiego różni ją innych, deklarowanych w kodzie? Ano całkiem sporo rzeczy:

 nie ma ona nazwy, poprzez którą moglibyśmy się do niej odwływać. Wszelka
„komunikacja” z nią musi zatem odbywać się za pośrednictwem wskaźnika, w
którym zapisaliśmy adres zmiennej.

 czasu istnienia zmiennej nie kontroluje kompilator, ale sam programista. Inaczej
mówiąc, nasza zmienna istnieje aż do momentu jej zwolnienia (poprzez operator
delete, który omówimy za chwilę). Wynika stąd również, że dla takiej zmiennej
nie ma sensu pojęcie zasięgu.

 początkowa wartość zmiennej jest przypadkowa. Zależy bowiem od tego, co
poprzednio znajdowało się w tym miejscu pamięci, które teraz system operacyjny
oddał do dyspozycji naszego programu.

Poza tymi aspektami, możemy na tak stworzonej zmiennej wykonywać te same operacje,
co na wszystkich innych zmiennych tego typu. Dereferując pokazujący nań wskaźnik,
otrzymujemy pełen dostęp do niej:

*pnLiczba = 100;
*pnLiczba += rand();
std::cout << *pnLiczba;
// itp.

Oczywiście nasze możliwości nie ograniczają się tylko do typów liczbowych czy
podstawowych. Przeciwnie, za pomocą new możemy alokować pamięć dla dowolnych
rodzajów zmiennych - także tych definiowanych przez nas samych.
Widzimy więc, że to bardzo potężne narzędzie.

Zwalnianie pamięci przy pomocy delete
Z każdej potęgi trzeba jednak korzystać z rozwagą. W przypadku dynamicznej alokacji
zasada BHP brzmi:

Zawsze zwalniaj zaalokowaną przez siebie pamięć.

Służy do tego odrębny operator delete (‘usuń’). Użycie go jest nadzwyczaj łatwe:
wystarczy jedynie podać mu wskaźnik na przydzielony obszar pamięci, a on posłusznie
posprząta po nim i zwróci go do dyspozycji systemu operacyjnego, a więc i wszystkich
pozostałych programów.

Bez zwolnienia pamięci operacyjnej następuje jej wyciek (ang. memory leak).
Zaalokowana, a niezwolniona pamięć nie jest już bowiem dostępna dla innych aplikacji.

Po skończeniu pracy z naszą dynamicznie stworzoną zmienną musimy ją zatem usunąć.
Wygląda to następująco:

Podstawy programowania 300

delete pnLiczba;

Należy mieć świadomość, że delete niczego nie modyfikuje w samym wskaźniku, zatem
nadal pokazuje on na ten sam obszar pamięci. Teraz jednak nasz program nie jest już
jego właścicielem, dlatego też aby uniknąć omyłkowego odwołania się do nieswojego
rejonu pamięci, wypadałoby wyzerować nasz wskaźnik:

pnLiczba = NULL;

Wartość NULL to po prostu zero, zaś zerowy adres nie istnieje. pnLiczba staje się więc
wskaźnikiem pustym, niepokazującym na żadną konkretną komórkę pamięci.
Gdybyśmy teraz (omyłkowo) spróbowali ponownie zastosować wobec niego operator
delete, wtedy instrukcja ta zostałaby po prostu zignorowana. Jeżeli jednak wskaźnik
nadal pokazywałby na już zwolniony obszar pamięci, wówczas bez wątpienia wystąpiłby
błąd ochrony pamięci (ang. access violation).

Zatem pamiętaj, aby dla bezpieczeństwa zerować wskaźnik po zwolnieniu
dynamicznej zmiennej, na którą on wskazywał.

Nowe jest lepsze
Jeżeli czytają to jakieś osoby znające język C (w co wątpie, ale wyjątki zawsze się
zdarzają :D), to pewnie nie darowałyby mi, gdybym nie wspomniał o sposobach na
alokację i zwalnianie pamięci w tym języku. Chcą zapewne wiedzieć, dlaczego powinny o
nich zapomnieć (a powinny!) i stosować wyłącznie new oraz delete.

Otóż w C mieliśmy dwie funkcje, malloc() i free(), służące odpowiednio do
przydzielania obszaru pamięci o żądanej wielkości oraz do jego późniejszego zwalniania.
Radziły sobie z tym zadaniem całkiem dobrze i mogłyby w zasadzie nadal sobie z nim
radzić. W C++ doszły jednak nowe zadania związane z dynamiczną alokacją pamięci
operacyjnej.
Chodzi tu naturalnie o kwestię klas z programowania obiektowego i związanymi z nimi
konstruktorami i destruktorami. Kiedy używamy new i delete do tworzenia i
niszczenia obiektów, w poprawny sposób wywołują one te specjalne metody. Funkcje
znane z C nie robią tego; nie ma w tym jednak niczego dziwnego, bo w ich
macierzystym języku w ogóle nie istniało pojęcie klasy czy obiektu, nie mówiąc już o
metodach uruchamianych podczas ich tworzenia i niszczenia.

„Nowy” sposób alokacji ma jeszcze jedną zaletę. Otóż malloc() zwraca w wyniku
wskaźnik ogólny, typu void*, zamiast wskaźnika na określony typ danych. Aby przypisać
go do wybranej zmiennej wskaźnikowej, należało użyć rzutowania.
Przy korzystaniu z new nie jest to konieczne. Za pomocą tego operatora od razu
uzyskujemy właściwy typ wskaźnika i nie musimy stosować żadnych konwersji.

Dynamiczne tablice
Alokacja pamięci dla pojedynczej zmiennej jest wprawdzie poprawna i klarowna, ale
raczej mało efektowna. Trudno wówczas powiedzieć, że faktycznie operujemy na zbiorze
danych o niejednostajnej wielkości, skoro owa niestałość objawia się jedynie… obecnością
lub nieobecnością jednej zmiennej!

O wiele bardziej interesują są dynamiczne tablice - takie, których rozmiar jest ustalany
w czasie działania aplikacji. Mogą one przechowywać różną ilość elementów, więc nadają
się do mnóstwa wspaniałych celów :)
Zobaczymy teraz, jak obsługiwać takie tablice.

Wskaźniki 301

Tablice jednowymiarowe
Najprościej sprawa wygląda z takimi tablicami, których elementy są indeksowane jedną
liczbą, czyli po prostu z tablicami jednowymiarowymi. Popatrzmy zatem, jak odbywa się
ich alokacja i zwalnianie.

Tradycyjnie już zaczynamy od odpowiedniego wskaźnika. Jego typ będzie determinował
rodzaj danych, jakie możemy przechowywać w naszej tablicy:

float* pfTablica;

Alokacja pamięci dla niej także przebiega w dziwnie znajomy sposób. Jedyną różnicą w
stosunku do poprzedniego paragrafu jest oczywista konieczność podania wielkości
tablicy:

pfTablica = new float [1024];

Podajemy ją w nawiasach klamrowych, za nazwą typu pojedynczego elementu. Z powodu
obecności tych nawiasów, występujący tutaj operator jest często określony jako new[].
Ma to szczególny sens, jeżeli porównamy go z operatorem zwalniania tablicy, który
zobaczymy za momencik.

Zważmy jeszcze, że rozmiar naszej tablicy jest dosyć spory. Być może wobec dzisiejszych
pojemności RAMu brzmi to zabawnie, ale zawsze przecież istnieje potencjalna możliwość,
że zabraknie dla nas tego życiodajnego zasobu, jakim jest pamięć operacyjna. I na takie
sytuacje powinniśmy być przygotowani - tym bardziej, że poczynienie odpowiednich
kroków nie jest trudne.
W przypadku braku pamięci operator new zwróci nam pusty wskaźnik; jak
pamiętamy, nie odnosi się on do żadnej komórki, więc może być użyty jako wartość
kontrolna (spotkaliśmy się już z tym przy okazji rzutowania dynamic_cast). Wypadałoby
zatem sprawdzić, czy nie natrafiliśmy na taką nieprzyjemną sytuację i zareagować na nią
odpowiednio:

if (pfTablica == NULL) // może być też if (!pfTablica)
 std::cout << "Niestety, zabraklo pamieci!";

Możemy zmienić to zachowanie i sprawić, żeby w razie niepowodzenia alokacji pamięci
była wywoływana nasza własna funkcja. Po szczegóły możesz zajrzeć do opisu funkcji
set_new_handler() w MSDN.

Jeżeli jednak wszystko poszło dobrze - a tak chyba będzie najczęściej :) - możemy
używać naszej tablicy w identyczny sposób, jak tych alokowanych statycznie.
Powiedzmy, że wypełnimy ją treścią przy pomocy następującej pętli:

for (unsigned i = 0; i < 1024; ++i)
 pfTablica[i] = i * 0.01;

Widać, że dostęp do poszczególnych elementów odbywa się tutaj tak samo, jak dla tablic
o stałym rozmiarze. A właściwie, żeby być ścisłym, to raczej tablice o stałym rozmiarze
zachowują się podobnie, gdyż w obu przypadkach mamy do czynienia z jednym i tym
samym mechanizmem - wskaźnikami.
Należy jeszcze pamiętać, aby zachować gdzieś rozmiar alokowanej tablicy, żeby móc
na przykład przetwarzać ją przy pomocy pętli for, podobnej do powyższej.

Na koniec trzeba oczywiście zwolnić pamięć, która przeznaczyliśmy na tablicę. Za jej
usunięcie odpowiada operator delete[]:

Podstawy programowania 302

delete[] pfTablica;

Musimy koniecznie uważać, aby nie pomylić go z podobnym operatorem delete. Tamten
służy do zwalniania wyłącznie pojedyncznych zmiennych, zaś jedynie niniejszy może
być użyty do usunięcia tablicy. Nierespektowanie tej reguły może prowadzić do bardzo
nieprzyjemnych błędów!

Zatem do zwalniania tablic korzystaj tylko z operatora delete[]!

Łatwo zapamiętać tę zasadę, jeżeli przypomnimy sobie, iż do alokowania tablicy
posłużyła nam instrukcja new[]. Jej usunięcie musi więc również odbywać się przy
pomocy operatora z nawiasami kwadratowymi.

Opakowanie w klasę
Jeśli często korzystamy z dynamicznych tablic, warto stworzyć dlań odpowiednią klasę,
która ułatwi nam to zadanie. Nie jest to specjalnie trudne.
My stworzymy tutaj przykładową klasę jednowymiarowej tablicy elementów typu int.

Zacznijmy może od jej prywatnych pól. Oprócz oczywistego wskaźnika na wewnętrzną
tablicę klasa powinna być wyposażona także w zmienną, w której zapamiętamy
rozmiar utworzonej tablicy. Uwolnimy wtedy użytkownika od konieczności zapisywania
jej we własnym zakresie.
Metody muszą zapewnić dostęp do elementów tablicy, a więc pobieranie wartości o
określonym indeksie oraz zapisywanie nowych liczb w określonych elementach tablicy.
Przy okazji możemy też kontrolować indeksy i zapobiegać ich przekroczeniu, co znowu
zapewni nam dozgonną wdzięczność programisty-klienta naszej klasy ;)

Definicja takiej tablicy może więc przedstawiać się następująco:

class CIntArray
{
 // domyślny rozmiar tablicy
 static const unsigned DOMYSLNY_ROZMIAR = 5;

 private:
 // wskaźnik na właściwą tablicę oraz jej rozmiar
 int* m_pnTablica;
 unsigned m_uRozmiar;

 public:
 // konstruktory
 CIntArray() // domyślny
 { m_uRozmiar = DOMYSLNY_ROZMIAR;
 m_pnTablica = new int [m_uRozmiar]; }
 CIntArray(unsigned uRozmiar) // z podaniem rozmiaru tablicy
 { m_uRozmiar = uRozmiar;
 m_pnTablica = new int [m_uRozmiar]; }

 // destruktor
 ~CIntArray() { delete[] m_pnTablica; }

 //---

 // pobieranie i ustawianie elementów tablicy
 int Pobierz(unsigned uIndeks) const
 { if (uIndeks < m_uRozmiar) return m_pnTablica[uIndeks];
 else return 0; }
 bool Ustaw(unsigned uIndeks, int nWartosc)

Wskaźniki 303

 { if (uIndeks >= m_uRozmiar) return false;
 m_pnTablica[uIndeks] = uWartosc;
 return true; }

 // inne
 unsigned Rozmiar() const { return m_uRozmiar; }
};

Są w niej wszystkie detale, o jakich wspomniałem wcześniej.
Dwa konstruktory mają na celu zaalokowanie pamięci na naszą tablicę; jeden z nich jest
domyślny i ustawia określoną z góry wielkość (wpisaną jako stała DOMYSLNY_ROZMIAR),
drugi zaś pozwala podać ją jako parametr. Destruktor natomiast dba o zwolnienie tak
przydzielonej pamięci. W tego typu klasach metoda ta jest więc szczególnie przydatna.
Pozostałe funkcje składowe zapewniają intuicyjny dostęp do elementów tablicy,
zabezpieczając przy okazji przed błędem przekroczenia indeksów. W takiej sytuacji
Pobierz() zwraca wartość zero, zaś Ustaw() - false, informując o zainstniałym
niepowodzeniu.

Skorzystanie z tej gotowej klasy nie jest chyba trudne, gdyż jej definicja niemal
dokumentuje się sama. Popatrzmy aczkolwiek na następujący przykład:

#include <cstdlib>
#include <ctime>

srand (static_cast<unsigned>(time(NULL)));
CIntArray aTablica(rand());

for (unsigned i = 0; i < aTablica.Rozmiar(); ++i)
 aTablica.Ustaw (i, rand());

Jak widać, generujemy w nim losową ilość losowych liczb :) Nieodmiennie też używamy
do tego pętli for, nieodzownej przy pracy z tablicami.

Zdefiniowana przed momentem klasa jest więc całkiem przydatna, posiada jednak trzy
zasadnicze wady:

 raz ustalony rozmiar tablicy nie może już ulegać zmianie. Jego modyfikacja
wymaga stworzenia nowej tablicy

 dostęp do poszczególnych elementów odbywa się za pomocą mało wygodnych
metod zamiast zwyczajowych nawiasów kwadratowych

 typem przechowywanych elementów może być jedynie int

Na dwa ostatnie mankamenty znajdziemy radę, gdy już nauczymy się przeciążać
operatory oraz korzystać z szablonów klas w języku C++.
Niemożność zmiany rozmiaru tablicy możemy jednak usunąć już teraz. Dodajmy więc
jeszcze jedną metodę za to odpowiedzialną:

class CIntArray
{
 // (resztę wycięto)

 public:
 bool ZmienRozmiar(unsigned);
};

Wykona ona alokację nowego obszaru pamięci i przekopiuje do niego już istniejącą część
tablicy. Następne zwolni ją, zaś cała klasa będzie odtąd operowała na nowym fragmencie
pamięci.
Brzmi to dosyć tajemniczo, ale w gruncie rzeczy jest bardzo proste:

Podstawy programowania 304

#include <memory.h>

bool CIntArray::ZmienRozmiar(unsigned uNowyRozmiar)
{
 // sprawdzamy, czy nowy rozmiar jest większy od starego
 if (!(uNowyRozmiar > m_uRozmiar)) return false;

 // alokujemy nową tablicę
 int* pnNowaTablica = new int [uNowyRozmiar];

 // kopiujemy doń starą tablicę i zwalniamy ją
 memcpy (pnNowaTablica, m_pnTablica, m_uRozmiar * sizeof(int));
 delete[] m_pnTablica;

 // "podczepiamy" nową tablicę do klasy i zapamiętujemy jej rozmiar
 m_pnTablica = pnNowaTablica;
 m_uRozmiar = uNowyRozmiar;

 // zwracamy pozytywny rezultat
 return true;
}

Wyjaśnienia wymaga chyba tylko funkcja memcpy(). Oto jej prototyp (zawarty w
nagłówku memory.h, który dołączamy):

void* memcpy(void* dest, const void* src, size_t count);

Zgodnie z nazwą (ang. memory copy - kopiuj pamięć), funkcja ta służy do kopiowania
danych z jednego obszaru pamięci do drugiego. Podajemy jej miejsce docelowe i
źródłowe kopiowania oraz ilość bajtów, jaka ma być powielona.
Właśnie ze względu na bajtowe wymagania funkcji memcpy() używamy operatora sizeof,
by pobrać wielkość typu int i pomnożyć go przez rozmiar (liczbę elementów) naszej
tablicy. W ten sposób otrzymamy wielkość zajmowanego przez nią rejonu pamięci w
bajtach i możemy go przekazać jako trzeci parametr dla funkcji kopiującej.

Pełna dokumentacja funkcji memcpy() jest oczywiście dostępna w MSDN.

Po rozszerzeniu nowa tablica będzie zawierała wszystkie elementy pochodzące ze starej
oraz nowy obszar, możliwy do natychmiastowego wykorzystania.

Tablice wielowymiarowe
Uelastycznienie wielkości jest w C++ możliwe także dla tablic o większej liczbie
wymiarów. Jak to zwykle w tym języku bywa, wszystko odbywa się analogicznie i
intuicyjnie :D

Przypomnijmy, że tablice wielowymiarowe to takie tablice, których elementami są… inne
tablice. Wiedząc zaś, iż mechanizm tablic jest w C++ zarządzany poprzez wskaźniki,
dochodzimy do wniosku, że:

Dynamiczna tablica n-wymiarowa składa się ze wskaźników do tablic (n-1)-wymiarowych.

Dla przykładu, tablica o dwóch wymiarach jest tak naprawdę jednowymiarowym
wektorem wskaźników, z których każdy pokazuje dopiero na jednowymiarową tablicę
właściwych elementów.

Wskaźniki 305

Aby więc obsługiwać taką tablicę, musimy użyć dość osobliwej konstrukcji
programistycznej - wskaźnika na wskaźnik. Nie jest to jednak takie dziwne. Wskaźnik
to przecież też zmienna, a więc rezyduje pod jakimś adresem w pamięci. Ten adres może
być przechowywany przez kolejny wskaźnik.
Deklaracja czegoś takiego nie jest trudna:

int** ppnTablica;

Wystarczy dodać po prostu kolejną gwiazdkę do nazwy typu, na który ostatecznie
pokazuje nasz wskaźnik.

Jak taki wskaźnik ma się do dynamicznych, dwuwymiarowych tablic?… Ilustrując nim opis
podany wcześniej, otrzymamy schemat podobny do tego:

Schemat 35. Dynamiczna tablica dwuwymiarowa jest tablicą wskaźników do tablic

jednowymiarowych

Skoro więc wiemy już, do czego zmierzamy, pora osiągnąć cel.
Alokacja dwywumiarowej tablicy musi odbywać się dwuetapowo: najpierw
przygotowujemy pamięć pod tablicę wskaźników do jej wierszy. Potem natomiast
przydzielamy pamięć każdemu z tych wierszy - tak, że w sumie otrzymujemy tyle
elementów, ile chcieliśmy.
Po przełożeniu na kod C++ algorytm wygląda w ten sposób:

// Alokacja tablicy 3 na 4

// najpierw tworzymy tablicę wskaźników do kolejnych wierszy
ppnTablica = new int* [3];

// następnie alokujemy te wiersze
for (unsigned i = 0; i < 3; ++i)
 ppnTablica[i] = new int [4];

Podstawy programowania 306

Przeanalizuj go dokładnie. Zwróć uwagę szczególnie na linijkę:

ppnTablica[i] = new int [4];

Za pomocą wyrażenia ppnTablica[i] odwołujemy się tu do i-tego wiersza naszej
tablicy - a ściślej mówiąc, do wskaźnika na niego. Przydzielamy mu następnie adres
zaalokowanego fragmentu pamięci, który będzie pełnił rolę owego wiersza. Robimy tak
po kolei ze wszystkimi wierszami tablicy.

Użytkowanie tak stworzonej tablicy dwuwymiarowej nie powinno nastręczać trudności.
Odbywa się ono bowiem identycznie, jak w przypadku statycznych macierzy. Najczęstszą
konstrukcją jest tu znowu zagnieżdżona pętla for:

for (unsigned i = 0; i < 3; ++i)
 for (unsigned j = 0; j < 4; ++j)
 ppnTablica[i][j] = i - j;

Co zaś ze zwalnianiem tablicy? Otóż przeprowadzamy je w sposób dokładnie przeciwny
do jej alokacji. Zaczynamy od uwolnienia poszczególnych wierszy, a następnie
pozbywamy się także samej tablicy wskaźników do nich.
Wygląda to mniej więcej tak:

// zwalniamy wiersze
for (unsigned i = 0; i < 3; ++i)
 delete[] ppnTablica[i];

// zwalniamy tablicę wskaźników do nich
delete[] ppnTablica;

Przedstawioną tu kolejność należy zawsze bezwględnie zachowywać. Gdybyśmy
bowiem najpierw pozbyli się wskaźników do wierszy tablicy, wtedy nijak nie moglibyśmy
zwolnić samych wierszy! Usuwanie tablicy „od tyłu” chroni zaś przed taką
ewentualnością.

Znając technikę alokacji tablicy dwuwymiarowej, możemy łatwo rozszerzyć ją na większą
liczbę wymiarów. Popatrzmy tylko na kod odpowiedni dla trójwymiarowej tablicy:

/* Dynamiczna tablica trójwymiarowa, 5 na 6 na 7 elementów */

// wskaźnik do niej ("trzeciego stopnia"!)
int*** p3nTablica;

/* alokacja */

// tworzymy tablicę wskaźników do 5 kolejnych "płaszczyzn" tablicy
p3nTablica = new int** [5];

// przydzielamy dla nich pamięć
for (unsigned i = 0; i < 5; ++i)
{
 // alokujemy tablicę na wskaźniki do wierszy
 p3nTablica[i] = new int* [6];

 // wreszcie, dla przydzielamy pamięć dla właściwych elementów
 for (unsigned j = 0; j < 6; ++j)
 p3nTablica[i][j] = new int [7];
}

Wskaźniki 307

/* użycie */

// wypełniamy tabelkę jakąś treścią
for (unsigned i = 0; i < 5; ++i)
 for (unsigned j = 0; j < 6; ++j)
 for (unsigned k = 0; k < 7; ++k)
 p3nTablica[i][j][k] = i + j + k;

/* zwolnienie */

// zwalniamy kolejne "płaszczyzny"
for (unsigned i = 0; i < 5; ++i)
{
 // zaczynamy jednak od zwolnienia wierszy
 for (unsigned j = 0; j < 6; ++j)
 delete[] p3nTablica[i][j];

 // usuwamy "płaszczyznę"
 delete[] p3nTablica[i];
}

// na koniec pozbywamy się wskaźników do "płaszczyzn"
delete[] p3nTablica;

Widać niestety, że z każdym kolejnym wymiarem kod odpowiedzialny za alokację oraz
zwalnianie tablicy staje się coraz bardziej skomplikowany. Na szczęście jednak
dynamiczne tablice o większej liczbie wymiarów są bardzo rzadko wykorzystywane w
praktyce.

Referencje
Naocznie przekonałeś się, że domena zastosowań wskaźników jest niezwykle szeroka.
Jeżeli nawet nie dałyby w danym programie jakichś niespotykanych możliwości, to na
pewno za ich pomocą można poczynić spore optymalizacje w kodzie i przyspieszyć jego
działanie.

Za poprawę wydajności trzeba jednak zapłacić wygodą: odwoływanie się do obiektów
poprzez wskaźniki wymaga bowiem ich dereferencji. Wprowadza ona nieco zamieszania
do kodu i wymaga poświęcenia mu większej uwagi. Cóż, zawsze coś za coś, prawda?…
Otóż nieprawda :) Twórcy C++ wyposażyli bowiem swój język w mechanizm referencji,
który łączy zalety wskaźników z normalną składnią zmiennych. Zatem i wilk jest syty, i
owca cała.

Referencje (ang. references) to zmienne wskazujące na adresy miejsc w pamięci, ale
pozwalające używać zwyczajnej składni przy odwoływaniu się do tychże miejsc.

Można je traktować jako pewien szczególny rodzaj wskaźników, ale stworzony dla czystej
wygody programisty i poprawy wyglądu pisanego przezeń kodu. Referencje są aczkolwiek
niezbędne przy przeciążaniu operatorów (o tym powiemy sobie niedługo), jednak swoje
zastosowania mogą znaleźć niemal wszędzie.
Przy takiej rekomendacji trudno nie oprzeć się chęci ich poznania, nieprawdaż? ;) Tym
właśnie zagadnieniem zajmiemy się więc teraz.

Podstawy programowania 308

Typy referencyjne
Podobnie jak wskaźniki wprowadziły nam pojęcie typów wskaźnikowych, tak i referencje
dodają do naszego słownika analogiczny termin typów referencyjnych.
W przeciwieństwie jednak do wskaźników, dla każdego normalnego typu istnieją jedynie
dwa odpowiadające mu typy referencyjne. Dlaczego tak jest, dowiesz się za chwilę. Na
razie przypatrzmy się deklaracjom przykładowych referencji.

Deklarowanie referencji
Referencje odnoszą się do zmiennych, zatem najpierw przydałoby się jakąś zmienną
posiadać. Niech będzie to coś w tym rodzaju:

short nZmienna;

Odpowiednia referencja, wskazująca na tę zmienną, będzia natomiast zadeklarowana w
ten oto sposób:

short& nReferencja = nZmienna;

Kończący nazwę typu znak & jest wyróżnikiem, który mówi nam i kompilatorowi, że
mamy do czynienia właśnie z referencją. Inicjalizujemy ją od razu tak, ażeby wskazywała
na naszą zmienną nZmienna. Zauważmy, że nie używamy do tego żadnego
dodatkowego operatora!

Posługując się referencją możliwe jest teraz zwyczajne odwoływanie się do zmiennej, do
której się ona odnosi. Wygląda to więc bardzo zachęcająco - na przykład:

nReferencja = 1; // przypisanie wartości zmiennej nZmienna
std::cout << nReferencja; // wyświetlenie wartości zmiennej nZmienna

Wszystkie operacje, jakie tu wykonujemy, odbywają się na zmiennej nZmienna, chociaż
wygląda, jakby to nReferencja była jej celem. Ona jednak tylko w nich pośredniczy,
tak samo jak czynią to wskaźniki. Referencja nie wymaga jednak skorzystania z
operatora * (zwanego notabene operatorem dereferencji) celem dostania się do miejsca
pamięci, na które sama wskazuje. Ten właśnie fakt (między innymi) różni ją od
wskaźnika.

Prawo stałości referencji
Najdziwniej wygląda pewnie linijka z przypisaniem wartości. Mimo że po lewej stronie
znaku = stoi zmienna nReferencja, to jednak nową wartość otrzyma nie ona, lecz
nZmienna, na którą tamta pokazuje. Takie są po prostu uroki referencji i trzeba do nich
przywyknąć.
No dobrze, ale jak w takim razie zmienić adres pamięci, na który pokazuje nasza
referencja?… Powiedzmy, że zadeklarujemy sobie drugą zmienną:

short nInnaZmienna;

Chcemy mianowicie, żeby odtąd nReferencja pokazywała właśnie na nią (a nie na
nZmienna). Jak (czy?) można to uczynić?…

Niestety, odpowiedź brzmi: nijak. Raz ustalona referencja nie może być bowiem
„doczepiona” do innej zmiennej, lecz do końca pozostaje związana wyłącznie z tą
pierwszą. A zatem:

Wskaźniki 309

W C++ występują wyłącznie stałe referencje. Po koniecznej inicjalizacji nie mogą już
być zmieniane.

To jest właśnie powód, dla którego istnieją tylko dwa warianty typów referencyjnych. O
ile więc w przypadku wskaźników atrybut const mógł występować (lub nie) w dwóch
różnych miejscach deklaracji, o tyle dla referencji jego drugi występ jest niejako
domyślny. Nie istnieje zatem żadna „niestała referencja”.
Przypisanie zmiennej do referencji może więc się odbywać tylko podczas jej
inicjalizacji. Jak widzieliśmy, dzieje się to prawie tak samo, jak przy stałych
wskaźnikach - naturalnie z wyłączeniem braku operatora &, np.:

float fLiczba;
float& fRef = fLiczba;

Czy fakt ten jest jakąś niezmiernie istotną wadą referencji? Śmiem twierdzić, że ani
trochę! Tak naprawdę prawie nigdy nie używa się mechanizmu referencji w odniesieniu
do zwykłych zmiennych. Ich prawdziwa użyteczność ujawnia się bowiem dopiero w
połączeniu z funkcjami.
Zobaczmy więc, dlaczego są wówczas takie wspaniałe ;D

Referencje i funkcje
Chyba jedynym miejscem, gdzie rzeczywiście używa się referencji, są nagłówki funkcji
(prototypy). Dotyczy to zarówno parametrów, jak i wartości przez te funkcje zwracanych.
Referencje dają bowiem całkiem znaczące optymalizacje w szybkości działania kodu, i to
w zasadzie za darmo. Nie wymagają żadnego dodatkowego wysiłku poza ich użyciem w
miejsce zwykłych typów.
Brzmi to bardzo kusząco, zatem zobaczmy te wyśmienite rozwiązania w akcji.

Parametry przekazywane przez referencje
Już przy okazji wskaźników zauważyliśmy, że wykorzystanie ich jako parametrów funkcji
może przyspieszyć działanie programu. Zamiast całych obiektów funkcja otrzymuje
wtedy odwołania do nich, zaś poprzez nie może odnosić się do faktycznych obiektów. Na
potrzeby funkcji kopiowane są więc tylko 4 bajty odwołania, a nie czasem wiele
kilobajtów właściwego obiektu!
Przy tej samej okazji narzekaliśmy jednak, że zastosowanie wskaźników wymaga
przeformatowania składni całego kodu, w którym należy dodać konieczne dereferencje i
zmienić operatory wyłuskania. To niewielki, ale jednak dolegliwy kłopot.

I oto nagle pojawia się cudowne rozwiązanie :) Referencje, bo o nich rzecz jasna
mówimy, są także odwołaniami do obiektów, ale możliwe jest stosowanie wobec nich
zwyczajnej składni, bez uciążliwości związanych ze wskaźnikami. Czyniąc je parametrami
funkcji, powinniśmy więc upiec dwie pieczenie na jednym ogniu, poprawiając zarówno
osiągi programu, jak i własne samopoczucie :D
Spójrzmy zatem jeszcze raz na funkcję Wyszukaj(), z którą spotkaliśmy się już przy
wskaźnikach. Tym razem jej parametry będą jednak referencjami. Oto jak wpłynie to na
wygląd kodu:

#include <string>

int Wyszukaj (const std::string& strSzukany,
 const std::string& strPrzeszukiwany)
{
 // przeszukujemy nasz napis
 for (unsigned i = 0;
 i <= strPrzeszukiwany.length() - strSzukany.length(); ++i)
 {

Podstawy programowania 310

 // porównujemy kolejne wycinki napisu
 if (strPrzeszukiwany.substr(i, strSzukany.length())
 == strSzukany)
 // jeżeli wycinek zgadza się, to zwracamy jego indeks
 return i;
 }

 // w razie niepowodzenia zwracamy -1
 return -1;
}

Obecnie nie widać tu najmniejszych oznak silenia się na jakąkolwiek optymalizację, a
mimo jest ona taka sama jak w wersji wskaźnikowej. Powodem jest forma nagłówka
funkcji:

int Wyszukaj (const std::string& strSzukany,
 const std::string& strPrzeszukiwany)

Oba jej parametry są tutaj referencjami do stałych napisów, a więc nie są kopiowane
w inne miejsca pamięci wyłącznie na potrzeby funkcji. A jednak, chociaż faktycznie
funkcja otrzymuje tylko ich adresy, możemy operować na tych parametrach zupełnie tak
samo, jakbyśmy dostali całe obiekty poprzez ich wartości. Mamy więc zarówno wygodną
składnię, jak i dobrą wydajność tak napisanej funkcji.

Zatrzymajmy się jeszcze przez chwilę przy modyfikatorach const w obu parametrach
funkcji. Obydwa napisy nie w jej ciele w żaden sposób zmieniane (bo i nie powinny),
zatem logiczne jest zadeklarowanie ich jako referencji do stałych. W praktyce tylko takie
referencje stosuje się jako parametry funkcji; jeżeli bowiem należy zwrócić jakąś wartość
poprzez parametr, wtedy lepiej dla zaznaczenia tego faktu użyć odpowiedniego
wskaźnika.

Zwracanie referencji
Na podobnej zasadzie, na jakiej funkcje mogą pobierać referencje poprzez swoje
parametry, mogą też je zwracać na zewnątrz. Uzasadnienie dla tego zjawiska jest
również takie samo, czyli zaoszczędzenie niepotrzebnego kopiowania wartości.

Najprotszym przykładem może być ciekawe rozwiązanie problemu metod dostępowych -
tak jak poniżej:

class CFoo
{
 private:
 unsigned m_uPole;
 public:
 unsigned& Pole() { return m_uPole; }
};

Ponieważ metoda Pole() zwraca referencję, możemy używać jej niemal tak samo, jak
zwyczajnej zmiennej:

CFoo Foo;
Foo.Pole() = 10;
std::cout << Foo.Pole();

Oczywiście kwestia, czy takie rozwiązanie jest w danym przypadku pożądane, jest mocno
indywidualna. Zawsze należy rozważyć, czy nie lepiej zastosować tradycyjnego wariantu
metod dostępowych - szczególnie, jeżeli chcemy zachowywać kontrolę nad wartościami
przypisywanymi polom.

Wskaźniki 311

Z praktycznego punktu widzenia zwracanie referencji nie jest więc zbytnio przydatną
możliwością. Wspominam jednak o niej, gdyż stanie się ona niezbędna przy okazji
przeładowywania operatorów - zagadnienia, którym zajmiemy się w jednym z przyszłych
rozdziałów.

Tym drobnym wybiegnięciem w przyszłość zakończymy nasze spotkania ze wskaźnikami
na zmienne. Jeżeli miałeś jakiekolwiek wątpliwości co do użyteczności tego elementu
języka C++, to chyba do tego momentu zostały one całkiem rozwiane. Najlepiej jednak
przekonasz się o przydatności mechanizmów wskaźników i referencji, kiedy sam będziesz
miał okazję korzystać z nich w swoich własnych aplikacjach. Przypuszczam także, że owe
okazje nie będą wcale odosobnionymi przypadkami, ale stałą praktyką programistyczną.

Oprócz wskaźników na zmienne język C++ oferuje również inną ciekawą konstrukcję,
jaką są wskaźniki na funkcje. Nie od rzeczy będzie więc zapoznanie się z nimi, co też
pilnie uczynimy.

Wskaźniki do funkcji
Myśląc o tym, co jest przechowywane w pamięci operacyjnej, zwykle wyobrażamy sobie
różne dane programu: zmienne, tablice, struktury itp. One stanowią informacje
reprezentowane w komórkach pamięci, na których aplikacja wykonuje swoje działania.
Cała pamięć operacyjna jest więc usiana danymi każdego z aktualnie pracujących
programów.

Hmm… Czy aby na pewno o czymś nie zapomnieliśmy? A co z samymi programami?! Kod
aplikacji jest przecież pewną porcją binarnych danych, zatem i ona musi się gdzieś
podziać. Przez większość czasu egzystuje wprawdzie na dysku twardym w postaci pliku
(zwykle o rozszerzeniu EXE), ale dla potrzeb wykonywania kodu jest to z pewnością zbyt
wolne medium. Gdyby system operacyjny co rusz sięgał do pliku w czasie działania
programu, wtedy na pewno wszelkie czynności ciągnęłyby się niczym toffi i przyprawiały
zniecierpliwionego użytkownika o białą gorączkę. Co więc zrobić z tym fantem?…
Rozsądnym wyjściem jest umieszczenie w pamięci operacyjnej także kodu działającej
aplikacji. Dostęp do nich jest wówczas wystarczająco szybki, aby programy mogły działać
w normalnym tempie i bez przeszkód wykonywać swoje zadania. Pamięć RAM jest
przecież stosunkowo wydajna, wielokrotnie bardziej niż nawet najszybsze dyski twarde.

Tak więc podczas uruchamiania programu jego kod jest umieszczany wewnątrz pamięci
operacyjnej. Każdy podprogram, każda funkcja, a nawet każda instrukcja otrzymują
wtedy swój unikalny adres, zupełnie jak zmienne. Maszynowy kod binarny jest bowiem
także swoistego rodzaju danymi. Z tych danych korzysta system operacyjny (glównie
poprzez procesor), wykonując kolejne instrukcje aplikacji. Wiedza o tym, jaka komenda
ma być za chwilę uruchomiona, jest przechowywana właśnie w postaci jej adresu - czyli
po prostu wskaźnika.
Nam zwykle nie jest potrzebna aż tak dokładna lokalizacja jakiegoś wycinka kodu w
naszej aplikacji, szczególnie jeżeli programujemy w języku wysokiego poziomu, którym
jest z pewnością C++. Trudno jednak pogardzić możliwością uzyskania adresu funkcji w
programie, jeśli przy pomocy tegoż adresu (oraz kilku dodatkowych informacji, o czym za
chwilę) można ową funkcję swobodnie wywoływać. C++ oferuje więc mechanizm
wskaźników do funkcji, który udostępnia taki właśnie potencjał.

Wskaźnik do funkcji (ang. pointer to function) to w C++ zmienna, która przechowuje
adres, pod jakim istnieje w pamięci operacyjnej dana funkcja.

Podstawy programowania 312

Wiem, że początkowo może być ci trudno uświadomić sobie, w jaki sposób kod programu
jest reprezentowany w pamięci i jak wobec tego działają wskaźniki na funkcje. Dokładnie
wyjaśnienie tego faktu wykracza daleko poza ramy tego rozdziału, kursu czy nawet
programowania w C++ jako takiego (oraz, przyznam szczerze, częściowo także mojej
wiedzy :D). Dotyka to już bowiem niskopoziomowych aspektów działania aplikacji.
Niemniej postaram się przystępnie wyjaśnić przynajmniej te zagadnienia, które będą
nam potrzebne do sprawnego posługiwania się wskaźnikami do funkcji. Zanim to się
stanie, możesz myśleć o nich jako o swoistych łączach do funkcji, podobnych w swych
założeniach do skrótów, jakie w systemie Windows można tworzyć w odniesieniu do
aplikacji. Tutaj natomiast mamy do czynienia z pewnego rodzaju „skrótami” do
pojedynczych funkcji; przy ich pomocy możemy je bowiem wywoływać niemal w ten sam
sposób, jak to czynimy bezpośrednio.

Omawianie wskaźników do funkcji zaczniemy nieco od tyłu, czyli od bytów na które one
wskazują - a więc od funkcji właśnie. Przypomnimy sobie, cóż takiego charakteryzuje
funkcję oraz powiemy sobie, jakie jej cechy będą szczególne istotne w kontekście
wskaźników.
Potem rzecz jasna zajmiemy się używaniem wskaźników do funkcji w naszych własnych
programach, poczynając od deklaracji aż po wywoływanie funkcji za ich pośrednictwem.
Na koniec uświadomimy sobie także kilka zastosowań tej ciekawej konstrukcji
programistycznej.

Cechy charakterystyczne funkcji
Różnego rodzaju funkcji - czy to własnych, czy też wbudowanych w język - używaliśmy
dotąd tak często i w takich ilościach, że chyba nikt nie ma najmniejszych wątpliwości,
czym one są, do czego służą i jaka jest ich rola w programowaniu.
Teraz więc przypomnimy sobie jedynie te własności funkcji, które będą dla nas istotne
przy omawianiu wskaźników. Nie omieszkamy także poznać jeszcze jednego aspektu
funkcji, o którym nie mieliśmy okazji dotychczas mówić. Wszystko to pomoże nam
zrozumieć koncepcję i stosowanie wskaźników na funkcje.

Trzeba tu zaznaczyć, że w tym momencie absolutnie nie chodzi nam o to, jakie instrukcje
mogą zawierać funkcje. Przeciwnie, nasza uwaga będzie skoncentrowana wyłącznie na
prototypie funkcji, jej „wizytówce”. Dla wskaźników na funkcje pełni on bowiem
podobne posługi, jak typ danych dla wskaźników na zmienne. Sama zawartość bloku
funkcji, podobnie jak wartość zmiennej, jest już zupełnie jednak inną („wewnętrzną”)
sprawą.
Na początek przyjrzyjmy się składni prototypu (deklaracji) funkcji. Wydaje się, że jest
ona doskonale nam znana, jednak tutaj przedstawimy jej pełną wersję:

zwracany_typ [konwencja_wywołania] nazwa_funkcji([parametry]);

Każdemu z jej elementów przypatrzymy się natomiast w osobnym paragrafie.

Typ wartości zwracanej przez funkcję
Wiele języków programowania rozróżnia dwa rodzaje podprogramów. I tak procedury
mają za zadanie wykonanie jakichś czynności, zaś funkcje są przeznaczone do obliczania
pewnych wartości. Dla obu tych rodzajów istnieją zwykle odmienne rozwiązania
składniowe, na przykład inne słowa kluczowe.

W C++ jest nieco inaczej: tutaj zawsze mamy do czynienia z funkcjami, gdyż
bezwględnie konieczne jest określenie typu wartości, zwracanej przez nie. Naturalnie
może być nim każdy typ, który mógłby również wystepować w deklaracji zmiennej: od
typów wbudowanych, poprzez wskaźniki, referencje, aż do definiowanych przez
użytkownika typów wyliczeniowych, klas czy struktur (lecz nie tablic).

Wskaźniki 313

Specjalną rolę pełni tutaj typ void (‘pustka’), który jest synonimem ‘niczego’. Nie można
wprawdzie stworzyć zmiennych należących do tego typu, jednak możliwe jest uczynienie
go typem zwracanym przez funkcję. Taka funkcją będzie zatem „zwracać nic”, czyli po
prostu nic nie zwracać; można ją więc nazwać procedurą.

Instrukcja czy wyrażenie
Od kwestii, czy funkcja zwraca jakąś wartość czy nie, zależy to, jak możemy nazwać jej
wywołanie: instrukcją lub też wyrażeniem. Różnica pomiędzy tymi dwoma elementami
języka programowania jest dość oczywista: instrukcja to polecenie wykonania jakichś
działań, zaś wyrażenie - obliczenia pewnej wartości; wartość ta jest potem
reprezentowana przez owo wyrażenie.
C++ po raz kolejny raczy nas tu niespodzianką. Otóż w tym języku niemal wszystko
jest wyrażeniem - nawet taka wybitnie „instrukcyjna” działalność jak choćby
przypisanie. Rzadko jednak używamy jej w takim charakterze, zaś o wiele częściej jako
zwykłą instrukcję i jest to wówczas całkowicie poprawne.

Wyrażenie może być w programowaniu użyte jako instrukcja, natomiast instrukcja nie
może być użyta jako wyrażenie.

Dla wyrażenia występującego w roli instrukcji jest wprawdzie obliczana jego wartość, ale
nie zostaje potem do niczego wykorzystana. To raczej typowa sytuacja i chociaż może
brzmi niepokojąco, większość kompilatorów nigdy o niej nie ostrzega i trudno poczytywać
to za ich beztroskę.

Pedantyczni programiści stosują jednak niecodzienny zabieg rzutowania na typ void dla
wartości zwróconej przez funkcję użytą w charakterze instrukcji. Nie jest to rzecz jasna
konieczne, ale niektórzy twierdzą, iż można w ten sposób unikać nieporozumień.

Przeciwny przypadek: kiedy staramy się umieścić wywołanie procedury (niezwracającej
żadnej wartości) wewnątrz normalnego wyrażenia, jest już w oczywisty sposób nie do
przyjęcia. Takie wywołanie nie reprezentuje bowiem żadnej wartości, która mogłaby być
użyta w obliczeniach. Można to również interpretować jako niezgodność typów, ponieważ
void jako typ pusty jest niekompatybilny z żadnym innym typem danych.

Widzimy zatem, że kwestia zwracania lub niezwracania przez funkcję wartości oraz jej
rodzaju jest nierzadko bardzo ważna.

Konwencja wywołania
Trochę trudno w to uwierzyć, ale podanie (zdawałoby się) wszystkiego, co można
powiedzieć o danej funkcji: jej parametrów, wartości przezeń zwracanej, nawet nazwy -
nie wystarczy kompilatorowi do jej poprawnego wywołania. Będzie on aczkolwiek
wiedział, co musi zrobić, ale nikt mu nie powie, jak ma to zrobić.

Cóż to znaczy?… Celem wyjaśnienia porównajmy całą sytuację do telefonowania. Gdy
mianowicie chcemy zadzwonić pod konkretny numer telefonu, mamy wiele możliwych
dróg uczynienia tego. Możemy zwyczajnie pójść do drugiego pokoju, podnieść słuchawkę
stacjonarnego aparatu i wystukać odpowiedni numer. Możemy też siegnąc po telefon
komórkowy i użyć go, wybierając na przykład właściwą pozycję z jego książki adresowej.
Teoretycznie możemy też wybrać się do najbliższej budki telefonicznej i skorzystać z
zainstalowanego tam aparatu. Wreszcie, możliwe jest wykorzystanie modemu
umieszczonego w komputerze i odpowiedniego oprogramowania albo też dowolnej formy
dostępu do globalnej sieci oraz protokołu VoIP (Voice over Internet Protocol).
Technicznych możliwości mamy więc mnóstwo i zazwyczaj wybieramy tę, która jest nam
w aktualnej chwili najwygodniejsza. Zwykle też osoba po drugiej stronie linii nie odczuwa
przy tym żadnej różnicy.

Podstawy programowania 314

Podobnie rzecz ma się z wywoływaniem funkcji. Znając jej miejsce docelowe (adres
funkcji w pamięci) oraz ewentualne dane do przekazania jej w parametrach, możliwe jest
zastosowanie kilku dróg osiągnięcia celu. Nazywamy je konwencjami wywołania
funkcji.

Konwencja wywołania (ang. calling convention) to określony sposób wywoływania
funkcji, precyzujący przede wszystkim kolejność przekazywania jej parametrów.

Dziwisz się zapewne, dlaczego dopiero teraz mówimy o tym aspekcie funkcji, skoro jasno
widać, iż jest on nieodzowny dla ich działania. Przyczyna jest prosta. Wszystkie funkcje,
jakie samodzielnie wpiszemy do kodu i dla których nie określimy konwencji wywołania,
posiadają domyślny jej wariant, właściwy dla języka C++. Jeżeli zaś chodzi o funkcje
biblioteczne, to ich prototypy zawarte w plikach naglówkowych zawierają informacje o
używanej konwencji. Pamiętajmy, że korzysta z nich głównie sam kompilator, gdyż w
C++ wywołanie funkcji wygląda składniowo zawsze tak samo, niezależnie od jej
konwencji. Jeżeli jednak używamy funkcji do innych celów niż tylko prostego
przywoływania (a więc stosujemy choćby wskaźniki na funkcje), wtedy wiedza o
konwencjach wywołania staje się potrzebna także i dla nas.

O czym mówi konwencja wywołania?
Jak już wspomniałem, konwencja wywołania determinuje głównie przekazywanie
parametrów aktualnych dla funkcji, by mogła ona używać ich w swoim kodzie.
Obejmuje to miejsce w pamięci, w którym są one tymczasowo przechowywane oraz
porządek, w jakim są w tym miejscu kolejno umieszczane.

Podstawowym rejonem pamięci operacyjnej, używanym jako pośrednik w wywołaniach
funkcji, jest stos. Dostęp do tego obszaru odbywa się w dość osobliwy sposób, który
znajdują zresztą odzwierciedlenie w jego nazwie. Stos charakteryzuje się bowiem tym, że
gdy położymy na nim po kolei kilka elementów, wtedy mamy bezpośredni dostęp jedynie
do tego ostatniego, położonego najpóźniej (i najwyżej). Jeżeli zaś chcemy dostać się do
obiektu znajdującego się na samym dole, wówczas musimy zdjąć po kolei wszystkie
pozostałe elementy, umieszczone na stosie później. Czynimy to więc w odwrotnej
kolejności niż następowało ich odkładanie na stos.

Dobrą przykładem stosu może być hałda książek, piętrząca się na twoim biurku ;D

Jeśli zatem wywołujący funkcję (ang. caller) umieści na stosie jej parametry w pewnym
porządku (co zresztą czyni), to sama funkcja (ang. callee - wywoływana albo routine -
podprogram) musi je pozyskać w kolejności odwrotnej, aby je właściwie zinterpretować.
Obie strony korzystają przy tym z informacji o konwencji wywołania, lecz w opisach
„katalogowych” poszczególnych konwencji podaje się wyłącznie porządek stosowany
przez wywołującego, a więc tylko kolejność odkładania parametrów na stos.
Kolejność ich podejmowania z niego jest przecież dokładnie odwrotna.
Nie myśl jednak, że kompilatory dokonują jakichś złożonych permutacji parametrów
funkcji podczas ich wywoływania. Tak naprawdę istnieją jedynie dwa porządki, które
mogą być kanwą dla konwencji i stosować się dla każdej funkcji bez wyjątku.
Można mianowicie podawać parametry wedle ich deklaracji w prototypie funkcji, czyli od
lewej do prawej strony. Wówczas to wywołujący jest w uprzywilejowanej pozycji, gdyż
używa bardziej naturalnej kolejności; sama funkcja musi użyć odwrotnej. Drugi wariant
to odkładanie parametrów na stos w odwrotnej kolejności niż w deklaracji funkcji; wtedy
to funkcja jest w wygodniejszej sytuacji.

Oprócz stosu do przekazywania parametrów można też używać rejestrów procesora, a
dokładniej jego czterech rejestrów uniwersalnych. Im więcej parametrów zostanie tam
umieszczonych, tym szybsze powinno być (przynajmniej w teorii) wywołanie funkcji.

Wskaźniki 315

Typowe konwencje wywołania
Gdyby każdy programista ustalał własne konwencje wywołania funkcji (co jest
teoretycznie możliwe), to oczywiście natychmiast powstałby totalny rozgardiasz w tej
materii. Konieczność uwzględniania upodobań innych koderów byłaby z pewnością
niezwykle frustrująca.

Za sprawą języków wysokiego poziomu nie ma na szczęście aż tak wielkich problemów z
konwencjami wywołania. Jedynie korzystając z kodu napisanego w innym języku trzeba
je uwzględniać. W zasadzie więc zdarza się to dość często, ale w praktyce cały wysiłek
włożony w zgodność z konwencjami ogranicza się co najwyżej do dodania
odpowiedniego słowa kluczowego do prototypu funkcji - w miejsce, które oznaczyłem w
jego składni jako konwencja_wywołania. Często nawet i to nie jest konieczne, jako że
prototypy funkcji oferowanych przez przeróżne biblioteki są umieszczane w ich plikach
nagłówkowych, zaś zadanie programisty-użytkownika ogranicza się jedynie do włączenia
tychże nagłówków do własnego kodu.

Kompilator wykonuje zatem sporą część pracy za nas. Warto jednak przynajmniej znać te
najczęściej wykorzystywane konwencje wywołania, a nie jest ich wcale aż tak dużo.
Poniższa lista przedstawia je wszystkie:

 cdecl - skrót od C declaration (‘deklaracja C’).. Zgodnie z nazwą jest to domyślna
konwencja wywołania w językach C i C++. W Visual C++ można ją jednak jawnie
określić poprzez słowo kluczowe __cdecl. Parametry są w tej konwencji
przekazywane na stos w kolejności od prawej do lewej, czyli odwrotnie niż są
zapisane w deklaracji funkcji

 stdcall - skrót od Standard Call (‘standardowe wywołanie’). Jest to konwencja
zbliżona do cdecl, posługuje się na przykład tym samym porządkiem odkładania
parametrów na stos. To jednocześnie niepisany standard przy pisaniu kodu, który
w skompilowanej formie będzie używany przez innych. Korzysta z niego więc
chociażby system Windows w swych funkcjach API.
W Visual C++ konwencji tej odpowiada słowo __stdcall

 fastcall (‘szybkie wywołanie’) jest, jak nazwa wskazuje, zorientowany na szybkość
działania. Dlatego też w miarę możliwości używa rejestrów procesora do
przekazywania parametrów funkcji.
Visual C++ obsługuję tą konwencję poprzez słówko __fastcall

 pascal budzi słuszne skojarzenia z popularnym ongiś językiem programowania.
Konwencja ta była w nim wtedy intensywnie wykorzystywana, lecz dzisiaj jest już
przestarzała i coraz mniej kompilatorów (wszelkich języków) wspiera ją

 thiscall to specjalna konwencja wywoływania metod obiektów w języku C++.
Funkcje wywoływane z jej użyciem otrzymują dodatkowy parametr, będący
wskaźnikiem na obiekt danej klasy94. Nie występuje on na liście parametrów w
deklaracji metody, ale jest dostępny poprzez słowo kluczowe this. Oprócz tej
szczególnej właściwości thiscall jest identyczna z stdcall.
Ze względu na specyficzny cel istnienia tej konwencji, nie ma możliwości
zadeklarowania zwykłej funkcji, która by jej używała. W Visual C++ nie
odpowiada jej więc żadne słowo kluczowe

A zatem dotychczas (nieświadomie!) używaliśmy tylko dwóch konwencji: cdecl dla
zwykłych funkcji oraz thiscall dla metod obiektów. Kiedy zaczniemy naukę
programowania aplikacji dla Windows, wtedy ten wachlarz zostanie poszerzony. W
każdym przypadku składnia wywołania funkcji w C++ będzie jednak identyczna.

94 Jest on umieszczany w jednym z rejestrów procesora.

Podstawy programowania 316

Nazwa funkcji
To zadziwiające, że chyba najważniejsza dla programisty cecha funkcji, czyli jej nazwa,
jest niemal zupełnie nieistotna dla działającej aplikacji!… Jak już bowiem mówiłem,
„widzi” ona swoje funkcje wyłącznie poprzez ich adresy w pamięci i przy pomocy tych
adresów ewentualnie wywołuje owe funkcje.
Można dywagować, czy to dowód na całkowity brak skrzyżowania między drogami
człowieka i maszyny, ale fakt pozostaje faktem, zaś jego przyczyna jest prozaicznie
pragmatyczna. Chodzi tu po prostu o wydajność: skoro funkcje programu są podczas
jego uruchamiania umieszczane w pamięci operacyjnej (można ładnie powiedzieć:
mapowane), to dlaczego system operacyjny nie miałby używać wygenerowanych przy
okazji adresów, by w razie potrzeby rzeczone funkcje wywoływać? To przecież proste i
szybkie rozwiązanie, naturalne dla komputera i niewymagające żadnego wysiłku ze
strony programisty. A zatem jest ono po prostu dobre :)

Rozterki kompilatora i linkera
Jedynie w czasie kompilacji kodu nazwy funkcji mają jakieś znaczenie. Kompilator musi
bowiem zapewnić ich unikalność w skali całego projektu, tj. wszystkich jego modułów.
Nie jest to wcale proste, jeżeli przypomnimy sobie o funkcjach przeciążanych, które z
założenia mają te same nazwy. Poza tym funkcje o tej samej nazwie mogą też
występować w różnych zakresach: jedna może być na przykład metodą jakiejś klasy, zaś
druga zwyczajną funkcją globalną.

Kompilator rozwiązuje te problemy, stosując tak zwane dekorowanie nazw.
Wykorzystuje po prostu dodatkowe informacje o funkcji (jej prototyp oraz zakres, w
którym została zadeklarowana), by wygenerować jej niepowtarzalną, wewnętrzną nazwę.
Zawiera ona wiele różnych dziwnych znaków w rodzaju @, ^, ! czy _, dlatego właśnie jest
określana jako nazwa dekorowana.
Wywołania z użyciem takich nazw są umieszczane w skompilowanych modułach. Dzięki
temu linker może bez przeszkód połączyć je wszystkie w jeden plik wykonywalny całego
programu.

Parametry funkcji
Ogromna większość funkcji nie może obyć się bez dodatkowych danych, przekazywanych
im przy wywoływaniu. Pierwsze strukturalne języki programowania nie oferowały
żadnego wspomagania w tym zakresie i skazywały na korzystanie wyłącznie ze
zmiennych globalnych. Bardziej nowoczesne produkty pozwalają jednak na deklarację
parametrów funkcji, co też niejednokrotnie czynimy w praktyce.

Aby wywołać funkcję z parametrami, kompilator musi znać ich liczbę oraz typ każdego z
nich. Informacje te podajemy w prototypie funkcji, zaś w jej kodzie zwykle nadajemy
także nazwy poszczególnym parametrom, by móc z nich później korzystać.
Parametry pełnią rolę zmiennych lokalnych w bloku funkcji - z tą jednak różnicą, że ich
początkowe wartości pochodzą z zewnątrz, od kodu wywołującego funkcję. Na tym
wszakże kończą się wszelkie odstępstwa, ponieważ parametrów możemy używać
identycznie, jak gdyby było one zwykłymi zmiennymi odpowiednich typów. Po
zakończeniu wykonywania funkcji są one niszczone, nie pozostawiając żadnego śladu po
ewentualnych operacjach, które mogły być na nich dokonywane kodzie funkcji.
Wnioskujemy stąd, że:

Parametry funkcji są w C++ przekazywane przez wartości.

Reguła ta dotyczy wszystkich typów parametrów, mimo że w przypadku wskaźników
oraz referencji jest ona pozornie łamania. To jednak tylko złudzenie. W rzeczywistości
także i tutaj do funkcji są przekazywane wyłącznie wartości - tyle tylko, że owymi

Wskaźniki 317

wartościami są tu adresy odpowiednich komórek w pamięci. Za ich pośrednictwem
możemy więc uzyskać dostęp do rzeczonych komórek, zawierających na przykład jakieś
zmienne. Gdy dodatkowo korzystamy z referencji, wtedy nie wymaga to nawet specjalnej
składni. Trzeba być jednak świadomym, że zjawiska te dotyczą samej natury wskaźników
czy też referencji, nie zaś parametrów funkcji! Dla nich bowiem zawsze obowiązuje
przytoczona wyżej zasada przekazywania poprzez wartość.

Używanie wskaźników do funkcji
Przypomnieliśmy sobie i uzupełniliśmy wszystkie niezbędne wiadomości funkcjach,
konieczne do poznania i stosowania wskaźników na nie. Teraz więc możemy już przejść
do właściwej części tematu.

Typy wskaźników do funkcji
Jakkolwiek wskaźniki są przede wszystkim adresami miejsc w pamięci operacyjnej,
niemal wszystkie języki programowania oraz ich kompilatory wprowadzają pewne
dodatkowe informacje, związane ze wskaźnikami. Chodzi tu głównie o typ wskaźnika.
W przypadku wskaźników na zmienne był on pochodną typu zmiennej, na którą dany
wskaźnik pokazywał. Podobne pojęcie istnieje także dla wskaźników do funkcji - w tym
wypadku możemy więc mówić o typie funkcji, na które wskazuje określony wskaźnik.

Własności wyróżniające funkcję
Co jednak mamy rozumieć pod pojęciem „typ funkcji”? W jaki sposób funkcja może w
ogóle być zakwalifikowana do jakiegoś rodzaju?…

W odpowiedzi może nam znowu pomóc analogia do zmiennych. Otóż typ zmiennej
określamy w momencie jej deklaracji - jest nim w zasadzie cała ta deklaracja z
wyłączeniem nazwy. Określa ona wszystkie cechy deklarowanej zmiennej, ze
szczególnym uwzględnieniem rodzaju informacji, jakie będzie ona przechowywać.
Typu funkcji możemy zatem również szukać w jej deklaracji, czyli prototypie. Kiedy
bowiem wyłączymy z niego nazwę funkcji, wtedy pozostałe składniki wyznaczą nam jej
typ. Będą to więc kolejno:

 typ wartości zwracanej przez funkcję
 konwencja wywołania funkcji
 parametry, które funkcja przyjmuje

Wraz z adresem danej funkcji stanowi to wystarczający zbiór informacji dla kompilatora,
na podstawie których może on daną funkcję wywołać.

Typ wskaźnika do funkcji
Posiadając wyliczone wyżej wiadomości na temat funkcji, możemy już bez problemu
zadeklarować właściwy wskaźnik na nią. Typ tego wskaźnika będzie więc oparty na typie
funkcji - to samo zjawisko miało miejsce także dla zmiennych.

Typ wskaźnika na funkcję określa typ zwracanej wartości, konwencję wywołania oraz
listę parametrów funkcji, na które wskaźnik może pokazywać i które mogą być za jego
pośrednictwem wywoływane.

Wiedząc to, możemy przystąpić do poznania sposóbu oraz składni, poprzez które język
C++ realizuje mechanizm wskaźników do funkcji.

Podstawy programowania 318

Wskaźniki do funkcji w C++
Deklarując wskaźnik do funkcji, musimy podać jego typ, czyli te trzy cechy funkcji, o
których już kilka razy mówiłem. Jednocześnie kompilator powinien wiedzieć, że ma do
czynienia ze wskaźnikiem, a nie z funkcją jako taką. Oba te wymagania skutkują
specjalną składnią deklaracji wskaźników na funkcje w C++.

Zacznijmy zatem od najprostszego przykładu. Oto deklaracja wskaźnika do funkcji, która
nie przyjmuje żadnych parametrów i nie zwraca też żadnego rezultatu95:

void (*pfnWskaznik)();

Jesteśmy teraz władni użyć tego wskaźnika i wywołać za jego pośrednictwem funkcję o
odpowiednim nagłówku (czyli nic niebiorącą oraz nic niezwracającą). Może to wyglądać
chociażby tak:

#include <iostream>

// funkcja, którą będziemy wywoływać
void Funkcja()
{
 std::cout << "Zostalam wywolana!";
}

void main()
{
 // deklaracja wskaźnika na powyższą funkcję
 void (*pfnWskaznik)();

 // przypisanie funkcji do wskaźnika
 pfnWskaznik = &Funkcja;

 // wywołanie funkcji poprzez ten wskaźnik
 (*pfnWskaznik)();
}

Ponownie, tak samo jak w przypadku wskaźników na zmienne, moglibyśmy wywołać
naszą funkcję bezpośrednio. Pamiętasz jednakże o korzyściach, jakie daje wykorzystanie
wskaźników - większość z nich dotyczy także wskaźników do funkcji. Ich użycie jest więc
często bardzo przydatne.

Omówmy zatem po kolei wszystkie aspekty wykorzystania wskaźników do funkcji w C++.

Od funkcji do wskaźnika na nią
Deklaracja wskaźnika do funkcji jest w C++ dość nietypową czynnością. Nie przypomina
bowiem znanej nam doskonale deklaracji w postaci:

typ_zmiennej nazwa_zmiennej;

Zamiast tego nazwa wskaźnika jest niejako wtrącona w typ funkcji, co w pierwszej
chwili może być nieco mylące. Łatwo jednak można zrozumieć taką formę deklaracji,
jeżeli porównamy ją z prototypem funkcji, np.:

float Funkcja(int);

95 Posiada też domyślną w C++ konwencję wywołania, czyli cdecl. Później zobaczymy przykłady wskaźników do
funkcji, wykorzystujących inne konwencje.

Wskaźniki 319

Otóż odpowiadający mu wskaźnik, który mógłby pokazywać na zadeklarowaną wyżej
funkcję Funkcja(), zostanie wprowadzony do kodu w ten sposób:

float (*pfnWskaznik)(int);

Nietrudno zauważyć różnicę: zamiast nazwy funkcji, czyli Funkcja, mamy tutaj frazę
(*pfnWskaznik), gdzie pfnWskaznik jest oczywiście nazwą zadeklarowanego właśnie
wskaźnika. Może on pokazywać na funkcje przyjmujące jeden parametr typu int oraz
zwracające wynik w postaci liczby typu float.

Ogólnie zatem, dla każdej funkcji o tak wyglądającym prototypie:

zwracany_typ nazwa_funkcji([parametry]);

deklaracja odpowiadającego jej wskaźnika jest bardzo podobna:

zwracany_typ (*nazwa_wskaźnika)([parametry]);

Ogranicza się więc do niemal mechanicznej zmiany ściśle określonego fragmentu kodu.

Deklaracja wskaźnika na funkcję o domyślnej konwencji wywołania wygląda tak, jak jej
prototyp, w którym nazwa_funkcji została zastąpiona przez (*nazwa_wskaźnika).

Ta prosta zasada sprawdza się w 99 procentach przypadków i będziesz z niej stale
korzystał we wszystkich programach wykorzystujących mechanizm wskaźników do
funkcji.

Trzeba jeszcze podkreślić znaczenie nawiasów w deklaracji wskaźników do funkcji. Mają
one tutaj niebagatelną rolę składniową, gdyż ich brak całkowicie zmienia sens całej
deklaracji. Gdybyśmy więc opuścili je:

void *pfnWskaznik(); // a co to jest?

cała instrukcja zostałaby zinterpretowana jako:

void* pfnWskaznik(); // to prototyp funkcji, a nie wskaźnik na nią!

i zamiast wskaźnika do funkcji otrzymalibyśmy funkcję zwracającą wskaźnik. Jest to
oczywiście całkowicie niezgodne z naszą intencją.

Pamiętaj zatem o poprawnym umieszczaniu nawiasów w deklaracjach wskaźników do
funkcji.

Specjalna konwencja
Opisanego powyżej sposobu tworzenia deklaracji nie można niestety użyć do wskaźników
do funkcji, które stosują inną konwencję wywołania niż domyślna (czyli cdecl) i zawierają
odpowiednie słowo kluczowe w swoim naglówku czy też prototypie. W Visual C++ tymi
słowami są __cdecl, __stdcall oraz __fastcall.
Przykład funkcji podpadającej pod te warunki może być następujący:

float __fastcall Dodaj(float fA, float fB) { return fA + fB; }

Dodatkowe słowo między zwracanym_typem oraz nazwą_funkcji całkowicie psuje nam
schemat deklaracji wskaźników. Wynik jego zastosowania zostałby bowiem odrzucony
przez kompilator:

Podstawy programowania 320

float __fastcall (*pfnWskaznik)(float, float); // BŁĄD!

Dzieje się tak, ponieważ gdy widzi on najpierw nazwę typu (float), a potem specyfikator
konwencji wywołania (__fastcall), bezdyskusyjne interpretuje całą linijkę jako
deklarację funkcji. Następującą potem niespodziewaną sekwencję (*pfnWskaznik)
traktuje więc jako błąd składniowy.

By go uniknąć, musimy rozciągnąć nawiasy, w których umieszczamy nazwę wskaźnika
do funkcji i „wziąć pod ich skrzydła” także określenie konwencji wywołania. Dzięki temu
kompilator napotka otwierający nawias zaraz po nazwie zwracanego typu (float) i
zinterpretuje całość jako deklarację wskaźnika do funkcji. Wygląda ona tak:

float (__fastcall *pfnWskaznik)(float, float); // OK

Ten, zdawałoby się, szczegół może niekiedy stanąć ością w gardle w czasie kompilacji
programu. Wypadałoby więc o nim pamiętać.

Składnia deklaracji wskaźnika do funkcji
Obecnie możemy już zobaczyć ogólną postać deklaracji wskaźnika do funkcji. Jeżeli
uważnie przestudiowałeś poprzednie akapity, to nie będzie on dla ciebie żadną
niespodzianką. Przedstawia się zaś następująco:

zwracany_typ ([konwencja_wywołania] *nazwa_wskaźnika)([parametry]);

Pasujący do niego prototyp funkcji wygląda natomiast w ten sposób:

zwracany_typ [konwencja_wywołania] nazwa_funkcji([parametry]);

Z obu tych wzorców widać, że deklaracja wskaźnika do funkcji na podstawie jej prototypu
oznacza wykonanie jedynie trzech prostych kroków:

 zamiany nazwy_funkcji na nazwę_wskaźnika
 dodania * (gwiazdki) przed nazwą_wskaźnika
 ujęcia w parę nawiasów ewentualną konwencję_wywołania oraz nazwę_wskaźnika

Nie jest to więc tak trudna operacja, jak się niekiedy powszechnie sądzi.

Wskaźniki do funkcji w akcji
Zadeklarowanie wskaźnika to naturalnie tylko początek jego wykorzystania w programie.
Aby był on użyteczny, powinniśmy przypisać mu adres jakiejś funkcji i skorzystać z niego
celem wywołania tejże funkcji. Przypatrzmy się bliżej obu tym czynnościom.

W tym celu zdefiniujmy sobie następującą funkcję:

int PobierzLiczbe()
{
 int nLiczba;

 std::cout << "Podaj liczbe: ";
 std::cin >> nLiczba;

 return nLiczba;
}

Właściwy wskaźnik, mogący pokazywać na tę funkcję, deklarujemy w ten oto (teraz już,
mam nadzieję, oczywisty) sposób:

Wskaźniki 321

int (*pfnWskaznik)();

Jak każdy wskaźnik, zaraz po zadeklarowaniu nie pokazuje on na nic konkretnego - w
tym przypadku na żadną konkretną funkcję. Musimy dopiero przypisać mu adres naszej
przygotowanej funkcji PobierzLiczbe(). Czynimy to więc w następującej zaraz linijce
kodu:

pfnWskaznik = &PobierzLiczbe;

Zwróćmy uwagę, że nazwa funkcji PobierzLiczbe() występuje tutaj bez, wydawałoby
się - nieodłącznych, nawiasów okrągłych. Ich pojawienie się oznaczałoby bowiem
wywołanie tej funkcji, a my przecież tego nie chcemy (przynajmniej na razie).
Pragniemy tylko pobrać jej adres w pamięci, by móc jednocześnie przypisać go do
swojego wskaźnika. Wykorzystujemy do tego znany już operator &.

Ale… niespodzianka! Ów operator tak naprawdę nie jest konieczny. Ten sam efekt
osiągniemy również i bez niego:

pfnWskaznik = PobierzLiczbe;

Po prostu już sam brak nawiasów okrągłych (), wyróżniających wywołanie funkcji, jest
wystarczająca wskazówką mówiącą kompilatorowi, iż chcemy pobrać adres funkcji o
danej nazwie, nie zaś - wywoływać ją. Dodatkowy operator, chociaż dozwolony, nie jest
więc niezbędny - wystarczy sama nazwa funkcji.
Czy nie mamy w związku z tym uczucia deja vu? Identyczną sytuację mieliśmy przecież
przy tablicach i wskaźnikach na nie. A zatem zasada, którą tam poznaliśmy, w
poprawionej formie stosuje się również do funkcji:

Nazwa funkcji jest także wskaźnikiem do niej.

Nie musimy więc korzystać z operatora &, by pobrać adres funkcji.

W tym miejscu mamy już wskaźnik pfnWskaznik pokazujący na naszą funkcję
PobierzLiczbe(). Ostatnim aktem będzie wywołanie jej za pośrednictwem tegoż
wskaźnika, co czynimy poniższym wierszem kodu:

std::cout << (*pfnWskaznik)();

Liczbę otrzymaną z funkcji wypisujemy na ekranie, ale najpierw wywołujemy samą
funkcję, korzystając między innymi z następnego znajomego operatora - dereferencji,
czyli *.
Po raz kolejny jednak nie jest to niezbędne! Wywołanie funkcji przy pomocy wskaźnika
można z równym powodzeniem zapisać też w takiej formie:

std::cout << pfnWskaznik();

Jest to druga konsekwencja faktu, iż funkcja jest reprezentowana w kodzie poprzez swój
wskaźnik. Taki sam fenomen obserwowaliśmy i dla tablic.

Przykład wykorzystania wskaźników do funkcji
Wskaźniki do funkcji umożliwiają wykonywanie ogólnych operacji przy użyciu funkcji,
których implementacja nie musi być im znana. Ważne jest, aby miały one nagłówek
zgodny z typem wskaźnika.

Prawie podręcznikowym przykładem może być tu poszukiwanie miejsc zerowych funkcji
matematycznej. Procedura takiego poszukiwania jest zawsze identyczna, również same

Podstawy programowania 322

funkcje mają nieodmiennie tę samą charakterystykę (pobierają liczbę rzeczywistą i taką
też liczbę zwracają w wyniku). Możemy więc zaimplementować odpowiedni algorytm
(tutaj jest to algorytm bisekcji96) w sposób ogólny - posługując się wskaźnikami do
funkcji.

Przykładowy program wykorzystujący tę technikę może przedstawiać się następująco:

// Zeros - szukanie miejsc zerowych funkcji

// granica toleracji
const double EPSILON = 0.0001;

// rozpietość badanego przedziału
const double PRZEDZIAL = 100;

// współczynniki funkcji f(x) = k * log_a(x - p) + q
double g_fK, g_fA, g_fP, g_fQ;

// --

// badana funkcja
double f(double x) { return g_fK * (log(x - g_fP) / log(g_fA)) + g_fQ; }

// algorytm szukający miejsca zerowego danej funkcji w danym przedziale
bool SzukajMiejscaZerowego(double fX1, double fX2, // przedział
 double (*pfnF)(double), // funkcja
 double* pfZero) // wynik
{
 // najpierw badamy końce podanego przedziału
 if (fabs(pfnF(fX1)) < EPSILON)
 {
 *pfZero = fX1;
 return true;
 }
 else if (fabs(pfnF(fX2)) < EPSILON)
 {
 *pfZero = fX2;
 return true;
 }

 // dalej sprawdzamy, czy funkcja na końcach obu przedziałów
 // przyjmuje wartości różnych znaków
 // jeżeli nie, to nie ma miejsc zerowych
 if ((pfnF(fX1)) * (pfnF(fX2)) > 0) return false;

 // następnie dzielimy przedział na pół i sprawdzamy, czy w ten sposób
 // nie otrzymaliśmy pierwiastka
 double fXp = (fX1 + fX2) / 2;
 if (fabs(pfnF(fXp)) < EPSILON)
 {
 *pfZero = fXp;
 return true;
 }

 // jeśli otrzymany przedział jest wystarczająco mały, to rozwiązaniem
 // jest jego punkt środkowy
 if (fabs(fX2 - fX1) < EPSILON)

96 Oprócz niego popularna jest również metoda Newtona, ale wymaga ona znajomości również pierwszej
pochodnej funkcji.

Wskaźniki 323

 {
 *pfZero = fXp;
 return true;
 }

 // jezeli nadal nic z tego, to wybieramy tę połówkę przedziału,
 // w której zmienia się znak funkcji
 if ((pfnF(fX1)) * (pfnF(fXp)) < 0)
 fX2 = fXp;
 else
 fX1 = fXp;

 // przeszukujemy ten przedział tym samym algorytmem
 return SzukajMiejscaZerowego(fX1, fX2, pfnF, pfZero);
}

// --

// funkcja main()
void main()
{
 // (pomijam pobranie współczynników k, a, p i q dla funkcji)

 /* znalezienie i wyświetlenie miejsca zerowego */

 // zmienna na owo miejsce
 double fZero;

 // szukamy miejsca i je wyświetlamy
 std::cout << std::endl;
 if (SzukajMiejscaZerowego(g_fP > -PRZEDZIAL ? g_fP : -PRZEDZIAL,
 PRZEDZIAL, f, &fZero))
 std::cout << "f(x) = 0 <=> x = " << fZero << std::endl;
 else
 std::cout << "Nie znaleziono miejsca zerowego." << std::endl;

 // czekamy na dowolny klawisz
 getch();
}

Aplikacja ta wyszukuje miejsca zerowe funkcji określonej wzorem:

() log ()af x k x p q= − +

Najpierw zadaje więc użytkownikowi pytania co do wartości współczynników k, a, p i q w
tym równaniu, a następnie pogrążą się w obliczeniach, by ostatecznie wyświetlić wynik.

Niniejszy program jest przykładem zastosowania wskaźników na funkcje, a nie
rozwiązywania równań. Jeśli chcemy wyliczyć miejsce zerowe powyżej funkcji, to
znacznie lepiej będzie po prostu przekształcić ją, wyznaczając x:

expa
qx p
k

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

Podstawy programowania 324

Screen 43. Program poszukujący miejsc zerowych funkcji

Oczywiście w niniejszym programie najbardziej interesująca będzie dla nas funkcja
SzukajMiejscaZerowego() - głównie dlatego, że wykorzystany w niej został mechanizm
wskaźników na funkcje. Ewentualnie możesz też zainteresować się samym algorytmem;
jego działanie całkiem dobrze opisują obfite komentarze :)

Gdzie jest więc ów sławetny wskaźnik do funkcji?… Znaleźć go możemy w nagłówku
SzukajMiejscaZerowego():

bool SzukajMiejscaZerowego(double fX1, double fX2,
 double (*pfnF)(double),
 double* pfZero)

To nie pomyłka - wskaźnik do funkcji (biorącej jeden parametr double i zwracającej
także typ double) jest tutaj argumentem innej funkcji. Nie ma ku temu żadnych
przeciwwskazań, może poza dość dziwnym wyglądem nagłówka takiej funkcji. W naszym
przypadku, gdzie funkcja jest swego rodzaju „danymi”, na ktorych wykonujemy operacje
(szukanie miejsca zerowego), takie zastosowanie wskaźnika do funkcji jest jak
najbardziej uzasadnione.
Pierwsze dwa parametry funkcji poszukującej są natomiast liczbami określającymi
przedział poszukiwań pierwiastka. Ostatni parametr to z kolei wskaźnik na zmienną typu
double, poprzez którą zwrócony zostanie ewentualny wynik. Ewentualny, gdyż o
powodzeniu lub niepowodzeniu zadania informuje „regularny” rezultat funkcji, będący
typu bool.

Naszą funkcję szukającą wywołujemy w programie w następujący sposób:

double fZero;
if (SzukajMiejscaZerowego(g_fP > -PRZEDZIAL ? g_fP : -PRZEDZIAL,
 PRZEDZIAL, f, &fZero))
 std::cout << "f(x) = 0 <=> x = " << fZero << std::endl;
else
 std::cout << "Nie znaleziono miejsca zerowego." << std::endl;

Przekazujemy jej tutaj aż dwa wskaźniki jako ostatnie parametry. Trzeci to, jak wiemy,
wskaźnik na funkcję - w tej roli występuje tutaj adres funkcji f(), którą badamy w
poszukiwaniu miejsc zerowych. Aby przekazać jej adres, piszemy po prostu jej nazwę bez
nawiasów okrągłych - tak jak się tego nauczyliśmy niedawno.
Czwarty parametr to z kolei zwykły wskaźnik na zmienną typu double i do tej roli
wystawiamy adres specjalnie przygotowanej zmiennej. Po zakończonej powodzeniem
operacji poszukiwania wyświetlamy jej wartość poprzez strumień wyjścia.
Jeżeli zaś chodzi o dwa pierwsze parametry, to określają one obszar poszukiwań,
wyznaczony głównie poprzez stałą PRZEDZIAL. Dolna granica musi być dodatkowo

Wskaźniki 325

„przycięta” z dziedziną funkcji - stąd też operator warunkowy ?: i porównanie granicy
przedziału ze współczynnikiem p.

Powiedzmy sobie jeszcze wyraźnie, jaka jest praktyczna korzyść z zastosowania
wskaźników do funkcji w tym programie, bo może nie jest ona zbytnio widoczna. Otóż
mając wpisany algorytm poszukiwań miejsca zerowego w ogólnej wersji, działający na
wskaźnikach do funkcji zamiast bezpośrednio na funkcjach, możemy stosować go do tylu
różnych funkcji, ile tylko sobie zażyczymy. Nie wymaga to więcej wysiłku niż jedynie
zdefiniowania nowej funkcji do zbadania i przekazania wskaźnika do niej jako parametru
do SzukajMiejscaZerowego(). Uzyskujemy w ten sposób większą elastyczność
programu.

Zastosowania
Poprawa elastyczności nie jest jednak jedynym, ani nawet najważniejszym
zastosowaniem wskaźników do funkcji. Tak naprawdę stosuje się je glównie w technice
programistycznej znanej jako funkcje zwrotne (ang. callback functions).

Dość powiedzieć, że opierają się na niej wszystkie nowoczesne systemy operacyjne, z
Windows na czele. Umożliwia ona bowiem informowanie programów o zdarzeniach
zachodzących w systemie (wywołanych na przykład przez użytkownika, jak kliknięcie
myszką) i odpowiedniego reagowania na nie. Obecnie jest to najczęstsza forma pisania
aplikacji, zwana programowaniem sterowanym zdarzeniami. Kiedy rozpoczniemy
tworzenie aplikacji dla Windows, także będziemy z niej nieustannie korzystać.

I tak zakończyliśmy nasze spotkanie ze wskaźnikami do funkcji. Nie są one może tak
często wykorzystywane i przydatne jak wskaźniki na zmienne, ale, jak mogłeś
przeczytać, jeszcze wiele razy usłyszysz o nich i wykorzystasz je w przyszłości. Warto
więc było dobrze poznać ich składnię (fakt, jest nieco zagmatwana) oraz sposoby użycia.

Podsumowanie
Wskaźniki są często uważane za jedną z natrudniejszych koncepcji programistycznych w
ogóle. Wielu całkiem dobrych koderów ma niekiedy większe lub mniejsze kłopoty w ich
stosowaniu.
Celowo nie wspomniałem o tych opiniach, abyś mógł najpierw samodzielnie przekonać się
o tym, czy zagadnienie to jest faktycznie takie skomplikowane. Dołożyłem przy tym
wszelkich starań, by uczynić je chociaż trochę prostszym do zrozumienia. Jednocześnie
chciałem jednak, aby zawarty tu opis wskaźników był jak najbardziej dokładny i
szczegółowy. Wiem, że pogodzenie tych dwóch dążeń jest prawie niemożliwe, ale mam
nadzieję, że wypracowałem w tym rozdziale w miarę rozsądny kompromis.

Zacząłem więc od przedstawienia garści przydatnych informacji na temat samej pamięci
operacyjnej komputera. Podejrzewam, że większość czytelników nawet i bez tego była
wystarczająco obeznana z tematem, ale przypomnień i uzupełnień nigdy dość :) Przy
okazji wprowadziliśmy sobie samo pojęcie wskaźnika.
Dalej zajęliśmy się wskaźnikami na zmienne, ich deklarowaniem i wykorzystaniem: do
wspomagania pracy z tablicami, przekazywania parametrów do funkcji czy wreszcie
dynamicznej alokacji pamięci. Poznaliśmy też referencje.
Podrozdział o wskaźnikach na funkcje składał się natomiast z poszerzenia wiadomości o
samych funkcjach oraz wyczerpującego opisu stosowania wskaźników na nie.

Podstawy programowania 326

Nieniejszy rozdział jest jednocześnie ostatnim z części 1, stanowiącej podstawowy kurs
C++. Po nim przejdziemy (wreszcie ;D) do bardziej zaawansowanych zagadnień języka,
Biblioteki Standardowej, a później Windows API i DirectX, a wreszcie do programowania
gier.
A zatem pierwszy duży krok już za nami, lecz nadal szykujemy się do wielkiego skoku :)

Pytania i zadania
Tradycji musi stać się zadość: oto świeża porcja pytań dotyczących treści tego rozdziału
oraz ćwiczeń do samodzielnego rozwiązania.

Pytania
1. Jakie są trzy rodzaje pamięci wykorzystywanej przez komputer?
2. Na czym polega płaski model adresowania pamięci operacyjnej?
3. Czym jest wskaźnik?
4. Co to jest stos i sterta?
5. W jaki sposób deklarujemy w C++ wskaźniki na zmienne?
6. Jak działają operatory pobrania adresu i dereferencji?
7. Czym rózni się wskaźnik typu void* od innych?
8. Dlaczego łańcuchy znaków w stylu C nazywamy napisami zakończonymi zerem?
9. Dlaczego używanie wskaźników lub referencji jako parametrów funkcji może

poprawić wydajność programu?
10. W jaki sposób dynamicznie alokujemy zmienne, a w jaki tablice?
11. Co to jest wyciek pamięci?
12. Czym różnią się referencje od wskaźników na zmienne?
13. Jakie podstawowe konwencje wywoływania funkcji są obecnie w użyciu?
14. (Trudne) Czy funkcja może nie używać żadnej konwencji wywołania?
15. Jakie są trzy cechy wyznaczające typ funkcji i jednocześnie typ wskaźnika na nią?
16. Jak zadeklarować wskaźnik do funkcji o znanym prototypie?

Ćwiczenia
1. Przejrzyj przykładowe kody z poprzednich rozdziałów i znajdź instrukcje,

wykorzystujące wskaźniki lub operatory wskaźnikowe.
2. Zmodyfikuj nieco metodę ZmienRozmiar() klasy CIntArray. Niech pozwala ona

także na zmniejszenie rozmiaru tablicy.
3. Spróbuj napisać podobną klasę dla tablicy dwuwymiarowej.

(Trudne) Niech przechowuje ona elementy w ciągłym obszarze pamięci - tak, jak
robi to kompilator ze statycznymi tablicami dwuwymiarowymi.

4. Zadeklaruj wskaźnik do funkcji:
1) pobierającej jeden parametr typu int i zwracającej wynik typu float
2) biorącej dwa parametry typu double i zwracającej łańcuch std::string
3) pobierającej trzy parametry: jeden typu int, drugi typu __int64, a trzeci

typu std::string i zwracającej wskaźnik na typ int
4) (Trudniejsze) przyjmującej jako parametr pięcioelementową tablicę liczb

typu unsigned i nic niezwracającą
5) (Trudne) zwracającej wartość typu float i przyjmującej jako parametr

wskaźnik do funkcji biorącej dwa parametry typu int i nic niezwracającej
6) (Trudne) pobierającej tablicę pięcioelementową typu short i zwracającej

jedną liczbę typu int
7) (Bardzo trudne) biorącej dwa parametry: jeden typu char, a drugi typu

int, i zwracającej tablicę 10 elementów typu double
Wskazówka: to nie tylko trudne, ale i podchwytliwe :)

Wskaźniki 327

8) (Ekstremalne) przyjmującej jeden parametr typu std::string oraz
zwracającej w wyniku wskaźnik do funkcji przyjmującej dwa parametry
typu float i zwracającej wynik typu bool

5. Określ typy parametrów oraz typ wartości zwracanej przez funkcje, na które może
pokazywać wskaźnik o takiej deklaracji:

a) int (*pfnWskaznik)(int);
b) float* (*pfnWskaznik)(const std::string&);
c) bool (*pfnWskaznik)(void* const, int**, char);
d) const unsigned* const (*pfnWskaznik)(void);
e) (Trudne) void (*pfnWskaznik)(int (*)(bool), const char*);
f) (Trudne) int (*pfnWskaznik)(char[5], tm&);
g) (Bardzo trudne) float (*pfnWskaznik(short, long, bool))(int,

int);

