WSKAZNIKI

Im bardziej zagladat do $rodka,

tym bardziej nic tam nie byfto.
A. A. Milne ,Kubu$ Puchatek”

Dwa poprzednie rozdziaty uptynety nam na poznawaniu réznorodnych aspektéw
programowania obiektowego. Nawet teraz, w kilkanascie lat po powstaniu, jest ona
czasem uwazana moze nie za awangarde, ale powazng nowos¢ i ,,odstepstwo” od
~klasycznych” regut programowania.

Takie opinie, pojawiajace sie oczywiscie coraz rzadziej, sa po czesci echem dawnej
popularnosci jezyka C. Fakt, ze C++ zachowuje wszystkie wiasciwosci swego
poprzednika, zdaje sie usprawiedliwac podejscie, iz sq one wazniejsze i bardziej znaczace
niz ,dodatki” wprowadzone wraz z dwoma plusami w nazwie jezyka. Do owych
»~dodatkéw” ma rzecz jasna naleze¢ programowanie obiektowe.

Sprawia to, ze ogromna wiekszos$¢ kursow i podrecznikéw jezyka C++ jest
usystematyzowana wedle osobliwej zasady. Otéz mowi ona, ze najpierw nalezy wytozy¢
wszystkie zagadnienia zwigzane z C, a dopiero potem zaja¢ sie ,nowinkami”, w ktore
zostat wyposazony jego nastepca.

Zastanawiajac sie nad tym blizej, mozna nieomal nabraé¢ watpliwosci, czy w ten sposdb
nadal uczymy sie przede wszystkim programowania, czy moze bardziej zajmujg nas juz
kwestie formalne danego jezyka? Jezeli nawet nie odnosimy takiego wrazenia, to
nietrudno znalez¢ szczesliwsze i bardziej naturalne drogi poznania tajnikéw kodowania.

Pamietajmy, ze programowanie jest raczej praktyczng dziedzing informatyki, a jego
nauka jest w duzej mierze zdobywaniem umiejetnosci, a nie tylko samej wiedzy. Dlatego
tez wymaga ona mniej teoretycznego nastawienia, a wiecej wytrwatosci w osigganiu
coraz lepszego ,wtajemniczenia” w zagadnienia programistyczne. Naturalng kolejq rzeczy
jest wiec uszeregowanie tych zagadnien wedtug wzrastajgcego poziomu trudnosci czy tez
ze wzgledu na ich wiekszg lub mniejszg uzytecznos$¢ praktyczna.

Takie tez zatozenie przyjatem w tym kursie. Nie chce sobie jednak robi¢ autoreklamy
twierdzac, ze jest on ,inny niz wszystkie” pozostate; mam nawet nadzieje, ze to
okreslenie jest catkowitg nieprawda i ze istnieje jeszcze mndstwo innych publikacji,
ktérych autorzy skupili sie gtdwnie na nauczaniu programowania, a nie na opisywaniu
Jjezykoéw programowania.

Zatem zgodnie z powyzszg tezg kwestie programowania obiektowego, jako niezwykle
wazne same w sobie, wprowadzitem tak wczesnie jak to tylko byto mozliwe - nie
przywigzujac wagi to faktu, czy sg one wiasciwe jeszcze jezykowi C, czy moze juz C++.
Bardziej liczyta sie bowiem ich rzeczywista przydatnosc.

Na tej samej zasadzie opieram sie takze teraz, gdy przyszedt czas na szczego6towe
omowienie wskaznikow. To réwniez wazne zagadnienie, ktérego geneza nie wydaje sie
wcale tak bardzo istotna. Najwazniejsze, iz sgq one czescig jezyka C++, w dodatku jedng
z kluczowych - chociaz moze nie najprostszych. Umiejetnos¢ wiasciwego postugiwania sie
wskaznikami oraz pamiecig operacyjng jest wiec niebagatelna dla programisty C++.
Opanowaniu przez ciebie tej umiejetnosci zostat poswiecony caty niniejszy rozdziat.
Mozesz wiec do woli z niego korzystac :)

274 Podstawy programowania

Ku pamieci

Wskazniki sg $cisle zwigzane z pamiecig komputera - a wiec miejscem, w ktérym
przechowuje on dane. Przydatne bedzie zatem przypomnienie sobie (a moze dopiero
poznanie?) kilku podstawowych informacji na ten temat.

Rodzaje pamieci

Mozna wyrdzni¢ wiele rodzajow pamieci, jakimi dysponuje pecet, kierujac sie réznymi
przestankami. Najczesciej stosuje sie kryteria szybkosci i pojemnosci; sg one wazne
nie tylko dla nas, programistéw, ale praktycznie dla kazdego uzytkownika komputera.

Nietrudno przy tym zauwazy¢, ze sg one ze sobg wzajemnie powigzane: im wieksza jest
szybkos$¢ danego typu pamieci, tym mniej danych mozna w niej przechowywad, i na
odwrot. Nie ma niestety pamieci zaréowno wydajnej, jak i pojemnej - zawsze potrzebny
jest jakis kompromis.

Zjawisko to obrazuje ponizszy wykres:

4 rejestry procesora

pamigc operacyjna

dysk twardy

SZybkosc

plik i
Wi iany —

|

L

POETINDECE

Wykres 2. Szybko$¢ oraz pojemnos¢ kilku typow pamieci komputera

Zostaty na nim umieszczone wszystkie rodzaje pamieci komputera, jakimi sie zaraz
doktadnie przyjrzymy.

Rejestry procesora

Procesor jest jednostkg obliczeniowg w komputerze. Nieszczegdlnie zatem kojarzy sie z
przechowywaniem danych w jakiejs formie pamieci. A jednak posiada on wiasne jej
zasoby, ktore sg kluczowe dla prawidlowego funkcjonowania catego systemu. Nazywamy
je rejestrami.

Kazdy rejestr ma postac pojedynczej komérki pamieci, zas ich liczba zalezy gtéwnie od
modelu procesora (generacji). Wielko$¢ rejestru jest natomiast potocznie znana jako
»bitowos$¢” procesora: najpopularniejsze obecnie jednostki 32-bitowe majg wiec rejestry
o wielkosci 32 bitéw, czyli 4 bajtow.

Ten sam rozmiar majgq tez w C++ zmienne typu int, i nie jest to bynajmniej
. przypadek :)

Wiekszos¢ rejestrow ma Scisle okreslone znaczenie i zadania do wykonania. Nie sg one
wiec przeznaczone do reprezentowania dowolnych danych, ktore by sie wen zmiescity.
Zamiast tego petnig rézne wazne funkcje w obrebie catego systemu.

Ze wzgledu na wykonywane przez siebie role, wsrdd rejestréw procesora mozemy
wyroznic:

Wskazniki 275

> cztery rejestry uniwersalne (EAX, EBX, ECX i EDX%?). Przy ich pomocy procesor
wykonuje operacje arytmetyczne (dodawanie, odejmowanie, mnozenie i
dzielenie). Niektére wspomagajq tez wykonywanie programow, np. EAX jest
uzywany do zwracania wynikéw funkcji, zas ECX jako licznik w petlach.
Rejestry uniwersalne majq wiec najwieksze znaczenie dla programistow (gtéwnie
asemblera), gdyz czesto sq wykorzystywane na potrzeby ich aplikacji. Z
pozostatych natomiast korzysta prawie wytacznie sam procesor.

Kazdy z rejestrow uniwersalnych zawiera w sobie mniejsze, 16-bitowe, a te z kolei po
dwa rejestry oSmiobitowe. Mogg one by¢ modyfikowane niezaleznie do innych, ale trzeba
oczywiscie pamietac, ze zmiana kilku bitdw pocigga za sobg pewng zmiane catej wartosci.

> rejestry segmentowe pomagajg organizowac¢ pamie¢ operacyjng. Dzieki nim
procesor ,wie”, w ktérej czesci RAMu znajduje sie kod aktualnie dziatajgcego
programu, jego dane itp.

> rejestry wskaznikowe pokazujg na wazne obszary pamieci, jak chocby
aktualnie wykonywana instrukcja programu.

» dwa rejestry indeksowe sg uzywane przy kopiowaniu jednego fragmentu
pamieci do drugiego.

Ten podstawowy zestaw moze by¢ oczywiscie uzupetniony o inne rejestry, jednak
powyzsze s absolutnie niezbedne do pracy procesora.

Najwazniejszg cechg wszystkich rejestréw jest btyskawiczny czas dostepu. Poniewaz
ulokowane sg w samym procesorze, skorzystanie z nich nie zmusza do odbycia
~Wycieczki” wgtab pamieci operacyjnej i dlatego odbywa sie wrecz ekspresowo. Jest to w
zasadzie najszybszy rodzaj pamieci, jakim dysponuje komputer.

Ceng za te szybkos¢ jest oczywiscie znikoma objetos¢ rejestrow - na pewno nie mozna w
nich przechowywac ztozonych danych. Co wiecej, ich panem i wtadca jest tylko i
wyfacznie sam procesor, zatem nigdy nie mozna mie¢ pewnosci, czy zapisane w nich
informacje nie zostang zastgpione innymi. Trzeba tez pamietaé, ze nieumiejetne
manipulowanie innymi rejestrami niz uniwersalne moze doprowadzi¢ nawet do
zawieszenia komputera; na tak niskim poziomie nie ma juz bowiem zadnych
komunikatéw o btedach...

Zmienne przechowywane w rejestrach

Mozemy jednak odnie$¢ pewne korzysci z istnienia rejestrow procesora i sprawic, by
zaczety dziata¢ po naszej stronie. Jako niezwykle szybkie porcje pamieci sg idealne do
przechowywania matych, ale czesto i intensywnie uzywanych zmiennych.

Na dodatek nie musimy wcale martwic sie o to, w ktorym dokfadnie rejestrze mozemy w
danej chwili zapisa¢ dane oraz czy pozostang one tam nienaruszone. Czynnosci te mozna
bowiem zleci¢ kompilatorowi: wystarczy jedynie uzy¢ stowa kluczowego register - na
przykiad:

register int nZmiennaRejestrowa;

Gdy opatrzymy deklaracje zmiennej tym modyfikatorem, to bedzie ona w miare
mozliwosci przechowywana w ktoryms z rejestrow uniwersalnych procesora. Powinno to
rzecz jasna przyspieszy¢ dziatanie catego programu.

92 Wszystkie nazwy rejestréw odnosza sie do procesordw 32-bitowych.

276 Podstawy programowania

Dostep do rejestrow

Rejestry procesora, jako zwigzane Scisle ze sprzetem, sg rzecza niskopoziomowa. C++
jest zas jezykiem wysokiego poziomu i szczyci sie niezaleznoscig od platformy
sprzetowej.

Powoduje to, iz nie posiada on zadnych specjalnych mechanizmdw, pozwalajacych
odczytac lub zapisywac dane do rejestréw procesora. Zdecydowata o tym nie tylko
przenos$nosé, ale i bezpieczenstwo - ,mieszanie” w tak zaawansowanych obszarach
systemu moze bowiem przynies¢ sporo szkody.

Jedynym sposobem na uzyskanie dostepu do rejestréw jest skorzystanie z wstawek
asemblerowych, ujmowanych w bloki asm. Mozna o nich przeczyta¢ w MSDN; uzywajac
ich trzeba jednak mie¢ $wiadomos¢, w co sie pakujemy :)

Pamiec operacyjna

Do sensownego funkcjonowania komputera potrzebne jest miejsce, w ktorym magtby on
sktadowac¢ kod wykonywanych przez siebie programéw (obejmuje to takze system
operacyjny) oraz przetwarzane przez nie dane. Jest to stosunkowo spora ilos¢ informacji,
wiec wymaga znacznie wiecej miejsca niz to oferujq rejestry procesora. Kazdy komputer
posiada wiec osobng pamiec¢ operacyjna, przeznaczong na ten wiasnie cel. Nazywamy
ja czesto angielskim skrétem RAM (ang. random access memory - pamiec¢ o dostepie
bezposrednim).

Skad sie bierze pamie¢ operacyjna?
Pamiec tego rodzaju utozsamiamy zwykle z jedng lub kilkoma elektronicznymi uktadami
scalonymi (tzw. ko$¢mi), wtozonymi w odpowiednie miejsca ptyty gtéwnej peceta.

Fotografia 2. Kilka kosci RAM typu DIMM
(zdjecie pochodzi z serwisu Tom's Hardware Guide)

Rzeczywiscie jest to najwazniejsza czesc tej pamieci (sama zwana jest czasem pamiecia
fizyczna), ale na pewno nie jedyna. Obecnie wiele podzespotéw komputerowych posiada
witashe zasoby pamieci operacyjnej, przystosowane do wykonywania bardziej
specyficznych zadan.

W szczegdlnosci dotyczy to kart graficznych i dzwiekowych, zoptymalizowanych do pracy
z wiasciwymi im typami danych. Ilo$¢ pamieci, w jaka sq wyposazane, systematycznie
rosnie.

http://www.tomshardware.com/

Wskazniki 277

Pamie¢ wirtualna

Istnieje jeszcze jedno, przebogate zrédto dodatkowej pamieci operacyjnej: jest nim dysk
twardy komputera, a scislej jego czes¢ zwana plikiem wymiany (ang. swap file) lub
plikiem stronnicowania (ang. paging file).

Obszar ten stuzy systemowi operacyjnemu do ,udawania”, iz ma pokaznie wiecej pamieci
niz posiada w rzeczywistosci. Wtasnie dlatego taka symulowang pamie¢ nazywamy
wirtualna.

Podobny zabieg jest niewatpliwie konieczny w srodowisku wielozadaniowym, gdzie naraz
moze by¢ uruchomionych wiele programéw. Chociaz w danej chwili pracujemy tylko z
jednym, to pozostate moga nadal dziata¢ w tle - nawet wowczas, gdy faczna ilos¢
potrzebnej im pamieci znacznie przekracza fizyczne mozliwosci komputera.

Ceng za ponadplanowe miejsce jest naturalnie wydajnos¢. Dysk twardy charakteryzuje
sie dtuzszym czasem dostepu niz uktady RAM, zatem wykorzystanie go jako pamieci
operacyjnej musi pociggnac¢ za sobg spowolnienie dziatania systemu. Dzieje sie jednak
tylko wtedy, gdy uruchamiamy wiele aplikacji naraz.

Mechanizm pamieci wirtualnej, jako niemal niezbedny do dziatania kazdego
nowoczesnego systemu operacyjnego, funkcjonuje zazwyczaj bardzo dobrze. Mozna
jednak poprawic¢ jego osiggi, odpowiednio ustawiajac pewne opcje pliku wymiany. Przede
wszystkim warto umiesci¢ go na nieuzywanej zwykle partycji (Linux tworzy nawet sam
odpowiednig partycje) i ustali¢ staty rozmiar na mniej wiecej dwukrotnos¢ ilosci
posiadanej pamieci fizycznej.

Pamie¢ trwata

Przydatnos$¢ komputeréw nie wykraczataby wiele poza zastosowania kalkulatoréw, gdyby
swego czasu nie wynaleziono sposobu na trwate zachowywanie informacji miedzy
kolejnymi uruchomieniami maszyny. Tak narodzity sie dyskietki, dyski twarde,
zapisywalne ptyty CD, przenosne nosniki ,dtugopisowe” i inne media, stuzace do
diugotrwatego magazynowania danych.

Sposrod nich na najwiecej uwagi zastugujg dyski twarde, jako ze obecnie sg niezbednym
elementem kazdego komputera. Zwane sg czasem pamiecia trwata (z wyjasnionych
wyzej wzgleddéw) albo masowaq (z powodu ich duzej pojemnosci).

Mozliwos¢ zapisania duzego zbioru informacji jest aczkolwiek okupiona $lamazarnoscig
dziatania. Odczytywanie i zapisywanie danych na dyskach magnetycznych trwa bowiem
zdecydowanie dtuzej niz odwotanie do komorki pamieci operacyjnej. Ich wykorzystanie
ogranicza sie wiec z reguty do jednorazowego wczytywania duzych zestawow danych (na
przykfad catych plikéw) do pamieci operacyjnej, poczynienia dowolnej ilosci zmian oraz
powtdrnego, trwatego zapisania. Wszelkie operacje np. na otwartych dokumentach sg
wiec w zasadzie dokonywane na ich kopiach, rezydujacych wewnatrz pamieci
operacyjnej.

Nie zajmowalismy sie jeszcze odczytem i zapisem informacji z plikdw na dysku przy
pomocy kodu C++. Nie martw sie jednak, gdyz ostatecznie poznamy nawet wiecej niz
jeden sposdb na dokonanie tego. Pierwszy zdarzy sie przy okazji omawiania strumieni,
bedacych czescig Biblioteki Standardowej C++.

Organizacja pamieci operacyjnej

Sposrod wszystkich trzech rodzajéw pamieci, dla nas w kontekscie wskaznikow
najwazniejsza bedzie pamiec¢ operacyjna. Poznamy teraz jej budowe widziang z
koderskiego punktu widzenia.

278 Podstawy programowania

Adresowanie pamieci

Wygodnie jest wyobraza¢ sobie pamie¢ operacyjng jako co$ w rodzaju wielkiej tablicy
bajtow. W takiej strukturze kazdy element (zmiemy go komérka) powinien dac sie
jednoznacznie identyfikowacé poprzez swoj indeks. I tutaj rzeczywiscie tak jest - numer
danego bajta w pamieci nazywamy jego adresem.

W ten sposdb dochodzimy tez do pojecia wskaznika:

Wskaznik (ang. pointer) jest adresem pojedynczej komérki pamieci operacyjnej.

Jest to wiec w istocie liczba, interpretowana jako unikalny indeks danego miejsca w
pamieci. Specjalne znaczenie ma tu jedynie wartos¢ zero, interpretowana jako wskaznik
pusty (ang. null pointer), czyli nieodnoszacy sie do zadnej konkretnej komérki pamieci.
Wskazniki stuzg wiec jako tgczg do okreslonych miejsc w pamieci operacyjnej; poprzez
nie mozemy odwolywac sie do tychze miejsc. Bedziemy rowniez potrafili pobierac
wskazniki na zmienne oraz funkcje, zdefiniowane we wtasnych aplikacjach, i wykonywac
przy ich pomocy rézne wspaniate rzeczy :)

Zanim jednak zajmiemy sie blizej samymi wskaznikami w jezyku C++, poswie¢my nieco
uwagi na to, w jaki sposdb systemy operacyjne zajmujg sie organizacjg i systematyzacja
pamieci operacyjnej - czyli jej adresowaniem. Pomoze nam to lepiej zrozumie¢ dziatanie
wskaznikow.

Epoka niewygodnych segmentow

Dawno, dawno temu (co oznacza przetom lat 80. i 90. ubiegtego stulecia) wiekszos¢
programistow nie mogta by¢ zbytnio zadowolona z metod, jakich musieli uzywac, by
obstugiwac wieksze ilosci pamieci operacyjnej. Byfa ona bowiem podzielona na tzw.
segmenty, kazdy o wielkosci 64 kilobajtéw.

Aby zidentyfikowa¢ konkretng komorke nalezato wiec podac az dwie opisujace jej liczby:
oczywiscie numer segmentu, a takze offset, czyli konkretny juz indeks w ramach danego
segmentu.

............ seomenty .
_____ 0x0128 0x0129 0x012A 0x012B O=l2C _____
__:_‘—UKUDDE 0x00086 Ox0007 0x0008 0x0009 - ____-
_____________ M

Schemat 31. Segmentowe adresowanie pamieci. Adres zaznaczonej komorki zapisywano zwykle
jako 012A:0007, a wiec oddzielajac dwukropkiem numer segmentu i offset (oba zapisane w
systemie szesnastkowym). Do ich przechowywania potrzebne byty dwie liczby 16-bitowe.

Moze nie wydaje sie to wielkg niedogodnoscia, ale naprawde byto nig. Przede wszystkim
niemozliwe byto operowanie na danych o rozmiarze wiekszym niz owe 64 kB (a wiec
chociazby na dtugich napisach). Chodzi tez o fakt, iz to programista musiat martwic sie o
rozmieszczenie kodu oraz danych pisanego programu w pamieci operacyjnej. Czas
pokazat, ze obowigzek ten z powodzeniem mozna przerzuci¢ na kompilator - co zresztg
wkroétce stato sie mozliwe.

Wskazniki 279

Ptaski model pamieci

Dzisiejsze systemy operacyjne majg znacznie wygodniejszy sposob organizacji pamieci
RAM. Jest nim witasnie 6w ptaski model (ang. flat memory model), likwidujacy wiele
mankamentéw swego segmentowego poprzednika.

32-bitowe procesory pozwalajg mianowicie, by cala pamie¢ byta jednym segmentem.
Taki segment moze mie¢ rozmiar nawet 4 gigabajtow, wiec z fatwoscia zmieszcza sie w
nim wszystkie fizyczne i wirtualne zasoby RAMu.

To jednakze nie wszystko. Otéz ptaski model umozliwia zgrupowanie wszystkich
dostepnych rodzajéw pamieci operacyjnej (kosci RAM, plik wymiany, pamiec karty
graficznej, itp.) w jeden ciggty obszar, zwany przestrzenia adresowa. Programista nie
musi sie przy tym martwié¢, do jakiego szczegdlnego typu pamieci odnosi sie dany
wskaznik! Na poziomie jezyka programowania znikajg bowiem wszelkie praktyczne
réznice miedzy nimi: oto mamy jeden, wielki segment calej pamieci operacyjnej i
basta!

0xdF520987 | Ox4F520988 | Ox4F520989 | Ox4F5209BA | Ox4F52098B

uktady scalone RAMuU plik weymiany karta graficzna

Schemat 32. Idea ptaskiego modelu pamieci. Adresy sktadaja sie tu tylko z offsetow,
przechowywanych jako liczby 32-bitowe. Moga one odnosi¢ sie do jakiegokolwiek rzeczywistego
rodzaju pamieci, na przyktad do takich jak na ilustracji.

W Windows dodatkowo kazdy proces (program) posiada swojg wlasng przestrzen
adresowg, niedostepng dla innych. Wymiana danych moze wiec zachodzi jedynie poprzez
dedykowane do tego mechanizmy. Bedziemy o nich moéwi¢, gdy juz przejdziemy do
programowania aplikacji okienkowych.

Przy takim modelu pamieci poréwnanie jej do ogromnej, jednowymiarowej tablicy staje
sie najzupetniej stuszne. Wskazniki mozna sobie wtedy catkiem dobrze wyobrazac jako
indeksy tej tablicy.

Stos i sterta

Na koniec wspomnimy sobie o dwoch waznych dla programistow rejonach pamieci
operacyjnych, a wiec wtasnie o stosie oraz stercie.

Czym jest stos?

Stos (ang. stack) jest obszarem pamieci, ktory zostaje automatycznie przydzielony do
wykorzystania dla programu.

280 Podstawy programowania

Na stosie egzystujg wszystkie zmienne zadeklarowane jawnie w kodzie (szczegdlne te
lokalne w funkcjach), jest on takze uzywany do przekazywania parametrow do funkciji.

Faktycznie wiec mozna by w ogdle nie wiedzie¢ o jego istnieniu. Czasem jednak objawia
sie ono w dos¢ nieprzyjemny sposdb: poprzez btad przepelnienia stosu (ang. stack
overflow). Wystepuje on zwykle wtedy, gdy nastgpi zbyt wiele wywotan funkcji.

O stercie

Reszta pamieci operacyjnej nosi oryginalng nazwe sterty.

Sterta (ang. heap) to cata pamiec¢ dostepna dla programu i mogaca by¢ mu przydzielona
do wykorzystania.

Czytajac oba opisy (stosu i sterty) pewnie trudno jest wychwyci¢ miedzy nimi jakies
roznice, jednak w rzeczywistosci sg one catkiem spore.

Przede wszystkim, rozmiar stosu jest ustalany raz na zawsze podczas kompilacji
programu i nie zmienia sie w trakcie jego dziatania. Wszelkie dane, jako sg na nim
przechowywane, muszg wiec mie¢ staly rozmiar - jak na przyktad skalarne zmienne,
struktury czy tez statyczne tablice.

Kontrolg pamieci sterty zajmuje sie natomiast sam programista i dlatego moze przyznac
swojej aplikacji odpowiednig jej ilos¢ w danej chwili, podczas dziatania programu. Jest
to bardzo dobre rozwigzanie, kiedy konieczne jest przetwarzanie zbioréw informaciji o
zmiennym rozmiarze.

Terminy ‘stos’ i ‘sterta’ majg w programowaniu jeszcze jedno znaczenie. Tak mianowicie
nazywajq sie dwie czesto wykorzystywane struktury danych. Omoéwimy je przy okazji
poznawania Biblioteki Standardowej C++.

Xk k

Na tym zakonczymy ten krétki wykfad o samej pamieci operacyjnej. Czes¢ tych
wiadomosci byfa niektorym pewnie doskonale znana, ale chyba kazdy miat okazje
dowiedzie¢ sie czego$ nowego :)

Wiedza ta bedzie nam teraz szczegdlnie przydatna, gdyz rozpoczynamy wreszcie
zasadniczg czes$¢ tego rozdziatu, czyli omdwienie wskaznikow w jezyku C++: najpierw na
zmienne, a potem wskaznikéw na funkcje.

Wskazniki na zmienne

Trudno zliczy¢, ile razy stosowaliSmy zmienne w swoich programach. Takie statystyki nie
majq zresztg zbytniego sensu - programowanie bez uzycia zmiennych jest przeciez tym
samym, co prowadzenie samochodu bez korzystania z kierownicy ;D

Wiele razy przypominatem tez, ze zmienne rezydujg w pamieci operacyjnej. Mechanizm
wskaznikow na nie jest wiec zupetnie logiczng konsekwencjg tego zjawiska. W tym
podrozdziale zajmiemy sie wtasnie takimi wskaznikami.

Uzywanie wskaznikow na zmienne

Wskaznik jest przede wszystkim liczbg - adresem w pamieci, i w takiej tez postaci istnieje
w programie. Jezyk C++ ma ponadto Sciste wymagania dotyczace kontroli typéw i z tego
powodu kazdy wskaznik musi mie¢ dodatkowo okreslony typ, na jaki wskazuje. Innymi

Wskazniki 281

stowy, kompilator musi zna¢ odpowiedz na pytanie: ,Jakiego rodzaju jest zmienna, na
ktorg pokazuje dany wskaznik?”. Dzieki temu potrafi zachowywac kontrole nad typami
danych w podobny sposdb, w jaki czyni to w stosunku do zwyktych zmiennych.

Obejmuje to takze rzutowanie miedzy wskaznikami, o ktérym tez sobie powiemy.

Wiedzac o tym, spojrzmy teraz na ten elementarny przyktad deklaracji oraz uzycia
wskaznika:

// deklaracja zmiennej typu int oraz wskazZnika na zmienne tego typu
int nZmienna = 10;
int* pnWskaznik; // nasz wskaznik na zmienne typu int

// przypisanie adresu zmiennej do naszego wskaznika i uzycie go do

// wyswietlenia jej wartosci w konsoli

pnWskaznik = &nZmienna; // pnWskaznik odnosi sie teraz do nZmienna
std::cout << *pnWskaznik; // otrzymamy 10, czyli warto$é zmienne]

Dobra wiadomos¢ jest taka, iz mimo prostoty ilustruje on wiekszos$¢ zagadnien
zwigzanych ze wskaznikami na zmiennej. Nieco gorszg jest pewnie to, ze owa prostota
moze dla niektérych nie by¢ wcale taka prosta :) Naturalnie, wyjasnimy sobie po kolei, co
dzieje sie w powyzszym kodzie (chociaz komentarze moéwig juz catkiem sporo).

Oczywiscie najpierw mamy deklaracje zmiennej (z inicjalizacjg), lecz nas interesuje
bardziej sposdb zadeklarowania wskaznika, czyli:

int* pnWskaznik;

Poprzez dodanie gwiazdki (*) do nazwy typu int informujemy kompilator, ze oto nie ma
juz do czynienia ze zwyktg zmienng liczbowa, ale ze wskaznikiem przeznaczonym do
przechowywania adresu takiej zmiennej. pWskaznik jest wiec wskaznikiem na
zmienne typu int, lub, krécej, wskaznikiem na (typ) int.

A zatem mamy juz zmienng, mamy i wskaznik. Przydatoby sie zmusi¢ je teraz do
wspotpracy: niech pWiskaznik zacznie odnosi¢ sie do naszej zmiennej! Aby tak byto,
musimy pobra¢ jej adres i przypisa¢ go do wskaznika - o tak:

pnWskaznik = &nZmienna;

Zastosowany tutaj operator s stuzy wiasnie w tym celu - do uzyskania adresu miejsca
w pamieci, gdzie egzystuje zmienna. Potem rzecz jasna zostaje on zapisany w
pniiskaznik; odtad wskazuje on wiec na zmienng nzZmienna.

Na koniec widzimy jeszcze, ze za pos$rednictwem wskaznika mozemy dostac sie do
zmiennej i uzy¢ jej w ten sam sposob, jaki znalismy dotychczas, choéby do wypisania jej
wartosci w oknie konsoli:

std::cout << *pnWskaznik;

Jak z pewnoscig przypuszczasz, operator * nie dokonuje tutaj mnozenia, lecz podejmuje
wartos¢ zmiennej, z ktorg potaczony zostat pniiskaznik; nazywamy to dereferencja
wskaznika. W jej wyniku otrzymujemy na ekranie liczbe, ktérg oryginalnie przypisaliSmy
do zmiennej nzZmienna. Bez zastosowania wspomnianego operatora zobaczyliSmy
wartos¢ wskaznika (a wiec adres komoérki w pamieci), nie za$ wartos¢ zmiennej, na
ktorg on pokazuje. To oczywiscie wielka rdznica.

282 Podstawy programowania

Zaprezentowana prébka kodu faktycznie realizuje zatem zadanie wyswietlenia wartosci
zmiennej nzmienna W iScie okrezny sposob. Zamiast bezposredniego przestania jej do
strumienia wyjscia postugujemy sie w tym celu dodatkowym posrednikiem w postaci
wskaznika.

Samo w sobie moze to budzi¢ watpliwosci co do sensownoséci korzystania ze wskaznikéw.
Pomysimy jednak, ze majac wskaznik mozemy umozliwi¢ dostep do danej zmiennej z
jakiegokolwiek miejsca programu - na przyktad z funkcji, do ktérej przekazemy go jako
parametr (w koncu to tylko liczba!). Potrafimy wtedy zaprogramowac kazdg czynnosc
(algorytm) i zapewnic¢ jej wykonanie w stosunku do dowolnej ilosci zmiennych, piszac
odpowiedni kod tylko raz.

Wiecej przekonania do wskaznikow na zmiennej nabierzesz wowczas, gdy poznasz je
blizej - i temu witasnie zadaniu poswiecimy teraz uwage.

Deklaracje wskaznikdow

StwierdziliSmy, ze wskazniki mogg z powodzeniem odnosi¢ sie do zmiennych - albo
ogolnie mdéwiac, do danych w programie. Czynig to poprzez przechowywanie numeru
odpowiedniej komodrki w pamieci, a zatem pewnej wartoséci. Sprawia to, ze wskazniki sg
w rzeczy samej takze zmiennymi.

Wskazniki w C++ to zmienne nalezace do specjalnych typow wskaznikowych.

Taki typ tatwo poznac po obecnosci przynajmniej jednej gwiazdki w jego nazwie. Jest nim
wiec chocby int* - typ zmiennej pWskaznik z poprzedniego przyktadu. Zawiera on
jednoczesnie informacje, na jaki rodzaj danych bedzie nasz wskaznik pokazywat - tutaj
jest to int. Typ wskaznikowy jest wiec typem pochodnym, zdefiniowanym na
podstawie jednego z juz wczesniej istniejacych.

To definiowanie moze sie odbywac ad hoc, podczas deklarowania konkretnej zmiennej
(wskaznika) - tak byto w naszym przyktadzie i tak tez postepuje sie najczesciej.
Dozwolone (i przydatne) jest aczkolwiek stworzenie aliaséw na typy wskaznikowe
poprzez instrukcje typedef; standardowe nagtowki systemu Windows zawierajg na
przyktad wiele takich nazw.

Deklarowanie wskaznikdw jest zatem niczym innym, jak tylko wprowadzeniem do kodu
nowych zmiennych - tyle tylko, iz majg one swoiste przeznaczenie, inne niz reszta ich
licznych wspétbraci. Czynnosé ich deklarowania, a takze same typy wskaznikowe
zastugujg przeto na szersze omdwienie.

Nieodzatowany spor o gwiazdke

DowiedzieliSmy sie juz, ze piszac gwiazdke po nazwie jakiego$ typu, uzyskujemy
odpowiedni wskaznik na ten typ. Potem mozemy uzy¢ go, deklarujac wtasciwy wskaznik;
co wiecej, mozliwe jest uczynienie tego az na cztery sposoby:

int* pnWskaznik;
int *pnWskaznik;
int*pnWskaznik;

int * pnWskaznik;

Wida¢ wiec, ze owa gwiazdka ,nie trzyma sie” kurczowo nazwy typu (tutaj int) i moze
nawet oddziela¢ go od nazwy deklarowanej zmiennej, bez potrzeby uzycia w tym celu
spacji.

Wydawatoby sie, Ze taka swoboda sktadniowa powinna tylko cieszy¢. W rzeczywistosci
jednak powoduje najczesciej trudnosci w rozumieniu kodu napisanego przez innych,

Wskazniki 283

jezeli uzywajq oni innego sposobu deklarowania wskaznikéw niz ,,nasz”. Dlatego tez
wielokrotnie préobowano ustali¢ jakis jeden, stuszny wariant w tej materii... i w zasadzie
nigdy sie to nie udato!

| Podobnie rzecz ma sie takze z umieszczaniem nawiaséw klamrowych po instrukcjach if,
| else oraz nagtéwkach petli.

Jesli wiec chodzi o dwa ostatnie sposoby, to generalnie prawie nikt nich nie uzywa i
raczej nie jest to niespodzianka. Nieuzywanie spacji czyni instrukcje mato czytelng, zas
ich obecnos¢ po obu stronach znaku * nieodparcie przywodzi na mysl mnozenie, a nie
deklaracje zmiennej.

Co do dwodch pierwszych metod, to w kwestii ich uzywania panuje niczym niezmacona
dowolnoscé... Powaznie! W kodach, jakie spotkasz, na pewno bedziesz miat okazje
zobaczy¢ obie te sktadnie. Argumenty stojgce za ich wykorzystaniem sg niemal tak samo
silne w przypadku kazdej z nich - tak przynajmniej twierdzg ich zwolennicy.

Temu problemowi poswiecony jest nawet fragment FAQ autora jezyka C++.

Zauwazytes by¢ moze, iz w tym kursie uzywam pierwszej konwencji i bede sie tego
konsekwentnie trzymat. Nie chce jednak nikomu jej narzuca¢; najlepiej bedzie, jesli sam
wypracujesz sobie odpowiadajacy ci zwyczaj i, co najwazniejsze, bedziesz go
konsekwentnie przestrzegat. Nie ma bowiem nic gorszego niz niespdjny kod.

Z opisywanym problemem wigze sie jeszcze jeden dylemat, powstajacy gdy chcemy
zadeklarowac kilka zmiennych - na przyktad tak:

int* a, b;

Czy w ten sposob otrzymamy dwa wskazniki (zmienne typu int+*)?... Pozostawiam to
zainteresowanym do samodzielnego sprawdzenia®®. Odpowiedz nie jest taka oczywista,
jak by sie to wydawato na pierwszy rzut oka, zatem stosowanie takiej konstrukcji
pogarsza czytelnos$¢ kodu i moze by¢ przyczyng bteddéw. Czuje sie wiec w obowigzku
przestrzec przed niq:

Nie probuj deklarowac kilku wskaznikéw w jednej instrukcji, oddzielajac je przecinkami.

Trzeba niestety przyznad, ze jezyk C++ zawiera w sobie jeszcze kilka podobnych
niejasnosci. Bede zwracat na nie uwage w odpowiednim czasie i miejscu.

Wskazniki do statych

Wskazniki majg w C++ pewna, dos¢ oryginalng ceche. Mianowicie, nierzadko aplikuje sie
do nich modyfikator const, @ mimo to caty czas mozemy je nazywac zmiennymi.
Dodatkowo, 6w modyfikator moze by¢ don zastosowany az na dwa roézne sposoby.

Pierwszy z nich zaktada poprzedzenie nim calej deklaracji wskaznika, co wyglada mniej
wiecej tak:

const int* pnWskaznik;

const, jak wiemy, zmienia nam zmienng w stala. Tutaj mamy jednak do czynienia ze
wskaznikiem na zmienng, zatem dziatanie modyfikatora powoduje jego zmiane we...
wskaznik na stalq :)

93 Mozna skorzystaé z podanego wczeséniej linka do FAQa.

http://www.research.att.com/~bs/bs_faq2.html#whitespace

284 Podstawy programowania

Wskaznik na stala (ang. pointer to constant) pokazuje na wartos¢, ktéra moze by¢
poprzez ten wskaznik jedynie odczytywana.

Przypatrzmy sie, jak wskaznik na statg moze by¢ wykorzystany w przyktadowym kodzie:

// deklaracja zmiennej 1 wskaznika do stalej
float fZmienna = 3.141592;
const float* pfWskaznik;

// zwigzanie zmienne] ze wskazZnikiem
pfWskaznik = &fZmienna;

// pokazanie wartos$ci zmiennej poprzez wskaznik
std::cout << *pfWskaznik;

Przykfad ten jest podobny do poprzedniego: za posrednictwem wskaznika odczytujemy
tu wartos$c¢ zmiennej. Dozwolne jest zatem, aby éw wskaznik byt wskaznikiem na statq -
jako taki wiec go deklarujemy:

const float* pfWskaznik;

Roznica, jaka czyni modyfikator const, ujawni sie przy probie zapisania wartosci do
zmiennej, na ktérg pokazuje wskaznik:

*pfWskaznik = 1.0; // BREAD! pfWskaznik pokazuje na stalg wartosé

Kompilator nie pozwoli na to. Decydujac sie na zadeklarowanie wskaznika na statq (tutaj
typu const float*) uznaliSmy bowiem, ze bedziemy tylko odczytywaé wartos¢, do ktorej
sie on odnosi. Zapisywanie jest oczywiscie pogwatceniem tej zasady.

Powyzsza linijka bytaby rzecz jasna poprawna, gdyby pfiWskaznik byt zwyklym
wskaznikiem typu float*.

Jezeli wskaznik na stata jest dodatkowo wskaznikiem na obiekt, to na jego rzecz
mozliwe jest wywotanie jedynie statych metod. Nie modyfikujg one bowiem pol obiektu.

Wskaznik na statg umozliwia wiec zabezpieczenie przed niepozgdang modyfikacjg
wartosci, na ktorg wskazuje. Z tego wzgledu jest dosy¢ czesto wykorzystywany w
praktyce, chociazby przy przekazywaniu parametréow do funkcji.

State wskazniki

Druga mozliwos¢ uzycia const powoduje nieco inny efekt. Odmienne jest wéwczas takze
umiejscowienie modyfikatora w deklaracji wskaznika:

float* const pfWskaznik;

Takie ustawienie powoduje mianowicie zadeklarowanie statego wskaznika zamiast
wskaznika na stafa.

Statly wskaznik (ang. const(ant) pointer) jest nieruchomy, na zawsze przywigzany do
jednego adresu pamieci.

Ten jeden jedyny i niezmienny adres mozemy okresli¢ tylko podczas inicjalizacji
wskaznika:

float fA;

Wskazniki 285

float* const pfWskaznik = &fA;

Wszelkie pdzniejsze proby zwigzania wskaznika z inng komorkg pamieci (czyli inng
zmienng) skonczg sie niepowodzeniem:

float £B;
pfWskaznik = &fB; // BLAD! pfWskaznik jest statym wskaznikiem

Zadeklarowanie statego wskaznika jest bowiem umowg z kompilatorem, na mocy ktérej
zobowigzujemy sie nie zmienia¢ adresu, do ktérego tenze wskaznik pokazuje.

Pole zastosowan statych wskaznikéw jest, przyznam szczerze, raczej waskie. Mimo to
mieliSmy juz okazje korzysta¢ z tego rodzaju wskaznikéw - i to niejednokrotnie. Gdzie?
Otéz statym wskaznikiem jest this, ktéry, jak pamietamy, pokazuje wewnatrz metod
klasy na aktualny jej obiekt. Nie ogranicza on w zaden sposob dostepu do tego obiektu,
jednak nie pozwala na zmiane samego wskazania; jest wiec trwale zwiazany z tym
obiektem.

Typem wskaznika this wewnatrz metod klasy klasa jest wiec klasa* const.

W przypadku statych metod wskaznik this nie pozwala takze na modyfikacje pol obiektu,
a zatem wskazuje na statg. Jego typem jest wtedy const klasa* const, czyli mikst obu
rodzajow ,statosci” wskaznika.

Podsumowanie deklaracji wskaznikdéw

Na sam koniec tematu deklarowania wskaznikow tradycyjnie podam troche wskazéwek
dotyczacych sktadni oraz stosowalnosci praktycznej.

Sktadnie deklaracji wskaznika mozemy, opierajac sie na przyktadach z poprzednich
paragraféw, przedstawi¢ nastepujgco:

[const] typ* [const] wskaZnik;

Mozliwos¢ wystepowania lub niewystepowania modyfikatora const w az dwdch miejscach
deklaracji pozwala stwierdzi¢, ze z kazdego typu mozemy wyprowadzi¢ tgcznie nawet
cztery odpowiednie typy wskaznikowe. Ich charakterystyke przedstawia ponizsza
tabelka:

typ wskaznikowy | nazwa | dostep do pamieci | zmiana adresu
typ* wskaznik (zwykty) odczyt i zapis dozwolona
const typ* wskaznik do statej wytacznie odczyt dozwolona
typ* const staty wskaznik odczyt i zapis niedozwolona
const typ* const | staty wskaznik do statej wytgcznie odczyt niedozwolona

Tabela 12. Zestawienie typéw wskaznikowych

Czy jest jaki$ prosty sposob na zapamietanie, ktdra deklaracja odpowiada jakiemu
rodzajowi wskaznikow? No cdz, moze nie jest to banalne, ale w pewien sposéb zawsze
mozna sobie pomédc. Przede wszystkim patrzmy na fraze bezposrednio za
modyfikatorem const.

Dla statych wskaznikow (przypominam, ze to te, ktére zawsze wskazujg na to samo
miejsce w pamieci) deklaracja wyglada tak:

typ* const wskaZnik;

Bezposrednio po stowie const mamy wiec nazwe wskazZnika, CO razem daje const
wskaznik. W wolnym ttumaczeniu znaczy to oczywiscie ‘staty wskaznik’ :)

286 Podstawy programowania

W przypadku wskaznikéw na state forma deklaracji przedstawia sie nastepujaco:

const typ* wskaZnik;

Uzywamy tu const w ten sam sposob, w jaki ze zmiennych czynimy state. W tym
przypadku mamy rzecz jasna do czynienia ze ‘wskaznikiem na zmienng’, a poniewaz
const przemienia nam ‘zmienng’ w ‘stalg’, wiec ostatecznie otrzymujemy ‘wskaznik na
statg’. Potwierdzenia tego mozemy szuka¢ w tabelce.

Niezbedne operatory

Na wszelkich zmiennych mozna w C++ wykonywac jakies$ operacje i wskazniki nie sg w
tym wzglednie zadnym wyjatkiem. Posiadajg nawet wtasne instrumentarium specjalnych
operatorow, dokonujacych na nich pewnych szczegdlnych dziatan. To na nich wtasnie
skupimy sie teraz.

Pobieranie adresu i dereferencja

Wskaznik powinien na cos wskazywac - to znaczy przechowywac adres jakies komérki w
pamieci. Taki adres mozna uzyskac na wiele sposobdow, w zaleznosci od tego, jakie
znaczenie ma owa komorka w programie. Dla zmiennych wtasciwg metodq jest uzycie
operatora pobierania adresu, oznaczanego znakiem & (ampersandem).

Popatrzmy na niniejszy przykifad:

// zadeklarowanie zmienne] oraz odpowiedniego wskaznika
unsigned uZmienna;
unsigned* puWskaznik;

// pobranie adresu zmiennej 1 zapisanie go we wskazniku
puWskaznik = &uZmienna;

Wyrazenie suzmienna reprezentuje tutaj wartosc liczbowg, bedacq adresem miejsca w
pamieci, w ktérym rezyduje zmienna uzmienna. Typem tej zmiennej jest unsigned;
wyrazenie suZmienna jest natomiast przynalezne typowi wskaznikowemu unsigned*.
Przypisujemy go wiec zmiennej tego typu, czyli wskaznikowi puWskaznik. Odtad odnosi
sie on do naszej zmiennej liczbowej i moze by¢ uzyty w celu odwotania sie do niej.
Prezentowany tu operator & jest wiec unarny - zada tylko jednego argumentu: obiektu,
ktérego adres ma uzyskac. Zwraca go w wyniku, zas typem tego rezultatu jest
odpowiedni typ wskaznikowy - zobaczyliSmy to zresztg na powyzszym przyktadzie.

Przypominam, ze adres zmiennej mozemy przypisac jedynie do niestatego
(,ruchomego”) wskaznika.

Majac wskaznik, chciatoby sie odwota¢ do komérki w pamieci, czyli zmiennej, na ktorg on
wskazuje. Potrzebujemy zatem operatora, ktéry dokona czynnosci odwrotnej niz operator
&, a wiec wydobedzie zmienng spod adresu przechowywanego przez wskaznik. Dokonuje
tego operator dereferencji, symbolem ktorego jest * (asterisk albo po prostu
gwiazdka). Czynnos$¢ przez niego wykonywang nazywamy wiec dereferencja wskaznika.
Wystarczy spojrzec¢ na ponizszy kod, a wszystko stanie sie jasne:

// zapisanie wartos$ci w komdérce pamieci, na ktdéra pokazuje wskazZnik
*pulWlskaznik = 123;

// odczytanie 1 wys$wietlenie te] wartoéci
std::cout << "Wartosc zmiennej uZmienna: " << *puWskaznik;

Widzimy, ze operator ten jest takze unarny, co w oczywisty sposéb rézni go od
operatora mnozenia, ktéry w C++ jest przeciez reprezentowany przez ten sam znak.

Wskazniki 287

Argumentem operatora jest naturalnie wskaznik, przechowujacy adres miejsca w
pamieci, do ktérego chcemy sie dosta¢. W wyniku dziatania tego operatora otrzymujemy
mozliwo$¢ odczytania oraz ewentualnie zapisania tam jakiej$ wartosci.

Typ tej wartosci musi sie jednak zgadzac z typem wskaznika: jezeli u nas byt to
unsigned*, to po dereferencji zostanie typ unsigned, akceptujacy tylko dodatnie liczby
catkowite. Podobnie z wyrazenia *puWskaznik mozemy skorzystac jedynie tam, gdzie
dozwolone sg tego rodzaju wartosci.

Wyrazenie *pWskaznik jest tu tak zwang I-wartosécia (ang. /-value). Nazwa bierze sie
stad, iz taka wartos¢ moze wystepowac po lewej (ang. left) stronie operatora
przypisania. Typowymi |-wartosciami sg wiec zmienne, a w ogdlnosci sg to wszystkie
wyrazenia, za ktorymi kryjg sie konkretne miejsca w pamieci operacyjnej i ktore nie
zostaty opatrzone modyfikatorem const.

Dla odréznienia, r-wartosé (ang. r-value) jest dopuszczalna tylko po prawej (ang. right)
stronie operatora przypisania. Ta grupa obejmuje oczywiscie wszystkie |-wartosci, a
takze liczby, znaki i ich fafcuchy (tzw. state dostowne) oraz wyniki obliczen z uzyciem
wszelkiego rodzaju operatorow (wykorzystujacych tymczasowe obiekty).

Pamietajmy, ze zapisanie danych do komorki pokazywanej przez wskaznik jest mozliwe
tylko wtedy, gdy nie jest on wskaznikiem do statej.

Natura operatoréw s i * sprawia, ze najlepiej rozpatrywac je tgcznie. Powiedzielismy
sobie nawet, ze ich funkcjonowanie jest sobie wzajemnie przeciwstawne. Ilustruje to
dobrze ponizszy diagram:

operator &

pobranie adresu

dereferencja

opearator *

Schemat 33. Dziatanie operatorow: pobrania adresu i dereferencji

Warto réwniez wiedzie¢, ze pobranie adresu zmiennej oraz dereferencja wskaznika sg
mozliwe zawsze, niezaleznie od typu tejze zmiennej czy tez wskaznika. Dopiero inne
Zwigzane z tym operacje, takie jak zachowanie adresu w zmiennej wskaznikowej lub
zapisanie wartosci w miejscu, do ktorego odwotuje sie wskaznik, moze napotykac
ograniczenia zwigzane z typami zmiennej i/lub stosowanego wskaznika.

Wytuskiwanie sktadnikow

Trzeci operator wskaznikowy jest nam juz znany od wprowadzenia OOPu. Operator
wytuskania -> (strzatka) stuzy do wybierania sktadnikdéw obiektu, na ktéry wskazuje
wskaznik. Pod pojeciem ‘obiektu’ kryje sie tu zaréwno instancja klasy, jak i typu
strukturalnego lub unii.

Poniewaz znamy juz doskonale te konstrukcje, na prostym przykfadzie przesledzimy
jedynie zwigzek tego operatora z omoéwionymi przed chwilg s i *.
Zatézmy wiec, ze mamy takg oto klase:

288 Podstawy programowania

class CFoo

{
public:
int Metoda () const { return 1; }

bi

Tworzac dynamicznie jej instancje przy uzyciu wskaznika, mozemy wywofac sktadowe
metody:

// stworzenie obiektu
CFoo* pFoo = new CFoo;

// wywolanie metody
std::cout << pFoo->Metodal() ;

pFoo jest tu wskaznikiem, takim samym jak te, z ktérych korzystaliSmy dotad; wskazuje
na typ zfozony - obiekt. Wykorzystujac operator -> potrafimy dostac sie do tego obiektu i
wywota¢ jego metode, co tez niejednokrotnie czyniliSmy w przesztosci.

Zwro¢my jednakowoz uwage, ze ten sam efekt osiggnelibysmy dokonujac dereferencji
naszego wskaznika i stosujac drugi z operatorow wytuskania - kropke:

// inna metoda wywotania metody Metoda () ;D
(*pFoo) .Metoda () ;

// zniszczenie obiektu
delete pFoo;

Nawiasy pozwalajg nie przejmowac sie tym, ktory z operatorow: * czy . ma wyzszy
priorytet. Ich wykorzystywanie jest wiec zawsze wskazane, o czym zresztg nie raz
. wspominam :)

Analogicznie, mozna instancjowac obiekt poprzez zmienng obiektowg i mimo to uzywac
operatora -> celem dostepu do jego sktadowych:

// zmienna obiektowa
CFoo Foo;

// obie ponizsze linijki robiag to samo
std::cout << Foo.Metoda();
std::cout << (&Foo)->Metoda():;

Tym razem bowiem pobieramy adres obiektu, czyli wskaznik na niego, i aplikujemy don
wskaznikowy operator wyluskania ->.

Widzimy zatem wyraznie, ze oba operatory wytuskania majg charakter mocno umowny i
teoretycznie mogg byc¢ stosowane zamiennie. W praktyce jednak korzysta sie zawsze z
kropki dla zmiennych obiektowych oraz strzatki dla wskaznikdw, i to z bardzo prostego
powodu: wymuszenie zaakceptowania drugiego z operatoréw wigze sie przeciez z
dodatkowa czynnoscia pobrania adresu albo dereferencji. tacznie zatem uzywamy
wtedy dwéch operatoréw zamiast jednego, a to z pewnoscig moze odbi¢ sie na
wydajnosci kodu.

Konwersje typow wskaznikowych

Dwa poznane operatory nie wyczerpujq rzecz jasna asortymentu operacji, jakich mozemy
dokonywac na wskaznikach. Dosy¢ czesto zachodzi bowiem potrzeba przypisywania
wskaznikow, ktorych typy sa w wiekszym lub mniejszym stopniu niezgodne - podobnie

Wskazniki 289

zresztq jak to czasem bywa dla zwyktych zmiennych. W takich przypadkach z pomocg
przychodzg nam rézne metody konwersji typow wskaznikowych, jakie oferuje C++.

Matka wszystkich wskazZznikow

Przypomnijmy sobie definicje wskaznika, jakg podaliSmy na poczatku rozdziatu. Otdz jest
to przede wszystkim adres jakiejs komorki (miejsca) w pamieci. Przy jej ptaskim modelu
sprowadza sie to do pojedynczej liczby bez znaku.

Na przechowywanie takiej liczby wystarczytby wiec tylko jeden typ zmiennej liczbowej!
C++ oferuje jednak mozliwo$¢ definiowania wtasnych typow wskaznikowych w oparciu o
juz istniejace, inne typy. Cel takiego postepowania jest chyba oczywisty: tylko znajac typ
wskaznika mozemy dokonac jego dereferencji i uzyska¢ zmienng, na ktérg on wskazuje.
Informacja o docelowym typie wskazywanych danych jest wiec niezbedna do ich
uzytkowania.

Mozliwe jest aczkolwiek zadeklarowanie ogdlnego wskaznika (ang. void pointer lub
pointer to void), ktéoremu nie sg przypisane zadne informacje o typie. Taki wskaznik jest
wiec jedynie adresem samym w sobie, bez dodatkowych wiadomosci o rodzaju danych,
jakie sie pod tym adresem znajduja.

Aby zadeklarowac taki wskaznik, zamiast nazwy typu wpisujemy mu void:

void* pWskaznik; // wskaznik, ktdéry moze pokazywaé na wszystko

Ustalamy tg droga, iz nasz wskaznik nie bedzie zwigzany z zadnym konkretnym typem
zmiennych. Nic nie wiadomo zatem o komédrkach pamieci, do ktérych sie on odnosi -
moga one zawiera¢ dowolne dane.

Brak informacji o typie uposledza jednak podstawowe wiasciwosci wskaznika. Nie mogac
okresli¢ rodzaju danych, na ktére pokazuje wskaznik, kompilator nie moze pozwoli¢ na
dostep do nich. Powoduje to, ze:

Niedozwolone jest dokonanie dereferencji ogélnego wskaznika typu voidx*.

Cb6z bowiem otrzymaliby$smy w jej wyniku? Jakiego typu byloby wyrazenie *pwskaznik?
void?... Nie jest to przeciez zaden konkretny typ danych. Stusznie wiec dereferencja
wskaznika typu void* jest niemozliwa.

Utomnos¢ takich wskaznikow nie jest zbytnig zachetg do ich stosowania. Czym wiec
zastuzyty sobie na tytut paragrafu im poswieconego?...

Otdéz majg one jedng szczegdlng i przydatng ceche, zwigzang z brakiem wiadomosci o
typie. Mianowicie:

Wskaznik typu void* moze przechowywaé dowolny adres z pamieci operacyjnej.

Mozliwe jest zatem przypisanie mu wartosci kazdego innego wskaznika (z wyjatkiem
wskaznikow na state). Poprawny jest na przykfad taki oto kod:

int nZmienna;
void* pWskaznik = &nZmienna; // &nZmienna jest zasadniczo typu int*

Fakt, ze wskaznik typu void* to tylko sam adres, bez dodatkowych informacji o typie,
przeznaczonych dla kompilatora, sprawia, ze owe informacje sg tracone w momencie
przypisania. Wskazywanym w pamieci danym nie dzieje sie naturalnie zadna krzywda,
jedynie my tracimy mozliwos$¢ odwotywania sie do nich poprzez dereferencje.

Czy przypadkiem czegos nam to nie przypomina?... W miare podobna sytuacja miata
przeciez okazje zainstnie¢ przy okazji programowania obiektowego i polimorfizmu.

290 Podstawy programowania

Wskaznik do obiektu klasu pochodnej mogli§my bowiem przypisa¢ do wskaznika na
obiekt klasy bazowej i uzywac go potem tak samo, jak kazdego innego wskaznika na
obiekt tej klasy.

Tutaj typ void* jest czyms$ rodzaju ,typu bazowego” dla wszystkich innych typéw
wskaznikowych. Mozliwe jest zatem przypisywanie ich wskaznikédw zmiennym typu
voidx. Wéwczas tracimy wprawdzie wiedze o pierwotnym typie wskaznika, ale
zachowujemy to, co najwazniejsze: adres przechowywany przez wskaznik

Przywracanie do stanu uzywalnosci

Caty problem z ogdlnymi wskaznikami polega na tym, ze przy ich pomocy nie mozemy w
zasadzie zrobi¢ niczego konkretnego. Dereferencja nie wchodzi w gre z powodu
niedostatecznych informacji o typie danych, na ktére wskaznik pokazuje. Zeby méc z
tych danych skorzysta¢, musimy wiec przekaza¢ kompilatorowi niezbedne informacje o
ich typie. Dokonujemy tego poprzez rzutowanie.

Operacja rzutowania wskaznika typu void* na inny typ wskaznikowy jest przede
wszystkim zabiegiem formalnym. Zaréwno przed nig, jak i po niej, mamy bowiem do
czynienia z adresem tej samej komorki w pamieci. Jej zawartosc¢ jest jednak inaczej
interpretowana.

Dokonanie takiego rzutowania nie jest trudne - wystarczy postuzy¢ sie standardowym
operatorem static cast:

// zmienna oraz ogdlny wskaznik, do ktdérej zapiszemy jej adres
int nZmienna = 17011987;
void* pVoid = &nZmienna;

// ponowne wykorzystanie owego adresu we wskazniku na typ unsigned
// stosujemy rzutowanie, aby przypisaé¢ mu wskaznik typu void*
unsigned* puliczba = static cast<unsigned*>(pVoid) ;

// wyswietlenie wartos$ci pokazywanej przez wskaznik
std::cout << *puliczba; // wynikiem jest warto$¢ zmiennej nZmienna

W powyzszym przyktadzie wskaznik typu int* zostaje najpierw zredukowany do void#,
by potem poprzez rzutowanie zostac zinterpretowany jako unsigned*. Caty czas
pokazuje on oczywiscie na to samo miejsce w pamieci, tyle ze w toku programu jest ono
traktowane na rézne sposoby.

Miedzy palcami kompilatora

Chwileczke! Przeciez tg drogg mozemy zwyczajnie oszukaé¢ kompilator i sprawi¢, ze
zacznie on traktowac jakis typ danych jako zupetnie inny, nawet catkowicie niezwigzany z
tym oryginalnym!

Istotnie - za posrednictwem wskaznika typu void* mozliwe jest dostownie
zinterpretowanie ciggu bitdw jako dowolnego typu zmiennych. Dzieje sie tak dlatego,
ze podczas rzutowania nie jest dokonywane zadne sprawdzenie faktycznej poprawnosci
typdw. static cast nie dziata tak jak dynamic cast i nie kontroluje sensownosci oraz
celowosci rzutowania.

| Zakres stosowalnoci dynamic cast jest zas, jak pamletamy, ograniczony tylko do typow
pollmorflcznych Skalarne typy podstawowe z pewnoscia nimi nie sg, dlatego nie mozemy
| do nich uzywac tego typu rzutowania. '

Potencjalnie wiec dostajemy do reki brzytwe, ktorg mozna sie niezle pokaleczy¢. W
okreslonych sytuacjach potrzebne jest jednak takie dostowne potraktowanie pewnego

Wskazniki 291

rodzaju danych jako zupetnego innego. Posrednictwo typu void* w niskopoziomowych
konwersjach miedzy wskaznikami staje sie wtedy klopotliwe.

Z tego powodu (a takze z potrzeby catkowitego zastgpienia rzutowania w stylu C)
wprowadzono do C++ kolejny operator rzutowania - reinterpret cast. Potrafi on
rzutowac dowolny typ wskaznikowy na dowolny inny typ wskaznikowy i nie tylko.
Konwersje przy uzyciu tego operatora prawie zawsze nie sq wiec bezpieczne i powinny
by¢ stosowane wytgcznie wtedy, gdy zalezy nam na mechanicznej zmianie (bit po
bicie) jednego typu danych w inny.

Jezeli chodzi o przyktady, to chyba jedynym bezpiecznym zastosowaniem
reinterpret cast jest zapisanie adresu pamieci ze wskaznika do zwyktej zmiennej
liczbowej:

int* pnWskaznik;
unsigned uAdres = reinterpret cast<unsigned>(pnWskaznik);

W innych przypadkach stosowanie tego operatora powinno by¢ wyjatkowo ostrozne i
oszczedne.

Kompletnych informacji o reinterpret cast dostarcza oczywiscie MSDN. Jest tam takze
ciekawy artykut, wyjasniajacy dogtebnie réznice miedzy tym operatorem, a zwyktym
rzutowaniem static cast.

Istnieje jeszcze jeden, czwarty operator rzutowania const cast. Jego zastosowanie jest
bardzo waskie i ogranicza sie do usuwania modyfikatora const z opatrzonych nim typdéw
danych. Mozna wiec uzy¢ go, aby zmieni¢ staty wskaznik lub wskaznik do statej w
zwykty.

Blizsze informacje na temat tego operatora mozna naturalnie znalez¢ we wiadomym
zrédle)

Wskazniki i tablice

Tradycyjnie wskaznikéw uzywa sie do operacji na tablicach. Celowo pisze tu ‘tradycyjnie’,
gdyz prawie wszystkie te operacje mozna wykona¢ takze bez uzycia wskaznikéw, wiec
korzystanie z nich w C++ nie jest tak popularne jak w jego generacyjnym poprzedniku.
Poniewaz jednak czasem bedziemy zmuszeni korzysta¢ z kodu wywodzacego sie z czasow
C (na przyktad z Windows API), wiedza o zastosowaniu wskaznikow w stosunku do tablic
moze by¢ przydatna. Obejmuje ona takze zagadnienia tancuchéw znakéw w stylu C,
ktérym poswiecimy osobny paragraf.

Juz stysze gtosy oburzenia: ,Przeciez miate$ zajmowac sie nauczaniem C++, a nie
wywlekaniem jego réznic w stosunku do swego poprzednika!”. Rzeczywiscie, to prawda.
Wskazniki sg to dziedzing jezyka, ktdra najczesciej zmusza nas do podrozy w przesztosc.
Whbrew pozorom nie jest to jednak przesztosé zbyt odlegta, skoro z powodzeniem wptywa
na terazniejszos$¢. Z wiasciwosci wskaznikdéw i tablic bedziesz bowiem korzystat znacznie
czesciej niz sporadycznie.

Tablice jednowymiarowe w pamieci

Swego czasu powiedzieliSmy sobie, ze tablice sg zespotem wielu zmiennych opatrzonych
tg sama nazwa i identyfikowanych poprzez indeksy. Symbolicznie przedstawialiSmy na
diagramach tablice jednowymiarowe jako réwny rzad prostokatéw, wyobrazajacych
kolejne elementy.

To nie byt wcale przypadek. Tablice takie majg bowiem wazng ceche:

Kolejne elementy tablicy jednowymiarowej sq utozone obok siebie, w ciagtym
obszarze pamieci.

292 Podstawy programowania

Nie sq wiec porozrzucane po catej dostepnej pamieci (czyli pofragmentowane), ale
grzecznie zgrupowane w jeden pakiet.

tablica

pamied operacyjna pamiec operacyina

[0] [1] ‘. - [[u-l]

Schemat 34. Utozenie tablicy jednowymiarowej w pamieci operacyjnej

Dzieki temu kompilator nie musi sobie przechowywac¢ adreséw kazdego z elementéw
tablicy, aby programista maogt sie do nich odwotywaé. Wystarczy tylko jeden: adres
poczatku tablicy, jej zerowego elementu.

W kodzie mozna go tatwo uzyska¢ w ten sposob:

// tablica 1 wskaznik
int aTablicalb5];

int* pnTablica;

// pobranie wskaznika na zerowy element tablicy
pnTablica = &aTablical[0];

Napisatem, ze jest to takze adres poczatku samej tablicy, czyli w gruncie rzeczy wartos¢
kluczowa dla catego agregatu. Dlatego reprezentuje go réwniez nazwa tablicy:

// inny sposdéb pobrania wskaznika na zerowy element (poczatek) tablicy
pnTablica = aTablica;

Wynika stad, iz:

Nazwa tablicy jest takze statym wskaznikiem do jej zerowego elementu
(poczatku).

Statym - bo jego adres jest nadany raz na zawsze przez kompilator i nie moze byc¢
zmieniany w programie.

Wskaznik w ruchu

Posiadajac wskaznik do jednego z elementdéw tablicy, mozemy z fatwoscig dostac sie do
pozostatych - wykorzystujqc fakt, iz tablica jest ciggtym obszarem pamieci. Mozna
mianowicie odpowiednio przesung¢ nasz wskaznik, np.:

pnTablica += 3;

Po tej operacji bedzie on pokazywat na 3 elementy dalej niz dotychczas. Poniewaz na
poczatku wskazywat na poczatek tablicy (zerowy element), wiec teraz zacznie odnosi¢ sie
do jej trzeciego elementu.

To ciekawe zjawisko. Wskaznik jest przeciez adresem, liczbg, zatem dodanie do niego
jakiejs$ liczby powinno skutkowac odpowiednim zwiekszeniem przechowywanej wartosci.
Poniewaz kolejne adresy w pamieci s numerami bajtéw, wiec pnTablica powinien,
zdawatoby sie, przechowywac adres trzeciego bajta, liczac od poczatku tablicy.

Tak jednak nie jest, gdyz kompilator podczas dokonywania arytmetyki na wskaznikach
korzysta takze z informacji o ich typie. ,Skoki” spowodowane dodawaniem liczb
catkowitych nastepujg w odstepach bajtowych réwnych wielokrotnosciom rozmiaru

Wskazniki 293

zmiennej, na jakg wskazuje wskaznik. W naszym przypadku pnTablica przesuwa sie
wiec 0 3*sizeof (int) bajtow, a nie o 3 bajty!

Obecnie wskazuje zatem na trzeci element tablicy aTablica. Dokonujac dereferencji
wskaznika, mozemy odwofac sie do tego elementu:

// obie ponizsze linijki sa rdéwnowazne
*pnTablica = 0;
aTablical[3] = 0;

Wreszcie, dozwolony jest takze trzeci sposdb:

*(aTablica + 3) = 0;

Uzywamy w nim wskaznikowych wtasciwosci nazwy tablicy. Wyrazenie aTablica + 3
odnosi sie zatem do jej trzeciego elementu. Jego dereferencja pozwala przypisac temu
elementowi jakas$ wartosc.

Wydato sie wiec, ze do i-tego elementu tablicy mozna odwotaé sie na dwa rdézne
sposoby:

*(tablica + 1)
tablicali]

W praktyce kompilator sam stosuje tylko pierwszy. Wprowadzenie drugiego miato
oczywiscie gteboki sens: jest on zwyczajnie prostszy, nie tylko w zapisie, ale i w
zrozumieniu. Nie wymaga tez zadnej wiedzy o wskaznikach, a ponadto daje wiekszg
elastycznos¢ przy definiowaniu wiasnych typow danych.

Nie nalezy jednak zapominac¢, ze oba sposoby sg tak samo podatne na btad przekroczenia
indekséw, ktéry wystepuje, gdy i wykracza poza przedziat <0; rozmiar tablicy - 1>.

Tablice wielowymiarowe w pamieci

Dla tablic wielowymiarowych sprawa ich rozmieszczenia w pamieci jest nieco bardziej
skomplikowana. W przeciwienstwe do pamieci nie majg one bowiem struktury liniowej,
zatem kompilator jg jako$ symulowaé (czyli linearyzowac tablice).

Nie jest to specjalnie trudna czynnosé, ale praktyczny sens jej omawiania jest raczej
watpliwy. Z tego wzgledu mato kto stosuje wskazniki do pracy z wielowymiarowymi
tablicami, zas my nie bedziemy tutaj zadnym wyjatkiem od reguty :)

Zainteresowanym moge wyjasnic¢, ze wymiary tablicy sg uktadane w pamieci wedtug
kolejnosci ich zadeklarowania w kodzie, od lewej do prawej. Posuwajac sie wzdtuz takiej
zlinearyzowanej tablicy najszybciej zmienia sie wiec ostatni indeks, wolniej przedostatni, i
tak dalej.

Formutka matematyczna stuzgca do obliczania wskaznika na element wielowymiarowej
tablicy jest natomiast podana w MSDN.

tancuchy znakdow w stylu C

Kiedy juz omawiamy wskazniki w odniesieniu do tablic, nadarza sie niepowtarzalna
okazja, aby zapoznac sie takze z faricuchami znakéw w jezyku C - poprzedniku C++.

Po co? Otdz jak dotad jest to najczesciej wykorzystywana forma wymiany tekstu miedzy
| aplikacjami oraz bibliotekami. Do koronnych przyktadéw nalezy cho¢by Windows API,
| ktérej obstugi przeciez bedziemy sie w przysztosci uczyé.

294 Podstawy programowania

Od razu spotka nas tutaj pewna niespodzianka. O ile bowiem C++ posiada wygodny typ
std::string, stuzacy do przechowywania napisow, to C w ogole takiego typu nie
posiada! Zwyczajnie nie istnieje zaden specjalny typ danych, stuzacy reprezentacji
tekstu.

Zamiast niego stosowanie jest inne podejscie do problemu. Napis jest to ciag znakow, a
wiec uporzadkowany zbidr kodéw ANSI, opisujgcych te znaki. Dla pojedynczego znaku
istnieje zas typ char, zatem ich cigg moze by¢ przedstawiany jako odpowiednia tablica.

tancuch znakéw w stylu C to jednowymiarowa tablica elementow typu char.

R&zni sie ona jednak on innych tablic. Sq one przeznaczone gtéwnie do pracy nad ich
pojedynczymi elementami, natomiast tancuch znakdw jest czesciej przetwarzany w
catosci, niz znak po znaku.

Sprawia to, ze dozwolone sg na przyktad takie (w gruncie rzeczy trywialne!) operacje:

char szNapis[256] = "To jest jakis tekst";

Manipulujemy w nich wiecej niz jednym elementem tablicy naraz.

Zauwazmy jeszcze, ze przypisywany ciag jest krotszy niz rozmiar tablicy (256). Aby
zaznaczy¢, gdzie sie on konczy, kompilator dodaje zawsze jeszcze jeden, specjalny znak
o kodzie 0, na samym koncu napisu. Z powodu tej wasciwosci tancuchy znakéw w stylu
C sg czesto nazywane napisami zakonczonymi zerem (ang. null-terminated strings).

Dlaczego jednak ten sposdb postepowania z tekstem jest zty (zostat przeciez zastgpiony
przez typ std::string)?...

Pierwszg przyczyng sg problemy ze zmienng dtugoscia napisow. Tekst jest klopotliwym
rodzajem danych, ktory moze zajmowac bardzo rozng ilo$¢ pamieci, zaleznie od liczby
znakdéw. Rozsadnym rozwigzaniem jest oczywiscie przydzielanie mu doktadnie tylu
bajtow, ilu wymaga; do tego potrzebujemy jednak mechanizmoéw zarzadzania pamiecig w
czasie dziatania programu (poznamy je zresztg w tym rozdziale). Mozna tez statycznie
rezerwowac wiecej miejsca, niz to jest potrzebne - tak zrobitem cho¢by w poprzednim
skrawku przyktadowego kodu. Wada tego rozwigzania jest oczywista: spora czesé
pamieci zwyczajnie sie marnuje.

Drugg niedogodnoscig sg utrudnienia w dokonywaniu najprostszych w zasadzie operacji
na tak potraktowanych napisach. Chodzi tu na przyktfad o konkatenacje; wiedzac, jak
proste jest to dla napiséw typu std: :string, pewnie bez wahania napisaliby$my cos$ w
tym rodzaju:

char szImie[] = "Max";
char szNazwisko[] = "Planck";
char szImielINazwisko[] = szImie + " " + szNazwisko; // BEAD!

Visual C++ zareagowatby zas takim oto btedem:
error C2110: '+'": cannot add two pointers

Miatby w nim catkowitg stusznos$¢. Rzeczywiscie, probujemy tutaj dodac do siebie dwa
wskazniki, co jest niedozwolne i pozbawione sensu. Gdzie sg jednak te wskazniki?...

To przede wszystkim szImie i szNazwisko - jako nazwy tablic sg przeciez wskaznikami
do swych zerowych elementéw. Rowniez spacja " " jest przez kompilator traktowana
jako wskaznik, podobnie zresztg jak wszystkie napisy wpisane w kodzie explicité.

Porownywanie takich napiséw poprzez operator == jest wiec niepoprawne!

Wskazniki 295

taczenie napisow w stulu C jest naturalnie mozliwe, wymaga jednak uzycia specjalnych
funkcji w rodzaju strcat (). Inne funkcje sa przeznaczone choéby do przypisywania
napiséw (str[n]cpy()) czy pobierania ich dtugosci (strlen()). Nietrudno sie domyslec,
ze korzystanie z nich nie nalezy do rzeczy przyjemnych :)

Na cate szczescie ominie nas ta ,rozkosz”. Standardowy typ std: :string zawiera
bowiem wszystko, co jest niezbedne do programowej obstugi tancuchéw znakéw. Co
wiecej, zapewnia on takze kompatybilnosc z dawnymi rozwigzaniami.

Metoda c_str () (skrét od C string), bo o nig tutaj chodzi, zwraca wskaznik typu const
char*, ktérego mozna uzy¢ wszedzie tam, gdzie wymagany jest napis w stylu C. Nie
musimy przy tym martwic sie o pézniejsze zwolnienie zajmowanej przez nasz tekst
pamieci - zadba oto sama Biblioteka Standardowa.

Przykfadem wykorzystania tego rozwigzania moze by¢ wyswietlenie okna komunikatu
przy pomocy funkcji MessageBox () z Windows API:

#include <string>
#include <windows.h>

std::string strKomunikat = "Przyktadowy komunikat'";
strKomunikat += ".";

MessageBox (NULL, strKomunikat.c str(), "Komunikat'", MB OK);

O samej funkcji MessageBox () powiemy sobie wszystko, gdy juz przejdziemy do
programowania aplikacji okienkowych. Powyzszy kod zadziata jednak takze w programie
| konsolowym.

Drugi oraz trzeci parametr tej funkcji powinien by¢ tancuchem znakéw w stylu C. Mozemy
wiec skorzysta¢ z metody ¢ str() dla zmiennej strKomunikat, by uczyni¢ zado$¢ temu
wymaganiu. W sumie wiec nie przeszkadza ono zupetnie w normalnym korzystaniu z
dobrodziejstw standardowego typu std::string.

Przekazywanie wskaznikow do funkcji

Jedng z wazniejszych ptaszczyzn zastosowan wskaznikéw jest usprawnienie korzystania z
funkcji. Wskazniki umozliwiajg osiggniecie kilku niespotykanych dotad mozliwosci i
optymalizaciji.

Dane otrzymywane poprzez parametry

Wskaznik jest odwotaniem do zmiennej (,kluczem” do niej), ktére ma jedng zasadniczg
zalete: moze mianowicie by¢ przekazywane gdziekolwiek i nadal zachowywa¢ swojg
podstawowg role. Niezaleznie od tego, w ktérym miejscu programu uzyjemy wskaznika,
bedzie on nadal wskazywat na ten sam adres w pamieci, czyli na tg samg zmienna.

Jezeli wiec przekazemy wskaznik do funkcji, wtedy bedzie ona mogta operowac na jego
docelowej komérce pamieci. W ten sposéb mozemy na przyktad sprawi¢, aby funkcja
zwracata wiecej niz jedna wartos¢ w wyniku swego dziatania.

Spéjrzmy na prosty przyktad takiego zachowania:

// funkcja oblicza catkowity iloraz dwdédch liczb oraz jego reszte
int Podziel (int nDzielna, int nDzielnik, int* const pnReszta)
{
// zapisujemy reszte w miejscu pamieci, na ktdére pokazuje wskaznik

Q

*pnReszta = nDzielna % nDzielnik;

// zwracamy iloraz
return nDzielna / nDzielnik;

296 Podstawy programowania

}

Ta prosta funkcja dzielenia catkowitego zwraca dwa rezultaty. Pierwszy to zasadniczy
iloraz - jest on oddawany w tradycyjny sposéb poprzez return. Natomiast reszta z
dzielenia jest przekazywana poprzez staty wskaznik preszta, ktory funkcja otrzymuje
jako parametr. Dokonuje jego dereferencji i zapisuje zadang wartos¢ w miejscu, na ktore
on wskazuje.

Jezeli pamietamy o tym, skorzystanie z powyzszej funkcji jest raczej proste i przedstawia
sie mniej wiecej tak:

// Division - dzielenie przy uzyciu wskaznika przekazywanego do funkcji

void main ()

{

// (pominiemy pobranie dzielnej i dzielnika od uzytkownika)

// obliczenie rezultatu
int nIloraz, nReszta;
nIloraz = Podziel (nDzielna, nDzielnik, &nReszta);

// wyéwietlenie rezultatu

std::cout << std::endl;

std::cout << nDzielna << " / " <<nDzielnik << " ="
<< nlIloraz << " r " << nReszta;

getch (),
}

Jako trzeci parametr w wywotaniu funkcji pPodziel ():
nIloraz = Podziel (nDzielna, nDzielnik, &nReszta);

przekazujemy adres zmiennej (uzyskany oczywiscie poprzez operator). W niej tez
znajdziemy potem zadang reszte i wyswietlimy jg w oknie konsoli:

DZIELENIE Z RESZTA

Podaj dzielna: 226

Podaj d=ielnik: 78
226 # VP8 =11 » 68 _

Screen 42. Dwie wartosci zwracane przez jedna funkcje

W podobny sposdb dziata wiele funkcji z Windows API czy DirectX. Zaletg tego
rozwigzania jest takze mozliwos¢ oddzielenia zasadniczego wyniku funkcji (zwracanego
przez wskaznik) od ewentualnej informacji o btedzie czy tez sukcesie jego uzyskania
(przekazywanego w tradycyjny sposdb).

Oczywiscie nic nie stoi na przeszkodzie, aby tg droga zwraca¢ wiecej niz jeden
~dodatkowy” rezultat funkcji. Jesli jednak ich liczba jest znaczna, lepiej ztaczy¢ je w
strukture niz deklarowac po kilkanascie parametréw w nagtéwku funkcji.

Zapobiegamy niepotrzebnemu kopiowaniu

Oprocz otrzymywania kilku wynikow z jednej funkcji, zastosowanie wskaznikow moze
miec tez podtoze optymalizacyjne. Pomysimy, Ze taki wskaznik to zawsze jest tylko
zwykla liczba catkowita, zajmujaca zaledwie 4 bajty w pamieci. Jednoczesnie jednak
moze ona odnosic¢ sie do bardzo wielkich obiektéw.

Wskazniki 297

Kiedy zas$ wywotujemy funkcje z parametrami, wéwczas kompilator dokonuje ich
catosciowego kopiowania - tak, ze w ciele funkcji mamy do czynienia z duplikatami
rzeczywistych parametréw aktualnych funkcji. MowiliSmy zresztg we wtasciwym czasie, iz
parametry petnig w funkcji role dodatkowych zmiennych lokalnych.

Aby to zilustrowaé, wezmy takag oto banalng funkcje:

int Dodaj (int nA, int nB)
{

nA += nB;

return nA;

}

Jak wida¢, dokonujemy w niej modyfikacji jednego z parametréow. Kiedy jednak
wywotamy niniejszg funkcje w sposdb podobny do tego:

int nLiczbal = 1, nLiczba2 = 2;
std::cout << Dodaj (nLiczbal, nLiczba2);
std::cout << nLiczbal; // nadal nLiczbal == 1 !

zobaczymy, ze podana jej zmienna pozostaje nietknieta. Funkcja otrzymata bowiem
tylko jej wartos¢, ktora zostata w tym celu skopiowana.

Trzeba jednak przyznad, ze wiekszos¢ funkcji z zatozenia nie modyfikuje swoich
parametrow, a jedynie odczytuje z nich wartosci. W takim przypadku jest im wiec
~wszystko jedno”, czy odwotujg sie do faktycznie istniejgcych zmiennych, czy tez do ich
kopii, istniejacych tylko podczas dziatania funkcji.

Jednak nam, programistom, nie jest wszystko jedno. Stworzenie kopii zmiennych
wymaga bowiem dodatkowego czasu - na przydzielenie odpowiedniej ilosci pamieci i
zapisanie w niej pozgdanej wartosci. Naturalnie, w przypadku typow liczbowych jest to
pomijalnie maty interwat, ale dla wiekszych obiektéw (chociazby tancuchdéw znakow)
moze stac sie znaczacy. A przeciez wcale nie musi tak by¢!

Mozliwe jest zlikwidowanie koniecznosci tworzenia duplikatéw zmiennych dla
wywotywanych funkcji: wystarczy tylko zamiast wartosci przekazywa¢ odwotania do
nich, czyli... wskazniki! Skopiowanie czterech bajtéw bedzie na pewno znacznie szybsze
niz przemieszczanie ilosci danych liczonej na przykfad w dziesigtkach kilobajtow.
Zobaczmy wiec, jak mozna przyspieszy¢ dziatanie funkcji operujacych na duzych
obiektach. Postuze sie tu przyktadem na wyszukiwanie pozycji jednego ciagu znakow
wewnatrz innego:

#include <string>

// funkcja przeszukuje drugi napis w poszukiwaniu pierwszego;
// gdy go znajdzie, zwraca indeks pierwszego pasujacego znaku,
// w przeciwnym wypadku wartosé -1
int Wyszukaj (const std::string* pstrSzukany,
const std::string* pstrPrzeszukiwany)

{

// przeszukujemy nasz napis

for (unsigned i = 0;

i <= pstrPrzeszukiwany->length() - pstrSzukany->length(); ++i)

// pordwnujemy kolejne wycinki napisu (o odpowiedniej diugosci)
// z poszukiwanym ltancuchem. Metoda std::string::substr() stuzy
// do pobierania wycinka napisu
if (pstrPrzeszukiwany->substr (i, pstrSzukany->length())
== *pstrSzukany)
// jezeli wycinek zgadza sie, to zwracamy jego indeks
return 1i;

298 Podstawy programowania

}

// w razie niepowodzenia zwracamy -1
return -1;

}

Przeszukiwany tekst moze by¢ bardzo dtugi - edytory pozwalajg na przykfad na
poszukiwanie wybranej frazy wewnatrz catego dokumentu, liczacego nieraz wiele
kilobajtow. Nie jest to jednak problemem: dzieki temu, ze funkcja operuje na nim
poprzez wskaznik, pozostaje on caty czas ,na swoim miejscu” w pamieci i nie jest
kopiowany. Zysk na wydajnos$¢ aplikacji moze by¢ wtedy znaczny.

W zamian jednakze doswiadczamy pewnej niedogodnosci, zwigzanej ze skfadnig dziatan
na wskaznikach. Aby odwotac sie do przekazanego napisu, musimy kazdorazowo
dokonywac jego dereferencji; takze wywotywanie metod wymaga innego operatora niz
kropka, do ktérej przyzwyczailiSmy sie, operujac na napisach.

Ale i na to jest rada. Na koniec podrozdziatu poznamy bowiem referencje, ktére
zachowujg cechy wskaznikéw przy jednoczesnym umozliwieniu stosowania zwykiej
skfadni, wiasciwej zmiennym.

Dynamiczna alokacja pamieci

Kto wie, czy nie najwazniejszym polem do popisu dla wskaznikdéw jest zawtaszczanie
nowej pamieci w trakcie dziatania programu. Mechanizm ten daje nieosiggalng inaczej
elastycznosc¢ aplikacji i pozwala manipulowa¢ danymi o zmiennej wielkosci. Bez niego
wszystkie programy miatyby z géry narzuczone limity na ilos¢ przetwarzanych informaciji,
ktérych nijak nie moznaby przekroczyc.

Koniecznie wiec musimy przyjrzec sie temu zjawisku.

Przydzielanie pamieci dla zmiennych

Wszystkie zmienne deklarowane w kodzie majg statycznie przydzielona pamiec o
statym rozmiarze. Rezydujg one w obszarze pamieci zwanym stosem, ktéry rowniez ma
niezmienng wielkosé. Stosujgc wytacznie takie zmienne, nie mozemy wiec przetwarzad
danych cechujacych sie duza rozpietoscig zajmowanego miejsca w pamieci.

Oprécz stosu istnieje wszak takze sterta. Jest to reszta pamieci operacyjnej,
niewykorzystana przez program w momencie jego uruchomienia, ale stanowigca rezerwe
na przysztos¢. Aplikacja moze zen czerpac potrzebng w danej chwili ilo$¢ pamieci
(nazywamy to alokacja), wypetnia¢ wiasnymi danymi i pracowac na nich, a po
zakonczeniu roboty zwyczajnie oddac jg z powrotem (zwolni¢) do wspdlnej puli.
Najwazniejsze, ze o ilosci niezbednego miejsca mozna zdecydowaé w trakcie dziatania
programu, np. obliczy¢ jg na podstawie liczb pobranych od uzytkownika czy tez z
jakiegokolwiek innego zrédfa. Nie jesteSmy wiec skazani na staty rozmiar stosu, lecz
mozemy dynamicznie przydzielaé sobie ze sterty tyle pamieci, ile akurat
potrzebujemy. Zbiory informacji o niestatej wielkosci stajq sie wtedy mozliwe do
opanowania.

Alokacja przy pomocy new

Cate to dobrodziejstwo jest Scisle zwigzane z wskaznikami, gdyz to wtasnie za ich pomocg
uzyskujemy nowg pamie¢, odwotujemy sie do niej i wreszcie zwalniamy ja po skonczonej
pracy.

Wszystkie te czynnosci przesledzimy na prostym przyktadzie. Wezmy wiec sobie
zwyczajny wskaznik na typ int:

Wskazniki 299

int* pnLiczba;

Chwilowo nie pokazuje on na zadne sensowne dane. Moglibysmy oczywiscie ztgczy¢ go z
jaka$ zmienng zadeklarowang w kodzie (poprzez operator &), lecz nie o to nam teraz
chodzi. Chcemy sobie sami takowg zmienng stworzy¢ - uzywamy do tego operatora new
(*nowy’) oraz nazwy typu tworzonej zmiennej:

pnliczba = new int;

Wynikiem dziatania tego operatora jest adres, pod ktérym widnieje w pamieci nasza
Swiezo stworzona, nowiutka zmienna. Umieszczamy go zatem w przygotowanym
wskazniku - odtad bedzie on stuzyt nam do manipulowania wykreowang zmienna.

Coéz takiego rozni jg innych, deklarowanych w kodzie? Ano catkiem sporo rzeczy:

> nie ma ona nazwy, poprzez ktérg moglibysmy sie do niej odwtywac. Wszelka
~komunikacja” z nig musi zatem odbywac sie za posrednictwem wskaznika, w
ktérym zapisaliSmy adres zmiennej.

» czasu istnienia zmiennej nie kontroluje kompilator, ale sam programista. Inaczej
mowiac, nasza zmienna istnieje az do momentu jej zwolnienia (poprzez operator
delete, ktory oméwimy za chwile). Wynika stad rowniez, ze dla takiej zmiennej
nie ma sensu pojecie zasiegu.

> poczatkowa wartos¢ zmiennej jest przypadkowa. Zalezy bowiem od tego, co
poprzednio znajdowato sie w tym miejscu pamieci, ktore teraz system operacyjny
oddat do dyspozycji naszego programu.

Poza tymi aspektami, mozemy na tak stworzonej zmiennej wykonywac te same operacje,
co na wszystkich innych zmiennych tego typu. Dereferujac pokazujacy nan wskaznik,
otrzymujemy peten dostep do niej:

*pnLiczba = 100;
*pnLiczba += rand();
std::cout << *pnlLiczba;
// itp.

Oczywiscie nasze mozliwosci nie ograniczajq sie tylko do typdéw liczbowych czy
podstawowych. Przeciwnie, za pomocg new mozemy alokowac¢ pamiec dla dowolnych
rodzajow zmiennych - takze tych definiowanych przez nas samych.

Widzimy wiec, ze to bardzo potezne narzedzie.

Zwalnianie pamieci przy pomocy delete

Z kazdej potegi trzeba jednak korzysta¢ z rozwagq. W przypadku dynamicznej alokacji
zasada BHP brzmi:

Zawsze zwalniaj zaalokowang przez siebie pamiec.

Stuzy do tego odrebny operator delete (‘usun’). Uzycie go jest nadzwyczaj tatwe:
wystarczy jedynie poda¢ mu wskaznik na przydzielony obszar pamieci, a on postusznie
posprzata po nim i zwrdci go do dyspozycji systemu operacyjnego, a wiec i wszystkich
pozostatych programow.

Bez zwolnienia pamieci operacyjnej nastepuje jej wyciek (ang. memory leak).
Zaalokowana, a niezwolniona pamiec nie jest juz bowiem dostepna dla innych aplikacji.

Po skonczeniu pracy z naszg dynamicznie stworzong zmienng musimy jg zatem usunac.
Wyglada to nastepujgco:

300 Podstawy programowania

delete pnlLiczba;

Nalezy miec¢ swiadomosé, ze delete niczego nie modyfikuje w samym wskazniku, zatem
nadal pokazuje on na ten sam obszar pamieci. Teraz jednak nasz program nie jest juz
jego wiascicielem, dlatego tez aby uniknga¢ omytkowego odwotania sie do nieswojego
rejonu pamieci, wypadatoby wyzerowac nasz wskaznik:

pnLiczba = NULL;

Wartos¢ NULL to po prostu zero, za$ zerowy adres nie istnieje. pnLiczba staje sie wiec
wskaznikiem pustym, niepokazujacym na zadng konkretng komérke pamieci.
Gdybysmy teraz (omytkowo) sprébowali ponownie zastosowaé wobec niego operator
delete, wtedy instrukcja ta zostataby po prostu zignorowana. Jezeli jednak wskaznik
nadal pokazywatby na juz zwolniony obszar pamieci, wéwczas bez watpienia wystgpitby
btad ochrony pamieci (ang. access violation).

Zatem pamietaj, aby dla bezpieczenstwa zerowac¢ wskaznik po zwolnieniu
dynamicznej zmiennej, na ktérg on wskazywat.

Nowe jest lepsze

Jezeli czytajq to jakies osoby znajace jezyk C (w co watpie, ale wyjatki zawsze sie
zdarzajq :D), to pewnie nie darowatyby mi, gdybym nie wspomniat o sposobach na
alokacje i zwalnianie pamieci w tym jezyku. Chca zapewne wiedzie¢, dlaczego powinny o
nich zapomnie¢ (a powinny!) i stosowacé wylgcznie new oraz delete.

Ot6z w C mieliSmy dwie funkcje, malloc () i free (), stuzace odpowiednio do
przydzielania obszaru pamieci o zagdanej wielkosci oraz do jego pdzniejszego zwalniania.
Radzity sobie z tym zadaniem catkiem dobrze i mogtyby w zasadzie nadal sobie z nim
radzi¢. W C++ doszty jednak nowe zadania zwigzane z dynamiczng alokacjg pamieci
operacyjnej.

Chodzi tu naturalnie o kwestie klas z programowania obiektowego i zwigzanymi z nimi
konstruktorami i destruktorami. Kiedy uzywamy new i delete do tworzenia i
niszczenia obiektdw, w poprawny sposdb wywotujg one te specjalne metody. Funkcje
znane z C nie robia tego; nie ma w tym jednak niczego dziwnego, bo w ich
macierzystym jezyku w ogdle nie istniato pojecie klasy czy obiektu, nie méwiac juz o
metodach uruchamianych podczas ich tworzenia i niszczenia.

~Nowy” sposdb alokacji ma jeszcze jedng zalete. Otdéz malloc () zwraca w wyniku
wskaznik ogdlny, typu void*, zamiast wskaznika na okreslony typ danych. Aby przypisac
go do wybranej zmiennej wskaznikowej, nalezato uzy¢ rzutowania.

Przy korzystaniu z new nie jest to konieczne. Za pomoca tego operatora od razu
uzyskujemy witasciwy typ wskaznika i nie musimy stosowac zadnych konwersji.

Dynamiczne tablice

Alokacja pamieci dla pojedynczej zmiennej jest wprawdzie poprawna i klarowna, ale
raczej mato efektowna. Trudno wowczas powiedzieé, ze faktycznie operujemy na zbiorze
danych o niejednostajnej wielkosci, skoro owa niestatos¢ objawia sie jedynie... obecnoscig
lub nieobecnoscig jednej zmiennej!

O wiele bardziej interesujg sq dynamiczne tablice - takie, ktérych rozmiar jest ustalany
w czasie dziatania aplikacji. Mogg one przechowywac rézng ilo$¢ elementéw, wiec nadajq
sie do mndstwa wspaniatych celdw :)

Zobaczymy teraz, jak obstugiwac takie tablice.

Wskazniki 301

Tablice jednowymiarowe

Najprosciej sprawa wyglada z takimi tablicami, ktérych elementy sg indeksowane jedng
liczba, czyli po prostu z tablicami jednowymiarowymi. Popatrzmy zatem, jak odbywa sie
ich alokacja i zwalnianie.

Tradycyjnie juz zaczynamy od odpowiedniego wskaznika. Jego typ bedzie determinowat
rodzaj danych, jakie mozemy przechowywac w naszej tablicy:

float* pfTablica;

Alokacja pamieci dla niej takze przebiega w dziwnie znajomy sposob. Jedyng réznicg w
stosunku do poprzedniego paragrafu jest oczywista koniecznos¢ podania wielkos$ci
tablicy:

pfTablica = new float [1024];

Podajemy jg w nawiasach klamrowych, za nazwg typu pojedynczego elementu. Z powodu
obecnosci tych nawiasow, wystepujacy tutaj operator jest czesto okreslony jako new[].
Ma to szczegolny sens, jezeli pordbwnamy go z operatorem zwalniania tablicy, ktory
zobaczymy za momencik.

Zwazmy jeszcze, ze rozmiar naszej tablicy jest dosy¢ spory. By¢ moze wobec dzisiejszych
pojemnosci RAMu brzmi to zabawnie, ale zawsze przeciez istnieje potencjalna mozliwosg,
ze zabraknie dla nas tego zyciodajnego zasobu, jakim jest pamie¢ operacyjna. I na takie
sytuacje powinniSmy by¢ przygotowani - tym bardziej, ze poczynienie odpowiednich
krokéw nie jest trudne.

W przypadku braku pamieci operator new zwrdci nam pusty wskaznik; jak
pamietamy, nie odnosi sie on do zadnej komorki, wiec moze by¢ uzyty jako wartosc
kontrolna (spotkaliSmy sie juz z tym przy okazji rzutowania dynamic cast). Wypadatoby
zatem sprawdzi¢, czy nie natrafiliSmy na takg nieprzyjemna sytuacje i zareagowac na nig
odpowiednio:

if (pfTablica == NULL) // moze by¢ tez 1if (!pfTablica)
std::cout << "Niestety, zabraklo pamieci!";

Mozemy zmieni¢ to zachowanie i sprawi¢, zeby w razie niepowodzenia alokacji pamieci
byta wywotywana nasza wtasna funkcja. Po szczegbty mozesz zajrze¢ do opisu funkciji
set new handler () w MSDN.

Jezeli jednak wszystko poszio dobrze - a tak chyba bedzie najczesciej :) - mozemy
uzywac naszej tablicy w identyczny sposadb, jak tych alokowanych statycznie.
Powiedzmy, ze wypetnimy ja trescig przy pomocy nastepujacej petli:

for (unsigned i = 0; 1 < 1024; ++1i)
pfTablicali]l] = 1 * 0.01;

Wida¢, ze dostep do poszczegdinych elementéw odbywa sie tutaj tak samo, jak dla tablic
o statym rozmiarze. A wiasciwie, zeby byc¢ Scistym, to raczej tablice o statym rozmiarze
zachowuja sie podobnie, gdyz w obu przypadkach mamy do czynienia z jednym i tym
samym mechanizmem - wskaznikami.

Nalezy jeszcze pamietaé, aby zachowac gdzies rozmiar alokowanej tablicy, zeby moc
na przyktad przetwarzac¢ jg przy pomocy petli for, podobnej do powyzszej.

Na koniec trzeba oczywiscie zwolni¢ pamieé, ktéra przeznaczyliSmy na tablice. Za jej
usuniecie odpowiada operator delete[]:

302 Podstawy programowania

delete[] pfTablica;

Musimy koniecznie uwazaé, aby nie pomyli¢ go z podobnym operatorem delete. Tamten
stuzy do zwalniania wytacznie pojedyncznych zmiennych, zas jedynie niniejszy moze
by¢ uzyty do usuniecia tablicy. Nierespektowanie tej reguty moze prowadzi¢ do bardzo
nieprzyjemnych btedow!

Zatem do zwalniania tablic korzystaj tylko z operatora delete[]!

tatwo zapamietac¢ te zasade, jezeli przypomnimy sobie, iz do alokowania tablicy
postuzyta nam instrukcja new[]. Jej usuniecie musi wiec rowniez odbywac sie przy
pomocy operatora z nawiasami kwadratowymi.

Opakowanie w klase

Jesli czesto korzystamy z dynamicznych tablic, warto stworzy¢ dlan odpowiednig klase,
ktéra utatwi nam to zadanie. Nie jest to specjalnie trudne.
My stworzymy tutaj przyktadowgq klase jednowymiarowej tablicy elementéw typu int.

Zacznijmy moze od jej prywatnych pél. Oprécz oczywistego wskaznika na wewnetrzng
tablice klasa powinna by¢ wyposazona takze w zmienng, w ktérej zapamietamy
rozmiar utworzonej tablicy. Uwolnimy wtedy uzytkownika od koniecznosci zapisywania
jej we wiasnym zakresie.

Metody muszg zapewni¢ dostep do elementdéw tablicy, a wiec pobieranie wartosci o
okreslonym indeksie oraz zapisywanie nowych liczb w okreslonych elementach tablicy.
Przy okazji mozemy tez kontrolowac indeksy i zapobiegac ich przekroczeniu, co znowu
zapewni nam dozgonng wdzieczno$¢ programisty-klienta naszej klasy ;)

Definicja takiej tablicy moze wiec przedstawiac sie nastepujaco:

class CIntArray
{
// domy$lny rozmiar tablicy
static const unsigned DOMYSLNY ROZMIAR = 5;

private:
// wskaznik na wtasciwg tablice oraz jej rozmiar
int* m pnTablica;
unsigned m uRozmiar;

public:
// konstruktory
CIntArray () // domy$lny
{ mﬁuRozmiar = DOMYSLNY ROZMIAR;
m pnTablica = new int [m uRozmiar]; }
CIntArray (unsigned uRozmiar) // z podaniem rozmiaru tablicy
{ m uRozmiar = uRozmiar;
m pnTablica = new int [m uRozmiar]; }

// destruktor
~CIntArray () { delete[] m pnTablica; }

// pobieranie i ustawianie elementdw tablicy
int Pobierz (unsigned ulIndeks) const
{ if (uIndeks < m uRozmiar) return m pnTablica[ulndeks];
else return O; }
bool Ustaw (unsigned ulndeks, int nWartosc)

Wskazniki 303

{ if (uIndeks >= m uRozmiar) return false;

m pnTablica[ulIndeks] = uWartosc;

return true; }
// inne
unsigned Rozmiar () const { return m uRozmiar; }

}s

Sg w niej wszystkie detale, o jakich wspomniatem wczesniej.

Dwa konstruktory majg na celu zaalokowanie pamieci na naszg tablice; jeden z nich jest
domysiny i ustawia okreslong z géry wielkos¢ (wpisang jako stata DOMYSLNY ROZMIAR),
drugi zas pozwala podac jg jako parametr. Destruktor natomiast dba o zwolnienie tak
przydzielonej pamieci. W tego typu klasach metoda ta jest wiec szczegdlnie przydatna.
Pozostate funkcje sktadowe zapewniajg intuicyjny dostep do elementéw tablicy,
zabezpieczajac przy okazji przed btedem przekroczenia indeksow. W takiej sytuacji
Pobierz () zwraca warto$¢ zero, zas Ustaw () - false, informujac o zainstniatym
niepowodzeniu.

Skorzystanie z tej gotowej klasy nie jest chyba trudne, gdyz jej definicja niemal
dokumentuje sie sama. Popatrzmy aczkolwiek na nastepujacy przykitad:

#include <cstdlib>
#include <ctime>

srand (static cast<unsigned>(time (NULL)))
CIntArray aTablica (rand());

for (unsigned i1 = 0; i < aTablica.Rozmiar(); ++1i)
aTablica.Ustaw (i, rand()):;

Jak wida¢, generujemy w nim losowg ilo$¢ losowych liczb :) Nieodmiennie tez uzywamy
do tego petli for, nieodzownej przy pracy z tablicami.

Zdefiniowana przed momentem klasa jest wiec catkiem przydatna, posiada jednak trzy
zasadnicze wady:
> raz ustalony rozmiar tablicy nie moze juz ulegac¢ zmianie. Jego modyfikacja
wymaga stworzenia nowej tablicy
> dostep do poszczegdlnych elementéw odbywa sie za pomocg mato wygodnych
metod zamiast zwyczajowych nawiaséw kwadratowych
> typem przechowywanych elementéw moze by¢ jedynie int

Na dwa ostatnie mankamenty znajdziemy rade, gdy juz nauczymy sie przecigzac
operatory oraz korzystac z szablonow klas w jezyku C++.

Niemoznos$¢ zmiany rozmiaru tablicy mozemy jednak usuna¢ juz teraz. Dodajmy wiec
jeszcze jedng metode za to odpowiedzialng:

class CIntArray

{
// (reszte wycieto)

public:
bool ZmienRozmiar (unsigned) ;

}s

Wykona ona alokacje nowego obszaru pamieci i przekopiuje do niego juz istniejacq czesc
tablicy. Nastepne zwolni jg, zas cata klasa bedzie odtad operowata na nowym fragmencie
pamieci.

Brzmi to dosy¢ tajemniczo, ale w gruncie rzeczy jest bardzo proste:

304 Podstawy programowania

#include <memory.h>

bool CIntArray::ZmienRozmiar (unsigned uNowyRozmiar)

{
// sprawdzamy, czy nowy rozmiar jest wiekszy od starego
if (! (uNowyRozmiar > m uRozmiar)) return false;

// alokujemy nowa tablice
int* pnNowaTablica = new int [uNowyRozmiar];

// kopiujemy don stara tablice i zwalniamy ja
memcpy (pnNowaTablica, m pnTablica, m uRozmiar * sizeof (int));
delete[] m pnTablica;

// "podczepiamy" nowa tablice do klasy i zapamietujemy Jjej rozmiar
m pnTablica = pnNowaTablica;
m_uRozmiar = uNowyRozmiar;

// zwracamy pozytywny rezultat
return true;

}

Wyjasnienia wymaga chyba tylko funkcja memcpy () . Oto jej prototyp (zawarty w
nagtéwku memory.h, ktéry dotgczamy):

void* memcpy (void* dest, const void* src, size t count);

Zgodnie z nazwa (ang. memory copy - kopiuj pamiec), funkcja ta stuzy do kopiowania
danych z jednego obszaru pamieci do drugiego. Podajemy jej miejsce docelowe i
zrédtowe kopiowania oraz ilo§¢ bajtow, jaka ma byc¢ powielona.

Wiasnie ze wzgledu na bajtowe wymagania funkcji memcpy () uzywamy operatora sizeof,
by pobrac wielko$¢ typu int i pomnozy¢ go przez rozmiar (liczbe elementéw) naszej
tablicy. W ten sposéb otrzymamy wielko$¢ zajmowanego przez nig rejonu pamieci w
bajtach i mozemy go przekazac jako trzeci parametr dla funkcji kopiujacej.

Petna dokumentacja funkcji memcpy () jest oczywiscie dostepna w MSDN.

Po rozszerzeniu nowa tablica bedzie zawierata wszystkie elementy pochodzace ze starej
oraz nowy obszar, mozliwy do natychmiastowego wykorzystania.

Tablice wielowymiarowe

Uelastycznienie wielkosci jest w C++ mozliwe takze dla tablic o wiekszej liczbie
wymiarow. Jak to zwykle w tym jezyku bywa, wszystko odbywa sie analogicznie i
intuicyjnie :D

Przypomnijmy, ze tablice wielowymiarowe to takie tablice, ktérych elementami sa... inne
tablice. Wiedzac zas, iz mechanizm tablic jest w C++ zarzadzany poprzez wskazniki,
dochodzimy do wniosku, ze:

Dynamiczna tablica n-wymiarowa sktada sie ze wskaznikow do tablic (n-1)-wymiarowych.

Dla przyktadu, tablica o dwdéch wymiarach jest tak naprawde jednowymiarowym
wektorem wskaznikdw, z ktérych kazdy pokazuje dopiero na jednowymiarowg tablice
wiasciwych elementow.

Wskazniki 305

Aby wiec obstugiwacd takg tablice, musimy uzy¢ dos$¢ osobliwej konstrukcji
programistycznej - wskaznika na wskaznik. Nie jest to jednak takie dziwne. Wskaznik
to przeciez tez zmienna, a wiec rezyduje pod jakims$ adresem w pamieci. Ten adres moze
by¢ przechowywany przez kolejny wskaznik.

Deklaracja czegos takiego nie jest trudna:

int** ppnTablica;

Wystarczy dodac po prostu kolejng gwiazdke do nazwy typu, na ktéry ostatecznie
pokazuje nasz wskaznik.

Jak taki wskaznik ma sie do dynamicznych, dwuwymiarowych tablic?... Ilustrujac nim opis
podany wczesniej, otrzymamy schemat podobny do tego:

typ** ppTablica

typ typ typ typ
.................. 4
= 1r e TS rr e
Lo typ Lyp 199 Ly
typ typ Lyp 199 Ly
? W U N L
.................. ST
t_‘l(f ‘ Cy¥p | Lyp cy¥pe

Schemat 35. Dynamiczna tablica dwuwymiarowa jest tablica wskaznikéw do tablic
jednowymiarowych

Skoro wiec wiemy juz, do czego zmierzamy, pora osiggnac cel.

Alokacja dwywumiarowej tablicy musi odbywac sie dwuetapowo: najpierw
przygotowujemy pamiec pod tablice wskaznikow do jej wierszy. Potem natomiast
przydzielamy pamie¢ kazdemu z tych wierszy - tak, ze w sumie otrzymujemy tyle
elementow, ile chcielismy.

Po przetozeniu na kod C++ algorytm wyglada w ten sposéb:

// Alokacja tablicy 3 na 4

// najpierw tworzymy tablice wskazZnikéw do kolejnych wierszy
ppnTablica = new int* [3];

// nastepnie alokujemy te wiersze
for (unsigned i = 0; 1 < 3; ++1)
ppnTablica[i] = new int [4];

306 Podstawy programowania

Przeanalizuj go dokfadnie. Zwré6¢ uwage szczegolnie na linijke:

ppnTablica[i] = new int [4];

Za pomocg wyrazenia ppnTablica[i] odwotujemy sie tu do i-tego wiersza naszej
tablicy - a Scislej mowiac, do wskaznika na niego. Przydzielamy mu nastepnie adres
zaalokowanego fragmentu pamieci, ktéry bedzie petnit role owego wiersza. Robimy tak
po kolei ze wszystkimi wierszami tablicy.

Uzytkowanie tak stworzonej tablicy dwuwymiarowej nie powinno nastrecza¢ trudnosci.
Odbywa sie ono bowiem identycznie, jak w przypadku statycznych macierzy. Najczestsza
konstrukcjg jest tu znowu zagniezdzona petla for:

for (unsigned i = 0; 1 < 3; ++1)
for (unsigned j = 0; j < 4; ++3j)
ppnTablicalil[§] = i - 3;

Co za$ ze zwalnianiem tablicy? Ot6z przeprowadzamy je w sposob dokfadnie przeciwny
do jej alokacji. Zaczynamy od uwolnienia poszczegdlnych wierszy, a nastepnie
pozbywamy sie takze samej tablicy wskaznikéw do nich.

Wyglada to mniej wiecej tak:

// zwalniamy wiersze
for (unsigned i = 0; 1 < 3; ++1)
delete[] ppnTablicalil];

// zwalniamy tablice wskaznikdéw do nich
delete[] ppnTablica;

Przedstawiong tu kolejnos¢ nalezy zawsze bezwglednie zachowywaé. Gdybysmy
bowiem najpierw pozbyli sie wskaznikéw do wierszy tablicy, wtedy nijak nie moglibysmy
zwolni¢ samych wierszy! Usuwanie tablicy ,,od tytu” chroni zas przed taka
ewentualnoscia.

Znajac technike alokacji tablicy dwuwymiarowej, mozemy fatwo rozszerzyc¢ jg na wiekszg
liczbe wymiaréw. Popatrzmy tylko na kod odpowiedni dla tréjwymiarowej tablicy:

/* Dynamiczna tablica tréjwymiarowa, 5 na 6 na 7 elementdw */

// wskaznik do niej ("trzeciego stopnia"!)
int*** p3nTablica;

/* alokacja */

// tworzymy tablice wskaznikdéw do 5 kolejnych "pitaszczyzn" tablicy
p3nTablica = new int** [5];

// przydzielamy dla nich pamiec

for (unsigned i = 0; 1 < 5; ++1)

{
// alokujemy tablice na wskazniki do wierszy
p3nTablical[i] = new int* [6];

// wreszcie, dla przydzielamy pamie¢ dla wtasciwych elementdw
for (unsigned j = 0; J < 6; ++73)
p3nTablical[i] [j] = new int [7];

Wskazniki 307

/* uzycie */

// wypelniamy tabelke jakas tresciag
for (unsigned i = 0; i < 5; ++1)
for (unsigned j = 0; j < 6; ++3j)
for (unsigned k = 0; k < 7; ++k)
p3nTablicali] [J]1[k] = 1 + J + k;

/* zwolnienie */

// zwalniamy kolejne "pltaszczyzny"
for (unsigned i1 = 0; 1 < 5; ++1i)
{
// zaczynamy Jjednak od zwolnienia wierszy
for (unsigned j = 0; J < 6; ++73)
delete[] p3nTablicalil [j]:

// usuwamy "pltaszczyzne"
delete[] p3nTablicalil;
}

// na koniec pozbywamy sie wskaznikdéw do "ptaszczyzn"
delete[] p3nTablica;

Widac¢ niestety, ze z kazdym kolejnym wymiarem kod odpowiedzialny za alokacje oraz
zwalnianie tablicy staje sie coraz bardziej skomplikowany. Na szczescie jednak
dynamiczne tablice o wiekszej liczbie wymiaréw sg bardzo rzadko wykorzystywane w
praktyce.

Referencje

Naocznie przekonates sie, ze domena zastosowan wskaznikow jest niezwykle szeroka.
Jezeli nawet nie datyby w danym programie jakichs$ niespotykanych mozliwosci, to na
pewno za ich pomocg mozna poczyni¢ spore optymalizacje w kodzie i przyspieszy¢ jego
dziatanie.

Za poprawe wydajnosci trzeba jednak zapfaci¢ wygoda: odwotywanie sie do obiektow
poprzez wskazniki wymaga bowiem ich dereferencji. Wprowadza ona nieco zamieszania
do kodu i wymaga poswiecenia mu wiekszej uwagi. C6z, zawsze co$ za co$, prawda?...
Otdz nieprawda :) Tworcy C++ wyposazyli bowiem swoéj jezyk w mechanizm referencji,
ktéry taczy zalety wskaznikdow z normalng skfadnig zmiennych. Zatem i wilk jest syty, i
owca cata.

Referencje (ang. references) to zmienne wskazujace na adresy miejsc w pamieci, ale
pozwalajace uzywac zwyczajnej sktadni przy odwotywaniu sie do tychze miejsc.

Mozna je traktowac jako pewien szczegdlny rodzaj wskaznikdw, ale stworzony dla czystej
wygody programisty i poprawy wygladu pisanego przezen kodu. Referencje sg aczkolwiek
niezbedne przy przecigzaniu operatoréw (o tym powiemy sobie niedtugo), jednak swoje
zastosowania mogq znalez¢ niemal wszedzie.

Przy takiej rekomendacji trudno nie oprzec sie checi ich poznania, nieprawdaz? ;) Tym
wiasnie zagadnieniem zajmiemy sie wiec teraz.

308 Podstawy programowania

Typy referencyjne

Podobnie jak wskazniki wprowadzity nam pojecie typéw wskaznikowych, tak i referencje
dodajg do naszego stownika analogiczny termin typéw referencyjnych.

W przeciwienstwie jednak do wskaznikow, dla kazdego normalnego typu istniejg jedynie
dwa odpowiadajace mu typy referencyjne. Dlaczego tak jest, dowiesz sie za chwile. Na
razie przypatrzmy sie deklaracjom przyktadowych referencii.

Deklarowanie referencji

Referencje odnoszg sie do zmiennych, zatem najpierw przydatoby sie jakas zmienng
posiadac¢. Niech bedzie to co$ w tym rodzaju:

short nZmienna;

Odpowiednia referencja, wskazujaca na te zmienng, bedzia natomiast zadeklarowana w
ten oto sposéb:

short& nReferencja = nZmienna;

Konczacy nazwe typu znak s jest wyrdznikiem, ktdry mowi nam i kompilatorowi, ze
mamy do czynienia wtasnie z referencja. Inicjalizujemy jg od razu tak, azeby wskazywata
na naszg zmienng nZmienna. Zauwazmy, ze nie uzywamy do tego zadnego
dodatkowego operatora!

Postugujac sie referencjgq mozliwe jest teraz zwyczajne odwotywanie sie do zmiennej, do
ktorej sie ona odnosi. Wyglada to wiec bardzo zachecajaco - na przyktad:

nReferencja = 1; // przypisanie warto$ci zmiennej nZmienna
std::cout << nReferencja; // wyswietlenie warto$ci zmiennej nZmienna

Wszystkie operacje, jakie tu wykonujemy, odbywajq sie na zmiennej nZmienna, chociaz
wyglada, jakby to nrReferencja byta jej celem. Ona jednak tylko w nich posredniczy,
tak samo jak czynig to wskazniki. Referencja nie wymaga jednak skorzystania z
operatora * (zwanego notabene operatorem dereferencji) celem dostania sie do miejsca
pamieci, na ktére sama wskazuje. Ten witasnie fakt (miedzy innymi) rézni jg od
wskaznika.

Prawo statosci referencji

Najdziwniej wyglada pewnie linijka z przypisaniem wartosci. Mimo ze po lewej stronie
znaku = stoi zmienna nReferencija, to jednak nowg wartosé otrzyma nie ona, lecz
nZmienna, na ktérg tamta pokazuje. Takie sg po prostu uroki referencji i trzeba do nich
przywyknac.

No dobrze, ale jak w takim razie zmieni¢ adres pamieci, na ktéry pokazuje nasza
referencja?... Powiedzmy, ze zadeklarujemy sobie drugg zmienng:

short nInnaZmienna;

Chcemy mianowicie, zeby odtad nReferencja pokazywata wtasnie na nig (a nie na
nZmienna). Jak (czy?) mozna to uczynic?...

Niestety, odpowiedz brzmi: nijak. Raz ustalona referencja nie moze by¢ bowiem
»~doczepiona” do innej zmiennej, lecz do kohca pozostaje zwigzana wytacznie z tq
pierwszg. A zatem:

Wskazniki 309

W C++ wystepujg wytacznie state referencje. Po koniecznej inicjalizacji nie moga juz
by¢ zmieniane.

To jest wiasnie powdd, dla ktérego istniejg tylko dwa warianty typow referencyjnych. O
ile wiec w przypadku wskaznikéw atrybut const mdgt wystepowac (lub nie) w dwdch
réoznych miejscach deklaracji, o tyle dla referencji jego drugi wystep jest niejako
domysliny. Nie istnieje zatem zadna ,niestata referencja”.

Przypisanie zmiennej do referencji moze wiec sie odbywac tylko podczas jej
inicjalizacji. Jak widzieliSmy, dzieje sie to prawie tak samo, jak przy statych
wskaznikach - naturalnie z wytgczeniem braku operatora &, np.:

float fLiczba;
float& fRef = fliczba;

Czy fakt ten jest jakas niezmiernie istotng wada referencji? Smiem twierdzi¢, ze ani
troche! Tak naprawde prawie nigdy nie uzywa sie mechanizmu referencji w odniesieniu
do zwyktych zmiennych. Ich prawdziwa uzytecznos$¢ ujawnia sie bowiem dopiero w
potaczeniu z funkcjami.

Zobaczmy wiec, dlaczego sg wéwczas takie wspaniate ;D

Referencje i funkcje

Chyba jedynym miejscem, gdzie rzeczywiscie uzywa sie referencji, sg nagtéwki funkcji
(prototypy). Dotyczy to zardwno parametrow, jak i wartosci przez te funkcje zwracanych.
Referencje dajg bowiem catkiem znaczgace optymalizacje w szybkosci dziatania kodu, i to
w zasadzie za darmo. Nie wymagajg zadnego dodatkowego wysitku poza ich uzyciem w
miejsce zwyktych typow.

Brzmi to bardzo kuszaco, zatem zobaczmy te wysmienite rozwigzania w akcji.

Parametry przekazywane przez referencje

Juz przy okazji wskaznikéw zauwazyliSmy, ze wykorzystanie ich jako parametréw funkcji
moze przyspieszy¢ dziatanie programu. Zamiast catych obiektow funkcja otrzymuje
wtedy odwotania do nich, za$ poprzez nie moze odnosic¢ sie do faktycznych obiektow. Na
potrzeby funkcji kopiowane sg wiec tylko 4 bajty odwofania, a nie czasem wiele
kilobajtow wiasciwego obiektu!

Przy tej samej okazji narzekaliSmy jednak, ze zastosowanie wskaznikéw wymaga
przeformatowania sktadni catego kodu, w ktérym nalezy doda¢ konieczne dereferencje i
zmieni¢ operatory wytuskania. To niewielki, ale jednak dolegliwy kiopot.

I oto nagle pojawia sie cudowne rozwigzanie :) Referencje, bo o nich rzecz jasna
mowimy, sg takze odwotaniami do obiektéw, ale mozliwe jest stosowanie wobec nich
zwyczajnej sktadni, bez ucigzliwosci zwigzanych ze wskaznikami. Czynigc je parametrami
funkcji, powinniSmy wiec upiec dwie pieczenie na jednym ogniu, poprawiajac zaréwno
osiggi programu, jak i wtasne samopoczucie :D

Spéjrzmy zatem jeszcze raz na funkcje Wyszukaj (), z ktorg spotkaliSmy sie juz przy
wskaznikach. Tym razem jej parametry bedg jednak referencjami. Oto jak wptynie to na
wyglad kodu:

#include <string>

int Wyszukaj (const std::string& strSzukany,
const std::string& strPrzeszukiwany)
{
// przeszukujemy nasz napis
for (unsigned i = 0;
i <= strPrzeszukiwany.length() - strSzukany.length(); ++i)
{

310 Podstawy programowania

// pordwnujemy kolejne wycinki napisu
if (strPrzeszukiwany.substr (i, strSzukany.length())
== strSzukany)
// jezeli wycinek zgadza sie, to zwracamy jego indeks
return 1i;

}

// w razie niepowodzenia zwracamy -1
return -1;

}

Obecnie nie wida¢ tu najmniejszych oznak silenia sie na jakgkolwiek optymalizacje, a
mimo jest ona taka sama jak w wersji wskaznikowej. Powodem jest forma nagtowka
funkcji:

int Wyszukaj (const std::string& strSzukany,
const std::stringé& strPrzeszukiwany)

Oba jej parametry sg tutaj referencjami do statych napiséw, a wiec nie sg kopiowane
w inne miejsca pamieci wytgcznie na potrzeby funkcji. A jednak, chociaz faktycznie
funkcja otrzymuje tylko ich adresy, mozemy operowac na tych parametrach zupetnie tak
samo, jakbysmy dostali cate obiekty poprzez ich wartosci. Mamy wiec zaréwno wygodng
sktadnie, jak i dobrg wydajnos¢ tak napisanej funkcji.

Zatrzymajmy sie jeszcze przez chwile przy modyfikatorach const w obu parametrach
funkcji. Obydwa napisy nie w jej ciele w zaden sposdb zmieniane (bo i nie powinny),
zatem logiczne jest zadeklarowanie ich jako referencji do statych. W praktyce tylko takie
referencje stosuje sie jako parametry funkcji; jezeli bowiem nalezy zwrdcic¢ jakas wartosc
poprzez parametr, wtedy lepiej dla zaznaczenia tego faktu uzy¢ odpowiedniego
wskaznika.

Zwracanie referencji

Na podobnej zasadzie, na jakiej funkcje moga pobierac referencje poprzez swoje
parametry, mogg tez je zwracac¢ na zewnatrz. Uzasadnienie dla tego zjawiska jest
rowniez takie samo, czyli zaoszczedzenie niepotrzebnego kopiowania wartosci.

Najprotszym przykfadem moze byc¢ ciekawe rozwigzanie problemu metod dostepowych -
tak jak ponizej:

class CFoo

{

private:
unsigned m_uPole;
public:
unsignedé& Pole() { return m uPole; }

bi

Poniewaz metoda Pole () zwraca referencje, mozemy uzywac jej niemal tak samo, jak
Zwyczajnej zmiennej:

CFoo Foo;
Foo.Pole() = 10;
std::cout << Foo.Pole():;

Oczywiscie kwestia, czy takie rozwigzanie jest w danym przypadku pozadane, jest mocno
indywidualna. Zawsze nalezy rozwazy¢, czy nie lepiej zastosowac tradycyjnego wariantu
metod dostepowych - szczegdlnie, jezeli chcemy zachowywac kontrole nad warto$ciami
przypisywanymi polom.

Wskazniki 311

Z praktycznego punktu widzenia zwracanie referencji nie jest wiec zbytnio przydatng
mozliwoscig. Wspominam jednak o niej, gdyz stanie sie ona niezbedna przy okazji
przetadowywania operatoréw - zagadnienia, ktérym zajmiemy sie w jednym z przysztych
rozdziatéw.

Xk k

Tym drobnym wybiegnieciem w przyszios¢ zakonczymy nasze spotkania ze wskaznikami
na zmienne. Jezeli miates jakiekolwiek watpliwosci co do uzytecznosci tego elementu
jezyka C++, to chyba do tego momentu zostaty one catkiem rozwiane. Najlepiej jednak
przekonasz sie o przydatnosci mechanizméw wskaznikdéw i referencji, kiedy sam bedziesz
miat okazje korzysta¢ z nich w swoich wtasnych aplikacjach. Przypuszczam takze, ze owe
okazje nie bedg wcale odosobnionymi przypadkami, ale statg praktyka programistyczna.

Oprocz wskaznikdw na zmienne jezyk C++ oferuje réwniez inng ciekawg konstrukcje,
jaka sg wskazniki na funkcje. Nie od rzeczy bedzie wiec zapoznanie sie z nimi, co tez
pilnie uczynimy.

Wskazniki do funkcji

Myslac o tym, co jest przechowywane w pamieci operacyjnej, zwykle wyobrazamy sobie
réozne dane programu: zmienne, tablice, struktury itp. One stanowig informacje
reprezentowane w komaérkach pamieci, na ktérych aplikacja wykonuje swoje dziatania.
Cata pamiec¢ operacyjna jest wiec usiana danymi kazdego z aktualnie pracujacych
programow.

Hmm... Czy aby na pewno o czyms$ nie zapomnieliS$my? A co z samymi programami?! Kod
aplikacji jest przeciez pewng porcjg binarnych danych, zatem i ona musi sie gdzie$
podziaé. Przez wiekszos¢ czasu egzystuje wprawdzie na dysku twardym w postaci pliku
(zwykle o rozszerzeniu EXE), ale dla potrzeb wykonywania kodu jest to z pewnoscig zbyt
wolne medium. Gdyby system operacyjny co rusz siegat do pliku w czasie dziatania
programu, wtedy na pewno wszelkie czynnosci ciggnetyby sie niczym toffi i przyprawiaty
zniecierpliwionego uzytkownika o biatg gorgczke. Co wiec zrobi¢ z tym fantem?...
Rozsadnym wyjsciem jest umieszczenie w pamieci operacyjnej takze kodu dziatajgcej
aplikacji. Dostep do nich jest wowczas wystarczajaco szybki, aby programy mogty dziata¢
w normalnym tempie i bez przeszkdéd wykonywac¢ swoje zadania. Pamie¢ RAM jest
przeciez stosunkowo wydajna, wielokrotnie bardziej niz nawet najszybsze dyski twarde.

Tak wiec podczas uruchamiania programu jego kod jest umieszczany wewnatrz pamieci
operacyjnej. Kazdy podprogram, kazda funkcja, a nawet kazda instrukcja otrzymujag
wtedy swoj unikalny adres, zupetnie jak zmienne. Maszynowy kod binarny jest bowiem
takze swoistego rodzaju danymi. Z tych danych korzysta system operacyjny (gléwnie
poprzez procesor), wykonujac kolejne instrukcje aplikacji. Wiedza o tym, jaka komenda
ma by¢ za chwile uruchomiona, jest przechowywana wtasnie w postaci jej adresu - czyli
po prostu wskaznika.

Nam zwykle nie jest potrzebna az tak dokfadna lokalizacja jakiego$ wycinka kodu w
naszej aplikacji, szczegdlnie jezeli programujemy w jezyku wysokiego poziomu, ktérym
jest z pewnoscig C++. Trudno jednak pogardzi¢ mozliwoscig uzyskania adresu funkcji w
programie, jesli przy pomocy tegoz adresu (oraz kilku dodatkowych informacji, o czym za
chwile) mozna owa funkcje swobodnie wywotywaé. C++ oferuje wiec mechanizm
wskaznikoéw do funkcji, ktéry udostepnia taki wtasnie potencjat.

Wskaznik do funkcji (ang. pointer to function) to w C++ zmienna, ktéra przechowuje
adres, pod jakim istnieje w pamieci operacyjnej dana funkcja.

312 Podstawy programowania

Wiem, ze poczatkowo moze by¢ ci trudno uswiadomic sobie, w jaki sposéb kod programu
jest reprezentowany w pamieci i jak wobec tego dziatajg wskazniki na funkcje. Doktadnie
wyjasnienie tego faktu wykracza daleko poza ramy tego rozdziatu, kursu czy nawet
programowania w C++ jako takiego (oraz, przyznam szczerze, czesciowo takze mojej
wiedzy :D). Dotyka to juz bowiem niskopoziomowych aspektow dziatania aplikacji.
Niemniej postaram sie przystepnie wyjasni¢ przynajmniej te zagadnienia, ktore bedg
nam potrzebne do sprawnego postugiwania sie wskaznikami do funkcji. Zanim to sie
stanie, mozesz mysle¢ o nich jako o swoistych fgczach do funkcji, podobnych w swych
zatozeniach do skrotow, jakie w systemie Windows mozna tworzy¢ w odniesieniu do
aplikacji. Tutaj natomiast mamy do czynienia z pewnego rodzaju ,skrétami” do
pojedynczych funkcji; przy ich pomocy mozemy je bowiem wywotywac niemal w ten sam
sposéb, jak to czynimy bezposrednio.

Omawianie wskaznikéw do funkcji zaczniemy nieco od tytu, czyli od bytow na ktére one
wskazuja - a wiec od funkcji wtasnie. Przypomnimy sobie, c6z takiego charakteryzuje
funkcje oraz powiemy sobie, jakie jej cechy bedg szczegdlne istotne w kontekscie
wskaznikow.

Potem rzecz jasna zajmiemy sie uzywaniem wskaznikéw do funkcji w naszych wtasnych
programach, poczynajac od deklaracji az po wywotywanie funkcji za ich posrednictwem.
Na koniec uswiadomimy sobie takze kilka zastosowan tej ciekawej konstrukcji
programistycznej.

Cechy charakterystyczne funkcji

Réznego rodzaju funkcji - czy to wtasnych, czy tez wbudowanych w jezyk - uzywaliSmy
dotad tak czesto i w takich ilosciach, ze chyba nikt nie ma najmniejszych watpliwosci,
czym one sg, do czego stuzg i jaka jest ich rola w programowaniu.

Teraz wiec przypomnimy sobie jedynie te wtasnosci funkcji, ktére beda dla nas istotne
przy omawianiu wskaznikow. Nie omieszkamy takze poznac jeszcze jednego aspektu
funkcji, o ktorym nie mieliSmy okazji dotychczas moéwi¢. Wszystko to pomoze nam
zrozumie¢ koncepcje i stosowanie wskaznikéw na funkcje.

Trzeba tu zaznaczy¢, ze w tym momencie absolutnie nie chodzi nam o to, jakie instrukcje
mogaq zawierac funkcje. Przeciwnie, nasza uwaga bedzie skoncentrowana wytacznie na
prototypie funkcji, jej ,wizytowce”. Dla wskaznikow na funkcje petni on bowiem
podobne postugi, jak typ danych dla wskaznikéw na zmienne. Sama zawartos¢ bloku
funkcji, podobnie jak warto$¢ zmiennej, jest juz zupetnie jednak inng (,wewnetrzng”)
sprawa.

Na poczatek przyjrzyjmy sie sktadni prototypu (deklaracji) funkcji. Wydaje sie, ze jest
ona doskonale nam znana, jednak tutaj przedstawimy jej petng wersje:

zwracany typ [konwencja wywolania] nazwa funkcji([parametryl]):;
Kazdemu z jej elementdw przypatrzymy sie natomiast w osobnym paragrafie.

Typ wartosci zwracanej przez funkcje

Wiele jezykdéw programowania rozréznia dwa rodzaje podprogramow. I tak procedury
majq za zadanie wykonanie jakich$ czynnosci, zas funkcje sg przeznaczone do obliczania
pewnych wartosci. Dla obu tych rodzajéw istniejg zwykle odmienne rozwigzania
sktadniowe, na przyktad inne stowa kluczowe.

W C++ jest nieco inaczej: tutaj zawsze mamy do czynienia z funkcjami, gdyz
bezwglednie konieczne jest okreslenie typu wartosci, zwracanej przez nie. Naturalnie
moze by¢ nim kazdy typ, ktéry mégiby rowniez wystepowac w deklaracji zmiennej: od
typow wbudowanych, poprzez wskazniki, referencje, az do definiowanych przez
uzytkownika typow wyliczeniowych, klas czy struktur (lecz nie tablic).

Wskazniki 313

Specjalng role petni tutaj typ void (‘pustka’), ktory jest synonimem ‘niczego’. Nie mozna
wprawdzie stworzy¢ zmiennych nalezacych do tego typu, jednak mozliwe jest uczynienie
go typem zwracanym przez funkcje. Taka funkcjg bedzie zatem ,,zwracac nic”, czyli po
prostu nic nie zwraca¢; mozna jg wiec nazwac procedura.

Instrukcja czy wyrazenie

Od kwestii, czy funkcja zwraca jaka$ wartos¢ czy nie, zalezy to, jak mozemy nazwac jej
wywotanie: instrukcja lub tez wyrazeniem. Réznica pomiedzy tymi dwoma elementami
jezyka programowania jest do$¢ oczywista: instrukcja to polecenie wykonania jakichs
dziatan, zas wyrazenie - obliczenia pewnej wartosci; wartosc¢ ta jest potem
reprezentowana przez owo wyrazenie.

C++ po raz kolejny raczy nas tu niespodzianka. Otéz w tym jezyku niemal wszystko
jest wyrazeniem - nawet taka wybitnie ,instrukcyjna” dziatalno$¢ jak choc¢by
przypisanie. Rzadko jednak uzywamy jej w takim charakterze, zas$ o wiele czesciej jako
zwyklg instrukcje i jest to wowczas catkowicie poprawne.

Wyrazenie moze by¢ w programowaniu uzyte jako instrukcja, natomiast instrukcja nie
moze by¢ uzyta jako wyrazenie.

Dla wyrazenia wystepujacego w roli instrukcji jest wprawdzie obliczana jego wartos¢, ale
nie zostaje potem do niczego wykorzystana. To raczej typowa sytuacja i chociaz moze
brzmi niepokojaco, wiekszos¢ kompilatoréw nigdy o niej nie ostrzega i trudno poczytywac
to za ich beztroske.

Pedantyczni programisci stosujg jednak niecodzienny zabieg rzutowania na typ void dla
wartosci zwrdconej przez funkcje uzyta w charakterze instrukcji. Nie jest to rzecz jasna
konieczne, ale niektérzy twierdza, iz mozna w ten sposéb unikac nieporozumien.

Przeciwny przypadek: kiedy staramy sie umiesci¢ wywotanie procedury (niezwracajgcej
zadnej wartosci) wewnatrz normalnego wyrazenia, jest juz w oczywisty sposob nie do
przyjecia. Takie wywofanie nie reprezentuje bowiem zadnej wartosci, ktéra mogtaby by¢
uzyta w obliczeniach. Mozna to réwniez interpretowac jako niezgodnosc¢ typow, poniewaz
void jako typ pusty jest niekompatybilny z zadnym innym typem danych.

Widzimy zatem, ze kwestia zwracania lub niezwracania przez funkcje wartosci oraz jej
rodzaju jest nierzadko bardzo wazna.

Konwencja wywotania

Troche trudno w to uwierzy¢, ale podanie (zdawatoby sie) wszystkiego, co mozna
powiedzie¢ o danej funkcji: jej parametréow, wartosci przezen zwracanej, nawet nazwy -
nie wystarczy kompilatorowi do jej poprawnego wywotania. Bedzie on aczkolwiek
wiedziat, co musi zrobi¢, ale nikt mu nie powie, jak ma to zrobic.

Coz to znaczy?... Celem wyjasnienia porownajmy catg sytuacje do telefonowania. Gdy
mianowicie chcemy zadzwonic¢ pod konkretny numer telefonu, mamy wiele mozliwych
drég uczynienia tego. Mozemy zwyczajnie pdjs¢ do drugiego pokoju, podniesc¢ stuchawke
stacjonarnego aparatu i wystuka¢ odpowiedni numer. Mozemy tez siegnac po telefon
komorkowy i uzy¢ go, wybierajac na przyktad wtasciwg pozycje z jego ksigzki adresowej.
Teoretycznie mozemy tez wybrac sie do najblizszej budki telefonicznej i skorzystaé z
zainstalowanego tam aparatu. Wreszcie, mozliwe jest wykorzystanie modemu
umieszczonego w komputerze i odpowiedniego oprogramowania albo tez dowolnej formy
dostepu do globalnej sieci oraz protokotu VoIP (Voice over Internet Protocol).
Technicznych mozliwosci mamy wiec mndstwo i zazwyczaj wybieramy te, ktora jest nam
w aktualnej chwili najwygodniejsza. Zwykle tez osoba po drugiej stronie linii nie odczuwa
przy tym zadnej réznicy.

314 Podstawy programowania

Podobnie rzecz ma sie z wywotywaniem funkcji. Znajac jej miejsce docelowe (adres
funkcji w pamieci) oraz ewentualne dane do przekazania jej w parametrach, mozliwe jest
zastosowanie kilku drég osiggniecia celu. Nazywamy je konwencjami wywotania
funkcji.

Konwencja wywotania (ang. calling convention) to okreslony sposéb wywotywania
funkcji, precyzujacy przede wszystkim kolejnos$¢ przekazywania jej parametrow.

Dziwisz sie zapewne, dlaczego dopiero teraz mowimy o tym aspekcie funkcji, skoro jasno
wida¢, iz jest on nieodzowny dla ich dziatania. Przyczyna jest prosta. Wszystkie funkcje,
jakie samodzielnie wpiszemy do kodu i dla ktérych nie okreslimy konwencji wywotania,
posiadajg domysiny jej wariant, wiasciwy dla jezyka C++. Jezeli zas chodzi o funkcje
biblioteczne, to ich prototypy zawarte w plikach nagléwkowych zawierajg informacje o
uzywanej konwencji. Pamietajmy, ze korzysta z nich gtdéwnie sam kompilator, gdyz w
C++ wywotanie funkcji wyglada skltadniowo zawsze tak samo, niezaleznie od jej
konwencji. Jezeli jednak uzywamy funkcji do innych celédw niz tylko prostego
przywotywania (a wiec stosujemy choc¢by wskazniki na funkcje), wtedy wiedza o
konwencjach wywofania staje sie potrzebna takze i dla nas.

O czym mowi konwencja wywofania?

Jak juz wspomniatem, konwencja wywotania determinuje gtéwnie przekazywanie
parametrow aktualnych dla funkcji, by mogta ona uzywac ich w swoim kodzie.
Obejmuje to miejsce w pamieci, w ktdrym sg one tymczasowo przechowywane oraz
porzadek, w jakim sg w tym miejscu kolejno umieszczane.

Podstawowym rejonem pamieci operacyjnej, uzywanym jako posrednik w wywotaniach
funkcji, jest stos. Dostep do tego obszaru odbywa sie w dos$¢ osobliwy sposéb, ktéry
znajdujq zresztg odzwierciedlenie w jego nazwie. Stos charakteryzuje sie bowiem tym, ze
gdy potozymy na nim po kolei kilka elementéw, wtedy mamy bezposredni dostep jedynie
do tego ostatniego, potozonego najpézniej (i najwyzej). Jezeli zas chcemy dostac sie do
obiektu znajdujacego sie na samym dole, wéwczas musimy zdja¢ po kolei wszystkie
pozostate elementy, umieszczone na stosie pézniej. Czynimy to wiec w odwrotnej
kolejnosci niz nastepowato ich odktadanie na stos.

Dobrg przyktadem stosu moze byc¢ hatda ksigzek, pietrzaca sie na twoim biurku ;D

Jesli zatem wywotujgcy funkcje (ang. caller) umiesci na stosie jej parametry w pewnym
porzadku (co zreszta czyni), to sama funkcja (ang. callee - wywotywana albo routine -
podprogram) musi je pozyskac¢ w kolejnosci odwrotnej, aby je wiasciwie zinterpretowac.
Obie strony korzystajg przy tym z informacji o konwencji wywotania, lecz w opisach
~katalogowych” poszczegdélnych konwencji podaje sie wytacznie porzadek stosowany
przez wywotujacego, a wiec tylko kolejno$é odkladania parametréw na stos.
Kolejnos¢ ich podejmowania z niego jest przeciez dokfadnie odwrotna.

Nie mysl jednak, ze kompilatory dokonujg jakichs$ ztozonych permutacji parametréw
funkcji podczas ich wywotywania. Tak naprawde istniejg jedynie dwa porzadki, ktére
mogaq by¢ kanwg dla konwencji i stosowac sie dla kazdej funkcji bez wyjatku.

Mozna mianowicie podawac parametry wedle ich deklaracji w prototypie funkcji, czyli od
lewej do prawej strony. Wowczas to wywotujacy jest w uprzywilejowanej pozycji, gdyz
uzywa bardziej naturalnej kolejnosci; sama funkcja musi uzy¢ odwrotnej. Drugi wariant
to odkfadanie parametréow na stos w odwrotnej kolejnosci niz w deklaracji funkcji; wtedy
to funkcja jest w wygodniejszej sytuacii.

Oprocz stosu do przekazywania parametréw mozna tez uzywac rejestrow procesora, a
doktadniej jego czterech rejestrow uniwersalnych. Im wiecej parametrow zostanie tam
umieszczonych, tym szybsze powinno by¢ (przynajmniej w teorii) wywotanie funkcji.

Wskazniki 315

Typowe konwencje wywoftania

Gdyby kazdy programista ustalat wtasne konwencje wywotania funkcji (co jest
teoretycznie mozliwe), to oczywiscie natychmiast powstatby totalny rozgardiasz w tej
materii. Koniecznos¢ uwzgledniania upodoban innych koderéw bytaby z pewnoscig
niezwykle frustrujaca.

Za sprawg jezykdéw wysokiego poziomu nie ma na szczescie az tak wielkich problemoéw z
konwencjami wywofania. Jedynie korzystajac z kodu napisanego w innym jezyku trzeba
je uwzgledniaé. W zasadzie wiec zdarza sie to dos¢ czesto, ale w praktyce caty wysitek
witozony w zgodnos$¢ z konwencjami ogranicza sie co najwyzej do dodania
odpowiedniego stowa kluczowego do prototypu funkcji - w miejsce, ktére oznaczytem w
jego skfadni jako konwencja wywoania. Czesto nawet i to nie jest konieczne, jako ze
prototypy funkcji oferowanych przez przerdzne biblioteki sg umieszczane w ich plikach
nagtéwkowych, zas zadanie programisty-uzytkownika ogranicza sie jedynie do wigczenia
tychze nagtéwkow do wiasnego kodu.

Kompilator wykonuje zatem sporg czes¢ pracy za nas. Warto jednak przynajmniej znac te
najczesciej wykorzystywane konwencje wywofania, a nie jest ich wcale az tak duzo.
Ponizsza lista przedstawia je wszystkie:
> cdecl - skrét od C declaration (‘deklaracja C').. Zgodnie z nazwa jest to domysina
konwencja wywotania w jezykach C i C++. W Visual C++ mozna jg jednak jawnie
okresli¢ poprzez stowo kluczowe cdecl. Parametry sq w tej konwencji
przekazywane na stos w kolejnosci od prawej do lewej, czyli odwrotnie niz sg
zapisane w deklaracji funkcji
» stdcall - skrét od Standard Call (‘standardowe wywotanie’). Jest to konwencja
zblizona do cdecl/, postuguje sie na przyktad tym samym porzadkiem odktadania
parametrow na stos. To jednoczesnie niepisany standard przy pisaniu kodu, ktéry
w skompilowanej formie bedzie uzywany przez innych. Korzysta z niego wiec
chociazby system Windows w swych funkcjach API.
W Visual C++ konwencji tej odpowiada stowo stdcall
> fastcall (‘szybkie wywotanie’) jest, jak nazwa wskazuje, zorientowany na szybkos¢
dziatania. Dlatego tez w miare mozliwosci uzywa rejestréw procesora do
przekazywania parametréw funkcji.
Visual C++ obstuguje ta konwencje poprzez stdwko fastcall
> pascal budzi stuszne skojarzenia z popularnym ongis jezykiem programowania.
Konwencja ta byta w nim wtedy intensywnie wykorzystywana, lecz dzisiaj jest juz
przestarzata i coraz mniej kompilatoréw (wszelkich jezykéw) wspiera jg
» thiscall to specjalna konwencja wywotywania metod obiektéw w jezyku C++.
Funkcje wywotywane z jej uzyciem otrzymujq dodatkowy parametr, bedacy
wskaznikiem na obiekt danej klasy®*. Nie wystepuje on na liscie parametréow w
deklaracji metody, ale jest dostepny poprzez stowo kluczowe this. Oprécz tej
szczegodlnej wiasciwosci thiscall jest identyczna z stdcall.
Ze wzgledu na specyficzny cel istnienia tej konwencji, nie ma mozliwosci
zadeklarowania zwykiej funkcji, ktéra by jej uzywata. W Visual C++ nie
odpowiada jej wiec zadne stowo kluczowe

A zatem dotychczas (nieswiadomie!) uzywalismy tylko dwdch konwencji: cdec/ dla
zwyktych funkcji oraz thiscall dla metod obiektéow. Kiedy zaczniemy nauke
programowania aplikacji dla Windows, wtedy ten wachlarz zostanie poszerzony. W
kazdym przypadku sktadnia wywotania funkcji w C++ bedzie jednak identyczna.

%4 Jest on umieszczany w jednym z rejestréw procesora.

316 Podstawy programowania

Nazwa funkcji

To zadziwiajace, ze chyba najwazniejsza dla programisty cecha funkcji, czyli jej nazwa,
jest niemal zupefnie nieistotna dla dziatajacej aplikacji!... Jak juz bowiem moéwitem,
»Widzi” ona swoje funkcje wytgcznie poprzez ich adresy w pamieci i przy pomocy tych
adreséw ewentualnie wywotuje owe funkcje.

Mozna dywagowa¢, czy to dowdd na catkowity brak skrzyzowania miedzy drogami
cztowieka i maszyny, ale fakt pozostaje faktem, zas jego przyczyna jest prozaicznie
pragmatyczna. Chodzi tu po prostu o wydajnos¢: skoro funkcje programu sg podczas
jego uruchamiania umieszczane w pamieci operacyjnej (mozna tadnie powiedziec:
mapowane), to dlaczego system operacyjny nie miatby uzywac¢ wygenerowanych przy
okazji adreséw, by w razie potrzeby rzeczone funkcje wywotywac? To przeciez proste i
szybkie rozwigzanie, naturalne dla komputera i niewymagajgce zadnego wysitku ze
strony programisty. A zatem jest ono po prostu dobre :)

Rozterki kompilatora i linkera

Jedynie w czasie kompilacji kodu nazwy funkcji majg jakie$ znaczenie. Kompilator musi
bowiem zapewni¢ ich unikalnosé w skali catego projektu, tj. wszystkich jego modutdw.
Nie jest to wcale proste, jezeli przypomnimy sobie o funkcjach przecigzanych, ktore z
zatozenia majq te same nazwy. Poza tym funkcje o tej samej nazwie moga tez
wystepowac w réznych zakresach: jedna moze by¢ na przykiad metodg jakiejs klasy, zas
druga zwyczajng funkcja globalna.

Kompilator rozwigzuje te problemy, stosujac tak zwane dekorowanie nazw.
Wykorzystuje po prostu dodatkowe informacje o funkcji (jej prototyp oraz zakres, w
ktérym zostata zadeklarowana), by wygenerowad jej niepowtarzalng, wewnetrzng nazwe.
Zawiera ona wiele réznych dziwnych znakéw w rodzaju @, ~, ! czy , dlatego wtasnie jest
okreslana jako nazwa dekorowana.

Wywotania z uzyciem takich nazw sgq umieszczane w skompilowanych modutach. Dzieki
temu linker moze bez przeszkod potaczy¢ je wszystkie w jeden plik wykonywalny catego
programu.

Parametry funkcji

Ogromna wiekszos¢ funkcji nie moze oby¢ sie bez dodatkowych danych, przekazywanych
im przy wywotywaniu. Pierwsze strukturalne jezyki programowania nie oferowaty
zadnego wspomagania w tym zakresie i skazywaty na korzystanie wytgcznie ze
zmiennych globalnych. Bardziej nowoczesne produkty pozwalajg jednak na deklaracje
parametréow funkcji, co tez niejednokrotnie czynimy w praktyce.

Aby wywotac funkcje z parametrami, kompilator musi zna¢ ich liczbe oraz typ kazdego z
nich. Informacje te podajemy w prototypie funkcji, zas w jej kodzie zwykle nadajemy
takze nazwy poszczegdélnym parametrom, by madc z nich pdzniej korzystac.

Parametry petnig role zmiennych lokalnych w bloku funkcji - z tg jednak réznicg, ze ich
poczatkowe wartosci pochodzg z zewnatrz, od kodu wywotujacego funkcje. Na tym
wszakze konczg sie wszelkie odstepstwa, poniewaz parametréw mozemy uzywac
identycznie, jak gdyby byto one zwyktymi zmiennymi odpowiednich typow. Po
zakonczeniu wykonywania funkcji sg one niszczone, nie pozostawiajac zadnego sladu po
ewentualnych operacjach, ktére mogty by¢ na nich dokonywane kodzie funkcji.
Whnioskujemy stad, ze:

Parametry funkcji s w C++ przekazywane przez wartosci.

Regufa ta dotyczy wszystkich typéw parametrow, mimo ze w przypadku wskaznikéw
oraz referencji jest ona pozornie tamania. To jednak tylko ztudzenie. W rzeczywistosci
takze i tutaj do funkcji sg przekazywane wytacznie wartosci - tyle tylko, ze owymi

Wskazniki 317

wartosciami sg tu adresy odpowiednich komdrek w pamieci. Za ich posrednictwem
mozemy wiec uzyskac dostep do rzeczonych komorek, zawierajgcych na przyktad jakies
zmienne. Gdy dodatkowo korzystamy z referencji, wtedy nie wymaga to nawet specjalnej
skfadni. Trzeba by¢ jednak swiadomym, Ze zjawiska te dotyczg samej natury wskaznikow
czy tez referencji, nie za§ parametrow funkcji! Dla nich bowiem zawsze obowigzuje
przytoczona wyzej zasada przekazywania poprzez wartos¢.

Uzywanie wskaznikdw do funkcji

PrzypomnieliSmy sobie i uzupetniliSmy wszystkie niezbedne wiadomosci funkcjach,
konieczne do poznania i stosowania wskaznikow na nie. Teraz wiec mozemy juz przejsc¢
do wiasciwej czesci tematu.

Typy wskaznikdow do funkcji

Jakkolwiek wskazniki sg przede wszystkim adresami miejsc w pamieci operacyjnej,
niemal wszystkie jezyki programowania oraz ich kompilatory wprowadzajgq pewne
dodatkowe informacje, zwigzane ze wskaznikami. Chodzi tu gtéwnie o typ wskaznika.
W przypadku wskaznikéw na zmienne byt on pochodng typu zmiennej, na ktérg dany
wskaznik pokazywat. Podobne pojecie istnieje takze dla wskaznikéw do funkcji - w tym
wypadku mozemy wiec méwic o typie funkcji, na ktore wskazuje okreslony wskaznik.

WtasnosSci wyrdzniajgce funkcje

Co jednak mamy rozumie¢ pod pojeciem ,typ funkcji”? W jaki sposob funkcja moze w
ogole by¢ zakwalifikowana do jakiego$ rodzaju?...

W odpowiedzi moze nam znowu pomoc analogia do zmiennych. Otdz typ zmiennej
okreslamy w momencie jej deklaracji - jest nim w zasadzie cata ta deklaracja z
wylaczeniem nazwy. Okresla ona wszystkie cechy deklarowanej zmiennej, ze
szczegblnym uwzglednieniem rodzaju informacji, jakie bedzie ona przechowywac.
Typu funkcji mozemy zatem réwniez szukac¢ w jej deklaracji, czyli prototypie. Kiedy
bowiem wylaczymy z niego nazwe funkcji, wtedy pozostate sktadniki wyznaczg nam jej
typ. Beda to wiec kolejno:

> typ wartosci zwracanej przez funkcje

» konwencja wywotania funkcji

» parametry, ktdére funkcja przyjmuje

Wraz z adresem danej funkcji stanowi to wystarczajacy zbior informacji dla kompilatora,
na podstawie ktorych moze on dang funkcje wywotad.

Typ wskaznika do funkcji

Posiadajgc wyliczone wyzej wiadomosci na temat funkcji, mozemy juz bez problemu
zadeklarowac¢ wtasciwy wskaznik na nig. Typ tego wskaznika bedzie wiec oparty na typie
funkcji - to samo zjawisko miato miejsce takze dla zmiennych.

Typ wskaznika na funkcje okresla typ zwracanej wartosci, konwencje wywotania oraz
liste parametrow funkcji, na ktére wskaznik moze pokazywac i ktére moga byc¢ za jego
posrednictwem wywotywane.

Wiedzac to, mozemy przystapi¢ do poznania sposobu oraz sktadni, poprzez ktére jezyk
C++ realizuje mechanizm wskaznikéw do funkcji.

318 Podstawy programowania

Wskazniki do funkcji w C++

Deklarujac wskaznik do funkcji, musimy podac jego typ, czyli te trzy cechy funkcji, o
ktérych juz kilka razy méwitem. Jednoczes$nie kompilator powinien wiedzie¢, ze ma do
czynienia ze wskaznikiem, a nie z funkcjg jako taka. Oba te wymagania skutkujg
specjalng skfadnig deklaracji wskaznikéw na funkcje w C++.

Zacznijmy zatem od najprostszego przyktadu. Oto deklaracja wskaznika do funkcji, ktéra
nie przyjmuje zadnych parametréw i nie zwraca tez zadnego rezultatu®®:

void (*pfnWskaznik) ();

Jestesmy teraz wiadni uzyc¢ tego wskaznika i wywotac za jego posrednictwem funkcje o
odpowiednim nagtéwku (czyli nic niebiorgcg oraz nic niezwracajacqy). Moze to wygladac
chociazby tak:

#include <iostream>

// funkcja, ktdéra bedziemy wywoirywac
void Funkcja ()

{

std::cout << "Zostalam wywolana!";

}

void main ()

{

// deklaracja wskazZnika na powyzsza funkcje
void (*pfnWskaznik) ();

// przypisanie funkcji do wskazZnika
pfnWskaznik = &Funkcja;

// wywolanie funkcji poprzez ten wskaznik
(*pfnWskaznik) () ;
}

Ponownie, tak samo jak w przypadku wskaznikow na zmienne, moglibysmy wywotac
naszg funkcje bezposrednio. Pamietasz jednakze o korzysciach, jakie daje wykorzystanie
wskaznikow - wiekszos¢ z nich dotyczy takze wskaznikdéw do funkcji. Ich uzycie jest wiec
czesto bardzo przydatne.

Omowmy zatem po kolei wszystkie aspekty wykorzystania wskaznikow do funkcji w C++.

Od funkcji do wskaznika na nigq

Deklaracja wskaznika do funkcji jest w C++ dos¢ nietypowa czynnoscig. Nie przypomina
bowiem znanej nam doskonale deklaracji w postaci:

typ zmiennej nazwa zmiennej;
Zamiast tego nazwa wskaznika jest niejako wtracona w typ funkcji, co w pierwszej
chwili moze by¢ nieco mylace. tatwo jednak mozna zrozumiec¢ takg forme deklaracji,
jezeli poréownamy jg z prototypem funkcji, np.:

float Funkcja(int);

9 Posiada tez domys$ing w C++ konwencje wywotania, czyli cdecl. Pdzniej zobaczymy przyktady wskaznikéw do
funkcji, wykorzystujacych inne konwencje.

Wskazniki 319

Otdz odpowiadajacy mu wskaznik, ktory mogtby pokazywacé na zadeklarowang wyzej
funkcje Funkcja (), zostanie wprowadzony do kodu w ten sposdb:

float (*pfnWskaznik) (int);

Nietrudno zauwazy¢ réznice: zamiast nazwy funkcji, czyli Funkcja, mamy tutaj fraze

(*pfnWskaznik), gdzie pfnWskaznik jest oczywiscie nazwg zadeklarowanego wiasnie
wskaznika. Moze on pokazywac na funkcje przyjmujace jeden parametr typu int oraz
zwracajace wynik w postaci liczby typu float.

Ogdlnie zatem, dla kazdej funkcji o tak wygladajacym prototypie:
zwracany typ nazwa funkcji([parametryl);
deklaracja odpowiadajacego jej wskaznika jest bardzo podobna:

zwracany typ (*nazwa wskazZnika) ([parametryl);

Ogranicza sie wiec do niemal mechanicznej zmiany Scisle okreslonego fragmentu kodu.

Deklaracja wskaznika na funkcje o domyslinej konwencji wywotania wyglada tak, jak jej
prototyp, w ktérym nazwa funkcji zostala zastgpiona przez (*nazwa wskaznika).

Ta prosta zasada sprawdza sie w 99 procentach przypadkéw i bedziesz z niej stale
korzystat we wszystkich programach wykorzystujgcych mechanizm wskaznikéw do
funkcji.

Trzeba jeszcze podkresli¢ znaczenie nawiasow w deklaracji wskaznikow do funkcji. Maja,
one tutaj niebagatelng role sktadniowg, gdyz ich brak catkowicie zmienia sens catej
deklaracji. Gdybysmy wiec opuscili je:

void *pfnWskaznik () ; // a co to jest?
cata instrukcja zostataby zinterpretowana jako:

void* pfnWskaznik() ; // to prototyp funkcji, a nie wskaznik na niag!

i zamiast wskaznika do funkcji otrzymalibysmy funkcje zwracajaca wskaznik. Jest to
oczywiscie catkowicie niezgodne z naszg intencja.

Pamietaj zatem o poprawnym umieszczaniu nawiaséw w deklaracjach wskaznikéw do
funkcji.

Specjalna konwencja

Opisanego powyzej sposobu tworzenia deklaracji nie mozna niestety uzy¢ do wskaznikéw
do funkcji, ktore stosuja inng konwencje wywotania niz domysina (czyli cdecl) i zawierajq
odpowiednie stowo kluczowe w swoim nagléwku czy tez prototypie. W Visual C++ tymi
stowami sg cdecl, stdcall oraz fastcall.

Przyktad funkcji podpadajacej pod te warunki moze by¢ nastepujacy:

float _ fastcall Dodaj(float fA, float £fB) { return fA + £fB; }

Dodatkowe stowo miedzy zwracanym typem Oraz nazwa_funkcji catkowicie psuje nam
schemat deklaracji wskaznikéw. Wynik jego zastosowania zostatby bowiem odrzucony
przez kompilator:

320 Podstawy programowania

float _ fastcall (*pfnWskaznik) (float, float); // BLAD!

Dzieje sie tak, poniewaz gdy widzi on najpierw nazwe typu (float), a potem specyfikator
konwencji wywotania (_ fastcall), bezdyskusyjne interpretuje catg linijke jako
deklaracje funkcji. Nastepujaca potem niespodziewang sekwencje (*pfniiskaznik)
traktuje wiec jako btad skifadniowy.

By go unikng¢, musimy rozciagnaé nawiasy, w ktérych umieszczamy nazwe wskaznika
do funkcji i ,wzig¢ pod ich skrzydta” takze okreslenie konwencji wywotania. Dzieki temu
kompilator napotka otwierajacy nawias zaraz po nazwie zwracanego typu (float) i
zinterpretuje catos¢ jako deklaracje wskaznika do funkcji. Wyglada ona tak:

float (_fastcall *pfnWskaznik) (float, float); // OK

Ten, zdawatoby sie, szczegdt moze niekiedy stangé oscig w gardle w czasie kompilacji
programu. Wypadatoby wiec o nim pamietac.

Sktadnia deklaracji wskaznika do funkcji

Obecnie mozemy juz zobaczy¢ ogdlng postac deklaracji wskaznika do funkcji. Jezeli
uwaznie przestudiowates$ poprzednie akapity, to nie bedzie on dla ciebie zadng
niespodzianka. Przedstawia sie za$ nastepujgco:

zwracany typ ([konwencja wywotanial *nazwa wskazZnika) ([parametryl);

Pasujacy do niego prototyp funkcji wyglada natomiast w ten sposéb:

zwracany typ [konwencja wywoianial nazwa funkcji([parametryl) :;

Z obu tych wzorcéw widaé, ze deklaracja wskaznika do funkcji na podstawie jej prototypu
oznacza wykonanie jedynie trzech prostych krokdéw:

> Zaﬂﬂany.nazwy_funkcji Na nazwe wskazZnika

» dodania * (gwiazdki) przed nazwa wskaznika

» ujecia w pare nawiasow ewentualng konwencje wywolania Oraz nazwe wskaznika

Nie jest to wiec tak trudna operacja, jak sie niekiedy powszechnie sadzi.

WskazZniki do funkcji w akcji

Zadeklarowanie wskaznika to naturalnie tylko poczatek jego wykorzystania w programie.
Aby byt on uzyteczny, powinnismy przypisa¢ mu adres jakiej$ funkcji i skorzystac¢ z niego
celem wywotania tejze funkcji. Przypatrzmy sie blizej obu tym czynnosciom.

W tym celu zdefiniujmy sobie nastepujaca funkcje:
int PobierzLiczbe ()
{

int nLiczba;

std::cout << "Podaj liczbe: ";
std::cin >> nLiczba;

return nLiczba;

}

Wiasciwy wskaznik, mogacy pokazywac na te funkcje, deklarujemy w ten oto (teraz juz,
mam nadzieje, oczywisty) sposdb:

Wskazniki 321

int (*pfnWskaznik) ();

Jak kazdy wskaznik, zaraz po zadeklarowaniu nie pokazuje on na nic konkretnego - w
tym przypadku na zadng konkretng funkcje. Musimy dopiero przypisa¢ mu adres naszej
przygotowanej funkcji pobierzLiczbe (). Czynimy to wiec w nastepujacej zaraz linijce
kodu:

pfnWskaznik = &PobierzLiczbe;

Zwro¢my uwage, ze nazwa funkcji PobierzLiczbe () wystepuje tutaj bez, wydawatoby
sie - nieodtacznych, nawiasow okragtych. Ich pojawienie sie oznaczatoby bowiem
wywotanie tej funkcji, a my przeciez tego nie chcemy (przynajmniej na razie).
Pragniemy tylko pobra¢ jej adres w pamieci, by madc jednoczesnie przypisa¢ go do
swojego wskaznika. Wykorzystujemy do tego znany juz operator s.

Ale... niespodzianka! Ow operator tak naprawde nie jest konieczny. Ten sam efekt
osiggniemy réwniez i bez niego:

pfnWskaznik = PobierzLiczbe;

Po prostu juz sam brak nawiaséw okragtych (), wyrdzniajacych wywotanie funkcji, jest
wystarczajgca wskazowka mowigca kompilatorowi, iz chcemy pobrac adres funkcji o
danej nazwie, nie zas - wywotywac jg. Dodatkowy operator, chociaz dozwolony, nie jest
wiec niezbedny - wystarczy sama nazwa funkcji.

Czy nie mamy w zwigzku z tym uczucia deja vu? Identyczng sytuacje mieliSmy przeciez
przy tablicach i wskaznikach na nie. A zatem zasada, ktérg tam poznaliSmy, w
poprawionej formie stosuje sie réwniez do funkcji:

Nazwa funkcji jest takze wskaznikiem do niej.

Nie musimy wiec korzystac¢ z operatora &, by pobra¢ adres funkcji.

W tym miejscu mamy juz wskaznik pfnWskaznik pokazujacy na naszg funkcje
PobierzLiczbe (). Ostatnim aktem bedzie wywofanie jej za posrednictwem tegoz
wskaznika, co czynimy ponizszym wierszem kodu:

std::cout << (*pfnWskaznik) ();

Liczbe otrzymang z funkcji wypisujemy na ekranie, ale najpierw wywofujemy samag
funkcje, korzystajac miedzy innymi z nastepnego znajomego operatora - dereferencji,
czyli *.

Po raz kolejny jednak nie jest to niezbedne! Wywotanie funkcji przy pomocy wskaznika
mozna z rownym powodzeniem zapisac tez w takiej formie:

std::cout << pfnWskaznik();

Jest to druga konsekwencja faktu, iz funkcja jest reprezentowana w kodzie poprzez swdj
wskaznik. Taki sam fenomen obserwowaliSmy i dla tablic.

Przyktad wykorzystania wskaznikow do funkcji

Wskazniki do funkcji umozliwiajg wykonywanie ogdlnych operacji przy uzyciu funkcji,
ktérych implementacja nie musi by¢ im znana. Wazne jest, aby miaty one nagtdwek
zgodny z typem wskaznika.

Prawie podrecznikowym przykfadem moze by¢ tu poszukiwanie miejsc zerowych funkcji
matematycznej. Procedura takiego poszukiwania jest zawsze identyczna, rdwniez same

322 Podstawy programowania

funkcje maja nieodmiennie te sama charakterystyke (pobieraja liczbe rzeczywista i taka
tez liczbe zwracajg w wyniku). Mozemy wiec zaimplementowac odpowiedni algorytm

(tutaj jest to algorytm bisekcji®®) w sposéb ogélny - postuguijac sie wskaznikami do
funkcji.

Przykfadowy program wykorzystujacy te technike moze przedstawiac sie nastepujgco:
// Zeros - szukanie miejsc zerowych funkcji

// granica toleracji
const double EPSILON = 0.0001;

// rozpietosé badanego przedziatu
const double PRZEDZIAL = 100;

// wspbiczynniki funkcji f(x) = k * log a(x - p) + g
double g fK, g fA, g fP, g fQ;

// badana funkcja
double f (double x) { return g fK * (log(x - g fP) / log(g fA)) + g fQ; }

// algorytm szukajacy miejsca zerowego danej funkcji w danym przedziale

bool SzukajMiejscaZerowego (double fX1, double fX2, // przedzial
double (*pfnF) (double), // funkcja
double* pfZero) // wynik

// najpierw badamy konhce podanego przedziatu
if (fabs (pfnF (fX1)) < EPSILON)
{
*pfZero = £X1;
return true;
}
else if (fabs(pfnF (fX2)) < EPSILON)
{
*pfZero = £fX2;
return true;

}

// dalej sprawdzamy, czy funkcja na koncach obu przedziatdw
// przyjmuje wartoséci rdznych znakdw

// jezeli nie, to nie ma miejsc zerowych

if ((pfnF (£fX1)) * (pfnF(fX2)) > 0) return false;

// nastepnie dzielimy przedzial na pdtr i sprawdzamy, czy w ten sposdb
// nie otrzymalismy pierwiastka
double fXp = (fX1 + £fX2) / 2;
if (fabs (pfnF (fXp)) < EPSILON)
{
*pfZero = fXp;
return true;

}

// Jesli otrzymany przedzial jest wystarczajaco maty, to rozwiagzaniem
// Jjest jego punkt sSrodkowy
if (fabs (fX2 - £X1) < EPSILON)

% Oprécz niego popularna jest réwniez metoda Newtona, ale wymaga ona znajomosci réwniez pierwszej
pochodnej funkcji.

Wskazniki 323

*pfZero = £fXp;
return true;

}

// Jjezeli nadal nic z tego, to wybieramy te poitdwke przedziatu,
// w ktdérej zmienia sie znak funkcji
if ((pfnF (fX1)) * (pfnF(fXp)) < 0)
fX2 = fXp;
else
fX1 = fXp;

// przeszukujemy ten przedzial tym samym algorytmem
return SzukajMiejscaZerowego (fX1l, fX2, pfnF, pfZero);

// funkcja main ()
void main ()

{

// (pomijam pobranie wspdiczynnikdéw k, a, p i g dla funkcji)

/* znalezienie 1 wyswietlenie miejsca zerowego */

// zmienna na owo miejsce
double fZero;

// szukamy miejsca 1 je wyswietlamy
std::cout << std::endl;

if (SzukajMiejscaZerowego (g fP > -PRZEDZIAL ? g fP : -PRZEDZIAL,
PRZEDZIAL, f, &fZero))
std::cout << "f(x) = 0 <=> x = " << fZero << std::endl;
else
std::cout << "Nie znaleziono miejsca zerowego.'" << std::endl;

// czekamy na dowolny klawisz
getch () ;
}

Aplikacja ta wyszukuje miejsca zerowe funkcji okreslonej wzorem:
f(x)=klog,(x—p)+q

Najpierw zadaje wiec uzytkownikowi pytania co do wartosci wspotczynnikow k, a, pigw
tym réwnaniu, a nastepnie pogrgzg sie w obliczeniach, by ostatecznie wyswietli¢c wynik.

Niniejszy program jest przyktadem zastosowania wskaznikéw na funkcje, a nie
rozwigzywania rownan. Jesli chcemy wyliczy¢ miejsce zerowe powyzej funkcji, to
znacznie lepiej bedzie po prostu przeksztatci¢ jg, wyznaczajac x:

x =€exp, (—%j+p

324 Podstawy programowania

POSZUKIWANIE MIEJSC ZEROWYCH

Program pos=ukuje miejsca =erowego funkcji
o wzorege fix» = k = log_atx — p>» + g
w przedziale <-160@: 188>

i wspolczynnik k- 14
j wspolczynnik a:= 3
i wzpolczynnik p:- ¢
i wspolczynnik g= -6

8.68133

Screen 43. Program poszukujacy miejsc zerowych funkcji

Oczywiscie w niniejszym programie najbardziej interesujgca bedzie dla nas funkcja
SzukajMiejscaZerowego () - gtdwnie dlatego, ze wykorzystany w niej zostat mechanizm
wskaznikow na funkcje. Ewentualnie mozesz tez zainteresowac sie samym algorytmem;
jego dziatanie catkiem dobrze opisujg obfite komentarze :)

Gdzie jest wiec 6w stawetny wskaznik do funkcji?... Znalez¢ go mozemy w nagtéwku
SzukajMiejscaZerowego () :

bool SzukajMiejscaZerowego (double fX1, double £fX2,
double (*pfnF) (double),
double* pfZero)

To nie pomytka - wskaznik do funkcji (bioragcej jeden parametr double i zwracajgcej
takze typ double) jest tutaj argumentem innej funkcji. Nie ma ku temu zadnych
przeciwwskazan, moze poza dos¢ dziwnym wygladem nagtdwka takiej funkcji. W naszym
przypadku, gdzie funkcja jest swego rodzaju ,danymi”, na ktorych wykonujemy operacje
(szukanie miejsca zerowego), takie zastosowanie wskaznika do funkcji jest jak
najbardziej uzasadnione.

Pierwsze dwa parametry funkcji poszukujacej sq natomiast liczbami okreslajacymi
przedziat poszukiwan pierwiastka. Ostatni parametr to z kolei wskaznik na zmienng typu
double, poprzez ktorg zwrdcony zostanie ewentualny wynik. Ewentualny, gdyz o
powodzeniu lub niepowodzeniu zadania informuje ,regularny” rezultat funkcji, bedacy
typu bool.

Naszg funkcje szukajaca wywotujemy w programie w nastepujacy sposéb:

double fZero;

if (SzukajMiejscaZerowego (g fP > -PRZEDZIAL ? g fP : -PRZEDZIAL,
PRZEDZIAL, f, &fZero))
std::cout << "f(x) = 0 <=> x = " << fZero << std::endl;
else
std::cout << "Nie znaleziono miejsca zerowego.'" << std::endl;

Przekazujemy jej tutaj az dwa wskazniki jako ostatnie parametry. Trzeci to, jak wiemy,
wskaznik na funkcje - w tej roli wystepuje tutaj adres funkcji £ (), ktérg badamy w
poszukiwaniu miejsc zerowych. Aby przekazac jej adres, piszemy po prostu jej nazwe bez
nawiasdw okragtych - tak jak sie tego nauczyliSmy niedawno.

Czwarty parametr to z kolei zwykty wskaznik na zmienng typu double i do tej roli
wystawiamy adres specjalnie przygotowanej zmiennej. Po zakonczonej powodzeniem
operacji poszukiwania wyswietlamy jej wartos¢ poprzez strumien wyjscia.

Jezeli zas chodzi o dwa pierwsze parametry, to okreslajg one obszar poszukiwan,
wyznaczony gtéwnie poprzez statg PRzZEDZIAL. Dolna granica musi by¢ dodatkowo

Wskazniki 325

~Pprzycieta” z dziedzing funkcji - stad tez operator warunkowy 2 : i porownanie granicy
przedziatu ze wspdétczynnikiem p.

Powiedzmy sobie jeszcze wyraznie, jaka jest praktyczna korzysc z zastosowania
wskaznikow do funkcji w tym programie, bo moze nie jest ona zbytnio widoczna. Otéz
majac wpisany algorytm poszukiwan miejsca zerowego w ogoélnej wersji, dziatajacy na
wskaznikach do funkcji zamiast bezposrednio na funkcjach, mozemy stosowac go do tylu
réznych funkcji, ile tylko sobie zazyczymy. Nie wymaga to wiecej wysitku niz jedynie
zdefiniowania nowej funkcji do zbadania i przekazania wskaznika do niej jako parametru
do szukajMiejscaZerowego (). Uzyskujemy w ten sposdb wiekszg elastycznosé
programu.

Zastosowania

Poprawa elastycznosci nie jest jednak jedynym, ani nawet najwazniejszym
zastosowaniem wskaznikéw do funkcji. Tak naprawde stosuje sie je gléwnie w technice
programistycznej znanej jako funkcje zwrotne (ang. callback functions).

Dos¢ powiedzie¢, ze opierajg sie na niej wszystkie nowoczesne systemy operacyjne, z
Windows na czele. Umozliwia ona bowiem informowanie programow o zdarzeniach
zachodzacych w systemie (wywotanych na przyktad przez uzytkownika, jak klikniecie
myszka) i odpowiedniego reagowania na nie. Obecnie jest to najczestsza forma pisania
aplikacji, zwana programowaniem sterowanym zdarzeniami. Kiedy rozpoczniemy
tworzenie aplikacji dla Windows, takze bedziemy z niej nieustannie korzystac.

Xk k

I tak zakonczyliSmy nasze spotkanie ze wskaznikami do funkcji. Nie sq one moze tak
czesto wykorzystywane i przydatne jak wskazniki na zmienne, ale, jak mogtes
przeczytac, jeszcze wiele razy ustyszysz o nich i wykorzystasz je w przysziosci. Warto
wiec byto dobrze poznac ich sktadnie (fakt, jest nieco zagmatwana) oraz sposoby uzycia.

Podsumowanie

Wskazniki sg czesto uwazane za jedng z natrudniejszych koncepcji programistycznych w
ogole. Wielu catkiem dobrych koderow ma niekiedy wieksze lub mniejsze ktopoty w ich
stosowaniu.

Celowo nie wspomniatem o tych opiniach, abys mdgt najpierw samodzielnie przekonac sie
o tym, czy zagadnienie to jest faktycznie takie skomplikowane. Dotozytem przy tym
wszelkich staran, by uczynic je chociaz troche prostszym do zrozumienia. Jednoczesnie
chciatem jednak, aby zawarty tu opis wskaznikéw byt jak najbardziej doktadny i
szczegdétowy. Wiem, ze pogodzenie tych dwdch dazen jest prawie niemozliwe, ale mam
nadzieje, ze wypracowatem w tym rozdziale w miare rozsadny kompromis.

Zaczatem wiec od przedstawienia garsci przydatnych informacji na temat samej pamieci
operacyjnej komputera. Podejrzewam, ze wiekszos$¢ czytelnikdw nawet i bez tego byta
wystarczajgco obeznana z tematem, ale przypomnien i uzupetnien nigdy dosc¢ :) Przy
okazji wprowadziliSmy sobie samo pojecie wskaznika.

Dalej zajelisSmy sie wskaznikami na zmienne, ich deklarowaniem i wykorzystaniem: do
wspomagania pracy z tablicami, przekazywania parametrow do funkcji czy wreszcie
dynamicznej alokacji pamieci. PoznaliSmy tez referencje.

Podrozdziat o wskaznikach na funkcje skfadat sie natomiast z poszerzenia wiadomosci o
samych funkcjach oraz wyczerpujgcego opisu stosowania wskaznikow na nie.

326 Podstawy programowania

Nieniejszy rozdziat jest jednoczes$nie ostatnim z czesci 1, stanowigcej podstawowy kurs
C++. Po nim przejdziemy (wreszcie ;D) do bardziej zaawansowanych zagadnien jezyka,
Biblioteki Standardowej, a pézniej Windows API i DirectX, a wreszcie do programowania
gier.

A zatem pierwszy duzy krok juz za nami, lecz nadal szykujemy sie do wielkiego skoku :)

Pytania i zadania

Tradycji musi stac sie zados$c¢: oto swieza porcja pytan dotyczacych tresci tego rozdziatu
oraz ¢wiczen do samodzielnego rozwigzania.

Pytania

Jakie sg trzy rodzaje pamieci wykorzystywanej przez komputer?

Na czym polega ptaski model adresowania pamieci operacyjnej?

Czym jest wskaznik?

Co to jest stos i sterta?

W jaki sposob deklarujemy w C++ wskazniki na zmienne?

Jak dziatajg operatory pobrania adresu i dereferencji?

Czym rozni sie wskaznik typu void* od innych?

Dlaczego tancuchy znakdéw w stylu C nazywamy napisami zakonczonymi zerem?
Dlaczego uzywanie wskaznikéw lub referencji jako parametréw funkcji moze
poprawi¢ wydajnos¢ programu?

10. W jaki sposob dynamicznie alokujemy zmienne, a w jaki tablice?

11. Co to jest wyciek pamieci?

12.Czym roznig sie referencje od wskaznikéw na zmienne?

13. Jakie podstawowe konwencje wywotywania funkcji sq obecnie w uzyciu?

14. (Trudne) Czy funkcja moze nie uzywac zadnej konwencji wywotania?

15. Jakie sg trzy cechy wyznaczajace typ funkcji i jednoczesnie typ wskaznika na nig?
16. Jak zadeklarowac wskaznik do funkcji o znanym prototypie?

CONOUNRAWNE

Cwiczenia
1. Przejrzyj przyktadowe kody z poprzednich rozdziatéw i znajdz instrukcje,
wykorzystujace wskazniki lub operatory wskaznikowe.
2. Zmodyfikuj nieco metode ZmienRozmiar () klasy CIintArray. Niech pozwala ona
takze na zmniejszenie rozmiaru tablicy.
3. Sprébuj napisa¢ podobng klase dla tablicy dwuwymiarowej.
(Trudne) Niech przechowuje ona elementy w ciggtym obszarze pamieci - tak, jak
robi to kompilator ze statycznymi tablicami dwuwymiarowymi.
4. Zadeklaruj wskaznik do funkcji:
1) pobierajacej jeden parametr typu int i zwracajacej wynik typu float
2) bioracej dwa parametry typu double i zZwracajacej tancuch std: :string
3) pobierajacej trzy parametry: jeden typu int, drugi typu inté64, a trzeci
typu std: :string i zwracajgcej wskaznik na typ int
4) (Trudniejsze) przyjmujacej jako parametr piecioelementowgq tablice liczb
typu unsigned i nic niezwracajacq
5) (Trudne) zwracajacej wartosc typu float i przyjmujacej jako parametr
wskaznik do funkcji bioracej dwa parametry typu int i nic niezwracajacej
6) (Trudne) pobierajacej tablice piecioelementowa typu short i zwracajacej
jedng liczbe typu int
7) (Bardzo trudne) biorgcej dwa parametry: jeden typu char, a drugi typu
int, i zwracajacej tablice 10 elementdéw typu double
Wskazowka: to nie tylko trudne, ale i podchwytliwe :)

Wskazniki

327

8)

(Ekstremalne) przyjmujacej jeden parametr typu std: :string oraz
zwracajacej w wyniku wskaznik do funkcji przyjmujacej dwa parametry
typu float i zwracajacej wynik typu bool

5. Okresl typy parametréw oraz typ wartosci zwracanej przez funkcje, na ktdre moze
pokazywac wskaznik o takiej deklaracji:

a)
b)
c)
d)
e)
f)
g)

int (*pfnWskaznik) (int);

float* (*pfnWskaznik) (const std::strings&);

bool (*pfnWskaznik) (void* const, int**, char);

const unsigned* const (*pfnWskaznik) (void);

(Trudne) void (*pfnWskaznik) (int (*) (bool), const char*);
(Trudne) int (*pfnWskaznik) (char[5], tmé&);

(Bardzo trudne) float (*pfnWskaznik (short, long, bool)) (int,
int);

