
1
PREPROCESOR

Gdy się nie wie, co się robi,

to dzieją się takie rzeczy,
że się nie wie, co się dzieje ;-).

znana prawda programistyczna

Poznawanie bardziej zaawansowanych cech języka C++ zaczniemy od czegoś, co
pochodzi jeszcze z czasów jego poprzednika, czyli C. Podobnie jak wskaźniki, preprocesor
nie pojawił się wraz z dwoma plusami w nazwie języka i programowaniem zorientowanym
obiektowo, lecz był obecny od jego samych początków.

W przypadku wskaźników trzeba jednak powiedzieć, że są one także i teraz niezbędne do
efektywnego i poprawnego konstruowania aplikacji. Natomiast o proceprocesorze
niewielu ma tak pochlebne zdanie: według sporej części programistów, stał się on prawie
zupełnie niepotrzebny wraz z wprowadzeniem do C++ takich elementów jak funkcje
inline oraz szablony. Poza tym uważa się powszechnie, że częste i intensywne używanie
tego narzędzia pogarsza czytelność kodu.
W tym rozdziale będę musiał odpowiedzieć jakoś na te opinie. Nie da się ukryć, że
niektóre z nich są słuszne: rzeczywiście, era świetności preprocesora jest już dawno za
nami. Zgadza się, nadmierne i nieuzasadnione wykorzystywanie tego mechanizmu może
przynieść więcej szkody niż pożytku. Tym bardziej jednak powinieneś wiedzieć jak
najwięcej na temat tego elementu języka, aby móc stosować go poprawnie. Od
korzystania z niego nie można bowiem uciec. Choć może nie zdawałeś sobie z tego
sprawy, lecz korzystałeś z niego w każdym napisanym dotąd programie w C++!
Wspomnij sobie choćby dyrektywę #include…

Dotąd jednak zadowalałeś się lakonicznym stwierdzeniem, iż tak po prostu „trzeba”.
Lekturą tego rozdziału masz szansę to zmienić. Teraz bowiem omówimy sobie
zagadnienie preprocesora w całości, od początku do końca i od środka :)

Pomocnik kompilatora
Rozpocząć wypadałoby od przedstawienia głównego bohatera naszej opowieści. Czym
jest więc preprocesor?…

Preprocesor to specjalny mechanizm języka, który przetwarza tekst programu jeszcze
przed jego kompilacją.

To jakby przedsionek właściwego procesu kompilacji programu. Preprocesor
przygotowuje kod tak, aby kompilator mógł go skompilować zgodnie z życzeniem
programisty. Bardzo często uwalnia on też od konieczności powtarzania często
występujących i potrzebnych fragmentów kodu, jak na przykład deklaracji funkcji.

Kiedy wiemy już mniej więcej, czym jest preprocesor, przyjrzymy się wykonywanej przez
niego pracy. Dowiemy się po prostu, co on robi.

Zaawansowane C++ 330

Gdzie on jest…?
Obecność w procesie budowania aplikacji nie jest taka oczywista. Całkiem duża liczba
języków radzi sobie, nie posiadając w ogóle narzędzia tego typu. Również cel jego
istnienia wydaje się niezbyt klarowny: dlaczego kod naszych programów miałby wymagać
przed kompilacją jakichś przeróbek?…

Tę drugą wątpliwość wyjaśnią kolejne podrozdziały, opisujące możliwości i polecenia
preprocesora. Obecnie zaś określimy sobie jego miejsce w procesie tworzenia
wynikowego programu.

Zwyczajowy przebieg budowania programu
W języku programowania nieposiadającym preprocesora generowanie docelowego pliku z
programem przebiega, jak wiemy, w dwóch etapach.
Pierwszym jest kompilacja, w trakcie której kompilator przetwarza kod źródłowy
aplikacji i produkuje skompilowany kod maszynowy, zapisany w osobnych plikach. Każdy
taki plik - wynik pracy kompilatora - odpowiada jednemu modułowi kodu źródłowego.
W drugiem etapie następuje linkowanie skompilowanych wcześniej modułów oraz
ewentualnych innych kodów, niezbędnych do działania programu. W wyniku tego procesu
powstaje gotowy program.

Schemat 36. Najprostszy proces budowania programu z kodu źródłowego

Przy takim modelu kompilacji zawartość każdego modułu musi wystarczać do jego
samodzielnej kompilacji, niezależnej od innych modułów. W przypadku języków z rodziny
C oznacza to, że każdy moduł musi zawierać deklaracje używanych funkcji oraz definicje
klas, których obiekty tworzy i z których korzysta.
Gdyby zadanie dołączania tych wszystkich deklaracji spoczywało na programiście, to
byłoby to dla niego niezmiernie uciążliwe. Pliki z kodem zostały ponadto rozdęte do
nieprzyzwoitych rozmiarów, a i tak większość zawartych weń informacji przydawałyby się
tylko przez chwilę. Przez tą chwilę, którą zajmuje kompilacja modułu.

Preprocesor 331

Nic więc dziwnego, że aby zapobiec podobnym irracjonalnym wymaganiom wprowadzono
mechanizm preprocesora.

Dodajemy preprocesor
Ujawnił się nam pierwszy cel istnienia preprocesora: w języku C(++) służy on do łączenia
w jedną całość modułów kodu wraz z deklaracjami, które są niezbędne do działania tegoż
kodu. A skąd brane są te deklaracje?…
Oczywiście - z plików nagłówkowych. Zawierają one przecież prototypy funkcji i definicje
klas, z jakich można korzystać, jeżeli dołączy się dany nagłówek do swojego modułu.

Jednak kompilator nic nie wie o plikach nagłówkowych. On tylko oczekuje, że zostaną
mu podane pliki z kodem źródłowym, do którego będą się zaliczały także deklaracje
pewnych zewnętrznych elementów - nieobecnych w danym module. Kompilator
potrzebuje tylko ich określenia „z wierzchu”, bez wnikania w implementację, gdyż ta
może znajdować się w innych modułach lub nawet innych bibliotekach i staje się ważna
dopiero przy linkowaniu. Nie jest już ona sprawą kompilatora - on żąda tylko tych
informacji, które są mu potrzebne do kompilacji.
Niezbędne deklaracje powinny się znaleźć na początku każdego modułu. Trudno jednak
oczekiwać, żebyśmy wpisywali je ręcznie w każdym module, który ich wymaga. Byłoby
to niezmiernie uciążliwe, więc wymyślono w tym celu pliki nagłówkowe… i preprocesor.
Jego zadaniem jest tutaj połączenie napisanych przez nas modułów oraz plików
nagłówkowych w pliki z kodem, które mogą mogą być bez przeszkód przetworzone przez
kompilator.

Schemat 37. Budowanie programu C++ z udziałem preprocesora

Zaawansowane C++ 332

Skąd preprocesor wie, jak ma to zrobić?… Otóż, mówimy o tym wyraźnie, stosując
dyrektywę #include. W miejscu jej pojawienia się zostaje po prostu wstawiona treść
odpowiedniego pliku nagłówkowego.

Włączanie nagłówków nie jest jednak jedynym działaniem podejmowanym przez
preprocesor. Gdyby tak było, to przecież nie poświęcalibyśmy mu całego rozdziału :) Jest
wręcz przeciwnie: dołączanie plików to tylko jedna z czynności, jaką możemy zlecić temu
mechanizmowi - jedna z wielu czynności…
Wszystkie zadania preprocesora są różnorodne, ale mają też kilka cech wspólnych.
Przyjrzyjmy się im w tym momencie.

Działanie preprocesora
Komendy, jakie wydajemy preprocesorowi, różnią się od normalnych instrukcji języka
programowania. Także sposób, w jaki preprocesor traktuje kod źródłowy, jest zupełnie
inny.

Dyrektywy
Polecenie dla preprocesora nazywamy jego dyrektywą (ang. directive). Jest to specjalna
linijka kodu źródłowego, rozpoczynająca się od znaku # (hash), zwanego płotkiem97:

Na nim też może się zakończyć - wtedy mamy do czynienia z dyrektywą pustą. Jest ona
ignorowana przez preprocesor i nie wykonuje żadnych czynności.

Bardziej praktyczne są inne dyrektywy, których nazwy piszemy zaraz za znakiem #. Nie
oddzielamy ich żadnymi spacjami, więc w praktyce płotek staje się częścią ich nazw.
Mówi się więc o instrukcjach #include, #define, #pragma i innych, gdyż w takiej formie
zapisujemy je w kodzie.
Dalsza część dyrektywy zależy już od jej rodzaju. Różne „parametry” dyrektyw poznamy,
gdy zajmiemy się szczegółowo każdą z nich.

Bez średnika
Jest bardzo ważne, aby zapamiętać, że:

Dyrektywy preprocesora kończą się zawsze przejściem do następnego wiersza.

Innymi słowy, jeżeli preprocesor napotka w swojej dyrektywie na znak końca linijki (nie
widać go w kodzie, ale jest on dodawany po każdym wciśnięciu Enter), to uznaje go
także za koniec dyrektywy. Nie ma potrzeby wpisywania średnika na zakończenie
instrukcji. Więcej nawet: nie powinno się go wpisywać! Zostanie on bowiem uznany za
część dyrektywy, co w zależności od jej rodzaju może powodować różne niepożądane
efekty. Kończą się one zwykle błędami kompilacji.

Zapamiętaj zatem zalecenie:

Nie kończ dyrektyw preprocesora średnikiem. Nie są to przecież instrukcje języka
programowania, lecz polecenia dla modułu wspomagającego kompilator.

97 Przed hashem mogą znajdować się wyłącznie tzw. białe znaki, czyli spacje lub tabulatory. Zwykle nie
znajduje się nic.

Preprocesor 333

Można natomiast kończyć dyrektywę komentarzem, opisującym jej działanie. Kiedyś
wiele kompilatorów miało z tym kłopoty, ale obecnie wszystkie liczące się produkty
potrafią radzić sobie z komentarzami na końcu dyrektyw preprocesora.

Ciekawostka: sekwencje trójznakowe
Istnieje jeszcze jedna, bardzo rzadka dzisiaj sytuacja, gdy preprocesor zostaje wezwany
do akcji. Jest to jedyny przypadek, kiedy jego praca jest niezwiązana z dyrektywami
obecnymi w kodzie.
Chodzi o tak zwane sekwencje trójznakowe (ang. trigraphs). Cóż to takiego?…

W każdym długo i szeroko wykorzystywanym produkcie pewne funkcje mogą być po
pewnym czasie uznane za przestarzałe i przestać być wykorzystywane. Jeżeli mimo to są
one zachowywane w kolejnych wersjach, to zyskują słuszne miano skamieniałości
(ang. fossils).
Język C++ zawiera kilka takich zmumifikowanych konstrukcji, odziedziczonych po swoim
poprzedniku. Jedną z nich jest na przykład możliwość wpisywania do kodu liczb w
systemie ósemkowym (oktalnym), poprzedzając je zerem (np. 042 to dziesiętnie 34).
Obecnie jest to całkowicie niepotrzebne, jako że współczesny programista nie odniesie
żadnej korzyści z wykorzystania tego systemu liczbowego. W architekturze komputerów
został on bowiem całkowicie zastąpiony przez szesnastkowy (heksadecymalny) sposób
liczenia. Ten jest na szczęście także obsługiwany przez C++98, natomiast zachowana
możliwość użycia systemu oktalnego stała się raczej niedogodnością niż plusem języka.
Łatwo przecież omyłkowo wpisać zero przed liczbą dziesiętną i zastanawiać się nad
powstałym błędem…

Inną skamieniałością są właśnie sekwencje trójznakowe. To specjalne złożenia dwóch
znaków zapytania (??) oraz innego trzeciego znaku, które razem „udają” symbol ważny
dla języka C++. Preprocesor zastępuje te sekwencje docelowym znakiem, postępując
według tej tabelki:

trójznak symbol
??= #
??/ \
??- ~
??’ ^
??! |
??([
??)]
??< {
??> }

Tabela 13. Sekwencje trójznakowe w C++

Twórca języka C++, Bjarne Stroustroup, wprowadził do niego sekwencje trójznakowe z
powodu swojej… klawiatury. W wielu duńskich układach klawiszy zamiast przydatnych
symboli z prawej kolumny tabeli widniały bowiem znaki typu å, Æ czy Å. Aby umożliwić
swoim rodakom programowanie w stworzonym języku, Stroustroup zdecydował się na
ten zabieg.
Dzisiaj obecność trójznaków nie jest taka ważna, bo powszechnie występują na całym
świecie klawiatury typu Sholesa, które zawierają potrzebne w C++ znaki. Moglibyśmy
więc o nich zapomnieć, ale…

98 Aby zapisać liczbę w systemie szesnastkowym, należy ją poprzedzić sekwencją 0x lub 0X. Tak więc 0xFF to
dziesiętnie 255.

Zaawansowane C++ 334

No właśnie, jest pewien problem. Z niewiadomych przyczyn jest często tak, że
nieużywana funkcja prędzej czy później daje o sobie znać niczym przeterminowana
konserwa. Prawie zawsze też nie jest to zbyt przyjemne.
Kłopot polega na tym, że jedna z sekwencji - ??! - może być użyta w sytuacji wcale
odmiennej od założonego zastępowania znaku |. Popatrzmy na ten kod:

std::cout << "Co mowisz??!";

Nie wypisze on wcale stanowczej prośby o powtórzenie wypowiedzi, lecz napis "Co
mowisz|". Trójznak ??! został bowiem zastąpiony przez |.
Można tego uniknąć, stosując jedną z tzw. sekwencji ucieczki (unikowych, ang.
escape sequences) zamiast znaków zapytania. Poprawiony kod będzie wyglądał tak:

std::cout << "Co mowisz\?\?!";

Podobną niespodziankę możemy też sobie sprawić, gdy podczas wpisywania trzech
znaków zapytania za wcześnie zwolnimy klawisz Shift. Powstanie nam wtedy coś takiego:

std::cout << "Co??/";

Taka sytuacja jest znacznie perfidniejsza, bowiem trójznak ??/ zostanie zastąpiony przez
pojedynczy znak \ (backslash). Doprowadzi to do powstania niekompletnego napisu
"Co\". Niekompletnego, bo występuje tu sekwencja unikowa \", zastępująca cudzysłów.
Znak cudzysłowu, który tu widzimy, nie będzie wcale oznaczał końca napisu, lecz jego
część. Kompilator będzie zaś oczekiwał, że właściwy cudzysłów kończący znajduje się
gdzieś dalej, w tej samej linijce kodu. Nie napotka go oczywiście, a to oznacza dla nas
kłopoty…

Musimy więc pamiętać, aby bacznie przyglądać się każdemu wystąpieniu dwóch znaków
zapytania w kodzie C++. Takie skamieniałe okazy nawet po wielu latach mogą dotkliwie
kąsać nieostrożnego programistę.

Preprocesor a reszta kodu
Nadmieniłem wcześniej, że dyrektywy preprocesora różnią się od normalnych instrukcji
języka C++ - choćby tym, że na ich końcu nie stawiamy średnika. Ale nie jest to jeszcze
cała prawda.

Najważniejsze jest to, jak preprocesor obchodzi się kodem źródłowym programu. Jego
podejście jest odmienne od kompilatora. Tak naprawdę to preprocesor w zasadzie „nie
wie”, że przetwarzany przez niego tekst jest programem! Wiedza ta nie jest mu do
niczego potrzeba, gdyż traktuje on kod jak każdy inny tekst. Dla preprocesora nie ma
różnicy, czy pracuje na prostym programie konsolowym, zaawansowanej aplikacji
okienkowej, czy nawet (hipotetycznie) na siódmej księdze Pana Tadeusza.
Możnaby więc powiedzieć, że preprocesor jest po prostu głupi - gdyby nie to, że bardzo
dobrze radzi sobie ze swoim zadaniem. A jest nim przetwarzanie tekstu programu w
taki sposób, aby ułatwić życie programiście. Dzięki preprocesorowi można bowiem
automatycznie wykonać operacje, które bez niego zajmowałyby mnóstwo czasu i słusznie
wydawały się jego kompletną, frustrującą stratą.

Jak zwykle jednak trzeba wtrącić jakieś „ale” :) Całkowita niewiedza preprocesora na
temat podmiotu jego działań może i jest błogosławieństwem dla niego samego, lecz
stosunkowo łatwo może stać się przyczyną błędów kompilacji. Dotyczy to w szczególności
jednego z aspektów wykorzystania preprocesora - makr.

Preprocesor 335

Makra
Makro (ang. macro) jest instrukcją dla preprocesora, pozwalającą dokonywać zastąpienia
pewnego wyrażenia innym. Działa ona trochę jak funkcja Znajdź i zamień w edytorach
tekstu, z tym że proces zamiany dokonuje się wyłącznie przed kompilacją i nie jest
trwały. Pliki z kodem źródłowym nie są fizycznie modyfikowane, lecz tylko zmieniona ich
postać trafia do kompilatora.
Makra w C++ (zwane aczkolwiek częściej makrami C) potrafią być też nieco bardziej
wyrafinowane i dokonywać złożonych, sparametryzowanych operacji zamiany tekstu.
Takie makra przypominają funkcje i zajmiemy się nimi nieco dalej.

Definicja makra odbywa się przy pomocy dyrektywy #define:

#define odwołanie tekst

Najogólniej mówiąc, daje to taki efekt, iż każde wystąpienie odwołania w kodzie
programu powoduje jego zastąpienie przez tekst. Szczegóły tego procesu zależą od
tego, czy nasze makro jest proste - udające stałą - czy może bardziej skomplikowane -
udające funkcję. Osobno zajmiemy się każdym z tych dwóch przypadków.

Do pary z #define mamy jeszcze dyrektywę #undef:

#undef odwołanie

Anuluje ona poprzednią definicję makra, pozwalając na przykład na jego ponowne
zdefiniowanie. Makro w swej aktualnej postaci jest więc dostępne od miejsca
zdefiniowania do wystąpienia #undef lub końca pliku.

Proste makra
W prostej postaci dyrektywa #define wygląda tak:

#define wyraz [zastępczy_ciąg_znaków]

Powoduje ona, że w pliku wysłanym do kompilacji każde samodzielne99 wystąpienie
wyrazu zostanie zastąpione przez podany zastępczy_ciąg_znaków. Mówimy o tym, że
makro zostanie rozwinięte. W wyrazie mogą wystąpić tylko znaki dozwolone w
nazwach języka C++, a więc litery, cyfry i znak podkreślenia. Nie może on zawierać
spacji ani innych białych znaków, gdyż w przeciwnym razie jego część zostanie
zinterpretowana jako treść makra (zastępczy_ciąg_znaków), a nie jako jego nazwa.
Treść makra, czyli zastępczy_ciąg_znaków, może natomiast zawierać białe znaki. Może
także nie zawierać znaków - nie tylko białych, ale w ogóle żadnych. Wtedy każde
wystapienie wyrazu zostanie usunięte przez preprocesor z pliku źródłowego.

Definiowianie prostych makr
Jak wygląda przykład opisanego wyżej użycia #define? Popatrzmy:

#define SIEDEM 7

// (tutaj trochę kodu programu...)

std::cout << SIEDEM << "elementow tablicy" << std::endl;;

99 Samodzielne - to znaczy jako odrębne słowo (token).

Zaawansowane C++ 336

int aTablica[SIEDEM];

for (unsigned i = 0; i < SIEDEM; ++i)
 std::cout << aTablica[i] << std::endl;

std::cout << "Wypisalem SIEDEM elementow tablicy";

Nie możemy tego wprawdzie zobaczyć, ale uwierzmy (lub sprawdźmy empirycznie
poprzez kompilację), że preprocesor zamieni powyższy kod na coś takiego:

std::cout << 7 << "elementow tablicy" << std::endl;;
int aTablica[7];

for (unsigned i = 0; i < 7; ++i)
 std::cout << aTablica[i] << std::endl;

std::cout << "Wypisalem SIEDEM elementow tablicy";

Zauważmy koniecznie, że:

Preprocesor nie dokonuje zastępowania nazw makr wewnątrz napisów.

Jest to uzasadnione, bo wewnątrz łańcucha nazwa może występować w zupełnie innym
znaczeniu. Zwykle więc nie chcemy, aby została ona zastąpiona przez rozwinięcie makra.
Jeżeli jednak życzymy sobie tego, musimy potraktować makro jak zmienną, czyli na
przykład tak:

std::cout << "Wypisalem " << SIEDEM << " elementow tablicy";

Poza łańcuchami znaków makro jest bowiem wystawione na działanie preprocesora.

Zgodnie z przyjętą powszechnie konwencją, nazwy makr piszemy wielkimi literami. Nie
jest to rzecz jasna obowiązkowe, ale poprawia czytelność kodu.

Zastępowanie większych fragmentów kodu
Zamiast jednej liczby czy innego wyrażenia, jako treść makra możemy też podać
instrukcję. Może to nam zaoszczędzić pisania. Przykładowo, jeżeli przed wyjściem z
funkcji musimy zawsze wyzerować jakąś zmienną globalną, to możemy napisać sobie
odpowiednie makro:

#define ZAKONCZ { g_nZmienna = 0; return; }

Jest to przydatne, jeśli w kodzie funkcji mamy wiele miejsc, które mogą wymagać jej
zakończenia. Każdorazowe ręczne wpisywanie tego kodu byłoby więc uciążliwe, zaś z
pomocą makra staje się proste.
Przypomnijmy jeszcze, jak to działa. Jeżeli mamy taką oto funkcję:

void Funkcja()
{
 // ...

 if (!DrugaFunkcja()) ZAKONCZ;
 // ...
 if (!TrzeciaFunkcja()) ZAKONCZ;
 // ...
 if (CosSieStalo()) ZAKONCZ;
 // ...
}

Preprocesor 337

to preprocesor zamieni ją na coś takiego:

void Funkcja()
{
 // ...

 if (!DrugaFunkcja()) { g_nZmienna = 0; return; };
 // ...
 if (!TrzeciaFunkcja()) { g_nZmienna = 0; return; };
 // ...
 if (CosSieStalo()) { g_nZmienna = 0; return; };
 // ...
}

Wyodrębnienie kodu w postaci makra ma tę zaletę, że jeśli nazwa zmiennej g_nZmienna
zmieni się (;D), to modyfikację poczynimy tylko w jednym miejscu - w definicji makra.

Spójrzmy jeszcze, iż treść makra ująłem w nawiasy klamrowe. Gdybym tego nie zrobił, to
otrzymalibyśmy kod typu:

if (!DrugaFunkcja()) g_nZmienna = 0; return;;

Nie widać tego wyraźnie, ale kodem wykonywanym w razie prawdziwości warunku if jest
tu tylko wyzerowanie zmiennej. Instrukcja return zostanie wykonana niezależnie od
okoliczności, bo znajduje się poza blokiem warunkowym.
Przyzwoity kompilator powie nam o tym, bo obecność takiej zgubionej instrukcji
powoduje zbędność całego dalszego kodu funkcji. Nie zawsze jednak korzystamy z makr
zawierających return, zatem:

Zawsze umieszczajmy treść makr w nawiasach.

Jak się niedługo przekonamy, ta stanowcza sugestia dotyczy też makr typu stałych (jak
SIEDEM z pierwszego przykładu), lecz w ich przypadku chodzi o nawiasy okrągłe.

Wątpliwości może budzić nadmiar średników w powyższych przykładach. Ponieważ
jednak nie poprzedzają ich żadne instrukcje, więc dodatkowe średniki zostaną
zignorowane przez kompilator. Akurat w tej sytuacji nie jest to problemem…

W kilku linijkach

Pisząc makra zastępujące całe połacie kodu, możemy je podzielić na kilka linijek. W tym
celu korzystamy ze znaku \ (backslash), np. w ten sposób:

#define WYPISZ_TABLICE for (unsigned i = 0; i < 10; ++i) \
 { \
 std::cout << i << "-ty element"; \
 std::cout << nTab[i] << std::endl; \
 }

Pamiętajmy, że to konieczne tylko dla dyrektyw preprocesora. W przypadku zwykłych
instrukcji wiemy doskonale, że ich podział na linie jest całkowicie dowolny.

Makra korzystające z innych makr
Nic nie stoi na przeszkodzie, aby nasze makra korzystały z innych wcześniej
zdefiniowanych makr:

#define PI 3.1415926535897932384

Zaawansowane C++ 338

#define PROMIEN 10
#define OBWOD_KOLA (2 * PI * PROMIEN)

Mówiąc ściślej, to makra mogą korzystać ze wszystkich informacji dostępnych w czasie
kompilacji programu, a więc np. operatora sizeof, typów wyliczeniowych lub stałych.

Pojedynek: makra kontra stałe
No właśnie - stałych… Większość przedstawionych tutaj makr pełni przecież taką samą
rolę, jak stałe deklarowane słówkiem const. Czy obie konstrukcje są więc sobie
równoważne?…

Nie. Stałe deklarowane przez const i „stałe” (makra) definiowane przez #define różnią
się od siebie, i to znacznie. Te różnice dają przewagę obiektom const - powiedzmy tu
sobie, dlaczego.

Makra nie są zmiennymi
Patrząc na ten tytuł pewnie się uśmiechasz. Oczywiście, że makra nie są zmiennymi -
przecież to stałe… a raczej „stałe”. To jednak nie jest wcale takie oczywiste, bo z kolei
stałe deklarowane przez const mają cechy zmiennych. Swego czasu mówiłem nawet na
poły żartobliwie, iż te stałe są to zmienne, które są niezmienne. Makra #define takimi
zmiennymi nie są, a przez to tracą ich cenne właściwości.
Jakie?… Zasięg, miejsce w pamięci i typ.

Zasięg

Brak zasięgu jest szczególnie dotkliwy. Makra mają wprawdzie zakres obowiązywania,
wyznaczany przez dyrektywy #define i #undef (względnie koniec pliku), ale absolutnie
nie jest to tożsame pojęcia.

Makro zdefiniowane - jak się zdaje - wewnątrz funkcji:

void Funkcja()
{
 #define STALA 1500.100900
}

nie jest wcale dostępne tylko wewnątrz niej. Z równym powodzeniem możemy z niego
korzystać także w kodzie następującym dalej. Wszystko dlatego, że preprocesor nie zdaje
sobie w ogóle sprawy z istnienia takiego czegoś jak „funkcje” czy „bloki kodu”, a już na
pewno nie „zasięg zmiennych”. Nie jest zatem dziwne, że jego makra nie posiadają
zasięgu.

Miejsce w pamięci i adres

Nazwy makr nie są znane kompilatorowi, ponieważ znikają one po przetworzeniu
programu przez preprocesor. „Stałe” definiowane przez #define nie mogą zatem istnieć
fizycznie w pamięci, bo za jej przydzielanie dla obiektów niedynamicznych
odpowiedzialny jest wyłącznie kompilator. Makra nie zajmują miejsca w pamięci
operacyjnej i nie możemy pobierać ich adresów. Byłoby to podobne do pobierania
wskaźnika na liczbę 5, czyli całkowicie bezsensowne i niedopuszczalne.

Ale chwileczkę… Brak możliwości pobrania wskaźnika łatwo można przetrawić, bo
przecież nie robi się tego często. Nieobecność makr w pamięci ma natomiast oczywistą
zaletę: nie zajmują jej swoimi wartościami. To chyba dobrze, prawda?
Tak, to dobrze. Ale jeszcze lepiej, że obiekty const także to potrafią. Każdy szanujący się
kompilator nie będzie alokował pamięci dla stałej, jeżeli nie jest to potrzebne. Jeśli więc
nie pobieramy adresu stałej, to będzie ona zachowywała się w identyczny sposób jak

Preprocesor 339

makro - pod względem zerowego wykorzystania pamięci. Jednocześnie zachowa też
pożądane cechy zmiennej. Mamy więc dwie pieczenie na jednym ogniu, a makra mogą
się spalić… ze wstydu ;)

Typ

Makra nie mają też typów. „Jak to?!”, odpowiesz. „A czy 67 jest napisem, albo czy
"klawiatura" jest liczbą? A przecież i te, i podobne wyrażenia mogą być treścią makr!”
Faktycznie wyrażenia te mają swoje typy i mogą być interpretowane tylko w zgodzie z
nimi. Ale jakie są to typy? 67 może być przecież równie dobrze uznana za wartość int,
jak i BYTE, unsigned, nawet float. Z kolei napis jest formalnie typu const char[], ale
przecież możemy go przypisać do obiektu std::string. Poprzez występowanie
niejawnych konwersji (powiemy sobie o nich w następnym rozdziale) sytuacja z typami
nie jest więc taka prosta.
A makra dodatkowo ją komplikują, bo nie pozwalają na ustalenie typu stałej. Nasze 67
mogło być przecież docelowo typu float, ale „stała” zdefiniowana jako:

#define STALA 67

zostanie bez przeszkód przyjęta dla każdego typu liczbowego. O to nam chyba nie
chodziło?!

Z tym problemem można sobie aczkolwiek poradzić, nie uciekając od #define.
Pierwszym wyjściem jest jawne rzutowanie:

#define (float) 67

Chyba nieco lepsze jest dodanie do liczby odpowiedniej końcówki, umożliwiającej inną
interpretację jej typu. Stosując te końcówki możemy zmienić typ wyrażenia wpisanego w
kodzie. Oto jak zmienia się typ liczby 67, gdy dodamy jej różne sufiksy (nie są to
wszystkie możliwości):

liczba typ
67 int
67u unsigned int
67.0 double
67.0f float

Tabela 14. Typ stałej liczbowej w zależności od sposobu jej zapisu

Przewaga stałych const związana z typami objawia się najpełniej, gdy chodzi o tablice.
Nie ma bowiem żadnych przeciwskazań, aby zadeklarować sobie tablicę wartości stałych:

const int STALE = { 1, 2, 3, 4 };

a potem odwoływać się do jej poszczególnych elementów. Podobne działanie jest
całkowicie niemożliwe dla makr.

Efekty składniowe
Z wartościami stałymi definiowanymi jako makra związane też są pewne nieoczekiwane i
trudne do przewidzenia efekty składniowe. Powoduje je fakt, iż działanie preprocesora
jest operacją na zwykłym tekście, a kod przecież zwykłym tekstem nie jest…

Średnik

Podkreślałem na początku, że dyrektyw preprocesora, w tym i #define, nie należy
kończyć średnikiem. Ale co by się stało, gdyby nie zastosować się do tego zalecenia?…
Sprawdźmy. Zdefiniujmy na przykład takie oto makro:

Zaawansowane C++ 340

#define DZIESIEC 10; // uwaga, średnik!

Niby różnica jest niewielka, ale zaraz zobaczymy jak bardzo jest ona znacząca. Użyjmy
teraz naszego makra, w jakimś wyrażeniu:

int nZmienna = 2 * DZIESIEC;

Działa? Tak… Preprocesor zamienia DZIESIEC na 10;, co w sumie daje:

int nZmienna = 2 * 10;;

Dodatkowy średnik, jaki tu występuje, nie sprawia kłopotów, lecz łatwo może je wywołać.
Wystarczy choćby przestawić kolejność czynników lub rozbudować wyrażenie - na
przykład umieścić w nim wywołanie funkcji:

int nZmienna = abs(2 * DZIESIEC);

I tu zaczynają się kłopoty. Preprocesor wyprodukuje z powyższego wiersza kod:

int nZmienna = abs(2 * 10;); // ups!

który z pewnością zostanie odrzucony przez każdy kompilator.

Słusznie jednak stwierdzisz, że takie czy podobne błędy (np. użycie DZIESIEC jako
rozmiaru tablicy) są stosunkowo proste do wykrycia. Lecz przy używaniu makr nie
zawsze tak jest: zaraz zobaczysz, że nietrudno dopuścić się pomyłek niewpływających na
kompilację, ale wypływających na powierzchnię już w gotowym programie.

Nawiasy i priorytety operatorów

Popatrz na ten oto przykład:

#define SZEROKOSC 10
#define WYSOKOSC 20
#define POLE SZEROKOSC * WYSOKOSC
#define LUDNOSC 10000

std::cout << "Gestosc zaludnienia wynosi: " << LUDNOSC / POLE;

Powinien on wydrukować liczbę 50, prawda? No cóż, zobaczmy czy tak będzie naprawdę.
Wyrażenie LUDNOSC / POLE zostanie rozwinięte przez preprocesor do:

LUDNOSC / SZEROKOSC * WYSOKOSC

czyli w konsekwencji do działań na liczbach:

10000 / 10 * 20

a to daje w wyniku:

1000 * 20

czyli ostatecznie:

20000 // ??? Coś jest nie tak!

Hmm… Pięćdziesiąt a dwadzieścia tysięcy to raczej duża różnica, znajdźmy więc błąd. Nie
jest to trudne - tkwi on już w pierwszym kroku rozwijania makra:

Preprocesor 341

LUDNOSC / SZEROKOSC * WYSOKOSC

Zgodnie z regułami kolejnościami działań, zwanych w programowaniu priorytetami
operatorów, wpierw wykonywane jest tu dzielenie. To błąd - przecież najpierw
powinniśmy obliczać wartość powierzchni, czyli iloczynu SZEROKOSC * WYSOKOSC.
Należałoby zatem objąć go w nawiasy, i to najlepiej już przy definicji makra POLE:

#define POLE (SZEROKOSC * WYSOKOSC)

Całkiem nietrudno o tym zapomnieć. Jeszcze łatwiej przeoczyć fakt, że i SZEROKOSC, i
WYSOKOSC mogą być także złożonymi wyrażeniami, więc również i one powinny posiadać
własną parę nawiasów. Może nie być wiadome, czy w ich definicjach takie nawiasy
występują, zatem przydałoby się wprowadzić je powyżej…

Mamy więc całkiem sporo niewiadomych podczas korzystania ze stałych-makr. A przecież
wcale nie musimy rozstrzygać takich dylematów - zastosujmy po prostu stałe będące
obiektami const:

const int SZEROKOSC = 10;
const int WYSOKOSC = 20;
const int POLE = SZEROKOSC * WYSOKOSC;
const int LUDNOSC = 10000;

std::cout << "Gestosc zaludnienia wynosi: " << LUDNOSC / POLE;

Teraz wszystko będzie dobrze. Ponieważ to inteligentny kompilator zajmuje się takimi
stałymi (traktując je jak „niezmienne zmienne”), wartość wyrażenia LUDNOSC / POLE jest
obliczana właściwie.

Dygresja: odpowiedź na pytanie o sens życia

Jak ciekawe skutki może wywoływać niewłaściwe użycie makr? Całkiem znamienne.
Przypadkowo można na przykład poznać Najważniejszą Liczbę Wszechświata.

A tą liczbą jest… 42. Ów magiczny numer pochodzi z serii science-fiction Autostopem
przez Galaktykę autorstwa Douglasa Adamsa. Tam też pada odpowiedź na Najważniejsze
Pytanie o Życie, Uniwersum i Wszystko, która zostaje udzielona grupie myszy. Jak
twierdzi Adams, myszy są trójwymiarowymi postaciami hiperinteligentnych istot
wielowymiarowych, które zbudowały ogromny superkomputer, zdolny udzielić odpowiedzi
na wspomniane Pytanie. Po siedmiu i pół milionach lat uzyskują ją: jest to właśnie
czterdzieści dwa.
Za chwilę jednak komputer stwierdził, że tak naprawdę nie wiedział do końca, jakie
pytanie zostało mu zadane. Pod koniec jednego z tomów serii dowiadujemy się jednak,
cóż to było za pytanie:

Co otrzymamy, jeżeli pomnożymy sześć przez dziewięć?

Odpowiedź: czterdzieści dwa. Brzmi to zupełnie nonsensownie, zważywszy że 6×9 to
przecież 54. A jednak to prawda - aby się o tym przekonać, popatrz na poniższy
program:

// FortyTwo - odpowiedź na najważniejsze pytanie Wszechświata

#include <iostream>
#include <conio.h>

#define SZESC 1 + 5
#define DZIEWIEC 8 + 1

Zaawansowane C++ 342

int main()
{
 std::cout << "Szesc razy dziewiec rowna sie " << SZESC * DZIEWIEC;
 getch();

 return 0;
}

Jak można zobaczyć, rzeczywiście drukuje on liczbę 42:

Screen 44. Komputer prawdę ci powie…

Czyżby więc była to faktycznie tak magiczna liczba, iż specjalnie dla niej naginane są
zasady matematyki?… Niestety, wyjaśnienie jest bardziej prozaiczne. Spójrzmy tylko na
wyrażenie SZESC * DZIEWIEC. Jest ono rozwijane do postaci:

1 + 5 * 8 + 1

Tutaj zaś, zgodnie z ważnymi od początku do końca Wszechświata regułami arytmetyki,
pierwszym obliczanym działaniem jest mnożenie. Ostatecznie więc mamy 1 + 40 + 1,
czyli istotnie 42.

Nie musimy jednak wierzyć temu prostego wytłumaczeniu. Czyż nie lepiej sądzić, że nasz
poczciwy preprocesor ma dostęp do rozwiązań niewyjaśnionych od wieków zagadek
Uniwersum?…

Predefiniowane makra kompilatora
Istnieje kilka makr, których definiowaniem zajmuje się sam kompilator. Dostarczają one
kilku użytecznych informacji związanych z nim samym oraz z przebiegiem kompilacji.
Dane te mogą być często przydatne przy usuwaniu błędów, więc przyjrzyjmy się im.

We wszystkich poniższych nazwach makr długie kreski oznaczają dwa znaki podkreślenia.
Tak więc __ oznacza dwukrotne wpisanie znaku _, a nie jedną długą kreskę.

Numer linii i nazwa pliku
Jednymi z najbardziej przydatnych makr są __FILE__ i __LINE__. Pozwalają one na
wykrycie miejsca w kodzie, gdzie np. zaszedł błąd wpływający na działanie programu.

Numer wiersza

Makro __LINE__ zostaje przez preprocesor zamienione na numer wiersza w aktualnie
przetwarzanym pliku źródłowym. Wiersze liczą się od 1 i obejmują także dyrektywy oraz
puste linijki. Zatem w poniższym programie:

#include <iostream>
#include <conio.h>

int main()
{
 std::cout << "Wypisanie tekstu w wierszu " << __LINE__ << std::endl;
 return 0;
}

Preprocesor 343

liczbą pokazaną na ekranie będzie 6. Można też zauważyć, że sam kompilator posługuje
się tą nazwą, gdy pokazuje nam komunikat o błędzie podczas nieudanej kompilacji
programu.

Nazwa pliku z kodem

Do pary z numerem wiersza potrzebujemy jeszcze nazwy pliku, aby precyzyjnie
zlokalizować błąd. Tę zaś zwraca makro __FILE__:

std::cout << "Ten kod pochodzi z modułu " << __FILE__;

Jest ono zamieniane na nazwę pliku kodu, ujętą w podwójne cudzysłowy - właściwe dla
napisów w C++. Zatem jeśli nasz moduł nazywa się main.cpp, to __FILE__ zostanie
zastąpione przez "main.cpp".

Dyrektywa #line

Informacje podawane przez __LINE__ i __FILE__ możemy zmienić, umieszczając te
makra w innych miejscach (plikach?). Ale możliwe jest też oszukanie preprocesora za
pomocą dyrektywy #line:

#line wiersz ["plik"]

Gdy z niej skorzystamy, to preprocesor uzna, że umieszczona ona została w linijce o
numerze wiersz. Jeżeli podamy też nazwę pliku, to wtedy także oryginalna nazwa
modułu zostanie unieważniona przez tę podaną. Oczywiście nie fizycznie: sam plik
pozostanie nietknięty, a tylko preprocesor będzie myślał, że zajmuje się innym plikiem
niż w rzeczywistości.

Osobiście nie sądzę, aby świadome oszukiwanie miało tu jakiś głębszy sens.
(Nad)używając dyrektywy #line możemy łatwo stracić orientację nawet w programie,
który obficie drukuje informacje o sprawiających problemy miejscach w kodzie.

Data i czas
Innym rodzajem informacji, jakie można wkompilować do wynikowego programu, jest
data i czas jego zbudowania, ewentualnie modyfikacji kodu. Służą do tego dyrektywy
__DATE__, __TIME__ oraz __TIMESTAMP__.

Zwróćmy jeszcze uwagę, że polecenia te absolutnie nie służą do pobierania bieżącego
czasu systemowego. Są one tylko zamieniane na dosłowne stałe, które w niezmienionej
postaci są przechowywane w gotowym programie i np. wyświetlane wraz z informacją o
wersji.
Natomiast do uzyskania aktualnego czasu używamy znanych funkcji time(),
localtime(), itp. z pliku nagłówkowego ctime.

Czas kompilacji

Chcąc zachować w programie datę i godzinę jego kompilacji, stosujemy dyrektywy -
odpowiednio: __DATE__ oraz __TIME__. Preprocesor zamienia je na datę w formacie
Mmm dd yy i na czas w formacie hh:mm:ss. Obie te wartości są literałami znakowymi, a
więc ujęte w cudzysłowy.

Przykładowo, gdybym w chwili pisania tych słów skompilował poniższą linijkę kodu:

std::cout << "Kompilacja wykonana w dniu " << __DATE__ <<
 << " o godzinie " << __TIME__ << std::endl;

Zaawansowane C++ 344

to w programie zapisana zostałaby data "Jul 14 2004" i czas "18:30:51". Uruchamiając
program za minutę, pół godziny czy za dziesięć lat ujrzałbym tę samą datę i ten sam
czas, ponieważ byłyby one wpisane na stałe w pliku EXE.
Z tego powodu data i czas kompilacji mogą być użyte jako prymitywny sposób
podawania wersji programu.

Czas modyfikacji pliku

Makro __TIMESTAMP__ jest nieco inne. Nie podaje ono czasu kompilacji, lecz datę i czas
ostatniej modyfikacji pliku z kodem. Jest to dana w formacie Ddd Mmm d hh:mm:ss
yyyy, gdzie Ddd jest skrótem dnia tygodnia, zaś d jest numerem dnia miesiąca.

Popatrz na przykład. Jeśli wpiszę teraz do modułu poniższą linijkę i zachowam plik kodu:

std::cout << "Data ostatniej modyfikacji " << _TIMESTAMP__;

to w programie zapisany zostanie napis "Wed Jul 14 18:38:37 2004". Będzie tak
niezależnie od chwili, w której skompiluję program - chyba że do czasu jego zbudowania
poczynię w kodzie jeszcze jakieś poprawki. Wówczas __TIMESTAMP__ zmieni się
odpowiednio, wyświetlając moment zapisywania ostatnich zmian.

Piszę tu, iż __TIMESTAMP__ coś wyświetli, ale to oczywiście skrót myślowy. Naprawdę to
makro zostanie zastąpione przez preprocesor odpowiednim napisaem, zaś jego
prezentacją zajmie się rzecz jasna strumień wyjścia.

Typ kompilatora
Jest jeszcze jedno makro, zdefiniowane zawsze w kompilatorach języka C++. To
__cplusplus. Nie ma ono żadnej wartości, gdyż liczy się sama jego obecność. Pozwala
ona na wykorzystanie tzw. kompilacji warunkowej, którą poznamy za jakiś czas, do
rozróżniania kodu w C i w C++.
Dla nas, nieużywających wcześniej języka C, makro to nie jest więc zbyt praktycze, ale w
czasie migracji starszego kodu do nowego języka okazywało się bardzo przydatne. Poza
tym wiele kompilatorów C++ potrafi udawać kompilatory jego poprzednika w celu
budowania wykonywalnych wersji starych aplikacji. Jeśli włączylibyśmy taką opcję w
naszym ulubionym kompilatorze, wtedy makro __cplusplus nie byłoby definiowane
przed rozpoczęciem pracy preprocesora.

Inne nazwy
Powyższe nazwy są zdefiniowane w każdym kompilatorze choć trochę zgodnym ze
standardem C++. Wiele z nich definiuje jeszcze inne: przykładowo, Visual C++
udostępnia makra __FUNCTION__ i __FUNCSIG__, które wewnątrz bloków funkcji są
zmieniane w ich nazwy i sygnatury (nagłówki).
Ponadto, kompilatory pracujące w środowisku Windows definiują też nazwy w rodzaju
_WIN32 czy _WIN64, pozwalające określić „bitowość” platform tego systemu.

Po inne predefiniowane makra preprocesora musisz zajrzeć do dokumentacji swojego
kompilatora. Jeśli używasz Visual C++, to będzie nią oczywiście MSDN.

Makra parametryzowane
Bardziej zaawansowany rodzaj makr to makra parametryzowane, czyli
makrodefinicje. Z wyglądu przypomniają one nieco funkcje, choć funkcjami nie są. To
po prostu nieco bardziej wyrafinowe polecenia na preprocesora, instruujące go, jak
powinien zamieniać jeden tekst kodu w inny.

Preprocesor 345

Nie wydaje się to szczególnie skomplikowane, jednak wokół makrodefinicji narosło
mnóstwo mitów i fałszywych stereotypów. Chyba żaden inny element języka C++ nie
wzbudza tylu kontrowersji co do jego prawidłowego użycia, a wśród nich przeważają
opinie bardzo skrajne. Mówią one, ze makrodefinicje są całkowicie przestarzałe i nie
powinny być w ogóle stosowane, gdyż z powodzeniem zastępują je inne elementy języka.
Jak każde radykalne sądy, nie są to zdania słuszne. To prawda jednak, że obecnie pole
zastosowań makrodefinicji (i makr w ogóle) zawężyło się znacznie. Nie jest to aczkolwiek
wystarczającym powodem, ażeby usprawiedliwiać nim nieznajomość tej ważnej części
języka. Zobaczmy zatem, co jest przyczyną tego całego zamieszania.

Definiowanie parametrycznych makr
Makrodefinicje nazywamy parametryzowanymi makrami, ponieważ mają one coś w
rodzaju parametrów. Nie są to jednak konstrukcje podobne do parametrów funkcji - w
dalszej części sekcji przekonamy się, dlaczego.

Na razie spojrzyjmy na przykładową definicję:

#define SQR(x) ((x) * (x))

W ten sposób zdefiniowaliśmy makro SQR(), posiadające jeden parametr - nazwaliśmy go
tu x. Treścią makra jest natomiast wyrażenie ((x) * (x)). Jak ono działa?
Otóż, jeśli preprocesor napotka w programie na „wywołanie”:

SQR(cokolwiek)

to zamieni je na wyrażenie:

((cokolwiek) * (cokolwiek))

Tym cokolwiek może być teoretycznie dowolny tekst (przypominam do znudzenia, że
preprocesor operuje na tekście programu), ale sensowne jest tam wyłącznie podanie
wartości liczbowej100. Wszelkie eksperymentowanie np. z łańcuchami znaków skończy się
komunikatem o błędzie składniowym albo niedozwolonym użyciu operatora *.

Powiedzmy jeszcze, dlaczego słowo ‘wywołanie’ wzięłem w cudzysłów, choć pewnie
domyślasz się tego. Tak, makro nie jest żadną funkcją, więc jego użycie nie oznacza
przejścia do innej części programu. Makrodefinicja jest tylko poleceniem na
preprocesora, mówiącym mu, w jaki sposób zmienić to wywołaniopodobne wyrażenie
SQR(x) na inny fragment kodu, wykorzystujący symbol x. W tym przypadku jest to
iloczyn dwóch „zmiennych” x, czyli kwadrat podanego wyrażenia.

A jak wygląda to makro w akcji? Bardzo prosto:

int nLiczba;

std::cout << "Podaj liczbę: ";
std::cin >> nLiczba;
std::cout << "Kwadrat liczby " << nLiczba << " to " << SQR(nLiczba);

Użycie makra w postaci SQR(nLiczba) zostanie tu zamienione na ((nLiczba) *
(nLiczba)), zatem w wyniku rzeczywiście dostaniemy kwadrat podanej liczby.

100 Lub ogólnie: każdego typu danych, dla którego zdefiniowaliśmy (lub zdefiniował kompilator) działanie
operatora *. O (prze)definiowaniu znaczeń operatorów mówi następny rozdział.

Zaawansowane C++ 346

Kilka przykładów
Dla utrwalenia przyjrzyjmy się jeszcze innym przykładom makrodefinicje.

Wzory matematyczne

Proste podniesienie do kwadratu to nie jedyne działanie, jakie możemy wykonać poprzez
makro. Prawie każdy prosty wzór daje się zapisać w postaci odpowiedniej makrodefinicji -
spójrzmy:

#define CB(x) ((x) * (x) * (x))
#define SUM_1_n(n) ((n) * ((n) + 1) / 2)
#define POLE(a) SQR(a)
#define POLE(a,b) ((a) * (b))

Możemy tu zauważyć kilka faktów na temat parametryzowanych makr:

 mogą one korzystać z już zdefiniowanych makr (parametryzowanych lub nie) oraz
wszelkich innych informacji dostępnych w czasie kompilacji - jak choćby obiektów
const

 możliwe jest zdefiniowanie makra z więcej niż jednym parametrem. Wtedy jednak
dla bezpieczeństwa lepiej nie stawiać spacji po przecinku, gdyż niektóre
kompilatory uznają każdy biały znak za koniec nazwy i rozpoczęcie treści makra.
W nazwach typu POLE(a,b) i podobnych nie wpisujmy więc żadnych białych
znaków

 makrodefinicje można „przeciążać”, tj. zdefiniować kilka sztuk o tej samej nazwie.
Ponieważ jednak parametry makr nie mają przypisanych typów, poszczególne
wersje makr o identycznych nazwach muszą się różnić liczbą argumentów

Jeśli chodzi o łatwo zauważalne, intensywne użycie nawiasów w powyższych definicjach,
to wyjaśni się ono za parę chwil. Sądzę jednak, że pamiętając o doświadczeniach z
makrami-stałymi, domyślasz się ich roli…

Skracanie zapisu

Podobnie jak makra bez parametrów, makrodefinicje mogą przydać się do skracania
często używanych fragmentów kodu. Oferują one jeszcze możliwość ogólnego
zdefiniowania takiego fragmentu, bez wyraźnego podania niektórych nazw np.
zmiennych, które mogą się zmieniać w zależności od miejsca użycia makra.

A oto potencjalnie użyteczny przykład:

#define DELETE(p) { delete (p); (p) = NULL; }

Makro DELETE() jest przeznaczone do usuwania obiektu, na który wskazuje wskaźnik p.
Dodatkowo jeszcze dokonuje ono zerowania wskaźnika - dzięki temu będzie można
uchronić się przed omyłkowym odwołaniem do zniszczonego obiektu. Zerowy wskaźnik
można bowiem łatwo wykryć za pomocą odpowiedniego warunku if.

Jeszcze jeden przykład:

#define CLAMP(x, a, b) { if ((x) <= (a)) (x) = (a);
 if ((x) >= (b)) (x) = (b); }

To makro pozwala z kolei upewnić się, że zmienna (liczbowa) podstawiona za x będzie
zawierać się w przedziale <a; b>. Jego normalne użycie w formie:

CLAMP(nZmienna, 1, 10)

zostanie rozwinięte do kodu:

Preprocesor 347

{ if ((nZmienna) <= (1)) (nZmienna) = (1);
 if ((nZmienna) >= (10)) (nZmienna) = (10); }

po wykonaniu którego będziemy pewni, że nZmienna zawiera wartość równą co najmniej
1 i co najwyżej 10.

Przypominam o nawiasach klamrowych w definicjach makr. Jak sądzę pamiętasz, że
chronią one przed nieprawidłową interpretacją kodu makra w jednolinijkowych
instrukcjach if oraz pętlach.

Operatory preprocesora
W definicjach makr możemy korzystać z kilku operatorów, niedozwolonych nigdzie
indziej. To specjalne operatory preprocesora, które za chwilę zobaczymy przy pracy.

Sklejacz

Sklejacz (ang. token-pasting operator) jest też często nazywany operatorem łączenia
(ang. merging operator). Obie nazwy są adekwatne do działania, jakie ten operator
wykonuje. W kodzie makr jest on reprezentowany przez dwa znaki płotka (hash) - ##.

Sklejacz łączy ze sobą dwa identyfikatory, czyli nazwy, w jeden nowy identyfikator.
Najlepiej prześledzić to działanie na przykładzie:

#define FOO foo##bar

Wystąpienie FOO w programie zostanie przez preprocesor zamienione na złączenie nazw
foo i bar. Będzie to więc foobar.

Operator łączący przydaje się też w makrodefinicjach, ponieważ potrafi działać na ich
argumentach. Spójrzmy na takie oto przydatne makro:

#define UNICODE(text) L##text

Jego „wywołanie” z jakąkolwiek dosłowną stałą napisową spowoduje jej interpretację jako
łańcuch znaków Unicode. Przykładowo:

UNICODE("Wlazł kotek na płotek i spadł")

zmieni się na:

L"Wlazł kotek na płotek i spadł"

czyli napis zostanie zinterpretowany jako składający się z 16-bitowych, „szerokich”
znaków.

Operator łańcuchujący

Drugim z operatorów preprocesora jest operator łańcuchujący (ang. stringizing
operator). Symbolizuje go jeden znak płotka (hash) - #, zaś działanie polega na ujęciu w
podówjne cudzysłowy ("") nazwy, którą owym płotkiem poprzedzimy.
Popatrzmy na takie makro:

#define STR(string) #string

Działa ono w prosty sposób. Jeśli podamy mu jakąkolwiek nazwę czegokolwiek, np. tak:

STR(jakas_zmienna)

Zaawansowane C++ 348

to w wyniku rozwinięcia zostanie ona zastąpiona przez napis ujęty w cudzysłowy:

"jakas_zmienna"

Podana nazwa może składać z kilku wyrazów - także zawierających znaki specjalne, jak
cudzysłów czy ukośnik:

STR("To jest tekst w cudzyslowach")

Zostaną one wtedy zastąpione odpowiednimi sekwencjami ucieczki, tak że powyższy
tekst zostanie zakodowany w programie w sposób dosłowny:

"\"To jest tekst w cudzyslowach\""

W programie wynikowym zobaczylibyśmy więc napis:

"To jest tekst w cudzysłowach"

Byłby on więc identycznie taki sam, jak argument makra STR().

Visual C++ posiada jeszcze operator znakujący (ang. charazing operator), któremu
odpowiada symbol #@. Operator ten powoduje ujęcie podanej nazwy w apostrofy.

Niebezpieczeństwa makr
Niechęć wielu programistów do używania makr nie jest bezpodstawna. Te konstrukcje
językowe kryją w sobie bowiem kilka pułapek, których umiejscowienie należy znać.
Dzięki temu można je omijać - same te pułapki, albo nawet makra w całości.
Zobaczmy więc, na co trzeba zwrócić uwagę przy korzystaniu z makrodefinicji.

Brak kontroli typów
Początek definicji sparametryzowanego makra (zaraz za #define) przypomina deklaracją
funkcji, lecz bez określenia typów. Nie podajemy tu zarówno typów parametrów, jak i
typów „zwracanej wartości”. Dla preprocesora wszystko jest bowiem zwyczajnym
tekstem, który ma być jedynie przetransformowany według podanego wzoru.

Potencjalnie więc może to rodzić problemy. Na szczęście jednak są one zawsze
wykrywane już ne etapie kompilacji. Jest tak, gdyż o ile preprocesor posłusznie rozwninie
wyrażenie typu:

SQR("Tekst")

do postaci:

(("Tekst") * ("Tekst"))

o tyle kompilator nigdy nie pozwoli na mnożenie dwóch napisów. Taka operacja jest
przecież kompletnie bez sensu.

Dezorientację może jedynie wzbudzać komunikat o błędzie, jaki dostaniemy w tym
przypadku. Nie będzie to coś w rodzaju: "Błędny argument makra", bo dla kompilatora
makra już tam nie ma - jest tylko iloczyn dwóch łańcuchów. Błąd będzie więc dotyczył
niewłaściwego użycia operatora *, co nie od razu może nasuwać skojarzenia z makrami.

Preprocesor 349

Jeśli więc kompilator zgłasza nam dziwnie wyglądający błąd na (z pozoru) niewinnej
linijce kodu, to sprawdźmy przede wszystkim, czy nie ma w niej niewłaściwego użycia
makrodefinicji.

Parokrotne obliczanie argumentów
Błędy związane z typami wyrażeń nie są zbyt kłopotliwe, gdyż wykrywane są już w
trakcie kompilacji. Inne problemy z makrami nie są aż tak przyjemne…

Rozpatrzmy teraz taki kod:

int nZmienna = 7;
std::cout << SQR(nZmienna++) << std::endl;
std::cout << nZmienna;

Kompilator z pewnością nie będzie miał nic przeciwko niemu, ale jego działanie może być
co najmniej zaskakujące. Wedle wszelkich przewidywań powinien on przecież
wydrukować liczby 49 i 8, prawda?…
Dlaczego więc wynik jego wykonania przedstawia się tak:

56
9

Aby dociec rozwiązania, rozpiszmy druga linijkę tak, jak robi to preprocesor:

std::cout << ((nZmienna++) * (nZmienna++)) << std::endl;

Widać wyraźnie, że nZmienna jest tu inkrementowana dwukrotnie. Pierwsza
postinkrementacja zwraca wprawdzie wyniku 7, ale po niej nZmienna ma już wartość 8,
zatem druga inkrementacja zwróci w wyniku właśnie 8. Obliczymy więc iloczyn 7×8, czyli
56.
Ale to nie wszystko. Druga inkrementacja zwiększy jeszcze wartość 8 o jeden, zatem
nZmienna będzie miała ostatecznie wartość 9. Obie te niespodziewane liczby ujrzymy na
wyjściu programu.

Jaki z tego wniosek? Ano taki, że wyrażenia podane jako argumenty makr są obliczane
tyle razy, ile razy występują w ich definicjach. Przyznasz, że to co najmniej
nieoczekiwane zachowanie…

Priorytety operatorów
Pora na akt trzeci dramatu. Obiecałem wcześniej, że wyjaśnię, dlaczego tak gęsto
stawiam nawiasy w definicjach makr. Jeśli uważnie czytałeś sekcję o makrach-stałych, to
najprawdopodobniej już się tego domyślasz. Wytłumaczmy to jednak wyraźnie.

Najlepiej będzie przekonać o roli nawiasów na przykładzie, w którym ich nie ma:

#define SUMA(a,b,c) a + b + c

Użyjemy teraz makra SUMA() w takim oto kodzie:

std::cout << 4 * SUMA(1, 2, 3);

Jaką liczbę wydrukuje nam program? Oczywiście 24… Zaraz, czy aby na pewno?
Kompilacja i uruchomienie kończy się przecież rezultatem:

9

Zaawansowane C++ 350

Co się zatem stało? Ponownie winne jest wyrażenie wykorzystujące makra. Preprocesor
rozwinie je przecież do postaci:

4 * 1 + 2 + 3

co wedle wszelkich prawideł rachunku na liczbach (i pierwszeństwa operatorów w C++)
każe najpierw wykonać mnożenie 4 * 1, a dopiero potem resztę dodawania. Wynik jest
więc zupełnie nieoczekiwany.

Jak się też zdążyliśmy wcześniej przekonać, podobną rolę jak nawiasy okrągłe w
makrach-wyrażeniach pełnią nawiasy klamrowe w makrach zastępujących całe instrukcje.

Zalety makrodefinicji
Z lektury poprzedniego paragrafu wynika więc, że stosowanie makrodefinicji wymaga
ostrożności zarówno w ich definiowaniu (nawiasy!), jak i późniejszych użyciu
(przekazywanie prostych wyrażeń). Co zaś zyskujemy w zamian, jeśli zdecydujemy na
stosowanie makr?

Efektywność
Na każdym kroku wyraźnie podkreślam, jak działają makrodefinicje. To nie są funkcje,
które program wywołuje, lecz dosłowny kod, który zostanie wstawiony w miejsce użycia
przez preprocesor.

Co z tego wynika? Otóż z pozoru jest to bardzo wyraźna zaleta. Brak konieczności skoku
w inne miejsce programu - do funkcji - oznacza, że nie trzeba wykonywać wszelkich
czynności z tym związanych.
Nie trzeba zatem angażować pamięci stosu, by zachować aktualny punkt wykonania oraz
przekazać parametry. Nie trzeba też szukać w pamięci operacyjnej miejsca, gdzie
rezyduje funkcja i przeskakiwać do niego. Wreszcie, po skończonym wykonaniu funkcji
nie trzeba zdejmować ze stosu adresu powrotnego i przy jego pomocy wracać do miejsca
wywołania.

Funkcje inline

A jednak te zalety nie są wcale argumentem przeważającym na korzyść makr. Wszystko
dlatego, że C++ umożliwia skorzystanie z nich także w odniesieniu do zwykłych funkcji.
Tworzymy w ten sposób funkcje rozwijane w miejscu wywołania - albo krótko:
funkcje inline.

Są tą funkcje pełną gębą i dlatego zupełnie nie dotyczą ich problemy związane z
wielokrotnym obliczaniem wartości parametrów czy priorytetami operatorów. Działają
one po prostu tak, jakbyśmy się tego spodziewali po normalnych funkcjach, a ponadto
posiadają też zalety makrodefinicji. Funkcje inline nie są więc faktycznie wywoływane
podczas działania programu, lecz ich kod zostaje wstawiony (rozwinięty) w miejscu
wywołania podczas kompilacji programu. Dzieje się to zupełnie bez ingerencji
programisty w sposób wywoływania funkcji.
Jedyne, co musi on zrobić, to poinformować kompilator, które funkcje mają być
rozwijane. Czyni to, przenosząc ich definicje do pliku nagłówkowego (to ważne!101)
i opatrując przydomkiem inline, np.:

inline int Sqr(int a) { return a * a; }

101 Jest tak, gdyż pełna definicja funkcji inline (a nie tylko prototyp) musi być znana w miejscu wywołania
funkcji - tak, aby jej treść mogła być wstawiona bezpośrednio do kodu w tym miejscu.

Preprocesor 351

„Wspaniale!”, możesz krzyknąć, „Odtąd wszystkie funkcje będę deklarował jako inline!”
Chwileczkę, nie tędy droga. Musisz być świadom, że wstawianie kodu dużych funkcji w
miejsce każdego ich wywołania powodowałoby rozdęcie kodu do sporych rozmiarów.
Duży rozmiar mógłby nawet spowolnić wykonanie programu, zajmującego nadzwyczajnie
dużo miejscu w pamięci operacyjnej. Na funkcjach inline można się więc poślizgnąć.
Lepiej zatem nie opatrywać modyfikatorem inline żadnych funkcji, które mają więcej
niż kilka linijek. Na pewno też nie powinny to być funkcje zawierające w swym ciele pętle
czy inne rozbudowane konstrukcje językowe (typu switch lub wielopoziomowych
instrukcji if).

Miło jest jednak wiedzieć, że obecne kompilatory są po naszej stronie, jesli chodzi o
funkcje inline. Dobry kompilator potrafi bowiem zrobić analizę zysków i strat z
zastosowania inline do konkretnej funkcji: jeśli stwierdzi, że w danym przypadku
rozwijanie urągałoby szybkości programu, nie przeprowadzi go. Dla prostych funkcji (dla
których inline ma największy sens) kompilatory zawsze jednak ulegają naszym
żądaniom.

W Visual C++ jest dodatkowe słowo kluczowe __forceinline. Jego użycie zamiast
inline sprawia, że kompilator na pewno rozwinie daną funkcję w miejscu wywołania,
ignorując ewentualne uszczerbki na wydajności. VC++ ma też kilka dyrektyw #pragma,
które kontrolują rozwijanie funkcji inline - możesz o nich przeczytać w dokumentacji
MSDN.

Warto też wiedzieć, że metody klas definiowane wewnątrz bloków class (lub struct i
union) są automatycznie inline. Nie musimy opatrywać ich żadnym przydomkiem. Jest
to szczególnie korzystne dla metod dostępowych do pól klasy.

Makra kontra funkcje inline

Cóż więc wynika z zapoznania się z funkcjami inline? Ano to, że powinniśmy je stosować
zawsze wtedy, gdy przyjdzie nam ochota na wykorzystanie makrodefinicji. Funkcje inline
są po prostu lepsze, gdyż łączą w sobie zarówno zalety zwykłych funkcji, jak i zalety
makr.

Brak kontroli typów
Wydawałoby się jednak, że jest jedna sytuacja, gdy makra mają przewagę nad zwykłymi
funkcjami. Ta wyższość ujawnia się w cesze, którą poprzednio wskazaliśmy jako ich
słabość: w braku kontroli typów.

Otóż często jest to wręcz pożądana właściwość. Nie wiem czy zauważyłeś, ale większość
zdefiniowanych przez nas makr działa równie dobrze dla liczb całkowitych, jak i
rzeczywistych. Działa dla każdego typu zmiennych liczbowych:

SQR(-14) // int
SQR(12u) // unsigned
SQR(3.14f) // float
SQR(-87.56) // double

Łatwo to wyjaśnić. Preprocesor zamieni po prostu każde użycie makra na odpowiedni
iloczyn, zapisany w sposób dosłowny w kodzie wysłanym do kompilatora. Ten zaś
potraktuje te wyrażenia jak każde inne.

Gdybyśmy chcieli podobny efekt uzyskać przy pomocy funkcji inline, to zapewne
pierwszym pomysłem byłoby napisanie kilku(nastu?) przeciążonych wersji funkcji. To
jednak nie jest konieczne: C++ potrafi bowiem stosować w kontekście normalnych
funkcji także i tę cechę makra, jaką jest niezależność od typu. Poznamy bowiem wkrótce
mechanizm szablonów, który pozwala na takie właśnie zachowanie.

Zaawansowane C++ 352

Ciekawostka: funkcje szablonowe

Niecierpliwym pokażę już teraz, w jaki sposób makro SQR() zastąpić funkcją szablonową.
Odpowiedni kod może wyglądać tak:

template <typename T> inline T Sqr(T a) { return a * a; }

Powyższy szablon funkcji (tak to się nazywa) może być stosowany dla każdego typu
liczbowego, a nawet więcej - dla każdego typu obsługującego operator *. Posiada przy
tym te same zalety co zwykłe funkcje i funkcje inline, a pozbawiony jest typowych dla
makr kłopotów z wielokrotnym obliczaniem argumentów i nawiasami.
W jednym z przyszłych rozdziałów poznamy dokładnie mechanizm szablonów w C++,
który pozwala robić tak wspaniałe rzeczy bardzo małym kosztem.

Zastosowania makr
Czytelnicy chcący znaleźć uzasadnienie dla wykorzystania makr, mogą się poczuć
zawiedzeni. Wyliczyłem bowiem wiele ich wad, a wszystkie zalety okazywały się w końcu
zaletami pozornymi. Takie wrażenie jest w dużej części prawdziwe, lecz nie znaczy to, że
makrach należy całkiem zapomnieć. Przeciwnie, należy tylko wiedzieć, gdzie, kiedy i jak z
nich korzystać.

Nie korzystajmy z makr, lecz z obiektów const

Przede wszystkim nie powinniśmy używać makr tam, gdzie lepiej sprawdzają się inne
konstrukcje języka. Jeżeli kompilator dostarcza nam narzędzi zastępujących dane pole
zastosowań makr, to zawsze będzie to lepszy mechanizm niż same makra.

Dotyczy to na przykład stałych. Już na samym początku kursu podkreśliłem, żeby
stosować przydomek const do ich definiowania. Użycie #define pozbawia bowiem stałe
cennych cech „niezmiennych zmiennych” - typu, zasięgu oraz miejsca w pamięci.

Nie korzystajmy z makr, lecz z (szablonowych) funkcji inline

Podobnie nie powinniśmy korzystać z makrodefinicji, by zyskać na szybkości programu.
Te same efekty szybkościowe osiągniemy bowiem za pomocą funkcji inline, zaś przy
okazji nie pozbawimy się wygody i bezpieczeństwa, jakie daje ich stosowanie (w
przeciwieństwie do makr).

A jeśli chodzi o niewrażliwość na typy danych, to obecnie może to być dla ciebie zaletą.
Kiedy jednak poznasz technikę szablonów, także i ten argument straci swoją ważność.

Korzystajmy z makr, by zastępować powtarzające się fragmenty kodu

Jak więc poprawnie stosować makra? Najważniejsze jest, aby zapamiętać, czym one są.
Powiedzieliśmy sobie dotąd, czym makra nie są - nie są stałymi i nie są funkcjami. Makra
to najsampierw sposób na zastąpienie jednego fragmentu kodu innym. Używamy ich więc
wtedy, gdy zauważymy czsto powtarzające się sekwencje dwóch-trzech instrukcji,
których wyodrębnienie w osobnej funkcji nie jest możliwe, lecz których ręczne
wpisywanie staje się nużące. Dla takich właśnie sytuacji stworzono makra.

Korzystajmy z makr, by skracać sobie zapis

Makra są narzędzami do operacji na tekście - tekście programu, czyli kodzie. Stosujmy je
więc, aby dokonywać takich automatycznych działań.
Jeden przykład takiego zastosowania już podałem: to bezpieczne zniszczenie obiektu
połaczone z wyzerowaniem wskaźnika. Innym może być chociażby pobranie liczby
elementów niedynamicznej tablicy:

#define ELEMENTS(tab) ((sizeof(tab) / sizeof((tab)[0]))

Preprocesor 353

Znanych jest wiele podobnych i przydatnych sztuczek, szczególnie z wykorzystanie
operatorów preprocesora - # i ##. Być może niektóre z nich sam odkryjesz lub znajdziesz
w innych źródłach.

Korzystajmy z makr zgodnie z ich przeznaczeniem

Na koniec nie mogę jeszcze nie wspomnieć o bardzo ważnym zastosowaniu makr,
przewidzianym przez twórców języka. Zastosowanie to przetrwało próbę czasu i nikt
nawet myśli o jego zastąpieniu czy likwidacji.
Tym polem wykorzystania makr jest kompilacja warunkowa. Ten użyteczny sposób na
kontrolę procesu kompilacji programu jest tematem następnego podrozdziału.

Kontrola procesu kompilacji
Preprocesor wkracza do akcji, przeglądając kod jeszcze zanim zrobi to kompilator.
Sprawia to, że możliwe jest wykorzystanie go do sprawowania kontroli nad procesem
kompilacji programu. Możemy określić, jakie jego fragmenty mają pojawić się w
wynikowym pliku EXE, a jakie nie. Podejmowanie takich decyzji nazywamy kompilacją
warunkową (ang. conditional compilation).

Do czego może to się przydać? Przede wszystkim pozwala to dołączyć do programu
dodatkowy kod, pomocny w usuwaniu z niego błędów. Zazwyczaj jest to kod
wyświetlający pewne pośrednie wyniki obliczeń, logujący przebieg pewnych czynności lub
prezentujący co określony czas wartości kluczowych zmiennych. Po zakończeniu
testowania aplikacji możnaby było ów kod usunąć, ale jest przecież niewykluczone, że
stanie się on przydatny w pracy nad kolejną wersją.
Wyjściem byłoby więc jego czasowe wyłączenie w momencie finalnego kompilowania.
Najprostszym rozwiązaniem wydaje się użycie komentarza blokowego i jest to dobre
wyjście - pod jednym warunkiem: że nasz kompilator pozwala na zagnieżdżanie takich
komentarzy. Nie jest to wcale obowiązkowy wymóg i dlatego nie zawsze to się sprawdza.
Komentowanie ma jeszcze jedną wadę: komentarze trzeba za każdym razem dodawać
lub usuwać ręcznie. Po kilku-kilkunastu-kilkudziesięciu powtórzeniach kompilacji staje się
to prawdziwą udręką.
A przecież można sprytniej. Kompilacja warunkowa pozwala bowiem w prosty sposób
włączać i wyłączać kompilowanie określonego kodu w zależności od stanu pewnych
ustalonych warunków.

Mechanizm ten ma jeszcze jedną zaletę, związana z przenośnością programów. Daje się
to najbardziej odczuć w aplikacjach rozprowadzanych wraz z kodem źródłowym czy
nawet wyłącznie w postaci źródłowego (programach na licencjach Open Source i
GNU GPL). Takie programy mogą być teoretycznie kompilowane na wszystkich systemach
operacyjnych i platformach sprzętowych, dla których istnieją kompilatory C++. W
praktyce zależy to od warunkow zewnętrznych: wiadomo na przykład doskonale, że
program dla środowiska Windows nie uruchomi się ani nie skompiluje w systemie Linux.
Jednak nawet pomiędzy komputerami pracującymi pod kontrolą tych samych systemów
operacyjnych występują różnice (zwłaszcza jeśli chodzi o Linux). Przykładowo, procesory
tych komputerów mogą różnić się architekturą: obecnie dominują jednostki 32-bitowe,
ale w wielu zastosowaniach mamy już procesory o 64 bitach w słowie maszynowym.
Kompilatory wykorzystujące te procesory mają odmienną wielkość typu int: odpowiednio
4 i 8 bajtów. Może to rodzić problemy z zapisywaniem i odczytywaniem danych.
Podobnych przykładów jest bardzo dużo, więc twórcy aplikacji rozprowadzanych jako kod
muszą liczyć się z tym, że będą one kompilowane na bardzo różnych systemach.
Technika kompilacji warunkowej pozwala przygotować się na wszystkie ewentualności.

Większość opisanych tu problemów dotyczy aczkolwiek systemów z wolnym kodem
źródłowym, takich jak Linux. Stosowanie kontrolowanej kompilacji nie ogranicza się

Zaawansowane C++ 354

jednak tylko do programów pracujących pod kontrolą takich systemów. Także wiele
funkcji Windows jest dostępnych jedynie w określonych wersjach systemu, a chcąc z nich
skorzystać musimy wprowadzić do kodu dodatkowe informacje. Zostaną one
wykorzystane w kompilacji warunkowej.

Kontrolowanie kompilacji może więc dać dużo korzyści. Warto zatem zobaczyć, w jaki
sposób to się odbywa.

Dyrektywy #ifdef i #ifndef

Wpływanie na proces kompilacji odbywa się za pomocą kilku specjalnych dyrektyw
preprocesora. Teraz poznamy kilka pierwszych, między innymi tytułowe #ifdef i #ifndef.
Najpierw jednak drobne przypomnienie makr.

Puste makra
Wprowadzając makra napomknąłem, że podawanie ich treści nie jest obowiązkowe.
Mówiąc dosłownie, preprocesor uzna za całkowicie poprawną definicję:

#define MAKRO

Jeśli MAKRO wystąpi dalej w pliku kompilowanym, to zostanie po prostu usunięte. Nie
będzie on zatem zbyt przydatne, jeśli chodzi o operacje na tekście programu. To jednak
nie jest teraz istotne.
Ważne jest samo zdefiniowanie tego makra. Ponieważ zrobiliśmy to, preprocesor
będzie wiedział, że taki symbol został mu podany i „zapamięta” go. Pozwala nam to na
zastosowanie kompilacji warunkowej.

Przypomnijmy jeszcze, że możemy odwołać definicję makra dyrektywą #undef.

Dyrektywa #ifdef
Najprostszą i jedną z częściej używanych dyrektyw kompilacji warunkowej jest #ifdef:

#ifdef makro
 instrukcje
#endif

Jej nazwa to skrót od angielskiego if defined, czyli ‘jeśli zdefiniowane’. Dyrektywa #ifdef
powoduje więc kompilacje kodu instrukcji, jeśli zdefiniowane jest makro.
instrukcje mogą być wielolinijkowe; kończy je dyrektywa #endif.

#ifdef pozwala na czasowe wyłączenie lub włączenie określonego kodu. Typowym
zastosowaniem tej dyrektywy jest pomoc w usuwaniu błędów, czyli debuggowaniu.
Możemy objąć nią na przykład kod, który drukuje parametry przekazane do jakiejś
funkcji:

void Funkcja(int nParametr1, int nParametr2, float fParametr3)
{
 #ifdef DEBUG
 std::cout << "Parametr 1: " << nParametr1 << std::endl;
 std::cout << "Parametr 2: " << nParametr2 << std::endl;
 std::cout << "Parametr 3: " << fParametr3 << std::endl;
 #endif

 // (kod funkcji)
}

Preprocesor 355

Kod ten zostanie skompilowany tylko wtedy, jeśli wcześniej zdefiniujemy makro DEBUG:

#define DEBUG

Treść makra nie ma znaczenia, bo liczy się sam fakt jego zdefiniowania. Możemy więc
pozostawić ją pustą. Po zakończeniu testowania usuniemy lub wykomentujemy tę
definicję, a linijki drukujące parametry nie zostaną włączone do programu. Jeśli użyjemy
#ifdef (lub innych dyrektyw warunkowych) większą liczbę razy, to oszczędzimy
mnóstwo czasu, bo nie będziemy musieli przeszukiwać programu i oddzielnie
komentować każdej porcji diagnostycznego kodu.

W wielu kompilatorach możemy wybrać tryb kompilacji, jak np. Debug (testowa) i
Release (wydaniowa) w Visual C++. Różnią sie one stopniem optymalizacji i
bezpieczeństwa, a także zdefiniowanymi makrami. W trybie Debug kompilator Microsoftu
sam definiuje makro _DEBUG, którego obecność możemy testować.

Dyrektywa #ifndef
Przeciwnie do #ifdef działa druga dyrektywa - #ifndef:

#ifndef makro
 instrukcje
#endif

Ta opozycja polega na tym, że instrukcje ujęte w #ifndef/#endif zostaną
skompilowane tylko wtedy, gdy makro nie jest zdefiniowane. #ifndef znaczy if not
defined, czyli właśnie ‘jeżeli nie zdefiniowane’.

Nawiązując do kolejnego przykładu, możemy użyć #ifndef w stosunku do kodu, który
ma się kompilować wyłącznie w wersjach wydaniowych. Może to być choćby wyświetlanie
ekranu powitalnego (ang. splash screen). Jego widok przy setnym, testowym
uruchamianiu programu może być bowiem naprawdę denerwujący.

Dyrektywa #else
Do spółki z obiema dyrektywami #ifdef i #ifndef (a także z #if, opisaną w następnym
paragrafie) wchodzi polecenie #else. Jak można się domyśleć, pozwala ono na wybór
dwóch wariantów kodu: jednego, który jest kompilowany w razie zdefiniowania (#ifdef)
lub niezdefiniowania (#ifndef) makra oraz drugiego - w przeciwnych sytuacjach:

#if[n]def makro
 instrukcje_1
#else
 instrukcje_2
#endif

Zastosowaniem dla tej dyrektywy może być na przykład system raportowania błędów. W
trybie testowania można chcieć zrzutu całej pamięci programu, jeśli wystąpi w nim jakiś
poważny błąd. W wersjach wydaniowych i tak nie możnaby było nic z krytycznym błędem
zrobić, więc nie powinno się zmuszać (zdenerwowanego przecież) klienta do czekania na
tak wyczerpującą operację. Wystarczy wtedy zapis wartości najważniejszych zmiennych.

Zwróćmy uwagę, że dyrektywa #else służy w tym przypadku wyłącznie naszej wygodzie.
Równie dobrze poradzilibyście sobie bez niej, pisząc najpierw warunek z #ifdef
(#ifndef), a potem z #ifndef (#ifdef).

Zaawansowane C++ 356

Dyrektywa warunkowa #if

Uogólnieniem dyrektyw #ifdef i #ifndef jest dyrektywa #if:

#if warunek
 instrukcje
#endif

Przypomina ona instrukcję if, z tym że odnosi się do zagadnienia kompilowania lub
niekompilowania wyszczególnionych instrukcji. #if ma też wersję z #else:

#if warunek
 instrukcje_1
#else
 instrukcje_2
#endif

Jak słusznie przypuszczasz, #if sprawi, że w przypadku spełnienia warunku
skompilowany zostanie kod instrukcje_1, zaś w przeciwnym przypadku instrukcje_2
(lub żaden, jeśli #else nie występuje).

Konstruowanie warunków
Co może być warunkiem? W ogólności wszystko, co znane jest preprocesorowi w
momencie napotkania dyrektywy #if. Są to więc:

 wartości dosłownych stałych liczbowych, podane bezpośrednio w kodzie jako
liczby, np. -8, 42 czy 0xFF

 wartości makr-stałych, zdefiniowane wcześniej dyrektywą #define
 wyrażenia z operatorem defined

A co z resztą stałych wartości, np. obiektami const?… Otóż one nie mogą (albo raczej nie
powinny) być składnikami warunków #if. Jest tak, ponieważ obiekty te należą do
kompilatora, a nie do preprocesora. Ten nie ma o nich pojęcia, gdyż zna tylko swoje
makra #define. To jedyny przypadek, gdy mają one przewagę na stałymi const.
Podobnie rzecz ma się z operatorem sizeof, który jest wprawdzie operatorem czasu
kompilacji, ale nie jest operatorem preprocesora.

Gdyby #if rozpoznawało warunki z użyciem stałych const i operatora sizeof, nie
mogłoby już być obsługiwane przez preprocesor. Musisz bowiem pamiętać, że dla
preprocesora istnieją tylko jego dyrektywy, zaś cały tekst między nimi może być
czymkolwiek (choć dla nas jest akurat kodem). Chcąc zmusić preprocesor do obsługi
obiektów const i operatora sizeof należałoby w istocie obarczyć jego zadaniami
kompilator.

Operator defined

Operator defined służy do sprawdzenia, czy dane makro zostało zdefiniowane. Warunek:

#if defined(makro)

jest więc równoważny z:

#ifdef makro

Natomiast dla #ifndef alternatywą jest:

Preprocesor 357

#if !defined(makro)

Przewaga operatora defined na #if[n]def polega na tym, iż operator ten może
występować w złożonych wyrażeniach, będących warunkami w dyrektywie #if.

Złożone warunki
#if jest podobna do if także pod tym względem, iż pozwala na stosowanie operatorów
relacyjnych i logicznych w swoich warunkach. Nie zmienia to aczkolwiek faktu, że
wszystkie argumenty tych operatorów muszą być znane w trakcie pracy preprocesora - a
więc należeć do trzech grup, które podałem we wstępie do paragrafu.

Ta możliwość dyrektywy #if pozwala na warunkową kompilację kodu zależną od kilku
warunków, na przykład:

#define MAJOR_VERSION 4
#define MINOR_VERSION 6

#if ((MAJOR_VERSION == 4) && (MINOR_VERSION >= 2))
 || (MAJOR_VERSION > 4))
 std::cout << "Ten kod skompiluje się tylko w wersji 4.2 lub nowszej";
#endif

Mogą w nich wystapić porównania makr-stałych, liczb wpisanych dosłownie oraz wyrażeń
z operatorem defined. Wszystkie te części można natomiast łączyć znanymi operatorami
logicznymi: !, && i ||.

Skomplikowane warunki kompilacji
To jeszcze nie wszystkie możliwości dyrektyw kompilacji warunkowej. Do bardziej
wyszukanych należy ich zagnieżdżanie i spiętrzanie.

Zagnieżdżanie dyrektyw
Wewnątrz kodu zawartego między #if[[n]def] oraz #else i między #else i #endif
mogą się znaleźć kolejne dyrektywy kompilacji warunkowej. Działa to w podobny sposób,
jak zagnieżdżone instrukcje if w blokach kodu innych instrukcji if.
Spójrzmy na ten przykład102:

#define WINDOWS 1
#define WIN_NT 1

#define PLATFORM WINDOWS
#define WIN_VER WIN_NT

#if PLATFORM == WINDOWS
 #if WIN_VER == WIN_NT
 std::cout << "Program kompilowany na Windows z serii NT";
 #else
 std::cout << "Program kompilowany na Windows 9x lub ME";
 #endif
#else
 std::cout << "Nieznana platforma (DOS? Linux?)";
#endif

102 To tylko przykład ilustrujący kompilację warunkową. Prawdziwa kontrola wersji systemu Windows, na której
kompilujemy program, wymaga dołączenia pliku windows.h i kontrolowania makr o nieco innych nazwach i
wartościach…

Zaawansowane C++ 358

Jeśli zagnieżdżamy w sobie dyrektywy preprocesora, to stosujmy wcięcią podobne do
instrukcji w normalnym kodzie. Nie wiedzieć czemu niektóre IDE (np. Visual C++)
domyślnie wyrównują dyrektywy preprocesora w jednym pionie; wyłączmy im tę
niepraktyczną opcję.
W Visual Studio .NET wybierzmy pozycję w menu Tools|Options, zaś w pojawiającym się
oknie dialogowym przejdźmy do zakładki Text Editor|C/C++|Tabs i ustawmy opcję
Indenting na Block.

Dyrektywa #elif
Czasem dwa warianty to za mało. Jeśli chcemy wybrać kilka możliwych dróg kompilacji,
to należy zastosować dyrektywę #elif. Jej nazwa to skrót od else if, co mówi wszystko
na temat roli tej dyrektywy.
Ponownie zerknijmy na przykładowy kod:

#define WINDOWS 1
#define LINUX 2
#define OS_2 3
#define QNX 4

#define PLATFORM WINDOWS

#if PLATFORM == WINDOWS
 std::cout << "Kod kompilowany w systemie Windows";
#elif PLATFORM == LINUX
 std::cout << "Program budowany w systemie Linux";
#elif PLATFORM == OS_2
 std::cout << "Kompilacja na platformie systemu OS/2";
#elif PLATFORM == QNX
 std::cout << "Skompilowano w systemie QNX";
#endif

Do takich warunków pewnie znacznie lepsza byłaby dyrektywa typu #switch, lecz
niestety preprocesor jest nie posiada.

Dyrektywa #elif, podobnie jak #else, może być także „doczepiona” do warunków
#ifdef i #ifndef. Pamiętajmy jednak, że po niej musi nastąpić wyrażenie logiczne, a nie
tylko nazwa makra.

Dyrektywa #error
Ostatnią z dyrektyw warunkowej kompilacji jest #error:

#error "komunikat"

Gdy preprocesor spotka ją na swojej drodze, wtedy jest to dla niego sygnałem, iż tok
kompilacji schodzi na złe tory i powinien zostać przerwany. Czyni to więc, a po takim
niespodziewanym zakończeniu widzimy w oknie błędów komunikat, jaki podaliśmy w
dyrektywie #error (nie musi on koniecznie być ujęty w cudzysłowy, ale to dobry
zwyczaj).

Dla ilustracji tego polecenia uzupełnimy piętrowy warunek #if z poprzedniego paragrafu:

#if PLATFORM == WINDOWS
 std::cout << "Kod kompilowany w systemie Windows";
#elif PLATFORM == LINUX
 std::cout << "Program budowany w systemie Linux";
// ...

Preprocesor 359

#else
 #error "Nieznany system operacyjny, kompilacja przerwana!"
#endif

Jeżeli nie zdefiniujemy makra PLATFORM lub będzie miało inną wartość niż podane stałe
WINDOWS, LINUX, itd., to preprocesor zareaguje odpowiednim błędem. W Visual C++ .NET
wygląda on tak:

fatal error C1189: #error : "Nieznany system operacyjny, kompilacja przerwana!"

Jak widać jest to „błąd fatalny”, który zawsze powoduje przerwanie kompilacji programu.

W ten oto sposób zakończyliśmy omawianie dyrektyw preprocesora, służących kontroli
procesu kompilacji programu. Obok makr jest to najważniejszy aspekt zastosowania
mechanizmu wstępnego przetwarzania kodu.
Te dwa tematy nie są aczkolwiek pełnią możliwości preprocesora. Teraz poznamy jeszcze
kilka dyrektyw ogólnego przeznaczenia - nie mniej ważnych niż te dotychczasowe.

Reszta dobroci
Pozostałe dyrektywy preprocesora są także bardzo istotne. Jedna z nich jest na tyle
kluczowa, że widzisz ją w każdym programie napisanym w C++.

Dołączanie plików
Tą dyrektywą jest oczywiście #include. Już przynajmniej dwa razy przyglądaliśmy się jej
bliżej, lecz teraz czas na wyjaśnienie wszystkiego.

Dwa warianty #include
Zaczniemy od przypomnienia składni tej dyrektywy. Jak wiemy, istnieją jej dwa warianty:

#include <nazwa_pliku>
#include "nazwa_pliku"

Oba powodują dołączenie pliku o wskazanej nazwie. Podczas przetwarzania kodu
preprocesor usuwa po prostu wszystkie dyrektywy #include, wstawiając na ich miejsce
zawartość wskazywanego przez nie plików.
Dzieki temu, że robi to preprocesor, a nie my, zyskujemy na kilku sprawach:

 nasze pliki kodu nie są (zbyt) duże, bo zawartość dołączanych plików
(nagłówkowych) nie jest w nich wstawiona na stałe, a jedynie dołączana na czas
kompilacji

 chcąc zmienić zawartość współdzielonych plików, nie musimy modyfikować ich
kopii we wszystkich modułach, które zeń korzystają

 mamy więcej czasu, a przecież czas to pieniądz ;D

Skoro zaś #include oddaje nam tak cenne usługi, pomówmy o jej dwóch wariantach i
różnicach między nimi.

Z nawiasami ostrymi
Model z nawiasami ostrymi (tworzonymi poprzez znak mniejszości i większości):

#include <nazwa_pliku>

Zaawansowane C++ 360

stosowaliśmy od samego początku nauki C++. Nieprzypadkowo: pliki, jakie dołączamy w
ten sposób, są po prostu niezbędne do wykorzystania niektórych elementów języka,
Biblioteki Standardowej oraz innych bibliotek (Windows API, DirectX, itd.).

Gdy preprocesor widzi dyrektywę #include w powyższej postaci, to zaczyna szukać
podanego pliku w jednym z wewnętrznych katalogów kompilatora, gdzie znajdują się pliki
dołączane (ang. include files). Takich katalogów jest zwykle kilka, więc preprocesor
przeszukuje ich listę; foldery te zawierają m.in. nagłówki Biblioteki Standardowej C++
(string, vector, list, ctime, cmath, …), starszej Biblioteki Standardowej C (time.h, math.h,
…103), a często także nagłówki innych zainstalowanych bibliotek.

Chcąc przejrzeć lub zmodyfikować listę katalogów z plikami dołączanymi w Visual
C++ .NET, musimy wybrać z menu Tools pozycję Options. Dalej przechodzimy do
zakładki Projects|VC++ Directories, a na liście rozwijalnej Show directories for:
wybieramy Include files.

Z cudzysłowami
Drugi typ instrukcji #include wygląda następująco:

#include "nazwa_pliku"

Z nimtakże zdążyliśmy się już spotkać - stosowaliśmy go do włączania własnych plików
nagłówkowych do swoich modułów.

Ten wariant #include działa w sposób nieco bardziej kompleksowy niż poprzedni.
Wpierw bowiem przeszukuje on bieżący katalog - tzn. ten katalog, w którym
umieszczono plik zawierający dyrektywę #include. Jeśli tam nie znajdzie podanego
pliku, wówczas zaczyna zachowywać się tak, jak #include z nawiasami ostrymi.
Przegląda więc zawartość katalogów z listy folderów plików dołączanych.

Który wybrać?
Dwa rodzaje jednej dyrektywy to całkiem sporo. Którą wybrać w konkretnej sytuacji?…

Nasz czy biblioteczny

Decyzja jest jednak bardzo prosta:
 jeżeli dołączamy nasz własny plik nagłówkowy - taki, który znajduje się gdzieś

blisko, na przykład w tym samym katatlogu - to powinniśmy skorzystać z
dyrektywy #include, podając nazwę pliku w cudzysłowach

 jeśli natomiast wykorzystujemy nagłówek biblioteczny, pochodzący od
kompilatora czy innych związanych z nim komponentów - stosujmy #include z
nawiasami ostrymi

Teoretycznie można byc zawsze stosować wariant z cudzysłowami. To jednak obniżałoby
czytelnośc kodu, gdyż nie można byłoby łatwo odróżnić, które dyrektywy dołączają nasze
własne nagłówki, a które - nagłówki biblioteczne. Lepiej więc stosować rozróznienie.

Nie pisałem tego na początku tej sekcji, ale chyba wiesz doskonale (bo mówiłem o tym
wcześniej), że poprawne jest dołączanie wyłącznie plików nagłówkowych. Są to pliki
zawierające deklaracje (prototypy) funkcji nie-inline, definicje funkcji inline, deklaracje

103 Te nagłówki sa niezalecane, należy stosować ich odpowiedniki bez rozszerzenia .h i literką ‘c’ na początku.
Zamiast np. math.h używamy więc cmath.

Preprocesor 361

zapowiadające zmiennych oraz definicje klas (a często także definicje szablonów, ale o
tym później). Pliki te mają zwykle rozszerzenie .h, .hh, lub .hpp.

Ścieżki względne

W obu wersjach #include możemy wykorzystywać tzw. ścieżki względne (ang. relative
paths), choć prawdziwie przydatne są one tylko w dyrektywie z cudzysłowami.

Ścieżki względne pozwalają dołączać pliki znajdujące się w innym katalogu niż bieżący104:
w podkatalogach lub w nadkatalogu czy też w innych katalogach tego samego poziomu.
Oto kilka przykładów:

#include "gui\buttons.h" // 1
#include "..\base.h" // 2
#include "..\common\pointers.hpp" // 3

Dyrektywa 1 powoduje dołączenie pliku buttons.h z podkatalogu gui. Kolejne użycie
#include dołączy nam plik base.h z katalogu nadrzędnego względem obecnego. Z kolei
ostatnia dyrektywa powoduje wpierw wyjście z aktualnego katalogu (..), następnie
wejście do podkatalogu common, pobranie zeń zawartości pliku pointers.hpp i wstawienie
w miejsce linijki 3.

Jak widać, w #include można wykorzystać te same zasady tworzenia ścieżek
względnych, jakie obowiązują w całym systemie operacyjnych105.

Zabezpieczenie przed wielokrotnym dołączaniem
Dyrektywa #include jest głupia jak cały preprocesor. Ona tylko wstawia tekst podanego
w pliku w miejsce swego wystąpienia. Nie dba przy tym, czy takie wstawienie spowoduje
jakieś niepożądane efekty. A łatwo może przecież takie skutki wywołać…
Wyobraźmy sobie, że dołączamy plik A, który sam dołącza plik B i X. Niech plik B też
dołącza plik X i już mamy problem: ewentualne definicje zawarte w X będą przez
kompilator odczytane dwukrotnie. Zareaguje on wtedy błędem.

Trzeba więc podjąć ku temu jakiś środki zaradcze.

Tradycyjne rozwiązanie
Rozwiązanie problemu znanym jeszcze z C jest zastosowanie kompilacji warunkowej.
Musimy po prostu objać cały plik nagłówkowy (nazwijmy go plik.h) w dyrektywy
#ifndef-#endif:

#ifndef _PLIK__H_
#define _PLIK__H_

// (cała treść pliku nagłówkowego)

#endif

Użyte tu makro (_PLIK__H_) powinno być najlepiej spreparowane w jakiś sposób z nazwy
i rozszerzenia pliku - a jeśli trzeba, także i ze ścieżki do niego.

104 Bieżący - to znaczy ten katalog, gdzie znajduje sie plik z dyrektywą #include "...".
105 Jako separatora możemy użyć slasha lub backslasha. Slash ma tę zaletę, że działa także w systemach
unixowych - jeśli oczywiście dla kogoś jest to zaletą…

Zaawansowane C++ 362

Jak to działa? Otóż dyrektywa #ifndef przepuści tylko jedno wstawienie treści pliku. Przy
powtórnej próbie makro _PLIK__H_ bedzie już zdefiniowane, więc cała zawartość pliku
zostanie wyłączona z kompilacji.

Pomaga kompilator
Zaprezentowany wyżej sposób ma przynajmniej kilka wad:

 wymaga wymyślania nazwy dla makra kontrolnego, co przy dużych projektach,
gdzie łatwo występują nagłówki o tych samych nazwach, staje się kłopotliwe.
Sytuacja wygląda jeszcze gorzej w przypadku bibliotek pisanych przez nas: tam
makra powinni mieć w nazwie także określenie biblioteki, aby nie prowokować
potencjalnych konfliktów z innymi zasobami kodu

 umieszczona na końcu pliku dyrektywa #endif może być łatwo przeoczona i
omyłkowo skasowana. Nietrudno też napisać jakiś kod poza klamrą #ifndef-
#else - on nie będzie już objęty ochroną

 „sztuczka” wymaga aż trzech linii kodu, w tym jednej umieszczonej na samym
końcu pliku

Mnie osobiście rozwiązanie to wydaje się po prostu nieeleganckie - zwłaszcza, że coraz
więcej kompilatorów oferuje inny sposób. Jest nim umieszczenie gdziekolwiek w pliku
dyrektywy:

#pragma once

Jest to wprawdzie polecenie zależne od kompilatora, ale obsługiwane przez wszystkie
liczące się narzędzia (w tym także Visual C++ .NET oraz kompilator GCC z Dev-C++).
Jest też całkiem prawdopodobne, że taka metoda rozwiązania problemu wielokrotnego
dołączania znajdzie się w końcu w standardzie C++.

Polecenia zależne od kompilatora
Na koniec omówimy sobie takie polecenia, których wykonanie jest zależne od
kompilatora, jakiego używamy.

Dyrektywa #pragma
Do wydawania tego typu poleceń służy dyrektywa #pragma:

#pragma polecenie

To, czy dane polecenie zostanie faktycznie wzięte pod uwage podczas kompilacji, zależy
od posiadanego przez nas kompilatora. Preprocesor zachowuje się jednak bardzo
porządnie: jeśli stwierdzi, że dana komenda jest nieznana kompilatorowi, wówczas cała
dyrektywa zostanie po prostu zignorowana. Niektóre troskliwe kompilatory wyświetlają
ostrzeżenie o tym fakcie.

Po opis poleceń, jakie są dostępne w dyrektywie #pragma, musisz udać się do
dokumentacji swojego kompilatora.

Ważniejsze parametry #pragma w Visual C++ .NET

Używający innego kompilatora niż Visual C++ .NET mogą opuścić ten paragraf.

Ponieważ zakładam, że większość czytelników używa zalecanego na samym początku
kursu kompilatora Visual C++ .NET, sądzę, że pożyteczne będzie przyjrzenie się kilku
parametrom dyrektywy #pragma, jakie są tam dostępne.

Preprocesor 363

Nie omówimy ich wszystkich, gdyż nie jest to podręcznik VC++, a poza tym wiele z nich
dotyczy sprawa bardzo niskopoziomowych. Przypatrzymy się aczkolwiek tym, które mogą
być przydatne przeciętnemu programiście.

Opisy wszystkich parametrów dyrektywy #pragma w Visual C++ .NET możesz rzecz jasna
znaleźć w dokumentacji MSDN.

Wybrane parametry podzieliłem na kilka grup.

Komunikaty kompilacji
Pierwsza trójka parametrów #pragma pozwala na wyświetlanie pewnych informacji
podczas procesu kompilacji programu. W przeciwieństwie do #error, polcenia nie
powoduje jednak przerwania tego procesu, lecz tylko pełnią funkcję powiadamiającą np.
o pewnych decyzjach podjętych w czasie kompilacji warunkowej.

Przyjrzyjmy się tym komendom.

message

Składnia polecenia message jest następująca:

#pragma message("komunikat")

Gdy preprocesor napotka powyższą linijkę kodu, to wyświetli w oknie komunikatów
kompilatora (tam, gdzie zwykle pdoawane są błędy) wpisany tutaj komunikat. Jego
wypisanie nie spowoduje jednak przerwania procesu kompilacji, co różni #pragma
message od dyrektywy #error.

Przykładowym użyciem tego polecenie może być piętrowy #if podobny do tego z jakim
mieliśmy do czynienia w poprzednim podrozdziale:

#define KEYBOARD 1
#define MOUSE 2
#define TRACKBALL 3
#define JOYSTICK 4

#define INPUT_DEVICE KEYBOARD

#if (INPUT_DEVICE == KEYBOARD)
 #pragma message("Wkompilowuje obsluge klawiatury")
#elif (INPUT_DEVICE == MOUSE)
 #pragma message("Domylsne urzadzenie: mysz")
#elif (INPUT_DEVICE == TRACKBALL)
 #pragma message("Sterowanie trackballem")
#elif (INPUTDEVICE == JOYSTICK)
 #pragma message("Obsluga joysticka")
#else
 #error "Nierozpoznane urzadzenie wejsciowe!"
#endif

Teraz, w zależnie od wartości makra INPUT_DEVICE w polu komunikatów kompilatora
zobaczymy na przykład:

Sterowanie trackballem

W parametrze message możemy też stosować makra, np.:

#pragma message("Kompiluje modul " __FILE__ ", ktory byl ostatnio " \

Zaawansowane C++ 364

 "zmodyfikowany: " __TIMESTAMP__)

W ten sposób zobaczymy oprócz nazwy kompilowanego pliku także datę i czas jego
ostatniej modyfikacji.

deprecated

Nieco inne zastosowanie ma parametr deprecated, lecz także służy do pokazywania
komunikatów dla programisty podczas kompilacji. Oto jego składnia:

#pragma deprecated(nazwa_1 [, nazwa_2, ...])

deprecated znaczy dosłownie ‘potępiony’ i jest trochę zbyt teatralna, ale adekwatna
nazwa dla tego parametru dyrektywy #pragma. deprecated pozwala na wskazanie, które
nazwy w programie (funkcji, zmiennych, klas, itp.) są przestarzałe i nie powinny być
używane. Jeżeli zostaną one wykorzystane w kodzie, wówczas kompilator wygeneruje
ostrzeżenie.

Spójrzmy na ten przykład:

// ta funkcja jest przestarzała
void Funkcja()
{
 std::cout << "Mam juz dluga, biala brode...";
}
#pragma deprecated(Funkcja)

int main()
{
 Funkcja(); // spowoduje ostrzeżenie
}

W powyższym przypadku zobaczymy ostrzeżenie w rodzaju:

warning C4995: 'Funkcja': name was marked as #pragma deprecated

Zauważmy, że dyrektywę #pragma deprecated umieszczamy po definicji przestarzałego
symbolu. W przeciwnym razie sama definicja spowodowałaby wygenerowanie
ostrzeżenia.
Innym sposobem oznaczenia symbolu jako przestarzały jest poprzedzenie jego deklaracji
frazą __declspec(deprecated).

Możemy też oznaczać makra jako przestarzałe, lecz aby uniknąć ich rozwinięcia w
dyrektywie #pragma, należy ujmować ich nazwy w cudzysłowy.

warning

Ten parametr nie generuje wprawdzie żadnych komunikatów, ale pozwala na
sprawowanie kontroli nad tym, jakie ostrzeżenia są generowae przez kompilator.
Oto składnia dyrektywy #pragma warning:

#pragma warning(specyfikator_1: numer_1_1 [numer_1_2 ...] \
 [; specyfikator_2: numer_2_1 [numer_2_2 ...]])

Wygląda ona dość skomplikowanie, ale w praktyce stosuje się tylko jeden specyfikator na
każde użycie dyrektywy, więc właściwa postać staje się prostsza.

Preprocesor 365

Co dokładnie robi #pragma warning? Otóż pozwala ona zmienić sposób traktowania przez
kompilator ostrzeżeń o podanych numerach. Podejmowane działania określa dokładnie
specyfikator:

specyfikator znaczenie

disable
Powoduje wyłączenie raportowania podanych numerów ostrzeżeń.

Sytuacje, w których powinny wystąpić, zostaną po prostu zignorowane, a
programista nie będzie o nich powiadamiany.

once Sprawia, że podane ostrzeżenia będą wyświetlane tylko raz, przy
pierwszym wystąpieniu powodujących je sytuacji.

default Przywraca sposób obsługi ostrzeżeń do trybu domyślnego.

error Sprawia, że podane ostrzeżenia będą traktowane jako błedy. Ich
wystąpienie spowoduje więc przerwanie kompilacji.

1
2
3
4

Zmienia tzw. poziom ostrzeżenia (ang. warning level). Generalnie wyższy
poziom oznacza mniejszą dolegliwość i niebezpieczeństwo ostrzeżenia.
Przesunięcie danego ostrzeżenia do określonego poziomu powoduje, że
jego interpretacja (wyświetlanie, przerwanie kompilacji, itd.) zależeć
będzie od ustawień kompilatora dla danego poziomu ostrzeżeń. Za

ustawienia te nie odpowiada jednak #pragma warning.

Tabela 15. Specyfikatory kontroli ostrzeżeń dyrektywy #pragma warning w Visual C++ .NET

Skąd natomiast wziąć numer ostrzeżenia?… Jest on podawany w komunikacie
kompilatora - jest to liczba poprzedzona literą ‘C’, np.:

warning C4101: 'nZmienna' : unreferenced local variable

Do #pragma warning podajemy numer już bez tej litery. Chcąc więc wyłączyć powyższe
ostrzeżenie, stosujemy dyrektywę:

#pragma warning(disable: 4101)

Pamiętajmy, że stosuje się on do wszystkich instrukcji po swoim wystąpieniu - podobnie
jak wszystkie inne dyrektywy preprocesora.

Uwaga: jakkolwiek wyłączanie ostrzeżeń jest czasem konieczne, nie należy z tym
przesadzać. Przede wszystkim nie wyłączajmy wszystkich pojawiających się ostrzeżeń
„jak leci”, lecz wpierw przyjrzyjmy się, jakie kod je powoduje. Każde użycie #pragma
warning(disable: numer) powinno być bowiem dokładnie przemyślane.

Funkcje inline
Z poznanymi w tym rozdziale funkcjami inline jest związanych kilka parametrów
dyrektywy #pragma. Zobaczmy je.

auto_inline

#pragma auto_inline ma bardzo prostą postać:

#pragma auto_inline([on/off])

Parametr ten kontroluje automatyczne rozwijanie krótkich funkcji przez kompilator. Ze
względów optymalizacyjnych niektóre funkcje mogą być bowiem traktowane jako inline
nawet wtedy,gdy nie są zadeklarowane z przydomkiem inline.
Jeśli z jakichś powodów nie chcemy aby tak było, możemy to wyłączyć:

#pragma auto_inline(off)

Zaawansowane C++ 366

Wszystkie następujące dalej funkcje na pewno nie będą rozwijane w miejscu wywołania -
chyba że sami tego sobie życzymy, deklarując je jako inline.

Typowo #pragma auto_inline stosujemy dla pojedynczej funkcji w ten sposób:

#pragma auto_inline(off)
void Funkcja(/* ... */)
{
 // ...
}
#pragma auto_inline(on)

Jeżeli nie podamy w dyrektywie ani on, ani off, to stan auto_inline zostanie
zamieniony na przeciwny (z on na off lub odwrotnie).

inline_recursion

Ta komenda jest także przełącznikiem:

#pragma inline_recursion([on/off])

Kontroluje ona rozwijanie wywołań rekurencyjnych (ang. recursive calls) w funkcjach
typu inline. Rekurencją (ang. recurrency) nazywamy zjawisko, kiedy jakaś funkcja
wywołuje samą siebie - oczywiście nie zawsze, lecz w zależności od spełnienia jakichś
warunków. Wywołania rekurencyjne są prostym sposobem na tworzenie pewnych
algorytmów - szczególnie takich, które operują na rekurencyjnych strukturach danych,
jak drzewa. Rekurencja może być bezpośrednia - gdy funkcja sama wywołuje siebie - lub
pośrednia - jeśli robi to inna funkcja, wywołana wcześniej przez tą naszą.

Rekurencyjne mogą być także funkcje inline. W takim wypadku kompilator domyślnie
rozwija tylko ich pierwsze wywołanie; dalsze wywołania rekurencyjne są już dokonywane
w sposób właściwy dla normalnych funkcji.
Można to zmienić, powodując rozwijanie także dalszych przywołań rekurencyjnych (w
ograniczonym zakresie oczywiście) - należy wprowadzić do kodu dyrektywę:

#pragma inline_recursion(on)

Łatwo się domyslić, że inline_recursion jest domyślnie ustawiona na off.

inline_depth

Z poprzednim poleceniem związane jest także to - dyrektywa #pragma inline_depth:

#pragma inline_depth(głębokość)

głębokość może tu być stałą całkowitą z zakresu od zera do 255. Liczba ta precyzuje, jak
głęboko kompilator ma rozwijać rekurencyjne wywołania funkcji inline. Naturalnie,
wartośc ta ma jakiekolwiek znaczenie tylko wtedy, gdy ustawimy inline_recursion na
on. Ponadto wartość 255 oznacza rozwijanie rekurencji bez ograniczeń (z wyjątkiem rzecz
jasna zasobów dostępnych dla kompilatora).

Domyślnie rozwijanych jest osiem rekurencyjnych wywołań inline. Pamiętajmy, że
przesada z tą wartością może dość łatwo doprowadzaić do rozrostu kody wynikowego -
zwłaszcza, jeśli przesadzamy też z obdzielaniem funkcji modyfikatorami inline (a
szczególnie __forceinline).

Preprocesor 367

Inne
Oto dwie ostatnie komendy #pragma w Visual C++, jednak wcale nie są one najmniej
ważne. Jakby to powiedzieli Anglicy, one są ‘last but not least’ :) Przyjrzymy się im.

comment

To polecenia umożliwa zapisanie pewnych informacji w wynikowym pliku EXE:

#pragma comment(typ_komentarza [, "komentarz"])

Umieszczone tak komentarze nie służą naturalnie tylko do dekoracji (choć niektóre do
tego też :D), lecz moga nieść także dane ważne dla kompilatora czy linkera. Wszystko
zależy od frazy typ_komentarza. Oto dopuszczalne możliwości:

typ komentarza znaczenie

exestr

Umieszcza w skompilowanym pliku tekstowy komentarz, który linker
w niezmienionej postaci przenosi do konsolidowanego pliku EXE.
Napis ten nie jest ładowany do pamięci podczas uruchamiania
programu, niemniej istnieje w pliku wykonywalnym i można go

odczytać specjalnymi aplikacjami.

user
Wstawia do skompilowanego pliku podany komentarz, jednak linker

ignoruje go i nie pojawia się on w wynikowym EXEku. Istnieje
natomiast w skompilowanym pliku .obj.

compiler

Dodaje do skompilowanego modulu informację o wersji kompilatora.
Nie pojawia się ona wynikowym pliku wykonywalnym z programem.

Przy stosowaniu tego typu, nie należy podawać żadnego komentarza,
bo w przeciwnym razie kompilator uraczy nas ostrzeżeniem.

lib

Ten typ pozwala na podanie nazwy pliku statycznej biblioteki
(ang. static library), która będzie linkowana razem ze

skompilowanymi modułami naszej aplikacji. Linkowanie dodatkowych
bibliotek jest często potrzebne, aby skorzystać z niestandardowego

kodu, np. Windows API, DirectX i innych.

linker Tak możemy podać dodatkowe opcje dla linkera, niezależnie od tych
podanych w ustawieniach projektu.

Tabela 16. Typy komentarzy w dyrektywie #pragma comment w Visual C++ .NET

Spośród tych możliwości najczęściej stosowane są lib i linker, ponieważ pozwalają
zarządzać procesem linkowania. Oprócz tego exestr umożliwia zostawienie w pliku EXE
dodatkowego tekstu informacyjnego, np.:

#pragma comment(exestr, "Skompilowano: " __DATE__ __TIME__)

Jak widać na załączonym obrazku, w takim tekście można stosować też makra.

once

Na ostatku przypomnimy sobie pierwsze poznane polecenie #pragma - once:

#pragma once

Wiemy już doskonale, jakie jest działanie dyrektywy #pragma once. Otóż powoduje ona,
że zawierający ją plik bedzie włączany tylko raz podczas przeglądania kodu przez
preprocesor. Każde sukcesywne wystąpienie dyrektywy #include z tymże plikiem
zostanie zignorowane.

Zaawansowane C++ 368

Dyrektywa #pragma once jest obecnie obsługiwana przez bardzo wiele kompilatorów -
nie tylko przez Visual C++. Istnieje więc niemała szansa, że niedługo podobna dyrektywa
stanie się częścią standardu C++. Na pewno jednak nie będzie to #pragma once, gdyż
wszystkie szczegóły dyrektyw #pragma są z założenia przynależne konkretnemu
kompilatorowi, a nie językowi C++ w ogóle.

Jeśli sam miałbym optować za jakąś konkretną, ustandaryzowaną propozycją składniową
dla tego rozwiązania, to chyba najlepsze byłoby po prostu #once.

I tą sugestią dla Komitetu Standaryzacyjnego C++ zakończyliśmy omawianie
preprocesora i jego dyrektyw :)

Podsumowanie
Ten rozdział był poświęcony rzadko spotykanej w językach programowania właściwości
C++, jaką jest preprocesor. Mogłeś z niego dowiedzieć się wszystkiego na temat roli tego
ważnego mechanizmu w procesie budowania programu oraz poznać jego dyrektywy.
Pozwoli ci to na sterowanie procesem kompilacji własnego kodu.

W tym rozdziale starałem się też w jak najbardziej obiektywny sposób przedstawić makra
i makrodefinicje, gdyż na ich temat wygłasza się często wiele błędnych opinii. Chciałem
więc uświadomić ci, że chociaż większość dawnych zastosowań makr została już wyparta
przez inne konstrukcje języka, to makra są nadal przydatne w skracaniu zapisu czesto
występujących fragmentów kodu oraz przede wszystkim - w kompilacji warunkowej.
Istnieje też wiele sposobów na wykorzystanie makr, które noszą znamiona „trików” - być
może natrafisz na takowe podczas lektury innych kursów, książek i dokumentacji. Warto
byś wtedy pamiętał, że w stosowaniu makr, jak i we wszystkim w programowaniu, należy
zawsze umieć znaleźć równowagę między efektownością a efektywnością kodowania.

Preprocesor oraz omówione wcześniej wskaźniki były naszym ostatnim spotkaniem z
krainą starego C w obrębie królestwa C++. Kolejne trzy rozdziały skupiają się na
zaawansowanych cechach tego ostatniego: programowaniu obiektowym (ze szczególnym
uwzględnieniem przeciążania operatorów), wyjątkach oraz szablonach. Wpierw
zobaczymy usprawnienia OOPu, jakie oferuje nam język C++.

Pytania i zadania
Możesz uważać, że preprocesor jest reliktem przeszłości, ale nie uchroni cię to od
wykonania obowiązkowej pracy domowej! ;))

Pytania
1. Czym jest preprocesor? Kiedy wkracza do akcji i jak działa?
2. Na czym polega mechanizm rozwijania i zastępowania makr?
3. Jakie dwa rodzaje makr można wyróżnić?
4. Na jakie problemy można natrafić, jeżeli spróbuje się zastosować makra zamiast

bardziej odpowiednich, innych konstrukcji języka C++?
5. Jakie dwa zastosowania makr pozostają nadal aktualne?
6. Jakie wyrażenia może zawierać warunek kompilacji dyrektyw #if i #elif?
7. Czym różnią się dwa warianty dyrektywy #include?
8. Jaką rolę pełni dyrektywa #pragma?

Preprocesor 369

Ćwiczenia
1. Opracuj (klasyczne już) makro wyznaczające większą z dwóch podanych wartości.
2. (Trudniejsze) Odszukaj definicję klasy CIntArray z rozdziału o wskaźnikach i

przy pomocy preprocesora przerób ją tak, aby można by z niej korzystać dla
dowolnego typu danych.

3. Otwórz kod aplikacji rozwiązującej równania kwadratowe, którą (mam nadzieję)
napisałeś w rozdziale 1.4. Dodaj do niej kod pomocniczy, wyświetlający wartość
delta dla podanego równania; niech kompiluje się on tylko wtedy, gdy
zdefiniowana zostanie nazwa DEBUG.

4. (Trudne) Skonstruuj warunek kontrolowanej kompilacji, który pozwoli na
wykrycie platform 16-, 32- i 64-bitowych.
Wskazówka: wykorzystaj charakterystykę typu int…

