PREPROCESOR

Gdy sie nie wie, co sie robi,

to dziejg sie takie rzeczy,

ze sie nie wie, co sie dzieje ;-).
znana prawda programistyczna

Poznawanie bardziej zaawansowanych cech jezyka C++ zaczniemy od czegos, co
pochodzi jeszcze z czaséw jego poprzednika, czyli C. Podobnie jak wskazniki, preprocesor
nie pojawit sie wraz z dwoma plusami w nazwie jezyka i programowaniem zorientowanym
obiektowo, lecz byt obecny od jego samych poczatkow.

W przypadku wskaznikow trzeba jednak powiedzieé, ze sg one takze i teraz niezbedne do
efektywnego i poprawnego konstruowania aplikacji. Natomiast o proceprocesorze
niewielu ma tak pochlebne zdanie: wedtug sporej czesci programistow, stat sie on prawie
zupetnie niepotrzebny wraz z wprowadzeniem do C++ takich elementéw jak funkcje
inline oraz szablony. Poza tym uwaza sie powszechnie, ze czeste i intensywne uzywanie
tego narzedzia pogarsza czytelnos¢ kodu.

W tym rozdziale bede musiat odpowiedzie¢ jako$ na te opinie. Nie da sie ukry¢, ze
niektore z nich sg stuszne: rzeczywiscie, era swietnosci preprocesora jest juz dawno za
nami. Zgadza sie, nadmierne i nieuzasadnione wykorzystywanie tego mechanizmu moze
przyniesc¢ wiecej szkody niz pozytku. Tym bardziej jednak powinienes wiedzie¢ jak
najwiecej na temat tego elementu jezyka, aby moc stosowac go poprawnie. Od
korzystania z niego nie mozna bowiem uciec. Cho¢ moze nie zdawates$ sobie z tego
sprawy, lecz korzystates z niego w kazdym napisanym dotad programie w C++!
Wspomnij sobie chocby dyrektywe #include...

Dotad jednak zadowalates$ sie lakonicznym stwierdzeniem, iz tak po prostu ,trzeba”.

Lekturg tego rozdziatu masz szanse to zmieni¢. Teraz bowiem omdwimy sobie
zagadnienie preprocesora w catosci, od poczatku do konca i od $rodka :)

Pomocnik kompilatora

Rozpocza¢ wypadatoby od przedstawienia gtéwnego bohatera naszej opowiesci. Czym
jest wiec preprocesor?...

Preprocesor to specjalny mechanizm jezyka, ktory przetwarza tekst programu jeszcze
przed jego kompilacja.

To jakby przedsionek wtasciwego procesu kompilacji programu. Preprocesor
przygotowuje kod tak, aby kompilator mégt go skompilowac zgodnie z zyczeniem
programisty. Bardzo czesto uwalnia on tez od koniecznosci powtarzania czesto
wystepujacych i potrzebnych fragmentow kodu, jak na przyktad deklaracji funkcji.

Kiedy wiemy juz mniej wiecej, czym jest preprocesor, przyjrzymy sie wykonywanej przez
niego pracy. Dowiemy sie po prostu, co on robi.

330 Zaawansowane C++

Gdzie on jest...?

Obecnos¢ w procesie budowania aplikacji nie jest taka oczywista. Catkiem duza liczba
jezykdw radzi sobie, nie posiadajac w ogdle narzedzia tego typu. Rowniez cel jego
istnienia wydaje sie niezbyt klarowny: dlaczego kod naszych programoéw miatby wymagac
przed kompilacjg jakich$ przerébek?...

Te drugg watpliwos¢ wyjasnig kolejne podrozdziaty, opisujace mozliwosci i polecenia
preprocesora. Obecnie zas okreslimy sobie jego miejsce w procesie tworzenia
wynikowego programu.

Zwyczajowy przebieg budowania programu

W jezyku programowania nieposiadajacym preprocesora generowanie docelowego pliku z
programem przebiega, jak wiemy, w dwdéch etapach.

Pierwszym jest kompilacja, w trakcie ktéorej kompilator przetwarza kod zrodtowy
aplikacji i produkuje skompilowany kod maszynowy, zapisany w osobnych plikach. Kazdy
taki plik - wynik pracy kompilatora - odpowiada jednemu modutowi kodu zZrédtowego.

W drugiem etapie nastepuje linkowanie skompilowanych wczes$niej modutéw oraz
ewentualnych innych kodéw, niezbednych do dziatania programu. W wyniku tego procesu
powstaje gotowy program.

___________ modut kodu
Zrodiowego
kompilacja |
skormpilowany
rrodut
. ¢0 " bo U ol
| R Zewnatrzna
ég‘:"} Z . C e " biblioteka
& by
4

/h:‘p|< T inny zasob

linkowanie

- gotowy program

|

Schemat 36. Najprostszy proces budowania programu z kodu zrédiowego

Przy takim modelu kompilacji zawartos¢ kazdego modutu musi wystarcza¢ do jego
samodzielnej kompilacji, niezaleznej od innych modutéw. W przypadku jezykéw z rodziny
C oznacza to, ze kazdy modut musi zawiera¢ deklaracje uzywanych funkcji oraz definicje
klas, ktorych obiekty tworzy i z ktorych korzysta.

Gdyby zadanie dotaczania tych wszystkich deklaracji spoczywato na programiscie, to
bytoby to dla niego niezmiernie ucigzliwe. Pliki z kodem zostaty ponadto rozdete do
nieprzyzwoitych rozmiardw, a i tak wiekszo$¢ zawartych wen informacji przydawatyby sie
tylko przez chwile. Przez tg chwile, ktérg zajmuje kompilacja modutu.

Preprocesor 331

Nic wiec dziwnego, ze aby zapobiec podobnym irracjonalnym wymaganiom wprowadzono
mechanizm preprocesora.

Dodajemy preprocesor

Ujawnit sie¢ nam pierwszy cel istnienia preprocesora: w jezyku C(++) stuzy on do taczenia
w jedng catos¢ modutdéw kodu wraz z deklaracjami, ktore sg niezbedne do dziatania tegoz
kodu. A skad brane sa te deklaracje?...

Oczywiscie - z plikdw nagtdowkowych. Zawierajg one przeciez prototypy funkcji i definicje

klas, z jakich mozna korzystaé, jezeli dotaczy sie dany nagtowek do swojego modutu.

Jednak kompilator nic nie wie o plikach nagtdéwkowych. On tylko oczekuje, ze zostang
mu podane pliki z kodem zrédtowym, do ktdrego bedg sie zaliczaty takze deklaracje
pewnych zewnetrznych elementéw - nieobecnych w danym module. Kompilator
potrzebuje tylko ich okreslenia ,z wierzchu”, bez wnikania w implementacje, gdyz ta
moze znajdowac sie w innych modutach lub nawet innych bibliotekach i staje sie wazna
dopiero przy linkowaniu. Nie jest juz ona sprawg kompilatora - on zada tylko tych
informacji, ktére sg mu potrzebne do kompilacji.

Niezbedne deklaracje powinny sie znalez¢ na poczatku kazdego modutu. Trudno jednak
oczekiwac, zebysmy wpisywali je recznie w kazdym module, ktéry ich wymaga. Bytoby
to niezmiernie ucigzliwe, wiec wymyslono w tym celu pliki nagtéwkowe... i preprocesor.
Jego zadaniem jest tutaj potaczenie napisanych przez nas modutow oraz plikdw
nagtéwkowych w pliki z kodem, ktére mogg moga byc¢ bez przeszkdd przetworzone przez

ompilator. hT hThI hj h1 hj" nag.gil,‘;.;wy
AN

ci . e
= + = —
Ci e, modut kodu
rodtoweno
| preprocesor |
13 v
\.q». i, SEMOdZieny modut
i 3 kodu Zrodiowego
[1 ‘
| kﬂmplla'ﬂja | skompilowany
.l ! e modut
. ‘Q‘? b *Q{? l_‘ e B zewnetrzna
*wéi:}] . ‘*g@*-----"' biblioteka
| éo b E
o
inny zasob
linkowanie |
¥
P e JOLOWY program

Schemat 37. Budowanie programu C++ z udziatlem preprocesora

332 Zaawansowane C++

Skad preprocesor wie, jak ma to zrobic¢?... Otéz, méwimy o tym wyraznie, stosujac
dyrektywe #include. W miejscu jej pojawienia sie zostaje po prostu wstawiona tresé
odpowiedniego pliku nagtdwkowego.

Wigczanie nagtéwkow nie jest jednak jedynym dziataniem podejmowanym przez
preprocesor. Gdyby tak byto, to przeciez nie poswiecalibysmy mu catego rozdziatu :) Jest
wrecz przeciwnie: dotgczanie plikédw to tylko jedna z czynnosci, jakg mozemy zleci¢ temu
mechanizmowi - jedna z wielu czynnosci...

Wszystkie zadania preprocesora sg réoznorodne, ale majq tez kilka cech wspdlnych.
Przyjrzyjmy sie im w tym momencie.

Dziatanie preprocesora

Komendy, jakie wydajemy preprocesorowi, réznig sie od normalnych instrukcji jezyka
programowania. Takze sposdb, w jaki preprocesor traktuje kod zrédiowy, jest zupetnie
inny.

Dyrektywy

Polecenie dla preprocesora nazywamy jego dyrektywa (ang. directive). Jest to specjalna
linijka kodu zrédtowego, rozpoczynajaca sie od znaku # (hash), zwanego ptotkiem®’:

#

Na nim tez moze sie zakonczy¢ - wtedy mamy do czynienia z dyrektywa pustg. Jest ona
ignorowana przez preprocesor i nie wykonuje zadnych czynnosci.

Bardziej praktyczne sg inne dyrektywy, ktdrych nazwy piszemy zaraz za znakiem #. Nie
oddzielamy ich zadnymi spacjami, wiec w praktyce ptotek staje sie czescig ich nazw.
Moéwi sie wiec o instrukcjach #include, #define, #pragma i innych, gdyz w takiej formie
zapisujemy je w kodzie.

Dalsza czes¢ dyrektywy zalezy juz od jej rodzaju. R6zne ,parametry” dyrektyw poznamy,
gdy zajmiemy sie szczegdtowo kazda z nich.

Bez srednika

Jest bardzo wazne, aby zapamieta¢, ze:

Dyrektywy preprocesora koncza sie zawsze przejsciem do nastepnego wiersza.

Innymi stowy, jezeli preprocesor napotka w swojej dyrektywie na znak konca linijki (nie
wida¢ go w kodzie, ale jest on dodawany po kazdym wcisnieciu Enter), to uznaje go
takze za koniec dyrektywy. Nie ma potrzeby wpisywania srednika na zakonczenie
instrukcji. Wiecej nawet: nie powinno sie go wpisywaé! Zostanie on bowiem uznany za
czes¢ dyrektywy, co w zaleznosci od jej rodzaju moze powodowac rézne niepozadane
efekty. KofAczg sie one zwykle btedami kompilacji.

Zapamietaj zatem zalecenie:

Nie koncz dyrektyw preprocesora $rednikiem. Nie sg to przeciez instrukcje jezyka
programowania, lecz polecenia dla modutu wspomagajacego kompilator.

% Przed hashem moga znajdowaé sie wytacznie tzw. biate znaki, czyli spacje lub tabulatory. Zwykle nie
znajduje sie nic.

Preprocesor 333

Mozna natomiast konczy¢ dyrektywe komentarzem, opisujgcym jej dziatanie. Kiedy$
wiele kompilatorow miato z tym kfopoty, ale obecnie wszystkie liczagce sie produkty
potrafig radzi¢ sobie z komentarzami na koncu dyrektyw preprocesora.

Ciekawostka: sekwencje tréjznakowe

Istnieje jeszcze jedna, bardzo rzadka dzisiaj sytuacja, gdy preprocesor zostaje wezwany
do akcji. Jest to jedyny przypadek, kiedy jego praca jest niezwigzana z dyrektywami
obecnymi w kodzie.

Chodzi o tak zwane sekwencje tréjznakowe (ang. trigraphs). Coz to takiego?...

W kazdym dtugo i szeroko wykorzystywanym produkcie pewne funkcje mogga by¢ po
pewnym czasie uznane za przestarzate i przesta¢ by¢ wykorzystywane. Jezeli mimo to sg
one zachowywane w kolejnych wersjach, to zyskujg stuszne miano skamieniatosci

(ang. fossils).

Jezyk C++ zawiera kilka takich zmumifikowanych konstrukcji, odziedziczonych po swoim
poprzedniku. Jedng z nich jest na przykfad mozliwos$¢ wpisywania do kodu liczb w
systemie dsemkowym (oktalnym), poprzedzajac je zerem (np. 042 to dziesietnie 34).
Obecnie jest to catkowicie niepotrzebne, jako ze wspdtczesny programista nie odniesie
zadnej korzysci z wykorzystania tego systemu liczbowego. W architekturze komputeréw
zostat on bowiem catkowicie zastgpiony przez szesnastkowy (heksadecymalny) sposdb
liczenia. Ten jest na szczescie takze obstugiwany przez C++°%, natomiast zachowana
mozliwo$¢ uzycia systemu oktalnego stata sie raczej niedogodnoscia niz plusem jezyka.
Latwo przeciez omytkowo wpisac zero przed liczbg dziesietng i zastanawiac sie nad
powstatym btedem...

Inng skamieniatoscig sg wiasnie sekwencje tréjznakowe. To specjalne ztozenia dwdch
znakow zapytania (2?) oraz innego trzeciego znaku, ktére razem ,udajg” symbol wazny
dla jezyka C++. Preprocesor zastepuje te sekwencje docelowym znakiem, postepujac
wedftug tej tabelki:

tréjznak | symbol
22= #
2?2/ \
27— ~
??/ A
27! \
27 [
?7?)]
272< {
272> }

Tabela 13. Sekwencje trojznakowe w C++

Tworca jezyka C++, Bjarne Stroustroup, wprowadzit do niego sekwencje trojznakowe z
powodu swojej... klawiatury. W wielu duniskich uktadach klawiszy zamiast przydatnych
symboli z prawej kolumny tabeli widniaty bowiem znaki typu 3, /& czy A. Aby umozliwié
swoim rodakom programowanie w stworzonym jezyku, Stroustroup zdecydowat sie na
ten zabieg.

Dzisiaj obecnos¢ tréjznakdw nie jest taka wazna, bo powszechnie wystepujg na catym
Swiecie klawiatury typu Sholesa, ktore zawierajg potrzebne w C++ znaki. Moglibysmy
wiec o nich zapomnieg, ale...

% Aby zapisaé liczbe w systemie szesnastkowym, nalezy jg poprzedzi¢ sekwencjg 0x lub 0x. Tak wiec 0xFF to
dziesietnie 255.

334 Zaawansowane C++

No wiasnie, jest pewien problem. Z niewiadomych przyczyn jest czesto tak, ze
nieuzywana funkcja predzej czy pdzniej daje o sobie znac niczym przeterminowana
konserwa. Prawie zawsze tez nie jest to zbyt przyjemne.

Ktopot polega na tym, ze jedna z sekwencji - 22! - moze by¢ uzyta w sytuacji wcale
odmiennej od zatozonego zastepowania znaku |. Popatrzmy na ten kod:

std::cout << "Co mowisz?2?!";

Nie wypisze on wcale stanowczej prosby o powtdrzenie wypowiedzi, lecz napis "co
mowisz|". Tréjznak 22! zostat bowiem zastgpiony przez |.

Mozna tego unikna¢, stosujac jedng z tzw. sekwencji ucieczki (unikowych, ang.
escape sequences) zamiast znakdéw zapytania. Poprawiony kod bedzie wygladat tak:

std::cout << "Co mowisz\?\2!";

Podobng niespodzianke mozemy tez sobie sprawi¢, gdy podczas wpisywania trzech
znakow zapytania za wczesnie zwolnimy klawisz Shift. Powstanie nam wtedy co$ takiego:

std::cout << "Co??/";

Taka sytuacja jest znacznie perfidniejsza, bowiem trdjznak 2?2/ zostanie zastgpiony przez
pojedynczy znak \ (backslash). Doprowadzi to do powstania niekompletnego napisu
"co\". Niekompletnego, bo wystepuje tu sekwencja unikowa \ ", zastepujgca cudzystow.
Znak cudzystowu, ktory tu widzimy, nie bedzie wcale oznaczat konca napisu, lecz jego
czes¢. Kompilator bedzie zas oczekiwat, ze wtasciwy cudzystow konczacy znajduje sie
gdzies$ dalej, w tej samej linijce kodu. Nie napotka go oczywiscie, a to oznacza dla nas
ktopoty...

Musimy wiec pamietaé, aby bacznie przygladac sie kazdemu wystagpieniu dwoch znakdéw
zapytania w kodzie C++. Takie skamieniate okazy nawet po wielu latach moga dotkliwie
kasac nieostroznego programiste.

Preprocesor a reszta kodu

Nadmienitem wczesniej, ze dyrektywy preprocesora roznig sie od normalnych instrukcji
jezyka C++ - choéby tym, ze na ich kohcu nie stawiamy $rednika. Ale nie jest to jeszcze
cata prawda.

Najwazniejsze jest to, jak preprocesor obchodzi sie kodem zrédtowym programu. Jego
podejscie jest odmienne od kompilatora. Tak naprawde to preprocesor w zasadzie ,nie
wie”, ze przetwarzany przez niego tekst jest programem! Wiedza ta nie jest mu do
niczego potrzeba, gdyz traktuje on kod jak kazdy inny tekst. Dla preprocesora nie ma
réznicy, czy pracuje na prostym programie konsolowym, zaawansowanej aplikacji
okienkowej, czy nawet (hipotetycznie) na siddmej ksiedze Pana Tadeusza.

Moznaby wiec powiedzie¢, ze preprocesor jest po prostu gtupi - gdyby nie to, ze bardzo
dobrze radzi sobie ze swoim zadaniem. A jest nim przetwarzanie tekstu programu w
taki sposodb, aby ufatwié zycie programiscie. Dzieki preprocesorowi mozna bowiem
automatycznie wykonac operacje, ktére bez niego zajmowatyby mndstwo czasu i stusznie
wydawalty sie jego kompletng, frustrujacq strata.

Jak zwykle jednak trzeba wtraci¢ jakies ,ale” :) Catkowita niewiedza preprocesora na
temat podmiotu jego dziatan moze i jest btogostawienstwem dla niego samego, lecz
stosunkowo fatwo moze stac sie przyczyng btedéw kompilacji. Dotyczy to w szczegdlnosci
jednego z aspektow wykorzystania preprocesora - makr.

Preprocesor 335

Makra

Makro (ang. macro) jest instrukcjg dla preprocesora, pozwalajacg dokonywac zastgpienia
pewnego wyrazenia innym. Dziata ona troche jak funkcja Znajdz i zamiert w edytorach
tekstu, z tym ze proces zamiany dokonuje sie wytacznie przed kompilacjq i nie jest
trwaty. Pliki z kodem Zrédtowym nie sg fizycznie modyfikowane, lecz tylko zmieniona ich
postac trafia do kompilatora.

Makra w C++ (zwane aczkolwiek czesciej makrami C) potrafig byc¢ tez nieco bardziej
wyrafinowane i dokonywac ztozonych, sparametryzowanych operacji zamiany tekstu.
Takie makra przypominajg funkcje i zajmiemy sie nimi nieco dalej.

Definicja makra odbywa sie przy pomocy dyrektywy #define:
#define odwotanie tekst

Najogdlniej méwiac, daje to taki efekt, iz kazde wystgpienie odwozania w kodzie
programu powoduje jego zastgpienie przez tekst. Szczegodty tego procesu zalezg od
tego, czy nasze makro jest proste - udajgce statg - czy moze bardziej skomplikowane -
udajace funkcje. Osobno zajmiemy sie kazdym z tych dwdch przypadkow.

Do pary z #define mamy jeszcze dyrektywe #undef:
#undef odwolanie

Anuluje ona poprzednig definicje makra, pozwalajac na przyktad na jego ponowne
zdefiniowanie. Makro w swej aktualnej postaci jest wiec dostepne od miejsca
zdefiniowania do wystapienia #undef lub konca pliku.

Proste makra

W prostej postaci dyrektywa #define wyglada tak:

#define wyraz [zastepczy ciag znakdw]

Powoduje ona, ze w pliku wystanym do kompilacji kazde samodzielne®® wystapienie
wyrazu zostanie zastgpione przez podany zastepczy ciag znakdw. MOwimy o tym, ze
makro zostanie rozwiniete. W wyrazie mogg wystgpic¢ tylko znaki dozwolone w
nazwach jezyka C++, a wiec litery, cyfry i znak podkreslenia. Nie moze on zawierac
spacji ani innych biatych znakdéw, gdyz w przeciwnym razie jego cze$¢ zostanie
zinterpretowana jako tres¢ makra (zastepczy ciag znakdw), a nie jako jego nazwa.
Tres¢ makra, czyli zastepczy ciag znakdw, moze natomiast zawierac biate znaki. Moze
takze nie zawierac¢ znakow - nie tylko biatych, ale w ogdle zadnych. Wtedy kazde
wystapienie wyrazu zostanie usuniete przez preprocesor z pliku zréodtowego.

Definiowianie prostych makr

Jak wyglada przyktad opisanego wyzej uzycia #define? Popatrzmy:
#define SIEDEM 7
// (tutaj troche kodu programu...)

std::cout << SIEDEM << "elementow tablicy" << std::endl;;

% Samodzielne - to znaczy jako odrebne stowo (token).

336 Zaawansowane C++

int aTablica[SIEDEM];

for (unsigned i = 0; i < SIEDEM; ++1i)
std::cout << aTablical[i] << std::endl;

std::cout << "Wypisalem SIEDEM elementow tablicy";

Nie mozemy tego wprawdzie zobaczy¢, ale uwierzmy (lub sprawdzmy empirycznie
poprzez kompilacje), ze preprocesor zamieni powyzszy kod na co$ takiego:

std::cout << 7 << "elementow tablicy" << std::endl;;
int aTablical7];

for (unsigned i = 0; i < 7; ++1)
std::cout << aTablical[i] << std::endl;

std::cout << "Wypisalem SIEDEM elementow tablicy";

Zauwazmy koniecznie, ze:

Preprocesor nie dokonuje zastepowania nazw makr wewnatrz napisow.

Jest to uzasadnione, bo wewnatrz tancucha nazwa moze wystepowac¢ w zupetnie innym
znaczeniu. Zwykle wiec nie chcemy, aby zostata ona zastgpiona przez rozwiniecie makra.
Jezeli jednak zyczymy sobie tego, musimy potraktowac¢ makro jak zmienng, czyli na
przyktad tak:

std::cout << "Wypisalem " << SIEDEM << " elementow tablicy";

Poza tancuchami znakow makro jest bowiem wystawione na dziatanie preprocesora.

Zgodnie z przyjetg powszechnie konwencjg, nazwy makr piszemy wielkimi literami. Nie
jest to rzecz jasna obowigzkowe, ale poprawia czytelnos¢ kodu.

Zastepowanie wiekszych fragmentow kodu

Zamiast jednej liczby czy innego wyrazenia, jako tres¢ makra mozemy tez podac
instrukcje. Moze to nam zaoszczedzi¢ pisania. Przykfadowo, jezeli przed wyjsciem z
funkcji musimy zawsze wyzerowac jakas$ zmienng globalng, to mozemy napisac sobie
odpowiednie makro:

#define ZAKONCZ { g nZmienna = 0; return; }

Jest to przydatne, jesli w kodzie funkcji mamy wiele miejsc, ktére mogg wymagac jej
zakonczenia. Kazdorazowe reczne wpisywanie tego kodu bytoby wiec ucigzliwe, zas z
pomocg makra staje sie proste.

Przypomnijmy jeszcze, jak to dziata. Jezeli mamy takg oto funkcje:

void Funkcja ()

{

//

if (!DrugaFunkcjal()) ZAKONCZ;
/...

if (!TrzeciaFunkcja()) ZAKONCZ;
/) ...

if (CosSieStalo()) ZAKONCZ;

//

Preprocesor 337

to preprocesor zamieni jg na cos takiego:

void Funkcja ()
{
//

if (!DrugaFunkcijal()) { g nZmienna
/] ...
if (!TrzeciaFunkcja()) { g nZmienna = 0; return; };
/] ...
if (CosSieStalo()) { g nZmienna

//

0; return; };

0; return; };

}

Wyodrebnienie kodu w postaci makra ma te zalete, ze jesli nazwa zmiennej g nZmienna
zmieni sie (;D), to modyfikacje poczynimy tylko w jednym miejscu - w definicji makra.

Spojrzmy jeszcze, iz tre$¢ makra ujgtem w nawiasy klamrowe. Gdybym tego nie zrobit, to
otrzymalibysmy kod typu:

if (!DrugaFunkcja()) g nZmienna = 0; return;;

Nie wida¢ tego wyraznie, ale kodem wykonywanym w razie prawdziwosci warunku if jest
tu tylko wyzerowanie zmiennej. Instrukcja return zostanie wykonana niezaleznie od
okolicznosci, bo znajduje sie poza blokiem warunkowym.

Przyzwoity kompilator powie nam o tym, bo obecnos¢ takiej zgubionej instrukcji
powoduje zbednos¢ catego dalszego kodu funkcji. Nie zawsze jednak korzystamy z makr
zawierajacych return, zatem:

Zawsze umieszczajmy tres¢ makr w nawiasach.

Jak sie niedtugo przekonamy, ta stanowcza sugestia dotyczy tez makr typu statych (jak
SIEDEM z pierwszego przyktadu), lecz w ich przypadku chodzi o nawiasy okragte.

Watpliwosci moze budzi¢ nadmiar $rednikow w powyzszych przyktfadach. Poniewaz
| jednak nie poprzedzajq ich zadne instrukcje, wiec dodatkowe $redniki zostang
| zignorowane przez kompilator. Akurat w tej sytuacji nie jest to problemem...

W kilku linijkach

Piszgc makra zastepujace cate potacie kodu, mozemy je podzieli¢ na kilka linijek. W tym
celu korzystamy ze znaku \ (backslash), np. w ten sposéb:

#define WYPISZ TABLICE for (unsigned i1 = 0; 1 < 10; ++1) \
{ \

std::cout << 1 << "-ty element™; \

std::cout << nTab[i] << std::endl; \

}

Pamietajmy, ze to konieczne tylko dla dyrektyw preprocesora. W przypadku zwyktych
instrukcji wiemy doskonale, ze ich podziat na linie jest catkowicie dowolny.

Makra korzystajgce z innych makr

Nic nie stoi na przeszkodzie, aby nasze makra korzystaty z innych wczesniej
zdefiniowanych makr:

#define PI 3.1415926535897932384

338 Zaawansowane C++

#define PROMIEN 10
#define OBWOD KOLA (2 * PI * PROMIEN)

Moéwigc Scislej, to makra mogg korzysta¢ ze wszystkich informacji dostepnych w czasie
kompilacji programu, a wiec np. operatora sizeof, typow wyliczeniowych lub statych.

Pojedynek: makra kontra state

No wiasnie - statych... Wiekszos$¢ przedstawionych tutaj makr petni przeciez takg samg
role, jak state deklarowane stéwkiem const. Czy obie konstrukcje sg wiec sobie
rownowazne?...

Nie. State deklarowane przez const i ,state” (makra) definiowane przez #define réznig
sie od siebie, i to znacznie. Te réznice dajg przewage obiektom const - powiedzmy tu
sobie, dlaczego.

Makra nie sq zmiennymi

Patrzac na ten tytut pewnie sie usSmiechasz. Oczywiscie, ze makra nie sg zmiennymi -
przeciez to state... a raczej ,state”. To jednak nie jest wcale takie oczywiste, bo z kolei
state deklarowane przez const majg cechy zmiennych. Swego czasu méwitem nawet na
poty zartobliwie, iz te state sg to zmienne, ktére sg niezmienne. Makra #define takimi
zmiennymi nie sg, a przez to tracg ich cenne wtasciwosci.

Jakie?... Zasieg, miejsce w pamieci i typ.

Zasieg

Brak zasiegu jest szczegdlnie dotkliwy. Makra maja wprawdzie zakres obowigzywania,
wyznaczany przez dyrektywy #define i #undef (wzglednie koniec pliku), ale absolutnie
nie jest to tozsame pojecia.

Makro zdefiniowane - jak sie zdaje - wewnatrz funkcji:

void Funkcja ()

{
#define STALA 1500.100900

}

nie jest wcale dostepne tylko wewnatrz niej. Z rownym powodzeniem mozemy z niego
korzystac¢ takze w kodzie nastepujacym dalej. Wszystko dlatego, ze preprocesor nie zdaje
sobie w ogdle sprawy z istnienia takiego czego$ jak ,funkcje” czy ,bloki kodu”, a juz na
pewno nie ,zasieg zmiennych”. Nie jest zatem dziwne, ze jego makra nie posiadajg
zasiegu.

Miejsce w pamieci i adres

Nazwy makr nie sg znane kompilatorowi, poniewaz znikajg one po przetworzeniu
programu przez preprocesor. ,State” definiowane przez #define nie mogg zatem istniec
fizycznie w pamieci, bo za jej przydzielanie dla obiektéw niedynamicznych
odpowiedzialny jest wytgcznie kompilator. Makra nie zajmujg miejsca w pamieci
operacyjnej i nie mozemy pobierac ich adreséw. Bytoby to podobne do pobierania
wskaznika na liczbe 5, czyli catkowicie bezsensowne i niedopuszczalne.

Ale chwileczke... Brak mozliwosci pobrania wskaznika tatwo mozna przetrawic, bo
przeciez nie robi sie tego czesto. Nieobecnos$¢ makr w pamieci ma natomiast oczywistg
zalete: nie zajmujq jej swoimi warto$ciami. To chyba dobrze, prawda?

Tak, to dobrze. Ale jeszcze lepiej, ze obiekty const takze to potrafia. Kazdy szanujacy sie
kompilator nie bedzie alokowat pamieci dla statej, jezeli nie jest to potrzebne. Jesli wiec
nie pobieramy adresu statej, to bedzie ona zachowywata sie w identyczny sposéb jak

Preprocesor 339

makro - pod wzgledem zerowego wykorzystania pamieci. Jednoczes$nie zachowa tez
pozgdane cechy zmiennej. Mamy wiec dwie pieczenie na jednym ogniu, a makra mogq
sie spali¢... ze wstydu ;)

Typ

Makra nie majg tez typdéw. ,Jak to?!”, odpowiesz. ,A czy 67 jest napisem, albo czy
"klawiatura" jest liczbq? A przeciez i te, i podobne wyrazenia mogg by¢ trescig makr!”
Faktycznie wyrazenia te majg swoje typy i mogg by¢ interpretowane tylko w zgodzie z
nimi. Ale jakie sq to typy? 67 moze by¢ przeciez rownie dobrze uznana za wartos¢ int,
jak i BYTE, unsigned, nawet float. Z kolei napis jest formalnie typu const char[], ale
przeciez mozemy go przypisac¢ do obiektu std: :string. Poprzez wystepowanie
niejawnych konwersji (powiemy sobie o nich w nastepnym rozdziale) sytuacja z typami
nie jest wiec taka prosta.

A makra dodatkowo jg komplikujg, bo nie pozwalajg na ustalenie typu statej. Nasze 67
mogto by¢ przeciez docelowo typu float, ale ,stata” zdefiniowana jako:

#define STALA 67

zostanie bez przeszkdd przyjeta dla kazdego typu liczbowego. O to nam chyba nie
chodzito?!

Z tym problemem mozna sobie aczkolwiek poradzi¢, nie uciekajac od #define.
Pierwszym wyjsciem jest jawne rzutowanie:

#define (float) 67

Chyba nieco lepsze jest dodanie do liczby odpowiedniej koncéwki, umozliwiajacej inng
interpretacje jej typu. Stosujac te koncowki mozemy zmieni¢ typ wyrazenia wpisanego w
kodzie. Oto jak zmienia sie typ liczby 67, gdy dodamy jej rézne sufiksy (nie sg to
wszystkie mozliwosci):

liczba typ

67 int

67u unsigned int
67.0 double
67.0f float

Tabela 14. Typ statej liczbowej w zaleznosci od sposobu jej zapisu

Przewaga statych const zwigzana z typami objawia sie najpetniej, gdy chodzi o tablice.
Nie ma bowiem zadnych przeciwskazan, aby zadeklarowac sobie tablice wartosci statych:

const int STALE = { 1, 2, 3, 4 };

a potem odwotywac sie do jej poszczegdlnych elementéw. Podobne dziatanie jest
catkowicie niemozliwe dla makr.

Efekty sktadniowe

Z wartosciami statymi definiowanymi jako makra zwigzane tez sg pewne nieoczekiwane i
trudne do przewidzenia efekty skladniowe. Powoduje je fakt, iz dziatanie preprocesora
jest operacjg na zwyktym tekscie, a kod przeciez zwyklym tekstem nie jest...

Srednik

Podkreslatem na poczatku, ze dyrektyw preprocesora, w tym i #define, nie nalezy
konczy¢ srednikiem. Ale co by sie stato, gdyby nie zastosowac sie do tego zalecenia?...
Sprawdzmy. Zdefiniujmy na przyktad takie oto makro:

340 Zaawansowane C++

#define DZIESIEC 10; // uwaga, $rednik!

Niby réznica jest niewielka, ale zaraz zobaczymy jak bardzo jest ona znaczaca. Uzyjmy
teraz naszego makra, w jakim$ wyrazeniu:

int nZmienna = 2 * DZIESIEC;

Dziata? Tak... Preprocesor zamienia DZIESIEC na 10;, cO w sumie daje:
int nZmienna = 2 * 10;;

Dodatkowy $rednik, jaki tu wystepuje, nie sprawia ktopotéw, lecz tatwo moze je wywotac.
Wystarczy chocéby przestawi¢ kolejnos¢ czynnikéw lub rozbudowaé wyrazenie - na
przyktad umiesci¢ w nim wywotanie funkcji:

int nZmienna = abs (2 * DZIESIEC);

I tu zaczynajq sie ktopoty. Preprocesor wyprodukuje z powyzszego wiersza kod:
int nZmienna = abs (2 * 10;); // ups!

ktéry z pewnoscig zostanie odrzucony przez kazdy kompilator.

Stusznie jednak stwierdzisz, ze takie czy podobne btedy (np. uzycie DZIESIEC jako
rozmiaru tablicy) sg stosunkowo proste do wykrycia. Lecz przy uzywaniu makr nie
zawsze tak jest: zaraz zobaczysz, ze nietrudno dopusci¢ sie pomytek niewptywajacych na
kompilacje, ale wyptywajgcych na powierzchnie juz w gotowym programie.

Nawiasy i priorytety operatorow

Popatrz na ten oto przykfad:
#define SZEROKOSC 10
#define WYSOKOSC 20
#define POLE SZEROKOSC * WYSOKOSC
#define LUDNOSC 10000

std::cout << "Gestosc zaludnienia wynosi: " << LUDNOSC / POLE;

Powinien on wydrukowac liczbe 50, prawda? No cdz, zobaczmy czy tak bedzie naprawde.
Wyrazenie LUDNOSC / POLE zostanie rozwiniete przez preprocesor do:

LUDNOSC / SZEROKOSC * WYSOKOSC
czyli w konsekwencji do dziatan na liczbach:
10000 / 10 * 20
a to daje w wyniku:
1000 * 20
czyli ostatecznie:
20000 // ??2? Co$ jest nie tak!

Hmm... Pie¢dziesigt a dwadziescia tysiecy to raczej duza rdznica, znajdzmy wiec btad. Nie
jest to trudne - tkwi on juz w pierwszym kroku rozwijania makra:

Preprocesor 341

LUDNOSC / SZEROKOSC * WYSOKOSC

Zgodnie z regutami kolejnosciami dziatan, zwanych w programowaniu priorytetami
operatorow, wpierw wykonywane jest tu dzielenie. To btad - przeciez najpierw
powinnismy oblicza¢ wartos$¢ powierzchni, czyli iloczynu SZEROKOSC * WYSOKOSC.
Nalezatoby zatem obja¢ go w nawiasy, i to najlepiej juz przy definicji makra POLE:

#define POLE (SZEROKOSC * WYSOKOSC)

Catkiem nietrudno o tym zapomniec. Jeszcze tatwiej przeoczy¢ fakt, ze i SZEROKOSC, i
WYSOKOSC mogg byc¢ takze ztozonymi wyrazeniami, wiec rowniez i one powinny posiadac
wiasng pare nawiasow. Moze nie by¢ wiadome, czy w ich definicjach takie nawiasy
wystepujg, zatem przydatoby sie wprowadzi¢ je powyzej...

Mamy wiec catkiem sporo niewiadomych podczas korzystania ze statych-makr. A przeciez
wcale nie musimy rozstrzygac takich dylematéw - zastosujmy po prostu state bedace
obiektami const:

const int SZEROKOSC = 10;

const int WYSOKOSC = 20;

const int POLE = SZEROKOSC * WYSOKOSC;
const int LUDNOSC = 10000;

std::cout << "Gestosc zaludnienia wynosi: " << LUDNOSC / POLE;

Teraz wszystko bedzie dobrze. Poniewaz to inteligentny kompilator zajmuje sie takimi
statymi (traktujac je jak ,niezmienne zmienne”), wartos¢ wyrazenia LUDNOSC / POLE jest
obliczana witasciwie.

Dygresja: odpowiedZ na pytanie o sens zycia

Jak ciekawe skutki moze wywotywac niewtasciwe uzycie makr? Catkiem znamienne.
Przypadkowo mozna na przykfad pozna¢ Najwazniejszg Liczbe Wszechswiata.

A ta liczba jest... 42. Ow magiczny numer pochodzi z serii science-fiction Autostopem
przez Galaktyke autorstwa Douglasa Adamsa. Tam tez pada odpowiedz na Najwazniejsze
Pytanie o Zycie, Uniwersum i Wszystko, ktdra zostaje udzielona grupie myszy. Jak
twierdzi Adams, myszy sg trojwymiarowymi postaciami hiperinteligentnych istot
wielowymiarowych, ktére zbudowaty ogromny superkomputer, zdolny udzieli¢ odpowiedzi
na wspomniane Pytanie. Po siedmiu i pot milionach lat uzyskuja jq: jest to wiasnie
czterdziesci dwa.

Za chwile jednak komputer stwierdzit, ze tak naprawde nie wiedziat do konca, jakie
pytanie zostato mu zadane. Pod koniec jednego z tomdw serii dowiadujemy sie jednak,
c6z to bylo za pytanie:

Co otrzymamy, jezeli pomnozymy szes$¢ przez dziewiec?

Odpowiedz: czterdziesci dwa. Brzmi to zupetnie nonsensownie, zwazywszy ze 6x9 to
przeciez 54. A jednak to prawda - aby sie o tym przekonac¢, popatrz na ponizszy
program:

// FortyTwo - odpowiedZ na najwazniejsze pytanie Wszechswiata

#include <iostream>
#include <conio.h>

#define SZESC 1
#define DZIEWIEC 8

342 Zaawansowane C++

int main ()

{
std::cout << "Szesc razy dziewliec rowna sie " << SZESC * DZIEWIEC;
getch();

return 0;

}

Jak mozna zobaczy¢, rzeczywiscie drukuje on liczbe 42:

Szesc razy dziewiec rowna sie 42_

Screen 44. Komputer prawde ci powie...

Czyzby wiec byta to faktycznie tak magiczna liczba, iz specjalnie dla niej naginane sgq
zasady matematyki?... Niestety, wyjasnienie jest bardziej prozaiczne. Spojrzmy tylko na
wyrazenie SZESC * DZIEWIEC. Jest ono rozwijane do postaci:

1 +5*8+1

Tutaj zas, zgodnie z waznymi od poczatku do konca Wszechswiata regutami arytmetyki,
pierwszym obliczanym dziataniem jest mnozenie. Ostatecznie wiec mamy 1 + 40 + 1,
czyli istotnie 42.

Nie musimy jednak wierzy¢ temu prostego wyttumaczeniu. Czyz nie lepiej sqdzi¢, ze nasz
poczciwy preprocesor ma dostep do rozwigzan niewyjasnionych od wiekow zagadek
Uniwersum?...

Predefiniowane makra kompilatora

Istnieje kilka makr, ktérych definiowaniem zajmuje sie sam kompilator. Dostarczajg one
kilku uzytecznych informacji zwigzanych z nim samym oraz z przebiegiem kompilacji.
Dane te moga by¢ czesto przydatne przy usuwaniu btedéw, wiec przyjrzyjmy sie im.

We wszystkich ponizszych nazwach makr dtugie kreski oznaczajg dwa znaki podkreslenia.
Tak wiec oznacza dwukrotne wpisanie znaku , a nie jedng dtugq kreske. |

Numer linii i nazwa pliku

Jednymi z najbardziej przydatnych makrsg FILE i LINE . Pozwalajg one na
wykrycie miejsca w kodzie, gdzie np. zaszedt btad wptywajacy na dziatanie programu.

Numer wiersza

Makro LINE zostaje przez preprocesor zamienione na numer wiersza w aktualnie
przetwarzanym pliku zrédtowym. Wiersze liczg sie od 1 i obejmujg takze dyrektywy oraz
puste linijki. Zatem w ponizszym programie:

#include <iostream>
#include <conio.h>

int main ()

{
std::cout << "Wypisanie tekstu w wierszu " << LINE << std::endl;
return 0;

Preprocesor 343

liczbg pokazang na ekranie bedzie 6. Mozna tez zauwazy¢, ze sam kompilator postuguje
sie tgq nazwg, gdy pokazuje nam komunikat o btedzie podczas nieudanej kompilacji
programu.

Nazwa pliku z kodem

Do pary z numerem wiersza potrzebujemy jeszcze nazwy pliku, aby precyzyjnie
zlokalizowac bfad. Te zas zwraca makro FILE :

std::cout << "Ten kod pochodzi z modutu " << FILE ;

Jest ono zamieniane na nazwe pliku kodu, ujetg w podwdjne cudzystowy - wiasciwe dla
napisbw w C++. Zatem jesli nasz modut nazywa sie main.cpp, to FILE zostanie
zastgpione przez "main.cpp".

Dyrektywa #1ine

Informacje podawane przez LINE i FILE mozemy zmieni¢, umieszczajac te
makra w innych miejscach (plikach?). Ale mozliwe jest tez oszukanie preprocesora za
pomocg dyrektywy #1line:

#line wiersz ["plik"]

Gdy z niej skorzystamy, to preprocesor uzna, ze umieszczona ona zostata w linijce o
numerze wiersz. Jezeli podamy tez nazwe pliku, to wtedy takze oryginalna nazwa
modutu zostanie uniewazniona przez te podang. Oczywiscie nie fizycznie: sam plik
pozostanie nietkniety, a tylko preprocesor bedzie myslat, ze zajmuje sie innym plikiem
niz w rzeczywistosci.

Osobiscie nie sadze, aby swiadome oszukiwanie miato tu jaki$ gtebszy sens.
(Nad)uzywajac dyrektywy #1ine mozemy fatwo straci¢ orientacje nawet w programie,
ktéry obficie drukuje informacje o sprawiajacych problemy miejscach w kodzie.

Data i czas

Innym rodzajem informacji, jakie mozna wkompilowa¢ do wynikowego programu, jest
data i czas jego zbudowania, ewentualnie modyfikacji kodu. Stuzg do tego dyrektywy
__DATE , TIME oOraz TIMESTAMP .

Zwrocmy jeszcze uwage, ze polecenia te absolutnie nie stuza do pobierania biezacego
czasu systemowego. Sg one tylko zamieniane na dostowne state, ktore w niezmienionej
postaci sg przechowywane w gotowym programie i np. wyswietlane wraz z informacjg o
wersji.

Natomiast do uzyskania aktualnego czasu uzywamy znanych funkcji time (),

localtime (), itp. z pliku nagtdéwkowego ctime.

Czas kompilacji

Chcac zachowac w programie date i godzine jego kompilacji, stosujemy dyrektywy -
odpowiednio: ~ DATE oraz TIME . Preprocesor zamienia je na date w formacie
Mmm dd yy i na czas w formacie hh:mm:ss. Obie te wartosci sg literatami znakowymi, a
wiec ujete w cudzystowy.

Przyktadowo, gdybym w chwili pisania tych stéw skompilowat ponizszg linijke kodu:

std::cout << "Kompilacja wykonana w dniu " << DATE <<
<< " o godzinie " << TIME << std::endl;

344 Zaawansowane C++

to w programie zapisana zostataby data "Jul 14 2004" iczas "18:30:51". Uruchamiajac
program za minute, pot godziny czy za dziesiec lat ujrzatbym te sama date i ten sam
czas, poniewaz bytyby one wpisane na state w pliku EXE.

Z tego powodu data i czas kompilacji mogg by¢ uzyte jako prymitywny sposéb
podawania wersji programu.

Czas modyfikacji pliku

Makro TIMESTAMP jest nieco inne. Nie podaje ono czasu kompilacji, lecz date i czas
ostatniej modyfikacji pliku z kodem. Jest to dana w formacie Ddd Mmm d hh:mm:ss
yyyy, gdzie Ddd jest skrétem dnia tygodnia, zas d jest numerem dnia miesigca.

Popatrz na przyktad. Jesli wpisze teraz do modutu ponizszg linijke i zachowam plik kodu:

std::cout << "Data ostatniej modyfikacji " << TIMESTAMP ;

to w programie zapisany zostanie napis "wed Jul 14 18:38:37 2004". Bedzie tak
niezaleznie od chwili, w ktdrej skompiluje program - chyba ze do czasu jego zbudowania
poczynie w kodzie jeszcze jakie$ poprawki. Wéwczas TIMESTAMP zmieni sig
odpowiednio, wyswietlajgc moment zapisywania ostatnich zmian.

Pisze tu, iz TIMESTAMP co$ wyswietli, ale to oczywiscie skrot myslowy. Naprawde to

- makro zostanie zastgpione przez preprocesor odpowiednim napisaem, zas jego
. prezentacja zajmie sie rzecz jasna strumien wyjscia.

Typ kompilatora

Jest jeszcze jedno makro, zdefiniowane zawsze w kompilatorach jezyka C++. To
__cplusplus. Nie ma ono zadnej wartosci, gdyz liczy sie sama jego obecnos¢. Pozwala
ona na wykorzystanie tzw. kompilacji warunkowej, ktérg poznamy za jaki$ czas, do
rozrézniania kodu w Ci w C++.

Dla nas, nieuzywajgcych wczesniej jezyka C, makro to nie jest wiec zbyt praktycze, ale w
czasie migracji starszego kodu do nowego jezyka okazywato sie bardzo przydatne. Poza
tym wiele kompilatorow C++ potrafi udawa¢ kompilatory jego poprzednika w celu
budowania wykonywalnych wersji starych aplikacji. Jesli wiaczyliby$smy taka opcje w
naszym ulubionym kompilatorze, wtedy makro cplusplus nie bytoby definiowane
przed rozpoczeciem pracy preprocesora.

Inne nazwy

Powyzsze nazwy sg zdefiniowane w kazdym kompilatorze cho¢ troche zgodnym ze
standardem C+4. Wiele z nich definiuje jeszcze inne: przyktadowo, Visual C++
udostepnia makra FUNCTION i FUNCSIG , ktore wewnatrz blokow funkcji s
zmieniane w ich nazwy i sygnatury (nagtéwki).

Ponadto, kompilatory pracujace w srodowisku Windows definiujg tez nazwy w rodzaju
_WIN32 czy WIN64, pozwalajace okresli¢ ,bitowosé” platform tego systemu.

Po inne predefiniowane makra preprocesora musisz zajrze¢ do dokumentacji swojego
kompilatora. Jesli uzywasz Visual C++, to bedzie nig oczywiscie MSDN.

Makra parametryzowane

Bardziej zaawansowany rodzaj makr to makra parametryzowane, czyli
makrodefinicje. Z wygladu przypomniajg one nieco funkcje, cho¢ funkcjami nie sa. To
po prostu nieco bardziej wyrafinowe polecenia na preprocesora, instruujace go, jak
powinien zamienia¢ jeden tekst kodu w inny.

Preprocesor 345

Nie wydaje sie to szczegdlnie skomplikowane, jednak wokét makrodefinicji narosto
mnostwo mitdw i fatszywych stereotypdéw. Chyba zaden inny element jezyka C++ nie
wzbudza tylu kontrowersji co do jego prawidtowego uzycia, a wérdd nich przewazajq
opinie bardzo skrajne. Méwig one, ze makrodefinicje sg catkowicie przestarzate i nie
powinny by¢ w ogdle stosowane, gdyz z powodzeniem zastepujg je inne elementy jezyka.
Jak kazde radykalne sady, nie sg to zdania stuszne. To prawda jednak, ze obecnie pole
zastosowan makrodefinicji (i makr w ogole) zawezyto sie znacznie. Nie jest to aczkolwiek
wystarczajacym powodem, azeby usprawiedliwiaé¢ nim nieznajomosé tej waznej czesci
jezyka. Zobaczmy zatem, co jest przyczyng tego catego zamieszania.

Definiowanie parametrycznych makr

Makrodefinicje nazywamy parametryzowanymi makrami, poniewaz majg one co$ w
rodzaju parametréw. Nie sg to jednak konstrukcje podobne do parametrow funkcji - w
dalszej czesci sekcji przekonamy sie, dlaczego.

Na razie spojrzyjmy na przyktadowaq definicje:
#define SOQR(x) ((x) * (x))

W ten sposdb zdefiniowaliSmy makro sQRr (), posiadajace jeden parametr - nazwaliSmy go
tu x. Trescig makra jest natomiast wyrazenie ((x) * (x)).Jak ono dziata?
Otéz, jesli preprocesor napotka w programie na ,wywotanie”:

SQR (cokolwiek)
to zamieni je na wyrazenie:

((cokolwiek) * (cokolwiek))

Tym cokolwiek moze byc teoretycznie dowolny tekst (przypominam do znudzenia, ze
preprocesor operuje na tekscie programu), ale sensowne jest tam wytgcznie podanie
wartosci liczbowej!?°. Wszelkie eksperymentowanie np. z taficuchami znakéw skonczy sie
komunikatem o btedzie sktadniowym albo niedozwolonym uzyciu operatora *.

Powiedzmy jeszcze, dlaczego stowo ‘wywotanie’ wzietem w cudzystdw, cho¢ pewnie
domyslasz sie tego. Tak, makro nie jest zadna funkcja, wiec jego uzycie nie oznacza
przejscia do innej czesci programu. Makrodefinicja jest tylko poleceniem na
preprocesora, mowigcym mu, w jaki sposoéb zmieni¢ to wywotaniopodobne wyrazenie
SOR (x) na inny fragment kodu, wykorzystujgcy symbol x. W tym przypadku jest to
iloczyn dwoch ,,zmiennych” x, czyli kwadrat podanego wyrazenia.

A jak wyglada to makro w akcji? Bardzo prosto:
int nLiczba;
std::cout << "Podaj liczbe: ";

std::cin >> nLiczba;
std::cout << "Kwadrat liczby " << nLiczba << " to " << SQR(nLiczba);

Uzycie makra w postaci SOR (nLiczba) zostanie tu zamienione na ((nLiczba) *
(nLiczba)), zatem w wyniku rzeczywiscie dostaniemy kwadrat podanej liczby.

100 | ub ogdlnie: kazdego typu danych, dla ktérego zdefiniowaliémy (lub zdefiniowat kompilator) dziatanie
operatora *. O (prze)definiowaniu znaczen operatoréw méwi nastepny rozdziat.

346 Zaawansowane C++

Kilka przyktadow
Dla utrwalenia przyjrzyjmy sie jeszcze innym przykfadom makrodefinicje.

Wzory matematyczne

Proste podniesienie do kwadratu to nie jedyne dziatanie, jakie mozemy wykonac¢ poprzez
makro. Prawie kazdy prosty wzor daje sie zapisa¢ w postaci odpowiedniej makrodefinicji -
spéjrzmy:

#define CB (x) ((x
#define SUM 1 n(n) ((n
#define POLE (a) SOR (a
#define POLE (a,b) ((a

Mozemy tu zauwazy¢ kilka faktow na temat parametryzowanych makr:
> mogg one korzystac z juz zdefiniowanych makr (parametryzowanych lub nie) oraz

wszelkich innych informacji dostepnych w czasie kompilacji - jak choéby obiektéw
const

> mozliwe jest zdefiniowanie makra z wiecej niz jednym parametrem. Wtedy jednak
dla bezpieczenstwa lepiej nie stawiac spacji po przecinku, gdyz niektére
kompilatory uznajg kazdy biaty znak za koniec nazwy i rozpoczecie tresci makra.
W nazwach typu POLE (a, b) i podobnych nie wpisujmy wiec zadnych biatych
znakoéw

> makrodefinicje mozna , przecigzac”, tj. zdefiniowac kilka sztuk o tej samej nazwie.
Poniewaz jednak parametry makr nie majg przypisanych typow, poszczegdlne
wersje makr o identycznych nazwach muszg sie rézni¢ liczbg argumentow

Jesli chodzi o fatwo zauwazalne, intensywne uzycie nawiasow w powyzszych definicjach,
to wyjasni sie ono za pare chwil. Sadze jednak, ze pamietajac o doswiadczeniach z
makrami-statymi, domyslasz sie ich roli...

Skracanie zapisu

Podobnie jak makra bez parametréw, makrodefinicje mogg przydac sie do skracania
czesto uzywanych fragmentéw kodu. Oferujg one jeszcze mozliwos¢ ogdlnego
zdefiniowania takiego fragmentu, bez wyraznego podania niektérych nazw np.
zmiennych, ktére mogq sie zmienia¢ w zaleznosci od miejsca uzycia makra.

A oto potencjalnie uzyteczny przykifad:

#define DELETE (p) { delete (p); (p) = NULL; }

Makro DELETE () jest przeznaczone do usuwania obiektu, na ktéry wskazuje wskaznik p.
Dodatkowo jeszcze dokonuje ono zerowania wskaznika - dzieki temu bedzie mozna
uchroni¢ sie przed omytkowym odwotaniem do zniszczonego obiektu. Zerowy wskaznik
mozna bowiem tatwo wykry¢ za pomocg odpowiedniego warunku if.

Jeszcze jeden przykifad:

#define CLAMP (x, a, Db) { 1if ((x) <= (a)) (x) = (a);
if ((x) >= (b)) (x) = (b); }

To makro pozwala z kolei upewni¢ sie, ze zmienna (liczbowa) podstawiona za x bedzie
zawierac sie w przedziale <a; b>. Jego normalne uzycie w formie:

CLAMP (nZmienna, 1, 10)

zostanie rozwiniete do kodu:

Preprocesor 347

{ if ((nZmienna) <= (1)) (nZmienna) = (1);
if ((nZmienna) >= (10)) (nZmienna) = (10); }

po wykonaniu ktérego bedziemy pewni, ze nzmienna zawiera wartos¢ rowng co najmniej
1 i co najwyzej 10.

Przypominam o nawiasach klamrowych w definicjach makr. Jak sadze pamietasz, ze
chronig one przed nieprawidtowq interpretacjg kodu makra w jednolinijkowych
instrukcjach if oraz petlach.

Operatory preprocesora

W definicjach makr mozemy korzystac z kilku operatoréw, niedozwolonych nigdzie
indziej. To specjalne operatory preprocesora, ktére za chwile zobaczymy przy pracy.

Sklejacz

Sklejacz (ang. token-pasting operator) jest tez czesto nazywany operatorem laczenia
(ang. merging operator). Obie nazwy sg adekwatne do dziatania, jakie ten operator
wykonuje. W kodzie makr jest on reprezentowany przez dwa znaki ptotka (hash) - ##.

Sklejacz taczy ze soba dwa identyfikatory, czyli nazwy, w jeden nowy identyfikator.
Najlepiej przesledzic¢ to dziatanie na przyktadzie:

#define FOO foo##bar

Wystgpienie FOO w programie zostanie przez preprocesor zamienione na ztaczenie nazw
foo i bar. Bedzie to wiec foobar.

Operator taczacy przydaje sie tez w makrodefinicjach, poniewaz potrafi dziata¢ na ich
argumentach. Spéjrzmy na takie oto przydatne makro:

#define UNICODE (text) L##text

Jego ,wywotanie” z jakakolwiek dostowng statg napisowg spowoduje jej interpretacje jako
tancuch znakdw Unicode. Przyktadowo:

UNICODE ("Wlazt kotek na piotek i spadi")
zmieni sie na:
L"Wlazt kotek na pitotek i spadi™

czyli napis zostanie zinterpretowany jako skfadajacy sie z 16-bitowych, ,szerokich”
znakdw.

Operator tancuchujgcy

Drugim z operatorow preprocesora jest operator tancuchujacy (ang. stringizing
operator). Symbolizuje go jeden znak ptotka (hash) - #, za$ dziatanie polega na ujeciu w
podowjne cudzystowy (") nazwy, ktdrg owym ptotkiem poprzedzimy.

Popatrzmy na takie makro:

#define STR(string) #string

Dziata ono w prosty sposéb. Jesli podamy mu jakakolwiek nazwe czegokolwiek, np. tak:

STR (jakas_zmienna)

348 Zaawansowane C++

to w wyniku rozwiniecia zostanie ona zastgpiona przez napis ujety w cudzystowy:

"

jakas zmienna"

Podana nazwa moze sktadac z kilku wyrazow - takze zawierajacych znaki specjalne, jak
cudzystow czy ukosnik:

0

STR("To jest tekst w cudzyslowach")

Zostang one wtedy zastgpione odpowiednimi sekwencjami ucieczki, tak ze powyzszy
tekst zostanie zakodowany w programie w sposéb dostowny:

"\"To jest tekst w cudzyslowach\""
W programie wynikowym zobaczyliby$my wiec napis:
"To jest tekst w cudzystowach"

Byiby on wiec identycznie taki sam, jak argument makra STR ().

Visual C++ posiada jeszcze operator znakujacy (ang. charazing operator), ktéremu
odpowiada symbol #@. Operator ten powoduje ujecie podanej nazwy w apostrofy.

Niebezpieczenstwa makr

Nieche¢ wielu programistdw do uzywania makr nie jest bezpodstawna. Te konstrukcje
jezykowe kryja w sobie bowiem kilka putapek, ktérych umiejscowienie nalezy znac.
Dzieki temu mozna je omijac - same te putapki, albo nawet makra w catosci.
Zobaczmy wiec, na co trzeba zwrdci¢ uwage przy korzystaniu z makrodefinicji.

Brak kontroli typow

Poczatek definicji sparametryzowanego makra (zaraz za #define) przypomina deklaracjq
funkcji, lecz bez okreslenia typéw. Nie podajemy tu zaréwno typdw parametréw, jak i
typow ,zwracanej wartosci”. Dla preprocesora wszystko jest bowiem zwyczajnym
tekstem, ktoéry ma byc¢ jedynie przetransformowany wedtug podanego wzoru.

Potencjalnie wiec moze to rodzi¢ problemy. Na szczescie jednak sg one zawsze
wykrywane juz ne etapie kompilacji. Jest tak, gdyz o ile preprocesor postusznie rozwninie
wyrazenie typu:

SQR ("Tekst")
do postaci:
(("Tekst"™) * ("Tekst"))

o tyle kompilator nigdy nie pozwoli na mnozenie dwdch napiséw. Taka operacja jest
przeciez kompletnie bez sensu.

Dezorientacje moze jedynie wzbudzac¢ komunikat o btedzie, jaki dostaniemy w tym
przypadku. Nie bedzie to co$ w rodzaju: "Btedny argument makra", bo dla kompilatora
makra juz tam nie ma - jest tylko iloczyn dwdch tancuchow. Bfad bedzie wiec dotyczyt
niewtasciwego uzycia operatora *, co nie od razu moze nasuwac skojarzenia z makrami.

Preprocesor 349

Jesli wiec kompilator zgtasza nam dziwnie wygladajacy btad na (z pozoru) niewinnej
linijce kodu, to sprawdzmy przede wszystkim, czy nie ma w niej niewtasciwego uzycia
makrodefinicji.

Parokrotne obliczanie argumentow

Btedy zwigzane z typami wyrazen nie sg zbyt klopotliwe, gdyz wykrywane sg juz w
trakcie kompilacji. Inne problemy z makrami nie sg az tak przyjemne...

Rozpatrzmy teraz taki kod:

int nZmienna = 7;
std::cout << SQR(nZmienna++) << std::endl;
std::cout << nZmienna;

Kompilator z pewnoscig nie bedzie miat nic przeciwko niemu, ale jego dziatanie moze by¢
co najmniej zaskakujace. Wedle wszelkich przewidywan powinien on przeciez
wydrukowac liczby 49 i 8, prawda?...

Dlaczego wiec wynik jego wykonania przedstawia sie tak:

56
9

Aby dociec rozwigzania, rozpiszmy druga linijke tak, jak robi to preprocesor:

std::cout << ((nZmienna++) * (nZmienna++)) << std::endl;

Wida¢ wyraznie, ze nZmienna jest tu inkrementowana dwukrotnie. Pierwsza
postinkrementacja zwraca wprawdzie wyniku 7, ale po niej nZmienna ma juz wartos¢ 8,
zatem druga inkrementacja zwrdéci w wyniku wtasnie 8. Obliczymy wiec iloczyn 7x8, czyli
56.

Ale to nie wszystko. Druga inkrementacja zwiekszy jeszcze wartos¢ 8 o jeden, zatem
nZmienna bedzie miata ostatecznie wartos$c¢ 9. Obie te niespodziewane liczby ujrzymy na
wyjsciu programu.

Jaki z tego wniosek? Ano taki, ze wyrazenia podane jako argumenty makr sq obliczane
tyle razy, ile razy wystepuja w ich definicjach. Przyznasz, ze to co najmniej
nieoczekiwane zachowanie...

Priorytety operatorow

Pora na akt trzeci dramatu. Obiecatem wczesniej, ze wyjasnie, dlaczego tak gesto

stawiam nawiasy w definicjach makr. Jesli uwaznie czytates sekcje o makrach-statych, to

najprawdopodobniej juz sie tego domyslasz. Wyttumaczmy to jednak wyraznie.

Najlepiej bedzie przekonac o roli nawiaséw na przyktadzie, w ktorym ich nie ma:
#define SUMA (a, b, c) a+ b+ c

Uzyjemy teraz makra suMA () w takim oto kodzie:

std::cout << 4 * SUMA (1, 2, 3);

Jaka liczbe wydrukuje nam program? Oczywiscie 24... Zaraz, czy aby na pewno?
Kompilacja i uruchomienie konczy sie przeciez rezultatem:

9

350 Zaawansowane C++

Co sie zatem stato? Ponownie winne jest wyrazenie wykorzystujagce makra. Preprocesor
rozwinie je przeciez do postaci:

4 * 1 +2 + 3

co wedle wszelkich prawidet rachunku na liczbach (i pierwszenstwa operatoréow w C++)
kaze najpierw wykona¢ mnozenie 4 * 1, a dopiero potem reszte dodawania. Wynik jest
wiec zupetnie nieoczekiwany.

Jak sie tez zdazyliSmy wczesniej przekonac¢, podobng role jak nawiasy okragte w |
makrach-wyrazeniach petnig nawiasy klamrowe w makrach zastepujacych cate instrukcje. |

Zalety makrodefinicji

Z lektury poprzedniego paragrafu wynika wiec, ze stosowanie makrodefinicji wymaga
ostroznosci zarowno w ich definiowaniu (nawiasy!), jak i pézniejszych uzyciu
(przekazywanie prostych wyrazen). Co za$ zyskujemy w zamian, jesli zdecydujemy na
stosowanie makr?

Efektywnos¢

Na kazdym kroku wyraznie podkreslam, jak dziatajg makrodefinicje. To nie sg funkcje,
ktére program wywotuje, lecz dostowny kod, ktéry zostanie wstawiony w miejsce uzycia
przez preprocesor.

Co z tego wynika? Otdz z pozoru jest to bardzo wyrazna zaleta. Brak koniecznosci skoku
w inne miejsce programu - do funkcji - oznacza, ze nie trzeba wykonywacé wszelkich
czynnosci z tym zwigzanych.

Nie trzeba zatem angazowac¢ pamieci stosu, by zachowac¢ aktualny punkt wykonania oraz
przekazac parametry. Nie trzeba tez szuka¢ w pamieci operacyjnej miejsca, gdzie
rezyduje funkcja i przeskakiwac do niego. Wreszcie, po skonczonym wykonaniu funkcji
nie trzeba zdejmowac ze stosu adresu powrotnego i przy jego pomocy wracac¢ do miejsca
wywotania.

Funkcje inline

A jednak te zalety nie sg wcale argumentem przewazajgcym na korzys¢ makr. Wszystko
dlatego, ze C++ umozliwia skorzystanie z nich takze w odniesieniu do zwyktych funkcji.
Tworzymy w ten sposéb funkcje rozwijane w miejscu wywotania - albo krétko:
funkcje inline.

Sa ta funkcje petng geba i dlatego zupetnie nie dotycza ich problemy zwigzane z
wielokrotnym obliczaniem wartosci parametrow czy priorytetami operatoréw. Dziatajg
one po prostu tak, jakbysmy sie tego spodziewali po normalnych funkcjach, a ponadto
posiadajq tez zalety makrodefinicji. Funkcje inline nie sq wiec faktycznie wywotywane
podczas dziatania programu, lecz ich kod zostaje wstawiony (rozwiniety) w miejscu
wywotania podczas kompilacji programu. Dzieje sie to zupetnie bez ingerencji
programisty w sposéb wywotywania funkcji.

Jedyne, co musi on zrobié, to poinformowac¢ kompilator, ktore funkcje maja byc¢
rozwijane. Czyni to, przenoszac ich definicje do pliku nagtéwkowego (to wazne
i opatrujac przydomkiem inline, np.:

!101)

inline int Sqgr (int a) { return a * a; }

101 jest tak, gdyz petna definicja funkcji inline (a nie tylko prototyp) musi by¢ znana w miejscu wywotania
funkcji - tak, aby jej tres¢ mogta by¢ wstawiona bezposrednio do kodu w tym miejscu.

Preprocesor 351

~Wspaniale!”, mozesz krzykna¢, ,,Odtad wszystkie funkcje bede deklarowat jako inline!”
Chwileczke, nie tedy droga. Musisz by¢ swiadom, ze wstawianie kodu duzych funkcji w
miejsce kazdego ich wywotania powodowatoby rozdecie kodu do sporych rozmiarow.
Duzy rozmiar mdgtby nawet spowolni¢ wykonanie programu, zajmujacego nadzwyczajnie
duzo miejscu w pamieci operacyjnej. Na funkcjach inline mozna sie wiec poslizgnacé.
Lepiej zatem nie opatrywac¢ modyfikatorem inline zadnych funkcji, ktére majg wiecej
niz kilka linijek. Na pewno tez nie powinny to by¢ funkcje zawierajgce w swym ciele petle
czy inne rozbudowane konstrukcje jezykowe (typu switch lub wielopoziomowych
instrukcji if).

Mito jest jednak wiedzie¢, ze obecne kompilatory sg po naszej stronie, jesli chodzi o
funkcje inline. Dobry kompilator potrafi bowiem zrobi¢ analize zyskéw i strat z
zastosowania inline do konkretnej funkcji: jesli stwierdzi, ze w danym przypadku
rozwijanie urggatoby szybkosci programu, nie przeprowadzi go. Dla prostych funkcji (dla
ktérych inline ma najwiekszy sens) kompilatory zawsze jednak ulegajg naszym
zadaniom.

W Visual C++ jest dodatkowe stowo kluczowe forceinline. Jego uzycie zamiast
inline sprawia, ze kompilator na pewno rozwinie dang funkcje w miejscu wywofania,
ignorujac ewentualne uszczerbki na wydajnosci. VC++ ma tez kilka dyrektyw #pragma,
ktore kontrolujg rozwijanie funkcji inline - mozesz o nich przeczyta¢ w dokumentacji
MSDN.

Warto tez wiedzieé, ze metody klas definiowane wewnatrz blokéw class (lub struct i
union) sg automatycznie inline. Nie musimy opatrywac ich zadnym przydomkiem. Jest
to szczegodlnie korzystne dla metod dostepowych do pdl klasy.

Makra kontra funkcje inline

Co6z wiec wynika z zapoznania sie z funkcjami inline? Ano to, ze powinniSmy je stosowac
zawsze wtedy, gdy przyjdzie nam ochota na wykorzystanie makrodefinicji. Funkcje inline
sg po prostu lepsze, gdyz taczq w sobie zarowno zalety zwyktych funkcji, jak i zalety
makr.

Brak kontroli typow

Wydawatoby sie jednak, ze jest jedna sytuacja, gdy makra majgq przewage nad zwykitymi
funkcjami. Ta wyzszo$¢ ujawnia sie w cesze, ktorg poprzednio wskazaliSmy jako ich
stabos¢: w braku kontroli typdow.

Otodz czesto jest to wrecz pozadana witasciwos¢. Nie wiem czy zauwazytes, ale wiekszos¢
zdefiniowanych przez nas makr dziata réwnie dobrze dla liczb catkowitych, jak i
rzeczywistych. Dziata dla kazdego typu zmiennych liczbowych:

SQR (-14) // int

SQOR (12u) // unsigned
SQR(3.14f) // float
SQR (-87.56) // double

tatwo to wyjasnié. Preprocesor zamieni po prostu kazde uzycie makra na odpowiedni
iloczyn, zapisany w sposob dostowny w kodzie wystanym do kompilatora. Ten zas
potraktuje te wyrazenia jak kazde inne.

Gdybysmy chcieli podobny efekt uzyskac przy pomocy funkcji inline, to zapewne
pierwszym pomystem bytoby napisanie kilku(nastu?) przecigzonych wersji funkcji. To
jednak nie jest konieczne: C++ potrafi bowiem stosowac w kontekscie normalnych
funkcji takze i te ceche makra, jaka jest niezaleznos$¢ od typu. Poznamy bowiem wkrotce
mechanizm szablonéw, ktéry pozwala na takie wtasnie zachowanie.

352 Zaawansowane C++

Ciekawostka: funkcje szablonowe

Niecierpliwym pokaze juz teraz, w jaki sposdb makro soRr () zastgpi¢ funkcjg szablonowa.
Odpowiedni kod moze wyglada¢ tak:

template <typename T> inline T Sqr (T a) { return a * a; }

Powyzszy szablon funkcji (tak to sie nazywa) moze by¢ stosowany dla kazdego typu
liczbowego, a nawet wiecej - dla kazdego typu obstugujgcego operator *. Posiada przy
tym te same zalety co zwykte funkcje i funkcje inline, a pozbawiony jest typowych dla
makr ktopotow z wielokrotnym obliczaniem argumentéw i nawiasami.

W jednym z przysztych rozdziatdw poznamy doktadnie mechanizm szablonéw w C++,
ktéry pozwala robi¢ tak wspaniate rzeczy bardzo matym kosztem.

Zastosowania makr

Czytelnicy chcacy znalez¢ uzasadnienie dla wykorzystania makr, mogg sie poczué
zawiedzeni. Wyliczytem bowiem wiele ich wad, a wszystkie zalety okazywaty sie w koncu
zaletami pozornymi. Takie wrazenie jest w duzej czesci prawdziwe, lecz nie znaczy to, ze
makrach nalezy catkiem zapomnie¢. Przeciwnie, nalezy tylko wiedzie¢, gdzie, kiedy i jak z
nich korzystac.

Nie korzystajmy z makr, lecz z obiektow const

Przede wszystkim nie powinniSmy uzywa¢ makr tam, gdzie lepiej sprawdzajg sie inne
konstrukcje jezyka. Jezeli kompilator dostarcza nam narzedzi zastepujacych dane pole
zastosowan makr, to zawsze bedzie to lepszy mechanizm niz same makra.

Dotyczy to na przyktad statych. Juz na samym poczatku kursu podkreslitem, zeby
stosowac przydomek const do ich definiowania. Uzycie #define pozbawia bowiem state
cennych cech ,niezmiennych zmiennych” - typu, zasiegu oraz miejsca w pamieci.

Nie korzystajmy z makr, lecz z (szablonowych) funkcji inline

Podobnie nie powinniémy korzysta¢ z makrodefinicji, by zyskac¢ na szybkosci programu.
Te same efekty szybkosciowe osiggniemy bowiem za pomoca funkcji inline, za$ przy
okazji nie pozbawimy sie wygody i bezpieczenstwa, jakie daje ich stosowanie (w
przeciwienstwie do makr).

A jesli chodzi o niewrazliwo$¢ na typy danych, to obecnie moze to by¢ dla ciebie zaletg.
Kiedy jednak poznasz technike szablonow, takze i ten argument straci swojg waznosc.

Korzystajmy z makr, by zastepowac powtarzajgqce sie fragmenty kodu

Jak wiec poprawnie stosowaé¢ makra? Najwazniejsze jest, aby zapamietac, czym one sa.
PowiedzieliSmy sobie dotad, czym makra nie sg - nie sg statymi i nie sg funkcjami. Makra
to najsampierw sposob na zastgpienie jednego fragmentu kodu innym. Uzywamy ich wiec
wtedy, gdy zauwazymy czsto powtarzajace sie sekwencje dwdch-trzech instrukcji,
ktérych wyodrebnienie w osobnej funkcji nie jest mozliwe, lecz ktérych reczne
wpisywanie staje sie nuzace. Dla takich wiasnie sytuacji stworzono makra.

Korzystajmy z makr, by skracac sobie zapis

Makra sg narzedzami do operacji na tekscie - tekscie programu, czyli kodzie. Stosujmy je
wiec, aby dokonywac takich automatycznych dziatan.

Jeden przyktad takiego zastosowania juz podatem: to bezpieczne zniszczenie obiektu
pofaczone z wyzerowaniem wskaznika. Innym moze by¢ chociazby pobranie liczby
elementow niedynamicznej tablicy:

#define ELEMENTS (tab) ((sizeof (tab) / sizeof ((tab) [0]))

Preprocesor 353

Znanych jest wiele podobnych i przydatnych sztuczek, szczegdlnie z wykorzystanie
operatorow preprocesora - # i ##. By¢ moze niektére z nich sam odkryjesz lub znajdziesz
w innych Zrédtach.

Korzystajmy z makr zgodnie z ich przeznaczeniem

Na koniec nie moge jeszcze nie wspomnie¢ o bardzo waznym zastosowaniu makr,
przewidzianym przez tworcow jezyka. Zastosowanie to przetrwato probe czasu i nikt
nawet mysli o jego zastgpieniu czy likwidacji.

Tym polem wykorzystania makr jest kompilacja warunkowa. Ten uzyteczny sposéb na
kontrole procesu kompilacji programu jest tematem nastepnego podrozdziatu.

Kontrola procesu kompilacji

Preprocesor wkracza do akcji, przegladajac kod jeszcze zanim zrobi to kompilator.
Sprawia to, ze mozliwe jest wykorzystanie go do sprawowania kontroli nad procesem
kompilacji programu. Mozemy okresli¢, jakie jego fragmenty majg pojawic sie w
wynikowym pliku EXE, a jakie nie. Podejmowanie takich decyzji nazywamy kompilacja
warunkowa (ang. conditional compilation).

Do czego moze to sie przydac? Przede wszystkim pozwala to dotaczy¢ do programu
dodatkowy kod, pomocny w usuwaniu z niego btedéw. Zazwyczaj jest to kod
wyswietlajgcy pewne posrednie wyniki obliczen, logujacy przebieg pewnych czynnosci lub
prezentujacy co okreslony czas wartosci kluczowych zmiennych. Po zakonczeniu
testowania aplikacji moznaby byto 6w kod usungg, ale jest przeciez niewykluczone, ze
stanie sie on przydatny w pracy nad kolejng wersja.

Wyjsciem bytoby wiec jego czasowe wytaczenie w momencie finalnego kompilowania.
Najprostszym rozwigzaniem wydaje sie uzycie komentarza blokowego i jest to dobre
wyjscie - pod jednym warunkiem: ze nasz kompilator pozwala na zagniezdzanie takich
komentarzy. Nie jest to wcale obowigzkowy wymaég i dlatego nie zawsze to sie sprawdza.
Komentowanie ma jeszcze jedng wade: komentarze trzeba za kazdym razem dodawad
lub usuwac recznie. Po kilku-kilkunastu-kilkudziesieciu powtorzeniach kompilacji staje sie
to prawdziwg udreka.

A przeciez mozna sprytniej. Kompilacja warunkowa pozwala bowiem w prosty sposdb
wiaczad i wytacza¢ kompilowanie okres$lonego kodu w zaleznosci od stanu pewnych
ustalonych warunkéw.

Mechanizm ten ma jeszcze jedng zalete, zwigzana z przenos$noscig programéw. Daje sie
to najbardziej odczué w aplikacjach rozprowadzanych wraz z kodem zrédtowym czy
nawet wylgcznie w postaci zrodtowego (programach na licencjach Open Source i

GNU GPL). Takie programy mogg by¢ teoretycznie kompilowane na wszystkich systemach
operacyjnych i platformach sprzetowych, dla ktérych istniejg kompilatory C++. W
praktyce zalezy to od warunkow zewnetrznych: wiadomo na przykfad doskonale, ze
program dla srodowiska Windows nie uruchomi sie ani nie skompiluje w systemie Linux.
Jednak nawet pomiedzy komputerami pracujgcymi pod kontrolg tych samych systemoéw
operacyjnych wystepujg roznice (zwtaszcza jesli chodzi o Linux). Przyktadowo, procesory
tych komputeréw moga rézni¢ sie architekturg: obecnie dominujg jednostki 32-bitowe,
ale w wielu zastosowaniach mamy juz procesory o 64 bitach w stowie maszynowym.
Kompilatory wykorzystujace te procesory maja odmienng wielko$¢ typu int: odpowiednio
4 i 8 bajtow. Moze to rodzi¢ problemy z zapisywaniem i odczytywaniem danych.
Podobnych przyktadow jest bardzo duzo, wiec twércy aplikacji rozprowadzanych jako kod
muszg liczy¢ sie z tym, ze bedg one kompilowane na bardzo réznych systemach.
Technika kompilacji warunkowej pozwala przygotowac sie na wszystkie ewentualnosci.

Wiekszos¢ opisanych tu problemoéw dotyczy aczkolwiek systemdéw z wolnym kodem
| zrodtowym, takich jak Linux. Stosowanie kontrolowanej kompilacji nie ogranicza sie

354 Zaawansowane C++

| jednak tylko do programdw pracujacych pod kontrolg takich systemdw. Takze wiele ,
| funkcji Windows jest dostepnych jedynie w okreslonych wersjach systemu, a chcac z nich |
| skorzysta¢ musimy wprowadzi¢ do kodu dodatkowe informacje. Zostang one ’
| wykorzystane w kompilacji warunkowej.

Kontrolowanie kompilacji moze wiec da¢ duzo korzysci. Warto zatem zobaczy¢, w jaki
sposob to sie odbywa.

Dyrektywy #ifdef i #ifndef

Wptywanie na proces kompilacji odbywa sie za pomoca kilku specjalnych dyrektyw
preprocesora. Teraz poznamy kilka pierwszych, miedzy innymi tytutowe #ifdef i #ifndef.
Najpierw jednak drobne przypomnienie makr.

Puste makra

Wprowadzajgc makra napomknatem, ze podawanie ich tresci nie jest obowigzkowe.
Moéwigc dostownie, preprocesor uzna za catkowicie poprawng definicje:

#define MAKRO

Jesli MAKRO wystapi dalej w pliku kompilowanym, to zostanie po prostu usuniete. Nie
bedzie on zatem zbyt przydatne, jesli chodzi o operacje na tekscie programu. To jednak
nie jest teraz istotne.

Wazne jest samo zdefiniowanie tego makra. Poniewaz zrobiliSmy to, preprocesor
bedzie wiedziat, ze taki symbol zostat mu podany i ,zapamieta” go. Pozwala nam to na
zastosowanie kompilacji warunkowej.

Przypomnijmy jeszcze, ze mozemy odwotac definicje makra dyrektywg #undef.

Dyrektywa #ifdef
Najprostszg i jedng z czesciej uzywanych dyrektyw kompilacji warunkowej jest #ifdef:

#ifdef makro
instrukcje
#endif

Jej nazwa to skrét od angielskiego if defined, czyli ‘jesli zdefiniowane’. Dyrektywa #ifdef
powoduje wiec kompilacje kodu instrukciji, jeéli zdefiniowane jest makro.
instrukcje mogg by¢ wielolinijkowe; konczy je dyrektywa #endif.

#ifdef pozwala na czasowe wylgczenie lub wiaczenie okreslonego kodu. Typowym
zastosowaniem tej dyrektywy jest pomoc w usuwaniu btedéw, czyli debuggowaniu.
Mozemy obja¢ nig na przyktad kod, ktory drukuje parametry przekazane do jakiejs
funkcji:

void Funkcja(int nParametrl, int nParametr?2, float fParametr3)

{
#ifdef DEBUG

std::cout << "Parametr 1: " << nParametrl << std::endl;

std::cout << "Parametr 2: " << nParametr2 << std::endl;

std::cout << "Parametr 3: " << fParametr3 << std::endl;
#endif

// (kod funkciji)

Preprocesor 355

Kod ten zostanie skompilowany tylko wtedy, jesli wczesniej zdefiniujemy makro DEBUG:

#define DEBUG

Tres¢ makra nie ma znaczenia, bo liczy sie sam fakt jego zdefiniowania. Mozemy wiec
pozostawi¢ jq pusta. Po zakonczeniu testowania usuniemy lub wykomentujemy te
definicje, a linijki drukujgce parametry nie zostang wigczone do programu. Jesli uzyjemy
#ifdef (lub innych dyrektyw warunkowych) wiekszg liczbe razy, to oszczedzimy
mndstwo czasu, bo nie bedziemy musieli przeszukiwac programu i oddzielnie
komentowac kazdej porcji diagnostycznego kodu.

W wielu kompilatorach mozemy wybrac tryb kompilacji, jak np. Debug (testowa) i
Release (wydaniowa) w Visual C++. Rdznig sie one stopniem optymalizacji i
bezpieczenstwa, a takze zdefiniowanymi makrami. W trybie Debug kompilator Microsoftu
sam definiuje makro DEBUG, ktdérego obecnos¢ mozemy testowac.

Dyrektywa #ifndef

Przeciwnie do #ifdef dziata druga dyrektywa - #ifndef:

#ifndef makro
instrukcje
#endif

Ta opozycja polega na tym, ze instrukcje ujete w #ifndef/#endif zostang
skompilowane tylko wtedy, gdy makro nie jest zdefiniowane. #ifndef znaczy if not
defined, czyli wtasnie ‘jezeli nie zdefiniowane’'.

Nawigzujac do kolejnego przyktadu, mozemy uzy¢ #ifndef w stosunku do kodu, ktéry
ma sie kompilowa¢ wytgcznie w wersjach wydaniowych. Moze to by¢ chocby wyswietlanie
ekranu powitalnego (ang. splash screen). Jego widok przy setnym, testowym
uruchamianiu programu moze by¢ bowiem naprawde denerwujacy.

Dyrektywa #else

Do spotki z obiema dyrektywami #ifdef i #ifndef (a takze z #if, opisang w nastepnym
paragrafie) wchodzi polecenie #else. Jak mozna sie domysleé, pozwala ono na wybor
dwodch wariantéw kodu: jednego, ktéry jest kompilowany w razie zdefiniowania (#ifdef)
lub niezdefiniowania (#ifndef) makra oraz drugiego - w przeciwnych sytuacjach:

#if[n]def makro
instrukcje 1
#else
instrukcje 2
#endif

Zastosowaniem dla tej dyrektywy moze by¢ na przyktad system raportowania btedéw. W
trybie testowania mozna chcie¢ zrzutu catej pamieci programu, jesli wystapi w nim jakis
powazny btad. W wersjach wydaniowych i tak nie moznaby byto nic z krytycznym btedem
zrobi¢, wiec nie powinno sie zmuszac¢ (zdenerwowanego przeciez) klienta do czekania na
tak wyczerpujaca operacje. Wystarczy wtedy zapis wartosci najwazniejszych zmiennych.

Zwroémy uwage, ze dyrektywa #else stuzy w tym przypadku wytacznie naszej wygodzie.
Rownie dobrze poradzilibyscie sobie bez niej, piszac najpierw warunek z #ifdef
(#ifndef), a potem z #ifndef (#ifdef).

356 Zaawansowane C++

Dyrektywa warunkowa #ir

Uogolnieniem dyrektyw #ifdef i #ifndef jest dyrektywa #if:

#if warunek
instrukcje
#endif

Przypomina ona instrukcje if, z tym ze odnosi sie do zagadnienia kompilowania lub
niekompilowania wyszczegdlnionych instrukcji. #if ma tez wersje z #else:

#if warunek
instrukcje 1
#else
instrukcje 2
#endif

Jak stusznie przypuszczasz, #if sprawi, ze w przypadku spetnienia warunku
skompilowany zostanie kod instrukcje 1, za$ w przeciwnym przypadku instrukcje 2
(lub zaden, jesli #el1se nie wystepuje).

Konstruowanie warunkow

Co moze by¢ warunkiem? W ogdlnosci wszystko, co znane jest preprocesorowi w
momencie napotkania dyrektywy #if. Sq to wiec:
> wartosci dostownych statych liczbowych, podane bezposrednio w kodzie jako
liczby, np. -8, 42 czy OxFF
> wartosci makr-statych, zdefiniowane wczesniej dyrektywa #define
» wyrazenia z operatorem defined

A co z resztg statych wartosci, np. obiektami const?... Ot6z one nie mogg (albo raczej nie
powinny) by¢ sktadnikami warunkow #if. Jest tak, poniewaz obiekty te nalezg do
kompilatora, a nie do preprocesora. Ten nie ma o nich pojecia, gdyz zna tylko swoje
makra #define. To jedyny przypadek, gdy majg one przewage na statymi const.
Podobnie rzecz ma sie z operatorem sizeof, ktéry jest wprawdzie operatorem czasu
kompilacji, ale nie jest operatorem preprocesora.

Gdyby #if rozpoznawato warunki z uzyciem statych const i operatora sizeof, nie
mogtoby juz by¢ obstugiwane przez preprocesor. Musisz bowiem pamieta¢, ze dla
preprocesora istniejg tylko jego dyrektywy, zas caty tekst miedzy nimi moze by¢
czymkolwiek (cho¢ dla nas jest akurat kodem). Chcac zmusi¢ preprocesor do obstugi
obiektédw const i operatora sizeof nalezatoby w istocie obarczy¢ jego zadaniami
kompilator.

Operator defined

Operator defined stuzy do sprawdzenia, czy dane makro zostato zdefiniowane. Warunek:
#if defined (makro)

jest wiec rownowazny z:
#ifdef makro

Natomiast dla #ifndef alternatywa jest:

Preprocesor 357

#if !'defined (makro)

Przewaga operatora defined na #if[n]def polega na tym, iz operator ten moze
wystepowac w ztozonych wyrazeniach, bedacych warunkami w dyrektywie #if.

Ztozone warunki

#if jest podobna do if takze pod tym wzgledem, iz pozwala na stosowanie operatoréw
relacyjnych i logicznych w swoich warunkach. Nie zmienia to aczkolwiek faktu, ze
wszystkie argumenty tych operatoréw muszag by¢ znane w trakcie pracy preprocesora - a
wiec naleze¢ do trzech grup, ktére podatem we wstepie do paragrafu.

Ta mozliwos¢ dyrektywy #if pozwala na warunkowg kompilacje kodu zalezng od kilku
warunkéw, na przyktad:

#define MAJOR VERSION 4
#define MINOR VERSION 6
#if ((MAJOR VERSION == 4) && (MINOR VERSION >= 2))

[l (MAJOR VERSION > 4))
std::cout << "Ten kod skompiluje sie tylko w wersji 4.2 lub nowszej";
#endif

Mogg w nich wystapi¢ poréwnania makr-statych, liczb wpisanych dostownie oraz wyrazen
z operatorem defined. Wszystkie te cze$ci mozna natomiast faczy¢ znanymi operatorami
logicznymi: !, s& i |].

Skomplikowane warunki kompilacji

To jeszcze nie wszystkie mozliwosci dyrektyw kompilacji warunkowej. Do bardziej
wyszukanych nalezy ich zagniezdzanie i spietrzanie.

Zagniezdzanie dyrektyw

Wewnatrz kodu zawartego miedzy #if[[n]def] oraz #else i miedzy #else i #endif
mogaq sie znalez¢ kolejne dyrektywy kompilacji warunkowej. Dziata to w podobny sposéb,
jak zagniezdzone instrukcje if w blokach kodu innych instrukcji if.

Spdjrzmy na ten przyktad!??:

#define WINDOWS 1
#define WIN NT 1
#define PLATFORM WINDOWS
#define WIN VER WIN NT
#if PLATFORM == WINDOWS
#if WIN VER == WIN NT
std::cout << "Program kompilowany na Windows z serii NT";
#else
std::cout << "Program kompilowany na Windows 9x lub ME";
#endif
#else
std::cout << "Nieznana platforma (DOS? Linux?)";
fendif

102 Tg tylko przyktad ilustrujacy kompilacje warunkowa. Prawdziwa kontrola wersji systemu Windows, na ktérej
kompilujemy program, wymaga dofgczenia pliku windows.h i kontrolowania makr o nieco innych nazwach i
wartosciach...

358 Zaawansowane C++

Jesli zagniezdzamy w sobie dyrektywy preprocesora, to stosujmy wciecig podobne do
instrukcji w normalnym kodzie. Nie wiedzie¢ czemu niektére IDE (np. Visual C++)
domysinie wyréwnujg dyrektywy preprocesora w jednym pionie; wytaczmy im te
niepraktyczna opcje.

W Visual Studio .NET wybierzmy pozycje w menu Tools|Options, zas$ w pojawiajgcym sie
oknie dialogowym przejdzmy do zakfadki Text Editor|C/C++|Tabs i ustawmy opcje
Indenting na Block.

Dyrektywa #elif

Czasem dwa warianty to za mato. Jesli chcemy wybrac¢ kilka mozliwych drég kompilacji,
to nalezy zastosowac dyrektywe #el1if. Jej nazwa to skrét od else if, co mowi wszystko
na temat roli tej dyrektywy.

Ponownie zerknijmy na przykfadowy kod:

#define WINDOWS 1
#define LINUX 2
#define 0S_2 3
#define QNX 4
#define PLATFORM WINDOWS
#1if PLATFORM == WINDOWS

std::cout << "Kod kompilowany w systemie Windows";
#elif PLATFORM == LINUX

std::cout << "Program budowany w systemie Linux";
#elif PLATFORM == 0S 2

std::cout << "Kompilacja na platformie systemu 0S/2";
#elif PLATFORM == QNX

std::cout << "Skompilowano w systemie QNX";

#endif

Do takich warunkow pewnie znacznie lepsza bytaby dyrektywa typu #switch, lecz
niestety preprocesor jest nie posiada.

Dyrektywa #elif, podobnie jak #else, moze byc¢ takze ,doczepiona” do warunkéw

#ifdef i #ifndef. Pamietajmy jednak, ze po niej musi nastapi¢ wyrazenie logiczne, a nie |
| tylko nazwa makra.

Dyrektywa #error
Ostatnig z dyrektyw warunkowej kompilacji jest #error:

#error "komunikat"

Gdy preprocesor spotka jg na swojej drodze, wtedy jest to dla niego sygnatem, iz tok
kompilacji schodzi na zte tory i powinien zosta¢ przerwany. Czyni to wiec, a po takim
niespodziewanym zakonczeniu widzimy w oknie btedow komunikat, jaki podaliSmy w
dyrektywie #error (nie musi on koniecznie by¢ ujety w cudzystowy, ale to dobry
ZWyczaj).

Dla ilustracji tego polecenia uzupetnimy pietrowy warunek #if z poprzedniego paragrafu:

#if PLATFORM == WINDOWS

std::cout << "Kod kompilowany w systemie Windows";
#elif PLATFORM == LINUX

std::cout << "Program budowany w systemie Linux";

//

Preprocesor 359

#else
ferror "Nieznany system operacyjny, kompilacja przerwana!"
fendif

Jezeli nie zdefiniujemy makra PLATFORM lub bedzie miato inng wartos¢ niz podane state
WINDOWS, LINUX, itd., to preprocesor zareaguje odpowiednim btedem. W Visual C++ .NET
wyglada on tak:

fatal error C1189: #error : "Nieznany system operacyjny, kompilacja przerwana!"

Jak widac jest to ,btad fatalny”, ktoéry zawsze powoduje przerwanie kompilacji programu.

Xk k

W ten oto sposob zakonczyliSmy omawianie dyrektyw preprocesora, stuzgcych kontroli
procesu kompilacji programu. Obok makr jest to najwazniejszy aspekt zastosowania
mechanizmu wstepnego przetwarzania kodu.

Te dwa tematy nie sq aczkolwiek petnig mozliwosci preprocesora. Teraz poznamy jeszcze
kilka dyrektyw ogdlnego przeznaczenia - nie mniej waznych niz te dotychczasowe.

Reszta dobroci

Pozostate dyrektywy preprocesora sg takze bardzo istotne. Jedna z nich jest na tyle
kluczowa, ze widzisz jg w kazdym programie napisanym w C++.

Doftgczanie plikow

Ta dyrektywaq jest oczywiscie #include. Juz przynajmniej dwa razy przygladaliSmy sie jej
blizej, lecz teraz czas na wyjasnienie wszystkiego.

Dwa warianty #include
Zaczniemy od przypomnienia sktadni tej dyrektywy. Jak wiemy, istniejg jej dwa warianty:

#include <nazwa pliku>
#include "nazwa pliku"

Oba powodujq dotaczenie pliku o wskazanej nazwie. Podczas przetwarzania kodu
preprocesor usuwa po prostu wszystkie dyrektywy #include, wstawiajac na ich miejsce
zawarto$¢ wskazywanego przez nie plikow.
Dzieki temu, ze robi to preprocesor, a nie my, zyskujemy na kilku sprawach:
> nasze pliki kodu nie sg (zbyt) duze, bo zawartos¢ dotgczanych plikow
(nagtéwkowych) nie jest w nich wstawiona na state, a jedynie dotaczana na czas
kompilacji
> chcac zmieni¢ zawartos¢ wspoétdzielonych plikéw, nie musimy modyfikowac ich
kopii we wszystkich modutach, ktére zen korzystajg
» mamy wiecej czasu, a przeciez czas to pienigdz ;D

Skoro za$ #include oddaje nam tak cenne ustugi, poméwmy o jej dwoch wariantach i
réznicach miedzy nimi.

Z nawiasami ostrymi

Model z nawiasami ostrymi (tworzonymi poprzez znak mniejszos$ci i wiekszosci):

#include <nazwa pliku>

360 Zaawansowane C++

stosowalisSmy od samego poczatku nauki C++. Nieprzypadkowo: pliki, jakie dotaczamy w
ten sposob, sg po prostu niezbedne do wykorzystania niektérych elementéw jezyka,
Biblioteki Standardowej oraz innych bibliotek (Windows API, DirectX, itd.).

Gdy preprocesor widzi dyrektywe #include w powyzszej postaci, to zaczyna szukac
podanego pliku w jednym z wewnetrznych katalogéw kompilatora, gdzie znajdujg sie pliki
dotaczane (ang. include files). Takich katalogow jest zwykle kilka, wiec preprocesor
przeszukuje ich liste; foldery te zawierajg m.in. nagtéwki Biblioteki Standardowej C++
(string, vector, list, ctime, cmath, ...), starszej Biblioteki Standardowej C (time.h, math.h,
..10%), a czesto takze nagtdwki innych zainstalowanych bibliotek.

Chcac przejrzec lub zmodyfikowaé liste katalogéow z plikami dotaczanymi w Visual
C++ .NET, musimy wybra¢ z menu Tools pozycje Options. Dalej przechodzimy do
zaktadki Projects|VC++ Directories, a na liscie rozwijalnej Show directories for:
wybieramy Include files.

Z cudzystowami
Drugi typ instrukcji #include wyglada nastepujgco:

#include "nazwa pliku"

Z nimtakze zdazylismy sie juz spotkac - stosowaliSmy go do wigczania wiasnych plikow
nagtéwkowych do swoich modutéw.

Ten wariant #include dziata w sposdb nieco bardziej kompleksowy niz poprzedni.
Wpierw bowiem przeszukuje on biezacy katalog - tzn. ten katalog, w ktérym
umieszczono plik zawierajacy dyrektywe #include. Jesli tam nie znajdzie podanego
pliku, wowczas zaczyna zachowywac sie tak, jak #include z nawiasami ostrymi.
Przeglada wiec zawartos¢ katalogow z listy folderéw plikow dotgczanych.

Ktory wybrac?
Dwa rodzaje jednej dyrektywy to catkiem sporo. Ktérg wybra¢ w konkretnej sytuacji?...

Nasz czy biblioteczny

Decyzja jest jednak bardzo prosta:
> jezeli dotaczamy nasz wiasny plik nagtdéwkowy - taki, ktéry znajduje sie gdzies
blisko, na przykfad w tym samym katatlogu - to powinnismy skorzystac z
dyrektywy #include, podajac nazwe pliku w cudzystowach
> jesli natomiast wykorzystujemy nagtéwek biblioteczny, pochodzacy od
kompilatora czy innych zwigzanych z nim komponentdéw - stosujmy #include z
nawiasami ostrymi

Teoretycznie mozna byc zawsze stosowac wariant z cudzystowami. To jednak obnizatoby
czytelnosc kodu, gdyz nie mozna bytoby tatwo odréznié, ktére dyrektywy dotaczajg nasze
wiasne nagtéwki, a ktére - nagtdwki biblioteczne. Lepiej wiec stosowac rozrdznienie.

Nie pisatem tego na poczatku tej sekcji, ale chyba wiesz doskonale (bo mdwitem o tym
wczesniej), ze poprawne jest dotgczanie wylacznie plikéw nagtowkowych. Sg to pliki
| zawierajgce deklaracje (prototypy) funkcji nie-inline, definicje funkcji inline, deklaracje

103 Te nagtdwki sa niezalecane, nalezy stosowaé ich odpowiedniki bez rozszerzenia .h i literka ‘¢’ na poczatku.
Zamiast np. math.h uzywamy wiec cmath.

Preprocesor 361

zapowiadajace zmiennych oraz definicje klas (a czesto takze definicje szablonéw, ale o
| tym pdzniej). Pliki te majg zwykle rozszerzenie .h, .hh, lub .hpp.

Sciezki wzgledne

W obu wersjach #include mozemy wykorzystywac tzw. sciezki wzgledne (ang. relative
paths), cho¢ prawdziwie przydatne sg one tylko w dyrektywie z cudzystowami.

Sciezki wzgledne pozwalaja dotaczaé pliki znajdujace sie w innym katalogu niz biezacy'%*:
w podkatalogach lub w nadkatalogu czy tez w innych katalogach tego samego poziomu.
Oto kilka przyktadow:

#include "gui\buttons.h" // 1
#include "..\base.h" // 2
#include "..\common\pointers.hpp" // 3

Dyrektywa 1 powoduje dotaczenie pliku buttons.h z podkatalogu gui. Kolejne uzycie
#include dotaczy nam plik base.h z katalogu nadrzednego wzgledem obecnego. Z kolei
ostatnia dyrektywa powoduje wpierw wyjscie z aktualnego katalogu (. .), nastepnie
wejscie do podkatalogu common, pobranie zeh zawartosci pliku pointers.hpp i wstawienie
w miejsce linijki 3.

Jak wida¢, w #include mozna wykorzystaé te same zasady tworzenia Sciezek

wzglednych, jakie obowiazujg w catym systemie operacyjnych'®>.

Zabezpieczenie przed wielokrotnym dotgczaniem

Dyrektywa #include jest gtupia jak caty preprocesor. Ona tylko wstawia tekst podanego
w pliku w miejsce swego wystgpienia. Nie dba przy tym, czy takie wstawienie spowoduje
jakies$ niepozgdane efekty. A tatwo moze przeciez takie skutki wywotac...

Wyobrazmy sobie, ze dotagczamy plik A, ktéry sam dotacza plik B i X. Niech plik B tez
dotacza plik X i juz mamy problem: ewentualne definicje zawarte w X beda przez
kompilator odczytane dwukrotnie. Zareaguje on wtedy btedem.

Trzeba wiec podjac ku temu jaki$ srodki zaradcze.

Tradycyjne rozwigzanie

Rozwigzanie problemu znanym jeszcze z C jest zastosowanie kompilacji warunkowej.
Musimy po prostu objac caty plik nagtéwkowy (nazwijmy go plik.h) w dyrektywy
#ifndef-#endif:

#ifndef PLIK H
#define PLIK H

// (cata tresé¢ pliku nagtdwkowego)

#endif

Uzyte tu makro (_ PLIK H) powinno by¢ najlepiej spreparowane w jakis sposdb z nazwy
i rozszerzenia pliku - a jesli trzeba, takze i ze Sciezki do niego.

104 Bjezacy - to znaczy ten katalog, gdzie znajduje sie plik z dyrektywg #include "...".
105 Jako separatora mozemy uzyé slasha lub backslasha. Slash ma te zalete, Zze dziata takze w systemach
unixowych - jesli oczywiscie dla kogos jest to zaleta...

362 Zaawansowane C++

Jak to dziata? Otdz dyrektywa #1ifndef przepusci tylko jedno wstawienie tresci pliku. Przy
powtdrnej prébie makro PLIK H bedzie juz zdefiniowane, wigc cata zawartosc pliku
zostanie wyfaczona z kompilacji.

Pomaga kompilator

Zaprezentowany wyzej sposdb ma przynajmniej kilka wad:

> wymaga wymyslania nazwy dla makra kontrolnego, co przy duzych projektach,
gdzie tatwo wystepujg nagtéwki o tych samych nazwach, staje sie kiopotliwe.
Sytuacja wyglada jeszcze gorzej w przypadku bibliotek pisanych przez nas: tam
makra powinni mie¢ w nazwie takze okreslenie biblioteki, aby nie prowokowac
potencjalnych konfliktéw z innymi zasobami kodu

> umieszczona na koncu pliku dyrektywa #endif moze by¢ ftatwo przeoczona i
omytkowo skasowana. Nietrudno tez napisac jaki$ kod poza klamrg #ifndef-
#else - on nie bedzie juz objety ochrong

> ,sztuczka” wymaga az trzech linii kodu, w tym jednej umieszczonej na samym
koncu pliku

Mnie osobiscie rozwigzanie to wydaje sie po prostu nieeleganckie - zwtaszcza, ze coraz
wiecej kompilatoréw oferuje inny sposéb. Jest nim umieszczenie gdziekolwiek w pliku
dyrektywy:

#pragma once

Jest to wprawdzie polecenie zalezne od kompilatora, ale obstugiwane przez wszystkie
liczgce sie narzedzia (w tym takze Visual C++ .NET oraz kompilator GCC z Dev-C++).
Jest tez catkiem prawdopodobne, ze taka metoda rozwigzania problemu wielokrotnego
dotaczania znajdzie sie w koficu w standardzie C++.

Polecenia zalezne od kompilatora

Na koniec omdéwimy sobie takie polecenia, ktérych wykonanie jest zalezne od
kompilatora, jakiego uzywamy.

Dyrektywa #pragma
Do wydawania tego typu polecen stuzy dyrektywa #pragma:

#pragma polecenie
To, czy dane polecenie zostanie faktycznie wziete pod uwage podczas kompilacji, zalezy
od posiadanego przez nas kompilatora. Preprocesor zachowuje sie jednak bardzo
porzadnie: jesli stwierdzi, ze dana komenda jest nieznana kompilatorowi, wowczas cata

dyrektywa zostanie po prostu zignorowana. Niektore troskliwe kompilatory wyswietlajg
ostrzezenie o tym fakcie.

Po opis polecen, jakie sg dostepne w dyrektywie #pragma, musisz udac sie do
dokumentacji swojego kompilatora.

Wazniejsze parametry #pragma w Visual C++ .NET

Uzywajacy innego kompilatora niz Visual C++ .NET mogaq opusci¢ ten paragraf.

Poniewaz zaktadam, ze wiekszos$¢ czytelnikdw uzywa zalecanego na samym poczatku
kursu kompilatora Visual C++ .NET, sadze, ze pozyteczne bedzie przyjrzenie sie kilku
parametrom dyrektywy #pragma, jakie sq tam dostepne.

Preprocesor 363

Nie omdéwimy ich wszystkich, gdyz nie jest to podrecznik VC++, a poza tym wiele z nich
dotyczy sprawa bardzo niskopoziomowych. Przypatrzymy sie aczkolwiek tym, ktére mogq
by¢ przydatne przecietnemu programiscie.

Opisy wszystkich parametréw dyrektywy #pragma w Visual C++ .NET mozesz rzecz jasna
znalez¢ w dokumentacji MSDN.

Wybrane parametry podzielitem na kilka grup.

Komunikaty kompilacji

Pierwsza trojka parametrow #pragma pozwala na wyswietlanie pewnych informacji
podczas procesu kompilacji programu. W przeciwienstwie do #error, polcenia nie
powoduje jednak przerwania tego procesu, lecz tylko petnig funkcje powiadamiajaca np.
o pewnych decyzjach podjetych w czasie kompilacji warunkowej.

Przyjrzyjmy sie tym komendom.

message

Sktadnia polecenia message jest nastepujgca:
#pragma message ("komunikat")

Gdy preprocesor napotka powyzszg linijke kodu, to wyswietli w oknie komunikatéw
kompilatora (tam, gdzie zwykle pdoawane sg btedy) wpisany tutaj komunikat. Jego
wypisanie nie spowoduje jednak przerwania procesu kompilacji, co rézni #pragma
message 0od dyrektywy #error.

Przykfadowym uzyciem tego polecenie moze by¢ pietrowy #if podobny do tego z jakim
mieliSmy do czynienia w poprzednim podrozdziale:

#define KEYBOARD
#define MOUSE

#define TRACKBALL
#define JOYSTICK

S N

#define INPUT DEVICE KEYBOARD

#if (INPUT DEVICE == KEYBOARD)

#pragma message ("Wkompilowuje obsluge klawiatury")
#elif (INPUT DEVICE == MOUSE)

fpragma message ("Domylsne urzadzenie: mysz")
#elif (INPUT DEVICE == TRACKBALL)

#pragma message ("Sterowanie trackballem™)
#elif (INPUTDEVICE == JOYSTICK)

fpragma message ("Obsluga joysticka')
#else

ferror "Nierozpoznane urzadzenie wejsciowe!"
#endif

Teraz, w zaleznie od wartosci makra INPUT DEVICE w polu komunikatéw kompilatora
zobaczymy na przyktad:

Sterowanie trackballem
W parametrze message mozemy tez stosowa¢ makra, np.:

#pragma message ("Kompiluje modul " FILE ", ktory byl ostatnio " \

364 Zaawansowane C++

"zmodyfikowany: " TIMESTAMP)

W ten sposdb zobaczymy oprécz nazwy kompilowanego pliku takze date i czas jego
ostatniej modyfikacji.

deprecated

Nieco inne zastosowanie ma parametr deprecated, lecz takze stuzy do pokazywania
komunikatéw dla programisty podczas kompilacji. Oto jego sktadnia:

#pragma deprecated(nazwa 1 [, nazwa 2, ...])

deprecated znaczy dostownie ‘potepiony’ i jest troche zbyt teatralna, ale adekwatna
nazwa dla tego parametru dyrektywy #pragma. deprecated pozwala na wskazanie, ktore
nazwy w programie (funkcji, zmiennych, klas, itp.) sg przestarzate i nie powinny by¢
uzywane. Jezeli zostang one wykorzystane w kodzie, wowczas kompilator wygeneruje
ostrzezenie.

Spéjrzmy na ten przyktad:

// ta funkcja Jjest przestarzata
void Funkcja ()
{
std::cout << "Mam juz dluga, biala brode...";
}
#fpragma deprecated (Funkcja)

int main ()

{

Funkcja () ; // spowoduje ostrzezenie

}
W powyzszym przypadku zobaczymy ostrzezenie w rodzaju:
warning C4995: 'Funkcja': name was marked as #pragma deprecated

Zauwazmy, ze dyrektywe #pragma deprecated umieszczamy po definicji przestarzatego
symbolu. W przeciwnym razie sama definicja spowodowataby wygenerowanie
ostrzezenia.

Innym sposobem oznaczenia symbolu jako przestarzaty jest poprzedzenie jego deklaracji
ﬂaza“__declspec(deprecated).

Mozemy tez oznacza¢ makra jako przestarzate, lecz aby unikng¢ ich rozwiniecia w
dyrektywie #pragma, nalezy ujmowac ich nazwy w cudzystowy.
warning

Ten parametr nie generuje wprawdzie zadnych komunikatéw, ale pozwala na
sprawowanie kontroli nad tym, jakie ostrzezenia sq generowae przez kompilator.
Oto sktadnia dyrektywy #pragma warning:

#pragma warning (specyfikator 1: numer 1 1 [numer 1 2 ...] \
[; specyfikator 2: numer 2 1 [numer 2 2 ...]])

Wyglada ona dos¢ skomplikowanie, ale w praktyce stosuje sie tylko jeden specyfikator na
kazde uzycie dyrektywy, wiec wiasciwa postac staje sie prostsza.

Preprocesor 365

Co doktadnie robi #pragma warning? Otz pozwala ona zmieni¢ sposob traktowania przez
kompilator ostrzezen o podanych numerach. Podejmowane dziatania okresla doktadnie
specyfikator:

specyfikator znaczenie
Powoduje wytaczenie raportowania podanych numerdw ostrzezen.
disable Sytuacje, w ktorych powinny wystgpi¢, zostang po prostu zignorowane, a

programista nie bedzie o nich powiadamiany.

Sprawia, ze podane ostrzezenia bedg wyswietlane tylko raz, przy

once -
pierwszym wystapieniu powodujacych je sytuacii.

default Przywraca sposob obstugi ostrzezen do trybu domysinego.

Sprawia, ze podane ostrzezenia bedg traktowane jako btedy. Ich

error
wystapienie spowoduje wiec przerwanie kompilacji.
Zmienia tzw. poziom ostrzezenia (ang. warning level). Generalnie wyzszy
1 poziom oznacza mniejszg dolegliwosc¢ i niebezpieczenstwo ostrzezenia.
2 Przesuniecie danego ostrzezenia do okreslonego poziomu powoduje, ze
3 jego interpretacja (wyswietlanie, przerwanie kompilacji, itd.) zaleze¢
4

bedzie od ustawien kompilatora dla danego poziomu ostrzezen. Za
ustawienia te nie odpowiada jednak #pragma warning.

Tabela 15. Specyfikatory kontroli ostrzezen dyrektywy #pragma warning w Visual C++ .NET

Skad natomiast wzig¢ numer ostrzezenia?... Jest on podawany w komunikacie
kompilatora - jest to liczba poprzedzona literg ‘C’, np.:

warning C4101: 'nZmienna' : unreferenced local variable

Do #pragma warning podajemy numer juz bez tej litery. Chcac wiec wytaczy¢ powyzsze
ostrzezenie, stosujemy dyrektywe:

#fpragma warning(disable: 4101)

Pamietajmy, ze stosuje sie on do wszystkich instrukcji po swoim wystgpieniu - podobnie
jak wszystkie inne dyrektywy preprocesora.

Uwaga: jakkolwiek wylaczanie ostrzezen jest czasem konieczne, nie nalezy z tym
przesadzac. Przede wszystkim nie wytgczajmy wszystkich pojawiajacych sie ostrzezen
~jak leci”, lecz wpierw przyjrzyjmy sie, jakie kod je powoduje. Kazde uzycie #pragma
warning (disable: numer) powinno by¢ bowiem dokfadnie przemyslane.

Funkcje inline

Z poznanymi w tym rozdziale funkcjami inline jest zwigzanych kilka parametréw
dyrektywy #pragma. Zobaczmy je.

auto inline

#pragma auto inline ma bardzo prosta postac:
#pragma auto inline ([on/off])

Parametr ten kontroluje automatyczne rozwijanie krétkich funkcji przez kompilator. Ze
wzgledéw optymalizacyjnych niektdre funkcje moga by¢ bowiem traktowane jako inline
nawet wtedy,gdy nie sq zadeklarowane z przydomkiem inline.

Jesli z jakich$ powoddéw nie chcemy aby tak byto, mozemy to wytaczyc:

#pragma auto inline (off)

366 Zaawansowane C++

Wszystkie nastepujace dalej funkcje na pewno nie beda rozwijane w miejscu wywotania -
chyba ze sami tego sobie zyczymy, deklarujac je jako inline.

Typowo #pragma auto inline stosujemy dla pojedynczej funkcji w ten sposéb:

#pragma auto inline (off)
void Funkcja(/* ... */)
{

//
}

#pragma auto_ inline (on)

Jezeli nie podamy w dyrektywie ani on, ani off, to stan auto inline zostanie
zamieniony na przeciwny (z on nha off lub odwrotnie).

inline recursion

Ta komenda jest takze przetgcznikiem:

#pragma inline recursion ([on/off])

Kontroluje ona rozwijanie wywotan rekurencyjnych (ang. recursive calls) w funkcjach
typu inline. Rekurencja (ang. recurrency) nazywamy zjawisko, kiedy jakas funkcja
wywotuje samg siebie - oczywiscie nie zawsze, lecz w zaleznosci od spetnienia jakichs
warunkdéw. Wywotania rekurencyjne sg prostym sposobem na tworzenie pewnych
algorytmow - szczegdlnie takich, ktore operujg na rekurencyjnych strukturach danych,
jak drzewa. Rekurencja moze by¢ bezposrednia - gdy funkcja sama wywotuje siebie - lub
posrednia - jesli robi to inna funkcja, wywotana wczesniej przez tg nasza.

Rekurencyjne mogg by¢ takze funkcje inline. W takim wypadku kompilator domysinie
rozwija tylko ich pierwsze wywotanie; dalsze wywofania rekurencyjne sg juz dokonywane
w sposob wiasciwy dla normalnych funkcji.

Mozna to zmieni¢, powodujgc rozwijanie takze dalszych przywotan rekurencyjnych (w
ograniczonym zakresie oczywiscie) - nalezy wprowadzi¢ do kodu dyrektywe:

#pragma inline recursion (on)

tatwo sie domysli¢, Zze inline recursion jest domysinie ustawiona na off.
inline depth

Z poprzednim poleceniem zwigzane jest takze to - dyrektywa #pragma inline depth:
#pragma inline depth (giebokosc)

glebokosé moze tu byc¢ stalg catkowitg z zakresu od zera do 255. Liczba ta precyzuje, jak
gteboko kompilator ma rozwija¢ rekurencyjne wywotania funkcji inline. Naturalnie,
wartosc ta ma jakiekolwiek znaczenie tylko wtedy, gdy ustawimy inline recursion na
on. Ponadto warto$¢ 255 oznacza rozwijanie rekurencji bez ograniczen (z wyjatkiem rzecz
jasna zasobow dostepnych dla kompilatora).

Domyslnie rozwijanych jest osiem rekurencyjnych wywotan inline. Pamietajmy, ze
przesada z tg wartoscig moze dos¢ tatwo doprowadzaic¢ do rozrostu kody wynikowego -
zwiaszcza, jesli przesadzamy tez z obdzielaniem funkcji modyfikatorami inline (a
szczeg6lnie forceinline).

Preprocesor 367

Inne

Oto dwie ostatnie komendy #pragma w Visual C++, jednak wcale nie sg one najmniej
wazne. Jakby to powiedzieli Anglicy, one sq ‘last but not least’ :) Przyjrzymy sie im.

comment

To polecenia umozliwa zapisanie pewnych informacji w wynikowym pliku EXE:

#pragma comment (typ komentarza [, "komentarz"])
Umieszczone tak komentarze nie stuzg naturalnie tylko do dekoracji (cho¢ niektére do
tego tez :D), lecz moga nies$¢ takze dane wazne dla kompilatora czy linkera. Wszystko
zalezy od frazy typ_komentarza. Oto dopuszczalne mozliwosci:

typ komentarza znaczenie

Umieszcza w skompilowanym pliku tekstowy komentarz, ktéry linker
w hiezmienionej postaci przenosi do konsolidowanego pliku EXE.
exestr Napis ten nie jest tadowany do pamieci podczas uruchamiania
programu, niemniej istnieje w pliku wykonywalnym i mozna go
odczytac specjalnymi aplikacjami.

Wstawia do skompilowanego pliku podany komentarz, jednak linker
user ignoruje go i nie pojawia sie on w wynikowym EXEku. Istnieje
natomiast w skompilowanym pliku .obj.

Dodaje do skompilowanego modulu informacje o wersji kompilatora.

Nie pojawia sie ona wynikowym pliku wykonywalnym z programem.

Przy stosowaniu tego typu, nie nalezy podawac zadnego komentarza,
bo w przeciwnym razie kompilator uraczy nas ostrzezeniem.

compiler

Ten typ pozwala na podanie nazwy pliku statycznej biblioteki
(ang. static library), ktéra bedzie linkowana razem ze
lib skompilowanymi modutami naszej aplikacji. Linkowanie dodatkowych
bibliotek jest czesto potrzebne, aby skorzysta¢ z niestandardowego
kodu, np. Windows API, DirectX i innych.

Tak mozemy podac¢ dodatkowe opcje dla linkera, niezaleznie od tych

link
Hheer podanych w ustawieniach projektu.

Tabela 16. Typy komentarzy w dyrektywie #pragma comment w Visual C++ .NET

Sposrod tych mozliwosci najczesciej stosowane sg 1ib i 1inker, poniewaz pozwalajg
zarzadzac procesem linkowania. Oprdcz tego exestr umozliwia zostawienie w pliku EXE
dodatkowego tekstu informacyjnego, np.:

#pragma comment (exestr, "Skompilowano: " DATE =~ TIME)

Jak widac¢ na zatgczonym obrazku, w takim tekscie mozna stosowacd tez makra.

once

Na ostatku przypomnimy sobie pierwsze poznane polecenie #pragma - once:

#pragma once

Wiemy juz doskonale, jakie jest dziatanie dyrektywy #pragma once. Otdéz powoduje ona,
ze zawierajacy jq plik bedzie wigczany tylko raz podczas przegladania kodu przez
preprocesor. Kazde sukcesywne wystgpienie dyrektywy #include z tymze plikiem
zostanie zignorowane.

368 Zaawansowane C++

Dyrektywa #pragma once jest obecnie obstugiwana przez bardzo wiele kompilatorow -
nie tylko przez Visual C++. Istnieje wiec niemata szansa, ze niedtugo podobna dyrektywa
stanie sie czescig standardu C++. Na pewno jednak nie bedzie to #pragma once, gdyz
wszystkie szczegdty dyrektyw #pragma sg z zatozenia przynalezne konkretnemu
kompilatorowi, a nie jezykowi C++ w ogdle.

Jedli sam miatbym optowac za jakas konkretna, ustandaryzowang propozycjg sktadniowq
dla tego rozwigzania, to chyba najlepsze bytoby po prostu #once.

Xk k%

I tg sugestig dla Komitetu Standaryzacyjnego C++ zakonczyliS$my omawianie
preprocesora i jego dyrektyw :)

Podsumowanie

Ten rozdziat byt poswiecony rzadko spotykanej w jezykach programowania wiasciwosci
C++, jakq jest preprocesor. Mogtes z niego dowiedzie¢ sie wszystkiego na temat roli tego
waznego mechanizmu w procesie budowania programu oraz poznac jego dyrektywy.
Pozwoli ci to na sterowanie procesem kompilacji wtasnego kodu.

W tym rozdziale staratem sie tez w jak najbardziej obiektywny sposob przedstawi¢ makra
i makrodefinicje, gdyz na ich temat wygtasza sie czesto wiele btednych opinii. Chciatem
wiec uswiadomic ci, ze chociaz wiekszo$¢ dawnych zastosowan makr zostata juz wyparta
przez inne konstrukcje jezyka, to makra sg nadal przydatne w skracaniu zapisu czesto
wystepujacych fragmentow kodu oraz przede wszystkim - w kompilacji warunkowej.
Istnieje tez wiele sposobdw na wykorzystanie makr, ktére noszg znamiona ,trikdw” - by¢
moze natrafisz na takowe podczas lektury innych kurséow, ksigzek i dokumentacji. Warto
by$ wtedy pamietat, ze w stosowaniu makr, jak i we wszystkim w programowaniu, nalezy
zawsze umiec znalez¢ réwnowage miedzy efektownoscig a efektywnoscig kodowania.

Preprocesor oraz oméwione wczesniej wskazniki byty naszym ostatnim spotkaniem z
kraing starego C w obrebie krdlestwa C++. Kolejne trzy rozdziaty skupiajg sie na
zaawansowanych cechach tego ostatniego: programowaniu obiektowym (ze szczegdlnym
uwzglednieniem przecigzania operatoréw), wyjatkach oraz szablonach. Wpierw
zobaczymy usprawnienia OOPu, jakie oferuje nam jezyk C++.

Pytania i zadania

Mozesz uwazac, ze preprocesor jest reliktem przesztosci, ale nie uchroni cie to od
wykonania obowigzkowej pracy domowej! ;))

Pytania
1. Czym jest preprocesor? Kiedy wkracza do akcji i jak dziata?
2. Na czym polega mechanizm rozwijania i zastepowania makr?
3. Jakie dwa rodzaje makr mozna wyrdznicé?
4. Na jakie problemy mozna natrafi¢, jezeli sprobuje sie zastosowa¢ makra zamiast

bardziej odpowiednich, innych konstrukcji jezyka C++7?

Jakie dwa zastosowania makr pozostajq nadal aktualne?

Jakie wyrazenia moze zawiera¢ warunek kompilacji dyrektyw #if i #elif?
Czym rdznig sie dwa warianty dyrektywy #include?

Jaka role petni dyrektywa #pragma?

®Nou

Preprocesor 369

Cwiczenia

1. Opracuj (klasyczne juz) makro wyznaczajgce wiekszg z dwdch podanych wartosci.

2. (Trudniejsze) Odszukaj definicje klasy CIntArray z rozdziatu o wskaznikach i
przy pomocy preprocesora przerob jg tak, aby mozna by z niej korzystac dla
dowolnego typu danych.

3. Otwoérz kod aplikacji rozwigzujacej rownania kwadratowe, ktorg (mam nadzieje)
napisate$ w rozdziale 1.4. Dodaj do niej kod pomocniczy, wyswietlajacy wartos¢
delta dla podanego réwnania; niech kompiluje sie on tylko wtedy, gdy
zdefiniowana zostanie nazwa DEBUG.

4. (Trudne) Skonstruuj warunek kontrolowanej kompilacji, ktéry pozwoli na
wykrycie platform 16-, 32- i 64-bitowych.

Wskazowka: wykorzystaj charakterystyke typu int...

