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ZAAWANSOWANA 

OBIEKTOWOŚĆ 
 

Nuda jest wrogiem programistów. 
Bjarne Stroustrup 

 
C++ jest zasłużonym członkiem licznej obecnie rodziny języków obiektowych. Oferuje on 
wszystkie koniecznie mechanizmy, służące praktycznej realizacji idei programowania 
zorientowanego obiektowo. Poznaliśmy je w dwóch rozdziałach poprzedniej części kursu. 
Między C++ a innymi językami OOP występują jednak pewne różnice. Nasz język ma 
wiele specyficznych dla siebie możliwości, które mają za zadanie ułatwienie życia 
programiście. Często też przyczyniają się do powstania obiektywnie lepszych programów. 
 
W tym rozdziale poznamy tę właśnie stronę OOPu w C++. Przedstawione tu zagadnienia, 
choć w zasadzie niezbędne do wystarczającej znajomości języka, są w dużej części 
przydatnymi udogonieniami. Nie niezbędnymi, lecz wielce interesującymi i praktycznymi. 
Poznanie ich sprawi, że nasze obiektowe programy będą wygodne w konstruowaniu i 
późniejszej modyfikacji. Programowanie stanie się po prostu łatwiejsze i przyjemniejsze - 
a to chyba będzie bardzo znaczącym osiągnięciem. 
Zobaczmy więc, jakie wyjątkowe konstrukcje OOP oferuje nam C++. 

O przyjaźni 
W czasie pierwszych spotkań z programowaniem obiektowym wspominałem dość często 
o jego zaletach, wymieniając wśród nich podział kodu na drobne i łatwe to zarządzania 
kawałki. Tymi fragmentami (także pod względem koncepcyjnym) są oczywiście klasy. 
Plusem, jaki niesie za soba stosowanie klas, jest wyodrębnienie kodu i danych w obiekty 
zajmujące się konkretnymi zadaniami i reprezentującymi konkretne obiekty. Instancje 
klas współpracują ze sobą i dzięki temu wypełniają zadania aplikacji. Tak to wygląda - 
przynajmniej w teorii :) 
 
Atutem klas jest niezależność, zwana fachowo hermetyzacją lub enkapsulacją. Objawia 
się ona tym, iż dana klasa posiada pewien zestaw pól i metod, z którym tylko wybrane są 
dostępne dla świata zewnętrznego. Jej wewnętrzne sprawy są całkowicie chronione; służą 
ku temu specyfikatory dostępu, jak private i protected. 
Opatrzone nimi składowe są w zasadzie całkiem odseparowane od świata zewnętrznego, 
bo ten jest dla nich potencjalnie groźny. Upubliczniając swoje pole klasa narażałaby 
przecież swoje dane na przypadkowe lub celowe, ale zawsze niepożądane modyfikacje. 
To tak jakby wyjść z domu i zostawić drzwi niezamknięte na klucz: nie jest to wpradzie 
bezpośrednie zaproszenie dla złodzieja, ale taka okazja może go uczynić - w myśl 
znanego powiedzenia. 
Ale przecież nie wszyscy są źli - każdy ma przynajmniej kilku przyjaciół. Przyjaciel jest 
to osoba, na którą można liczyć; o której wiemy, że nie zrobi nam nic złego. Większość 
ludzi uważa, że przyjaźń jest w życiu bardzo ważna - i nie muszą nas do tego 
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przekonywać żadni socjologowie. Wszyscy wiemy to dobrze z własnego, życiowego 
doświadczenia. 
 
No dobrze, ale co to ma wspólnego z programowaniem?… Otóż bardzo wiele, zwłaszcza z 
programowaniem obiektowym. Mianowicie, klasa także może mieć przyjaciół: mogą 
być nimi globalne funkcje, metody innych klas, a także inne klasy w całości. Cóż to 
jednak znaczy, że klasa ma jakiegoś przyjaciela?… Wyjaśnijmy więc, że: 
 
Przyjaciel (ang. friend) danej klasy ma dostęp do jej wszystkich składników - także 
tych chronionych, a nawet prywatnych. 
 
Jeżeli zatem klasa posiada przyjaciela, to oznacza to, że dała mu „klucze” (dostęp) do 
swojego „mieszkania” (niepublicznych składowych). Przyjaciel klasy ma do nich prawie 
takie samo prawo, jak metody tejże klasy. Pewne drobne różnice wyjaśnimy sobie przy 
okazji osobnego omówienia zaprzyjaźnionych funkcji i klas. 
 
Dowiedzmy się teraz, jak zaprzyjaźnić z klasą jakiś inny element programu. Jest 
oczywiście i jak zwykle bardzo proste ;) Należy bowiem umieścić w definicji klasy tzw. 
deklarację przyjaźni (ang. friend declaration): 
 

friend deklaracja_przyjaciela; 
 
Słowem kluczowym friend poprzedzamy w niej deklarację_przyjaciela. Tą deklaracją 
może być: 

 prototyp funkcji globalnej 
 prototyp metody ze zdefiniowanej wcześniej klasy 
 nazwa zadeklarowanej wcześniej klasy 

 
Oto najprostszy i niezbyt mądry przykład: 
 

class CFoo 
{ 
 private: 
  std::string m_strBardzoOsobistyNapis; 
 
 public: 
  // konstruktor 
  CFoo() { m_strBardzoOsobistyNapis = "Kocham C++!"; } 
 
 // deklaracja przyjaźni z funkcją 
 friend void Wypisz(CFoo*); 
}; 
 
// zaprzyjaźniona funkcja 
void Wypisz(CFoo* pFoo) 
{ 
 std::cout << pFoo->m_strBardzoOsobistyNapis; 
} 

 
Zaprzyjaźniony byt - w tym przypadku funkcja - ma tu pełen dostęp do prywatnego pola 
klasy CFoo. Może więc wypisać jego zawartość dla każdego obiektu tej klasy, jaki 
zostanie mu podany. 
 
Deklaracja przyjaźni w tym przykładzie wydaje się być umieszczona w sekcji public 
klasy CFoo. Tak jednak nie jest, gdyż: 
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Deklaracja przyjaźni może być umieszczona w każdym miejscu definicji klasy i 
zawsze ma to samo znaczenie. 
 
Jest więc obojętne, gdzie się ona pojawi. Zwykle piszemy ją albo na początku, albo na 
końcu klasy, wyróżniając na przykład zmniejszonym wcięciem. Pokazujemy w ten 
sposób, że nie podlega ona specyfikatorom dostępu. 
Nie ma więc czegoś takiego jak „publiczna deklaracja przyjaźni” lub „prywatna deklaracja 
przyjaźni”. Przyjaciel pozostaje przyjacielem niezależnie od tego, czy się nim chwalimy, 
czy nie. 
 
Skoro teraz wiemy już z grubsza, czym są przyjaciele klas, omówimy sobie osobno 
zaprzyjaźnianie funkcji globalnych oraz innych klas i ich metod. 

Funkcje zaprzyjaźnione 
Najpierw zobaczymy, jak zaprzyjaźnić klasę z funkcją - tak, aby funkcja miała dostęp do 
niepublicznych składników z danej klasy. 

Deklaracja przyjaźni z funkcją 
Chcąc uczynić jakąś funkcję przyjacielem klasy, musimy w definicji klasy podać 
deklarację zaprzyjaźnionej funkcji, poprzedzając ją słowem kluczowym friend. 
 
Ilustracją tego faktu nie będzie poniższy przykład. Mamy w nim klasę opisującą okrąg - 
CCircle. Zaprzyjaźniona z nią funkcja PrzecinajaSie() sprawdza, czy podane jej dwa 
okręg mają punkty wspólne: 
 

#include <cmath> 
 
class CCircle 
{ 
 private: 
  // środek okręgu 
  struct { float x, y; } m_ptSrodek; 
 
  // jego promień 
  float m_fPromien; 
 
 public: 
  // konstruktor 
  CCircle (float fPromien, float fX = 0.0f, float fY = 0.0f) 
   { m_fPromien = fPromien; 
     m_ptSrodek.x = fX; 
     m_ptSrodek.y = fY; } 
 
 // deklaracja przyjaźni z funkcją 
 friend bool PrzecinajaSie(CCircle&, CCircle&); 
}; 
 
 
// zaprzyjaźniona funkcja 
bool PrzecinajaSie(CCircle& Okrag1, CCircle& Okrag2) 
{ 
 // obliczamy odległość między środkami 
 float fRoznicaX = Okrag2.m_ptSrodek.x - Okrag1.m_ptSrodek.x; 
 float fRoznicaY = Okrag2.m_ptSrodek.y - Okrag1.m_ptSrodek.y; 
 float fOdleglosc = sqrt(fRoznicaX*fRoznicaX + fRoznicaY*fRoznicaY); 
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 // odległość ta musi być mniejsza od sumy promieni, ale większa 
 // od ich bezwzględnej różnicy 
 return (fOdleglosc < Okrag1.m_fPromien + Okrag2.m_fPromien 
 && fOdleglosc > abs(Okrag1.m_fPromien - Okrag2.m_fPromien); 
} 

 
Bardzo dobrze widać tu ideę przyjaźni: funkcja PrzecinajaSie() ma dostęp do 
składowych m_ptSrodek oraz m_fPromien z obiektów klasy CCircle - mimo że są 
prywatne pola klasy. CCircle deklaruje jednak przyjaźń z funkcją PrzecinajaSie(), a 
zatem udostępnia jej swoje osobiste dane. 
 
Zauważmy jeszcze, że w deklaracji przyjaźni podajemy cały prototyp funkcji, a nie tylko 
jej nazwę. Możliwe jest bowiem zdefiniowanie kilku funkcji o tej nazwie, np. tak: 
 

bool PrzecinajaSie(CCircle&, CCircle&); 
bool PrzecinajaSie(CRectangle&, CRectangle&); 
bool PrzecinajaSie(CPolygon&, CPolygon&); 
// itd. (wraz z ewentualnymi kombinacjami krzyżowymi) 

 
Klasa będzie jednak przyjaźniła się tylko z tą funkcją, której deklarację zamieścimy po 
słowie friend. Zapamiętajmy po prostu, że: 
 
Jedna zwykła deklaracja przyjaźni oznacza przyjaźń z jedną funkcją. 

Na co jeszcze trzeba zwrócić uwagę 
Wszystko wydawałoby się raczej proste. Nie zaszkodzi jednak powiedzieć wprost o 
pewnych „oczywistych” faktach związanych z zaprzyjaźnionymi funkcjami. 

Funkcja zaprzyjaźniona nie jest metodą 
Jedno słówko friend może bardzo wiele zmienić. Porównajmy choćby te dwie klasy: 
 

class CFoo 
{ 
 public: 
  void Funkcja(); 
}; 
 
class CBar 
{ 
 public: 
  friend void Funkcja(); 
}; 

 
Różnią się one tylko tym słówkiem… ale jest to różnica znacząca. W pierwszej klasie 
Funkcja() jest jej metodą: zadeklarowaliśmy ją tak, jak wszystkie normalne metody 
klas. Znamy to już dobrze, gdyż proces definiowania metod poznaliśmy przy pierwszym 
spotkanie z OOPu. Do pełni szczęścią na leży jeszcze tylko zdefiniować ciało emtody 
CFoo::Funkcja() i wszystko będzie w porządku. 
Deklaracja w drugiej klasie jest natomiast opatrzona słówkiem friend, które zupełnie 
zmienia jej znaczenie. Funkcja() nie jest tu metodą klasy CBar. Jest wprawdzie 
zaprzyjaźniona z nią, ale nie jest jej składnikiem: nie ma dostępu do wskaźnika this. 
Aby z tej zaprzyjaźnionej funkcji mógł być w ogóle jakiś użytek, trzeba jej zapewnić 
dostęp do obiektu klasy CBar, bo jej samej nikt go „nie da”. Wobec braku parametrów 
funkcji pewnie będzie to wymagało zadeklarowania globalnej zmiennej obiektowej typu 
CBar. 
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Pamiętaj zatem, iż: 
 
Funkcje zaprzyjaźnione z klasą nie są jej składnikami. Nie posiadają dostępu do 
wskaźnika this tej klasy, gdyż nie są jej metodami. 
 
W praktyce więc należy jakoś podać takiej funkcji obiekt klasy, która się z nią przyjaźni. 
Zobaczyliśmy w poprzednim przykładzie, że prawie zawsze odbywa się to poprzez 
parametry. Referencja do obiektu klasy CCircle była parametrem zaprzyjaźnionej z nią 
funkcji PrzecinajaSie(). Tylko posiadając dostęp do obiektu klasy, która się z nią 
przyjaźni, funkcja zaprzyjaźniona może odnieść jakąś korzyść ze swojego 
uprzywilejowanego statusu. 

Deklaracja przyjaźni jest też deklaracją funkcji 
Mamy też drugi ważny fakt związany z deklaracją funkcji zaprzyjaźnionej. 

Deklaracja przyjaźni jako prototyp funkcji 

Otóż, taka deklaracja przyjaźni jest jednocześnie deklaracją funkcji jako takiej. Musimy 
zauważyć, że w zaprezentowanych przykładach funkcje, które były przyjacielami klasy, 
zostały zdefiniowane dopiero po definicji tejże klasy. Wcześniej kompilator nic o nich nie 
wiedział - a mimo to pozwolił na ich zaprzyjaźnienie! Czy to jakaś niedoróbka? 
 
Ależ skąd! Kompilator uznaje po prostu deklarację przyjaźni z funkcją także za deklarację 
samej funkcji. Linijka ze słowem friend pełni więc funkcję prototypu funkcji, która może 
być swobodnie zdefiniowana w zupełnie innym miejscu. Z kolei wcześniejsze 
prototypowanie funkcji, przed deklaracją przyjaźni, nie jest konieczne. Mówiąc po ludzku, 
w poniższym kodzie: 
 

bool PrzecinajaSie(CCircle&, CCircle&); 
 
class CCircle 
{ 
 // (ciach - szczegóły) 
 
 friend bool PrzecinajaSie(CCircle&, CCircle&); 
}; 
 
// gdzieś dalej definicja funkcji... 

 
początkowy prototyp funkcji PrzecinajaSie(), umieszczony przed definicją CCircle, nie 
jest koniecznie wymagany. Bez niego kompilator skorzysta po prostu z deklaracji 
przyjaźni jak z normalnej deklaracji funkcji. 
 
Deklaracja przyjaźni z funkcją może być jednocześnie deklaracją samej funkcji. 
Wcześniejsza wiedza kompilatora o istnieniu zaprzyjaźnianej funkcji nie jest niezbędna, 
aby funkcja ta mogła zostać zaprzyjaźniona. 

Dodajemy definicję 

Najbardziej zaskakujące jest jednak to, że deklarując przyjaźń z jakąś funkcją możemy 
tę funkcję jednocześnie… zdefiniować! Nic nie stoi na przeszkodzie, aby po zakończeniu 
deklaracji nie stawiać średnika, lecz otworzyć nawias klamrowy i wpisać treść funkcji: 
 

class CVector2D 
{ 
 private: 
  float m_fX, m_fY; 
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 public: 
  CVector2D(float fX = 0.0f, float fY = 0.0f) 
   { m_fX = fX; m_fY = fY; } 
 
 // zaprzyjaźniona funkcja dodająca dwa wektory 
 friend CVector2D Dodaj(CVector2D& v1, CVector2D& v2) 
  { return CVector2D(v1.m_fX + v2.m_fX, v1.m_fY + v2.m_fY); } 
}; 

 
Nie zapominajmy, że nawet wówczas funkcja zaprzyjaźniona nie jest metodą klasy - 
pomimo tego, że jej umieszczenie wewnątrz definicji klasy sprawia takie wrażenie. W tym 
przypadku funkcja Dodaj() jest nadal funkcją globalną - wywołujemy ją bez pomocy 
żadnego obiektu, choć oczywiście przekazujemy jej obiekty CVector2D w parametrach i 
taki też obiekt otrzymujemy z powrotem: 
 

CVector2D vSuma = Dodaj(CVector2D(1.0f, 2.0f), CVector2D(0.0f, -1.0f)); 
 
Umieszczenie definicji funkcji zaprzyjaźnionej w bloku definicji klasy ma jednak pewien 
skutek. Otóż funkcja staje się wtedy funkcją inline, czyli jest rozwijana w miejscu swego 
wywołania. Przypomina pod tym względem metody klasy, ale jeszcze raz powtarzam, że 
metodą nie jest. 
 
Może najlepiej będzie, jeśli zapamiętasz, że: 
 
Wszystkie funkcje zdefiniowane wewnątrz definicji klasy są automatycznie inline, 
jednak tylko te bez słówka friend są jej metodami. Pozostałe są funkcjami 
globalnymi, lecz zaprzyjaźnionymi z klasą. 

Klasy zaprzyjaźnione 
Zaprzyjaźnianie klas z funkcjami globalnymi wydaje się może nieco dziwnym 
rozwiązaniem (gdyż częściowo łamie zaletę OOPu - hermetyzację), ale niejednokrotnie 
bywa przydatnym mechanizmem. Bardziej obiektowym podejściem jest przyjaźń klas z 
innymi klasami - jako całościami lub tylko z ich pojedynczymi metodami. 

Przyjaźń z pojedynczymi metodami 
Wiemy już, że możemy zadeklarować przyjaźń klasy z funkcją globalną. Teraz dowiemy 
się, że przyjacielem może być także inny rodzaj funkcji - metoda klasy. 
 
Ponownie spojrzyj na odpowiedni przykład: 
 

// deklaracja zapowiadająca klasy CCircle 
class CCircle; 
 
class CGeometryManager 
{ 
 public: 
  bool PrzecinajaSie(CCircle&, CCircle&); 
}; 
 
class CCircle 
{ 
 // (pomijamy resztę) 
 
 friend bool CGeometryManager::PrzecinajaSie(CCircle&, CCircle&); 
}; 
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Tym razem funkcja PrzecinajaSie() stała się składową klasy CGeometryManager. To 
bardziej obiektowe rozwiązanie - tym bardziej dobre, że nie przeszkadza w 
zadeklarowaniu przyjaźni z tą funkcją. Teraz jednak klasa z CCircle przyjaźni się z 
metodą innej klasy - CGeometryManager. Odpowiednią zmianę (dość naturalną) widać 
więc w deklaracji przyjaźni. 
 
Przyjaźń z metodami innych klas byłaby bardzo podobna do przyjaźni z funkcjami 
globalnymi gdyby nie jeden szkopuł. Kompilator musi mianowicie znać deklarację 
zaprzyjaźnianej metody (CGeometryManager::PrzecinajaSie()) już wcześniej. To 
zaś wiążę się z koniecznością zdefiniowania jej macierzystej klasy (CGeometryManager). 
Do tego potrzebujemy jednak informacji o klasie CCircle, aby mogła ona wystąpić jako 
typ agrumentu metody PrzecinajaSie(). Rozwiązaniem jest deklaracja 
zapowiadająca, w które informujemy kompilator, że CCircle jest klasą, nie mówiac 
jednak niczego więcej. Z takimi deklaracjami spotkaliśmy się już wcześniej i jeszcze 
spotkamy się nie raz - szczególnie w kontekście przyjaźni międzyklasowej. 
 
„Chwileczkę! A co z tą zaprzyjaźnianą metodą, CGeometryManager::PrzecinajaSie()? 
Czyżby miała ona nie posiadać dostępu do wskaźnika this, mimo że jest funkcją 
składową klasy?…” 
Odpowiedź brzmi: i tak, i nie. Wszystko zależy bowiem od tego, o który wskaźnik this 
nam dokładnie chodzi. Jeżeli o ten pochodzący od CGeometryManager, to wszystko jest w 
jak najlepszym porządku: metoda PrzecinajaSie() posiada go oczywiście, zatem ma 
dostęp do składników swojej macierzystej klasy. Jeśli natomiast mamy na myśli klasę 
CCircle, to faktycznie metoda PrzecinajaSie() nie ma dojścia do wskaźnika this… tej 
klasy! Zgadza się to całkowicie z faktem, iż funkcja zaprzyjaźniona nie jest metodą 
klasy, która się z nią przyjaźni - tak więc nie posiada wskaźnika this tej klasy (tutaj 
CCircle). Funkcja może być jednak metodą innej klasy (tutaj CGeometryManager), a 
dostęp do jej składników będzie mieć zawsze - takie są przecież podstawowe założenia 
programowania obiektowego. 

Przyjaźń z całą klasą 
Deklarując przyjaźń jednej klasy z metodami innej klasy, można pójść o krok dalej. 
Dlaczego na przykład nie powiązać przyjaźnią od razu wszystkich metod pewnej klasy z 
naszą?… Oczywiście możnaby pracowicie zadeklarować przyjaźń ze wszystkimi metodami 
tamtej klasy, ale jest prostsze rozwiązanie. Może zaprzyjaźnić jedną klasę z drugą. 
 
Deklaracja przyjaźni z całą klasą jest nad wyraz prosta: 
 

friend class nazwa_zaprzyjaźnionej_klasy; 
 
Zastępuje ona deklaracje przyjaźni ze wszystkimi metodami klasy o podanej nazwie, 
wyszczególnionymi osobno. Taka forma jest poza tym nie tylko krótsza, ale też ma kilka 
innych zalet. 
Wpierw jednak spójrzmy na przykład: 
 

class CPoint; 
 
class CRect 
{ 
 private: 
  // ... 
 
 public: 
  bool PunktWewnatrz(CPoint&); 
}; 
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class CPoint 
{ 
 private: 
  float m_fX, m_fY; 
 
 public: 
  CPoint(float fX = 0.0f, float fY = 0.0f) 
   { m_fX = fX; m_fY = fY; } 
 
 // deklaracja przyjaźni z Crect 
 friend class CRect; 
}; 

 
Wyznanie przyjaźni, który czyni klasa CPoint, sprawia, że zaprzyjaźniona klasa CRect ma 
pełen dostęp do jej składników niepublicznych. Metoda CRect::PunktWewnatrz() może 
więc odczytać współrzędne podanego punktu i sprawdzić, czy leży on wewnątrz 
prostokąta opisanego przez obiektt klasy CRect. 
 
Zauważmy jednocześnie, że klasa CPoint nie ma tutaj podobnego dostępu do 
prywatnych składowych CRect. Klasa CRect nie zadeklarowała bowiem przyjaźni z klasą 
CPoint. Wynika stąd bardzo ważna zasada: 
 
Przyjaźń klas w C++ nie jest automatycznie wzajemna. Jeżeli klasa A deklaruje 
przyjaźń z klasą B, to klasa B nie jest od razu także przyjacielem klasy A. Obiekty klasy B 
mają więc dostęp do niepublicznych danych klasy A, lecz nie odwrotnie. 
 
Dość często aczkolwiek życzymy sobie, aby klasy wzajemnie deklarowały sobie przyjaźń. 
Jest to jak najbardziej możliwe: po prostu w obu klasach muszą być deklaracje przyjaźni: 
 

class CBar; 
 
class CFoo 
{ 
 friend class CBar; 
}; 
 
class CBar 
{ 
 friend class CFoo; 
}; 

 
Wymaga to zawsze zastosowania deklaracji zapowiadającej, gdyż kompilator musi 
wiedzieć, że dana nazwa jest klasą, zanim pozwoli na jej zastosowanie w konstrukcji 
friend class. Nie musi natomiast znać całej definicji klasy, co było wymagane dla 
przyjaźni z pojedynczymi metodami. Gdyby tak było, to wzajemna przyjaźń klas nie 
byłaby możliwa. Kompilator zadowala się na szczęście samą informacją „CBar jest klasą”, 
bez wnikania w szczegóły, i przyjmuje deklarację przyjaźni z klasą, o której w zasadzie 
nic nie wie. 
 
Kompilator nie przyjmie natomiast deklaracji przyjaźni z pojedynczą metodą nieznanej 
bliżej klasy. Sprawia to, że wybiórcza przyjaźń dwóch klas nie jest możliwa, bo 
wymagałaby niemożliwego: zdefiniowania pierwszej klasy przed definicją drugiej oraz 
zdefiniowania drugiej przed definicją pierwszej. To oczywiście niemożliwe, a kompilator 
nie zadowoli się niestety samą deklaracją zapowiadającą - jak to czyni przy deklarowaniu 
całkowitej przejaźni (friend class klasa;). 
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Jeszcze kilka uwag 
Przyjaźń nie jest szczegolnie zawiłym aspektem programowania obiektowego w C++. 
Wypada jednak nieco uściślić jej wpływ na pozostałe elementy OOPu. 

Cechy przyjaźni klas w C++ 
Przyjaźń klas w C++ ma trzy znaczące cechy, na które chcę teraz zwrócić uwagę. 

Przyjaźń nie jest automatycznie wzajemna 
W prawdziwym życiu ktoś, kogo uważamy za przyjaciela, ma zwykle to samo zdanie o 
nas. To więcej niż naturalne. 
 
W programowaniu jest inaczej. Można to uznać za kolejny argument, iż jest ono zupełnie 
oderwane od rzeczywistości, a można po prostu przyjąć to do wiadomości. A prawda jest 
taka: 
 
Klasa deklarująca przyjaźń udostępnia przyjacielowi swoje niepubliczne składowe - lecz 
nie powoduje to od razu, że klasa zaprzyjaźniona jest tak samo otwarta. 
 
Powiedziałem już, że chcąc stworzyć wzajemny związek przyjaźni trzeba umieścić 
odpowiednie deklaracje w obu klasach. Wymaga to zawsze zapowiadającej deklaracji 
przynajmniej jeden z powiązanych klas. 

Przyjaźń nie jest przechodnia 
Inaczej mówiąc: przyjaciel mojego przyjaciela nie jest moim przyjacielem. Przekładając 
to na C++: 
 
Jeżeli klasa A deklaruje przyjaźń z klasą B, zaś klasa B z klasą C, to nie znaczy to, że 
klasa C jest od razu przyjacielem klasy A.  
 
Gdybyśmy chcieli, żeby tak było, powinniśmy wyraźnie to zadeklarować: 
 

friend class C; 

Przyjaźń nie jest dziedziczna 
Przyjaźń nie jest również dziedziczona. Tak więc przyjaciel klasy bazowej nie jest 
automatycznie przyjacielem klasy pochodnej. Aby tak było, klasa pochodna musi sama 
zadeklarować swojego przyjaciela. 
Można to uzasadnić na przykład w ten sposób, że deklaracja przyjaźni nie jest 
składnikiem klasy - tak jak metoda czy pole. Nie można więc go odziedziczyć. Inne 
wytłumaczenie: deklaracja friend nie ma przypisanego specyfikatora dostępu (public, 
private…), zatem nie wiadomo by było, co z nią zrobić w procesie dziedziczenia; jak 
wiemy, składniki private nie są dziedziczone, a pozostałe owszem106. 
 
Dwie ostatnie uwagi możemy też uogólnić do jednej: 
 
Klasa ma tylko tych przyjaciół, których sama sobie zadeklaruje. 

                                                 
106 Jest tak, gdy stosujemy dziedziczenie publiczne (class pochodna : public bazowa), ale tak robimy niemal 
zawsze. 
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Zastosowania 
Mówiąc o zastosowaniach przyjaźni, musimy rozgraniczyć zaprzyjaźnione klasy i funkcje 
globalne. 

Wykorzystanie przyjaźni z funkcją 
Do czego mogą przydać się zaprzyjaźnione funkcje?… Teoretycznie korzyści jest wiele, 
ale w praktyce na przód wysuwa się jedno główne zastosowanie. To przeciążanie 
operatorów. 
 
O tym użytecznym mechaniźmie języka będziemy mówić w dalszej części tego rozdziału. 
Teraz mogę powiedzieć, że jest to sposób na zdefiniowanie własnych działań 
podejmowanych w stosunku do klas, których obiekty występują w wyrażeniach z 
operatorami: arytmetycznymi, bitowymi, logicznymi, i tak dalej. Precyzyjniej: chodzi o 
stworzenie funkcji, które zostaną wykonywane na argumentach operatorów, będących 
naszymi klasami. Takie funkcje potrzebują często dostępu do prywatnych składników 
klas, na rzecz których przeciążamy operatory. Tutaj właśnie przydają się funkcje 
globalne, jako że zapewniają taki dostęp, a jednocześnie swobodę definiowania kolejności 
argumentów operatora. 
Jeśli nie bardzo to rozumiesz, nie przejmuj się. Przeciążanie operatorów jest w 
rzeczywistości bardzo proste, a zaprzyjaźnione funkcji globalne upraszczają to jeszcze 
bardziej. Wkrótce sam się o tym przekonasz. 

Korzyści czerpane z przyjaźni klas 
A co można zyskać zaprzyjaźniając klasy? Tutaj trudniej o konkretną odpowiedź. 
Wszystko zależy od tego, jak zaprojektujemy swój obiektowy program. Warto jednak 
wiedzieć, że mamy taką właśnie możliwość, jak zaprzyjaźnianie klas. Jak wszystkie z 
pozoru nieprzydatne rozwiązania, okaże się ona użyteczna w najmniej spodziewanych 
sytuacjach. 
 

*** 
 
Tą pocieszającą konkluzją zakończyliśmy omawianie przyjaźni klas i funkcji w C++. 
Kolejnym elementem OOPu, na jakim skupimy swoją uwagę, będą konstruktory. Ich rola 
w naszym ulubionym języka jest bowiem wcale niebagatelna i nieogranicza się tylko do 
inicjalizacji obiektów… Zobaczmy sami. 

Konstruktory w szczegółach 
Konstruktory pełnią w C++ wyjątkowo dużo ról. Choć oczywiście najważniejsza (i w 
zasadzie jedyną poważną) jest inicjalizacja obiektów - instancji klas, to niejako przy 
okazji mogą one dokonywać kilku innych, przydatnych operacji. Wszystkie one wiążą się 
z tym głównym zadaniem. 
W tym podrozdziale nie będziemy więc mówić o tym, co robi konstruktor (bo to wiemy), 
ale jak może to robić. Innymi słowy, dowiesz się, jak wykorzystać różne rodzaje 
konstruktorów do własnych szczytnych celów programistycznych. 

Mała powtórka 
Najpierw jednak przyda się małe powtórzenie wiedzy, która będzie nam teraz przydatna. 
Przy okazji może ją trochę usystematyzujemy; powinno się też wyjaśnić to, co do tej 
pory mogło być dla ciebie ewentualnie niejasne. 
 
Zaczniemy od przypomnienia konstruktorów, a później procesu inicjalizacji. 
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Konstruktory 
Konstruktor jest specjalną metodą klasy, wywoływaną podczas tworzenia obiektu. Nie 
jest on, jak się czasem błędnie sądzi, odpowiedzialny za alokację pamięci dla obiektu, 
lecz tylko za wstępne ustawienie jego pól. Niejako przy okazji może on aczkolwiek 
podejmować też inne czynności, jak zwykła metoda klasy. 

Cechy konstruktorów 
Konstruktory tym jednak różnią się od zwykłych metod, iż: 

 nie posiadają wartości zwracanej. Konstruktor nic nie zwraca (bo i komu?…), 
nawet typu pustego, czyli void. Zgoda, można się spierać, że wynikiem jego 
działania jest obiekt, lecz konstruktor nie jest jedynym mechanizmem, który 
bierze udział w jego tworzeniu: liczy się jeszcze alokacja pamięci. Dlatego też 
przyjmujemy, że konstruktor nie zwraca wartości. Widać to zresztą w jego 
deklaracji 

 nie mogą być wywoływane za pośrednictwem wskaźnika na funkcje. Przyczyna 
jest prosta: nie można pobrać adresu konstruktora 

 mają mnóstwo ograniczeń co do przydomków w deklaracjach: 
 nie można ich czynić metodami stałymi (const) 
 nie mogą być metodami wirtualnymi (virtual), jako że sposób ich 

wywoływania w warunkach dziedziczenia jest zupełnie odmienny od obu 
typów metod: wirtualnych i niewirtualnych. Wspominałym o tym przy 
okazji dziedziczenia. 

 nie mogą być metodami statycznymi klas (static). Z drugiej strony 
posiadają unikalną cechę metod statycznych, jaką jest możliwość 
wywołania bez konieczności posiadania obiektu macierzystej klasy. 
Konstruktory mają jednak dostęp do wskaźnika this na tworzony obiekt, 
czego nie można powiedzieć o zwykłych metodach statycznych 

 nie są dziedziczone z klas bazowych do pochodnych 
 
Widać więc, że konstruktor to bardzo dziwna metoda: niby zwraca jakąś wartość 
(tworzony obiekt), ale nie deklarujemy mu wartości zwracanej; nie może być wirtualny, 
ale w pewnym sensie jest; nie może być statyczny, ale posiada cechy metod 
statycznych; jest funkcją, ale nie można pobrać jego adresu, itd. To wszystko wydaje się 
nieco zakręcone, lecz wiemy chyba, że nie przeszkadza to wcale w normalnym używaniu 
konstruktorów. Zamiast więc rozstrząsać fakty, czym te metody są, a czym nie, zajmijmy 
się ich definiowaniem.  

Definiowanie 
W C++ konstruktor wyróżnia się jeszcze tym, że jego nazwa odpowiada nazwie klasy, na 
rzecz której pracuje. Przykładowa deklaracja konstruktora może więc wyglądać tak: 
 

class CFoo 
{ 
 private: 
  int m_nPole; 
 
 public: 
  CFoo(int nPole) { m_nPole = nPole; } 
}; 

 
Jak widzimy, nie podajemy tu żadnej wartości zwracanej. 

Przeciążanie 

Zwykłe metody klasy także można przeciążać, ale w przypadku konstruktorów dzieje się 
to nadzwyczaj często. Znowu posłużymy się przykładem wektora: 
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class CVector2D 
{ 
 private: 
  float m_fX, m_fY; 
 
 public: 
  // konstruktor, trzy sztuki 
 CVector2D() { m_fX = m_fY = 0.0f; } 
  CVector2D(float fDlugosc) 
 { m_fX = m_fY = fDlugosc / sqrt(2); } 
  CVector2D(float fX, float fY) { m_fX = fX; m_fY = fY; } 
}; 

 
Definiując przeciążone konstruktory powinniśmy, analogicznie jak w przypadku innych 
metod oraz zwykłych funkcji, wystrzegać się niejednoznaczności. W tym przypadku 
powstałaby ona, gdyby ostatni wariant zapisać jako: 
 

CVector2D(float fX = 0.0f, float fY = 0.0f); 
 
Wówczas mógłby on być wywołany z jednym argumentem, podobnie jak konstruktor 
nr 2. Kompilator nie zdecyduje, który wariant jest lepszy i zgłosi błąd. 

Konstruktor domyślny 

Konstruktor domyślny (ang. default constructor), zwany też domniemanym, jest to 
taki konstruktor, który może być wywołany bez podawania parametrów. 
 
W klasie powyżej jest to więc pierwszy z konstruktorów. Gdybyśmy jednak całą trójkę 
zastąpili jednym: 
 

CVector2D(float fX = 0.0f, float fY = 0.0f) { m_fX = fX; m_fY = fY; } 
 
to on także byłby konstruktorem domyślnym. Ilość podanych do niego parametrów może 
być bowiem równa zeru. Widać więc, że konstruktor domyślny nie musi być akurat tym, 
który faktycznie nie posiada parametrów w swej deklaracji (tzw. parametrów 
formalnych). 
Naturalnie, klasa może mieć tylko jeden konstruktor domyślny. W tym przypadku 
oznacza to, że konstruktor w formie CVector2D(), CVector2D(float fDlugosc = 0.0f) 
czy jakikolwiek inny tego typu nie jest dopuszczalny. Powstałaby bowiem 
niejednoznaczność, a kompilator nie wiedziałby, którą metodę powinien wywoływać. 
 
Za wygeneroowanie domyślnego konstruktora może też odpowiadać sam kompilator. 
Zrobi to jednak tylko wtedy, gdy sami nie podamy jakiegolwiek innego 
konstruktora. Z drugiej strony, nasz własny konstruktor domyślny zawsze przesłoni ten 
pochodzący od kompilatora. W sumie mamy więc trzy możliwe sytuacje: 

 nie podajemy żadnego własnego konstruktora - kompilator automatycznie 
generuje domyślny konstruktor publiczny 

 podajemy własny konstruktor domyślny (jeden i tylko jeden) - jest on używany 
 podajemy własne konstruktory, ale żaden z nich nie może być domyślny, czyli 

wywoływany przez parametrów - wówczas klasa nie ma konstruktora domyślnego 
 
Tak więc tylko w dwóch pierwszych sytuacjach klasa posiada domyślny konstruktor. Jaka 
jest jednak korzyść z jego obecności? Otóż jest ona w sumie niewielka: 

 tylko obiekty posiadające konstruktor domyślny mogą być elementami tablic. 
Podkreślam: chodzi o obiekty, nie o wskaźniki do nich - te mogą być łączone w 
tablice bez względu na konstruktory 
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 tylko klasę posiadającą konstruktor domyślny można dziedziczyć bez dodatkowych 
zabiegów przy konstruktorze klasy pochodnej 

 
Tę drugą zasadę wprowadziłem przy okazji dziedziczenia, choć nie wspominałem o owych 
„dodatkowych zabiegach”. Będą one treścią tego podrozdziału. 

Kiedy wywoływany jest konstruktor 
Popatrzmy teraz na sytuacje, w których pracuje knnstruktor. Nie jest ich zbyt wiele, tylko 
kilka. 

Niejawne wywołanie 

Niejawne wywołanie (ang. implicit call) występuje wtedy, gdy to kompilator wywołuje 
nasz konstruktor. Jest parę takich sytuacji: 

 najprostsza: gdy deklarujemy zmienną obiektową, np.: 
 

CFoo Foo; 
 

 w momencie tworzenia obiektu, który zawiera w sobie pola będące zmiennymi 
obiektowymi innych klas 

 w chwili tworzenia obiektu klasy pochodnej jest wywoływany konstruktor klasy 
bazowej 

Jawne wywołanie 

Konstruktor możemy też wywołać jawnie. Mamy wtedy wywołanie niejawne (ang. explicit 
call), które występuje np. w takich sytuacjach: 

 przy konstruowaniu obiektu operatorem new 
 przy jawnym wywołaniu konstruktora: nazwa_klasy([parametry]) 

 
W tym drugim przypadku mamy tzw. obiekt chwilowy. Zwracaliśmy taki obiekt, kopiując 
go do rezultatu funkcji Dodaj(), prezentując funkcje zaprzyjaźnione. 

Inicjalizacja 
Teraz powiemy sobie więcej o inicjalizacji. Jest to bowiem proces ściśle związany z 
aspektami konstruktorów, które omówimy w tym podrozdziale. 
 
Inicjalizacja (ang. initialization) jest to nadanie obiektowi wartości początkowej w 
chwili jego tworzenia. 

Kiedy się odbywa 
W naturalny sposób inicjalizację wiążemy z deklaracją zmiennych. Odbywa się ona 
jednak także w innych sytuacjach. 
 
Dwie kolejne związane z funkcjami. Otóż jest to: 

 przekazanie wartości poprzez parametr 
 zwrócenie wartości jako rezultatu funkcji 

 
Wreszcie, ostatnia sytuacja związana jest inicjalizacją obiektów klas - poznamy ją za 
chwilę. 

Jak wygląda 
Inicjalizacja w ogólności wygląda mniej więcej tak: 
 

typ zmienna = inicjalizator; 
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inicjalizator może mieć jednak różną postać, w zależności od typu deklarowanej 
zmiennej. 

Inicjalizacja typów podstawowych 

W przypadku zmiennych typow elementarnych sprawa jest najprostsza. W inicjalizatorze 
podajemy po prostu odpowiednią wartość, jaka zostanie przypisana temu typowi, np.: 
 

unsigned nZmienna = 42; 
float fZmienna = 10.5; 

 
Zauważmy, że bardzo często inicjalizacja związana jest niejawną konwersją wartości do 
odpowiedniego typu. Tutaj na przykład 42 (typu int) zostanie zamienione na typ 
unsigned, zaś 10.5 (double) na typ float. 

Agregaty 

Bardziej złozone typy danych możemy inicjalizować w specjalny sposób, jako tzw. 
agregaty. Agregatem jest tablica innych agregatów (względnie elementów typów 
podstawowych) lub obiekt klasy, która: 

 nie dziedziczy z żadnej klasy bazowej 
 posiada tylko składniki publiczne (public, ewentualnie bez specyfikatora w 

przypadku typów struct) 
 nie posiada funkcji wirtualnych 
 nie posiada zadeklarowanego konstruktora 

 
Agregaty możemy inicjalizować w specjalny sposób, podając wartości wszystkich ich 
elementów (pól). Znamy to już tablic, np.: 
 

int aTablica[13] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41 }; 
 
Podobnie może to się odbywać także dla struktur (tudzież klas), spełniających cztery 
podane warunki: 
 

struct VECTOR3 { float x, y, z; }; 
VECTOR3 vWektor = { 6.0f, 12.5f, 0.0f }; 

 
W przypadku bardziej skomplikowanych, „zagnieżdżonych” agregatów, będziemy mieli 
więcej odpowiednich par nawiasów klamrowych: 
 

VECTOR3 aWektory[3] = { { 0.0f, 2.0f, -3.0f }, 
 { -1.0f, 0.0f, 0.0f }, 
 { 8.0f, 6.0f, 4.0f } }; 

 
Można je aczkolwiek opuścić i napisać te 9 wartości jednym ciągiem, ale przyznasz 
chyba, że w tej postaci inicjalizacja wygląda bardziej przejrzyście. Po inicjalizatorze widać 
przynajmniej, że inicjujemy tablicę trój-, a nie dziewięcioelementową. 

Inicjalizacja konstruktorem 

Ostatni sposób to inicjalizacja obiektu jego własnym konstruktorem - na przykład: 
 

std::string strZmienna = "Hmm..."; 
 
Tak, to jest jak najbardziej taki właśnie przykład. W rzeczywistości kompilator rozwinie 
go bowiem do: 
 

std::string strZmienna("Hmm..."); 
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gdyż w klasie std::string istnieje odpowiedni konstruktor przyjmujący jeden argument 
typu napisowego107: 

 
string(const char[]); 

 
Konstruktor jest tu więc wywoływany niejawnie - jest to tak zwany konstruktor 
konwertujący, któremu przyjrzymy się bliżej w tym rozdziale. 

Listy inicjalizacyjne 
W definicji konstruktora możemy wprowadzić dodatkowy element - tzw. listę 
inicjalizacyjną: 
 

nazwa_klasy::nazwa_klasy([parametry]) : lista_inicjalizacyjna 
{ 
 ciało_konstruktora 
} 

 
Lista inicjalizacyjna (ang. initializers’ list) ustala sposób inicjalizacji obiektów tworzonej 
klasy. 
 
Za pomocą takiej listy możemy zainicjalizować pola klasy (i nie tylko) jeszcze przed 
wywołaniem samego konstruktora. Ma to pewne konsekwencje i bywa przydatne w 
określonych sytuacjach. 

Inicjalizacja składowych 
Dotychczas dokonywaliśmy inicjalizacji pól klasy w taki oto sposób: 
 

class CVector2D 
{ 
 private: 
  float m_fX, m_fY; 
 
 public: 
  CVector2D(float fX = 0.0f, float fY = 0.0f) 
   { m_fX = fX; m_fY = fY; } 
}; 

 
Przy pomocy listy inicjalizacyjnej zrobimy to samo mniej więcej tak: 
 

CVector2D(float fX = 0.0f, float fY = 0.0f) : m_fX(fX), m_fY(fY) { } 
 
Jaka jest różnica? 

 konstruktor może u nas być pusty. To najprawdopodobniej sprawi, że kompilator 
zastosuje wobec niego jakąś optymalizację 

 działania m_fX(fX) i m_fY(fY) (zwróćmy uwagę na składnię), mają charakter 
inicjalizacji pól, podczas gdy przypisania w ciele konstruktora są przypisaniami 
właśnie 

 lista inicjalizacyjna jest wykonywana jeszcze przed wejściem w ciało 
konstruktora i wykonaniem zawartych tam instrukcji 

 
Drugi i trzeci fakt jest bardzo ważny, ponieważ dają nam one możliwość umieszczania w 
klasie takich pól, które nie moga obyć się bez inicjalizacji, a więc: 
                                                 
107 W rzeczywistości ten konstruktor wygląda znacznie obszerniej, bo w grę wchodzą jeszcze szablony z 
biblioteki STL. Nic jednak nie stałoby na przeszkodzie, aby tak to właśnie wyglądało. 
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 stałych (pól z przydomkiem const) 
 stałych wskaźników (typ* const) 
 referencji 
 obiektów, których klasy nie mają domyślnych konstruktorów 

 
Lista inicjalizacyjna gwarantuje, że zostaną one zainicjalizowane we właściwym czasie - 
podczas tworzenia obiektu: 
 

class CFoo 
{ 
 private: 
  const float m_fPole; 
  // nie może być: const float m_fPole = 42; !! 
 
 public: 
  // konstruktor - inicjalizacja pola 
  CFoo() : m_fPole(42) 
  { 
   /* m_fPole = 42; // też nie może być - za późno! 
      // m_fPole musi mieć wartość już 
      // na samym początku wykonywania 
      // konstruktora */ 
  } 
}; 

 
Mówiłem też, że inicjalizacja przy pomocy listy inicjalizacyjnej jest szybsza od przypisań 
w ciele konstruktora. Powinniśmy więc stosować ją, jeżeli mamy taką możliwość, a 
decyzja na którejś z dwóch rozwiązań nie robi nam różnicy. Zauważmy też, że zapis na 
liście inicjalizacyjnej jest po prostu krótszy. 
 
W liście inicjalizacyjnej możemy umieszczać nie tylko „czyste” stałe i argumenty 
konstruktora, lecz także zlożone wyrażenia - nawet z wywołaniami metod czy funkcji 
globalnych. Nie ma więc żadnych ograniczeń w stosunku do przypisania. 

Wywołanie konstruktora klasy bazowej 
Lista inicjalizacyjna pozwala zrobić coś jeszcze zanim właściwy konstruktor ruszy do 
pracy. Pozwala to nie tylko na inicjalizację składowych klasy, które tego wymagają, ale 
także - a może przede wszystkim - wywołanie konstruktorów klas bazowych. 
 
Przy pierwszym spotkaniu z dziedziczeniem mówiłem, że klasa, która ma być 
dziedziczona, powinna posiadać bezparametrowy konstruktor. Było to spowodowane 
kolejnością wywoływania konstruktorów: jak wiemy, najpierw pracuje ten z klasy 
bazowej (poczynając od najstarszego pokolenia), a dopiero potem ten z klasy pochodnej. 
Kompilator musi więc wiedzieć, jak wywołać konstruktor z klasy bazowej. Jeżeli nie 
pomożemy mu w decyzji, to uprze się na konstruktor domyslny - bezparametrowy. 
 
Teraz będziemy już wiedzieć, jak można pomóc kompilatorowi. Służy do tego właśnie 
lista inicjalizacyjna. Oprócz inicjalizacji pól klasy możemy też wywoływać w niej 
konstruktory klas bazowych. W ten sposób zniknie konieczność posiadania przez nie 
konstruktora domyślnego. 
Oto jak może to wyglądać: 
 

class CIndirectBase 
{ 
 protected: 
  int m_nPole1; 
 



Zaawansowana obiektowość 389

 public: 
  CIndirectBase(int nPole1) : m_nPole1(nPole) { } 
}; 
 
class CDirectBase : public CIndirectBase 
{ 
 public: 
  // wywołanie konstruktora klasy bazowej 
  CDirectBase(int nPole1) : CIndirectBase(nPole1) { } 
}; 
 
class CDerived : public CDirectBase 
{ 
 protected: 
  float m_fPole2; 
 
 public: 
  // wywołanie konstruktora klasy bezpośrednio bazowej 
  CDerived(int nPole1, float fPole2) 
   : CDirectBase(nPole1), m_fPole2(fPole2) { } 
}; 

 
Zwróćmy uwagę szczególnie na klasę CDerived. Jej konstruktor wywołuje konstruktor z 
klasy bazowej bezpośredniej -  CDirectBase, lecz nie z pośredniej - CIndirectBase. Nie 
ma po prostu takiej potrzeby, gdyż za relacje między konstruktorami klas CDirectBase i 
CIndirectBase odpowiada tylko ta ostatnia. Jak zresztą widać, wywołuje ona jedyny 
konstruktor CIndirectBase. 
 
Spójrzmy jeszcze na parametry wszystkich konstruktorów. Jak widać, zachowują one 
parametry konstruktorów klas bazowych - zapewne dlatego, że same nie potrafią podać 
dla nich sensownych danych i będą ich żądać od twórcy obiektu. Uzyskane dane 
przekazują jednak do swoich przodków; powstaje w ten sposób swoista sztafeta, w której 
dane z konstruktora najniższego poziomu dziedziczenia trafiają w końcu do klasy 
bazowej. Po drodze są one przekazywane z rąk do rąk i ewentualnie zostawiane w polach 
klas pośrednich. 
Wszystko to dzieje się za pośrednictwem list inicjalizacyjnej. W praktyce ich 
wykorzystanie eliminuje więc bardzo wiele sytuacji, które wymagają definiowania ciała 
konstruktora. Sam się zresztą przekonasz, że całe mnóstwo pisanych przez ciebie klas 
bedzie zawierało puste konstruktory, realizujące swoje funkcje wyłącznie poprzez listy 
inicjalizacyjne. 

Konstruktory kopiujące 
Teraz porozmawiamy sobie o kopiowaniu obiektów, czyli tworzeniu ich koncepcyjnych 
duplikatów. W C++ mamy na to dwie wydzielone rodzaje metod klas: 

 konstruktory kopiujące, tworzące nowe obiekty na podstawie już istniejących 
 przeciążone operatory przypisania, których zadaniem jest skopiowanie stanu 

jednego obiektu do drugiego, już istniejącego 
 
Przeciążaniem operatorów zajmiemy się dalszej części rozdziału. W tej sekcji przyjrzymy 
się natomiast konstruktorom kopiującym. 

O kopiowaniu obiektów 
Wydawałoby się, że nie ma nic prostszego od skopiowania obiektu. Okazuje się jednak, 
że często nieodzowne są specjalne mechanizmy temu służące… Sprawdźmy to. 
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Pole po polu 
Gdy mówimy o kopiowaniu obiektów i nie zastanawiamy się nad tym dłużej, to sądzimy, 
że to po prostu skopiowanie danych - zawartości pól - z jednego obszaru pamięci do 
drugiego. Przykładowo, spójrzmy na dwa wektory: 
 

CVector2D vWektor1(1.0f, 2.0f, 3.0f); 
CVector2D vWektor2 = vWektor1; 

 
Całkiem słusznie oczekujemy, że po wykonaniu kopiowania vWektor1 do vWektor2 oba 
obiekty będą miały identyczne wartości pól. W przypadku takich struktur danych jak 
wektory, jest to zupełnie wystarczające. Dlaczego? Otóż wszystkie ich pola są całkowicie 
odrębnymi zmiennymi - nie mają żadnych koneksji z otaczającym je światem. Trudno 
przecież oczekiwać, żeby liczby typu float robiły cokolwiek innego poza 
przechowywaniem wartości. Ich proste skopiowanie jest więc właściwym sposobem 
wykonania kopii wektora - czyli obiektu klasy CVector2D. 
 
Samowystarczalne obiekty mogą być kopiowane poprzez dosłowne przepisanie wartości 
swoich pól. 

Gdy to nie wystarcza… 
Nie wszyscy obiekty podpadają jednak pod ustanowioną wyżej kategorię. Czy pamiętasz 
może klasę CIntArray, którą pokazałem, omawiając wskaźniki? Jeśli nie, to spójrz 
jeszcze raz na jej definicję (usprawnioną wykorzystaniem list inicjalizacyjnych): 
 

class CIntArray 
{ 
 // domyślny rozmiar tablicy 
 static const unsigned DOMYSLNY_ROZMIAR = 5; 
 
 private: 
  // wskaźnik na właściwą tablicę oraz jej rozmiar 
  int* m_pnTablica; 
  unsigned m_uRozmiar; 
 
 public: 
  // konstruktory 
  CIntArray()    // domyślny 
 : m_uRozmiar(DOMYSLNY_ROZMIAR), 
 m_pnTablica(new int [m_uRozmiar]) { } 
  CIntArray(unsigned uRozmiar) // z podaniem rozmiaru tablicy 
 : m_uRozmiar(uRozmiar); 
 m_pnTablica(new int [m_uRozmiar]) { } 
 
  // destruktor 
  ~CIntArray() { delete[] m_pnTablica; } 
 
 //-------------------------------------------------------------  
 
  // pobieranie i ustawianie elementów tablicy 
  int Pobierz(unsigned uIndeks) const 
   { if (uIndeks < m_uRozmiar) return m_pnTablica[uIndeks]; 
     else    return 0;                  } 
  bool Ustaw(unsigned uIndeks, int nWartosc) 
   { if (uIndeks >= m_uRozmiar) return false; 
     m_pnTablica[uIndeks] = uWartosc; 
     return true;      } 
 
  // inne 
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  unsigned Rozmiar() const { return m_uRozmiar; } 
}; 

 
Pytanie brzmi: jak skopiować tablicę typu CIntArray?… Niby nic prostszego: 
 

CIntArray aTablica1; 
CIntArray aTablica2 = aTablica1; // hmm... 

 
W rzeczywistości mamy tu bardzo poważny błąd. Metoda „pole po polu” zupełnie nie 
sprawdza się w przypadku tej klasy. Problemem jest pole m_pnTablica: jesli skopiujemy 
ten wskaźnik, to otrzymamy nic innego, jak tylko kopię wskaźnika. Będzie się on 
odnosił do tego samego obszaru pamięci. Zamiast więc dwóch fizycznych tablic mamy 
tylko jedną, a obiekty Tablica1 i Tablica2 to jedynie kopie opakowań dla wskaźnika na tę 
tablicę. Odwołując się do danych, zapisanych w rzekomo odrębnych tablicach klasy 
CIntArray, faktycznie będziemy odnosić się do tych samych elementów! To poważny 
błąd, co gorsza niewykrywalny aż do momentu wyprodukowania błędnych rezultatów 
przez program. 
 
Coś więc trzeba z tym zrobić - domyślasz się, że rozwiązaniem są tytułowe konstruktory 
kopiujące. Jeszcze zanim je poznamy, powinieneś zapamiętać: 
 
Jeżeli obiekt pracuje na jakimś zewnętrznym zasobie (np. pamięci operacyjnej) i posiada 
do niego odwołanie (np. wskaźnik), to jego klasę koniecznie należy wyposażyć w 
konstruktor kopiujący. Bez niego zostanie bowiem podczas kopiowanie obiektu zostanie 
skopiowane samo odwołanie do zasobu (czyli wskaźnik) zamiast stworzenia jego 
duplikatu (czyli alokacji nowej porcji pamięci). 
 
Trzeba też wiedzieć, że konieczność zdefiniowania konstruktora kopiującego zwykle 
automatycznie pociąga za sobą wymóg obecności przeciążonego operatora przypisania. 

Konstruktor kopiujący 
Zobaczmy zatem, jak działają te cudowne konstruktory kopiujące. Jednak oprócz 
zachwycania się nimi poznamy także sposób ich użycia (definiowania) w C++. 

Do czego służy konstruktor kopiujący 

Konstruktor kopiujący (ang. copy constructor) służy do tworzenia nowego obiektu 
danej klasy na podstawie już istniejącego, innego obiektu tej klasy. 
 
Konstruktor ten, jak wszystkie konstruktory, wkracza do akcji podczas kreowania nowego 
obiektu klasy. Czym się w takim razie różni od zwykłego konstruktora?… Przypomnijmy 
dwie sporne linijki z poprzedniego paragrafu: 
 

CIntArray aTablica1; 
CIntArray aTablica2 = aTablica1; 

 
Pierwsza z nich to normalne stworzenie obiektu klasy CIntArray. Pracuje tu zwykły 
konstruktor, domyślny zresztą. 
Natomiast druga linijka może być także zapisana jako: 
 

CIntArray aTablica2 = CIntArray(aTablica1); 
 
albo nawet: 
 

CIntArray aTablica2(aTablica1); 
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W niej pracuje konstruktor kopiujący, gdyż dokonujemy tu inicjalizacji nowego 
obiektu starym. 
 
Konstruktor kopiujący jest wywoływany w momencie inicjalizacji nowotworzonego 
obiektu przy pomocy innego obiektu tej samej klasy. Z tego powodu taki konstruktor 
jest również zwany inicjalizatorem kopiującym. 
 
Zaraz, jak to - przecież nie zdefiniowaliśmy dotąd żadnego specjalnego konstruktora! Jak 
więc mógł on być użyty w kodzie powyżej? 
Owszem, to prawda, ale kompilator wykonał robotę za nas. Jeśli nie zdefiniujemy 
własnego konstruktora kopiującego, to klasa zostanie obdarzona jego najprostszym 
wariantem. Będzie on wykonywał zwykłe kopiowanie wartości - dla nas całkowicie 
niewystarczające. 
 
Musimy zatem wiedzieć, jak definiować własne konstruktory kopiujące. 

Konstruktor kopiujący a przypisanie - różnica mała lecz ważna 

Możesz spytać: a co kompilator zrobi w takiej sytuacji: 
 

CIntArray aTablica1; 
CIntArray aTablica2; 
aTablica1 = aTablica2;  // a co to jest?... 

 
Czy w trzeciej linijce także zostanie wywołany konstruktor kopiujący?… 
 
Otóż nie. Nie jest bowiem inicjalizacja (a wtedy przecież pracuje konstruktor kopiujący), 
lecz zwykłe przypisanie. Nie tworzymy tu nowego obiektu, lecz przypisujemy jeden już 
istniejący obiekt do drugiego istniejącego obiektu. Wobec braku aktu kreacji nie ma tu 
miejsca dla żadnego konstruktora. 
Zamiast tego kompilator posługuje się operatorem przypisania. Jeżeli go przeciążymy (a 
nauczymy się to robić już w tym rozdziale), zdefiniujemy własną akcję dla przypisywania 
obiektów. W przypadku klasy CIntArray jest to niezbędne, bo nawet obecność 
konstruktora kopiującego nie spowoduje, że zaprezentowany wyżej kod będzie 
poprawny. Konstruktorów nie dotyczy przecież przypisanie. 

Dlaczego konstruktor kopiujący 

Ale w takim razie po co nam konstruktor kopiujący? Przecież jego praca jest w większości 
normalnych sytuacji równoważna: 

 wywołaniu zwykłego konstruktora (czyli normalnemu stworzeniu obiektu) 
 wywołaniu operatora przypisania 

Czy tak? 
 
Cóż, niezupełnie. W zasadzie zgadza się to tylko dla takich obiektów, dla których 
wystarczające jest kopiowanie „pole po polu”. Dla nich faktycznie nie potrzeba 
specjalnego konstruktora kopiującego. Jeśli jednak mamy do czynienia z taką klasą, jak 
CIntArray, konstruktor taki jest konieczny. Sposób jego pracy będzie się różnił od 
zwykłego przypisania - weźmy choćby pod uwagę to, że konstruktor pracuje na pustym 
obiekcie, natomiast przypisanie oznacza zastąpienie jednego obiektu drugim… 
 
Dokładniej wyjaśnimy tę sprawę, gdy poznamy przeciążanie operatorów. Teraz 
zobaczmy, jak możemy zdefiniować własny konstruktor kopiujący. 

Definiowanie konstruktora kopiującego 
Składnię definicji konstruktora kopiującego możemy zapisać tak: 
 

nazwa_klasy::nazwa_klasy([const] nazwa_klasy& obiekt) 
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{ 
 ciało_konstruktora 
} 

 
Bierze on jeden parametr, będący referencją do obiektu swojej macierzystej klasy. 
Obiekt ten jest podstawą kopiowania - inaczej mówiąc, jest to ten obiekt, którego kopię 
ma zrobić konstruktor. W inicjalizacji: 
 

CIntArray aTablica2 = aTablica1; 
 
parametrem konstruktora kopiującego będzie więc aTablica1, zaś tworzonym obiektem-
kopią Tablica2. Widać to nawet lepiej w równoważnej linijce: 
 

CIntArray aTablica2(aTablica1); 
 
Pozostaje jeszcze kwestia słówka const w deklaracji parametru konstruktora. Choć 
teoretycznie jest ona opcjonalna, to w praktyce trudno znaleźć powód na uzasadnienie jej 
nieobecności. Bez niej konstruktor kopiujący mógłby bowiem potencjalnie 
zmodyfikować kopiowany obiekt!… Innym skutkiem byłaby też niemożność 
kopiowania obiektów chwilowych. 
Zapamiętaj więc: 
 
Parametr konstruktora kopiującego praktycznie zawsze musi być stałą referencją. 

Inicjalizator klasy CIntArray 

Gdy wiemy już, do czego służą konstruktory kopiujące i jak się je definiuje, możemy tę 
wiedzę wykorzystać. Zdefiniujmy inicjalizator dla klasy, która tak bardzo go potrzebuje - 
CIntArray. 
 
Nie będzie to trudne, jeżeli zastanowimy się wpierw, co ten konstruktor ma robić. Otóż 
powinien on zaalokować pamieć równą rozmiarowi kopiowanej tablicy oraz przekopiować 
z niej dane do nowego obiektu. Proste? Zatem do dzieła: 
 

#include <cmemory> 
 
CIntArray::CIntArray(const CIntArray& aTablica) 
{ 
 // alokujemy pamięć 
 m_uRozmiar = aTablica.m_uRozmiar; 
 m_pnTablica = new int [m_uRozmiar]; 
 
 // kopiujemy pamięć ze starej tablicy do nowej 
 memcpy (m_pnTablica, aTablica.m_pnTablica, m_uRozmiar * sizeof(int)); 
} 

 
Po dodaniu tego prostego kodu tworzenie tablicy na podstawie innej, już istniejącej: 
 

CIntArray aTablica2 = aTablica1; 
 
jest już całkowicie poprawne. 

Konwersje 
Trzecim i ostatnim aspektem konstruktorów, jakim się tu zajmiemy, bedzie ich 
wykorzystanie do konwersji typów. Temat ten jest jednak nieco szerszy niż 
wykorzystanie samych tylko konstruktorów, więc omówimy go sobie w całości. 
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Konwersje niejawne (ang. implicit conversions) mogą nam ułatwić programowanie - jak 
większość rzeczy w C++ :) W tym przypadku pozwalają na przykład uchronić się od 
konieczności definiowania wielu przeciążonych funkcji. 
Najlepszą ilustracją będzie tu odpowiedni przykład. Akurat tak się dziwnie składa, że 
podręczniki programowania podają tu najczęściej jakąś klasę złożonych liczb. Nie warto 
naruszac tej dobrej tradycji - zatem spójrzmy na taką oto klasę liczby wymiernej: 
 

class CRational 
{ 
 private: 
  // licznik i mianownik 
  int m_nLicznik; 
  int m_nMianownik; 
 
 public: 
  // konstruktor 
  CRational(int nLicznik, int nMianownik) 
   : m_nLicznik(nLicznik), m_nMianownik(nMianownik) { } 
 
 //-------------------------------------------------------------  
 
  // metody dostępowe 
  int Licznik() const  { return m_nLicznik; } 
  void Licznik(int nLicznik) { m_nLicznik = nLicznik; } 
  int Mianownik() const  { return m_nMianownik; } 
  void Mianownik(int nMianownik) 
   { m_nMianownik = (nMianownik != 0 ? nMianownik : 1); } 
}; 

 
Napiszemy teraz funkcję mnożącą przez siebie dwie takie liczby (czyli dwa ułamki). Jeśli 
nie spaliśmy na lekcjach matematyki w szkole podstawowej, to będzie ona wyglądać 
chociażby tak: 
 

CRational Pomnoz(const CRational& Liczba1, const CRational& Liczba2) 
{ 
 return CRational(Liczba1.Licznik() * Liczba2.Licznik(), 
 Liczba1.Mianownik() * Liczba2.Mianownik()); 
} 

 
Możemy teraz używać naszej funkcji na przykład w ten sposób: 
 

CRational Raz(1, 2), Dwa(2, 3); 
CRational Wynik = Pomnoz(Raz, Dwa); 

 
Niestety, jest pewna niedogodność. Nie możemy zastosować np. takiego wywołania: 
 

CRational Wynik = Pomnoz(Raz, 5); 
 
Drugi argument nie może być bowiem typu int, lecz musi być obiektem typu CRational. 
To niezbyt dobrze: wiemy przecież, że 5 (i każda liczba całkowita) jest także liczbą 
wymierną. 
 
My to wiemy, ale kompilator nie. W tej sekcji poznamy zatem sposoby na informowanie 
go o takich faktach - czyli właśnie niejawne konwersje. 

Sposoby dokonywania konwersji 
Sprecyzujmy, o co nam właściwie chodzi. Otóż chcemy, aby liczby całkowite (typu int) 
mogły być przez kompilator interpretowane jako obiekty naszej klasy CRational. 
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Fachowo mówimy, że chcemy zdefiniować sposób konwersji typu int na typ CRational. 
 
Właśnie o takich konwersjach będziemy mówić w niniejszym paragrafie. Poznamy dwa 
sposoby na realizację automatycznej zamiany typów w C++. 

Konstruktory konwertujące 
Pierwszym z nich jest tytułowy konstruktor konwertujący. 

Konstruktor z jednym obowiązkowym parametrem 

Konstruktor konwertujący może przyjmować dokładnie jeden parametr 
określonego typu i wykonywać jego konwersję na typ swojej klasy. 
 
Jest to ten mechanizm, którego aktualnie potrzebujemy. Zdefiniujmy więc konstruktor 
konwertujący w klasie CRational: 
 

CRational::CRational(int nLiczba) 
 : m_nLicznik(nLiczba), m_nMianownik(1) { } 

 
Od tej pory wywołanie typu: 
 

CRational Wynik = Pomnoz(Raz, 5); 
 
albo nawet: 
 

CRational Wynik = Pomnoz(14, 5); 
 
jest całkowicie poprawne. Kompilator wie bowiem, w jaki sposób zamienić „obiekt” typu 
int na obiekt typu CRational. 
 
To samo osiągnać można nawet prościej. Zasada „jeden argument” dla konstruktora 
konwertującego działa tak samo jak „brak argumentów” dla konstruktora domyślnego. A 
zatem dodatkowe argumenty mogą być, lecz muszą mieć wartości domyślne. 
W naszej klasie możemy więc po prostu zmodyfikować normalny konstruktor: 
 

CRational(int nLicznik, int nMianownik = 1) 
 : m_nLicznik(nLicznik), m_nMianownik(nMianownik) { } 

 
W ten sposób za jednym zamachem mamy normalny konstruktor, jak też konwertujący. 
Ba, można pójść nawet jeszcze dalej: 
 

CRational(int nLicznik = 0, int nMianownik = 1) 
 : m_nLicznik(nLicznik), m_nMianownik(nMianownik) { } 

 
Ten konstruktor może być wywołany bez parametrów, z jednym lub dwoma. Jest on więc 
jednocześnie domyślny i konwertujący. Duży efekt małym kosztem. 
 
Konstruktor konwertujący nie musi koniecznie definiować konwersji z typu 
podstawowego. Może wykorzystywać dowolny typ. Popatrzmy na to: 
 

class CComplex 
{ 
 private: 
  // część rzeczywista i urojona 
  float m_fRe; 
  float m_fIm; 
 
 public: 
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  // zwykły konstruktor (który jest również domyślny 
  // oraz konwertujący z float do CComplex) 
  CComplex(float fRe = 0, float fIm = 0) 
   : m_fRe(fRe), m_fIm(fIm) { } 
 
  // konstruktor konwertujący z CRational do CComplex 
  CComplex(const CRational& Wymierna) 
   : m_fRe(Wymierna.Licznik() 
 / (float) Wymierna.Mianownik()), 
     m_fIm(0)      { } 
 
 //-------------------------------------------------------------  
 
  // metody dostępowe 
  float Re() const  { return m_fRe; } 
  void Re(float fRe) { m_fRe = fRe; } 
  float Im() const  { return m_fIm; } 
  void Im(float fIm) { m_fIm = fIm; } 
}; 

 
Klasa CComplex posiada zdefiniowane konstruktory konwertujące zarówno z float, jak i 
CRational. Poza tym, że odpowiada to oczywistemu faktowi, iż liczby rzeczywiste i 
wymierne są także zespolone, pozwala to na napisanie takiej funkcji: 
 

CComplex Dodaj(const CComplex& Liczba1, const CComplex& Liczba2) 
{ 
 return CComplex(Liczba1.Re() + Liczba2.Re(), 
 Liczba2.Im() + Liczba2.Im()); 
} 

 
oraz wywoływanie jej zarówno z parametrami typu CComplex, jaki CRational i float: 
 

CComplex Wynik; 
Wynik = Dodaj(CComplex(1, 5), 4); 
Wynik = Dodaj(CRational(10, 3), CRational(1, 3)); 
Wynik = Dodaj(1, 2); 
// itd. 

 
Można zapytać: „Czy konstruktor konwertujący z float do CComplex jest konieczny? 
Przecież jest już jeden, z float do CRational, i drugi - z CRational do CComplex. Oba 
robią w sumie to, co trzeba!” Tak, to byłaby prawda. W sumie jednak jest to bardzo 
głęboko ukryte. Istotą niejawnych konwersji jest właśnie to, że są niejawne: programista 
nie musi się o nie martwić. Z drugiej strony oznacza to, że pewien kod jest wykonywany 
„za plecami” kodera. Przy jednej niedosłownej zamianie nie jest to raczej problemem, ale 
przy większej ich liczbie trudno byłoby zorientować się, co tak naprawdę jest zamieniane 
w co. 
Oprócz tego jest jeszcze bardziej prozaiczny powód: gdyby pozwalać na wielokrotne 
konwersje, kompilator musiałby sprawdzać mnóstwo potencjalnych dróg konwersji. 
Znacznie wydłużyłoby to czas kompilacji. 
 
Nie jest więc dziwne, że: 
 
Kompilator C++ dokonuje zawsze co najwyżej jednej niejawnej konwersji. 
 
Nie jest przy tym ważne, czy do konwersji stosujemy konstruktory czy też operatory 
konwersji, które poznamy w następnym akapicie. 
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Słówko explicit 

Dowiedzieliśmy się, że każdy jednoargumentowy konstruktor definiuje konwersję 
typu swojego parametru do typu klasy konstruktora. W ten sposób możemy określać, jak 
kompilator ma zamienić jakiś typ (na przykład wbudowany lub inną klasę) w typ naszych 
obiektów. 
 
Łatwo przeoczyć fakt, że tą drogą jednoargumentowy konstruktor (który jest w sumie 
konstruktorem jak każdy inny…) nabiera nowego znaczenia. Już nie tylko inicjalizuje 
obiekt swej klasy, ale i podaje sposób konwersji. 
Dotąd mówiliśmy, że to dobrze. Nie zawsze jednak tak jest. Czasem piszemy w klasie 
jednoparametrowy konstruktor wcale nie po to, aby ustalić jakąkolwiek konwersję. 
Nierzadko bowiem tego wymaga logika naszej klasy. Spójrzmy chociażby na konstruktor 
z CIntArray: 
 

CIntArray(unsigned uRozmiar) 
 : m_uRozmiar(uRozmiar); 
   m_pnTablica(new int [m_uRozmiar])  { } 

 
Przyjmuje on parametr typu int - rozmiar tablicy. Niestety (tak, niestety!) jest tutaj 
także konstruktorem konwertującym z typu int na typ CIntArray. Z tegoż powodu 
zupełnie poprawne staje się bezsensowne przypisanie108 w rodzaju: 
 

CIntArray aTablica; 
aTablica = 10;  // Ojć! Tworzymy 10-elementową tablicę! 

 
W powyższym kodzie tworzona jest tablica o odpowiedniej liczbie elementów i 
przypisywana zmiennej Tablica. Na pewno nie możemy na to pozwolić - takie 
przypisanie to przecież ewidentny błąd, który powinien zostać wykryty przez kompilator. 
 
Jednak musimy mu o tym powiedzieć i w tym celu posługujemy się słówkiem explicit 
(‘jawny’): 
 

explicit CIntArray(unsigned uRozmiar) 
 : m_uRozmiar(uRozmiar); 
   m_pnTablica(new int [m_uRozmiar])  { } 

 
Gdy opatrzymy nim deklarację konstruktora jednoargumentowanego, będzie to znakiem, 
iż nie chcemy, aby wykonywał on niejawną konwersję. Po zastosowaniu tego manewru 
sporny kod nie będzie się już kompilował. I bardzo dobrze. 
 
Jeżeli potrzebujesz konstruktora jednoparametrowego, który będzie działał 
wyłacznie jako zwykły (a nie też jako konwertujący), umieść w jego deklaracji słowo 
kluczowe explicit. 
 
Jak wiemy konstruktor konwertujący może mieć więcej argumentów, jeśli ma też 
parametry opcjonalne. Do takich konstruktorów również można stosować explicit, jeśli 
jest to konieczne. 

Operatory konwersji 
Teraz poznamy drugi sposób konwersji typów - funkcje (operatory) konwertujące. 

                                                 
108 A także podobna do niego inicjalizacja oraz każde użycie liczby int w miejsce tablicy CIntArray. 
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Stwarzamy sobie problem 

Zostawmy wyższą matematykę liczb zespolonych w klasie CComplex i zajmijmy się klasą 
CRational. Jak wiemy, reprezentowane przez nią liczby wymierne są także liczbami 
rzeczywistymi. Byłoby zatem dobrze, abyśmy mogli przekazywać je w tych miejscach, 
gdzie wymagane są liczby zmiennoprzecinkowe, np.: 
 

float abs(float x); 
float sqrt(float x); 
// itd. 

 
Niestety, nie jest to możliwe. Obecnie musimy sami dzielić licznik przez mianownik, aby 
otrzymać liczbę typu float z typu CRational. Dlaczego jednak kompilator nie miałby 
tutaj pomóc? Zdefiniujmy niejawną konwersję z typu CRational do float! 
W tym momencie napotkamy poważny problem. Konwersja do typu CRational była jak 
najbardziej możliwa poprzez konstruktor, natomiast zamiana z typu CRational na float 
nie może być już tak zrealizowana. Nie możemy przecież dodać konstruktora 
konwertującego do „klasy” float, bo jest to elementarny typ podstawowy. Zresztą, 
nawet jeśli nasz docelowy typ byłby klasą, to nie zawsze byłoby to możliwe. Konieczna 
byłaby bowiem modyfikacja definicji tej klasy, a to jest możliwe tylko dla naszych 
własnych klas. 
 
Tak więc konstruktory konwertujące na niewiele nam się zdadzą. Potrzebujemy innego 
sposobu… 

Definiowanie operatora konwersji 

Tą nową metodą jest operator konwersji. Metodą w sensie dosłownym - musimy bowiem 
zdefiniować go jako metodę klasy CRational: 
 

CRational::operator float() 
{ 
 return m_nLicznik / static_cast<float>(m_nMianownik); 
} 

 
Ogólnie więc funkcja w postaci: 
 

klasa::operator typ() 
{ 
 ciało_funkcji 
} 

 
definiuje sposób, w jaki dokonywna jest konwersja klasy do podanego typu. Zatem: 
 
Operatorów konwersji możemy używać, aby zdefiniować niejawną konwersję typu 
swojej klasy na inny, dowolny typ. 
 
Zyskujemy to, na czym nam zależało. Odtąd możemy swobodnie przekazywać liczby 
wymierne w tych miejscach, gdzie funkcje żądają liczb rzeczywistych: 
 

CRational Liczba(3, 4); 
float fPierwiastek = sqrt(Liczba); 

 
Jest to zasługa operatorów konwersji. 
 
Operatory konwersji, w przeciwieństwie do konstruktorów, są dziedziczone i mogą być 
metodami wirtualnymi. 
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Wybór odpowiedniego sposobu 
Mamy więc dwa sposoby konwersji typów. Nasuwa się pytanie: który wybrać? Pytanie to 
jest zasadne, bowiem jeśli w konwersji dwóch typów użyjemy obu dróg (konstruktor oraz 
operator), to powstanie wieloznaczność. Gdy kompilator będzie zmuszony sięgnąć po 
konwersję, nie będzie mógł zdecydować się na żaden sposób i zaprotestuje. 
 
Aby odpowiedzieć na to ważne pytanie, przypomnijmy, jak działają obie metody 
konwersji: 

 konstruktor konwertujący dokonuje zamiany innego typu w obiekt naszej klasy 
 operator konwersji zamienia obiekt naszej klasy w obiekt innego typu 

 

 
Schemat 38. Sposoby dokonywania niejawnych konwersji w C++ 

 
Wszystko zależy więc od tego, który z typów - źródłowy, docelowy - jest klasą, do której 
definicji mamy dostęp: 

 jeżeli jesteśmy w posiadaniu definicji klasy docelowej, to możemy zastosować 
konstruktor konwertujący 

 jeśli mamy dostęp do klasy źródłowej, możliwe jest zastosowanie operatora 
konwersji 

 
W przypadku gdy oba warunki są spełnione (tzn. chcemy wykonać konwersję z 
własnoręcznie napisanej klasy do innej własnej klasy), wybór sposobu jest w dużej 
mierze dowolny. Trzeba jednak pamiętać, że: 

 konstruktory nie są dziedziczone, więc w jeśli chcemy napisac konwersję typu do 
klasy pochodnej, potrzebujemy osobnego konstruktora w tej klasie 

 konstruktory nie są metodami wirtualnymi, w przeciwieństwie do operatorów 
konwersji 

 argument konstruktora konwertującego musi mieć typ ściśle dopasowany do 
zadeklarowanego 

 
W sumie więc wnioski z tego są takie (czytaj: przechodzimy do sedna :D): 

 chcąc wykonać konwersję typu podstawowego (lub klasy bibliotecznej) do typu 
własnej klasy, stosujemy konstruktor konwertujący 

 chcąc dokonać konwersji typu własnej klasy do typu podstawowego (lub klasy 
bibliotecznej), wykorzystujemy operator konwersji 

 definiując konwersję między dwoma własnymi klasami możemy wybrać, kierując 
się innymi przesłankami, jak np. wpływem dziedziczenia na konwersje czy nawet 
kolejnością definicji obu klas w pliku nagłówkowym 

 
*** 

 
Zbiorem dobrych rad odnośnie stosowania różnych typów konwersji zakończyliśmy 
omawianie zaawansowanych aspektów konstruktorów w C++. 
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Przeciążanie operatorów 
W tym podrozdziale przyjrzymy się unikalnej dla C++, a jednocześnie wspaniałej 
technice przeciążania operatorów. To jedno z największych osiągnięć tego języka w 
zakresie ułatwiania programowania i uczynienia go przyjemniejszym. 
 
Zanim jednak poznamy tę cudowność, czas na krótką dygresję :) Jak już wielokrotnie 
wspomniałem, C++ jest członkiem bardzo licznej dzisiaj rodziny języków obiektowych. 
Takie języki charakteryzuje możliwość tworzenia własnych typów danych - klas - 
zawierających w sobie (kapsułkujących) pewne dane (pola) oraz pewne działania 
(metody). Na tym polega OOP. 
Żaden język programowania nie może się jednak obyć bez mniej lub bardziej 
rozbudowanego wachlarza typów podstawowych. W C++ mamy ich mnóstwo, z czego 
większość jest spadkiem po jego poprzedniku, języku C. 
 
Z jednej strony mamy więc typy wbudowane (w C++: int, float, unsigned, itd.), a 
drugiej typy definiowane przez użytkownika (struktury, klasy, unie). W jakim stopniu są 
one do siebie podobne?… 
Pomyślisz: „Głupie pytanie! One przecież wcale nie są do siebie podobne. Typów 
podstawowych używamy przeciez inaczej niż klas, i na odwrót. Nie ma mowy o jakimś 
większym podobieństwie - może poza tym, że dla wszystkich typów możemy deklarować 
zmienne i parametry funkcji… No i może jeszcze występują podobne konwersje…” Jeżeli 
faktycznie tak pomyślałeś, to nie będziesz zdziwiony, że twórcy wielu języków 
obiektowych także przyjęli taką strategię. W językach Java, Object Pascal (Delphi), Visual 
Basic, PHP i jeszcze wielu innych, typy definiowane przez użytkownika (klasy) są jakby 
wydzieloną częścią języka. Mają niewiele punktów wspólnych z typami wbudowanymi, 
poza tymi naprawdę niezbędnymi, które sam wyliczyłeś. 
Jednak wcale nie musi tak być i C++ jest tego najlepszym przykładem. Autorzy tego 
języka (z Bjarne Stroustrupem na czele) dążyli bowiem do tego, aby definiowane przez 
programistę typy były funkcjonalnie jak najbardziej zbliżone do typów wbudowanych. Już 
sam fakt, że możemy tworzyć obiekty na dwa sposoby - jak normalne zmienne oraz 
poprzez new - dobrze o tym świadczy. Możliwość zdefiniowania konstruktorów 
kopiujących i konwersji świadczy o tym jeszcze bardziej. 
Ale ukoronowaniem tych wysiłków jest obecność w C++ mechanizmu przeciążania 
operatorów. 
 
Czy więc jest ten wspaniały mechanizm? 
 
Przeciążanie operatorów (ang. operator overloading), zwane też ich 
przeładowaniem, polega na nadawaniu operatorom nowych znaczeń - tak, aby mogły 
być one wykorzystane w stosunku do obiektów zdefiniowanych klas. 
 
Polega to więc na napisaniu takiego kodu, który sprawi, że wyrażenia w rodzaju: 
 

a = b + c 
a /= d 
if (b == c) { /* ... */ } 

 
będą poprawne nie tylko wtedy, gdy a, b, c i d będą zmiennymi, należącymi do typów 
wbudowanych. Po przeciążeniu operatorów (tutaj: +, =, /= i ==) dla określonych klas 
będzie można pisać takie wyrażenia: zawierające operatory i obiekty naszych klas. W ten 
sposób zdefiniowane przez nas klasy nie będą się różniły praktycznie niczym od typów 
wbudowanych. 
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Dlaczego to jest takie cudowne?… By się o tym przekonać, przypomnijmy sobie 
zdefiniowaną ongiś klasę liczb wymiernych - CRational. Napisaliśmy sobie wtedy 
funkcję, która zajmowała się ich mnożeniem. Używaliśmy jej w ten sposób: 
 

CRational Liczba1(1, 2),  // 1/2, czyli pół :) 
 Liczba2(5, 1),  // 5 
 Wynik;   // zmienna na wynik 
 
Wynik = Pomnoz(Liczba1, Liczba2; 

 
Nie wyglądało to zachwycająco, szczególnie jeśli uświadomimy sobie, że dla typów 
wbudowanych ostatnia linijka mogłaby prezentować się tak: 
 

Wynik = Liczba1 * Liczba2; 
 
Nie dość, że krócej, to jeszcze ładniej… Czemu my tak nie możemy?! 
 
Ależ tak, właśnie możemy! Przeciążanie operatorów pozwala nam na to! Znając tę 
technikę, możemy zdefiniowac nowe znaczenie dla operator mnożenia, czyli *. Nauczymy 
go pracy z liczbami wymiernymi - obiektami naszej klasy CRational - i od tego momentu 
pokazane wyżej mnożenie będzie dla nich poprawne! Co więcej, będzie działało zgodnie 
z naszymi oczekiwaniami: tak, jak funkcja Pomnoz(). Czyż to nie piękne? 
 
Na takie wspaniałości pozwala nam przeciążanie operatorów. Na co więc jeszcze czekamy 
- zobaczmy, jak to się robi!… Hola, nie tak prędko! Jak sama nazwa wskazuje, technika 
ta dotyczy operatorów, a dokładniej: wyposażania ich w nowe znaczenia. Zanim się za to 
zabierzemy, warto byłoby znać przedmiot naszych manipulacji. Powinniśmy zatem 
przyjrzeć się operatorom w C++: ich rodzajom, wbudowanej funkcjonalności oraz innym 
właściwościom. 
I to właśnie zrobimy najpierw. Tylko nie narzekaj :P 

Cechy operatorów 
Obok słów kluczowych i typów, operatory są podstawowymi elementami każdego języka 
programowania wysokiego poziomu. Przypomnijmy sobie, czym jest operator. 
 
Operator to jeden lub kilka znaków (zazwyczaj niebędących literami), które mają 
specjalne znaczenie w języku programowania. 
 
Dotychczas używaliśmy bardzo wielu operatorów - niemal wszystkich, jakie występują w 
C++ - ale dotąd nie zajęliśmy się nimi całościowo. Poznałeś wprawdzie takie pojęcia jak 
operatory unarne, binarne, priorytety, jednak teraz będzie zasadne ich powtórzenie. 
 
Zbierzmy więc tutaj wszystkie cechy operatorów występujących w C++. 

Liczba argumentów 
Operator sam w sobie nie może wykonywać żadnej czynności (to różni go od funkcji), 
gdyż potrzebuje jakichś „parametrów”. W tym przypadku mówimy zwykle o argumentach 
operatora - operandach. 
 
Operatory dzielą się z grubsza na dwie duże grupy, jeżeli chodzi o liczbę swoich 
argumentów. Są to operatory jedno- i dwuargumentowe. W C++ mamy jeszcze operator 
warunkowy ?:, uznawany za ternarny (trójargumentowy), ale jest on wyjątkiem, którym 
nie należy zaprzątać sobie głowy. 
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Operatory jednoargumentowe 
Te operatory fachowo nazywa się unarnymi (ang. unary operators). Stanowią one 
całkiem liczną rodzinę, która charakteryzuje się jednym: każdy jej członek wymaga do 
działania jednego argumentu. Stąd nazwa tego rodzaju operatorów. 
 
Najbardziej znanym operatorem unarnym (nawet dla tych, którzy nie mają pojęcia o 
programowaniu!) jest zwykły minus. Formalnie nazywa się go operatorem negacji albo 
zmiany znaku, a działa on w ten sposób, że zmienia jakaś liczbę na liczbę do niej 
przeciwną: 
 

int nA = 5; 
int nB = -nA;  // nB ma wartość -5 (a nA nadal 5) 

 
Podobnie działają operatory ! i ~, z tym że operują one (odpowiednio): na wyrażeniach 
logicznych i na ciągach bitów. Istnieją też operatory jednoargumentowane o zupełnie 
innej funkcjonalności; wszystkie je przypomnimy sobie w następnej sekcji. 

Operatory dwuargumentowe 
Jak sama nazwa wskazuje, te operatory przyjmują po dwa argumenty. Nazywamy je 
binarnymi (ang. binary operators). Nie ma to nic wspólnego z binarną reprezentacją 
danych, lecz po prostu z ilością operandów. 
 
Typowymi operatorami dwuargumentowymi są operatory arytmetyczne, czyli popularne 
„znaki działań”: 
 

int nA = 8, nB = -2, nC; 
nC = nA + nB;   // 6 
nC = nA - nB;   // 10 
nC = nA * nB;   // -16 
nC = nA / nB;   // -4 

 
Mamy też operatory logiczne oraz bitowe, Warto wspomnieć (o czym będziemy jeszcze 
bardzo szeroko mówić), że przypisanie (=) to także operator dwuargumentowy, dość 
specyficzny zresztą. 

Priorytet 
Operatory mogą występować w złożonych wyrażeniach, a ich argumenty mogą pokrywać 
się. Oto prosty przykład: 
 

int nA = nB * 4 + 18 / nC - nD % 3; 
 
Zapewne wiesz, że w takiej sytuacji kompilator kieruje się priorytetami operatorów 
(ang. operators’ precedence), aby rozstrzygnąć problem. Owe priorytety to nic innego, 
jak swoista „kolejność działań”. Różni się ona od tej znanej z matematyki tylko tym, że w 
C++ mamy także inne operatory niż arytmetyczne. 
Dla znaków +, -, *, /, % priorytety są aczkolwiek dokładnie takie, jakich nauczyliśmy się 
w szkole. Wyrażenia zawierające te operatory możemy więc pisać bez pomocy nawiasów. 
Jeżeli jednak są one skomplikowane, albo używamy w nich także innych rodzajów 
operatorów, wówczas konieczne należy pomagać sobie nawiasami. Lepiej przecież 
postawić po kilka znaków więcej niż co chwila sięgać do stosownej tabelki pierwszeństwa. 



Zaawansowana obiektowość 403

Łączność 
Gdy w wyrażeniu pojawi się obok siebie kilka operatorów tego samego rodzaju, mają one 
oczywiście ten sam priorytet. Trzeba jednak nadal rozstrzygnąć, w jakiej kolejności 
działania będą wykonywane. 
 
Tutaj pomaga łączność operatorów (ang. operators’ associativity). Określa ona, od 
której strony będą obliczane wyrażenia (lub ich fragmenty) z sąsiedztwem operatorów o 
tych samych priorytetach. Mamy dwa rodzaje łączności: 

 łączność lewostronna (ang. left-to-right associativity), która rozpoczyna 
obliczenia od lewej strony i wykorzystuje cząstkowe wyniki jako lewostronne 
argumenty dla kolejnych operatorów 

 łączność prawostronna (ang. right-to-left associativity) - tutaj obliczenia są 
wykonywane, poczynając od prawej strony. Częściowe wyniki są następnie 
używane jako prawostronne argumenty kolejnych operatorów 

 
Najlepiej zilustrować to na przykładzie. Jeżeli mamy takie oto wyrażenie: 
 

nA + nB + nC + nD + nE + nF + nG + nH 
 
to oczywiście priorytety wszystkich operatorów są te same. Zaczyna dominować łączność, 
która w przypadku operatorów arytmetycznych (oraz im podobnych, jak bitowe, logiczne 
i relacyjne) jest lewostronna. To naturalne, po przecież takie obliczenia również 
przeprowadzalibyśmy „od lewej do prawej”. 
Kompilator będzie więc obliczał powyższe wyrażenie w ten sposób: 
 

((((((nA + nB) + nC) + nD) + nE) + nF) + nG) + nH 
 
Zauważmy, że akurat w przypadku plusa łączność nie ma znaczenia, bo dodawanie jest 
przecież przemienne. Gdyby jednak chodziło o odejmowanie czy dzielenie, wówczas 
byłoby to bardzo ważne. 
 
Łączność prawostronna dotyczy na przykład operatora przypisania: 
 

nA = nB = nC = nD = nE = nF 
 
Innymi słowy, powyższe wyrażenie zostanie potraktowane tak: 
 

nA = (nB = (nC = (nD = (nE = nF)))) 
 
Oznacza to, że kompilator wykona najpierw skrajnie prawe przypisanie, a zwróconą przez 
to wyrażenie wartość (równą wartości przypisywanej) wykorzysta w kolejnym 
przypisaniu, i tak dalej. W sumie więc wszystkie zmienne będą potem równe zmiennej 
nF. 

Operatory w C++ 
Język C++ posiada całe multum różnych operatorów. Pod tym względem jest chyba 
rekordzistą wśród wszystkich języków programowania. Świadczy to zarówno o jego 
wielkich możliwościach, jak i sporej elastyczności. 
Co ciekawe, dotąd praktycznie nie ma jednoznacznej definicji operatora w tym języku, a 
w wielu źródłach można znaleźć nieco różniące się między sobą zestawy operatorów. Są 
to jednak głównie niuanse, których rozstrzyganie dla przeciętnego programisty nie jest 
wcale istotne. 
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W tej sekcji powtórzymy sobie i uzupełnimy wiadomości na temat wszystkich operatorów 
C++ - przynajmniej tych, co do których nie ma wątpliwości, że faktycznie są 
operatorami. Podzielimy je sobie na kilka kategorii. 

Operatory arytmetyczne 
Już na samym początku zetknęliśmy się z operatorami arytmetycznymi. Nic dziwnego, to 
przecież najprostszy i „najbardziej naturalny” rodzaj operatorów. Znają go wszyscy 
absolwenci przedszkola. 

Unarne operatory arytmetyczne 
Mamy dwa podstawowe jednoargumentowe operatory arytmetyczne: 

 operator zachowania znaku, czyli +. On praktycznie nie robi nic - zachowuje 
znak liczby, przy której stoi. Obecny w C++ chyba tylko dla zgodności z zasadami 
matematyki 

 operator zmiany znaku, czyli -. Zamienia liczbę na przeciwną, zupełnie tak jak w 
arytmetyce 

 
Trochę przykładów: 
 

int nA = 7 
int nB = +nA;  // 7 
int nB = -NA;  // -7 

 
Myślę, że jest to na tyle oczywiste, że nie wymaga dalszych komentarzy. 

Inkrementacja i dekrementacja 

Specyficzne dla C++ są operatory inkrementacji i dekrementacji. W odróżnieniu od 
większości operatorów, modyfikują one swój argument. Dokładniej mówiąc, dodają 
one (inkrementacja) lub odejmują (dekrementacja) jedynkę do (od) swego operandu. 
 
Operatorem inkrementacji jest ++, zaś dekrementacji --. Oto przykład: 
 

int nX = 9; 
++nX;  // teraz nX == 10 
--nX;  // teraz znowu nX == 9 

 
Powyższy kod można też zapisać jako: 
 

nX++; 
nY++; 

 
Jeżeli ignorujemy wartość zwracaną przez te operatory, to użycie którejkolwiek wersji 
(zwanej, jak wiesz, prein/dekrementacją oraz postin/dekrementacją) nie sprawa różnicy 
- przynajmniej dla typów podstawowych. 
Gdy natomiast zapisujemy gdzieś zwracaną wartość, to powinniśmy pamiętać o różnicy 
między znaczeniem operatorów w obu miejscach (na początku i na końcu zmiennej). 
Mówiliśmy już o tym, ale przypomnę jeszcze raz: 
 
Prein/dekrementacja zwraca wartość już zwiększoną (zmniejszoną) o 1. 
Postin/dekrementacja zwraca oryginalną wartość. 
 
Wariant postfiksowy jest generalnie bardziej kosztowny, ponieważ wymaga 
przygotowania tymczasowego obiektu, w którym zostanie zachowana pierwotna wartość 
w celu jej późniejszego zwrotu. Dla typów podstawowych to kwestia kilku bajtów, ale dla 
klas zdefiniowanych przez użytkownika (które mogą przeciążać oba operatory - czym się 
rzecz jasna zajmiemy za momencik) może to być spora różnica. 
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Binarne operatory arytmetyczne 
Przypomnijmy, że w C++ mamy pięć takich operatorów, zwanych popularnie „znakami 
działań”: 

 operator dodawania - plus (+). Dodaje dwie liczby do siebie 
 operator odejmowania - minus (-). Zwraca wynik odejmowania drugiego 

argumentu od pierwszego 
 operator mnożenia - gwiazdka (*). Mnoży oba argmenty 
 operator dzielenia - slash (/). W zależności od typu swoich operandów może albo 

wykonywać dzielenie całkowitoliczbowe (gdy oba argumenty są liczbami 
całkowitymi), albo zmiennoprzecinkowe 

 operator reszty z dzielenia, czyli %. Zwraca resztę z dzielenia podanych liczb 
 
Znowu popatrzmy na kilka przykładów: 
 

int nA = 9, nB = 4, nX; 
float fX; 
 
nX = nA + nB;     // 13 
nX = nA - nB;     // 5 
nX = nA * nB;     // 36 
nX = nA / nB;     // 2 
fX = nA / static_cast<float>(nB); // 2.25f 
nX = nA % nB;     // 1 

 
Ponownie nie ma tu nic nieoczekiwanego. 

Operatory bitowe 
Przedstawione wyżej operatory arytmetyczne działają na liczbach na zasadach, do jakich 
przyzwyczaiła nas matematyka. Nie ma w tym przypadku znaczenia, że operacje 
przeprowadzane są na komputerze. Nie ma też znaczenia wewnętrzna reprezentacja 
liczb. 
 
Jak wiemy, komputery przechowują dane w postaci ciągów zer i jedynek, zwanych 
bitami. Pojedyncze bity mogą przechowywać tylko elementarną informację - 0 (bit 
ustawiony) lub 1 (bit nieustawiony). Aby przedstawiać bardziej złożone dane - choćby 
liczby - należy bity łączyć ze sobą. Powstają w ten sposób wektory bitowe, ciągi bitów 
(ang. bitsets) lub słowa (ang. words). Są po prostu sekwencje zer i jedynek. 
Do operacji na wektorach bitów C++ posiada sześć operatorów. Obecnie nie są one tak 
często używane jak na przykład w czasach C, ale nadal są bardzo przydatne. Omówię je 
tu pokrótce. 
 
O wiele obszerniejsze omówienie tych operatorów, wraz z zastosowaniami, znajdziesz w 
Dodatku C, Manipulacje bitami. 

Operacje logiczno-bitowe 
Cztery operatory: ~, &, | i ^ wykonują na bitach operacje zbliżone do logicznych, gdzie 
bit ustawiony (1) odgrywa rolę wyrażenia prawdziwego, zaś nieustawiony (0) - 
fałszywego. Oto te operatory: 

 negacja bitowa (operator ~) zmienia w całym ciągu (zwykle liczbie) wszystkie 
bity na przeciwne. Ustawione zmieniają się na nieustawione i odwrotnie 

 koniunkcja bitowa (operator &) porównuje ze sobą odpowiadające bity dwóch 
słów: tam, gdzie napotka na dwie jedynki, wypisuje do wyniku także jedynkę; w 
przeciwnym wypadku zero 
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 alternatywa bitowa (operator |) również działa na dwóch słowach. Porównując 
ich kolejne bity, zwraca w bicie wyniku zero, jeżeli stwierdzi w operandach dwa 
nieustawione bity oraz jedynkę w przeciwnym wypadku 

 bitowa różnica symetryczna (operator ^) porównuje bity słów i zwraca 1, jeżeli 
są różne i 0, gdy są sobie równe 

 
Operator ~ jest jednoargumentowy (unarny), zaś pozostałe dwa są binarne - i wcale nie 
dlatego, że pracują w systemie dwójkowym :) 

Przesunięcie bitowe 
Mamy też dwa operatory przesunięcia bitowego (ang. bitwise shift). Jest to: 

 przesunięcie w lewo (operator <<). Przesuwa on bity w lewą stronę słowa o 
podaną liczbę miejsc 

 przesunięcie w prawo (operator >>) działa analogicznie, tylko że przesuwa bity 
w prawą stronę słowa 

 
Z obu operatorów korzystamy podobnie, tj. w ten sposób: 
 

słowo << ile_miejsc 
słowo >> ile_miejsc 

 
Oto kilka przykładów - dla uproszczenia z liczbami zapisanymi binarnie (niestety, w C++ 
nie można tego zrobić): 
 

00010010 << 3   // 10010000 
1111000 >> 4   // 00001111 
00111100 << 5   // 10000000 

 
Jak widać, bity które „wyjeżdżają” w wyniku przesunięcia poza granicę słowa są tracone. 
Pustki są natomiast wypełniane zerami. 

Operatory strumieniowe 

Czytając ten akapit na pewno pomyślałeś: „Jakie operatory bitowe?! Przecież to są 
‘strzałki’, których używamy razem ze strumieniami wejścia i wyjścia!” Tak, to również 
prawda - ale to tylko jedna jej strona. 
Faktem jest, że << i >> to przede wszystkim operatory przesunięcia bitowego. Nie 
przeszkadza to jednak, aby miały one także inne znaczenie - co więcej, mają je one tylko 
w odniesieniu do strumieni. W sumie więc pełnią one w C++ aż dwie funkcje. 
 
Czy domyślasz się, dlaczego?… Ależ tak, właśnie tak - operatory te zostały przeciążone 
przez twórców Biblioteki Standardowej C++. Posiadają one dodatkową funkcjonalność, 
która pozwala na ich używanie razem z obiektami cout i cin109. W odniesieniu do samych 
liczb nadal jednak są one operatorami przesunięcia bitowego. 
Nieco więcej informacji o tych operatorach otrzymasz przy okazji omawiania strumieni 
STL. Tam też nauczysz się przeciążać je dla swoich własnych klas - tak, aby ich obiekty 
można było zapisywać do strumieni i odczytywać z nich w identyczny sposób, jak typy 
wbudowane. 

Operatory porównania 
Bardzo ważnym rodzaje operatorów są operatory porównania, czyli znaki: < (mniejszy), > 
(większy), <= (mniejszy lub równy), >= (większy lub równy), == (równy) oraz != (różny). 
 
                                                 
109 Również clog, cerr oraz wszystkimi innymi obiektami, wywodzącymi się od klas istream i ostream oraz ich 
pochodnych. Po więcej informacji odsyłam do rozdziału o strumieniach Biblioteki Standardowej. 
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O tych operatorach wiemy w zasadzie wszystko, bo używamy ich nieustannie. O tym, jak 
działają, powiedzieliśmy sobie zresztą bardzo wcześnie. 
Zwrócę jeszcze tylko uwagę, aby nie mylić operatora równości (==) z operatorem 
przypisania (=). Omyłkowe użycie tego drugiego w miejsce pierwszego nie zostanie 
bowiem oprotestowane przez kompilator (co najwyżej wygeneruje on ostrzeżenie). 
Dlaczego tak jest - wyjaśnię przy okazji operatrów przypisania. 

Operatory logiczne 
Te operatory służą do łączenia wyrażeń logicznych (true lub false) w złożone warunki. 
Takie warunki możemy potem wykorzystać z instrukcjach if oraz pętlach, co zresztą 
niejednokrotnie robiliśmy. 
 
W C++ mamy trzy operatory logiczne, będące odpowiednikami pewnych operatorów 
bitowych. Różnica polega jednak na tym, że operatory logiczne działają na wartościach 
liczb (lub wyrażeń logicznych: fałszywe oznacza 0, zaś prawdziwe - 1) zaś bitowe - na 
wartościach bitów. 
Oto te trzy operatory: 

 negacja (zaprzeczenie, operator !) powoduje zamianę prawdy (1) na fałsz (0) 
 koniunkcja (iloczyn logiczny, operator &&) dwóch wyrażeń zwraca prawdę tylko 

wówczas, gdy oba jej argumenty są prawdziwe 
 alternatywa (suma logiczna, operator ||) jest prawdziwa, gdy choć jeden z jej 

argumentów jest prawdziwy (różny od zera) 
 
Warto zapamiętać, że w wyrażeniach zawierających operatory && i || wykonywanych jest 
tylko tyle obliczeń, ile jest koniecznych do zdeterminowania wartości warunkowych. 
Przykładowo, w poniższym kodzie: 
 

int nZmienna; 
std::cin >> nZmienna; 
if (nZmienna >= 1 && nZmienna <= 10) { /* ... */ } 

 
jeżeli stwierdzona zostanie falszywość pierwszej części koniunkcji (nZmienna >= 1), to 
druga nie będzie już sprawdzana i cały warunek uznany zostanie za fałszywy. Podobnie 
dzieje się przy alternatywie, której pierwszy argument jest prawdziwy - wówczas całe 
wyrażenie również reprezentuje prawdę. 
 
Argumenty operatorów logicznych są więc zawsze obliczane od lewej do prawej. 
 
Wśród operatorów nie ma różnicy symetrycznej, zwanej alternatywą wykluczającą 
(ang. XOR - eXclusive OR). Można ją jednak łatwo uzyskać, wykorzystując tożsamość: 
 

( )a b a b⊕ ⇔ ¬ ⇔  

 
co w przełożeniu na C++ wygląda tak: 
 

if (!(a == b)) { /* ... */ } // a i b to wyrażenia logiczne 

Operatory przypisania 
Kolejną grupę stanowią operatory przypisania. C++ ma ich kilkanaście, choć wiemy, że 
tak naprawdę tylko jeden jest do szczęścia potrzebny. Pozostałe stworzono dla wygody 
programisty, jak zresztą wiele mechanizmów w C++. 
 
Popatrzmy więc na operatory przypisania. 
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Zwykły operator przypisania 
Operator przypisania (ang. assignment operator) ma postać pojedynczego znaku ‘równa 
się’ (=). Doskonale też wiemy, jak się go używa: 
 

int nX; 
nX = 7; 

 
Po wykonaniu tego kodu, zmienna nX będzie miał wartość 7.  

L-wartość i r-wartość 

Zauważmy, że odwrotne przypisanie: 
 

7 = nX;  // żle! 
 
jest niepoprawne. Nie możemy nic przypisać do siódemki, bo ona nie zajmuje żadnej 
komórki w pamięci - w przeciwieństwie do zmiennej, jak np. nX. 
 
Zarówno 7, jak i nX, są jednak poprawnymi wyrażeniami języka C++. Widzimy 
aczkolwiek, że różnią się pod względem „współpracy z przypisaniem”. nX może być celem 
przypisania, zaś 7 - nie. 
Mówimy, że nX jest l-wartością, zaś 7 - r-wartością lub p-wartością. 
 
L-wartość (ang. l-value) jest wyrażeniem mogącym wystąpić po lewej stronie 
operatora przypisania - stąd ich nazwa. 
 
R-wartość (ang. r-value), po polsku zwana p-wartością, może wystąpić tylko po 
prawej stronie operatora przypisania. 
 
Zauważmy, że nic nie stoi na przeszkodzie, aby nX pojawiło się po prawej stronie 
operatora przypisania: 
 

int nY; 
nY = nX; 

 
Jest tak, ponieważ: 
 
Każda l-wartość jest jednocześnie r-wartością (p-wartością) - lecz nie odwrotnie! 
 
Domyślasz się pewnie, że w C++ każde wyrażenie jest r-wartością, ponieważ 
reprezentuje jakieś dane. L-wartościami są natomiast te wyrażenia, które: 

 odpowiadają komórkom pamięci operacyjnej 
 nie są oznaczone jako stałe (const) 

 
Najbardziej typowymi rodzajami l-wartości są więc: 

 zmienne wszystkich typów niezadeklarowane jako const 
 wskaźniki do powyższych zmiennych, wobec których stosujemy operator 

dereferencji, czyli gwiazdkę (*) 
 niestałe referencje do tychże zmiennych 
 elementy niestałych tablic 
 niestałe pola klas, struktur i unii, które podpadają pod jeden z powyższych 

punktów i nie występują w ciele stałych metod110 
 

                                                 
110 Wyjątkiem są pola oznaczone słowem mutable, które zawsze mogą być modyfkowane. 
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R-wartości to oczywiście te, jak i wszystkie inne wyrażenia. 

Rezultat przypisania 

Wyrażeniem jest także samo przypisanie, gdyż samo w sobie reprezentuje pewną 
wartość: 
 

std::cout << (nX = 5); 
 
Ta linijka kodu wyprodukuje rezultat: 
 

5 
 
co pozwala nam ugólnić, iż: 
 
Rezultatem przypisania jest przypisywana wartość. 
 
Ten fakt powoduje, że w C++ możliwe są, niespotykane w innych językach, wielokrotne 
przypisania: 
 

nA = nB = nC = nD = nE; 
 
Ponieważ operator(y) przypisania mają łączność prawostronną, więc ten wiersz zostanie 
obliczony jako: 
 

nA = (nB = (nC = (nD = nE))); 
 
Innymi słowy, nE zostanie przypisane do nD. Następnie rezultat tego przypisania (czyli 
nE, bo to było przypisywane) zostanie przypisany do nC. To także wyprodukuje rezultat - 
i to ten sam, nE - który zostanie przypisany nB. To przypisanie również zwróci ten sam 
wynik, który zostanie wreszcie umieszczony w nA. W ten więc sposób wszystkie zmienne 
będą miały ostatecznie tą samą wartość, co nE. 
Tą techniką możemy wykonać tyle przypisań naraz, ile tylko sobie życzymy. 

Uwaga na przypisanie w miejscu równości 

Niestety, traktowanie przypisania jako wyrażenia ma też swoją ciemną stronę. Bardzo 
łatwo jest umieścić je omyłkowo w warunku if lub pętli zamiast operatora ==, np.: 
 

while (nA = 5) 
 std::cin >> nA; 

 
Jeżeli nasz kompilator jest lekkoduchem, to może nas nie ostrzec przed 
niebezpieczeństwem tej pętli. A zagrożenie jest spore, bo jest nic innego, jak pętla 
nieskończona. Podobno komputer Cray wykonałby ją w dwie sekundy - jeżeli chcesz, 
możesz sprawdzić, ile zajmie to twojej maszynie ;D Lepiej jednak zaradzić powstałemu 
problemowi. 
Jak on jednak powstaje?… Otóż sprawa jest dość prosta, a wszystkiemu winien warunek 
pętli. Jest to przecież przypisanie - przypisanie wartości 5 do zmiennej nA. Jako test 
logiczny wykorzystywana jest wartość tego przypisania - czyli piątka. Pięć jest 
oczywiście różne od zera, zatem zostanie uznane za warunek prawdziwy. Tak oto pętla 
się zapętla i zaciska na szyi biednego programisty. 
 
Możemy się kłocić, że to wina C++, który nie dość, że uznaje liczby całkowite (jak 5) za 
wyrażenia logiczne, to jeszcze pozwala na wykonywanie przypisania w warunkach if’ów i 
pętli. Możliwości te zostały jednak dopuszczone z uzasadnionych względów (praca ze 
wskaźnikami), więc wcale niewykluczone, że kiedyś je docenimy. Niezależnie od tego, czy 
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będziemy świadomie wykonywać przypisania w podobnych sytuacjach, musimy pamiętać, 
że: 
 
Należy zwracać baczną uwagę na każde przypisanie występujące w warunku instrukcji if 
lub pętli. Może to być bowiem niedoszłe porównanie. 
 
Zaleca się, aby opatrywać stosownym komentarzem każde zamierzone użycie 
przypisania w tych newralgicznych miejscach. Dzięki temu unikniemy nieporozumień z 
kompilatorem, innymi programistami i… samym sobą! 

Złożone operatory przypisania 
Dla wygody programisty C++ posiada jeszcze dziesięć innych operatorów przypisania. Są 
one po prostu krótszym zapisem często stosowanych instrukcji. Ich postać i „rozwinięcia” 
przedstawia to oto tabelka: 
 

przypisanie „rozwinięcie” 
a += b a = a + b 
a -= b a = a - b 
a *= b a = a * b 
a /= b a = a / b 
a %= b a = a % b 
a &= b a = a & b 
a |= b a = a | b 
a ^= b a = a ^ b 
a <<= b a = a << b 
a >>= b a = a >> b 

Tabela 17. Złożone operatory przypisania w C++ 

 
‘Rozwinięcie’ wziąłem w cudzysłów, ponieważ nie jest tak, że jakiś mechanizm w rodzaju 
makrodefinicji zamienia te skrócone wyrażenia do ich „pełnych” form. O nie, one są 
kompilowane w tej postaci. Ma to taki skutek, że wyrażenie po lewej stronie operatora 
jest obliczane jeden raz. W wersji „rozwiniętej” byłoby natomiast obliczane dwa razy. 
 
Podobna zasada obowiązuje też w operatorach pre/postin/dekrementacji. 
 
Jest to też realizacja bardziej fundamentalnej reguły, która mówi, że składniki każdego 
wyrażenia są obliczane tylko raz. 

Operatory wskaźnikowe 
Wskaźniki były ongiś kluczową cechą języka C, a i w C++ nie straciły wiele ze swojego 
znaczenia. Do ich obsługi mamy w naszym ulubionym języku trzy operatory. 

Pobranie adresu 
Jednoargumentowy operator & służy do pobrania adresu obiektu, przy którym stoi. Oto 
przykład: 
 

int nZmienna; 
int* pnWskaznik = &nZmienna; 

 
Argument tego operatora musi być l-wartością. To raczej oczywiste, bo przecież musi 
ona rezydować w jakimś miejscu pamięci. Inaczej niemożliwe byłoby pobranie adresu 
tego miejsca. Typowo operandem dla & jest zmienna lub funkcja. 
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Dostęp do pamięci poprzez wskaźnik 
Do obszaru pamięci, do którego posiadamy wskaźnik, możemy odnieść się na kilka 
sposobów. Dokładnie: na dwa. 

Dereferencja 

Najprostszym i najczęściej stosowanym sposobem jest dereferencja: 
 

int nZmienna; 
int* pnWskaznik = &nZmienna; 
*pnWskaznik = 42; 

 
Odpowiada za nią jednoargumentowy operator *, zwany operatorem dereferencji lub 
adresowania pośredniego. Pozwala on na dostęp do miejsca w pamięci, któremu 
odpowiada wskaźnik. Operator ten wykorzystuje ponadto typ wskaźnika, co gwarantuje, 
że odczytana zostanie właściwa ilość bajtów. Dla int* będzie to sizeof(int), zatem 
*pnWskaznik reprezetuje u nas liczbę całkowitą. 
 
To, czy *wskaźnik jest l-wartością, czy nie, zależy od stałości wskaźnika. Jeżeli jest to 
stały wskaźnik (const typ*), wówczas nie możemy modyfikować pokazywanej przezeń 
pamięci. Mamy więc do czynienia z r-wartością. W pozostałych przypadkach mamy l-
wartość. 

Indeksowanie 

Jeżeli wskaźnik pokazuje na tablicę, to możemy dostać się do jej kolejnych elementów za 
pomocą operatora indeksowania (ang. subscript operator) - nawiasów kwadratowych 
[]. 
 
Oto zupełnie banalny przykład: 
 

std::string aBajka[3]; 
 
aBajka[0] = "Dawno, dawno temu, ..."; 
aBajka[1] = "w odleglej galaktyce..."; 
aBajka[2] = "zylo sobie siedmiu kransoludkow..."; 

 
Jeżeli zapytasz „A gdzie tu wskaźnik?”, to najpierw udam, że tego nie słyszałem i pozwolę 
ci na chwilę zastanowienia. A jeśli nadal będziesz się upierał, że żadnego wskaźnika tu 
nie ma, to będę zmuszony nałożyć na ciebie wyrok powtórnego przeczytania rozdziału o 
wskaźnikach. Chyba tego nie chcesz? ;-) 
 
Wskaźnikiem jest tu oczywiście aBajka - jaka nazwa tablicy wskazuje na jej pierwszy 
element. W zasadzie więc można dokonać jego dereferencji i dostać się do tego 
elementu: 
 

*aBajka = "Dawno, dawno temu, ..."; 
 
Przesuwając wskaźnik przy pomocy dodawania można też dostać się do pozostałej części 
tablicy: 
 

*(aBajka + 1) = "w odleglej galaktyce..."; 
*(aBajka + 2) = "zylo sobie siedmiu kransoludkow..."; 

 
Taki zapis jest jednak dość kłopotliwy w interpretacji - choć koniecznie trzeba go znać 
(przydaje się przy iteratorach STL). C++ ma wygodniejszy sposób dostepu do elementów 
tablicy o danym indeksie - jest to właśnie operator indeksowania. 
 



Zaawansowane C++ 412 

Na koniec muszę jeszcze przypomnieć, że wyrażenie: 
 

tablica[i] 
 
odpowiada (i-1)-emu elementowi tablicy. A to dlatego, że: 
 
W C++ elementy tablic (oraz łańcuchów znaków) liczymy od zera. 
 
Skoro już tak się powtarzam, to przypomnę jeszcze, że: 
 
W n-elementowej tablicy nie istnieje element o indeksie n. Próba odwołania się do 
niego spowoduje błąd ochrony pamięci. 
 
Zasada ta nie dotyczy aczkolwiek łańcuchów znaków, gdzie n-ty element to zawsze znak 
o kodzie 0 ('\0'). Jest to zaszłość zakonserwowana w czasach C, która przetrwała do 
dziś. 

Operatory pamięci 
Mamy w C++ kilka operatorów zajmujących się pamięcią. Jedne służą do jej alokacji, 
drugie do zwalniania, a jeszcze inne do pobierania rozmiaru typów i obiektów. 

Alokacja pamięci 
Alokacja pamięci to przydzielenie jej określonej ilości dla programu, by ten mógł ją 
wykorzystać do własnych celów. Pozwala to dynamicznie tworzyć zmienne i tablice. 

new 

new jest przeznaczony do dynamicznego tworzenia zmiennych. Obiekty stworzone przy 
pomocy tego operatora są tworzone na stercie, a nie na stosie, zatem nie znikają po 
opuszczeniu swego zakresu. Tak naprawdę to w ogóle nie stosuje się do nich pojęcie 
zasięgu. 
 
Tworzenie obiektów poprzez new jest banalnie proste: 
 

float pfZmienna = new float; 
 
Oczywiście nie ma zbyt wielkiego sensu tworzenie zmiennych typów podstawowych czy 
nawet prostych klas. Jeżeli jednak mamy do czynienia z dużymi obiektami, które muszą 
istnieć przez dłuższy czas i być dostępne w wielu miejscach programu, wtedy musimy 
tworzyć je dynamicznie poprzez new.  
 
W przypadku kreowania obiektów klas, new dba o prawidłowe wywołanie konstrukturów, 
więc nie trzeba się tym martwić. 

new[] 

Wersję operatora new, która służy do alokowania tablic, nazywam new[], aby w ten 
sposób podkreślić jej związek z delete[]. 
 
new[] potrafi alokować tablice dynamiczne po podanym rozmiarze. Aby użyć tej 
możliwości po nazwie docelowego typu określamy wymiary pożądanej tablicy, np.: 
 

float** matMacierz4x4 = new float [4][4]; 
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W wyniku dostajemy odpowiedni wskaźnik lub ewentualnie wskaźnik do wskaźnika (do 
wskaźnika do wskaźnika itd. - zależnie od liczby wymiarów), który możemy zachować w 
zmiennej określonego typu. 
Do powstałej tablicy odwołujemy się tak samo, jak do tablic statycznych: 
 

for (unsigned i = 0; i < 4; ++i) 
 for (unsigned j = 0; j < 4; ++j) 
  matMacierz4x4[i][j] = (i == j ? 1.0f : 0.0f); 

 
Dynamiczna tablica istnieje jednak na stercie, więc tak samo jak wszystkie obiekty 
tworzone w czasie działania programu nie podlega regułom zasięgu. 

Zwalnianie pamięci 
Pamięć zaalokowana przy pomocy new i new[] musi zostać zwolniona przy pomocy 
odpowiadających im operatorów delete i delete[]. Wiesz doskonale, że w przeciwnym 
razie dojdzie do groźnego błędu wycieku pamięci. 

delete 

Za pomocą delete niszczymy pamięć zaalokowaną przez new. Dla operatora tego należy 
podać wskaźnik na tenże blok pamięci, np.: 
 

delete pfZmienna; 
 
delete zapewnia wywołanie destruktora klasy, jeżeli takowy jest konieczny. Destruktor 
taki może być wiązany wcześnie (jak zwykła metoda) lub późno (jak metoda wirtualna) - 
ten drugi sposób jest zalecany, jeżeli chcemy korzystać z dobrodziejstw polimorfizmu. 

delete[] 

Analogicznie, delete[] służy do zwalniania dynamicznych tablic. Nie musimy podawać 
rozmiaru takiej tablicy, gdy ją niszczymy - wystarczy tylko wskaźnik: 
 

delete[] matMacierz4x4; 
 
Koniecznie pamiętajmy, aby nie mylić obu postaci operatora delete[] - w szczególności 
nie można stosować delete do zwalniania pamięci przydzielonej przez new[]. 

Operator sizeof 

sizeof pozwala na pobranie rozmiaru obiektu lub typu: 
 

int nZmienna; 
if (sizeof(nZmienna) != sizeof(int)) 
 std::cout << "Chyba mamy zepsuty kompilator :D"; 

 
Jest to operator czasu kompilacji, więc nie może korzystać z informacji uzyskanych w 
czasie działania programu. W szczególności, nie może pobrać rozmiaru dynamicznej 
tablicy - nawet mimo takich prob: 
 

int* pnTablica = new int [5]; 
 
std::cout << sizeof(pnTablica);  // to samo co sizeof(int*) 
std::cout << sizeof(*pnTablica);  // to samo co sizeof(int) 
 

Taki rozmiar trzeba po prostu zapisać gdzieś po alokacji tablicy. 
 
sizeof zwraca wartość należącą do predefiniownego typu size_t. Zwykle jest to liczba 
bez znaku lub bardzo duża liczba ze znakiem. 
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Ciekawostka: operator __alignof 

W Visual C++ istnieje jeszcze podobny do sizeof operator __alignof. Używamy go w 
ten sam sposób, podając mu zmienną lub typ. W wyniku zwraca on tzw. wyrównanie 
(ang. alignment) danego typu danych. Jest to liczba, która określa sposób organizacji 
pamięci dla danego typu danych. Przykładowo, jeżeli wyrównywanie wynosi 8, to znaczy 
to, iż obiekty tego typu są wyrównane w pamięci do wielokrotności ośmiu bajtów (ich 
adresy są wielokrotnocią ośmiu). 
Wyrównanie sprawia rzecz jasna, że dane zajmują w pamięci nieco więcej miejsca niż 
faktycznie mogłyby. Zyskujemy jednak szybciej, ponieważ porcje pamięci wyrównane do 
całkowitych potęg dwójki (a takie jest zawsze wyrównanie) są przetwarzane szybciej. 
 
Wyrównanie można kontrolować poprzez __declspec(align(liczba)). Np. poniższa 
struktura: 
 

__declspec(align(16)) struct FOO { int nA, nB; }; 
 
będzie tworzyć zmienne zajmujące w pamięci fragmenty po 16 bajtów, choć jej faktyczny 
rozmiar jest dwa razy mniejszy111. 
Polecając wyrównywanie do 1 bajta określimy praktyczny jego brak: 
 

#define PACKED __declspec(align(1)) 
 
Typy danych opatrzone taką deklaracją będą więc ciasno upakowane w pamięci. Może to 
dać pewną jej oszczędność, ale zazwyczaj spadek prędkości dostępu do danych nie jest 
tego wart. 

Operatory typów 
Istnieją języki programowania, które całkiem dobrze radzą sobie bez posiadania ściśle 
zarysowanych typów danych. C++ do nich nie należy: w nim typ jest sprawą bardzo 
ważną, a do pracy z nim oddelegowano kilka specjalnych operatorów. 

Operatory rzutowania 
Rzutowanie jest zmianą typu wartości, czyli jej konwersją. Mamy parę operatorów, które 
zajmują się tym zadaniem i robią to w różny sposób. 
 
Wśród nich są tak zwane cztery „nowe” operatory, o składni: 
 

określenie_cast<typ_docelowy>(wyrażenie) 
 
To właśnie one są zalecane do używania we wszystkich sytuacjach, wymagających 
rzutowania. C++ zachowuje aczkolwiek także starą formę rzutowania, znaną z C. 

static_cast 

Ten operator może być wykorzystywany do większości konwersji, jakie zdarza się 
przeprowadzać w C++. Nie oznacza to jednak, że pozwala on na wszystko: 
 
Poprawność rzutowania static_cast jest sprawdzana w czasie kompilacji programu. 
 
static_cast można używać np. do: 

 konwersji między typami numerycznymi 
 rzutowania liczby na typ wyliczeniowy (enum) 

                                                 
111 Jeżeli int ma 4 bajty długości, a tak jest na każdej platformie 32-bitowej. 
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 rzutowania wskaźników do klas związanych relacją dziedziczenia 
 
Jeżeli chodzi o ostatnie zastosowanie, to należy pamiętać, że tylko konwersja wskaźnika 
na obiekt klasy pochodnej do wskaźnika na obiekt klasy bazowej jest zawsze bezpieczna. 
W odwrotnym przypadku trzeba być pewnym co do wykonalności rzutowania, aby nie 
narobić sobie kłopotów. Taką pewność można uzyskać na przykład za pomocą sposobu z 
metodami wirtualnymi, który zaprezentowałem w rozdziale 1.7, lub poprzez operator 
typeid. 
Inną możliwością jest też użycie operatora dynamic_cast. 

dynamic_cast 

Przy pomocy dynamic_cast można rzutować wskaźniki i referencje do obiektów w dół 
hierarchii dziedziczenia. Oznacza to, że można zamienić odwołanie do obiektu klasy 
bazowej na odwołanie do obiektu klasy pochodnej. Wygląda to np. tak: 
 

class CFoo   { /* ... */ }; 
class CBar : public CFoo { /* ... */ }; 
 
void Funkcja(CFoo* pFoo) 
{ 
 CBar* pBar = dynamic_cast<CBar*>(pFoo); 
 
 // ... 
} 

 
Taka zamiana nie zawsze jest możliwa, bo przecież dany wskaźnik (referencja) 
niekoniecznie musi pokazywać na obiekt żądanej klasy pochodnej. Operacja jest jednak 
bezpieczna, ponieważ: 
 
Poprawność rzutowania dynamic_cast jest sprawdzana w czasie działania programu. 
 
Wiemy doskonale, w jaki sposób poznać rezultat tego sprawdzania. dynamic_cast 
zwraca po prostu NULL (wskaźnik pusty, zero), jeżeli rzutowanie nie mogło zostać 
wykonane. Należy to zawsze skontrolować: 
 

if (!pBar) 
{ 
 // OK - pBar faktycznie pokazuje na obiekt klasy CBar 
} 

 
Dla skrócenia zapisu można wykorzystać wartość zwracaną operatora przypisania: 
 

if (pBar = dynamic_cast<CBar*>(pFoo)) 
{ 
 // rzutowanie powiodło się 
} 

 
Znak = jest tu oczywiście zamierzony. Warunek będzie miał bowiem wartość równą 
rezultatowi rzutowania, zatem będzie prawdziwy tylko wtedy, gdy się ono powiedzie. 
Zwrócony wskaźnik będzie wtedy różny od zera.  

reinterpret_cast 

reinterpret_cast może służyć do dowolnych konwersji między wskaźnikami, a także do 
rzutowania wskaźników na typy liczbowe i odwrotnie. Wachlarz możliwości jest więc 
szeroki, niestety: 
 
Poprawność rzutowania reinterpret_cast nie jest sprawdzana. 
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Łatwo więc może dojść do niebezpiecznych konwersji. Ten operator powinien być 
używany tylko jako ostatnia deska ratunku - jeżeli inne zawiodą, a my jesteśmy 
przekonani o względnym bezpieczeństwie planowanej zamiany. Wykorzystanie tego 
operatora generalnie jednak powinno być bardzo rzadkie. 
 
reintepret_cast możemy potencjalnie użyć np. do uzyskania dostępu do pojedynczych 
bitów w zmiennej o większej ich ilości: 
 

unsigned __int32 u32Zmienna; // liczba 32-bitowa 
unsigned __int8* pu8Bajty;  // wskaźnik na liczby 8-bitowe (bajty) 
 
// zamieniamy wskaźnik do 4 bajtowej zmiennej na wskaźnik do 
// 4-elementowej tablicy bajtów 
pu8Bajty = reinterpret_cast<unsigned __int8*>(&u32Zmienna); 
 
// wyświetlamy kolejne bajty zmiennej u32Zmienna 
for (unsigned i = 0; i < 4; ++i) 
 std::cout << "Bajt nr " << i << ": " << pu8Bajty[i] << std::endl; 

 
Widać więc, że najlepiej sprawdza się w operacjach niskopoziomowych. Tutaj możnaby 
oczywiście użyć przesunięcia bitowego, ale tablica wygląda z pewnością przejrzyściej. 

const_cast 

Ostatni z „nowych” operatorów rzutowania ma dość ograniczone zastosowanie: 
 
const_cast służy do usuwania przydomków const i volatile z opatrzonych nimi 
wskaźników do zmiennych. 
 
Obecność tego operatora służy chyba tylko temu, aby możliwe było całkowite zastąpienie 
sposobów rzutowania znanych z C. Jego praktyczne użycie należy do sporadycznych 
sytuacji. 

Rzutowanie w stylu C 

C++ zachowuje „stare” sposoby rzutowania typów. Jednym z nich jest rzutowanie 
nazywane, całkiem adekwatnie, rzutowaniem w stylu C (ang. C-style cast): 
 

(typ) wyrażenie 
 
Ta składnia konwersji jest nadal często używana, gdyż jest po prostu krótsza. Należy 
jednak wiedzieć, że nie odróżnia ona różnych sposobów rzutowania i w zależności od 
typu i wyrażenia może się zachowywać jak static_cast, reinterpret_cast lub 
const_cast. 

Rzutowanie funkcyjne 

Inną składnię ma rzutowanie funkcyjne (ang. function-style cast): 
 

typ(wyrażenie) 
 
Przypomina ona wywołanie funkcji, choć oczywiście żadna funkcja nie jest tu 
wywoływana. Ten rodzaj rzutowania działa tak samo jak rzutowanie w stylu C, 
aczkolwiek nie można w nim stosować co niektórych nazw typów. Nie można na przykład 
wykonać: 
 

int*(&fZmienna) 
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i to z dość prozaicznego powodu. Po prostu gwiazdka i nawias otwierający występujące 
obok siebie zostaną potraktowane jako błąd składniowy. W tej sytuacji można sobie 
ewetualnie pomóc odpowiednim typedef’em. 

Operator typeid 

typeid służy pobrania informacji o typie podanego wyrażenia podczas działania 
programu. Jest to tzw. RTTI, czyli informacja o typie czasu wykonania (ang. Run-
Time Type Information). 
Przygotowanie do wykorzystania tego operatora objemuje włączenie RTTI (co dla Visual 
C++ opisałem w rozdziałe 1.7) oraz dołączenie standardowego nagłówka typeinfo: 
 

#include <typeinfo> 
 
Potem możemy już stosować typeid np. tak: 
 

class CFoo   { /* ... */ }; 
class CBar : public CFoo { /* ... */ }; 
 
int nZmienna; 
CFoo* pFoo = new CBar; 
std::cout << typeid(nZmienna).name();  // int 
std::cout << typeid(pFoo).name();  // class CFoo * 
std::cout << typeid(*pFoo).name();  // class CBar 

 
Jak widać, operator ten jest leniwy i jeśli tylko może, będzie korzystać z informacji 
dostępnych w czasie kompilacji programu. Ażeby więc poznać np. typ polimorficznego 
obiektu, na który pokazujemy wskaźnikiem, trzeba użyć derefrencji… 

Operatory dostępu do składowych 
Pięć kolejnych operatorów służy do wybierania składników klas, struktur, unii, itd. Przy 
ich pomocy można więc dostać się do zagnieżdżonych składowych. Nie zawsze jest to 
jednak możliwe - wszystko zależy od ich widoczności, czyli od tego, jakimi 
specyfikatorami dostępu są one opatrzone (private, protected, public). 
O tychże specyfikatorach mówiliśmy już bardzo wiele, więc teraz przypomnijmy sobie 
tylko same operatory wyłuskania. 

Wyłuskanie z obiektu 
Mając zmienną obiektową, do jej składników odwołujemy się poprzez operator kropki (.), 
np. tak: 
 

struct FOO { int x; }; 
 
FOO Foo; 
Foo.x = 10; 

 
W podobny działa operator .*, który służy aczkolwiek do wyłowienia składnika poprzez 
wskaźnik do niego: 
 

int FOO::*p2mnSkladnik = &FOO::x; 
Foo.*p2mnSkladnik = 42; 

 
Wskaźniki na składowe są przedmiotem następnego podrozdziału. 
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Wyłuskanie ze wskaźnika 
Gdy mamy wskaźnik na obiekt, wówczas zamiast kropki używamy innego operatora 
wyłuskania - strzałki (->): 
 

FOO* pFoo = new FOO; 
pFoo->x = 16; 

 
Tutaj także mamy odpowiednik, służący do wybierania składowych za pośrednictwem 
wskaźnika na nie: 
 

pFoo->*p2mnSkladnik += 80; 
 
W powyższej linijce mamy dwa wskaźniki, stojące po obydwu stronach operatora ->*. O 
pierwszym rodzaju powiedzieliśmy sobie na samym początku programowania 
obiektowego - to po prostu zwyczajny wskaźnik na obiekt. Drugi to natomiast wskaźnik 
do składowej klasy - o tym typie wskaźników pisze więcej następny podrozdział. 

Operator zasięgu 
Ten operator, nazywany też operatorem rozwikłania zakresu (ang. scope resolution 
operator) służy w C++ do rozróżniania nazw, które rezydują w różnych zakresach. 
Znamy dwa podstawowe zastosowania tego operatora: 

 dostęp do przesłoniętych zmiennych globalnych 
 dostęp do składowych klasy 

 
Ogólnie, operatora tego używamy, aby dostać się do identyfikatora zagnieżdżoneego 
wewnątrz nazwanych zakresów: 
 

zakres_poziom1::[zakres_poziom2::[zakres_poziom3::[...]]]nazwa 
 
Nazwy zakresów odpowiadają m.in. strukturom, klasom i uniom. Przykładowo, FOO z 
poprzedniego akapitu było nazwą zakresu - oprócz tego, rzecz jasna, także nazwą 
struktury. Przy pomocy operatora :: można odnieść się do jej zawartości. 
 
Zakresy można też tworzyć poprzez tzw. przestrzenie nazw (ang. namespaces). Jest to 
bardzo dobre narzędzie, służące organizacji kodu i zapobiegające konfliktom oznaczeń. 
Opisuje je rozdział Sztuka organizacji kodu. 
Do tej pory cały czas korzystaliśmy z pewnej szczególnej przestrzeni nazw - std. 
Pamiętasz doskonale, że przy niej także używaliśmy operatora zakresu. 

Pozostałe operatory 
Ostatnie trzy operatory trudno zakwalifikować do jakiejś konkretnej grupy, więc zebrałem 
je tutaj. 

Nawiasy okrągłe 
Nawiasy () to dość oczywisty operator. W C++ służy on głównie do: 

 grupowania wyrażeń w celu ich obliczania w pierwszej kolejności 
 deklarowania funkcji i wskaźników na nie 
 wywoływania funkcji 
 rzutowania 

 
Brak nawiasów może być przyczyną błędnego (innego niż przewidywane) obliczania 
wyrażeń, a także nieprawidłowej interpretacji niektórych deklaracji (np. funkcji i 
wskaźników na nie). Obfite stawianie nawiasów jest szczególnie ważne w 
makrodefinicjach. 



Zaawansowana obiektowość 419

Z kolei nadmiar nawiasów jeszcze nikomu nie zaszkodził :) 

Operator warunkowy 
Operator ?: jest nazywamy ternarnym, czyli trójargumentowym. Jako jedyny bierze 
bowiem trzy dane: 
 

warunek ? wynik_dla_prawdy : wynik_dla_fałszu 
 
Umiejętne użycie tego operatora skraca kod i pozwala uniknąć niepotrzebnych instrukcji 
if. Co ciekawe, może on być także użyty w deklaracjach, np. pól w klasach. Wtedy 
jednak wszystkie jego operandy muszą być stałymi. 

Przecinek 
Przecinek (ang. comma) to operator o najniższym priorytecie. Oprócz tego, że oddziela 
on argumenty funkcji, może też występować samodzielnie, np.: 
 

(nX + 17, 26, rand() % 5, nY) 
 
W takim wyrażeniu operandy są obliczane od lewej do prawej, natomiast wynikiem jest 
wartość ostatniego wyrażenia. Tutaj więc będzie to nY. 
 
Przecinek przydaje się, gdy chcemy wykonać pewną dodatkową czynność w trakcie 
wyliczania jakiejś wartości. Przykładowo, spójrzmy na taką pętlę odczytującą znaki: 
 

char chZnak; 
while (chZnak = ReadChar(), chZnak != ' ') 
{ 
 // zrób coś ze znakiem, który nie jest spacją 
} 

 
ReadChar() jest funkcją, która pobiera następny znak (np. z pliku). Sama pętla ma zaś 
wykonywać się aż do napotkania spacji. Zanim jednak można sprawdzić, czy dany znak 
jest spacją, trzeba go odczytać. Robimy to w warunku pętli, posługując się przecinkiem. 
Bez niego trzebaby najprawdopodobniej zmienić całą pętlę na do, co spowodowałoby 
konieczność powtórzenia kodu wywołującego ReadChar(). Inne wyjście to użycie pętli 
nieskończonej. C++ pozwala jednak osiągnąć ten sam efekt na kilka sposobów, spośród 
których wybieramy ten najbardziej nam pasujący. 

Nowe znaczenia dla operatorów 
Przypomnieliśmy sobie wszystkie operatory C++ i ich domyślne znaczenia. Nam to 
jednak nie wystarcza - chcemy przecież zdefiniować dla nich całkiem nowe funkcje. 
Zobaczmy zatem, jak możemy to uczynić. 

Funkcje operatorowe 
Pomyślmy: co właściwie robi kompilator, gdy natrafi w wyrażeniu na jakiś operator? Czy 
tylko sobie znanymi sposobami oblicza on docelową wartość, czy może jednak jest w tym 
jakaś zasada?… 
 
Otóż tak. Działanie operatora definiuje pewna funkcja, zwana funkcją operatorową 
(ang. operator function). Istnieje wiele takich funkcji, które są wbudowane w kompilator i 
działają na typach podstawowych. Dodawanie, odejmowanie i inne predefiniowane 
działania na liczbach są dostępne bez żadnych starań z naszej strony. 
Kiedy natomiast chcemy przeciążyć jakiś operatory, to oznacza to konieczność napisania 
własnej funkcji dla nich. Zwyczajnie, trzeba podać jej argumenty oraz wartość zwracaną i 
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wypełnić kodem. Nie ma w tym żadnej „magii”. Za chwilę zresztą przekonasz się, jak to 
działa. 

Kilka uwag wstępnych 
Zobaczmy więc, jak można zdefiniować dodatkowe znaczenia dla operatorów w C++. 

Ogólna składnia funkcji operatorowej 

Przeciążenie operatora oznacza napisanie dla niego funkcji, odpowiedzialnej za jego nowe 
działanie. Oto najbardziej ogólna składnia takiej funkcji: 
 

zwracany_typ operator symbol([parametry]) 
{ 
 treść_funkcji 
} 

 
Zamiast nazwy mamy tu słowo kluczowe operator, za którym należy podać symbol 
przeciążanego operatora (można go oddzielić od spacją, lecz nie jest to wymagane). 
Jeżeli więc chcemy np. zdefiniowiać nowe znaczenie dla plusa (+), to piszemy funkcję 
operator+(). 
 
Jak każda funkcja, także i ta przyjmuje pewne parametry. Ich liczba zależy ściśle od 
tego, jaki operator chcemy przeładować. Jeśli jest to operator binarny, to siłą rzeczy 
konieczne będą dwa parametry; dla jednoargumentowych operatorów wystarczy jeden 
parametr. 
Ale uwaga - parametry podane w nawiasie niekoniecznie są jedynymi, które funkcja 
otrzymuje. Pamiętasz zapewne, że metody klas mają ukryty parametr - obiekt, na rzecz 
którego metoda została wywołana, dostępny poprzez wskaźnik this. Otóż ten parametr 
jest brany pod uwagę w tym przypadku. Pamiętaj więc, że: 
 
Funkcja operatorowa przyjmuje tyle argumentów, ile ma przeciążany przy jej pomocy 
operator. Do tych argumentów zalicza się wskaźnik this, jeżeli jest to metoda klasy. 
 
Od tej zasady istnieje tylko jeden wyjątek (a w zasadzie dwa). Stanowią go operatory 
postinkrementacji i postdekrementacji: wprowadzono do nich dodatkowy parametr typu 
int, który należy zignorować. Dzięki temu możliwe jest odróżnienie tych operatorów od 
wariantów prefiksowych. 

Operatory, które możemy przeciążać 

Możemy przeciążać bardzo wiele operatorów - zarówno takich, dla których natychmiast 
znajdziemy praktyczne zastosowanie, jak i tych, których przeciążanie wydawałoby się 
dziwaczne. Oto kompletna lista przeciążalnych operatorów: 
 

+ - * / % & | ^ << << 
~ && || ! == != < <= > >= 
+= -= *= /= %= &= |= ^= <<= >>=
++ -- = -> ->* () [] new delete , 

Tabela 18. Przeciążalne operatory C++ 

 
Przeładowywać możemy te i tylko te operatory. W większości książek i kursów za chwilę 
nastąpiłaby podobna (acz znacznie krótsza) lista operatorów, których przeciążać nie 
można. Z doświadczenia wiem jednak, że rodzi to niewyobrażalną ilośc nieporozumień, 
spowodowaną nieprecyzyjnym określeniem, co jest operatorem, a co nie. Dlatego też nie 
podaję żadnej takiej tabelki - zapamiętaj po prostu, że przeciążać można wyłącznie te 
operatory, które wymieniłem wyżej. 
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Muszę jednak podać kilka wyjaśnień odnośnie tej tabelki: 
 operatory: +, -, *, & można przeciążać zarówno w wersji jedno-, jak i 

dwuargumentowej 
 operatory inkrementacji (++) i dekrementacji (--) przeciążamy oddzielnie dla 

wersji prefiksowej i postfiksowej 
 przeciążenie new i delete powoduje także zdefiniowanie ich działania dla wersji 

tablicowych (new[] i delete[]) 
 operatory () i [] to nawiasy: okrągłe (grupowanie wyrażeń) i kwadratowe 

(indeksowanie, wybór elementów tablicy) 
 operatory -> i ->* mają predefiniowane działanie dla wskaźników na obiekty - 

jego nie możemy zmienić. Możemy natomiast zdefiniowiać ich działanie dla 
samych obiektów 

Czego nie możemy zmienić 

Przeciążając operatory możemy zdefiniować dla nich dodatkowe znaczenie. Nie możemy 
jednak: 

 tworzyć własnych operatorów, jak np. @, ?, === czy \ 
 zmienić liczby argumentów, na których pracują przeciążane operatory. 

Przykładowo, nie stworzymy dwuargumentowego operatora ! czy 
jednoargumentowego || 

 zmodyfikować priorytetu operatora 
 zmienić łączności przeładowanego operatora 

 
Dla każdego typu C++ automatycznie generuje też pięć niezbędnych operatorów, których 
nie musimy przeciążać, aby działały poprawnie, Są to: 

 zwykły operator przypisania (=). Dokonuje on dosłownego kopiowania obiektu 
(„pole po polu”) 

 operator pobrania adresu (jednoargumentowy &). Zwraca on adres obiektu w 
pamięci 

 new dokonuje alokacji pamięci dla obiektu 
 delete niszczy i usuwa obiekt z pamięci 
 przecinek (,) - jego znaczenie jest takie same, jak dla typów wbudowanych 

 
Możliwe jest aczkolwiek przeciążenie tych pięciu symboli, aby działały inaczej dla naszych 
klas. Nie można jednak unieważnić ich domyślnej funkcjonalności, jaką dostarcza 
kompilator dla każdego typu. Mówiąc potocznie, nie można ich „rozdefiniować”. 

Pozostałe sprawy 

Warto jeszcze powiedzieć o pewnych „naturalnych” sprawach: 
 przynajmniej jeden argument przeciążanego operatora musi być innego typu niż 

wbudowane. To naturalne: operatory przeciążamy na rzecz własnych typów 
(klas), bo działania na typach podstawowych są wyłaczną domeną kompilatora. 
Nie wtrącamy się w nie 

 funkcja operatorowa nie może posiadać parametrów domyślnych 
 przeciążenia nie kumulują się, tzn. jeżeli na przykład przeciążymy operatory + 

oraz =, nie będzie to oznaczało automatycznego zdefiniowania operatora +=. 
Każde nowe znaczenie dla operatora musimy podać sami 

Definiowanie przeciążonych wersji operatorów 
Operator możemy przeciążyć na kilka sposobów, w zależności od tego, gdzie umieścimy 
funkcję operatorową. Może być ona bowiem zarówno składnikiem (metodą) klasy, na 
rzecz której działa, jak i funkcją globalną. 
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Na te dwa przypadki popatrzymy sobie, definiując operator mnożenia (dwuargumentowy 
*) dla klasy CRational, znanej z poprzednich podrozdziałów. Chcemy sprawić, aby jej 
obiekty można było mnożyć przez inne liczby wymierne, np. tak: 
 

CRational JednaPiata(1, 5), TrzyCzwarte(3, 4); 
CRational Wynik = JednaPiata * TrzyCzwarte; 

 
To będzie spore udogodnienie, więc zobaczmy, jak mozna to zrobić.  

Operator jako funkcja składowa klasy 

Wpierw spróbujmy zdefiniować operator*() jako funkcję składową klasy. Wiemy, że 
nasz operator jest dwuargumentowy; wiemy także, że każda metoda klasy przyjmuje 
jeden ukryty parametr - wskaźnik this. Wynika stąd, że funkcja operatorowa będzie u 
nas miał tylko jeden „prawdziwy” parametr i wyglądała na przykład tak: 
 

CRational CRational::operator*(const CRational& Liczba) const 
{ 
 return CRational(m_nLicznik * Liczba.m_nLicznik, 
 m_nMianownik * Liczba.m_nMianownik); 
} 

 
To wystarczy - po tym zabiegu możemy bez problemu mnożyć przez siebie zarówno dwa 
obiekty klasy CRational: 
 

CRational DwieTrzecie(2, 3), TrzySiodme(3, 7); 
CRational Wynik = DwieTrzecie * TrzySiodme; 

 
jak i jeden obiekt przez liczbę całkowitą: 
 

CRational Polowa(1, 2); 
CRational Calosc = Polowa * 2; 

 
Jak to działa?… Najlepiej prześledzić funkcjonowanie operatora, jeżeli wyrażenia 
zawierające go: 
 

DwieTrzecie * TrzySiodme 
Polowa * 2 

 
zapiszemy z jawnie wywołaną funkcją operatorową: 
 

DwieTrzecie.operator*(TrzySiodme) 
Polowa.operator*(2) 

 
Widać wyraźnie, że pierwszy argument operatora jest przekazywany jako wskaźnik this. 
Drugi jest natomiast normalnym parametrem funkcji operator*(). 
A jakim sposobem zyskaliśmy od razu możliwość mnożenia także przez liczby całkowite? 
Myślę, że to nietrudne. Zadziałała tu po prostu niejawna konwersja, zrealizowana przy 
pomocy konstruktora klasy CRational. Drugie wyrażenie jest więc w rzeczywistości 
wywołaniem: 
 

Polowa.operator*(CRational(2)) 
 
Mimochodem uzyskaliśmy zatem dodatkową funkcjonalność. A wszystko za pomocą 
jednej funkcji operatorowej (no i jednego konstruktora). 
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Problem przemienności 

Nasz entuzjazm szybko może jednak osłabnąć. jeżeli zechcemy wypróbować 
przemienność tak zdefiniowanego mnożenia. Nie będzie przeszkód dla dwóch liczb 
wymiernych: 
 

CRational Wynik = TrzySiodme * DwieTrzecie; 
 
albo dla pary całkowita-wymierna kompilator zaprotestuje: 
 

CRational Calosc = 2 * Polowa;  // błąd! 
 
Dlaczego tak się dzieje? Ponowny rzut oka na jawne wywołanie operator*() pomoże 
rozwikłać problem: 
 

TrzySiodme.operator*(DwieTrzecie) // OK 
2.operator*(Polowa)    // ??? 

 
Wyraźnie widać przyczynę. Dla dwójki nie można wywołać funkcji operator*(), bo taka 
funkcja nie istnieje dla typu int - on przecież nie jest nawet klasą. Nic więc dziwnego, że 
użycie operatora zdefiniowanego jako metoda nie powiedzie się. 
„Zaraz - a co z niejawną konwersją? Dlaczego ona nie zadziałała?” Faktycznie, możnaby 
przypuszczać, że konstruktor konwertujący może zamienić 2 na obiekt klasy CRational i 
uczynić wyrażenie poprawnym: 
 

CRational(2).operator*(Polowa)  // OK 
 
To jest nieprawda. Powodem jest to, iż: 
 
Niejawne konwersje nie działają przy wyłuskiwaniu składników obiektu. 
 
Kompilator nie rozwinie więc problematycznego wyrażenia do powyższej postaci i zgłosi 
błąd. 

Operator jako zwykła funkcja globalna 

Wynika z tego prosty wniosek: Houston, mamy problem :) Nie rozwiążemy go na pewno, 
definiując operator*() jako funkcję składową klasy. Trzebaby bowiem dostać się do 
definicji klasy int i dodać do niej odpowiednią metodę. Szkoda tylko, że nie mamy 
dostępu do tej definicji, co zresztą nie zaskakuje, bo int nie jest przecież żadną klasą. 
Gdyby jednak załoga Apollo 13 załamywała się po napotkaniu tak prostych problemów, 
nie wróciłaby na Ziemię cała i zdrowa. Nasza sytuacja nie jest aż tak dramatyczna, 
chociaż „częściowo przemienny” operator mnożenia też nie jest szczytem komfortu. 
Trzeba coś na to poradzić. 
 
Rozwiązanie oczywiście istnieje: należy uczynić operator*() funkcją globalną: 
 

CRational operator*(const CRational& Liczba1, const CRational& Liczba2) 
{ 
 return CRational(Liczba1.Licznik() * Liczba2.Licznik(), 
 Liczba1.Mianownik() * Liczba2.Mianownik()); 
} 

 
Zmieni to bardzo wiele. Odtąd dwa rozważane wyrażenia będą rozwijane do postaci: 
 

operator*(TrzySiodme, DwieTrzecie) // OK 
operator*(2, Polowa)    // też OK! 
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W tej formie oba argumenty operatora są normalnymi parametrami funkcji operator*(). 
Ma więc ona teraz dwa wyraźne parametry, wobec których może zajść niejawna 
konwersja. W tym przypadku 2 faktycznie będzie więc interpretowane jako 
CRational(2), zatem mnożenie powiedzie się bez przeszkód. 
To spostrzeżenie można uogólnić: 
 
Globalna funkcja operatorowa pozwala kompilatorowi na dokonywanie niejawnych 
konwersji wobec wszystkich argumentów operatora. 
 
Jest to prosty sposób na definiowanie przemiennych działań na obiektach różnych typów, 
między którymi istnieją określenia konwersji. 

Operator jako zaprzyjaźniona funkcja globalna 

Porównajmy jeszcze treść obu wariantów funkcji operator*(): jako metody klasy 
CRational i jako funkcji globalnej. Widzimy, że w pierwszym przypadku operowała ona 
bezpośrednio na prywatnych polach m_nLicznik i m_nMianownik. Jako funkcja globalna 
musiała z kolei posiłkować się metodami dostępowymi - Licznik() i Mianownik(). 
Nie powinno cię to dziwić. operator*() jako zwykła funkcja globalna jest właśnie - 
zwykłą funkcją globalną, zatem nie ma żadnych specjalnych uprawnień w stosunku do 
klasy CRational. Jest tak nawet pomimo faktu, że definiuje dlań operację mnożenia. 
 
Żadne specjalne uprawnienia nie są potrzebne, bo funkcja doskonale radzi sobie bez 
nich. Czasem jednak operator potrzebuje dostępu do niepublicznych składowych klasy, 
których nie uzyska za pomocą publicznego interfejsu. W takiej sytuacji konieczne staje 
się uczynienie funkcji operatorowej zaprzyjaźnioną. 
Podkreślmy jeszcze raz: 
 
Globalna funkcja operatorowa nie musi być zaprzyjaźniona z klasą, na rzecz której 
definiuje znaczenie operatora. 
 
Ten fakt pozwala na przeciążanie operatorów także dla nieswoich klas. Jak bardzo może 
to być przydatne, zobaczymy przy okazji omawiania strumieni STL z Biblioteki 
Standardowej. 

Sposoby przeciążania operatorów 
Po generalnym zapoznaniu się z przeciążaniem operatorów, czas na konkretne przykłady. 
Dowiedzmy się więc, jak przeciążać poszczególne typy operatorów. 

Najczęściej stosowane przeciążenia 
Najpierw poznamy takie rodzaje przeciążonych operatorów, które stosuje się najczęściej. 
Pomocą będzie nam tu głównie służyć klasa CVector2D, którą jakiś czas temu 
pokazałem: 
 

class CVector2D 
{ 
 private: 
  float m_fX, m_fY; 
 
 public: 
  explicit CVector2D(float fX = 0.0f, float fY = 0.0f) 
   { m_fX = fX; m_fY = fY; } 
}; 
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Nie jest to przypadek. Operatory przeciążamy bowiem najcześciej dla tego typu klas, 
zwanych narzędziowymi. Wektory, macierze i inne przydatne „obiekty matematyczne” są 
właśnie idealnymi kandydatami na klasy z przeładowanymi operatorami. 
 
Pokazane tu przeciążenia nie będą jednak tylko sztuką dla samej sztuki. Wspomniane 
obiekty będą nam bowiem niezbędne z programowaniu grafiki przy użyciu DirectX. A że 
przy okazji ilustrują tę ciekawą technikę programistyczną, jaką jest przeciążanie 
operatorów, tym lepiej dla nas :) 
 
Spójrzmy zatem, jakie ciekawe operatory możemy przedefiniować na potrzeby tego typu 
klas. 

Typowe operatory jednoargumentowe 

Operatory unarne, jak sama nazwa wskazuje, przyjmują jeden argument. Chcąc dokonać 
ich przeciążenia, mamy do wyboru: 

 zdefiniowanie odpowiedniej metody w klasie, na rzecz której dokonujemy 
redefinicji: 

 
klasa klasa::operator symbol() const; 

 
 napisanie globalnej funkcji operatorowej: 

 
klasa operator symbol(const klasa&); 

 
Zauważyłeś zapewne, że w obu wzorach podaję parametry oraz typ zwracanej 
wartości112. Przestrzeganie tego schematu nie jest jednak wymogiem języka, lecz raczej 
powszechnie przyjętej konwencji dotyczącej przeciążania operatorów. Mówi ona, że: 
 
Działanie operatorów wobec typów zdefiniowanych przez programistę powinno w miarę 
możliwości pokrywać się z ich funkcjonalnością dla typów wbudowanych. 
 
Co to znaczy?… Otóż większość operatorów jednoargumentowych (poza 
in/dekrementacją) nie modyfikuje w żaden sposób przekazanych im obiektów. 
Przykładowo, operator jednoargumentowego minusa - zastosowany wobec liczby zwraca 
po prostu liczbę przeciwną. 
Chcąc zachować tę konwencję, należy umieścić w odpowiednich miejscach deklaracje 
stałości const. Naturalnie nie trzeba tego bezwarunkowo robić - pamiętajmy jednak, że 
przestrzeganie szeroko przyjętych (i rozsądnych!) zwyczajów jest zawsze w interesie 
programisty. Dotyczy to zarówno piszącego, jak i czytającego i konserwującego kod. 
 
No, ale dość tych tyrad. Pora na zastosowanie zdobytej wiedzy w praktyce. Zastanówmy 
się, jakie operatory możemy logicznie przeciążyć dla naszej klasy CVector2D. Nie jest ich 
wiele - w zasadzie tylko plus (+) oraz minus (-). Pierwszy nie powinien w ogóle zmieniać 
obiektu wektora i zwrócić go w nienaruszonym stanie, zaś drugi musi oddać wektor o 
przeciwnym zwrocie. 
Sądzę, że bez problemu napisałbyś takie funkcje. Są one przecież niezwykle proste: 
 

class CVector2D 
{ 
 // (pomijamy szczegóły) 
 
 public: 
  // (tu też) 
 

                                                 
112 Nie dotyczy to operatorów inkrementacji i dekrementacji, których omówienie znajduje się dalej. 
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  CVector2D operator+() const 
   { return CVector2D(+m_fX, +m_fY); } 
  CVector2D operator-() const 
   { return CVector2D(-m_fY, -m_fY); } 
}; 

 
Co do drugiego operatora, to chyba nie ma żadnych wątpliwości. Natomiast 
przeładowywanie plusa może wydawać się wręcz śmieszne. To jednak całkowicie 
uzasadniona praktyka: jeśli operator ten działa dla typów wbudowanych, to powinien 
także funkcjononować dla naszego wektora. Aczkolwiek treść metody operator+() to 
faktycznie przykład-analogia do operator-(): rozsądniej byłoby po prostu zwrócić *this 
(czyli kopię wektora) niż tworzyć nowy obiekt. 
 
Obie metody umieszczamy bezpośrednio w definicji klasy, bo są one na tyle krótkie, żeby 
zasługiwać na atrybut inline. 

Inkrementacja i dekrementacja 

To, co przed chwilą powiedziałem o operatorach jednoargumentowych, nie stosuje się do 
operatorów inkrementacji (++) i dekrementacji (--). Ściśle mówiąc, nie stosuje się w 
całości. Mamy tu bowiem dwie odmienne kwestie. 
 
Pierwszą z nich jest to, iż oba te operatory nie są już tak „grzeczne” i nie pozostawiają 
swojego argumentu w stanie nienaruszonym. Potrzebny jest im więc dostęp do obiektu, 
który zezwalałby na jego modyfikację. Trudno oczekiwać, aby wszystkie funkcje miały do 
tego prawo, zatem operator++() i operator--() powinny być co najmniej 
zaprzyjaźnione z klasą. A najlepiej, żeby były po prostu jej metodami: 
 

klasa klasa::operator++();  // lub operator--() 
 
Druga sprawa jest nieco innej natury. Wiemy bowiem, że inkrementacja i dekrementacja 
występuje w dwóch wersjach: przedrostkowej i przyrostkowej. Z zaprezentowanej wyżej 
składni wynika jednak, że możemy przeładować tylko jedną z nich. Czy tak?… 
 
Bynajmniej. Powyższa forma jest prototypem funkcji operatorowej dla 
preinkrementacji, czyli dla przedrostkowego wariantu operatora. Nie znaczy to jednak, 
że wersji postfiksowej nie można przeciążyć. Przeciwnie, jest to jak najbardziej możliwe 
w ten oto sposób: 
 

klasa klasa::operator++(int); // lub operator--(int) 
 
Nie jest on zbyt elegancki i ma wszelkie znamiona „triku”, ale na coś trzeba było się 
zdecydować… Dodatkowy argument typu int jest tu niczym innym, jak środkiem do 
rozróżnienia obu typów in/dekrementacji. Nie pełni on poza tym żadnej roli, a już na 
pewno nie trzeba go podawać podczas stosowania postfiksowego operatora ++ (--). Jest 
on nadal jednoargumentowy, a dodatkowy parametr jest tylko mało satysfakcjonującym 
wyjściem z sytuacji. 
 
W początakach C++ tego nie było, gdyż po prostu niemożliwe było przeciążanie 
przyrostkowych operatorów inkrementacji (dekrementacji). Później jednak stało się to 
dopuszczalne - opuścimy już jednak zasłonę milczenia na sposób, w jaki to zrealizowano. 
 
Tak samo jak w przypadku wszystkich operatorów zaleca się, aby zachowanie obu wersji 
++ i -- było spójne z typami podstawowymi. Jeśli więc przeciążamy prefiksowy 
operator++() lub (i) operator--(), to w wyniku powinien on zwracać obiekt już po 
dokonaniu założonej operacji zwiększenia o 1. 
Dla spokoju sumienia lepiej też przeciążyć obie wersje tych operatorów. Nie jest to 
uciążliwe, bo możemy korzystać z już napisanych funkcji. Oto przykład dla CVector2D: 



Zaawansowana obiektowość 427

 
// preinkrementacja 
CVector2D CVector2D::operator++() { ++m_fX; ++m_fY; return *this; } 
 
// postinkrementacja 
CVector2D CVector2D::operator++(int) 
{ 
 CVector2D vWynik = *this; 
 ++(*this); 
 return vWynik; 
} 
 
// (dekrementacja przebiega analogicznie) 

 
Spostrzeżmy, że nic nie stoi na przeszkodzie, aby w postinkrementacji użyć operatora 
preinkrementacji: 
 

++(*this); 
 
Przy okazji można dostrzec wyraźnie, dlaczego wariant prefiskowy jest wydajniejszy. W 
odmianie przyrostkowej trzeba przecież ponieść koszt stworzenia tymczasowego obiektu, 
aby go potem zwrócić jako rezultat. 

Typowe operatory dwuargumentowe 

Operatory dwuargumentowe, czyli binarne, przyjmują po argumenty. Powiedzmy sobie 
od razu, że nie muszą być to operandy tych samych typów. Wobec tego nie ma czegoś 
takiego, jak ogólna składnia prototypu funkcji operatora binarnego. 
 
Ponownie jednak możemy mieć do czynienia z dwoma drogami implementacji takiej 
funkcji: 

 jako metody jednej z klas, na obiektach której pracuje operator. Jego jawne 
wywołanie wygląda wówczas tak: 

 
operand1.operator symbol(operand2) 

 
 jako funkcji globalnej - zaprzyjaźnionej bądź nie: 

 
operator symbol(operand1, operand2) 

 
Obie linijki zastępują normalne użycie operatora w formie: 
 

operand1 symbol operand2 
 
O tym, która możliwość przeciążania jest lepsza, wspominałem już na początku. Przy 
wyborze największą rolę odgrywają ewentualne niejawne konwersje - jeżeli chcemy, by 
kompilator takowych dokonywał. 
W bardzo uproszczonej formie można powiedzieć, że jeśli jednym z argumentów ma być 
typ wbudowany, to funkcja operatorowa jest dobrym kandydatem na globalną (z 
przyjaźnią bądź nie, zależnie od potrzeb). W innym przypadku możemy pozostać przy 
metodzie klasy - lub kierować się innymi przesłankami, jak w poniższych przykładach… 
 
Celem ujrzenia tych przykładów wróćmy do naszego wektora. Jak wiemy, na wektorach 
w matematyce możemy dokonywać mnóstwa operacji. Nie wszystkie nas interesują, więc 
tutaj zaimplementujemy sobie tylko: 

 dodawanie i odejmowanie wektorów 
 mnożenie i dzielenie wektora przez liczbę 
 iloczyn skalarny 
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Czy będzie to trudne? Myślę, że ani trochę. Zacznijmy od dodawania i odejmowania: 
 

class CVector2D 
{ 
 // (pomijamy szczegóły) 
 
 // dodawanie 
 friend CVector2D operator+(const CVector2D& vWektor1, 
 const CVector2D& vWektor2) 
 { 
  return CVector2D(vWektor1.m_fX + vWektor2.m_fX, 
 vWektor1.m_fY + vWektor2.m_fY); 
 } 
 
 // (analogicznie definiujemy odejmowanie: operator-()) 
}; 

 
Zastosowałem tu funkcję zaprzyjaźnioną - przypominam przy okazji, że nie jest to 
metoda klasy CVector2D, choć pewnie na to wygląda. Umieszczenie jej wewnątrz bloku 
klasy to po prostu zaakcentowanie faktu, że funkcja niejako należy do „definicji” wektora 
- nie tej stricte programistycznej, ale matematycznej. Oprócz tego pozwala nam to na 
zgrupowanie wszystkich funkcji związanych z wektorem w jednym miejscu, no i na 
czerpanie zalet wydajnościowych, bo przecież operator+() jest tu funkcją inline. 
 
Kolejny punkt programu to mnożenie i dzielenie przez liczbę. Tutaj opłaca się zdefiniować 
je jako metody klasy: 
 

class CVector2D 
{ 
 // (pomijamy szczegóły) 
 
 public: 
  // (tu też) 
 
  // mnożenie wektor * liczba 
  CVector2D operator*(float fLiczba) const 
   { return CVector2D(m_fX * fLiczba, m_fY * fLiczba); } 
 
  // (analogicznie definiujemy dzielenie: operator/()) 
}; 

 
Dlaczego? Ano dlatego, że pierwszy argument ma być naszym wektorem, zatem 
odpowiada nam fakt, iż będzie to this. Drugi operand deklarujemy jako liczbę typu 
float. 
Ale chwileczkę… Przecież mnożenie jest przemienne! W naszej wersji operatora * liczba 
może jednak stać tylko po prawej stronie! 
„Ha, a nie mówiłem! operator*() jako metoda jest niepoprawny - trzeba zdefiniować go 
jako funkcję globalną!” Hola, nie tak szybko. Faktycznie, powyższa funkcja nie wystarczy, 
ale to nie znaczy, że mamy ją od razu wyrzucać. Przy zastosowaniu funkcji globalnych 
musielibyśmy przecież także napisać ich dwie sztuki: 
 

CVector2D operator*(const CVector2D& vWektor, float fLiczba); 
CVector2D operator*(float fLiczba, const CVector2D& vWektor); 
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W każdym więc przypadku jeden operator*() nie wystarczy113. Musimy dodać jego 
kolejną wersję: 
 

class CVector2D 
{ 
 // (pomijamy szczegóły) 
 
 // mnożenie liczba * wektor 
 friend CVector2D operator*(float fLiczba, const CVector2D& vWektor) 
  { return vWektor * fLiczba; } 
}; 

 
Korzystamy w niej z uprzednio zdefiniowanej. Kwestia, czy należy poprzednią wersję 
operatora także zamienić na zwykłą funkcję zaprzyjaźnioną, jest otwarta. Jeżeli razi cię 
niekonsekwencja (jeden wariant jako metoda, drugi jako zwykła funkcja), możesz to 
zrobić. 
 
Na koniec dokonamy… trzeciej definicji operator*(). Tym razem jednak będzie to 
operator mnożenia dwóch wektorów - czyli iloczynu skalarnego (ang. dot product). 
Przypomnijmy, że takie działanie jest po prostu sumą iloczynów odpowiadających sobie 
współrzędnych wektora. Jego wynikiem jest więc pojedyncza liczba. 
Ponieważ operator będzie działał na dwóch obiektach CVector2D, decyzja co do sposobu 
jego zapisania nie ma znaczenia. Aby pozostać w zgodzie z tym ustalonym dla 
operatorów dodawania i mnożenia, niech będzie to funkcja zaprzyjaźniona: 
 

class CVector2D 
{ 
 // (pomijamy szczegóły) 
 
 // iloczyn skalarny 
 friend float operator*(const CVector2D& vWektor1, 
 const CVector2D& vWektor2) 
 { 
  return vWektor1.m_fX * vWektor2.m_fX, 
 + vWektor1.m_fY * vWektor2.m_fY; 
 } 
}; 

 
Definiowanie operatorów binarnych jest więc bardzo proste, czyż nie? :D 

Operatory przypisania 

Teraz porozmawiamy sobie o pewnym wyjątkowym operatorze. Jest on unikalny pod 
wieloma względami; mowa o operatorze przypisania (ang. assignment operator) 
tudzież podstawienia. 
 
Dość często nie potrzebujemy nawet jego wyraźnego zdefiniowania. Kompilator dla 
każdej klasy generuje bowiem taki operator, o domyślnym działaniu. Taki automatyczny 
operator dokonuje przypisania „składnik po składniku” - tak więc po jego zastosowaniu 
przypisywane obiekty są sobie równe na poziomie wartości pól114. Taka sytuacja nam 
często odpowiada - przykładowo, dla naszej klasy CVector2D będzie to idealne 
rozwiązanie. Niekiedy jednak nie jest to dobre wyjście - za chwilę zobaczymy, dlaczego. 
Powiedzmy jeszcze tylko, że domyślny operator przypisania nie jest tworzony przez 
kompilator, jeżeli klasa: 

                                                 
113 Pomijam tu zupełnie fakt, że za chwilę funkcję tę zdefiniujemy po raz trzeci - tym razem jako iloczyn 
skalarny dwóch wektorów. 
114 W tym kopiowanie „pole po polu” wykorzystywane są aczkolwiek indywidualne operatory przypisania od klas, 
które instancjujemy w postaci pól. Nie zawsze więc obiekty takie faktycznie są sobie doskonale równe. 
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 ma składnik będący stałą (const typ) lub stałym wskaźnikiem (typ* const) 
 posiada składnik będący referencją 
 istnieje prywatny (private) operator przypisania: 

 w klasie bazowej 
 w klasie, której obiekt jest składnikiem naszej klasy 

 
Nawet jeśli żaden z powyższych punktów nie dotyczy naszej klasy, domyślne działanie 
operatora przypisania może nam nie odpowiadać. Wtedy należy go zdefiniować samemu 
w ten oto sposób: 
 

klasa& klasa::operator=(const klasa&); 
 
Jest to najczęstsza forma występowania tego operatora, umożliwiająca kontrolę 
przypisywania obiektów tego samego typu co macierzysta klasa. Możliwe jest aczkolwiek 
przypisywanie dowolnego typu - czasami jest to przydatne. 
Jest jednak coś, na co musimy zwrócić uwagę w pierwszej kolejności: 
 
Operatory przypisania (zarówno prosty, jak i te złożone) muszą być zdefiniowane jako 
niestatyczna funkcja składowa klasy, na której pracują. 
 
Widać to z zaprezentowanej deklaracji. Nie widać z niej jednak, że: 
 
Przeciążony operator przypisania nie jest dziedziczony. 
 
Dlaczego - o tym mówiłem przy okazji wprowadzania samego dziedziczenia. 
 
OK, wystarczy tej teorii. Czas zobaczyć definiowanie tego opratora w praktyce. 
Wspomniałem już, że dla klasy CVector2D w zupełności wystarczy operator tworzony 
przez kompilator. Mamy jednak inną klasę, dla której jest to wręcz niedopuszczalne 
rozwiązanie. To CIntArray, nasza tablica liczb. 
Dlaczego nie możemy skorzystać dla z niej z przypisania „składnik po składniku”? Z 
bardzo prostego powodu: spowoduje to przecież skopiowanie wskaźników na tablice, a 
nie samych tablic. 
Zauważmy, że z tego samego powodu napisaliśmy dla CIntArray konstruktor kopiujący. 
To nie przypadek. 
 
Jeżeli klasa musi mieć konstruktor kopiujący, to najprawdopodobniej potrzebuje także 
własnego operatora przypisania (i na odwrót). 
 
Zajmijmy się więc napisaniem tego operatora. Aby to uczynić, pomyślmy, co powinno się 
stać w takim przypisaniu: 
 

CIntArray aTablica1(7), aTablica2(8); 
aTablica1 = aTablica2; 

 
Po jego dokonaniu obie tablice musza zawierać te same elementy, lecz jednocześnie być 
niezależne - modyfikacja jednej nie może pociągać za sobą zmiany zawartości drugiej. 
Operator przypisania musi więc: 

 zniszczyć tablicę w obiekcie aTablica1 
 zaalokować w tym obiekcie tyle pamięci, aby pomieścić zawartość aTablica2 
 skopiować ją tam 

 
Te trzy kroki są charakterystyczne dla większości implementacji operatora przypisania. 
Dzielą one kod funkcji operatorowej na dwie części: 

 część „destruktorową”, odpowiedzialną za zniszczenie zawartości obiektu, który 
jest celem przypisania 
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 część „konstruktorową”, zajmującą się kopiowaniem 
 
Nie można jednak ograniczyć go do prostego wywołania destruktora, a potem 
konstruktora kopiującego - choćby z tego względu, że tego drugiego nie da się tak po 
prostu wywołać. 
 
Dobrze, teraz to już naprawdę zaczniemy coś kodować :) Napiszemy operator przypisania 
dla klasy CIntArray: 
 

CIntArray& CIntArray::operator=(const CIntArray& aTablica) 
{ 
 // usuwamy naszą tablicę 
 delete[] m_pnTablica; 
 
 // alokujemy tyle pamięci, aby pomieścić przypisywaną tablicę 
 m_uRozmiar = aTablica.m_uRozmiar; 
 m_pnTablica = new int [m_uRozmiar]; 
 
 // kopiujemy tablicę 
 memcpy (m_pnTablica, aTablica.m_pnTablica, m_uRozmiar * sizeof(int)); 
 
 // zwracamy wynik 
 return *this; 
} 

 
Nie jest on chyba niespodzianką - mamy tu wszystko, o czym mówiliśmy wcześniej. Tak 
więc na początku zwalniamy tablicę w obiekcie, będącym celem przypisania. Później 
alokujemy nową - na tyle dużą, aby zmieścić przypisywany obiekt. Wreszcie dokonujemy 
kopiowania. 
 
I pewnie jeszcze tylko jedna sprawa zaprząta twoją uwagę: dlaczego funkcja zwraca w 
wyniku *this?… 
Nie jest trudno odpowiedzieć na to pytanie. Po prostu realizujemy tutaj konwencję znaną 
z typów podstawowych, mówiącą o rezultacie przypisania, Pozwala to też na 
dokonywanie wielokrotnych przypisać, np. takich: 
 

CIntArray aTablica1(4), aTablica2(5), aTablica3(6); 
aTablica1 = aTablica2 = aTablica3; 

 
Powyższy kod bedzie działał identycznie, jak dla typów podstawowych. Wszystkie tablice 
staną się więc kopiami obiektu aTablica3. 
Aby to osiągnąć, wystarczy trzymać się prostej zasady: 
 
Operator przypisania powinien zwracać referencję do *this. 
 
Wydawałoby się, że teraz wszystko jest już absolutnie w porządku, jeżeli chodzi o 
przypisywanie obiektów klasy CIntArray. Niestety, znowu zawodzi nas czujność. 
Popatrzmy na taki oto kod: 
 

CIntArray aTablica; 
aTablica = aTablica;  // co się stanie z tablicą? 

 
Być może przypisywanie obiektu do niego samego jest dziwne, ale jednak kompilator 
dopuszcza je dla typów podstawowych, gdyż jest dla nich nieszkodliwe. Nie można tego 
samego powiedzieć o naszej klasie i jej operatorze przypisania. 
Wywołanie funkcji operator=() spowoduje bowiem usunięcie wewnętrznej tablicy w 
obu obiektach (bo są one przecież jednym i tym samym bytem), a następnie próbę 
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skopiowania tej usuniętej tablicy do nowej! Będziemy mogli mówić o szczęściu, jeśli 
spowoduje to „tylko” błąd access violation i awaryjne zakończenie programu… 
 
Przed taką ewentualnością musimy się więc zabezpieczyć. Nie jest to trudne i ogranicza 
się do prostego sprawdzenia, czy nie mamy do czynienia z przypisywaniem obiektu do 
jego samego. Robimy to tak: 
 

klasa& klasa::operator=(const klasa& obiekt) 
{ 
 if (&obiekt == this) return *this; 
 
 // (reszta instrukcji) 
} 

 
albo tak: 
 

klasa& klasa::operator=(const klasa& obiekt) 
{ 
 if (&obiekt != this) 
 { 
  // (reszta instrukcji) 
 } 
} 

 
W instrukcji if porównujemy wskaźniki: adres przypisywanego obiektu oraz this. W ten 
wyłapujemy ich ewentualną identyczność i zapobiegamy katastrofie. 

Operator indeksowania 
Skoro jesteśmy już przy naszej tablicy, warto zająć się operatorem o wybitnie 
tablicowym charakterze. Mówię oczywiście o nawiasach kwadratowych [], czyli 
operatorze indeksowania (ang. subscript operator). 
 
Operator ten definiujemy zwykle w taki oto sposób: 
 

typ_wartości& klasa::operator[](typ_klucza); 
 
Znowu widzimy, że jest to metoda klasy i po raz kolejny nie jest to przypadkiem: 
 
Operator indeksowania musi być zdefiniowany jako niestatyczna metoda klasy. 
 
To już drugi operator, którego dotyczy taki wymóg. Podpada pod niego jeszcze następna 
dwójka, której przeciążanie omówimy za chwilę. Najpierw zajmijmy się operatorem 
indeksowania. 
 
Przede wszystkim chciałbyś pewnie wiedzieć, jak on działa. Nie jest to trudne; jeżeli 
przeciążymy ten operator, to wyrażenie w formie: 
 

obiekt[klucz] 
 
zostanie przez kompilator zinterpretowane jako wywołanie w postaci: 
 

obiekt.operator[](klucz) 
 
Do funkcji operatorowej poprzez parametr trafia więc klucz, czyli wartość, jaką 
podajemy w nawiasach kwadratowych. Co ciekawe, nie musi to być wcale wartość typu 
int, ani nawet wartość liczbowa - równie dobrze sprawdza się tu całkiem dowolny typ 
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danych, nawet napisy. Pozwala to tworzyć klasy tzw. tablic asocjacyjnych, znanych na 
przykład z języka PHP115. 
 
Ponieważ wspomniałem już o tablicach, zajmijmy się tą, która sami kiedyś napisaliśmy i 
ciągle udoskonalamy. Nie da się ukryć, że CIntArray wiele zyska na przeciążeniu 
operatora []. Jeżeli zrobimy to umiejętnie, będzie można używac go tak samo, jak 
czynimy to w stosunku do zwykłych tablic języka C++. 
Aby jednak to zrobić, musimy zwrócić uwagę na pewien szczególny fakt. W stosunku do 
typów wbudowanych operator [] jest mianowicie bardzo elastyczny: w szczególności 
pozwala on zarówno na odczyt, jak i modyfikację elementów tablicy: 
 

int aTablica[10] 
aTablica[7] = 100;  // zapis 
std::cout << aTablica[7]; // odczyt 

 
Wyrażenie z operatorem [] może stać zarówno po lewej, jak i po prawej stronie znaku 
przypisania. Tę cechę wypadałoby zachować we własnej jego wersji - znaczy to, że: 
 
Operator indeksowania powinien w wyniku zwracać l-wartość. 
 
Gwarantuje to, że jego użycie będzie zgodne z tym dla typów podstawowych. 
Zaakcentowałem ten wymóg, pisząc w składni operatora referencję jako typ zwracanej 
wartości. To właśnie spowoduje pożądane zachowanie. 
 
Jeżeli nie możemy sobie pozwolić sobie na zwracanie l-wartości, to powinniśmy raczej 
całkowicie zrezygnować z przeładowania operatora [] i poprzestać na metodach 
dostępowych - takich jak Pobierz() i Ustaw() w klasie CIntArray. 
 
Zabierzmy się teraz do pracy: napiszemy przeciążoną wersję operatora indeksowania dla 
klasy CIntArray. Dzięki temu będziemy mogli manipulować elementami tablicy w taki 
sam sposób, jaki znamy dla normalnych tablic. To będzie całkiem spory krok naprzód. 
Osiągnięcie tego nie jest przy tym trudne - wręcz przeciwnie, u nas będzie niezwykle 
proste: 
 

int& CIntArray::operator[](unsigned uIndeks) 
 { return m_pnTablica[uIndeks]; } 

 
To wszystko! Zwrócenie referencji do elementu w prawidziwej, wewnętrznej tablicy 
pozwoli na niczym nieskrępowany dostęp do jej zawartości. Teraz możemy w wygodny 
sposób odczytywać i zapisywać liczby w naszej tablicy: 
 

CIntArray aTablica(4); 
 
aTablica[0] = 1; 
aTablica[1] = 4; 
aTablica[2] = 9; 
aTablica[3] = 16; 
 
for (unsigned i = 0; i < aTablica.Rozmiar(); ++i) 
 std::cout << aTablica[i] << ", "; 

 
Obecnie jest już ona funkcjonalnie identyczna z tablicą typu int[]. Możemy jednak 
zacząć czerpać także pewne korzyści z napisania tej klasy. Skoro juz przeciążamy 

                                                 
115 Zazwyczaj lepszym rozwiązaniem jest skorzystanie z mapy STL, czyli klasy std::map. Omówimy ją, kiedy 
przejdziemy do opisu klas pojemnikowych Biblioteki Standardowej. 
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operator [], to zadbajmy, aby wykonywał po drodze jakąś pożyteczną czynność - na 
przykład sprawdzał poprawność żądanego indeksu: 
 

int& CIntArray::operator[](unsigned uIndeks) 
 { return m_pnTablica[uIndeks < m_uRozmiar ? uIndeks : m_uRozmiar-1]; 
} 

 
Przy takiej wersji funkcji nie grozi nam już błąd przekroczenia zakresu (ang. subscript out 
of range). W razie podania nieprawidłowego numeru elementu, funkcja zwróci po prostu 
odwołanie do ostatniej liczby w tablicy. Nie jest to najlepsze rozwiązanie, ale 
przynajmniej zabezpiecza przed błędem czasu wykonania. 
 
Znacznie lepszym wyjściem jest rzucenie wyjątku, który poinformuje wywołującego o 
zainstaniałym problemie. O wyjątkach porozmawiamy sobie w następnym rozdziale. 

Operatory wyłuskania 
C++ pozwala na przeładowanie dwóch operatorów wyłuskania: -> oraz ->*. Nie jest to 
częsta praktyka, a jeśli nawet jest stosowana, to przeciążaniu podlega zwykle tylko 
pierwszy z tych operatorów. Możesz więc pominąć ten akapit, jeżeli nie wydaje ci się 
konieczna znajomość sposobu przeładowywania operatorów wyłuskania. 

Operator -> 

Operator -> kojarzy nam się z wybieraniem składnika poprzez wskaźnik do obiektu. 
Wygląda to np. tak: 
 

CFoo* pFoo = new CFoo; 
pFoo->Metoda(); 
delete pFoo; 

 
Jeżeli jednak spróbowaliśmy użyć tego operatora w stosunku do samego obiektu (lub 
referencji do niego): 
 

CFoo Foo; 
Foo->Metoda();  // !!! 

 
to bez wątpienia otrzymalibyśmy komunikat o błędzie. Domyślnie nie jest bowiem 
możliwe użycie operatora -> w stosunku do samych obiektów. Jest on aplikowalny tylko 
do wskaźników. 
 
Ale w C++ nawet ta żelazna może zostać nagięta. Możliwe jest bowiem nadanie 
operatorowi -> znaczenia i dopuszczenie do jego używania razem ze zmiennymi 
obiektowymi. Aby to uczynić, trzeba oczywiście przeciążyć ten operator. 
Czynimy to taką oto funkcją: 
 

jakaś_klasa* klasa::operator->(); 
 
Nie wygląda ona na skomplikowaną… ale znowu jest to metoda klasy! Tak więc: 
 
Operator wyłuskania -> musi być niestatyczną funkcją składową klasy. 
 
Powiedzmy sobie teraz, jak on działa. Nie jest przecież wcale takie oczywiste - choćby z 
tego względu, że z niewiadomych na razie powodów operator zadowala się zaledwie 
jednym argumentem… (Jest on rzecz jasna przekazywany poprzez wskaźnik this) 
A oto i odpowiedź. Kiedy przeciążymy operator ->, wyrażenie w formie: 
 

obiekt->składnik 
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zostanie zmienione na: 
 

(obiekt.operator->())->składnik 
 
Mamy tu już jawne wywołanie operator->(), ale nadal pojawia się strzałka w swej 
normalnej postaci. Otóż jest to konieczne; w tym kodzie -> stojący tuż przy składniku 
jest już bowiem zwykłym operatorem wyłuskania ->. Zwykłym - to znaczy takim, który 
oczekuje wskaźnika po swojej lewej stronie - a nie obiektu, jak operator przeciążony. 
Wynika z tego wyrażenie: 
 

obiekt.operator->() 
 
musi reprezentować wskaźnik, aby całość działała poprawnie. Dlatego też funkcja 
operator->() zwraca w wyniku typ wskaźnikowy. Jednocześnie nie interesuje się ona 
tym, co stoi po prawej stronie strzałki - to jest już bowiem sprawą tego normalnego, 
wbudowanego w kompilator operatora ->. 
Podsumowując, można powiedzieć, że: 
 
Funkcja operator->() dokonuje raczej zamiany obiektu na wskaźnik niż faktycznego 
przedefiniowania znaczenia operatora ->. 
 
Godne uwagi jest to, że wskaźnik zwracany przez tę funkcje wcale nie musi być 
wskaźnikiem na obiekt jej macierzystej klasy. Może to być wskaźnik na dowolną klasę, 
co zresztą obrazuje składnia funkcji. 
 
Zastanawiasz się pewnie: „A po co mi przeciążanie tego operatora? Może po to, aby do 
składników obiektu odnosić się nie tylko kropką (.), ale i strzałką (->)?” Odradzam 
przeciążanie operatora w tym celu, bo to raczej ukryje błędy w kodzie niż ułatwi 
programowanie. 
Operator -> możemy jednak przeciążyć i będzie to przydatne przy pisaniu klas tzw. 
inteligentnych wskaźników. 
 
Inteligentny wskaźnik (ang. smart pointer) to klasa będąca opakowaniem dla 
normalnych wskaźników i zapewniająca wobec nich dodatkowe, „inteligentne” 
zachowanie. 
 
Rodzajów tych inteligentnych zachowań jest doprawdy mnóstwo. Może to być kontrola 
odwołań do wskaźnika - zarówno w prostej formie zliczania, jak i zaawansowanej 
komunikacji z mechanizmem zajmującym się usuwaniem nieużywanych obiektów 
(odśmiecaczem, ang. garbage collector). Innym zastosowaniem może być ochrona przed 
wyciekami pamięci spowodowanymi nagłym opuszczeniem zakresu. 
 
My napiszemy sobie najprostszą wersję takiego wskaźnika. Będzie on przechowywał 
odwołanie do obiektu CFoo, które przekażemy mu w konstruktorze, i zwalniał je w swoim 
destruktorze. Oto kod klasy wskaźnika: 
 

class CFooSmartPtr 
{ 
 private: 
  // opakowywany, właściwy wskaźnik 
  CFoo* m_pWskaznik; 
 
 public: 
  // konstruktor i destruktor 
  CFooSmartPtr(CFoo* pFoo) : m_pWskaznik(pFoo) { } 
  ~CFooSmartPtr() { if (m_pWskaznik) delete m_pWskaznik; } 
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 //-------------------------------------------------------------  
 
  // operator dereferencji 
  CFoo operator*()  { return *m_pWskaznik; } 
 
  // operator wyłuskania 
  CFoo* operator->() { return m_pWskaznik } 
}; 

 
Ta klasa jest uboższą wersją std::auto_ptr z Biblioteki Standardowej. Służy ona do 
bezpiecznego obchodzenia się z pamięcią w sytuacjach związanych z wyjątkami. 
Omówimy ją sobie w następnym rozdziale (wrócimy tam zresztą także i do powyższej 
klasy). 
 
Co nam daje taki wskaźnik? Jeżeli go użyjemy, to zapobiegnie on wyciekowi pamięci, 
który może zostać spowodowany przez nagłe opuszczenie zakresu (np. w wyniku wyjątku 
- patrz następny rozdział). Jednocześnie nie umniejszamy sobie w żaden sposób wygody 
kodowania - nadal możemy korzystać ze składni, do której się przyzwyczailiśmy: 
 

CFooSmartPtr pFoo = new CFoo; 
 
// wywołanie metody na dwa sposoby 
pFoo->Metoda();  // naprawdę: (pFoo.operator->())->Metoda() 
(*pFoo).Metoda();  // naprawdę: (pFoo.operator*()).Metoda() 

 
Proszę tylko nie sądzić, że odtąd powinniśmy używać tylko takich sprytnych wskaźników. 
O nie, one nie są panaceum na wszystko i mają całkiem konkretne zastosowania. Nie 
należy ich traktowac jako złoty środek - szczególnie jako środek przeciwko 
zapomnialskiemu niezwalnianiu zaalokowanej pamięci. 

Ciekawostka: operator ->* 

Drugi z operatorów wyłuskania, ->*, jest bardzo rzadko używany. Nie dziwi więc, że 
sytuacje, w których jest on przeciążany, są wręcz sporadyczne. Niemniej, skoro już 
mówimy o przeciążaniu, to możemy wspomnieć także o nim. 
 
Wpierw przydałoby się aczkolwiek, abyś znał mechanizm wskaźników na składowe klasy, 
opisany w następnym podrozdziale. 
 
->* jest używany do wybierania składników obiektu poprzez wskaźniki do składowych. 
Podobnie jak ->, nie ma on predefiniowanego znaczenia dla zmiennych obiektowych, a 
jedynie dla wskaźników na obiekty. Na tym jednak podobieństwa się kończą. 
 
->* jest przeciążany jako operator binarny dla konkretnego zestawu dwóch danych, 
które stanowią: 

 referencja do obiektu (argument lewostronny) 
 wskaźnik do składowej klasy (argument prawostronny) 

Nie ma też wymogu, aby funkcja operator->*() była funkcją składową klasy. Może być 
równie dobrze funkcją globalną. 
 
Jak więc przeciążyć ten operator? Ponieważ, jak mówiłem, definiujemy go dla 
konkretnego typu składnika, postać prototypu funkcji operator->*() różni się dla 
wskaźników do pól oraz do metod klasy. 
W pierwszym przypadku składnia przeciążenia wygląda mniej więcej tak: 
 

typ_pola& klasa::operator->*(typ_pola klasa::*); 
typ_pola& operator->*(klasa&, typ_pola klasa::*); 
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Jest chyba dość logiczne, że typ docelowego pola oraz typ zwracany przez funkcję 
operatorową musi się zgadzać. Dość podobnie jest dla metod: 
 

zwracany_typ klasa::operator->*(zwracany_typ (klasa::*)([parametry])); 
zwracany_typ operator->*(klasa&, zwracany_typ (klasa::*)([parametry])); 

 
Tutaj funkcja musi zwracać ten sam typ, co metoda klasy, na której wskaźnik 
przyjmujemy. 
 
Jak wygląda przeciążanie w praktyce? Spójrzmy na przykład na taką oto klasę: 
 

class CFoo 
{ 
 public: 
  int nPole1, nPole2; 
 
 //-------------------------------------------------------------  
 
  // operator ->* 
  int& operator->*(int CFoo::*)  { return nPole1; } 
}; 

 
Po takim redefiniowaniu operatora, wszystkie wskaźniki na składowe typu int w klasie 
CFoo będą „prowadziły” tylko i wyłącznie do pola nPole1. 

Operator wywołania funkcji 
Czas na kolejny operator, chyba jeden z bardziej interesujących. To operator 
wywołania funkcji (ang. function-call operator), czyli nawiasy okrągłe (). 
 
Nawiasy mają jeszcze dwa znaczenia w C++: grupują one wyrażenia oraz pozwalają 
wykonywać rzutowanie (w stylu C lub funkcyjnym). Żadnego z tych pozostałych znaczeń 
nie możemy jednak zmieniać. Przeciążeniu może ulec tylko operator wywołania funkcji. 
 
Tak jest, on także może być przeciążony. O czym w tym przypadku należy pamiętać?… 
Otóż: 
 
Operator wywołania funkcji może być zdefiniowany tylko jako niestatyczna funkcja 
składowa klasy. 
 
Jest to ostatni rodzaj operator, którego dotyczy to ograniczenie. Przypominam, że 
pozostałymi są: operatory przypisania, indeksowania oraz wyłuskania (->). 
 
Na tym zastrzeżeniu kończą się jednak jakiegolwiek obostrzeżenia nakładane na to 
przeciążenie. operator()() (tak, dwie pary nawiasów) może być bowiem funkcją 
przyjmującą dowolne argumenty i zwracającą dowolny typ wartości: 
 

zwracany_typ klasa::operator()([parametry]); 
 
To jedyny operator, który może przyjmować każdą ilość argumentów. To zresztą 
zrozumiałe: skoro normalnie służy on do wywoływania funkcji, mogących mieć przecież 
dowolną liczbę parametrów, to i jego przeciążona wersja nie powinna nakładać 
ograniczeń w tym zakresie. Podobnie dzieje się, jeżeli chodzi o typ zwracanej wartości. 
Oznacza to również, że możliwe jest zdefiniowanie wielu wersji przeciążonego operatora 
(). Muszą one jednak być rozróżnialne w tym sam sposób, jak przeładowane funkcje. 
Powinny więc posiadać inną liczbę, kolejność i/lub typy parametrów. 
 



Zaawansowane C++ 438 

Do czego może nam przydać się taka potęga i elastyczność? Możliwości jest bardzo wiele, 
może do nich należeć np. wybór elementu tablicy wielowymiarowej. Do ciekawszych 
zastosowań należy jednak tworzenie tzw. obiektów funkcyjnych (ang. function 
objects) - funktorów. 
Funktory są to obiekty przypominające zwykłe funkcje, jednak różnią się tym, iż mogą 
posiadać stan. Mają go, ponieważ w rzeczywistości są to klasy, które zawierają jakieś 
publiczne pola, zaś składnię wywołania funkcji uzyskują za pomocą przeciążenia 
operatora (). 
Oto prosty przykład - funktor obliczający średnią arytmetyczną z podanych liczb i 
aktualizujący wynik z każdym kolejnym wywołaniem: 
 

class CAverageFunctor 
{ 
 private: 
  // aktualny wynik 
  double m_fSrednia; 
 
  // ilość wywołań 
  unsigned m_uIloscLiczb; 
 
 public: 
  // konstruktor 
  CAverageFunctor() : m_fSrednia(0.0), m_uIloscLiczb(0) { } 
 
 //-------------------------------------------------------------  
 
  // funkcja resetująca stan funktora 
  void Reset() { m_fSrednia = m_uIloscLiczb = 0; } 
 
 //-------------------------------------------------------------  
 
  // operator wywołania funkcji - oblicza średnią 
  double operator()(double fLiczba) 
  { 
   // liczymy nową średnią, uwzględniającą dodaną liczbę 
   // oraz aktualizujemy zmienną przechowują ilość liczb 
   // wszystko w jednym wyrażeniu - za to kochamy C++ ;D 
   m_fSrednia = ((m_fSrednia * m_uIloscLiczb) + fLiczba) 
 / m_uIloscLiczb++); 
 
   // zwracamy nową średnią 
   return m_fSrednia; 
  } 
}; 

 
Użycie tego obiektu wygląda tak: 
 

CAverageFunctor Srednia; 
 
Srednia(4);   // średnia z 4 
Srednia(18.5);   // średnia z 4 i 18.5 
Srednia(-6);   // średnia z 4, 18.5 i -6 
Srednia(42);   // średnia z 4, 18.5, -6 i 42 
Srednia.Reset();  // zresetowanie funktora, wartość przepada 
 
Srednia(56);   // średnia z 56 
Srednia(90);   // średnia z 56 i 90 
Srednia(4 * atan(1)); // średnia z 56, 90 i pi 
std::cout << Srednia(13); // wyświetlenie średniej z 56, 90, pi i 13 

 



Zaawansowana obiektowość 439

Naturalnie, matematycy złapaliby się za głowę widząc taki algorytm obliczania średniej. 
Bardzo skutecznie prowadzi on bowiem to kumulowania błędów związanych z 
niedokładnym zapisem liczb w komputerze. Jest to jednak całkiem dobra ilustracja 
koncepcji funkctora. 
W Bibliotece Standardowej mamy całkiem sporo klas funktorów, z którymi będziesz mógł 
się wkrótce zapoznać. 

Operatory zarządzania pamięcią 
Oto kolejne dwa wyjątkowe operatory: new i delete. Jak doskonale wiemy, służą one do 
dynamicznego tworzenia w pamięci operacyjnej (a dokładniej na stercie) zmiennych, 
tablic i obiektów. To może wydawać się niemal niesamowite, ale je także możemy 
przeładować! 
 
Wpierw jednak muszę przypomnieć, że praca tych operatorów nie ogranicza się w 
rzeczywistości tylko do przydzielenia pamięci (new) i jej zwolnienia (delete). Jesteśmy 
świadomi, że może za tym iść także zainicjowanie lub sprzątniecie alokowanego obszaru 
pamięci. Oznacza to na przykład wywołanie konstruktora (new) i destruktora (delete) 
klasy, której obiekt tworzymy. 
Widzimy więc, że oba operatory wykonują więcej niż jedną czynność. Zmodyfikować 
możemy jednak tylko jedną z nich: 
 
Przeciążone operatory new i delete mogą jedynie zmienić sposób alokowania i 
zwalniania pamięci. Nie można ingerować w inicjalizację (wywołanie konstruktorów) i 
sprzątanie (przywołanie destruktorów), które temu towarzyszą. 
 
Zauważmy, że fakt ten niweluje dla nas różnice między operatorem new a new[] oraz 
delete i delete[]. Na poziomie alokacji (zwalniania) pamięci niczym się one bowiem nie 
różnią. Dlatego też dla potrzeb przeciążania mówimy tylko o operatorach new i delete, 
mając jednak w pamięci tę uwagę. 
 
Czy to, że kontrolujemy jedynie zarządzanie pamięcią znaczy, że przeciążanie tych 
operatorów nie jest interesujące?… Przeciwnie - alokacja i zwalnianie pamięci to są 
właśnie te czynności, które najbardziej nas interesują. Napisanie własnego algorytmu ich 
wykonywania, albo chociaż śledzenia tych standardowych, jest podstawą działania tak 
zwanych menedżerów pamięci (ang. memory managers). Są to mechanizmy 
zajmujące się kontrolą wykorzystania pamięci operacyjnej, zapobiegające zwykle jej 
wyciekom i często optymalizujące program. 
 
Stworzenie dobrego menedżera pamięci nie jest oczywiście proste, jednak przeciążenie 
new i delete to bardzo łatwa czynność. Aby ją wykonać, spójrzmy na prototypy obu 
funkcji - operator new() i operator delete(): 
 

void* [klasa::]operator new(size_t); 
void [klasa::]operator delete(void*); 

 
To nie pomyłka: funkcje te mają ściśle określone listy parametrów oraz typy zwracanych 
wartości. W tym względzie jest to wyjątek wśród wszystkich operatorów. 
operator new() przyjmuje jeden parametr typu size_t - jest to ilość bajtów, jaka ma 
być zaalokowana. W zamian powinien on zwrócić void* - jak można się domyślać: 
wskaźnik do przydzielonego obszaru pamięci o żądanym rozmiarze. 
Z kolei funkcja dla operatora delete potrzebuje tylko parametru, będącego wskaźnikiem. 
Jest to rzecz jasna wskaźnik do obszaru pamięci, który ma być zwolniony. W zamian 
funkcja zwraca void, czyli nic. Oczywiste. 
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Mniej oczywista jest opcjonalna fraza klasa::. Owszem, sugeruje ona, że obie funkcje 
mogą być metodami klasy lub funkcjami globalnymi. W przeciwieństwie do pozostałych 
operatorów ma to jednak znaczenie: new i delete jako metody mają bowiem inne 
znaczenie niż new i delete - funkcje globalne. Mamy mianowicie możliwość lokalnego 
przeciążenia obydwu operatorów, jak również zdefiniowania ich nowych, globalnych 
wersji. Omówimy sobie oba te przypadki. 

Lokalne wersje operatorów 

Operatory new i delete możemy przeciążyć w stosunku do pojedynczej klasy. W takiej 
sytuacji będą one używane do alokowania i (lub) zwalniania pamięci dla obiektów 
wyłącznie tej klasy. 
Może to się przydać np. do zapobiegania fragmentacji pamięci, spowodowanej częstym 
tworzeniem i zwalnianiem małych obiektów. W takim przypadku operator new może 
zarządzać większym kawałkiem pamięci i wirtualnie „odcinać” z niego mniejsze 
fragmenty dla kolejnych obiektów. delete dokonywałby wtedy tylko pozornej dealokacji 
pamięci. 
 
Zobaczmy zatem, jak odbywa się przeładowanie lokalnych operatorów new i delete. Oto 
prosty przykład, korzystający w zasadzie ze standardowych sposób przydzielania i 
oddawania pamięci, ale jednocześnie wypisujący informacje o tych czynnościach: 
 

class CFoo 
{ 
 public: 
  // new 
  void* operator new(size_t cbRozmiar) 
  { 
   // informacja na konsoli 
   std::cout << "Alokujemy " << cbRozmiar << " bajtow"; 
 
   // alokujemy pamięć i zwracamy wskaźnik 
   return ::new char [cbRozmiar]; 
  } 
 
  // delete 
  void operator delete(void* pWskaznik) 
  { 
   // informacja 
   std::cout << "Zwalniamy wskaznik " << pWskaznik; 
 
   // usuwamy pamięć 
   ::delete pWskaznik; 
  } 
}; 

 
Kiedy teraz spróbujemy stworzyć dynamicznie obiekt klasy CFoo: 
 

CFoo* pFoo = new CFoo; 
 
to odbędzie się to z jednoczesnym powiadomieniem o tym fakcie przy pomocy strumienia 
wyjścia. Analogicznie będzie w przypadku usunięcia: 
 

delete pFoo; 
 
Nadal jednak możemy skorzystać z normalnych wersji new i delete - wystarczy 
poprzedzić ich nazwy operatorem zakresu: 
 

CFoo* pFoo = ::new CFoo; 
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// ... 
::delete pFoo; 

 
Tak też robimy w ciele naszych funkcji operatorowych. Mamy dzięki temu pewność, że 
wywołujemy standardowe operatory i nie wpadamy w pułapkę nieskończonej rekurencji. 
W przypadku lokalnych operatorów nie jest to bynajmniej konieczne, ale warto tak czynić 
dla zaznaczenia faktu korzystania z wbudowanych ich wersji. 

Globalna redefinicja 

new i delete możemy też przeładować w sposób całościowy i globalny. Zastąpimy w ten 
sposób wbudowane sposoby alokacji pamięci dla każdego użycia tych operatorów. 
Wyjątkiem będzie tylko jawne poprzedzenie ich operatorem zakresu, ::. 
 
Jak dokonać takiego fundamentalnego przeciążenia? Bardzo podobnie, jak to robiliśmy w 
„trybie lokalnym”. Tym razem nasze funkcje operator new() i operator delete() będa 
po prostu funkcjami globalnymi: 
 

// new 
void* operator new(size_t cbRozmiar) 
{ 
 // informacja na konsoli 
 std::cout << "Alokujemy " << cbRozmiar << " bajtow"; 
 
 // alokujemy pamięć i zwracamy wskaźnik 
 return ::new char [cbRozmiar]; 
} 
 
// delete 
void operator delete(void* pWskaznik) 
{ 
 // informacja 
 std::cout << "Zwalniamy wskaznik " << pWskaznik; 
 
 // usuwamy pamięć 
 ::delete pWskaznik; 
} 

 
Ponownie pełnią one u nas wyłącznie funkcję monitorującą, ale to oczywiście nie jest 
jedyna możliwość. Wszystko zależy od potrzeb i fantazji. 
Koniecznie zwróćmy jeszcze uwagę na sposób, w jaki w tych przeciążanych funkcjach 
odwołujemy się do oryginalnych operatorów new i delete. Używamy ich w formie ::new i 
::delete, aby omyłkowo nie użyć własnych wersji… które przecież właśnie piszemy! 
Gdybyśmy tak nie robili, spowodowałoby to wpadnięcie w niekończący się ciąg wywołań 
rekurencyjnych. Pamiętajmy zatem, że: 
 
Jeśli w treści przeciążonych, globalnych operatorów new i delete musimy skorzystać z ich 
standardowej wersji, koniecznie należy użyć formy ::new i ::delete. 
 
Z domyślnych wersji operatorów pamięci możemy też korzystać świadomie nawet po ich 
przeciążeniu: 
 

int* pnZmienna1 = new int;  // przeciażona wersja 
int* pnZmienna2 = ::new int; // oryginalna wersja 

 
Naturalnie, trzeba wtedy zdawać sobie sprawę z tego przeciążenia i na własne życzenie 
użyć operatora ::. To gwarantuje nam, że nikt inny, jak tylko kompilator będzie 
zajmował się zarządzaniem pamięci. 
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Nie wpadajmy jednak w paranoję. Jeżeli korzystamy z kodu, w którym 
zaimplementowano inny sposób nadzorowania pamięci, to nie należy bez wyraźnego 
powodu z niego rezygnować. W końcu po to ktoś (może ty?) pisał ów mechanizm, żeby 
był on wykorzystywany w praktyce, a nie z premedytacją omijany. 
 
Cały czas mniej lub bardziej subtelnie sugeruję, że operatory new i delete należy 
przeciążać razem. Nie jest to jednak formalny wymóg języka C++ i jego kompilatorów. 
Zwykle jednak tak właśnie trzeba czynić, aby wszystko działało poprawnie - zwłaszcza, 
jeśli stosujemy inny niż domyślny sposób alokacji pamięci. 

Operatory konwersji 
Na koniec przypomnę jeszcze o pewnym mechanizmie, który w zasadzie nie zalicza się do 
operatorów, ale używa podobnej składni i dlatego także nazywamy go operatorami. 
Rzecz jasna są to operatory konwersji. 
 
Składnia takich operatorów to po prostu: 
 

klasa::operator typ(); 
 
Jak doskonale pamiętamy, celem funkcji tego typu jest zmiana obiektu klasy do danego 
typu. Przy jej pomocy kompilator może dokonywać niejawnych konwersji. 
Innym (lecz nie zawsze stosowalnym) sposobem na osiągnięcie podobnych efektów jest 
konstruktor konwertujący. O obu tych drogach mówiliśmy sobie wcześniej. 

Wskazówki dla początkującego przeciążacza 
Przeciążanie operatorów jest wspaniałą możliwością języka C++. Nie ma jednak żadnego 
przymusu stosowania jej - dość powiedzieć, że do tej pory świetnie radziliśmy sobie bez 
niej. Nie ma aczkolwiek powodu, aby ją całkiem odrzucać - trzeba tylko nauczyć się ją 
właściwie wykorzystywać. Temu właśnie służy ten paragraf. 

Zachowujmy sens, logikę i konwencję 
Jakkolwiek język C++ jest znany ze swej elastyczności, przez lata jego użytkowania 
wypracowano wiele reguł, żądzących między innymi działaniem operatorów. Chcąc 
przeciążać operatory dla własnych klas, należałoby ich w miarę możliwości przestrzegać - 
zwłaszcza, że często są one zbieżne ze zdrowym rozsądkiem. 
 
Podczas przeładowania operatorów trzeba po prostu zachować ich pierwotny sens. Jak to 
zrobić?… 

Symbole operatorów powinny odpowiadać ich znaczeniom 

W pierwszej kolejności należy powstrzymać się od radosnej twórczości, sprzecznej z 
wszelką logiką. Może i zabawne będzie użycie operatora == jako symbolu dodawania, ^ w 
charakterze operatora mnożenia i & jako znaku odejmowania. Pomyśl jednak, co w takiej 
sytuacji oznaczać będzie zapis: 
 

if (Foo ^ Bar & (Baz  == Qux) == Thud) 
 
Łagodnie mówiąc: nie jest to zbyt oczywiste, prawda? Pamiętaj zatem, żeby symbole 
operatorów odpowiadały ich naturalnym znaczeniom, a nie tworzyły uciążliwe dla 
programisty rebusy. 

Zapewnijmy analogiczne zachowania jak dla typów wbudowanych 

Wszystkie operatory posiadają już jakieś zdefiniowane działanie dla typów wbudowanych. 
Dla naszych klas może ono całkiem różnić się od tego początkowego, ale dobrze byłoby, 
aby przynajmniej zależności między poszczególnymi operatorami zostały zachowane. 
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Co to znaczy? Zauważmy na przykład, że trzy poniższe instrukcje: 
 

int nA; 
 
// o te 
nA = nA + 1; 
nA += 1; 
nA++; 

 
dla typu int (i dla wszystkich podstawowych typów) są w przybliżeniu równoważne. 
Dobrze byłoby, ale dla naszych przeładowanych operatorów te „tożsamości” zostały 
zachowane. 
Podobnie jest dla typów wskaźnikowych: 
 

CFoo* pFoo = new CFoo; 
 
// instrukcje robiące to samo 
pFoo->Metoda(); 
(*pFoo).Metoda(); 
// ewentualnie jeszcze pFoo[0].Metoda() 
 
delete pFoo; 

 
Jeśli tworzymy klasy inteligentnych wskaźników, należałoby wobec tego przeciążyć dla 
nich operatory ->, * i ewentualnie [] (a także operator bool(), aby można je było 
stosować w wyrażeniach warunkowych). 

Nie przeciążajmy wszystkiego 
Na koniec jeszcze jedna, „oczywista” uwaga: nie ma sensu przeciążać wszystkich 
operatorów - przynajmniej do chwili, gdy nie piszemy klasy symulującej wszystkie typy w 
C++. Jeżeli mimo wszystko wykonamy tę niepotrzebną zwykle pracę i udostępnimy 
naszą pięknie opakowaną klasę innym programistom, najprawdopodobniej zignorują oni 
te przeciążenia, które nie będą miały dla nich sensu. A jeśli sami używać będziemy takiej 
klasy, to zapewne szybko sami przekonamy się, że uporczywe używanie operatorów nie 
ma zbytniego sensu. Drogą naturalnej selekcji w obu przypadkach zostaną więc w użyciu 
tylko te operatory, które są naprawdę potrzebne. 
Nie powinniśmy jednak czekać, aż życie zweryfikuje nasze przypuszczenia, bo 
przeciążając niepotrzebnie operatory, stracimy mnóstwo czasu. Lepiej więc od razu 
zastanowić się, co warto przeładować, a czego nie. Kierujmy się w tym jedną, prostą 
zasadą: 
 
Symbol operatora powinien kojarzyć się z czynnością przez niego wykonywaną. 
 
Zastosowanie się do tej reguły likwiduje zazywczaj większość niepewności. 
 

*** 
 
Zakończyliśmy w ten sposób poznawanie przydatnej techniki programowania, jaką jest 
przeciążanie operatorów dla naszych własnych klas. 
 
W następnym podrozdziale, dla odmiany, zapoznamy się ze znacznie mniej przydatną 
techniką ;)) Chodzi o wskaźniki do składników klasy. Mimo tej mało zachęcającej 
zapowiedzi, zapraszam do przeczytania tego podrozdziału. 
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Wskaźniki do składowych klasy 
W ostatnim rozdziale części pierwszej poznaliśmy zwykłe wskaźniki języka C: pokazujące 
na zmienne oraz na funkcje. Tutaj zajmiemy się pewną nowością, jaką do wskaźników 
wprowadziło programowanie obiektowe: wskaźnikami do składowych (ang. pointers-
to-members). 
 
Ten podrozdział nie jest niezbędny do kontynuowania nauki języka C++. Jeżeli 
stwierdzisz, że jest ci na razie niepotrzebny lub za trudny, możesz go opuścić. Zalecam to 
szczególnie przy pierwszym czytaniu kursu. 
 
Podobnie jak dla normalnych wskaźników, wskaźniki na składowe także mogą odnosić się 
do danych (pól) oraz do kodu (metod). Omówimy sobie osobno każdy z tych rodzajów 
wskaźników. 

Wskaźnik na pole klasy 
Wskaźniki na pola klas są obiektowym odpowiednikiem zwykłych wskaźników na 
zmienne, jakie doskonale znamy. Funkcjonują one jednak nieco inaczej. Jak? O tym 
traktuje niniejsza sekcja. 

Wskaźnik do pola wewnątrz obiektu 
Przypomnijmy, jak wygląda zwykły wskaźnik - na przykład na typ int: 
 

int nZmienna; 
int* pnZmienna = &nZmienna; 

 
Zadeklarowany tu wskaźnik pnZmienna został ustawiony na adres zmiennej nZmienna. 
Wobec tego poniższa linijka: 
 

*pnZmienna = 14; 
 
spowoduje przypisanie liczby 14 do nZmienna. Stanie się to za pośrednictwem wskaźnika. 

Wskaźnik na obiekt 
To już znamy. Wiemy też, że możemy tworzyć także wskaźniki do obiektów swoich 
własnych klas: 
 

class CFoo 
{ 
 public: 
  int nSkladnik; 
}; 
 
CFoo Foo; 
CFoo* pFoo = &Foo; 

 
Przy pomocy takich wskaźników możemy odnosić się do składników obiektu. W tym 
przypadku możemy na przykład zmodyfikować pole nSkladnik: 
 

pFoo->nSkladnik = 76; 
 
Sprawi to rzecz jasna, że zmieni się pole nSkladnik w obiekcie Foo - jego adres ma 
bowiem wskaźnik pFoo. Wypisanie wartości pola tego obiektu: 
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std::cout << Foo.nSkladnik; 

 
uświadomi więc nam, że ma ono wartość 76. Ustawiliśmy ją bowiem za pośrednictwem 
wskaźnika. To też już znamy dobrze. 

Pokazujemy na składnik obiektu 
Czas więc na nowość. Pytanie brzmi: czy zwykłym wskaźnikiem można odnieść się do 
pola we wnętrzu obiektu?… 
 
A owszem. Wystarczy pomyśleć, że wyrażenie: 
 

Foo.nSkladnik 
 
jest l-wartością typu int, zatem można pobrać jej adres zapisać we wskaźniku typu 
int*: 
 

int* pnSkladnikFoo = &(Foo.nSkladnik); 
 
Powiedzmy jeszcze wyraźnie, co tu zrobiliśmy. Otóż pobraliśmy adres konkretnego pola 
(nSkladnik) w konkretnym obiekcie (Foo). Jest to najzupełniej możliwe, bo przecież 
obiekt reprezentują w pamięci jego pola. Skoro zaś możemy odnieść się do obiektu jako 
całości, to możemy także pobrać adres jego pól. 
Jeśli teraz wypiszemy wartośc pola przy pomocy tego wskażnika: 
 

std::cout << *pnSkladnikFoo; 
 
to zobaczymy oczywiście 76, jako że nic nie zmieniliśmy od poprzedniego akapitu. 
 
Muszę jeszcze powiedzieć, że manewr z pobraniem adresu pola w obiekcie powiedzie się 
tylko wtedy, jeżeli to pole jest publiczne. W innej sytuacji wyrażenie Foo.nSkladnik 
zostanie odrzucone przez kompilator. 
Zawsze można aczkolwiek pobierać adresy pól wewnątrz klasy (np. w jej metodach) oraz 
w funkcjach i klasach zaprzyjaźnionych. Te obszary kodu mają bowiem dostęp do 
wszystkich składników - także niepublicznych i mogą z nimi robić cokolwiek: na przykład 
pobierać ich adresy w pamięci. 

Wskaźnik do pola wewnątrz klasy 
Kontynuujemy naszą zabawę. Teraz weźmy pod lupę trochę inną klasę, z którą już 
mnóstwo razy się spotykaliśmy - wektor: 
 

struct VECTOR3 { float x, y, z; }; 
 
Formalnie jest to struktura, ale jak wiemy, w C++ różnica między strukturą a klasą jest 
drobnostką i sprowadza się do domyślnej widoczności składników. Dla słówka struct jest 
to public, więc nasze trzy pola są tu publiczne bez konieczności jawnego określania tego 
faktu. 
 
Mając klasę (albo strukturę - jak kto woli) z trzema polami możemy ją naturalnie 
instancjować (czyli stworzyć jej obiekt): 
 

VECTOR3 Wektor; 
 
Następnie możemy też pobrać adres jej pola - którejś ze współrzędnych: 
 

float* pfX = &Wektor.x; 
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Miejsce pola w definicji klasy 
Przyjrzyjmy się jednak definicji klasy. Mamy w niej trzy takie same pola, następujące 
jedno po drugim. Pierwsze (x), drugie (y) i trzecie (z)… Jeżeli ci to pomoże, możesz 
nawet wyobrazić sobie nasz wektor jako trójelementową tablicę, w której nazwaliśmy 
poszczególne elementy (pola). Zamiast odwoływać się do nich poprzez indeksy, 
potrafimy posłużyć się ich nazwami (x, y, z). 
Porównanie z tablicą jest jednak całkiem trafne - choćby dlatego, że nasze pola są 
ułożone w pamięci w kolejności występowania w definicji klasy. Najpierw mamy więc x, 
potem y, a dalej z. Polu x możemy więc przypisać „indeks” 0, y - 1, a dla z „indeks” 2. 
 
Słowo ‘indeks’ biorę tu w cudzysłów, bo jest to tylko takie pojęcie pomocnicze. Wiesz, że 
w przypadku tablic indeksy są ostatecznie zamieniane na wskaźniki w ten sposób, że do 
adresu całej tablicy (czyli jej pierwszego elementu) dodawany jest indeks: 
 

int* aTablica[5]; 
 
// te dwie linijki są równoważne 
aTablica[3] = 12; 
*(aTablica + 3) = 12; 

 
Dodawanie, jakie występuje w ostatnim wierwszu, nie jest dosłownym dodaniem trzech 
bajtów do wskaźnika aTablica, jest przesunięciem się o trzy elementy. Właściwie więc 
kompilator zamienia to na: 
 

aTablica + 3 * sizeof(int) 
 
i tak oto uzyskuje adres czwartego elementu tablicy (o indeksie 3). Spójrzmy na 
dodawane wyrażenie: 
 

3 * sizeof(int) 
 
Określa ono przesunięcie (ang. offset) elementu tablicy o indeksie 3 względem jej 
początku. Znając tę wartość kompilator oraz adres pierwszego elementu tablicy, 
kompilator może wyliczyć pozycję w pamięci dla elementu numer 3. 
 
Dlaczego jednak o tym mówię?… Otóż bardzo podobna operacja zachodzi przy 
odwoływaniu się do pola w obiekcie klasy (struktury). Kiedy bowiem odnosimy się 
jakiegoś pola w ten oto sposób: 
 

Wektor.y 
 
to po pierwsze, kompilator zamienia to wyrażenie tak, aby posługiwać się wskaźnikami, 
bo to jest jego „mową ojczystą”: 
 

(&Wektor)->y 
 
Następnie stosuje on ten sam mechanizm, co dla elementów tablic. Oblicza więc adres 
pola (tutaj y) według schematu: 
 

&Wektor + offset_pola_y 
 
W tym przypadku sprawa nie jest aczkolwiek taka prosta, bo definicja klasy może 
zawierać pola wielu różnych typów o róznych rozmiarach. Offset nie będzie więc mógł być 
wyliczany tak, jak to się dzieje dla elementu tablicy. On musi być znany już wcześniej… 
Skąd? 
 
Z definicji klasy! Określając naszą klasę w ten sposób: 
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struct VECTOR3 { float x, y, z; }; 

 
zdefiniowaliśmy nie tylko jej składniki, ale też kolejność pól w pamięci. Oczywiście nie 
musimy podawać dokładnych liczb, precyzujących położenie np. pola z względem obiektu 
klasy VECTOR3. Tym zajmie się już sam kompilator: przeanalizuje całą definicję i dla 
każdego pola wyliczy sobie oraz zapisze gdzieś odpowiednie przesunięcie. 
 
I tę właśnie liczbę nazywamy wskaźnikiem na pole klasy: 
 
Wskaźnik na pole klasy jest określeniem miejsca w pamięci, jakie zajmuje pole 
danej klasy, względem początku obiektu w pamięci. 
 
W przeciwnieństwie do zwykłego wskaźnika nie jest to więc liczba bezwzględna. Nie 
mówi nam, że tu-i-tu znajduje się takie-a-takie pole. Ona tylko informuje, o ile bajtów 
należy się przesunąć, poczynając od adresu obiektu, a znaleźć w pamięci konkretne pole 
w tym obiekcie. 
 
Może jeszcze lepiej zrozumiesz to na przykładzie kodu. Jeżeli stworzymy sobie obiekt 
(statycznie, dynamicznie - nieważne) - na przykład obiekt naszego wektora: 
 

VECTOR3* pWektor = new VECTOR3; 
 
i pobierzemy adres jego pola - na przykład adres pola y w tym obiekcie: 
 

int* pnY = &pWektor->y; 
 
to różnica wartości obu wskaźników (adresów) - na obiekt i na jego pole: 
 

pnY - pWektor 
 
bedzie niczym innym, jak właśnie offsetem tegoż pola, czyli jego miejscem w definicji 
klasy! To jest ten rodzaj wskaźników C++, jakim się chcemy tutaj zająć. 

Pobieranie wskaźnika 
Zauważmy, że offset pola jest wartością globalną dla całej klasy. Każdy bowiem obiekt 
ma tak samo rozmieszczone w pamięci pola. Nie jest tak, że wśród kilku obiektów naszej 
klasy VECTOR3 jeden ma pola ułożone w kolejności x, y, z, drugi - y, z, x, trzeci - z, y, x, 
itp. O nie, tak nie jest: wszystkie pola są poukładane dokładnie w takiej kolejności, 
jaką ustaliliśmy w definicji klasy, a ich umiejscowienie jest dla każdego obiektu 
identyczne. 
 
Uzyskanie offsetu danego pola, czyli wskaźnika na pole klasy, może więc odbywać się bez 
konieczności posiadania obiektu. Wystarczy tylko podać, o jaką klasę i o jakie pole nam 
chodzi, np.: 
 

&VECTOR3::y 
 
Powyższe wyrażenie zwróci nam wskaźnik na pole y w klasie VECTOR3. Powtarzam 
jeszcze raz (abyś dobrze to zrozumiał), iż będzie to ilość bajtów, o jaką należy się 
przesunąć poczynając od adresu jakiegoś obiektu klasy VECTOR3, aby natrafić na pole y 
tegoż obiektu. Jeżeli jest to dla ciebie zbyt trudne, to możesz mysleć o tym wskaźniku 
jako o „indeksie” pola y w klasie VECTOR3. 
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Deklaracja wskaźnika na pole klasy 
No dobrze, pobranie wskaźnika to jedno, ale jego zapisanie i wykorzystanie to zupełnie 
coś innego. Najpierw więc dowiedzmy się, jak można zachować wartość uzyskaną 
wyrażeniem &VECTOR3::y do późniejszego wykorzystania. 
 
Być może domyślasz się, że będzie potrzebowali specjalnej zmiennej typu 
wskaźnikowego - czyli wskaźnika na pole klasy. Aby go zadeklarować, musimy 
przypomnieć sobie, czym charakteryzują się wskaźniki w C++. 
Nie jest to trudne. Każdy wskaźnik ma swój typ: w przypadku wskaźników na zmienne 
był to po prostu typ docelowej zmiennej. Dla wskaźników na funkcje sprawa była bardziej 
skomplikowana, niemniej też miały one swoje typy. 
 
Podobnie jest ze wskaźnikami na składowe klasy. Każdy z nich ma przypisaną klasę, na 
które składniki pokazuje - dotyczy to zarówno odniesień do pól, którymi zajmujemy się 
teraz, jak i do metod, które poznamy za chwilę. 
Oprócz tego wskaźnik na pole klasy musi też znać typ docelowego pola, czyli wiedzieć, 
jaki rodzaj danych jest w nim przechowywany. 
 
Czy wiemy to wszystko? Tak. Wiemy, że naszą klasą jest VECTOR3. Pamiętamy też, że jej 
wszystkie pola zadeklarowaliśmy jako float. Korzystając z tej informacji, możemy 
zadeklarować wskaźnik na pola typu float w klasie VECTOR3: 
 

float VECTOR3::*p2mfWspolrzedna; 
 
Huh, co za zakręcona deklaracja… Gdzie tu jest w ogóle nazwa tej zmiennej?… 
Spokojnie, nie jest to aż takie straszne - to tylko tak wygląda :) Nasz wskaźnik nazywa 
się oczywiście p2mfWspolrzedna116, zaś niezbyt przyjazna forma deklaracji stanie się 
jaśniejsza, jeżeli popatrzymy na jej ogólną składnię: 
 

typ klasa::*wskaźnik; 
 
Co to jest? Otóż jest to deklaracja wskaźnika, pokazującego na pola podanego typu, 
znajdujące się we wnętrzu określonej klasy. Nic prostrzego, prawda? ;-) 
 
Teraz, kiedy mamy już zmienną odpowiedniego typu wskaźnikowego, możemy przypisać 
jej względny adres pola y w klasie VECTOR3: 
 

p2mfWspolrzedna = &VECTOR3::y; 
 
Pamiętajmy, że w ten sposób nie pokazujemy na konkretną współrzędną Y (pole y) w 
konkretnym wektorze (obiekcie VECTOR3), lecz na miejsce pola w definicji klasy. 
Pojedynczo taki wskaźnik nie jest więc użyteczny, bo jego wartośc nabiera znaczenia 
dopiero w momencie zastosowania jej dla konkretnego obiektu. Jak to zrobić - 
zobaczymy w następnym akapicie. 
 
Zwróćmy jeszcze uwage, że y nie jest jedynym polem typu float w klasie VECTOR3. Z 
równym powodzeniem możemy pokazywać naszym wskaźnikiem także na pozostałe: 
 

p2mfWspolrzedna = &VECTOR3::x; 
p2mfWspolrzedna = &VECTOR3::z; 

 

                                                 
116 p2mf to skrót od ‘pointer-to-member float’. 
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Warunkiem jest jednak, aby pole było publiczne. W przeciwnym wypadku wyrażenie 
klasa::pole byloby nielegalne (poza klasą) i nie możnaby zastosować wobec niego 
operatora &. 

Użycie wskaźnika 
Wskaźnik na pole klasy jest adresem względnym, offsetem. Aby skorzystać z niego 
praktycznie, musimy posiadać jakiś obiekt; kompilator będzie dzięki temu wiedział, gdzie 
się dany obiekt zaczyna w pamięci. Posiadając dodatkowo offset pola w definicj klasy, 
będziemy mogli odwoływać się do tego pola w tym konkretnym obiekcie. 
 
A zatem do dzieła. Stwórzmy sobie obiekt naszej klasy: 
 

VECTOR3 Wektor; 
 
Potem zadeklarujmy wskaźnik na i ustawmy go na jedno z trzech pól klasy VECTOR3: 
 

float VECTOR3::*p2mfPole = &VECTOR3::x; 
 
Teraz przy pomocy tego wskaźnika możemy odwołac się do tego pola w naszym obiekcie. 
Jak? O tak: 
 

Wektor.*p2mfPole = 12; // wpisanie liczby do pola obiektu Wektor, 
     // na które pokazuje wskaźnik p2mfPole 

 
Cała zabawa polega tu na tym, że p2mfPole może pokazywać na dowolne z trzech pól 
klasy VECTOR3 - x, y lub z. Przy pomocy wskaźnika możemy jednak do każdego z nich 
odwoływać się w ten sam sposób. 
 
Co nam to daje? Mniej więcej to samo, co w przypadku zwykłych wskaźników. Wskaźnik 
na pole klasy możemy przekazać i wykorzystać gdzie indziej. W tym przypadku 
potrzebujemy aczkolwiek jeszcze jednej danej: obiektu naszej klasy, w kontekście 
którego użyjemy wskaźnika. 
Może czas na jakiś konkretny przykład. Wyobraźmy sobie funkcję, która zeruje jedną 
współrzędną tablicy wektorów. Teraz możemy ją napisać: 
 

void WyzerujWspolrzedna(VECTOR3 aTablica[], unsigned uRozmiar, 
 float VECTOR3::*p2mfWspolrzedna) 
{ 
 for (unsigned i = 0; i < uRozmiar; ++i) 
  aTablica[i].*p2mfWspolrzedna = 0; 
} 

 
W zależności od tego, jak ją wywołamy: 
 

VECTOR3 aWektory[50]; 
 
WyzerujWspolrzedna (aWektory, 50, &VECTOR3::x); 
WyzerujWspolrzedna (aWektory, 50, &VECTOR3::y); 
WyzerujWspolrzedna (aWektory, 50, &VECTOR3::z); 

 
spowoduje ona wyzerowanie różnych współrzędnych wektorów w podanej tablicy. 
 
Wskaźnik na pole klasy możemy też wykorzystać, gdy na samym obiekcie operujemy 
także przy pomocy wskaźnika (tym razem zwykłego, na obiekt). Stosujemy wtedy 
aczkolwiek inną składnię: 
 

// deklaracja i inicjalizacja obu wskaźników - na obiekt i pole klasy 
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VECTOR3* pWektor = new VECTOR3; 
float VECTOR3::p2mfPole = &VECTOR3::z; 
 
// zapisanie wartości do pola z obiektu *pWektor przy pomocy wskaźników 
pWektor->*p2mfPole = 42; 

 
Jak widać, w kontekście wskaźników na składowe operatory .* i ->* są dokładnymi 
odpowiednikami operatorów wyłuskania . i ->. Tych drugim używamy jednak wtedy, gdy 
odwołujemy się do składników obiektu poprzez ich nazwy, natomiast tych pierwszych - 
jeśli posługujemy się wskaźnikami do składowych. 
 
Operator ->*, podobnie jak ->, może być przeciążony. Z kolei .*, tak samo jak . - nie. 

Wskaźnik na metodę klasy 
Normalne wskaźniki mogą też pokazywać na kod, czyli funkcje. Obiektowym 
odpowiednikiem tego faktu są wskaźniki do metod klasy. Zajmiemy się nimi w tej sekcji. 

Wskaźnik do statycznej metody klasy 
Zwyczajny wskaźnik do funkcji globalnej deklarujemy np. tak: 
 

int (*pfnFunkcja)(float); 
 
Przypominam, że aby odczytać deklarację funkcji pasujących do tego wskaźnika, 
wystarczy usunąć gwiazdkę oraz nawiasy otaczające jego nazwę. Tutaj więc możemy do 
wskaźnika pfnFunkcja przypisać adresy wszystkich funkcji globalnych, które przyjmują 
jeden parametr typu float i zwracają liczbę typu int: 
 

int Foo(float)  { /* ... */ } 
 
// ... 
 
pfnFunkcja = Foo; // albo pfnFunkcja = &Foo; 

 
Jednak nie tylko funkcje globalne mogą być wskazywane przez takie wskaźniki. 
 
Wskaźniki do zwykłych funkcji potrafią też pokazywać na statyczne metody klas. 
 
Nietrudno to wyjaśnić. Takie metody to tak naprawdę funkcje globalne o nieco 
zmienionym zasięgu i notacji wywołania. Najważniejsze, że nie posiadają one ukrytego 
parametru - wskaźnika this - ponieważ ich wywołanie nie wymaga obecności żadnego 
obiektu klasy. Nie korzystają one więc z konwencji wywołania thiscall (właściwej 
metodom niestatycznym), a zatem możemy zadeklarować zwykłe wskaźniki, które będą 
nań pokazywać. 
Warunkiem jest jednak to, aby metoda statyczna była zadeklarowana jako public. W 
przeciwnym razie wyrażenie nazwa_klasy::nazwa_metody nie będzie legalne. 
 
Podobne uwagi można poczynić dla statycznych pól, na które można pokazywać przy 
pomocy zwykłych wskaźników na zmienne. 

Wskaźnik do niestatycznej metody klasy 
A jak jest z metodami niestatycznymi? Czy na nie też możemy pokazywać zwykłymi 
wskaźnikami?… 
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Niestety nie. Fakt ten może się wydać zaskakujący, ale można go wyjaśnić nawet na 
kilka sposobów. 
Po pierwsze: wspomniałem już, że metody niestatyczne korzystają ze specjalnej 
konwencji thiscall. Oprócz normalnych parametrów musza one bowiem dostać obiekt, 
który w ich wnętrzu będzie reprezentowany przez wskaźnik this. C++ nie pozwala na 
zadeklarowanie funkcji używających konwencji thiscall - nie bardzo wiadomo, jak taka 
deklaracja miałaby wyglądać117. 
Po drugie: metody niestatyczne potrzebują wskaźnika this. Gdyby dopuścić do sytuacji, 
w której wskaźniki na funkcje mogą pokazywać na metody, wówczas trzebaby było 
zapewnić jakoś dostarczenie tego wskaźnika this (czyli obiektu, na rzecz którego 
metoda jest wywoływana). Jak? Poprzez dodatkowy parametr?… Wtedy mielibyśmy 
koszmarną nieścisłość składni: deklaracje wskaźników do funkcji nie zgadzałyby się z 
prototypami pasujących do nich metod. 
 
Nawet jeśli nie bardzo zrozumiałeś te argumenty, musisz przyjąć, że na niestatyczne 
metody klasy nie pokazujemy zwykłymi wskaźnikami do funkcji. Zamiast tego 
wykorzystujemy drugi rodzaj wskaźników na składowe klasy. 

Wykorzystanie wskaźników na metody 
Mam tu na myśli wskaźniki na metody klas. 
 
Wskaźnik do metody w klasie (ang. pointer-to-member function) określa miejsce 
deklaracji tej metody w definicji klasy. 
 
Widać tu analogie ze wskaźnikami do pól klasy. Tutaj także określamy umiejscowienie 
danej metody względem… 
 
No właśnie - względem czego?! W przypadku pól mogliśmy jeszcze mówić, że wskaźnik 
jest określeniem przesunięcia (offsetu), który pozwala znaleźć pole danego obiektu, gdy 
mamy adres początku tegoż obiektu. Ale przecież metody nie podlegają tym zasadom. 
Dla wszystkich obiektów mamy przecież jeden zestaw metod. Jak więc można 
mówić o tym, że wskaźniki na nie działają w ten sam sposób?… 
Ekhm, tego raczej nie powiedziałem. Wskaźniki te mogą działać ten sam sposób, czyli 
być adresami względnymi. Mogą one także być adresami bezwzględnymi (w sumie - 
dlaczego nie? Przecież metody to też funkcje), a nawet indeksami jakiejś wewnętrznej 
tablicy czy jeszcze dziwniejszymi liczbami z gatunku identyfikatorów-uchwytów. Tak 
naprawdę nie powinno nas to interesować, gdyż jest to wewnętrzna sprawa 
kompilatora. Dla nas wskaźniki te pokazują po prostu na jakąś metodę wewnątrz danej 
klasy. Jak to robią - to już nie nasze zmartwienie. 

Deklaracja wskaźnika 

Spójrzmy lepiej na jakiś przykład. Weźmy taką oto klasę: 
 

class CNumber 
{ 
 private: 
  float m_fLiczba; 
 
 public: 
  // konstruktor 
  CNumber(float m_fLiczba = 0.0f) : m_fLiczba(fLiczba) { } 

                                                 
117 Zauważmy, że deklaracja metody „wyjęta” z klasy i umieszczona poza nią automatycznie stanie się funkcją 
globalną. Nie trzeba dokonywać żadnych zmian w jej prototypie, polegających np. na usunięciu słowa 
thiscall. Takiego słowa kluczowego po prostu nie ma: C++ odróżnia metody od zwykłych funkcji wyłącznie 
po miejscu ich zadeklarowania. 
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 //-------------------------------------------------------------  
 
  // kilka metod 
  float Dodaj(float x) { return (m_fLiczba += x); } 
  float Odejmij(float x) { return (m_fLiczba -= x); } 
  float Pomnoz(float x) { return (m_fLiczba *= x); } 
  float Podziel(float x) { return (m_fLiczba /= x); } 
}; 

 
Nie jest ona może zbyt mądra - nie ma przeciążonych operatorów i w ogóle wykonuje 
dość dziwną czynność enkapsulacji typu podstawowego - ale dla naszych celów będzie 
wystarczająca. Zwróćmy uwagę na jej cztery metody: wszystkie biorą argument typu 
float i takąż liczbę zwracają. Jeżeli chcielibyśmy zadeklarować wskaźnik, mogący 
pokazywać na te metody, to robimy to w ten sposób118: 
 

float (CNumber::*p2mfnMetoda)(float); 
 
Wskaźnik p2mfnMetoda może pokazywać na każdą z tych czterech metod, tj.: 
 

float CNumber::Dodaj(float x); 
float CNumber::Odejmij(float x); 
float CNumber::Pomnoz(float x); 
float CNumber::Podziel(float x); 

 
Można stąd całkiem łatwo wywnioskować ogólną składnię deklaracji takiego wskaźnika. A 
więc, dla metody klasy o nagłówku: 
 

zwracany_typ nazwa_klasy::nazwa_metody([parametry]) 
 
deklaracja odpowiadającego jej wskaźnika wygląda tak: 
 

zwracany_typ (nazwa_klasy::*nazwa_wskaźnika)([parametry]); 
 
Deklaracja wskaźnika na metodę klasy wygląda tak, jak nagłówek tej metody, w którym 
fraza nazwa_klasy::nazwa_metody została zastąpiona przez sekwencję 
(nazwa_klasy::*nazwa_wskaźnika). Na końcu deklaracji stawiamy oczywiście średnik. 
 
Sposób jest więc bardzo podobny jak przy zwykłych wskaźnikach na funkcje. Ponownie 
też istotne stają się nawiasy. Gdybyśmy bowiem je opuścili w deklaracji p2mfnMetoda, 
otrzymalibyśmy: 
 

float CNumber::*p2mfnMetoda(float); 
 
co zostanie zinterpretowane jako: 
 

float CNumber::* p2mfnMetoda(float); 
 
czyli funkcja biorąca jeden argument float i zwracająca wskaźnik do pól typu float w 
klasie CNumber. Zatem znowu - zamiast wskaźnika na funkcję otrzymujemy funkcję 
zwracającą wskaźnik. 
 
Dla wskaźników na metody klas nie ma problemu z umieszczenia słowa kluczowego 
konwencji wywołania, bo wszystkie metody klas używają domyślnej i jedynie słusznej w 

                                                 
118 p2mfn to skrót od ‘pointer-to-member function’. 
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ich przypadku konwencji thiscall. Nie ma możliwości jej zmiany (mam nadzieję, że jest 
oczywiste, dlaczego…). 

Pobranie wskaźnika na metodę klasy 

Kiedy mamy już zadeklarowany właściwy wskaźnik, powiążmy go z którąś z metod klasy 
CNumber. Robimy to w prosty i raczej przewidywalny sposób: 
 

p2mfnMetoda = &CNumber::Dodaj; 
 
Podobnie jak dla zwykłych funkcji, także i tutaj operator & nie jest niezbędny: 
 

p2mfnMetoda = CNumber::Odejmij; 
 
Znowu też stosuje się tu zasada o publiczności składowych. Jeżeli spróbujemy pobrać 
wskaźnik na metodę prywatną lub chronioną, to kompilator oczywiście zaprotestuje. 

Użycie wskaźnika 

Czas wreszcie na akcję. Zobaczmy, jak można wywołać metodę pokazywaną przez 
wskaźnik: 
 

CNumber Liczba = 42; 
std::cout << (Liczba.*p2mfnMetoda)(2); 

 
Potrzebujemy naturalnie jakiegoś obiektu klasy CNumber, aby na jego rzecz wywołać 
metodę. Tworzymy go więc; dalej znowu korzystamy z operatora .*, wywołując przy 
jego pomocy metodę klasy CNumber dla naszego obiektu - przekazujemy jej jednocześnie 
parametr 2. Ponieważ po naszej zabawie z przypisywaniem p2mfnMetoda pokazywał na 
metodę Odejmij(), na ekranie zobaczylibyśmy: 
 

40 
 
Zwracam jeszcze uwagę na nawiasy w wywołaniu metody. Tutaj są one konieczne (w 
przeciwieństwie do zwykłych wskaźników na funkcje) - bez nich kompilator uzna linijkę 
za błędną. 
 
Domyślasz się, że jeśli posiadalibyśmy tylko wskaźnik na obiekt, to do wywołania jego 
metody posłużylibyśmy się operatorem ->*. Identycznie jak przy wskaźnikach na pola 
klasy. 

Ciekawostka: wskaźnik do metody obiektu 
Zatrzymajmy się na chwilkę… Jeżeli przebrnąłeś przed ten rozdział od początku aż dotąd, 
to szczerze ci gratuluję. Wskaźniki na składowe nie są bynajmniej łatwą częścią języka - 
choćby dlatego, że operują dość dziwnymi koncepcjami („miejsce w definicji klasy”…). Co 
gorsza, czytając o nich jakoś trudno od razu wpaść na sensowne zastosowanie tego 
mechanizmu. 
Wiem, że podobne odczucia mogły ci towarzyszyć przy lekturze opisów wielu innych 
elementów języka. Później jednak nieczęsto widziałeś zastosowania omawianych 
wcześniej rzeczy w dalszej częściu kursu, a pewnie sam znalajdowałeś niektóre z nich po 
odpoczynku od lektury i dłuższym zastanowieniu. 
 
Tutaj muszę cię nieco zmartwić. Wskaźniki na składowe klasy są w praktyce bardzo 
rzadko używane, bo w zasadzie trudno znaleźć dla nich jakieś użyteczne zastosowanie. 
To chyba najdobitniejszy przykład językowego wodotrysku - na szczęście C++ nie 
posiada zbyt wiele takich nadmiarowych udziwnień. 
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Spróbujemy jednak znaleźć dla nich jakieś zastosowanie… Okazuje się, że jest to 
możliwe. Wskaźników tych możemy bowiem użyć do symulowania innego rodzaju 
wskaźników - nieobecnych niestety w C++, ale za to bardzo przydatnych. 
Jakie to wskaźniki? Spójrz na poniższą tabelę. Grupuje ona wszystkie znane (i 
nieznane ;D) w programowaniu strukturalnym i obiektowym rodzaje wskaźników, wraz z 
ich nazwami w C++: 
 

rodzaj 
wskaźnika  

obiektowe 

na składowe niestatyczne cel 
wskaźnika  

strukturalne 
na składowe 

statyczne w klasach w obiektach 

dane wskaźniki do zmiennych 
wskaźniki do pól 

klasy 
wskaźniki do 
zmiennych 

kod wskaźniki do funkcji 
wskaźniki do 
metod klasy 

BRAK 

Tabela 19. Różne rodzaje wskaźników 

 
Wynika z niej, że znamy już wszystkie rodzaje wskaźników, jakie posiada w swoim 
arsenale C++. A co z tymi brakującymi?… 
 
Czym one są?… Otóż są to takie wskaźniki, które potrafią pokazywać na konkretną 
metodę w konkretnym obiekcie. Podobnie jak wskaźniki do pól obiektu, są one 
samodzielne. Ich użycie nie wymaga więc żadnych dodatkowych informacji: dokonując 
zwyczajnej dereferencji takiego wskaźnika, wywoływalibyśmy określoną metodę w 
odniesieniu do określonego obiektu. Zupełnie tak, jak dla zwykłych wskaźników do 
funkcji - tyle tylko, że tutaj nie wywołujemy funkcji globalną, lecz metodę obiektu. 
 
„No dobrze, nie mamy tego rodzaju wskaźników… Ale co z tego? Na pewno są one równie 
„użyteczne”, jak te co poznaliśmy niedawno!” Otóż wręcz przeciwnie! Tego rodzaju 
wskaźniki są niezwykle przydatne! Pozwalają one bowiem na implementację funkcji 
zwrotnych (ang. callback functions) z zachowaniem pełnej obiektowości programu. 
 
Cóż to są - te funkcje callback? Są to takie funkcje, których adresy przekazujemy komuś, 
aby ten ktoś mógł je dla nas wywołać w odpowiednim momencie. Ten odpowiedni 
moment to na przykład zajście jakiegoś zdarzenia, na które oczekujemy (wciśnięcie 
klawisza, wybicie północy na zegarze, itp.) albo chociażby wystąpienie błędu. W każdej 
tego typu sytuacji nasz program może być o tym natychmiast poinformowany. Bez 
funkcji zwrotnych musiałby zwykle dokonywać mozolnego odpytywania „ktosia”, aby 
dowiedzieć się, czy dana okoliczność wystąpiła. To mało efektywne rozwiązanie. 
Funkcje callback są lepsze. Jednak w C++ tylko funkcje globalne lub statyczne metody 
klas mogą być takimi funkcjami. Powód jest prosty: jedynie na takie metody możemy 
pokazywać samodzielnymi wskaźnikami. 
 
A to jest zupełnie niezadowolające w programowaniu obiektowym. Zmusza to przecież do 
pisania kodu poza klasami programu. W dodatku trzeba jakoś zapewnić sensowną 
komunikację między tym kodem-outsiderem, a obiektową resztą programu. W sumie 
mamy mnóstwo kłopotów. 
Wymyślono rzecz jasna pewien sposób na obejście tego problemu, polegający na 
wykorzystaniu metod wirtualnych, dziedziczenia i polimorfizmu. Nie jest to jednak idealne 
rozwiązanie - przynajmniej nie w C++. 
 
Powiedziałem jednak, że nasze świeżo poznane wskaźniki mogą pomóc w poradzeniu 
sobie z tym problemem. Zobaczmy jak to zrobić. 
 
Bardzo, ale to bardzo odradzam czytanie tych dwóch punktów przy pierwszym kontakcie 
z tekstem (to zresztą dotyczy prawie wszystkich Ciekawostek). Sprawa jest wprawdzie 
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bardzo ciekawa i niezwykle przydatna, lecz jej zawiłość może cię szybko odstręczyć od 
wskaźników klasowych - albo nawet od programowania obiektowego, co by było znacznie 
gorszą katastrofą. 

Wskaźnik na metodę obiektu konkretnej klasy 

Najpierw zajmijmy się prostszym przypadkiem. Znajdźmy sposób na symulację 
wskaźnika, za pośrednictwem którego możnaby wywoływać metodę: 

 o określonej sygnaturze (nagłówku) 
 na rzecz określonego obiektu 
 należącego do określonej klasy 

 
Dosyć dużo tych „określeń”… Najlepiej będzie, jeśli popatrzysz na działanie tego 
wskaźnika. Przypomnij sobie klasę CNumber; stwórzmy obiekt tej klasy: 
 

CNumber Liczba; 
 
Teraz wyobraźmy sobie, że w języku C++ pojawiła się możliwość zadeklarowania 
wskaźników, o jakie nam chodzi. Niech p2ofnMetoda będzie tym pożądanym 
wskaźnikiem119. Wówczas można z nim zrobić coś takiego: 
 

// przypisanie wskaźnikowi "adresu metody" Dodaj w obiekcie Liczba 
p2ofnMetoda = Liczba.Dodaj; 
 
// wywołanie metody Dodaj() dla obiektu Liczba() 
(*p2ofnMetoda)(10); 

 
Jak widać, dokonujemy tu zwykłej dereferencji - zupełnie tak, jak w przypadku 
wskaźników na funkcje globalne. Tym sposobem wywołujemy jednak metodę klasy dla 
konkretnego obiektu. Ostatnia linijka jest więc równoważna tej: 
 

Liczba.Dodaj(10); 
 
Zamiast wywołania obiekt.metoda() mamy więc (*wskaźnik_do_metody_obiektu)(). I 
o to nam chodzi. 
 
Wróćmy teraz do rzeczywistości. Niestety C++, nie posiada wskaźników na metody 
obiektów, lecz chcemy przynajmniej częściowo uzupełnić ten brak. Jak to zrobić?… 
Przyjrzyjmy się temu, co chcemy osiągnąć. Chcemy mianowicie, aby nasz wskaźnik 
zastępował wywołanie: 
 

obiekt.metoda([parametry]) 
 
w ten sposób: 
 

(*wskaźnik)([parametry]) 
 
Wskaźnik musi więc zawierać informacje zarówno o obiekcie, którego dotyczy metoda, 
jak i samej metodzie. Jeden wskaźnik?… Nie - dwa: 

 pierwszy to wskaźnik na obiekt, na rzecz którego metoda będzie wywoływana 
 drugi to wskaźnik na metodę klasy, która ma być wywoływana 

 
Chcąc stworzyć nasz wskaźnik, musimy więc połączyć te dwie dane. Zróbmy to! Najpierw 
zdefiniujmy sobie jakąś klasę, na której metody będziemy pokazywać: 
 

                                                 
119 p2ofn to skrót od ‘pointer to object-function’. 
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class CFoo 
{ 
 public: 
  void Metoda(int nParam) 
   { std::cout << "Wywolano z " << nParam; } 
}; 

 
Dalej - dodajmy obiekt, który będzie brał udział w wywołaniu: 
 

CFoo Foo; 
 
Przypomnijmy wreszcie, że chcemy zrobić taki wskaźnik, którego użycie zastapi nam 
wywołanie: 
 

Foo.Metoda(); 
 
Potrzebujemy do tego wspomnianych dwóch rodzajów wskaźników: 

 wskaźnika na obiekty klasy CFoo 
 wskaźnika na metody klasy CFoo biorące int i niezwracające wartości 

 
Połączymy oba te wskaźniki w jedną strukturę, dodając przy okazji pomocnicze funkcje - 
jak konstruktor oraz operator(): 
 

struct METHODPOINTER 
{  
 // rzeczone oba wskaźniki 
 CFoo* pObject;    // wskaźnik na obiekt 
 void (CFoo::*p2mfnMethod)(int); // wskaźnik na metodę 
 
 //-------------------------------------------------------------------  
 
 // konstruktor 
 METHODPOINTER(CFoo* pObj, void (CFoo::*p2mfn)(int)) 
  : pObject(pObj), p2mfnMethod(p2mfn)   { } 
 
 // operator wywołania funkcji 
 void operator() (int nParam) 
  { (pObject->*p2mfnMethod(nParam); } 
}; 

 
Teraz możemy już pokazać takim wskaźnikiem na metodę naszego obiektu. Podajemy po 
prostu zarówno wskaźnik na obiekt, jak i na metodę klasy: 
 

METHODPOINTER p2ofnMetoda(&Foo, &CFoo::Metoda); 
 
To wprawdzie pewna niedogodność (nie możemy podać po prostu Foo.Metoda, lecz 
musimy pamiętać nazwę klasy), ale i tak jest to całkiem dobre rozwiązanie. Naszą 
metodę możemy bowiem wywołać w najprostszy możliwy sposób: 
 

p2ofnMetoda (69); // to samo co Foo.Liczba (69); 
 
To właśnie chcieliśmy osiągnać. 
 
Jest to aczkolwiek rozwiązanie dla szczególnego przypadku. A jak wygląda to w 
przypadku ogólnym?… Mniej więcej w ten sposób: 
 

struct WSKAŹNIK 
{  
 // wskaźniki 
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 klasa* pObject;       
 zwracany_typ (klasa::*p2mfnMethod)([parametry_formalne]);  
 
 //-------------------------------------------------------------------  
 
 // konstruktor 
 WSKAŹNIK(klasa* pObj, 
 zwracany_typ (klasa::*p2mfn)([parametry_formalne])) 
  : pObject(pObj), p2mfnMethod(p2mfn)   { } 
 
 // operator wywołania funkcji 
 zwracany_typ operator() ([parametry_formalne]) 
  { [return] (pObject->*p2mfnMethod([parametry_aktualne]); } 
}; 

 
Niestety, preprocesor na niewiele nam się przyda w tym przypadku. Tego rodzaju 
struktury musiałbyś wpisywać do kodu samodzielnie. 

Wskaźnik na metodę obiektu dowolnej klasy 

Nasz callback wydaje się działać (bo i działa), ale jego przydatność jest niestety 
niewielka. Wskaźnik potrafi bowiem pokazywać tylko na metodę w konkretnej klasie, 
natomiast do zastosowań praktycznych (jak informowanie o zdarzeniach czy błędach) 
powinien on umieć wskazać na zgodną ustalonym prototypem metodę obiektu w 
dowolnej klasie. 
Tak więc niezależnie od tego, czy nasz obiekt byłby klasy CFoo, CVector2D, 
CEllipticTable czy CBrokenWindow, jeśli tylko klasa ta posiada metodę o określonej 
sygnaturze, to powinno dać się na nią wskazać w konkretnym obiekcie. Dopiero wtedy 
dostaniemy do ręki wartościowy mechanizm. 
 
Ten mechanizm ma nazwę: closure. Trudno to przetłumaczyć na polski (dosłownie jest to 
‘przymknięcie’, ‘domknięcie’, itp.), więc będziemy posługiwać się dotychczasową nazwą 
‘wskaźnik na metodę obiektu’. 
 
Czy można go osiągnąć w C++?… Owszem. Wymaga to jednak dość daleko idącego 
kroku: otóż musimy sobie zdefiniować uniwersalną klasę bazową. Z takiej klasy będą 
dziedziczyć wszystkie inne klasy, których obiekty i ich metody mają być celami 
tworzonych wskaźników. Taka klasa może być bardzo prosta, nawet pusta: 
 

class IObject { }; 
 
Można do niej dodać wirtualny destruktor czy inne wspólne dla wszystkich klas składowe, 
jednak to nie jest tutaj ważne. Grunt, żeby taka klasa była obecna. 
 
Teraz sprecyzujmy problem. Załóżmy, że mamy kilka innych klas, zawierających metody 
o właściwej dla nas sygnaturze: 
 

class CFoo : public IObject 
{ 
 public: 
  float Funkcja(int x) { return x * 0.75f; } 
}; 
 
class CBar : public IObject 
{ 
 public: 
  float Funkcja(int x) { return x * 1.42f; } 
}; 
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Zauważmy z IObject. Czego chcemy? Otóż poszukujemy sposobu na 
zaimplementowanie wskaźnika, który będzie pokazywał na metodę Funkcja() zarówno w 
obiektach klasy CFoo, jak i CBar. Nawet więcej - chcemy takiego wskaźnika, który pokaże 
nam na dowolną metodę biorącą int i zwracają float w dowolnym obiekcie 
dowolnej klasy w naszym programie. Mówiłem już, że w praktyce ta „dowolna klasa” 
musi dziedziczyć po IObject. 
 
Cóż więc zrobić? „Może znowu sięgniemy po dwa wskaźniki - jeden na obiekt, a drugi na 
metodę klasy…?” Punkt dla ciebie. Faktycznie, tak właśnie zrobimy. Postać naszego 
wskaźnika nie różni się więc zbytnio od tej z poprzedniego punktu: 
 

struct METHODPOINTER 
{  
 // rzeczone oba wskaźniki 
 IObject* pObject;     // wskaźnik na obiekt 
 float (IObject::*p2mfnMethod)(int);  // wskaźnik na metodę 
 
 //-------------------------------------------------------------------  
 
 // konstruktor 
 METHODPOINTER(IObject* pObj, float (IObject::*p2mfn)(int)) 
  : pObject(pObj), p2mfnMethod(p2mfn)   { } 
 
 // operator wywołania funkcji 
 float operator() (int x) 
  { return (pObject->*p2mfnMethod(x); } 
}; 

 
„Chwileczkę… Deklarujemy tutaj wskaźnik na metody klasy IObject, biorące int i 
zwracające float… Ale przecież IObject nie ma takich metod - ba, u nas nie ma nawet 
żadnych metod! Takim wskaźnikiem nie pokażemy więc na żadną metodę!” 
Bingo, kolejny punkt za uważną lekturę :) Rzeczywiście, taki wskaźnik wydaje się 
bezużyteczny. Pamiętajmy jednak, że w sumie chcemy pokazywać na metodę obiektu, 
a nie na metodę klasy. Zaś nasze obiekty będą pochodzić od klasy IObject, bo ich 
własne klasy po IObject dziedziczą. W sumie więc wskaźnikiem na metodę klasy 
bazowej będziemy pokazywać na metodę klasy pochodnej. To jest poprawne - za chwilę 
wyjaśnię bliżej, dlaczego. 
 
Najpierw spróbujmy użyć naszego wskaźnika. Stwórzmy więc obiekt którejś z klas: 
 

CBar* pBar = new CBar; 
 
i ustawmy nasz wskaźnik na metodę Funkcja() w tym obiekcie - tak, jak to robiliśmy 
dotąd: 
 

METHODPOINTER p2ofnMetoda(pBar, &CBar::Funkcja); 
 
I jak?… Mamy przykrą niespodziankę. Każdy szanujący się kompilator C++ najpewniej 
odrzuci tę linijkę, widząc niezgodność typów. Jaką niezgodność? 
Pierwszy parametr jest absolutnie w porządku. To znana i lubiana konwersja wskaźnika 
na obiekt klasy pochodnej (CBar*) do wskaźnika na obiekt klasy bazowej (IObject*). 
Brak zastrzeżeń nikogo nie dziwi - przecież na tym opiera się cały polimorfizm. 
To drugi parametr sprawia problem. Kompilator nie zezwala na zamianę typu: 
 

float (CBar::*)(int) 
 
na typ: 
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float (IObject::*)(int) 
 
Innymi słowy, nie pozwala na konwersję wskaźnik na metodę klasy pochodnej do 
wskaźnika na metodę klasy bazowej. Jest to uzasadnione: wskaźnik na metodę (ogólnie: 
na składową) może być bowiem poprawny w klasie pochodnej, natomiast nie zawsze 
będzie poprawny w klasie bazowej. Obiekt klasy bazowej może być przecież mniejszy, nie 
zawierać pewnych elementów, wprowadzonych w młodszym pokoleniu. W takim wypadku 
wskaźnik będzie „strzelał w próżnię”, co skończy się błędem ochrony pamięci120. 
Tak mogłoby być, jednak u nas tak nie będzie. Naszego wskaźnika na metodę użyjemy 
przecież tylko i wyłacznie do wywołania metody obiektu pBar. Klasa obiektu oraz klasa 
wskaźnika w tym przypadku zgadzają się, są identyczne - to CBar. Nie ma żadnego 
ryzyka. 
 
Kompilator bynajmniej o tym nie wie i nie należy go wcale za to winić. Musimy sobie po 
prostu pomóc rzutowaniem: 
 

METHODPOINTER p2ofnMetoda(pBar, 
 static_cast<float (IObject::*)(int)> 
 (&CBar::Funkcja)); 

 
Wiem, że wygląda to okropnie, ale przecież nic nie stoi na przeszkodzie, aby pomóc sobie 
odpowiednim makrem. 
 
Zresztą, liczy się efekt. Teraz możemy wywołać metodę pBar->Funkcja() w ten prosty 
sposób: 
 

p2ofnMetoda (42);  // to samo co pBar->Funkcja (42); 
 
Jest też zupełnie możliwe, aby pokazać naszym wskaźnikiem na analogicznę metodę w 
obiekcie klasy CFoo: 
 

CFoo Foo; 
p2ofnMetoda.pObject = &Foo; 
p2ofnMetoda.p2mfnMethod = static_cast<float (IObject::*)(int)> 
 (&CFoo::Funkcja)); 
 
p2ofnMetoda (14); // to samo co Foo.Funkcja (14) 

 
Zmieniając ustawienie wskaźnika musimy jednak pamiętać, by: 
 
Klasy docelowego obiektu oraz docelowej metody muszą być identyczne. Inaczej 
ryzykujemy bład ochrony pamięci. 
 
Zaprezentowane rozwiązanie może nie jest szczególnie eleganckie, ale wystarczające. Nie 
zmienia to jednak faktu, że wbudowana obsługa wskaźników na metody obiektów w C++ 
byłaby wielce pożądana. 
 
Nieco lepszą implementację wskaźników tego rodzaju, korzystającą m.in. z szablonów, 
możesz znaleźć w moim artykule Wskaźnik na metodę obiektu. 
 

*** 
 

                                                 
120 Konwersja w drugą stronę (ze wskaźnika na składową klasy bazowej do wskaźnika na składową klasy 
pochodnej) jest z kolei zawsze możliwa. Jest tak dlatego, że klasa pochodna nie może usunąć żadnego 
składnika klasy bazowej, lecz co najwyżej rozszerzyć ich zbiór. Wskaźnik będzie więc zawsze poprawny. 

http://avocado.risp.pl/modules.php?op=modload&name=Sections&file=index&req=viewarticle&artid=21
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Czy masz już dość? :) Myślę, że tak. Wskaźniki na składowe klas (czy też obiektów) to 
nie jest najłatwiejsza część OOPu w C++ - śmiem twierdzić, że wręcz przeciwnie. Mamy 
ją już jednak za sobą. 
 
Jeżeli aczkolwiek chciałbyś się dowiedzieć na ten temat nieco więcej (także o zwykłych 
wskaźnikach na funkcje), to polecam świetną witrynę The Function Pointer Tutorials. 
 
W ten sposób poznaliśmy też całą ofertę narzędzi języka C++ w zakresie programowania 
obiektowego. Możemy sobie pogratulować. 

Podsumowanie 
Ten długi rozdział był poświęcony kilku specyficznym dla C++ zagadnieniom 
programowania obiektowego. Zdecydowana większość z nich ma na celu poprawienie 
wygody, czasem efektywności i „naturalności” kodowania. 
Cóż więc zdążyliśmy omówić?… 
 
Na początek poznaliśmy zagadnienie przyjaźni między klasami a funkcjami i innymi 
klasami. Zobaczyłeś, że jest to prosty sposób na zezwolenie pewnym ściśle określonym 
fragmentom kodu na dostęp do niepublicznych składowych jakiejś klasy. 
Dalej przyjrzeliśmy się bliżej konstruktorom klas. Poznaliśmy ich listy inicjalizacyjne, rolę 
w kopiowaniu obiektów oraz niejawnych konwersjach między typami. 
Następnie dowiedzieliśmy się (prawie) wszystkiego na temat bardzo przydatnego 
udogodnienia programistycznego: przeciążania operatorów. Przy okazji powtórzyliśmy 
sobie wiadomości na temat wszystkich operatorów języka C++. 
Wreszcie, odważniejsi spośród czytelników zapoznali się także ze specyficznym rodzajem 
wskaźników: wskaźnikami na składniki klasy. 
 
Następny rozdział będzie natomiast poświęcony niezwykle istotnemu mechanizmowi 
wyjątków. 

Pytania i zadania 
Być może zaprezentowane w tym rozdziale techniki służą tylko wygodzie programisty, ale 
nie zwalnia to kodera z ich dokładnej znajomości. Odpowiedz więc na powyższe pytania i 
wykonaj ćwiczenia. 

Pytania 
1. Jakie specjalne uprawnienia ma przyjaciel klasy? Co może być takim 

przyjacielem? 
2. W jaki sposób deklarujemy zaprzyjaźnioną funkcję? 
3. Co oznacza deklaracja przyjaźni z klasą? 
4. Jak można sprawić, aby dwie klasy przyjaźniły się z wzajemnością? 
5. Co to jest konstruktor domyślny? Jakie są korzyści klasy z jego posiadania? 
6. Czym jest inicjalizacja? Kiedy i jak przebiega? 
7. Do czego służy lista inicjalizacyjna konstruktora? 
8. Kiedy konieczny jest konstruktor kopiujący? 
9. W jaki sposób możemy definiować niejawne konwersje? 
10. Co powoduje słowo kluczowe explicit w deklaracji konstruktora? 
11. Kiedy konstruktor konwertujący jest jednocześnie domyślnym? 
12. Wymień podstawowe cechy operatorów w języku programowania. 
13. Jakie rodzaje operatorów posiada C++? 
14. Na czym polega przeciążenie operatora? 
15. Jaki status mogą posiadać funkcje operatorowe? Czym się one różnią? 

http://www.function-pointer.org/
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16. Jak można skorzystać z niejawnych konwersji, pisząc przeciążone wersje 
operatorów binarnych? 

17. Które operatory mogą być przeciążane wyłącznie jako niestatyczne metody klas? 
18. Kiedy konieczne jest zdefiniowanie własnego operatora przypisania? 
19. Ile argumentów ma operator wywołania funkcji? 
20. O czym należy pamiętać, przeciążając operatory? 
21. O czym informuje wskaźnik do składowej klasy? 
22. Jakim wskaźnikiem pokazujemy na pole w obiekcie, a jakim na pole w klasie? 
23. Czy zwykłym wskaźnikiem do funkcji możemy pokazać na metodę obiektu? 

Ćwiczenia 
1. Zdefiniuj dwie klasy, które będą ze sobą wzajemnie zaprzyjaźnione. 
2. Przejrzyj definicje klas z poprzednich rozdziałów i popatrz na ich konstruktory. W 

których przypadkach możnaby użyć w nich list inicjalizacyjnych? 
3. Do klas CRational i CComplex dodaj operatory niejawnych konwersji na typ bool. 

Co dzięki temu zyskałeś? 
4. (Trudniejsze) Wzbogać wspomniane klasy także o operatory dodawania, 

odejmowania i dzielenia (tylko CRational) oraz o odpowiadające im operatory 
złożonego przypisania i in/dekrementacji. 

5. Napisz funktor obliczający największą z podawanych mu liczb typu float. Niech 
stosuje on ten sam interfejs i sposób działania, co klasa CAverageFunctor. 


