ZAAWANSOWANA
OBIEKTOWOSC

Nuda jest wrogiem programistow.
Bjarne Stroustrup

C++ jest zastuzonym cztonkiem licznej obecnie rodziny jezykéw obiektowych. Oferuje on
wszystkie koniecznie mechanizmy, stuzgce praktycznej realizacji idei programowania
zorientowanego obiektowo. Poznalismy je w dwdch rozdziatach poprzedniej czesci kursu.
Miedzy C++ a innymi jezykami OOP wystepujg jednak pewne réznice. Nasz jezyk ma
wiele specyficznych dla siebie mozliwosci, ktére majg za zadanie utatwienie zycia
programiscie. Czesto tez przyczyniajg sie do powstania obiektywnie lepszych programow.

W tym rozdziale poznamy te wtasnie strone OOPu w C++. Przedstawione tu zagadnienia,
cho¢ w zasadzie niezbedne do wystarczajacej znajomosci jezyka, sa w duzej czesci
przydatnymi udogonieniami. Nie niezbednymi, lecz wielce interesujacymi i praktycznymi.
Poznanie ich sprawi, ze nasze obiektowe programy bedgq wygodne w konstruowaniu i
pozniejszej modyfikacji. Programowanie stanie sie po prostu fatwiejsze i przyjemniejsze -
a to chyba bedzie bardzo znaczacym osiggnieciem.

Zobaczmy wiec, jakie wyjatkowe konstrukcje OOP oferuje nam C++.

O przyjazni

W czasie pierwszych spotkan z programowaniem obiektowym wspominatem dosc¢ czesto
o jego zaletach, wymieniajac wsrdd nich podziat kodu na drobne i tatwe to zarzadzania
kawatki. Tymi fragmentami (takze pod wzgledem koncepcyjnym) sg oczywiscie klasy.
Plusem, jaki niesie za soba stosowanie klas, jest wyodrebnienie kodu i danych w obiekty
zajmujace sie konkretnymi zadaniami i reprezentujgcymi konkretne obiekty. Instancje
klas wspotpracujg ze sobg i dzieki temu wypetniajg zadania aplikacji. Tak to wyglada -
przynajmniej w teorii :)

Atutem klas jest niezaleznos¢, zwana fachowo hermetyzacjg lub enkapsulacjg. Objawia
sie ona tym, iz dana klasa posiada pewien zestaw pdl i metod, z ktorym tylko wybrane sg
dostepne dla swiata zewnetrznego. Jej wewnetrzne sprawy sg catkowicie chronione; stuzg
ku temu specyfikatory dostepu, jak private i protected.

Opatrzone nimi sktadowe sg w zasadzie catkiem odseparowane od $wiata zewnetrznego,
bo ten jest dla nich potencjalnie grozny. Upubliczniajac swoje pole klasa narazataby
przeciez swoje dane na przypadkowe lub celowe, ale zawsze niepozadane modyfikacje.
To tak jakby wyjs¢ z domu i zostawi¢ drzwi niezamkniete na klucz: nie jest to wpradzie
bezposrednie zaproszenie dla ztodzieja, ale taka okazja moze go uczyni¢ - w mysl
znanego powiedzenia.

Ale przeciez nie wszyscy sg zli - kazdy ma przynajmniej kilku przyjaciot. Przyjaciel jest
to osoba, na ktérg mozna liczy¢; o ktérej wiemy, ze nie zrobi nam nic ztego. Wiekszos¢
ludzi uwaza, ze przyjazn jest w zyciu bardzo wazna - i nie musza nas do tego

374 Zaawansowane C++

przekonywac zadni socjologowie. Wszyscy wiemy to dobrze z wiasnego, zyciowego
doswiadczenia.

No dobrze, ale co to ma wspdlnego z programowaniem?... Otdéz bardzo wiele, zwtaszcza z
programowaniem obiektowym. Mianowicie, klasa takze moze mie¢ przyjaciot: mogq
by¢ nimi globalne funkcje, metody innych klas, a takze inne klasy w catosci. Céz to
jednak znaczy, ze klasa ma jakiegos$ przyjaciela?... Wyjasnijmy wiec, ze:

Przyjaciel (ang. friend) danej klasy ma dostep do jej wszystkich skiadnikéw - takze
tych chronionych, a nawet prywatnych.

Jezeli zatem klasa posiada przyjaciela, to oznacza to, ze data mu ,klucze” (dostep) do
swojego ,mieszkania” (niepublicznych sktadowych). Przyjaciel klasy ma do nich prawie
takie samo prawo, jak metody tejze klasy. Pewne drobne rdéznice wyjasnimy sobie przy
okazji osobnego omédwienia zaprzyjaznionych funkcji i klas.

Dowiedzmy sie teraz, jak zaprzyjaznic¢ z klasg jaki$ inny element programu. Jest
oczywiscie i jak zwykle bardzo proste ;) Nalezy bowiem umiesci¢ w definicji klasy tzw.
deklaracje przyjazni (ang. friend declaration):

friend deklaracja przyjaciela;

Stowem kluczowym friend poprzedzamy W niej deklaracje przyjaciela. Tq deklaracjg
moze byc¢:

» prototyp funkcji globalnej

> prototyp metody ze zdefiniowanej wczesniej klasy

> nazwa zadeklarowanej wczesniej klasy

Oto najprostszy i niezbyt madry przyktad:

class CFoo

{
private:
std::string m strBardzoOsobistyNapis;

public:
// konstruktor
CFoo () { m_strBardzoOsobistyNapis = "Kocham C++!"; }

// deklaracja przyjazni z funkcja
friend void Wypisz (CFoo*);
}i

// zaprzyjazniona funkcja
void Wypisz (CFoo* pFoo)
{
std::cout << pFoo->m strBardzoOsobistyNapis;

}

Zaprzyjazniony byt - w tym przypadku funkcja - ma tu peten dostep do prywatnego pola
klasy cFoo. Moze wiec wypisac¢ jego zawartosc dla kazdego obiektu tej klasy, jaki
zostanie mu podany.

Deklaracja przyjazni w tym przyktadzie wydaje sie by¢ umieszczona w sekcji public
klasy CFoo. Tak jednak nie jest, gdyz:

Zaawansowana obiektowosé 375

Deklaracja przyjazni moze by¢ umieszczona w kazdym miejscu definicji klasy i
zawsze ma to samo znaczenie.

Jest wiec obojetne, gdzie sie ona pojawi. Zwykle piszemy jg albo na poczatku, albo na
koncu klasy, wyrdzniajac na przyktad zmniejszonym wcieciem. Pokazujemy w ten
sposdb, ze nie podlega ona specyfikatorom dostepu.

Nie ma wiec czegos takiego jak ,publiczna deklaracja przyjazni” lub , prywatna deklaracja
przyjazni”. Przyjaciel pozostaje przyjacielem niezaleznie od tego, czy sie nim chwalimy,
czy nie.

Skoro teraz wiemy juz z grubsza, czym sg przyjaciele klas, omoéwimy sobie osobno
zaprzyjaznianie funkcji globalnych oraz innych klas i ich metod.

Funkcje zaprzyjaznione

Najpierw zobaczymy, jak zaprzyjazni¢ klase z funkcjg - tak, aby funkcja miata dostep do
niepublicznych sktadnikéw z danej klasy.

Deklaracja przyjazni z funkcjg

Chcac uczynic¢ jakas funkcje przyjacielem klasy, musimy w definicji klasy podac
deklaracje zaprzyjaznionej funkcji, poprzedzajac jg stowem kluczowym friend.

Ilustracjq tego faktu nie bedzie ponizszy przyktad. Mamy w nim klase opisujacq okrag -
CCircle. Zaprzyjazniona z nig funkcja PrzecinajaSie () sprawdza, czy podane jej dwa
okreg majg punkty wspdlne:

#include <cmath>

class CCircle
{
private:
// érodek okregu
struct { float x, y; } m ptSrodek;

// jego promien
float m fPromien;

public:
// konstruktor
CCircle (float fPromien, float fX = 0.0f, float fY = 0.0f)

{ m fPromien = fPromien;
m ptSrodek.x = fX;
m ptSrodek.y = fY; }

// deklaracja przyjazni z funkcja
friend bool PrzecinajaSie(CCircle&, CCircles);

b

// zaprzyjazniona funkcja
bool PrzecinajaSie(CCircle& Okragl, CCircle& Okrag2)
{
// obliczamy odlegto$é miedzy Srodkami
float fRoznicaX = Okrag2.m ptSrodek.x - Okragl.m ptSrodek.x;
float fRoznicaY = Okrag2.m ptSrodek.y - Okragl.m ptSrodek.y;
float fOdleglosc = sqgrt (fRoznicaX*fRoznicaX + fRoznicaY*fRoznicaY);

376 Zaawansowane C++

// odlegtos$é ta musi by¢é mniejsza od sumy promieni, ale wieksza
// od ich bezwzglednej rdbznicy
return (fOdleglosc < Okragl.m fPromien + Okrag2.m fPromien
&& fOdleglosc > abs(Okragl.m fPromien - Okrag2.m fPromien);
}

Bardzo dobrze widac tu idee przyjazni: funkcja PrzecinajaSie () ma dostep do
sktadowych m_ptSrodek oraz m_fPromien z obiektdw klasy cCircle - mimo ze sg
prywatne pola klasy. ccircle deklaruje jednak przyjazn z funkcjg PrzecinajaSie (), a
zatem udostepnia jej swoje osobiste dane.

Zauwazmy jeszcze, ze w deklaracji przyjazni podajemy caty prototyp funkcji, a nie tylko
jej nazwe. Mozliwe jest bowiem zdefiniowanie kilku funkcji o tej nazwie, np. tak:

bool PrzecinajaSie(CCircle&, CCircleg);

bool PrzecinajaSie (CRectangle&, CRectangleé);

bool PrzecinajaSie (CPolygoné&, CPolygonég);

// itd. (wraz z ewentualnymi kombinacjami krzyzowymi)

Klasa bedzie jednak przyjaznifa sie tylko z tg funkcjg, ktérej deklaracje zamiescimy po
stowie friend. Zapamigtajmy po prostu, ze:

| Jedna zwykla deklaracja przyjazni oznacza przyjazn z jedna funkcja.

Na co jeszcze trzeba zwrdci¢ uwage

Wszystko wydawatoby sie raczej proste. Nie zaszkodzi jednak powiedzie¢ wprost o
pewnych , oczywistych” faktach zwigzanych z zaprzyjaznionymi funkcjami.

Funkcja zaprzyjazniona nie jest metoda

Jedno stéwko friend moze bardzo wiele zmienié¢. Poréwnajmy chocby te dwie klasy:

class CFoo

{
public:
void Funkcjal();

}i

class CBar

{
public:
friend void Funkcjal();

}i

Rdznig sie one tylko tym stowkiem... ale jest to réznica znaczgca. W pierwszej klasie
Funkcija () jest jej metodq: zadeklarowali$my jg tak, jak wszystkie normalne metody
klas. Znamy to juz dobrze, gdyz proces definiowania metod poznalismy przy pierwszym
spotkanie z OOPu. Do petni szczescig na lezy jeszcze tylko zdefiniowac ciato emtody
CFoo::Funkcja () i wszystko bedzie w porzadku.

Deklaracja w drugiej klasie jest natomiast opatrzona stowkiem friend, ktore zupetnie
zmienia jej znaczenie. Funkcja () nie jest tu metoda klasy CBar. Jest wprawdzie
zaprzyjazniona z nig, ale nie jest jej sktadnikiem: nie ma dostepu do wskaznika this.
Aby z tej zaprzyjaznionej funkcji mégt by¢ w ogole jakis uzytek, trzeba jej zapewnic
dostep do obiektu klasy cBar, bo jej samej nikt go ,nie da”. Wobec braku parametrow
funkcji pewnie bedzie to wymagato zadeklarowania globalnej zmiennej obiektowej typu
CBar.

Zaawansowana obiektowos¢ 377

Pamietaj zatem, iz:

Funkcje zaprzyjaznione z klasg nie sq jej sktadnikami. Nie posiadajg dostepu do
wskaznika this tej klasy, gdyz nie sa jej metodami.

W praktyce wiec nalezy jakos$ podac takiej funkcji obiekt klasy, ktora sie z nig przyjazni.
Zobaczylismy w poprzednim przyktadzie, ze prawie zawsze odbywa sie to poprzez
parametry. Referencja do obiektu klasy cCircle byta parametrem zaprzyjaznionej z nig
funkcji PrzecinajaSie (). Tylko posiadajac dostep do obiektu klasy, ktéra sie z nig
przyjazni, funkcja zaprzyjazniona moze odnies¢ jakas korzysc ze swojego
uprzywilejowanego statusu.

Deklaracja przyjazni jest tez deklaracjg funkcji
Mamy tez drugi wazny fakt zwigzany z deklaracjq funkcji zaprzyjaznionej.
Deklaracja przyjazni jako prototyp funkcji

Otdz, taka deklaracja przyjazni jest jednoczesnie deklaracja funkcji jako takiej. Musimy
zauwazyc¢, ze w zaprezentowanych przyktadach funkcje, ktére byty przyjacielami klasy,
zostaty zdefiniowane dopiero po definicji tejze klasy. Wczesniej kompilator nic o nich nie
wiedziat - a mimo to pozwolit na ich zaprzyjaznienie! Czy to jakas niedordbka?

Alez skad! Kompilator uznaje po prostu deklaracje przyjazni z funkcjg takze za deklaracje
samej funkcji. Linijka ze stowem friend petni wiec funkcje prototypu funkcji, ktéra moze
by¢ swobodnie zdefiniowana w zupetnie innym miejscu. Z kolei wczesniejsze
prototypowanie funkcji, przed deklaracjg przyjazni, nie jest konieczne. Méwiac po ludzku,
W ponizszym kodzie:

bool PrzecinajaSie(CCircle&, CCircleé&);
class CCircle
{

// (ciach - szczegdty)

friend bool PrzecinajaSie(CCircle&, CCircle&);

i

// gdzie$ dalej definicja funkcji...

poczatkowy prototyp funkcji PrzecinajasSie (), umieszczony przed definicjg CCircle, nie
jest koniecznie wymagany. Bez niego kompilator skorzysta po prostu z deklaracji
przyjazni jak z normalnej deklaracji funkcji.

Deklaracja przyjazni z funkcja moze by¢ jednoczes$nie deklaracja samej funkcji.
Wczesniejsza wiedza kompilatora o istnieniu zaprzyjaznianej funkcji nie jest niezbedna,
aby funkcja ta mogta zosta¢ zaprzyjazniona.

Dodajemy definicje

Najbardziej zaskakujace jest jednak to, ze deklarujac przyjazn z jakas funkcjg mozemy
te funkcje jednoczesnie... zdefiniowad! Nic nie stoi na przeszkodzie, aby po zakoniczeniu
deklaracji nie stawia¢ srednika, lecz otworzy¢ nawias klamrowy i wpisa¢ tres¢ funkcji:

class CVector2D
{
private:
float m fX, m fY;

378 Zaawansowane C++

public:
CVector2D(float fX = 0.0f, float fY = 0.0f)
{ m fX = £X; m fy = fY; }

// zaprzyjazniona funkcja dodajaca dwa wektory
friend CVector2D Dodaj (CVector2D& vl1l, CVector2D& v2)
{ return CVector2D(vl.m fX + vZ2.m fX, vl.m fY + v2.m fY); }
}i

Nie zapominajmy, ze nawet wowczas funkcja zaprzyjazniona nie jest metoda klasy -
pomimo tego, ze jej umieszczenie wewnatrz definicji klasy sprawia takie wrazenie. W tym
przypadku funkcja Dodaj () jest nadal funkcjq globalng - wywotujemy jg bez pomocy
zadnego obiektu, cho¢ oczywiscie przekazujemy jej obiekty Cvector2D w parametrach i
taki tez obiekt otrzymujemy z powrotem:

CVector2D vSuma = Dodaj (CVector2D(1.0f, 2.0f), CVector2D(0.0f, -1.0f));

Umieszczenie definicji funkcji zaprzyjaznionej w bloku definicji klasy ma jednak pewien
skutek. Otoz funkcja staje sie wtedy funkcja infine, czyli jest rozwijana w miejscu swego
wywotania. Przypomina pod tym wzgledem metody klasy, ale jeszcze raz powtarzam, ze
metoda nie jest.

Moze najlepiej bedzie, jesli zapamietasz, ze:

Wszystkie funkcje zdefiniowane wewnatrz definicji klasy sq automatycznie inline,
jednak tylko te bez stdwka friend sq jej] metodami. Pozostate sq funkcjami
globalnymi, lecz zaprzyjaznionymi z klasa.

Klasy zaprzyjaznione

Zaprzyjaznianie klas z funkcjami globalnymi wydaje sie moze nieco dziwnym
rozwigzaniem (gdyz czesciowo tamie zalete OOPu - hermetyzacje), ale niejednokrotnie
bywa przydatnym mechanizmem. Bardziej obiektowym podejsciem jest przyjazn klas z
innymi klasami - jako cato$ciami lub tylko z ich pojedynczymi metodami.

Przyjazn z pojedynczymi metodami

Wiemy juz, ze mozemy zadeklarowac przyjazn klasy z funkcjg globalng. Teraz dowiemy
sie, ze przyjacielem moze by¢ takze inny rodzaj funkcji - metoda klasy.

Ponownie spojrzyj na odpowiedni przyktad:

// deklaracja zapowiadajaca klasy CCircle
class CCircle;

class CGeometryManager

{
public:
bool PrzecinajaSie(CCircle&, CCircleg);

b

class CCircle

{
// (pomijamy reszte)

friend bool CGeometryManager::PrzecinajaSie (CCircle&, CCircles);

}i

Zaawansowana obiektowosé 379

Tym razem funkcja przecinajaSie () stata sie sktadowa klasy CGeometryManager. To
bardziej obiektowe rozwigzanie - tym bardziej dobre, ze nie przeszkadza w
zadeklarowaniu przyjazni z tg funkcjg. Teraz jednak klasa z ccircle przyjazni sie z
metodg innej klasy - CGeometryManager. Odpowiednig zmiane (do$¢ naturalng) widac
wiec w deklaracji przyjazni.

Przyjazn z metodami innych klas byftaby bardzo podobna do przyjazni z funkcjami
globalnymi gdyby nie jeden szkoput. Kompilator musi mianowicie zna¢ deklaracje
zaprzyjaznianej metody (CGeometryManager: :PrzecinajaSie ()) juz wczesniej. To
zas wigze sie z koniecznoscig zdefiniowania jej macierzystej klasy (CGeometryManager).
Do tego potrzebujemy jednak informacji o klasie ccircle, aby mogta ona wystgpic jako
typ agrumentu metody PrzecinajaSie (). Rozwigzaniem jest deklaracja
zapowiadajaca, w ktore informujemy kompilator, ze ccircle jest klasg, nie méwiac
jednak niczego wiecej. Z takimi deklaracjami spotkaliSmy sie juz wczesniej i jeszcze
spotkamy sie nie raz - szczegélnie w kontekscie przyjazni miedzyklasowej.

~Chwileczke! A co z tg zaprzyjazniang metodg, CGeometryManager: :PrzecinajaSie ()?
Czyzby miata ona nie posiadac dostepu do wskaznika this, mimo ze jest funkcjg
sktadowgq klasy?...”

Odpowiedz brzmi: i tak, i nie. Wszystko zalezy bowiem od tego, o ktory wskaznik this
nam dokfadnie chodzi. Jezeli o ten pochodzacy od CGeometryManager, to wszystko jest w
jak najlepszym porzadku: metoda PrzecinajaSie () posiada go oczywiscie, zatem ma
dostep do sktadnikéw swojej macierzystej klasy. Jesli natomiast mamy na mysli klase
CCircle, to faktycznie metoda PrzecinajaSie () nie ma dojscia do wskaznika this... tej
klasy! Zgadza sie to catkowicie z faktem, iz funkcja zaprzyjazniona nie jest metoda
klasy, ktora sie z nig przyjazni - tak wiec nie posiada wskaznika this tej klasy (tutaj
ccircle). Funkcja moze by¢ jednak metoda innej klasy (tutaj cGeometryManager), a
dostep do jej sktadnikéw bedzie mie¢ zawsze - takie sg przeciez podstawowe zatozenia
programowania obiektowego.

Przyjazn z catg klasg

Deklarujac przyjazn jednej klasy z metodami innej klasy, mozna pdéjsc¢ o krok dalej.
Dlaczego na przyktad nie powigzac przyjaznig od razu wszystkich metod pewnej klasy z
nasza?... Oczywiscie moznaby pracowicie zadeklarowac przyjazn ze wszystkimi metodami
tamtej klasy, ale jest prostsze rozwigzanie. Moze zaprzyjazni¢ jedng klase z druga.

Deklaracja przyjazni z catg klasg jest nad wyraz prosta:

friend class nazwa zaprzyjaZnionej klasy;

Zastepuje ona deklaracje przyjazni ze wszystkimi metodami klasy o podanej nazwie,
wyszczegodlnionymi osobno. Taka forma jest poza tym nie tylko krotsza, ale tez ma kilka
innych zalet.

Wpierw jednak spdjrzmy na przyktad:

class CPoint;

class CRect

{

private:

//

public:
bool PunktWewnatrz (CPointé&) ;

380 Zaawansowane C++

class CPoint
{

private:
float m fX, m fY;

public:
CbPoint (float fX = 0.0f, float fY = 0.0f)
{ m fX = £X; m fYy = fY; }

// deklaracja przyjazni z Crect
friend class CRect;

}i

Wyznanie przyjazni, ktéry czyni klasa cpoint, sprawia, ze zaprzyjazniona klasa CRect ma
peten dostep do jej sktadnikdw niepublicznych. Metoda CRect: : PunktWewnatrz () moze
wiec odczyta¢ wspotrzedne podanego punktu i sprawdzié, czy lezy on wewnatrz
prostokata opisanego przez obiektt klasy CRrect.

Zauwazmy jednoczesnie, ze klasa cPoint nie ma tutaj podobnego dostepu do
prywatnych sktadowych crRect. Klasa CRect nie zadeklarowata bowiem przyjazni z klasg
Cpoint. Wynika stad bardzo wazna zasada:

Przyjazn klas w C++ nie jest automatycznie wzajemna. Jezeli klasa A deklaruje
przyjazn z klasg B, to klasa B nie jest od razu takze przyjacielem klasy A. Obiekty klasy B
majq wiec dostep do niepublicznych danych klasy A, lecz nie odwrotnie.

Dos¢ czesto aczkolwiek zyczymy sobie, aby klasy wzajemnie deklarowaty sobie przyjazn.
Jest to jak najbardziej mozliwe: po prostu w obu klasach muszg by¢ deklaracje przyjazni:

class CBar;

class CFoo

{

friend class CBar;

}i

class CBar

{

friend class CFoo;

}i

Wymaga to zawsze zastosowania deklaracji zapowiadajacej, gdyz kompilator musi
wiedzie¢, ze dana nazwa jest klasg, zanim pozwoli na jej zastosowanie w konstrukcji
friend class. Nie musi natomiast znac¢ catej definicji klasy, co byto wymagane dla
przyjazni z pojedynczymi metodami. Gdyby tak byto, to wzajemna przyjazn klas nie
bytaby mozliwa. Kompilator zadowala sie na szczescie samg informacja ,,CBar jest klasg”,
bez wnikania w szczegodty, i przyjmuje deklaracje przyjazni z klasg, o ktoérej w zasadzie
nic nie wie.

Kompilator nie przyjmie natomiast deklaracji przyjazni z pojedynczg metoda nieznanej
blizej klasy. Sprawia to, ze wybidrcza przyjazn dwéch klas nie jest mozliwa, bo
wymagataby niemozliwego: zdefiniowania pierwszej klasy przed definicjq drugiej oraz
zdefiniowania drugiej przed definicjq pierwszej. To oczywiscie niemozliwe, a kompilator
nie zadowoli sie niestety sama deklaracjq zapowiadajaca - jak to czyni przy deklarowaniu
catkowitej przejazni (friend class klasa;).

Zaawansowana obiektowosé 381

Jeszcze kilka uwag

Przyjazn nie jest szczegolnie zawitym aspektem programowania obiektowego w C++.
Wypada jednak nieco uscisli¢ jej wptyw na pozostate elementy OOPu.

Cechy przyjazni klas w C++
Przyjazn klas w C++ ma trzy znaczace cechy, na ktére chce teraz zwréci¢ uwage.

Przyjazn nie jest automatycznie wzajemna

W prawdziwym zyciu kto$, kogo uwazamy za przyjaciela, ma zwykle to samo zdanie o
nas. To wiecej niz naturalne.

W programowaniu jest inaczej. Mozna to uznac za kolejny argument, iz jest ono zupetnie
oderwane od rzeczywistosci, a mozna po prostu przyjac to do wiadomosci. A prawda jest
taka:

Klasa deklarujaca przyjazn udostepnia przyjacielowi swoje niepubliczne sktadowe - lecz
nie powoduje to od razu, ze klasa zaprzyjazniona jest tak samo otwarta.

Powiedziatem juz, ze chcac stworzy¢ wzajemny zwigzek przyjazni trzeba umiescic
odpowiednie deklaracje w obu klasach. Wymaga to zawsze zapowiadajgcej deklaracji
przynajmniej jeden z powigzanych klas.

Przyjazn nie jest przechodnia

Inaczej méwigc: przyjaciel mojego przyjaciela nie jest moim przyjacielem. Przektadajac
to na C++:

Jezeli klasa A deklaruje przyjazn z klasg B, za$ klasa B z klasg C, to nie znaczy to, ze
klasa C jest od razu przyjacielem klasy A.

Gdybysmy chcieli, zeby tak bylo, powinniSmy wyraznie to zadeklarowac:
friend class C;

Przyjazn nie jest dziedziczna

Przyjazn nie jest réwniez dziedziczona. Tak wiec przyjaciel klasy bazowej nie jest
automatycznie przyjacielem klasy pochodnej. Aby tak byto, klasa pochodna musi sama
zadeklarowac swojego przyjaciela.

Mozna to uzasadnic¢ na przyktad w ten sposéb, ze deklaracja przyjazni nie jest
skladnikiem klasy - tak jak metoda czy pole. Nie mozna wiec go odziedziczy¢. Inne
wyttumaczenie: deklaracja friend nie ma przypisanego specyfikatora dostepu (public,
private...), zatem nie wiadomo by byto, co z nig zrobi¢ w procesie dziedziczenia; jak
wiemy, skfadniki private nie sg dziedziczone, a pozostate owszem?®,

Dwie ostatnie uwagi mozemy tez uogolni¢ do jednej:

Klasa ma tylko tych przyjaciol, ktérych sama sobie zadeklaruje.

106 jest tak, gdy stosujemy dziedziczenie publiczne (class pochodna : public bazowa), ale tak robimy niemal
zawsze.

382 Zaawansowane C++

Zastosowania

Moéwigc o zastosowaniach przyjazni, musimy rozgraniczy¢ zaprzyjaznione klasy i funkcje
globalne.

Wykorzystanie przyjazni z funkcja

Do czego mogg przydacd sie zaprzyjaznione funkcje?... Teoretycznie korzysci jest wiele,
ale w praktyce na przéd wysuwa sie jedno gtdwne zastosowanie. To przecigzanie
operatorow.

O tym uzytecznym mechanizmie jezyka bedziemy modwi¢ w dalszej czesci tego rozdziatu.
Teraz moge powiedzie¢, ze jest to sposdb na zdefiniowanie wiasnych dziatan
podejmowanych w stosunku do klas, ktérych obiekty wystepujg w wyrazeniach z
operatorami: arytmetycznymi, bitowymi, logicznymi, i tak dalej. Precyzyjniej: chodzi o
stworzenie funkcji, ktére zostang wykonywane na argumentach operatorow, bedacych
naszymi klasami. Takie funkcje potrzebujg czesto dostepu do prywatnych sktadnikéw
klas, na rzecz ktérych przecigzamy operatory. Tutaj wiasnie przydajg sie funkcje
globalne, jako ze zapewniajg taki dostep, a jednoczesnie swobode definiowania kolejnosci
argumentow operatora.

Jesli nie bardzo to rozumiesz, nie przejmuj sie. Przecigzanie operatorow jest w
rzeczywistosci bardzo proste, a zaprzyjaznione funkcji globalne upraszczaja to jeszcze
bardziej. Wkrétce sam sie o tym przekonasz.

Korzysci czerpane z przyjazni klas

A co mozna zyskac zaprzyjazniajac klasy? Tutaj trudniej o konkretng odpowiedz.
Wszystko zalezy od tego, jak zaprojektujemy swdj obiektowy program. Warto jednak
wiedzie¢, ze mamy takg wtasnie mozliwos¢, jak zaprzyjaznianie klas. Jak wszystkie z
pozoru nieprzydatne rozwigzania, okaze sie ona uzyteczna w najmniej spodziewanych
sytuacjach.

Xk k

Ta pocieszajaca konkluzjg zakonczyliSmy omawianie przyjazni klas i funkcji w C++.
Kolejnym elementem OOPu, na jakim skupimy swojq uwage, bedg konstruktory. Ich rola
w naszym ulubionym jezyka jest bowiem wcale niebagatelna i nieogranicza sie tylko do
inicjalizacji obiektéw... Zobaczmy sami.

Konstruktory w szczegotach

Konstruktory petnig w C++ wyjatkowo duzo rél. Cho¢ oczywiscie najwazniejsza (i w
zasadzie jedyng powazng) jest inicjalizacja obiektéw - instancji klas, to niejako przy
okazji moga one dokonywac kilku innych, przydatnych operacji. Wszystkie one wigzg sie
z tym gtdbwnym zadaniem.

W tym podrozdziale nie bedziemy wiec mdéwic¢ o tym, co robi konstruktor (bo to wiemy),
ale jak moze to robi¢. Innymi stowy, dowiesz sie, jak wykorzystac rézne rodzaje
konstruktoréow do wiasnych szczytnych celéow programistycznych.

Mata powtorka

Najpierw jednak przyda sie mate powtdrzenie wiedzy, ktdéra bedzie nam teraz przydatna.
Przy okazji moze jg troche usystematyzujemy; powinno sie tez wyjasnic¢ to, co do tej
pory mogto by¢ dla ciebie ewentualnie niejasne.

Zaczniemy od przypomnienia konstruktorow, a pdzniej procesu inicjalizacji.

Zaawansowana obiektowosé 383

Konstruktory

Konstruktor jest specjalng metoda klasy, wywolywang podczas tworzenia obiektu. Nie
jest on, jak sie czasem bitednie sadzi, odpowiedzialny za alokacje pamieci dla obiektu,
lecz tylko za wstepne ustawienie jego pdl. Niejako przy okazji moze on aczkolwiek
podejmowac tez inne czynnosci, jak zwykta metoda klasy.

Cechy konstruktorow

Konstruktory tym jednak réznig sie od zwyktych metod, iz:

> nie posiadajg wartosci zwracanej. Konstruktor nic nie zwraca (bo i komu?...),
nawet typu pustego, czyli void. Zgoda, mozna sie spierac, ze wynikiem jego
dziatania jest obiekt, lecz konstruktor nie jest jedynym mechanizmem, ktory
bierze udziat w jego tworzeniu: liczy sie jeszcze alokacja pamieci. Dlatego tez
przyjmujemy, ze konstruktor nie zwraca wartosci. Wida¢ to zresztg w jego
deklaracji

> nie mogg by¢ wywotywane za posrednictwem wskaznika na funkcje. Przyczyna
jest prosta: nie mozna pobra¢ adresu konstruktora

> majg mndstwo ograniczen co do przydomkdéw w deklaracjach:

v" nie mozna ich czyni¢ metodami statymi (const)

v" nie mogg by¢ metodami wirtualnymi (virtual), jako ze sposdb ich
wywotywania w warunkach dziedziczenia jest zupetnie odmienny od obu
typédw metod: wirtualnych i niewirtualnych. Wspominatym o tym przy
okazji dziedziczenia.

v" nie mogg by¢ metodami statycznymi klas (static). Z drugiej strony
posiadajg unikalng ceche metod statycznych, jakg jest mozliwos¢
wywotania bez koniecznosci posiadania obiektu macierzystej klasy.
Konstruktory majg jednak dostep do wskaznika this na tworzony obiekt,
czego nie mozna powiedzie¢ o zwyktych metodach statycznych

> nie sg dziedziczone z klas bazowych do pochodnych

Wida¢ wiec, ze konstruktor to bardzo dziwna metoda: niby zwraca jaka$ wartos¢
(tworzony obiekt), ale nie deklarujemy mu wartosci zwracanej; nie moze byc¢ wirtualny,
ale w pewnym sensie jest; nie moze by¢ statyczny, ale posiada cechy metod
statycznych; jest funkcja, ale nie mozna pobrac jego adresu, itd. To wszystko wydaje sie
nieco zakrecone, lecz wiemy chyba, ze nie przeszkadza to wcale w normalnym uzywaniu
konstruktoréw. Zamiast wiec rozstrzasac fakty, czym te metody sg, a czym nie, zajmijmy
sie ich definiowaniem.

Definiowanie

W C++ konstruktor wyrdznia sie jeszcze tym, ze jego nazwa odpowiada nazwie klasy, na
rzecz ktorej pracuje. Przyktadowa deklaracja konstruktora moze wiec wygladac tak:

class CFoo

{
private:
int m nPole;

public:
CFoo (int nPole) { m_nPole = nPole; }
}:
Jak widzimy, nie podajemy tu zadnej wartosci zwracanej.
Przecigqzanie

Zwykte metody klasy takze mozna przecigzaé, ale w przypadku konstruktoréw dzieje sie
to nadzwyczaj czesto. Znowu postuzymy sie przyktadem wektora:

384 Zaawansowane C++

class CVector2D
{

private:
float m fX, m fY;

public:
// konstruktor, trzy sztuki
CVector2D() {m fX =m fY = 0.0£; }
CVector2D(float fDlugosc)
{ m fX = m fYy = fDlugosc / sqrt(2); }
CVectorzD(float fX, float fY) { m fX = £fX; m fY = fY; }
i

Definiujgc przecigzone konstruktory powinnismy, analogicznie jak w przypadku innych
metod oraz zwyktych funkcji, wystrzegac sie niejednoznacznosci. W tym przypadku
powstataby ona, gdyby ostatni wariant zapisac jako:

CVector2D(float £X = 0.0f, float fY = 0.0f);

Wéwczas mdgiby on by¢ wywotany z jednym argumentem, podobnie jak konstruktor
nr 2. Kompilator nie zdecyduje, ktéry wariant jest lepszy i zgtosi btad.

Konstruktor domysiny

Konstruktor domysliny (ang. default constructor), zwany tez domniemanym, jest to
taki konstruktor, ktory moze by¢ wywotany bez podawania parametrow.

W klasie powyzej jest to wiec pierwszy z konstruktoréw. Gdybysmy jednak catg trojke
zastgpili jednym:

CVectorzD (float fX = 0.0f, float fY = 0.0f) { m fX = £fX; m fY = fY; }

to on takze bytby konstruktorem domysinym. Ilo$¢ podanych do niego parametréw moze
by¢ bowiem réwna zeru. Wida¢ wiec, ze konstruktor domys$lny nie musi by¢ akurat tym,
ktéry faktycznie nie posiada parametrow w swej deklaracji (tzw. parametréw
formalnych).

Naturalnie, klasa moze miec¢ tylko jeden konstruktor domysiny. W tym przypadku
oznacza to, ze konstruktor w formie Cvector2D(), CVector2D(float fDlugosc = 0.0f)
czy jakikolwiek inny tego typu nie jest dopuszczalny. Powstataby bowiem
niejednoznacznosé, a kompilator nie wiedziatby, ktérg metode powinien wywotywac.

Za wygeneroowanie domysinego konstruktora moze tez odpowiada¢ sam kompilator.
Zrobi to jednak tylko wtedy, gdy sami nie podamy jakiegolwiek innego
konstruktora. Z drugiej strony, nasz wtasny konstruktor domysiny zawsze przestoni ten
pochodzacy od kompilatora. W sumie mamy wiec trzy mozliwe sytuacje:
> nie podajemy zadnego wtasnego konstruktora - kompilator automatycznie
generuje domysiny konstruktor publiczny
> podajemy wiasny konstruktor domysiny (jeden i tylko jeden) - jest on uzywany
> podajemy witasne konstruktory, ale zaden z nich nie moze by¢ domysiny, czyli
wywotywany przez parametréw - wéwczas klasa nie ma konstruktora domys$inego

Tak wiec tylko w dwdch pierwszych sytuacjach klasa posiada domysiny konstruktor. Jaka
jest jednak korzys$¢ z jego obecnosci? Otz jest ona w sumie niewielka:
> tylko obiekty posiadajace konstruktor domysiny mogg by¢ elementami tablic.
Podkreslam: chodzi o obiekty, nie o wskazniki do nich - te mogg by¢ taczone w
tablice bez wzgledu na konstruktory

Zaawansowana obiektowosé 385

> tylko klase posiadajacq konstruktor domys$iny mozna dziedziczy¢ bez dodatkowych
zabiegow przy konstruktorze klasy pochodnej

Te drugg zasade wprowadzitem przy okazji dziedziczenia, cho¢ nie wspominatem o owych
~dodatkowych zabiegach”. Bedg one trescig tego podrozdziatu.

Kiedy wywotywany jest konstruktor

Popatrzmy teraz na sytuacje, w ktérych pracuje knnstruktor. Nie jest ich zbyt wiele, tylko
kilka.

Niejawne wywotanie

Niejawne wywotanie (ang. implicit call) wystepuje wtedy, gdy to kompilator wywotuje
nasz konstruktor. Jest pare takich sytuacji:
» najprostsza: gdy deklarujemy zmienng obiektowq, np.:

CFoo Foo;

> w momencie tworzenia obiektu, ktéry zawiera w sobie pola bedgce zmiennymi
obiektowymi innych klas

> w chwili tworzenia obiektu klasy pochodnej jest wywotywany konstruktor klasy
bazowej

Jawne wywoftanie

Konstruktor mozemy tez wywotac jawnie. Mamy wtedy wywotanie niejawne (ang. explicit
call), ktére wystepuje np. w takich sytuacjach:

» przy konstruowaniu obiektu operatorem new

> przy jawnym wywotaniu konstruktora: nazwa klasy ([parametryl)

W tym drugim przypadku mamy tzw. obiekt chwilowy. ZwracaliSmy taki obiekt, kopiujac
go do rezultatu funkcji bodaj (), prezentujac funkcje zaprzyjaznione.

Inicjalizacja

Teraz powiemy sobie wiecej o inicjalizacji. Jest to bowiem proces scisle zwigzany z
aspektami konstruktorow, ktore oméwimy w tym podrozdziale.

Inicjalizacja (ang. initialization) jest to nadanie obiektowi wartosci poczatkowej w
chwili jego tworzenia.

Kiedy sie odbywa

W naturalny sposéb inicjalizacje wigzemy z deklaracjg zmiennych. Odbywa sie ona
jednak takze w innych sytuacjach.

Dwie kolejne zwigzane z funkcjami. Otz jest to:
> przekazanie wartosci poprzez parametr
> zwrocenie wartosci jako rezultatu funkcji

Wreszcie, ostatnia sytuacja zwigzana jest inicjalizacjq obiektow klas - poznamy jg za
chwile.

Jak wyglada

Inicjalizacja w ogdlnosci wyglada mniej wiecej tak:

typ zmienna = inicjalizator;

386 Zaawansowane C++

inicjalizator moze miec¢ jednak rézng postac¢, w zaleznosci od typu deklarowanej
zmiennej.

Inicjalizacja typow podstawowych

W przypadku zmiennych typow elementarnych sprawa jest najprostsza. W inicjalizatorze
podajemy po prostu odpowiednig wartos$¢, jaka zostanie przypisana temu typowi, np.:

unsigned nZmienna = 42;
float fZmienna = 10.5;

Zauwazmy, ze bardzo czesto inicjalizacja zwigzana jest niejawng konwersjg wartosci do
odpowiedniego typu. Tutaj na przykfad 42 (typu int) zostanie zamienione na typ
unsigned, zas 10.5 (double) na typ float.

Agregaty

Bardziej ztozone typy danych mozemy inicjalizowac¢ w specjalny sposéb, jako tzw.
agregaty. Agregatem jest tablica innych agregatow (wzglednie elementéw typow
podstawowych) lub obiekt klasy, ktora:

> nie dziedziczy z zadnej klasy bazowej

> posiada tylko sktadniki publiczne (public, ewentualnie bez specyfikatora w

przypadku typow struct)
> nie posiada funkcji wirtualnych
> nie posiada zadeklarowanego konstruktora

Agregaty mozemy inicjalizowac¢ w specjalny sposdb, podajac wartosci wszystkich ich
elementow (pdl). Znamy to juz tablic, np.:

int aTablica(13] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41 };

Podobnie moze to sie odbywac takze dla struktur (tudziez klas), spetniajacych cztery
podane warunki:

struct VECTOR3 { float x, vy, z; };
VECTOR3 vWektor = { 6.0f, 12.5f, 0.0f };

W przypadku bardziej skomplikowanych, ,zagniezdzonych” agregatéw, bedziemy mieli
wiecej odpowiednich par nawiaséw klamrowych:

VECTOR3 aWektory([3] = { { 0.0f, 2.0f, -3.0f },
{ -1.0£, 0.0£, 0.0f 1},
{ 8.0f, 6.0f, 4.0f } };

Mozna je aczkolwiek opusci¢ i napisac te 9 wartosci jednym ciggiem, ale przyznasz
chyba, ze w tej postaci inicjalizacja wyglada bardziej przejrzyscie. Po inicjalizatorze widac
przynajmniej, ze inicjujemy tablice tréj-, a nie dziewiecioelementowg.

Inicjalizacja konstruktorem

Ostatni sposob to inicjalizacja obiektu jego wiasnym konstruktorem - na przyktad:

std::string strZmienna = "Hmm...'";

Tak, to jest jak najbardziej taki wtasnie przyktad. W rzeczywistosci kompilator rozwinie
go bowiem do:

std::string strZmienna ("Hmm...");

Zaawansowana obiektowosé 387

gdyz w klasie std: :string istnieje odpowiedni konstruktor przyjmujacy jeden argument
typu napisowego'®’:

string(const char[]);

Konstruktor jest tu wiec wywotywany niejawnie - jest to tak zwany konstruktor
konwertujacy, ktéremu przyjrzymy sie blizej w tym rozdziale.

Listy inicjalizacyjne

W definicji konstruktora mozemy wprowadzi¢ dodatkowy element - tzw. liste
inicjalizacyjna:

nazwa klasy::nazwa klasy([parametry]) : lista inicjalizacyjna

{

ciato konstruktora

}

Lista inicjalizacyjna (ang. initializers’ list) ustala sposéb inicjalizacji obiektéw tworzonej
klasy.

Za pomocaq takiej listy mozemy zainicjalizowac pola klasy (i nie tylko) jeszcze przed
wywolaniem samego konstruktora. Ma to pewne konsekwencje i bywa przydatne w
okreslonych sytuacjach.

Inicjalizacja sktadowych
Dotychczas dokonywali$my inicjalizacji pol klasy w taki oto sposéb:

class CVector2D
{

private:
float m fX, m fY;

public:
CVector2D(float fX = 0.0f, float fY = 0.0f)
{ m £fX = £X; m fY = fY; }
i

Przy pomocy listy inicjalizacyjnej zrobimy to samo mniej wiecej tak:
CVector2D(float £X = 0.0f, float fY = 0.0f) : m fX(fX), m fY(fY) { }

Jaka jest roznica?

> konstruktor moze u nas by¢ pusty. To najprawdopodobniej sprawi, ze kompilator
zastosuje wobec niego jaka$ optymalizacje

» dziataniam £X(£X) im fY(£fY) (zwrdcmy uwage na sktadnie), majq charakter
inicjalizacji pol, podczas gdy przypisania w ciele konstruktora sg przypisaniami
wiasnie

> lista inicjalizacyjna jest wykonywana jeszcze przed wejsciem w ciato
konstruktora i wykonaniem zawartych tam instrukcji

Drugi i trzeci fakt jest bardzo wazny, poniewaz dajg nam one mozliwo$¢ umieszczania w
klasie takich pdl, ktére nie moga oby¢ sie bez inicjalizacji, a wiec:

107 W rzeczywistoéci ten konstruktor wyglada znacznie obszerniej, bo w gre wchodza jeszcze szablony z
biblioteki STL. Nic jednak nie statoby na przeszkodzie, aby tak to wiasnie wygladato.

388 Zaawansowane C++

statych (pdl z przydomkiem const)

statych wskaznikéw (typ* const)

referencji

obiektow, ktérych klasy nie majg domysinych konstruktoréw

VV VY

Lista inicjalizacyjna gwarantuje, ze zostang one zainicjalizowane we wiasciwym czasie -
podczas tworzenia obiektu:

class CFoo
{
private:
const float m fPole;
// nie moze byc¢: const float m fPole = 42; !!

public:

// konstruktor - inicjalizacja pola

CFoo() : m _fPole(42)

{

/* m_fPole = 42; // tez nie moze by¢ - za pdzno!

// m_fPole musi mie¢ wartos$¢ juz
// na samym poczatku wykonywania
// konstruktora */

}i

Mowitem tez, ze inicjalizacja przy pomocy listy inicjalizacyjnej jest szybsza od przypisan
w ciele konstruktora. Powinnismy wiec stosowac ja, jezeli mamy takg mozliwos¢, a
decyzja na ktorejs z dwdch rozwigzan nie robi nam réznicy. Zauwazmy tez, ze zapis na
liscie inicjalizacyjnej jest po prostu krotszy.

W liscie inicjalizacyjnej mozemy umieszczac¢ nie tylko ,czyste” state i argumenty
konstruktora, lecz takze zlozone wyrazenia - nawet z wywotaniami metod czy funkcji
globalnych. Nie ma wiec zadnych ograniczen w stosunku do przypisania.

Wywoftanie konstruktora klasy bazowej

Lista inicjalizacyjna pozwala zrobi¢ co$ jeszcze zanim wiasciwy konstruktor ruszy do
pracy. Pozwala to nie tylko na inicjalizacje sktadowych klasy, ktore tego wymagaja, ale
takze - a moze przede wszystkim - wywotanie konstruktorow klas bazowych.

Przy pierwszym spotkaniu z dziedziczeniem mowitem, ze klasa, ktéra ma byc¢
dziedziczona, powinna posiadac¢ bezparametrowy konstruktor. Byto to spowodowane
kolejnoscig wywotywania konstruktoréw: jak wiemy, najpierw pracuje ten z klasy
bazowej (poczynajac od najstarszego pokolenia), a dopiero potem ten z klasy pochodnej.
Kompilator musi wiec wiedzie¢, jak wywota¢ konstruktor z klasy bazowej. Jezeli nie
pomozemy mu w decyzji, to uprze sie na konstruktor domyslny - bezparametrowy.

Teraz bedziemy juz wiedzie¢, jak mozna pomdc kompilatorowi. Stuzy do tego wiasnie
lista inicjalizacyjna. Oprdcz inicjalizacji pol klasy mozemy tez wywotywac w niej
konstruktory klas bazowych. W ten sposdb zniknie konieczno$¢ posiadania przez nie
konstruktora domysinego.

Oto jak moze to wygladac:

class CIndirectBase
{
protected:
int m nPolel;

Zaawansowana obiektowosé 389

public:
CIndirectBase (int nPolel) : m nPolel (nPole) { }
i

class CDirectBase : public CIndirectBase

{
public:
// wywotanie konstruktora klasy bazowej
CDirectBase (int nPolel) : CIndirectBase (nPolel) { }
}:

class CDerived : public CDirectBase

{
protected:

float m fPoleZ;

public:
// wywolanie konstruktora klasy bezposrednio bazowej
CDerived (int nPolel, float fPole2)
: CDirectBase (nPolel), m fPole2 (fPole2) { }
}i

Zwréémy uwage szczegdlnie na klase cberived. Jej konstruktor wywotuje konstruktor z
klasy bazowej bezposredniej - cbhirectBase, lecz nie z posredniej - CIndirectBase. Nie
ma po prostu takiej potrzeby, gdyz za relacje miedzy konstruktorami klas ChirectBase i
CIndirectBase odpowiada tylko ta ostatnia. Jak zreszta widaé, wywotuje ona jedyny
konstruktor cIndirectBase.

Spojrzmy jeszcze na parametry wszystkich konstruktorow. Jak wida¢, zachowujg one
parametry konstruktoréw klas bazowych - zapewne dlatego, ze same nie potrafig podac
dla nich sensownych danych i bedg ich zada¢ od twércy obiektu. Uzyskane dane
przekazujg jednak do swoich przodkow; powstaje w ten sposdb swoista sztafeta, w ktorej
dane z konstruktora najnizszego poziomu dziedziczenia trafiajg w koncu do klasy
bazowej. Po drodze sg one przekazywane z rgk do rgk i ewentualnie zostawiane w polach
klas posrednich.

Wszystko to dzieje sie za posrednictwem list inicjalizacyjnej. W praktyce ich
wykorzystanie eliminuje wiec bardzo wiele sytuacji, ktére wymagajg definiowania ciata
konstruktora. Sam sie zresztg przekonasz, ze cate mndstwo pisanych przez ciebie klas
bedzie zawierato puste konstruktory, realizujace swoje funkcje wytacznie poprzez listy
inicjalizacyjne.

Konstruktory kopiujgce

Teraz porozmawiamy sobie o kopiowaniu obiektéw, czyli tworzeniu ich koncepcyjnych
duplikatéw. W C++ mamy na to dwie wydzielone rodzaje metod klas:
» konstruktory kopiujace, tworzace nowe obiekty na podstawie juz istniejacych
> przecigzone operatory przypisania, ktérych zadaniem jest skopiowanie stanu
jednego obiektu do drugiego, juz istniejgcego

Przecigzaniem operatorow zajmiemy sie dalszej czesci rozdziatu. W tej sekcji przyjrzymy
sie natomiast konstruktorom kopiujgcym.

O kopiowaniu obiektdw

Wydawatoby sie, ze nie ma nic prostszego od skopiowania obiektu. Okazuje sie jednak,
ze czesto nieodzowne sg specjalne mechanizmy temu stuzace... Sprawdzmy to.

390 Zaawansowane C++

Pole po polu

Gdy méwimy o kopiowaniu obiektéw i nie zastanawiamy sie nad tym dtuzej, to sadzimy,
ze to po prostu skopiowanie danych - zawartosci pdl - z jednego obszaru pamieci do
drugiego. Przyktadowo, spojrzmy na dwa wektory:

CVector2D vWektorl (l1.0£f, 2.0£f, 3.0f);
CVector2D vWektor2 = vWektorl;

Caltkiem stusznie oczekujemy, ze po wykonaniu kopiowania vilektorl do vifektor2 oba
obiekty bedg miaty identyczne wartosci pél. W przypadku takich struktur danych jak
wektory, jest to zupetnie wystarczajace. Dlaczego? Otéz wszystkie ich pola sg catkowicie
odrebnymi zmiennymi - nie majg zadnych koneksji z otaczajacym je $wiatem. Trudno
przeciez oczekiwac, zeby liczby typu float robity cokolwiek innego poza
przechowywaniem wartosci. Ich proste skopiowanie jest wiec wtasciwym sposobem
wykonania kopii wektora - czyli obiektu klasy cvector2b.

Samowystarczalne obiekty mogg by¢ kopiowane poprzez dostowne przepisanie wartosci
swoich pol.

Gdy to nie wystarcza...

Nie wszyscy obiekty podpadajq jednak pod ustanowiong wyzej kategorie. Czy pamietasz
moze klase cIintArray, ktdrg pokazatem, omawiajac wskazniki? Jesli nie, to spdjrz
jeszcze raz na jej definicje (usprawniong wykorzystaniem list inicjalizacyjnych):

class CIntArray
{
// domy$lny rozmiar tablicy
static const unsigned DOMYSLNY ROZMIAR = 5;

private:
// wskaznik na wtasciwa tablice oraz jej rozmiar
int* m pnTablica;
unsigned m_uRozmiar;

public:
// konstruktory
CIntArray () // domy$lny
m_uRozmiar (DOMYSLNY_ROZMIAR) ,
m pnTablica(new int [m uRozmiar]) { }

CIntArray(unsigned uRozmiar) // z podaniem rozmiaru tablicy
m_uRozmiar (uRozmiar) ;
m _pnTablica(new int [m uRozmiar]) {}

// destruktor
~CIntArray () { delete[] m pnTablica; }

// pobieranie 1 ustawianie elementdéw tablicy
int Pobierz (unsigned ulndeks) const
{ if (uIndeks < m uRozmiar) return m _pnTablica[ulndeks];
else return 0; }
bool Ustaw (unsigned uIndeks, int nWartosc)
{ if (uIndeks >= m uRozmiar) return false;
m _pnTablica[ulIndeks] = uWartosc;
return true; }

// inne

Zaawansowana obiektowosé 391

unsigned Rozmiar () const { return m uRozmiar; }

i
Pytanie brzmi: jak skopiowac tablice typu cIntArray?... Niby nic prostszego:

CIntArray aTablical;
CIntArray aTablica2 = aTablical; // hmm...

W rzeczywisto$ci mamy tu bardzo powazny btad. Metoda ,pole po polu” zupetnie nie
sprawdza sie w przypadku tej klasy. Problemem jest pole m_pnTablica: jesli skopiujemy
ten wskaznik, to otrzymamy nic innego, jak tylko kopie wskaznika. Bedzie sie on
odnosit do tego samego obszaru pamieci. Zamiast wiec dwdch fizycznych tablic mamy
tylko jedng, a obiekty Tablical i Tablica2 to jedynie kopie opakowan dla wskaznika na te
tablice. Odwotujac sie do danych, zapisanych w rzekomo odrebnych tablicach klasy
CIntArray, faktycznie bedziemy odnosic sie do tych samych elementéw! To powazny
btad, co gorsza niewykrywalny az do momentu wyprodukowania btednych rezultatéw
przez program.

Cos wiec trzeba z tym zrobi¢ - domyslasz sie, ze rozwigzaniem sg tytutowe konstruktory
kopiujace. Jeszcze zanim je poznamy, powiniene$ zapamietac:

Jezeli obiekt pracuje na jakims zewnetrznym zasobie (np. pamieci operacyjnej) i posiada
do niego odwotanie (np. wskaznik), to jego klase koniecznie nalezy wyposazy¢ w
konstruktor kopiujacy. Bez niego zostanie bowiem podczas kopiowanie obiektu zostanie
skopiowane samo odwotanie do zasobu (czyli wskaznik) zamiast stworzenia jego
duplikatu (czyli alokacji nowej porcji pamieci).

Trzeba tez wiedzie¢, ze koniecznos¢ zdefiniowania konstruktora kopiujacego zwykle
automatycznie pocigga za sobg wymog obecnosci przecigzonego operatora przypisania.

Konstruktor kopiujgcy

Zobaczmy zatem, jak dziatajq te cudowne konstruktory kopiujace. Jednak oprocz
zachwycania sie nimi poznamy takze sposéb ich uzycia (definiowania) w C++.

Do czego stuzy konstruktor kopiujgcy

Konstruktor kopiujacy (ang. copy constructor) stuzy do tworzenia nowego obiektu
danej klasy na podstawie juz istniejacego, innego obiektu tej klasy.

Konstruktor ten, jak wszystkie konstruktory, wkracza do akcji podczas kreowania nowego
obiektu klasy. Czym sie w takim razie rézni od zwyktego konstruktora?... Przypomnijmy
dwie sporne linijki z poprzedniego paragrafu:

CIntArray aTablical;
CIntArray aTablica2 = aTablical;

Pierwsza z nich to normalne stworzenie obiektu klasy cIntArray. Pracuje tu zwyktly
konstruktor, domyslny zreszta.
Natomiast druga linijka moze by¢ takze zapisana jako:

CIntArray aTablica2 = CIntArray(aTablical);
albo nawet:

CIntArray aTablica2 (aTablical);

392 Zaawansowane C++

W niej pracuje konstruktor kopiujacy, gdyz dokonujemy tu inicjalizacji nowego
obiektu starym.

Konstruktor kopiujacy jest wywotywany w momencie inicjalizacji nowotworzonego
obiektu przy pomocy innego obiektu tej samej klasy. Z tego powodu taki konstruktor
jest rowniez zwany inicjalizatorem kopiujacym.

Zaraz, jak to - przeciez nie zdefiniowaliSmy dotad zadnego specjalnego konstruktora! Jak
wiec mogt on by¢ uzyty w kodzie powyzej?

Owszem, to prawda, ale kompilator wykonat robote za nas. Jesli nie zdefiniujemy
wiasnego konstruktora kopiujacego, to klasa zostanie obdarzona jego najprostszym
wariantem. Bedzie on wykonywat zwykte kopiowanie wartosci - dla nas catkowicie
niewystarczajace.

Musimy zatem wiedzie¢, jak definiowac wiasne konstruktory kopiujace.

Konstruktor kopiujgcy a przypisanie - réznica mata lecz wazna

Mozesz spytac: a co kompilator zrobi w takiej sytuacji:

CIntArray aTablical;
CIntArray aTablica2;
aTablical = aTablica2; // a co to Jjest?...

Czy w trzeciej linijce takze zostanie wywotany konstruktor kopiujgacy?...

Otéz nie. Nie jest bowiem inicjalizacja (a wtedy przeciez pracuje konstruktor kopiujacy),
lecz zwykte przypisanie. Nie tworzymy tu nowego obiektu, lecz przypisujemy jeden juz
istniejacy obiekt do drugiego istniejgcego obiektu. Wobec braku aktu kreacji nie ma tu
miejsca dla zadnego konstruktora.

Zamiast tego kompilator postuguje sie operatorem przypisania. Jezeli go przecigzymy (a
nauczymy sie to robi¢ juz w tym rozdziale), zdefiniujemy wiasng akcje dla przypisywania
obiektow. W przypadku klasy cIntArray jest to niezbedne, bo nawet obecnosc
konstruktora kopiujgcego nie spowoduje, ze zaprezentowany wyzej kod bedzie
poprawny. Konstruktoréw nie dotyczy przeciez przypisanie.

Dlaczego konstruktor kopiujacy

Ale w takim razie po co nam konstruktor kopiujacy? Przeciez jego praca jest w wiekszosci
normalnych sytuacji rbwnowazna:

> wywotaniu zwyktego konstruktora (czyli normalnemu stworzeniu obiektu)

> wywotaniu operatora przypisania
Czy tak?

Coz, niezupetnie. W zasadzie zgadza sie to tylko dla takich obiektow, dla ktorych
wystarczajgce jest kopiowanie ,pole po polu”. Dla nich faktycznie nie potrzeba
specjalnego konstruktora kopiujacego. Jesli jednak mamy do czynienia z takg klasg, jak
CIntArray, konstruktor taki jest konieczny. Sposéb jego pracy bedzie sie réznit od
zwyktego przypisania - wezmy chocby pod uwage to, ze konstruktor pracuje na pustym
obiekcie, natomiast przypisanie oznacza zastapienie jednego obiektu drugim...

Doktadniej wyjasnimy te sprawe, gdy poznamy przecigzanie operatoréw. Teraz
zobaczmy, jak mozemy zdefiniowa¢ wtasny konstruktor kopiujacy.

Definiowanie konstruktora kopiujgcego

Sktadnie definicji konstruktora kopiujgcego mozemy zapisac tak:

nazwa_klasy::nazwa klasy([const] nazwa klasy& obiekt)

Zaawansowana obiektowosé 393

{

ciato konstruktora

}

Bierze on jeden parametr, bedacy referencja do obiektu swojej macierzystej klasy.
Obiekt ten jest podstawg kopiowania - inaczej moéwiac, jest to ten obiekt, ktérego kopie
ma zrobi¢ konstruktor. W inicjalizacji:

CIntArray aTablica2 = aTablical;

parametrem konstruktora kopiujgcego bedzie wiec aTablical, zas$ tworzonym obiektem-
kopig Tablica2. Widac to nawet lepiej w rdwnowaznej linijce:

CIntArray aTablica2 (aTablical);

Pozostaje jeszcze kwestia stdwka const w deklaracji parametru konstruktora. Cho¢
teoretycznie jest ona opcjonalna, to w praktyce trudno znalez¢ powod na uzasadnienie jej
nieobecnosci. Bez niej konstruktor kopiujacy mogtby bowiem potencjalnie
zmodyfikowac kopiowany obiekt!... Innym skutkiem bylaby tez niemoznosc
kopiowania obiektéw chwilowych.

Zapamietaj wiec:

Parametr konstruktora kopiujacego praktycznie zawsze musi by¢ stata referencja.

Inicjalizator klasy CintArray

Gdy wiemy juz, do czego stuzg konstruktory kopiujace i jak sie je definiuje, mozemy te
wiedze wykorzystac. Zdefiniujmy inicjalizator dla klasy, ktora tak bardzo go potrzebuje -
CIntArray.

Nie bedzie to trudne, jezeli zastanowimy sie wpierw, co ten konstruktor ma robi¢. Ot6z
powinien on zaalokowac¢ pamie¢ réwng rozmiarowi kopiowanej tablicy oraz przekopiowac
z niej dane do nowego obiektu. Proste? Zatem do dzieta:

#include <cmemory>
CIntArray::CIntArray(const CIntArray& aTablica)
{
// alokujemy pamiecé
m uRozmiar = aTablica.m uRozmiar;
m pnTablica = new int [m uRozmiar];
// kopiujemy pamieé ze stare] tablicy do nowej

memcpy (m _pnTablica, aTablica.m pnTablica, m uRozmiar * sizeof (int));

}
Po dodaniu tego prostego kodu tworzenie tablicy na podstawie innej, juz istniejgcej:

CIntArray aTablica2 = aTablical;

jest juz catkowicie poprawne.

Konwersje

Trzecim i ostatnim aspektem konstruktorow, jakim sie tu zajmiemy, bedzie ich
wykorzystanie do konwersji typow. Temat ten jest jednak nieco szerszy niz
wykorzystanie samych tylko konstruktorow, wiec omdéwimy go sobie w catosci.

394 Zaawansowane C++

Konwersje niejawne (ang. implicit conversions) mogg nam ufatwi¢ programowanie - jak
wiekszos¢ rzeczy w C++ :) W tym przypadku pozwalajg na przyktad uchroni¢ sie od
koniecznosci definiowania wielu przecigzonych funkcji.

Najlepsza ilustracjq bedzie tu odpowiedni przyktad. Akurat tak sie dziwnie sktada, ze
podreczniki programowania podajg tu najczesciej jakas klase ztozonych liczb. Nie warto
naruszac tej dobrej tradycji - zatem spojrzmy na takg oto klase liczby wymiernej:

class CRational
{
private:
// licznik 1 mianownik
int m nLicznik;
int m nMianownik;

public:
// konstruktor
CRational (int nLicznik, int nMianownik)
: m nLicznik(nLicznik), m nMianownik (nMianownik) { }

/=
// metody dostepowe
int Licznik () const { return m nLicznik; }
void Licznik (int nLicznik) { m nLicznik = nLicznik; }
int Mianownik () const { return m nMianownik; }
void Mianownik (int nMianownik)
{ m_nMianownik = (nMianownik != 0 ? nMianownik : 1); }

}i

Napiszemy teraz funkcje mnozaca przez siebie dwie takie liczby (czyli dwa utamki). Jesli
nie spaliSmy na lekcjach matematyki w szkole podstawowej, to bedzie ona wygladac
chociazby tak:

CRational Pomnoz (const CRational& Liczbal, const CRational& Liczba?2)

{

return CRational (Liczbal.Licznik() * Liczba2.Licznik(),
Liczbal.Mianownik () * Liczba2.Mianownik());
}
Mozemy teraz uzywac naszej funkcji na przyktad w ten sposob:

CRational Raz (1, 2), Dwa(2, 3);
CRational Wynik = Pomnoz (Raz, Dwa);

Niestety, jest pewna niedogodnos¢. Nie mozemy zastosowac np. takiego wywotania:
CRational Wynik = Pomnoz (Raz, 5);

Drugi argument nie moze by¢ bowiem typu int, lecz musi by¢ obiektem typu CRational.
To niezbyt dobrze: wiemy przeciez, ze 5 (i kazda liczba catkowita) jest takze liczbg
wymierng.

My to wiemy, ale kompilator nie. W tej sekcji poznamy zatem sposoby na informowanie
go o takich faktach - czyli wtasnie niejawne konwersje.

Sposoby dokonywania konwersji

Sprecyzujmy, o co nam wtasciwie chodzi. Ot6z chcemy, aby liczby catkowite (typu int)
mogty by¢ przez kompilator interpretowane jako obiekty naszej klasy CRational.

Zaawansowana obiektowosé 395

Fachowo moéwimy, ze chcemy zdefiniowac sposob konwersji typu int na typ CRational.

Wiasnie o takich konwersjach bedziemy méwi¢ w niniejszym paragrafie. Poznamy dwa
sposoby na realizacje automatycznej zamiany typow w C++.

Konstruktory konwertujgce
Pierwszym z nich jest tytutowy konstruktor konwertujacy.

Konstruktor z jednym obowigzkowym parametrem

Konstruktor konwertujacy moze przyjmowac doktadnie jeden parametr
okreslonego typu i wykonywac jego konwersje na typ swojej klasy.

Jest to ten mechanizm, ktérego aktualnie potrzebujemy. Zdefiniujmy wiec konstruktor
konwertujacy w klasie CRational:

CRational::CRational (int nLiczba)
: m nLicznik(nLiczba), m nMianownik (1) {1}

Od tej pory wywotanie typu:
CRational Wynik = Pomnoz (Raz, 5);

albo nawet:

CRational Wynik Pomnoz (14, 5);
jest catkowicie poprawne. Kompilator wie bowiem, w jaki sposéb zamienic¢ , obiekt” typu
int na obiekt typu CRational.

To samo osiggna¢ mozna nawet prosciej. Zasada ,jeden argument” dla konstruktora
konwertujacego dziata tak samo jak ,brak argumentéw” dla konstruktora domysinego. A
zatem dodatkowe argumenty mogg by¢, lecz muszg mie¢ wartosci domysine.

W naszej klasie mozemy wiec po prostu zmodyfikowac¢ normalny konstruktor:

CRational (int nLicznik, int nMianownik = 1)
: m nLicznik(nLicznik), m nMianownik (nMianownik) { }

W ten sposob za jednym zamachem mamy normalny konstruktor, jak tez konwertujacy.
Ba, mozna pdjs¢ nawet jeszcze dalej:

CRational (int nLicznik = 0, int nMianownik = 1)
: m nLicznik(nLicznik), m nMianownik (nMianownik) {1}

Ten konstruktor moze by¢ wywotany bez parametrow, z jednym lub dwoma. Jest on wiec
jednoczesnie domysiny i konwertujgcy. Duzy efekt matym kosztem.

Konstruktor konwertujgcy nie musi koniecznie definiowa¢ konwersji z typu
podstawowego. Moze wykorzystywac dowolny typ. Popatrzmy na to:

class CComplex
{
private:
// cze$é rzeczywista 1 urojona
float m fRe;
float m fIm;

public:

396 Zaawansowane C++

// zwykly konstruktor (ktdéry jest rdéwniez domyslny
// oraz konwertujacy z float do CComplex)
CComplex (float fRe = 0, float fIm = 0)

m_fRe (fRe), m fIm(fIm) { }

// konstruktor konwertujacy z CRational do CComplex
CComplex (const CRational& Wymierna)
m_ fRe (Wymierna.Licznik ()
/ (float) Wymierna.Mianownik()),

m fIm(0) {1
[mm e
// metody dostepowe
float Re () const { return m fRe; }
void Re(float fRe) { m fRe = fRe; }
float Im() const { return m fIm; }
volid Im(float fIm) {m fIm = fIm; }

}i

Klasa ccomplex posiada zdefiniowane konstruktory konwertujgce zaréwno z float, jak i
CRational. Poza tym, ze odpowiada to oczywistemu faktowi, iz liczby rzeczywiste i
wymierne sg takze zespolone, pozwala to na napisanie takiej funkcji:

CComplex Dodaj (const CComplexé& Liczbal, const CComplex& Liczba?l)
{
return CComplex (Liczbal.Re() + Liczba2.Re()
Liczba2.Im() + Liczba2.Im());
}

oraz wywotywanie jej zarowno z parametrami typu CComplex, jaki CRational i float:

CComplex Wynik;

Wynik = Dodaj (CComplex (1, 5), 4);

Wynik = Dodaj (CRational (10, 3), CRational(l, 3));
Wynik Dodaj (1, 2);

// itd.

Mozna zapytac: ,Czy konstruktor konwertujacy z float do CComplex jest konieczny?
Przeciez jest juz jeden, z float do CRational, i drugi - Z CRational do CComplex. Oba
robig w sumie to, co trzeba!” Tak, to bytaby prawda. W sumie jednak jest to bardzo
gteboko ukryte. Istotg niejawnych konwersji jest wtasnie to, ze sg niejawne: programista
nie musi sie o nie martwi¢. Z drugiej strony oznacza to, ze pewien kod jest wykonywany
,Za plecami” kodera. Przy jednej niedostownej zamianie nie jest to raczej problemem, ale
przy wiekszej ich liczbie trudno bytoby zorientowac sie, co tak naprawde jest zamieniane
w CO.

Oprécz tego jest jeszcze bardziej prozaiczny powdd: gdyby pozwalac¢ na wielokrotne
konwersje, kompilator musiatby sprawdza¢ mnéstwo potencjalnych drég konwersiji.
Znacznie wydtuzytoby to czas kompilacji.

Nie jest wiec dziwne, ze:

Kompilator C++ dokonuje zawsze co najwyzej jednej niejawnej konwersji.

Nie jest przy tym wazne, czy do konwersji stosujemy konstruktory czy tez operatory
konwersji, ktére poznamy w nastepnym akapicie.

Zaawansowana obiektowosé 397

Stowko explicit

DowiedzieliSmy sie, ze kazdy jednoargumentowy konstruktor definiuje konwersje
typu swojego parametru do typu klasy konstruktora. W ten sposdb mozemy okresla¢, jak
kompilator ma zamienic jakis typ (na przyktad wbudowany lub inng klase) w typ naszych
obiektdéw.

tatwo przeoczy¢ fakt, ze tq drogg jednoargumentowy konstruktor (ktéry jest w sumie
konstruktorem jak kazdy inny...) nabiera howego znaczenia. Juz nie tylko inicjalizuje
obiekt swej klasy, ale i podaje sposdb konwersji.

Dotad moéwiliSmy, ze to dobrze. Nie zawsze jednak tak jest. Czasem piszemy w klasie
jednoparametrowy konstruktor wcale nie po to, aby ustali¢ jakgkolwiek konwersje.
Nierzadko bowiem tego wymaga logika naszej klasy. Spdjrzmy chociazby na konstruktor
Z CIntArray.

CIntArray (unsigned uRozmiar)
: m _uRozmiar (uRozmiar) ;
m pnTablica(new int [m uRozmiar]) { 1}

Przyjmuje on parametr typu int - rozmiar tablicy. Niestety (tak, niestety!) jest tutaj
takze konstruktorem konwertujagcym z typu int na typ CIntArray. Z tegoz powodu

zupelnie poprawne staje sie bezsensowne przypisanie!®® w rodzaju:
CIntArray aTablica;
aTablica = 10; // 0j¢! Tworzymy lO0-elementowa tablice!

W powyzszym kodzie tworzona jest tablica o odpowiedniej liczbie elementéw i
przypisywana zmiennej Tablica. Na pewno nie mozemy na to pozwoli¢ - takie
przypisanie to przeciez ewidentny btad, ktéry powinien zosta¢ wykryty przez kompilator.

Jednak musimy mu o tym powiedzie¢ i w tym celu postugujemy sie stdwkiem explicit
(‘jawny’):

explicit CIntArray(unsigned uRozmiar)
: m uRozmiar (uRozmiar) ;
m pnTablica(new int [m uRozmiar]) {1}

Gdy opatrzymy nim deklaracje konstruktora jednoargumentowanego, bedzie to znakiem,
iz nie chcemy, aby wykonywat on niejawng konwersje. Po zastosowaniu tego manewru
sporny kod nie bedzie sie juz kompilowat. I bardzo dobrze.

Jezeli potrzebujesz konstruktora jednoparametrowego, ktory bedzie dziatat
wylacznie jako zwykly (a nie tez jako konwertujacy), umies¢ w jego deklaracji stowo
kluczowe explicit.

Jak wiemy konstruktor konwertujgcy moze mie¢ wiecej argumentéw, jesli ma tez
parametry opcjonalne. Do takich konstruktorow réwniez mozna stosowac explicit, jesli
jest to konieczne.

Operatory konwersji

Teraz poznamy drugi sposob konwersji typéw - funkcje (operatory) konwertujace.

108 A takze podobna do niego inicjalizacja oraz kazde uzycie liczby int w miejsce tablicy cIntArray.

398 Zaawansowane C++

Stwarzamy sobie problem

Zostawmy wyzszg matematyke liczb zespolonych w klasie CComplex i zajmijmy sie klasg
CRational. Jak wiemy, reprezentowane przez nig liczby wymierne sg takze liczbami
rzeczywistymi. Byloby zatem dobrze, abysmy mogli przekazywac je w tych miejscach,
gdzie wymagane sg liczby zmiennoprzecinkowe, np.:

float abs(float x);
float sqgrt(float x);
// itd.

Niestety, nie jest to mozliwe. Obecnie musimy sami dzieli¢ licznik przez mianownik, aby
otrzymac liczbe typu float z typu CRational. Dlaczego jednak kompilator nie miatby
tutaj poméc? Zdefiniujmy niejawng konwersje z typu CRational do float!

W tym momencie napotkamy powazny problem. Konwersja do typu CRational byta jak
najbardziej mozliwa poprzez konstruktor, natomiast zamiana z typu CRational na float
nie moze by¢ juz tak zrealizowana. Nie mozemy przeciez doda¢ konstruktora
konwertujgcego do ,klasy” float, bo jest to elementarny typ podstawowy. Zresztg,
nawet jesli nasz docelowy typ bytby klasa, to nie zawsze bytoby to mozliwe. Konieczna
bytaby bowiem modyfikacja definicji tej klasy, a to jest mozliwe tylko dla naszych
witasnych klas.

Tak wiec konstruktory konwertujgce na niewiele nam sie zdadzg. Potrzebujemy innego
sposobu...

Definiowanie operatora konwersji

Tq nowg metodq jest operator konwersji. Metodg w sensie dostownym - musimy bowiem
zdefiniowac go jako metode klasy CRational:

CRational::operator float()

{

return m nLicznik / static cast<float>(m nMianownik);

}

Ogodlnie wiec funkcja w postaci:
klasa::operator typ()
{ ciato funkcji

}

definiuje sposéb, w jaki dokonywna jest konwersja klasy do podanego typu. Zatem:

Operatorow konwersji mozemy uzywac, aby zdefiniowaé niejawng konwersje typu
swojej klasy na inny, dowolny typ.

Zyskujemy to, na czym nam zalezato. Odtad mozemy swobodnie przekazywac liczby
wymierne w tych miejscach, gdzie funkcje zadajq liczb rzeczywistych:

CRational Liczba (3, 4);
float fPierwiastek = sqgrt(Liczba);

Jest to zastuga operatorow konwersji.

Operatory konwersji, w przeciwienstwie do konstruktoréw, sg dziedziczone i mogg by¢
metodami wirtualnymi.

Zaawansowana obiektowosé 399

Wybdr odpowiedniego sposobu

Mamy wiec dwa sposoby konwersji typow. Nasuwa sie pytanie: ktory wybrac? Pytanie to
jest zasadne, bowiem jesli w konwersji dwdch typdw uzyjemy obu drég (konstruktor oraz
operator), to powstanie wieloznacznos¢. Gdy kompilator bedzie zmuszony siegnaé¢ po
konwersje, nie bedzie mogt zdecydowac sie na zaden sposdb i zaprotestuje.

Aby odpowiedzie¢ na to wazne pytanie, przypomnijmy, jak dziatajg obie metody
konwersji:
» konstruktor konwertujacy dokonuje zamiany innego typu w obiekt naszej klasy
> operator konwersji zamienia obiekt naszej klasy w obiekt innego typu

konstruktory konwertujgce

r’/—\-\.

[nasza klasa J @

operatory konwersji

Schemat 38. Sposoby dokonywania niejawnych konwersji w C++

Wszystko zalezy wiec od tego, ktory z typow - zrédiowy, docelowy - jest klasg, do ktorej
definicji mamy dostep:
> jezeli jesteémy w posiadaniu definicji klasy docelowej, to mozemy zastosowac
konstruktor konwertujacy
> jesli mamy dostep do klasy zrodtowej, mozliwe jest zastosowanie operatora
konwersji

W przypadku gdy oba warunki sg spetnione (tzn. chcemy wykonac¢ konwersje z
wiasnorecznie napisanej klasy do innej wtasnej klasy), wybor sposobu jest w duzej
mierze dowolny. Trzeba jednak pamieta¢, ze:
> konstruktory nie sg dziedziczone, wiec w jesli chcemy napisac konwersje typu do
klasy pochodnej, potrzebujemy osobnego konstruktora w tej klasie
» konstruktory nie sg metodami wirtualnymi, w przeciwienstwie do operatorow
konwersji
» argument konstruktora konwertujgcego musi miec typ Scisle dopasowany do
zadeklarowanego

W sumie wiec wnioski z tego sq takie (czytaj: przechodzimy do sedna :D):

> chcac wykonad konwersje typu podstawowego (lub klasy bibliotecznej) do typu
witasnej klasy, stosujemy konstruktor konwertujacy

» chcac dokonac¢ konwersji typu wiasnej klasy do typu podstawowego (lub klasy
bibliotecznej), wykorzystujemy operator konwersji

> definiujac konwersje miedzy dwoma wiasnymi klasami mozemy wybraé, kierujac
sie innymi przestankami, jak np. wptywem dziedziczenia na konwersje czy nawet
kolejnoscig definicji obu klas w pliku nagtéwkowym

Xk k

Zbiorem dobrych rad odnos$nie stosowania réznych typéw konwersji zakonczyliSmy
omawianie zaawansowanych aspektéw konstruktorow w C++.

400 Zaawansowane C++

Przeciaqzanie operatorow

W tym podrozdziale przyjrzymy sie unikalnej dla C++, a jednoczes$nie wspaniatej
technice przecigzania operatorow. To jedno z najwiekszych osiggnie¢ tego jezyka w
zakresie ufatwiania programowania i uczynienia go przyjemniejszym.

Zanim jednak poznamy te cudownos¢, czas na krétkg dygresje :) Jak juz wielokrotnie
wspomniatem, C++ jest cztonkiem bardzo licznej dzisiaj rodziny jezykow obiektowych.
Takie jezyki charakteryzuje mozliwos¢ tworzenia wtasnych typéw danych - klas -
zawierajgcych w sobie (kapsutkujacych) pewne dane (pola) oraz pewne dziatania
(metody). Na tym polega OOP.

Zaden jezyk programowania nie moze sie jednak oby¢ bez mniej lub bardziej
rozbudowanego wachlarza typow podstawowych. W C++ mamy ich mndstwo, z czego
wiekszos$¢ jest spadkiem po jego poprzedniku, jezyku C.

Z jednej strony mamy wiec typy wbudowane (w C++: int, float, unsigned, itd.), a
drugiej typy definiowane przez uzytkownika (struktury, klasy, unie). W jakim stopniu sg
one do siebie podobne?...

Pomyslisz: ,Gtupie pytanie! One przeciez wcale nie sg do siebie podobne. Typow
podstawowych uzywamy przeciez inaczej niz klas, i na odwrét. Nie ma mowy o jakims
wiekszym podobienstwie - moze poza tym, ze dla wszystkich typéw mozemy deklarowac
zmienne i parametry funkcji... No i moze jeszcze wystepujq podobne konwersje...” Jezeli
faktycznie tak pomyslates, to nie bedziesz zdziwiony, ze twdrcy wielu jezykow
obiektowych takze przyjeli takg strategie. W jezykach Java, Object Pascal (Delphi), Visual
Basic, PHP i jeszcze wielu innych, typy definiowane przez uzytkownika (klasy) sq jakby
wydzielong czescig jezyka. Maja niewiele punktéw wspdlnych z typami wbudowanymi,
poza tymi naprawde niezbednymi, ktore sam wyliczytes.

Jednak wcale nie musi tak by¢ i C++ jest tego najlepszym przyktadem. Autorzy tego
jezyka (z Bjarne Stroustrupem na czele) dazyli bowiem do tego, aby definiowane przez
programiste typy byty funkcjonalnie jak najbardziej zblizone do typow wbudowanych. Juz
sam fakt, ze mozemy tworzy¢ obiekty na dwa sposoby - jak normalne zmienne oraz
poprzez new - dobrze o tym swiadczy. Mozliwos$¢ zdefiniowania konstruktoréow
kopiujacych i konwersji Swiadczy o tym jeszcze bardziej.

Ale ukoronowaniem tych wysitkdw jest obecno$¢ w C++ mechanizmu przeciazania
operatoréow.

Czy wiec jest ten wspaniaty mechanizm?

Przeciazanie operatoréw (ang. operator overloading), zwane tez ich
przetadowaniem, polega na nadawaniu operatorom nowych znaczen - tak, aby mogty
by¢ one wykorzystane w stosunku do obiektéow zdefiniowanych klas.

Polega to wiec na napisaniu takiego kodu, ktéry sprawi, ze wyrazenia w rodzaju:

f (b==2c) {/* ... %/}

beda poprawne nie tylko wtedy, gdy a, b, c i d bedg zmiennymi, nalezacymi do typow
wbudowanych. Po przecigzeniu operatoréw (tutaj: +, =, /=i ==) dla okreslonych klas
bedzie mozna pisac takie wyrazenia: zawierajgce operatory i obiekty naszych klas. W ten
sposdb zdefiniowane przez nas klasy nie beda sie réznity praktycznie niczym od typow
wbudowanych.

Zaawansowana obiektowos¢ 401

Dlaczego to jest takie cudowne?... By sie o tym przekonac¢, przypomnijmy sobie
zdefiniowang ongis klase liczb wymiernych - cCRational. NapisaliSmy sobie wtedy
funkcje, ktora zajmowata sie ich mnozeniem. Uzywalismy jej w ten sposdb:

CRational Liczbal(1l, 2), // 1/2, czyli pbdt :)
Liczba2 (5, 1), // 5
Wynik; // zmienna na wynik

Wynik = Pomnoz (Liczbal, Liczba2;

Nie wygladato to zachwycajaco, szczegdlnie jesli uswiadomimy sobie, ze dla typéw
wbudowanych ostatnia linijka mogtaby prezentowac sie tak:

Wynik = Liczbal * Liczba2;
Nie dos¢, ze krécej, to jeszcze tadniej... Czemu my tak nie mozemy?!

Alez tak, wtasnie mozemy! Przecigzanie operatorow pozwala nam na to! Znajac te
technike, mozemy zdefiniowac nowe znaczenie dla operator mnozenia, czyli *. Nauczymy
go pracy z liczbami wymiernymi - obiektami naszej klasy CRational - i od tego momentu
pokazane wyzej mnozenie bedzie dla nich poprawne! Co wiecej, bedzie dziatato zgodnie
Z naszymi oczekiwaniami: tak, jak funkcja pomnoz (). Czyz to nie piekne?

Na takie wspaniatosci pozwala nam przecigzanie operatoréw. Na co wiec jeszcze czekamy
- zobaczmy, jak to sie robi!... Hola, nie tak predko! Jak sama nazwa wskazuje, technika
ta dotyczy operatoréw, a doktadniej: wyposazania ich w nowe znaczenia. Zanim sie za to
zabierzemy, warto bytoby zna¢ przedmiot naszych manipulacji. Powinnismy zatem
przyjrzec sie operatorom w C++: ich rodzajom, wbudowanej funkcjonalnosci oraz innym
wiasciwosciom.

I to wiasnie zrobimy najpierw. Tylko nie narzekaj :P

Cechy operatorow

Obok stéw kluczowych i typdw, operatory sg podstawowymi elementami kazdego jezyka
programowania wysokiego poziomu. Przypomnijmy sobie, czym jest operator.

Operator to jeden lub kilka znakéw (zazwyczaj niebedacych literami), ktdre majq
specjalne znaczenie w jezyku programowania.

Dotychczas uzywalismy bardzo wielu operatoréw - niemal wszystkich, jakie wystepujg w
C++ - ale dotad nie zajelismy sie nimi catosciowo. Poznate$ wprawdzie takie pojecia jak
operatory unarne, binarne, priorytety, jednak teraz bedzie zasadne ich powtdrzenie.

Zbierzmy wiec tutaj wszystkie cechy operatoréw wystepujacych w C++.

Liczba argumentow

Operator sam w sobie nie moze wykonywac¢ zadnej czynnosci (to rézni go od funkcji),
gdyz potrzebuje jakichs$,parametréw”. W tym przypadku moéowimy zwykle o argumentach
operatora - operandach.

Operatory dzielg sie z grubsza na dwie duze grupy, jezeli chodzi o liczbe swoich
argumentow. Sg to operatory jedno- i dwuargumentowe. W C++ mamy jeszcze operator
warunkowy ?:, uznawany za ternarny (tréojargumentowy), ale jest on wyjatkiem, ktorym
nie nalezy zaprzatac sobie gtowy.

402 Zaawansowane C++

Operatory jednoargumentowe

Te operatory fachowo nazywa sie unarnymi (ang. unary operators). Stanowig one
catkiem liczng rodzine, ktéra charakteryzuje sie jednym: kazdy jej cztonek wymaga do
dziatania jednego argumentu. Stad nazwa tego rodzaju operatorow.

Najbardziej znanym operatorem unarnym (nawet dla tych, ktorzy nie majq pojecia o
programowaniu!) jest zwykty minus. Formalnie nazywa sie go operatorem negacji albo
zmiany znaku, a dziata on w ten sposob, ze zmienia jakas liczbe na liczbe do niej
przeciwng:

int nA = 5;
int nB = -nA; // nB ma warto$é -5 (a nA nadal 5)
Podobnie dziatajg operatory ! i ~, z tym ze operujgq one (odpowiednio): na wyrazeniach

logicznych i na ciggach bitow. Istniejg tez operatory jednoargumentowane o zupetnie
innej funkcjonalnosci; wszystkie je przypomnimy sobie w nastepnej sekcji.

Operatory dwuargumentowe

Jak sama nazwa wskazuje, te operatory przyjmujg po dwa argumenty. Nazywamy je
binarnymi (ang. binary operators). Nie ma to nic wspdlnego z binarng reprezentacjq
danych, lecz po prostu z iloscig operanddw.

Typowymi operatorami dwuargumentowymi sg operatory arytmetyczne, czyli popularne
»znaki dziatan”:

int nA = 8, nB = -2, nC;

nC = nA + nB; // 6
nC = nA - nB; // 10
nC = nA * nB; // -16
nC = nA / nB; // -4

Mamy tez operatory logiczne oraz bitowe, Warto wspomnie¢ (o czym bedziemy jeszcze
bardzo szeroko méwic), ze przypisanie (=) to takze operator dwuargumentowy, dos¢
specyficzny zreszta.

Priorytet

Operatory mogg wystepowac w ztozonych wyrazeniach, a ich argumenty moga pokrywac
sie. Oto prosty przykifad:

o\

int nA = nB * 4 + 18 / nC - nD 3;

Zapewne wiesz, ze w takiej sytuacji kompilator kieruje sie priorytetami operatorow
(ang. operators’ precedence), aby rozstrzygnac problem. Owe priorytety to nic innego,
jak swoista ,kolejnos¢ dziatan”. Rézni sie ona od tej znanej z matematyki tylko tym, ze w
C++ mamy takze inne operatory niz arytmetyczne.

Dla znakéw +, -, *, /, $ priorytety sg aczkolwiek dokfadnie takie, jakich nauczyliSmy sie
w szkole. Wyrazenia zawierajace te operatory mozemy wiec pisa¢ bez pomocy nawiaséw.
Jezeli jednak sg one skomplikowane, albo uzywamy w nich takze innych rodzajow
operatorow, wowczas konieczne nalezy pomagac sobie nawiasami. Lepiej przeciez
postawi¢ po kilka znakéw wiecej niz co chwila siega¢ do stosownej tabelki pierwszenstwa.

Zaawansowana obiektowosé 403

tgcznosc

Gdy w wyrazeniu pojawi sie obok siebie kilka operatoréw tego samego rodzaju, majg one
oczywiscie ten sam priorytet. Trzeba jednak nadal rozstrzygnac¢, w jakiej kolejnosci
dziatania bedg wykonywane.

Tutaj pomaga tacznos¢ operatorow (ang. operators’ associativity). Okresla ona, od
ktérej strony bedg obliczane wyrazenia (lub ich fragmenty) z sgsiedztwem operatoréw o
tych samych priorytetach. Mamy dwa rodzaje tgcznosci:
> lacznosc¢ lewostronna (ang. left-to-right associativity), ktdra rozpoczyna
obliczenia od lewej strony i wykorzystuje czastkowe wyniki jako lewostronne
argumenty dla kolejnych operatoréw
> lacznos$c¢ prawostronna (ang. right-to-left associativity) - tutaj obliczenia sq
wykonywane, poczynajac od prawej strony. Czesciowe wyniki sq nastepnie
uzywane jako prawostronne argumenty kolejnych operatoréow

Najlepiej zilustrowac¢ to na przyktadzie. Jezeli mamy takie oto wyrazenie:

nA + nB + nC + nD + nE + nFF + nG + nH

to oczywiscie priorytety wszystkich operatordéw sg te same. Zaczyna dominowac tacznosg,
ktéra w przypadku operatorow arytmetycznych (oraz im podobnych, jak bitowe, logiczne
i relacyjne) jest lewostronna. To naturalne, po przeciez takie obliczenia réwniez
przeprowadzalibysmy ,od lewej do prawej”.

Kompilator bedzie wiec obliczat powyzsze wyrazenie w ten sposéb:

((((((nA + nB) + nC) + nD) + nE) + nF) + nG) + nH

Zauwazmy, ze akurat w przypadku plusa facznos¢ nie ma znaczenia, bo dodawanie jest
przeciez przemienne. Gdyby jednak chodzito o odejmowanie czy dzielenie, wéwczas
bytoby to bardzo wazne.

tacznosé prawostronna dotyczy na przyktad operatora przypisania:
nA = nB = nC = nD = nE = nF

Innymi stowy, powyzsze wyrazenie zostanie potraktowane tak:
nA = (nB = (nC = (nD = (nE = nF))))

Oznacza to, ze kompilator wykona najpierw skrajnie prawe przypisanie, a zwrécong przez
to wyrazenie wartos¢ (rowng wartosci przypisywanej) wykorzysta w kolejnym
przypisaniu, i tak dalej. W sumie wiec wszystkie zmienne beda potem réwne zmiennej
nk.

Operatory w C++

Jezyk C++ posiada cate multum réznych operatorow. Pod tym wzgledem jest chyba
rekordzista wérdd wszystkich jezykéw programowania. Swiadczy to zaréwno o jego
wielkich mozliwosciach, jak i sporej elastycznosci.

Co ciekawe, dotad praktycznie nie ma jednoznacznej definicji operatora w tym jezyku, a
w wielu zrédtach mozna znalez¢ nieco réznigce sie miedzy sobg zestawy operatoréow. Sa
to jednak gtownie niuanse, ktorych rozstrzyganie dla przecietnego programisty nie jest
wcale istotne.

404 Zaawansowane C++

W tej sekcji powtdrzymy sobie i uzupetnimy wiadomosci na temat wszystkich operatorow
C++ - przynajmniej tych, co do ktérych nie ma watpliwosci, ze faktycznie sg
operatorami. Podzielimy je sobie na kilka kategorii.

Operatory arytmetyczne

Juz na samym poczatku zetkneliSmy sie z operatorami arytmetycznymi. Nic dziwnego, to
przeciez najprostszy i ,najbardziej naturalny” rodzaj operatorow. Znajg go wszyscy
absolwenci przedszkola.

Unarne operatory arytmetyczne

Mamy dwa podstawowe jednoargumentowe operatory arytmetyczne:

» operator zachowania znaku, czyli +. On praktycznie nie robi nic - zachowuje
znak liczby, przy ktérej stoi. Obecny w C++ chyba tylko dla zgodnosci z zasadami
matematyki

» operator zmiany znaku, czyli -. Zamienia liczbe na przeciwng, zupetnie tak jak w
arytmetyce

Troche przykfadow:
int nA = 7

int nB = +nA; //
int nB -NA; // =1

Mysle, Ze jest to na tyle oczywiste, ze nie wymaga dalszych komentarzy.

Inkrementacja i dekrementacja

Specyficzne dla C++ sg operatory inkrementacji i dekrementacji. W odrdznieniu od
wiekszosci operatorow, modyfikuja one swoj argument. Doktadniej mowiac, dodajq
one (inkrementacja) lub odejmuja (dekrementacja) jedynke do (od) swego operandu.

Operatorem inkrementacji jest ++, za$ dekrementacji --. Oto przykifad:

int nX = 9;
++nX; // teraz nX == 10
--nX; // teraz znowu nX ==

Powyzszy kod mozna tez zapisac jako:

nX++;
nY++;

Jezeli ignorujemy warto$¢ zwracang przez te operatory, to uzycie ktérejkolwiek wersji
(zwanej, jak wiesz, prein/dekrementacjg oraz postin/dekrementacjg) nie sprawa roznicy
- przynajmniej dla typéw podstawowych.

Gdy natomiast zapisujemy gdzie$ zwracang wartos¢, to powinnismy pamietac o réznicy
miedzy znaczeniem operatoréw w obu miejscach (na poczatku i na koncu zmiennej).
MowiliSmy juz o tym, ale przypomne jeszcze raz:

Prein/dekrementacja zwraca wartos$¢ juz zwiekszona (zmniejszong) o 1.
Postin/dekrementacja zwraca oryginalng wartosc.

Wariant postfiksowy jest generalnie bardziej kosztowny, poniewaz wymaga
przygotowania tymczasowego obiektu, w ktérym zostanie zachowana pierwotna wartosc
w celu jej pdzniejszego zwrotu. Dla typdw podstawowych to kwestia kilku bajtow, ale dla
klas zdefiniowanych przez uzytkownika (ktére mogaq przecigza¢ oba operatory - czym sie
rzecz jasna zajmiemy za momencik) moze to by¢ spora réznica.

Zaawansowana obiektowosé 405

Binarne operatory arytmetyczne

Przypomnijmy, ze w C++ mamy piec takich operatoréw, zwanych popularnie ,,znakami
dziatan”:
> operator dodawania - plus (+). Dodaje dwie liczby do siebie
> operator odejmowania - minus (-). Zwraca wynik odejmowania drugiego
argumentu od pierwszego
» operator mnozenia - gwiazdka (*). Mnozy oba argmenty
> operator dzielenia - slash (/). W zaleznosci od typu swoich operandéw moze albo
wykonywac dzielenie catkowitoliczbowe (gdy oba argumenty sg liczbami
catkowitymi), albo zmiennoprzecinkowe
> operator reszty z dzielenia, czyli . Zwraca reszte z dzielenia podanych liczb

Znowu popatrzmy na kilka przyktadow:

int nA = 9, nB = 4, nX;

float £X;

nX = nA + nB; // 13

nX = nA - nB; // 5

nX = nA * nB; // 36

nX = nA / nB; // 2

fX = nA / static cast<float>(nB); // 2.25f
nX = nA % nB; // 1

Ponownie nie ma tu nic nieoczekiwanego.

Operatory bitowe

Przedstawione wyzej operatory arytmetyczne dziatajg na liczbach na zasadach, do jakich
przyzwyczaita nas matematyka. Nie ma w tym przypadku znaczenia, ze operacje
przeprowadzane sa na komputerze. Nie ma tez znaczenia wewnetrzna reprezentacja
liczb.

Jak wiemy, komputery przechowujg dane w postaci ciggow zer i jedynek, zwanych
bitami. Pojedyncze bity mogq przechowywac tylko elementarng informacje - 0 (bit
ustawiony) lub 1 (bit nieustawiony). Aby przedstawia¢ bardziej ztozone dane - chocby
liczby - nalezy bity fgczy¢ ze sobg. Powstajg w ten sposob wektory bitowe, ciagi bitow
(ang. bitsets) lub stowa (ang. words). Sq po prostu sekwencje zer i jedynek.

Do operacji na wektorach bitdw C++ posiada szes¢ operatorow. Obecnie nie sg one tak
czesto uzywane jak na przyktad w czasach C, ale nadal sg bardzo przydatne. Oméwie je
tu pokrétce.

O wiele obszerniejsze omodwienie tych operatorow, wraz z zastosowaniami, znajdziesz w
Dodatku C, Manipulacje bitami.

Operacje logiczno-bitowe

Cztery operatory: ~, &, | i ~ wykonujg na bitach operacje zblizone do logicznych, gdzie
bit ustawiony (1) odgrywa role wyrazenia prawdziwego, zas$ nieustawiony (0) -
fatszywego. Oto te operatory:
> negacja bitowa (operator ~) zmienia w catym ciqgu (zwykle liczbie) wszystkie
bity na przeciwne. Ustawione zmieniajq sie na nieustawione i odwrotnie
> koniunkcja bitowa (operator &) poréwnuje ze sobg odpowiadajace bity dwdéch
stéw: tam, gdzie napotka na dwie jedynki, wypisuje do wyniku takze jedynke; w
przeciwnym wypadku zero

406 Zaawansowane C++

> alternatywa bitowa (operator |) réwniez dziata na dwdch stowach. Poréwnujac
ich kolejne bity, zwraca w bicie wyniku zero, jezeli stwierdzi w operandach dwa
nieustawione bity oraz jedynke w przeciwnym wypadku

> bitowa réznica symetryczna (operator ~) poréwnuje bity stéw i zwraca 1, jezeli
sg rozne i 0, gdy sg sobie réwne

Operator ~ jest jednoargumentowy (unarny), zas pozostate dwa sg binarne - i wcale nie
dlatego, ze pracujg w systemie dwojkowym :)

Przesuniecie bitowe

Mamy tez dwa operatory przesuniecia bitowego (ang. bitwise shift). Jest to:
> przesuniecie w lewo (operator <<). Przesuwa on bity w lewg strone stowa o
podang liczbe miejsc
> przesuniecie w prawo (operator >>) dziata analogicznie, tylko ze przesuwa bity
w prawg strone stowa

Z obu operatorow korzystamy podobnie, tj. w ten sposdb:

stowo << ile miejsc
stiowo >> ile miejsc

Oto kilka przyktadow - dla uproszczenia z liczbami zapisanymi binarnie (niestety, w C++
nie mozna tego zrobic):

00010010 << 3 // 10010000
1111000 >> 4 // 00001111
00111100 << 5 // 10000000

Jak wida¢, bity ktére ,wyjezdzajq” w wyniku przesuniecia poza granice stowa sg tracone.
Pustki sgq natomiast wypetniane zerami.

Operatory strumieniowe

Czytajac ten akapit na pewno pomyslates: ,Jakie operatory bitowe?! Przeciez to sq
‘strzatki’, ktérych uzywamy razem ze strumieniami wejscia i wyjscia!” Tak, to rowniez
prawda - ale to tylko jedna jej strona.

Faktem jest, ze << i >> to przede wszystkim operatory przesuniecia bitowego. Nie
przeszkadza to jednak, aby miaty one takze inne znaczenie - co wiecej, maja je one tylko
w odniesieniu do strumieni. W sumie wiec petnig one w C++ az dwie funkcje.

Czy domyslasz sie, dlaczego?... Alez tak, wiasnie tak - operatory te zostaly przeciazone
przez twércow Biblioteki Standardowej C++. Posiadajg one dodatkowg funkcjonalnos¢,
ktéra pozwala na ich uzywanie razem z obiektami cout i cin'®. W odniesieniu do samych
liczb nadal jednak sg one operatorami przesuniecia bitowego.

Nieco wiecej informacji o tych operatorach otrzymasz przy okazji omawiania strumieni
STL. Tam tez nauczysz sie przecigzac je dla swoich wiasnych klas - tak, aby ich obiekty
mozna byto zapisywac do strumieni i odczytywac z nich w identyczny sposob, jak typy
wbudowane.

Operatory porownania

Bardzo waznym rodzaje operatorow sg operatory porownania, czyli znaki: < (mniejszy), >
(wiekszy), <= (mniejszy lub réwny), >= (wiekszy lub réwny), == (réwny) oraz != (rézny).

109 Rdwniez clog, cerr oraz wszystkimi innymi obiektami, wywodzacymi sie od klas istream i ostream oraz ich
pochodnych. Po wiecej informacji odsytam do rozdziatu o strumieniach Biblioteki Standardowej.

Zaawansowana obiektowos¢ 407

O tych operatorach wiemy w zasadzie wszystko, bo uzywamy ich nieustannie. O tym, jak
dziatajg, powiedzieliSmy sobie zresztg bardzo wczesnie.

Zwroce jeszcze tylko uwage, aby nie myli¢ operatora rownosci (==) z operatorem
przypisania (=). Omytkowe uzycie tego drugiego w miejsce pierwszego nie zostanie
bowiem oprotestowane przez kompilator (co najwyzej wygeneruje on ostrzezenie).
Dlaczego tak jest - wyjasnie przy okazji operatrow przypisania.

Operatory logiczne

Te operatory stuzg do faczenia wyrazen logicznych (true lub false) w ztozone warunki.
Takie warunki mozemy potem wykorzystac z instrukcjach if oraz petlach, co zresztg
niejednokrotnie robilismy.

W C++ mamy trzy operatory logiczne, bedgce odpowiednikami pewnych operatoréw
bitowych. Rdznica polega jednak na tym, ze operatory logiczne dziatajg na wartosciach
liczb (lub wyrazen logicznych: falszywe oznacza 0, zas$ prawdziwe - 1) za$ bitowe - na
wartosciach bitéw.
Oto te trzy operatory:
» negacja (zaprzeczenie, operator !) powoduje zamiane prawdy (1) na fatsz (0)
> koniunkcja (iloczyn logiczny, operator s&) dwdch wyrazen zwraca prawde tylko
woéwczas, gdy oba jej argumenty sg prawdziwe
> alternatywa (suma logiczna, operator | |) jest prawdziwa, gdy choc¢ jeden z jej
argumentow jest prawdziwy (rézny od zera)

Warto zapamieta¢, ze w wyrazeniach zawierajacych operatory ss i | | wykonywanych jest
tylko tyle obliczen, ile jest koniecznych do zdeterminowania wartosci warunkowych.
Przyktadowo, w ponizszym kodzie:

int nZmienna;
std::cin >> nZmienna;
if (nZmienna >= 1 && nZmienna <= 10) /7 ... */ }

jezeli stwierdzona zostanie falszywos¢ pierwszej czesci koniunkcji (nzmienna >= 1), to
druga nie bedzie juz sprawdzana i caty warunek uznany zostanie za fatszywy. Podobnie
dzieje sie przy alternatywie, ktorej pierwszy argument jest prawdziwy - wéwczas cate
wyrazenie rowniez reprezentuje prawde.

Argumenty operatoréw logicznych sg wiec zawsze obliczane od lewej do prawej.

Wsrod operatoréw nie ma roznicy symetrycznej, zwanej alternatywg wykluczajaca
(ang. XOR - eXclusive OR). Mozna ja jednak tatwo uzyskac¢, wykorzystujac tozsamosc:

a@b<:>—|(ac>b)

co w przetozeniu na C++ wyglada tak:
if (!(a==Db)) { /* ... */ } // a i b to wyrazenia logiczne

Operatory przypisania

Kolejng grupe stanowig operatory przypisania. C++ ma ich kilkanascie, cho¢ wiemy, ze
tak naprawde tylko jeden jest do szczescia potrzebny. Pozostate stworzono dla wygody
programisty, jak zresztg wiele mechanizméw w C++.

Popatrzmy wiec na operatory przypisania.

408 Zaawansowane C++

Zwykty operator przypisania

Operator przypisania (ang. assignment operator) ma posta¢ pojedynczego znaku ‘réwna
sie’ (=). Doskonale tez wiemy, jak sie go uzywa:

int nX;
nX = 7;

Po wykonaniu tego kodu, zmienna nxX bedzie miat wartos¢ 7.
L-wartos$¢ i r-wartosé
Zauwazmy, ze odwrotne przypisanie:

7 = nX; // zle!

jest niepoprawne. Nie mozemy nic przypisa¢ do siédemki, bo ona nie zajmuje zadnej
komérki w pamieci - w przeciwienstwie do zmiennej, jak np. nx.

Zarowno 7, jak i nX, sg jednak poprawnymi wyrazeniami jezyka C++. Widzimy
aczkolwiek, ze réznig sie pod wzgledem ,wspotpracy z przypisaniem”. nx moze by¢ celem
przypisania, zas 7 - nie.

Méwimy, ze nx jest I-wartoscia, zas 7 - r-wartoscia lub p-wartoscia.

L-wartos¢ (ang. /-value) jest wyrazeniem mogacym wystapic¢ po lewej stronie
operatora przypisania - stad ich nazwa.

R-wartos$¢ (ang. r-value), po polsku zwana p-wartoscia, moze wystapic tylko po
prawej stronie operatora przypisania.

Zauwazmy, ze nic nie stoi na przeszkodzie, aby nx pojawito sie po prawej stronie
operatora przypisania:

int nY;
nY = nX;

Jest tak, poniewaz:

Kazda I-wartos¢ jest jednoczesnie r-wartoscia (p-wartoscig) - lecz nie odwrotnie!

Domyslasz sie pewnie, ze w C++ kazde wyrazenie jest r-wartoscia, poniewaz
reprezentuje jakies dane. L-wartosciami sg natomiast te wyrazenia, ktére:

> odpowiadajg komoérkom pamieci operacyjnej

> nie sg oznaczone jako state (const)

Najbardziej typowymi rodzajami I-wartosci sq wiec:

> zmienne wszystkich typow niezadeklarowane jako const

> wskazniki do powyzszych zmiennych, wobec ktérych stosujemy operator
dereferencji, czyli gwiazdke (*)

> niestate referencje do tychze zmiennych

> elementy niestatych tablic

> niestate pola klas, struktur i unii, ktére podpadajg pod jeden z powyzszych
punktéw i nie wystepuja w ciele statych metod**°

110 wyjatkiem sg pola oznaczone stowem mutable, ktdre zawsze moga byé modyfkowane.

Zaawansowana obiektowosé 409

R-wartosci to oczywiscie te, jak i wszystkie inne wyrazenia.
Rezultat przypisania

Wyrazeniem jest takze samo przypisanie, gdyz samo w sobie reprezentuje pewng
wartos¢:

std::cout << (nX = 5);
Ta linijka kodu wyprodukuje rezultat:
5

co pozwala nam ugoélni¢, iz:

Rezultatem przypisania jest przypisywana wartos¢.

Ten fakt powoduje, ze w C++ mozliwe sg, niespotykane w innych jezykach, wielokrotne
przypisania:

nA = nB = nC = nD = nE;

Poniewaz operator(y) przypisania maja tacznos¢ prawostronng, wiec ten wiersz zostanie
obliczony jako:

nA = (nB = (nC = (nD = nE)));

Innymi stowy, nE zostanie przypisane do nD. Nastepnie rezultat tego przypisania (czyli
nE, bo to byto przypisywane) zostanie przypisany do nc. To takze wyprodukuje rezultat -
i to ten sam, nE - ktory zostanie przypisany nB. To przypisanie réwniez zwroci ten sam
wynik, ktéry zostanie wreszcie umieszczony w na. W ten wiec sposdb wszystkie zmienne
beda miaty ostatecznie tg sama wartos¢, co nE.

Tq technikg mozemy wykonac tyle przypisan naraz, ile tylko sobie zyczymy.

Uwaga na przypisanie w miejscu rownosci

Niestety, traktowanie przypisania jako wyrazenia ma tez swojg ciemng strone. Bardzo
tatwo jest umiescic¢ je omytkowo w warunku if lub petli zamiast operatora ==, np.:

while (nA = 5)
std::cin >> nA;

Jezeli nasz kompilator jest lekkoduchem, to moze nas nie ostrzec przed
niebezpieczenstwem tej petli. A zagrozenie jest spore, bo jest nic innego, jak petla
nieskonczona. Podobno komputer Cray wykonatby jg w dwie sekundy - jezeli chcesz,
mozesz sprawdzi¢, ile zajmie to twojej maszynie ;D Lepiej jednak zaradzi¢ powstatemu
problemowi.

Jak on jednak powstaje?... Ot6z sprawa jest dos¢ prosta, a wszystkiemu winien warunek
petli. Jest to przeciez przypisanie - przypisanie wartosci 5 do zmiennej na. Jako test
logiczny wykorzystywana jest wartosc¢ tego przypisania - czyli piatka. Piec jest
oczywiscie rézne od zera, zatem zostanie uznane za warunek prawdziwy. Tak oto petla
sie zapetla i zaciska na szyi biednego programisty.

Mozemy sie kitoci¢, ze to wina C++, ktéry nie dosé, ze uznaje liczby catkowite (jak 5) za
wyrazenia logiczne, to jeszcze pozwala na wykonywanie przypisania w warunkach if’ow i
petli. Mozliwosci te zostaty jednak dopuszczone z uzasadnionych wzgledéw (praca ze
wskaznikami), wiec wcale niewykluczone, ze kiedys$ je docenimy. Niezaleznie od tego, czy

410 Zaawansowane C++

bedziemy $wiadomie wykonywac przypisania w podobnych sytuacjach, musimy pamietac,
ze:

Nalezy zwracac¢ baczng uwage na kazde przypisanie wystepujace w warunku instrukcji if
lub petli. Moze to by¢ bowiem niedoszte poréwnanie.

Zaleca sie, aby opatrywac¢ stosownym komentarzem kazde zamierzone uzycie
przypisania w tych newralgicznych miejscach. Dzieki temu unikniemy nieporozumien z
kompilatorem, innymi programistami i... samym sobg!

Ztozone operatory przypisania

Dla wygody programisty C++ posiada jeszcze dziesie¢ innych operatorow przypisania. Sq
one po prostu krotszym zapisem czesto stosowanych instrukcji. Ich postac i ,rozwiniecia”
przedstawia to oto tabelka:

przypisanie | ,rozwiniecie”
a +=>b a=a+b
a-=> a=a->b
a *=b a=a*hb
a /=b a=a/b
a %= b a=a=%hb
a &= b a=aé&b
a |=Db a=a | b
a "=> a=a”™b
a <<= b a=a<<b5b
a >>= b a=a>»>

Tabela 17. Zlozone operatory przypisania w C++

‘Rozwiniecie’ wzigtem w cudzystdw, poniewaz nie jest tak, ze jakis mechanizm w rodzaju
makrodefinicji zamienia te skrécone wyrazenia do ich ,petnych” form. O nie, one sq
kompilowane w tej postaci. Ma to taki skutek, ze wyrazenie po lewej stronie operatora
jest obliczane jeden raz. W wersji ,rozwinietej” bytoby natomiast obliczane dwa razy.

Podobna zasada obowigzuje tez w operatorach pre/postin/dekrementacji.

Jest to tez realizacja bardziej fundamentalnej reguty, ktéra mowi, ze sktadniki kazdego
wyrazenia sg obliczane tylko raz.

Operatory wskaznikowe

Wskazniki byty ongis$ kluczowg cechg jezyka C, a i w C++ nie stracity wiele ze swojego
znaczenia. Do ich obstugi mamy w naszym ulubionym jezyku trzy operatory.

Pobranie adresu

Jednoargumentowy operator & stuzy do pobrania adresu obiektu, przy ktérym stoi. Oto
przyktad:

int nZmienna;
int* pnWskaznik = &nZmienna;

Argument tego operatora musi by¢ I-wartoscia. To raczej oczywiste, bo przeciez musi
ona rezydowac w jakims$ miejscu pamieci. Inaczej niemozliwe bytoby pobranie adresu
tego miejsca. Typowo operandem dla & jest zmienna lub funkcja.

Zaawansowana obiektowos¢ 411

Dostep do pamieci poprzez wskaznik

Do obszaru pamieci, do ktérego posiadamy wskaznik, mozemy odnies¢ sie na kilka
sposobow. Doktadnie: na dwa.

Dereferencja

Najprostszym i najczesciej stosowanym sposobem jest dereferencja:

int nZmienna;
int* pnWskaznik = &nZmienna;
*pnWskaznik = 42;

Odpowiada za nig jednoargumentowy operator *, zwany operatorem dereferencji lub
adresowania posredniego. Pozwala on na dostep do miejsca w pamieci, ktéremu
odpowiada wskaznik. Operator ten wykorzystuje ponadto typ wskaznika, co gwarantuje,
ze odczytana zostanie wtasciwa ilos¢ bajtéw. Dla int* bedzie to sizeof (int), zatem
*pnWskaznik reprezetuje u nas liczbe catkowita.

To, czy *wskaznik jest |-wartoscig, czy nie, zalezy od statosci wskaznika. Jezeli jest to
staty wskaznik (const typ*), woéwczas nie mozemy modyfikowac¢ pokazywanej przezen
pamieci. Mamy wiec do czynienia z r-wartoscig. W pozostatych przypadkach mamy |-
wartosc.

Indeksowanie

Jezeli wskaznik pokazuje na tablice, to mozemy dostac sie do jej kolejnych elementow za
pomocg operatora indeksowania (ang. subscript operator) - nawiaséw kwadratowych
[1.

Oto zupetnie banalny przyktad:

std::string aBajkal[3];

aBajka[0] = "Dawno, dawno temu, ...";
aBajkal[l] = "w odleglej galaktyce...";
aBajka[2] = "zylo sobie siedmiu kransoludkow...";

Jezeli zapytasz , A gdzie tu wskaznik?”, to najpierw udam, ze tego nie styszatem i pozwole
ci na chwile zastanowienia. A jesli nadal bedziesz sie upierat, ze zadnego wskaznika tu
nie ma, to bede zmuszony natozy¢ na ciebie wyrok powtérnego przeczytania rozdziatu o
wskaznikach. Chyba tego nie chcesz? ;-)

Wskaznikiem jest tu oczywiscie aRajka - jaka nazwa tablicy wskazuje na jej pierwszy
element. W zasadzie wiec mozna dokonac jego dereferencji i dostac sie do tego
elementu:

*aBajka = "Dawno, dawno temu, ...";

Przesuwajac wskaznik przy pomocy dodawania mozna tez dostac sie do pozostatej czesci
tablicy:

*(aBajka + 1) = "w odlegle] galaktyce...";
*(aBajka + 2) = "zylo sobie siedmiu kransoludkow...'";

Taki zapis jest jednak dos¢ ktopotliwy w interpretacji - cho¢ koniecznie trzeba go znac
(przydaje sie przy iteratorach STL). C++ ma wygodniejszy sposdb dostepu do elementow
tablicy o danym indeksie - jest to wiasnie operator indeksowania.

412 Zaawansowane C++

Na koniec musze jeszcze przypomnieé, ze wyrazenie:

tablicali]

odpowiada (i-1)-emu elementowi tablicy. A to dlatego, ze:

W C++ elementy tablic (oraz taricuchéw znakéw) liczymy od zera.

Skoro juz tak sie powtarzam, to przypomne jeszcze, ze:

W n-elementowej tablicy nie istnieje element o indeksie n. Proba odwotania sie do
niego spowoduje btad ochrony pamieci.

Zasada ta nie dotyczy aczkolwiek tancuchéw znakoéw, gdzie n-ty element to zawsze znak
o kodzie 0 ('\0"). Jest to zaszto$¢ zakonserwowana w czasach C, ktéra przetrwata do
dzis.

Operatory pamieci

Mamy w C++ kilka operatoréw zajmujacych sie pamiecia. Jedne stuzg do jej alokacii,
drugie do zwalniania, a jeszcze inne do pobierania rozmiaru typéw i obiektow.

Alokacja pamieci

Alokacja pamieci to przydzielenie jej okreslonej ilosci dla programu, by ten mégt jq
wykorzystac¢ do wiasnych celdow. Pozwala to dynamicznie tworzy¢ zmienne i tablice.

new

new jest przeznaczony do dynamicznego tworzenia zmiennych. Obiekty stworzone przy
pomocy tego operatora sg tworzone na stercie, a nie na stosie, zatem nie znikaja po
opuszczeniu swego zakresu. Tak naprawde to w ogdle nie stosuje sie do nich pojecie
zasiegu.

Tworzenie obiektéw poprzez new jest banalnie proste:

float pfZmienna = new float;

Oczywiscie nie ma zbyt wielkiego sensu tworzenie zmiennych typéw podstawowych czy
nawet prostych klas. Jezeli jednak mamy do czynienia z duzymi obiektami, ktdre muszg
istnie¢ przez diuzszy czas i by¢ dostepne w wielu miejscach programu, wtedy musimy
tworzy¢ je dynamicznie poprzez new.

W przypadku kreowania obiektéow klas, new dba o prawidtowe wywotanie konstrukturéw,
wiec nie trzeba sie tym martwic.

new/[]

Wersje operatora new, ktdra stuzy do alokowania tablic, nazywam new[], aby w ten
| sposob podkresli¢ jej zwigzek z delete[].

new[] potrafi alokowac tablice dynamiczne po podanym rozmiarze. Aby uzy¢ tej
mozliwosci po nazwie docelowego typu okreslamy wymiary pozadanej tablicy, np.:

float** matMacierz4x4 = new float [4][4];

Zaawansowana obiektowos¢ 413

W wyniku dostajemy odpowiedni wskaznik lub ewentualnie wskaznik do wskaznika (do
wskaznika do wskaznika itd. - zaleznie od liczby wymiaréw), ktéry mozemy zachowaé¢ w
zmiennej okreslonego typu.

Do powstatej tablicy odwotujemy sie tak samo, jak do tablic statycznych:

for (unsigned i = 0; 1 < 4; ++1)
for (unsigned j = 0; j < 4; ++73)
matMacierz4x4[i][]j] = (i == J ? 1.0f : 0.0f);

Dynamiczna tablica istnieje jednak na stercie, wiec tak samo jak wszystkie obiekty
tworzone w czasie dziatania programu nie podlega regutom zasiegu.

Zwalnianie pamieci

Pamiec¢ zaalokowana przy pomocy new i new[] musi zosta¢ zwolniona przy pomocy
odpowiadajqcych im operatorow delete i delete[]. Wiesz doskonale, ze w przeciwnym
razie dojdzie do groznego btedu wycieku pamieci.

delete

Za pomocg delete niszczymy pamiec zaalokowang przez new. Dla operatora tego nalezy
poda¢ wskaznik na tenze blok pamieci, np.:

delete pfZmienna;

delete zapewnia wywotanie destruktora klasy, jezeli takowy jest konieczny. Destruktor
taki moze byc¢ wigzany wczesnie (jak zwykta metoda) lub pézno (jak metoda wirtualna) -
ten drugi sposob jest zalecany, jezeli chcemy korzysta¢ z dobrodziejstw polimorfizmu.

deletel[]

Analogicznie, delete[] stuzy do zwalniania dynamicznych tablic. Nie musimy podawac
rozmiaru takiej tablicy, gdy ja niszczymy - wystarczy tylko wskaznik:

delete[] matMacierz4x4;

Koniecznie pamietajmy, aby nie myli¢ obu postaci operatora delete[] - W szczegolnosci
nie mozna stosowac delete do zwalniania pamieci przydzielonej przez new|[].

Operator sizeof

sizeof pozwala na pobranie rozmiaru obiektu lub typu:
int nZmienna;
if (sizeof (nZmienna) != sizeof (int))

std::cout << "Chyba mamy zepsuty kompilator :D";

Jest to operator czasu kompilacji, wiec nie moze korzystac z informacji uzyskanych w
czasie dziatania programu. W szczegodlnosci, nie moze pobra¢ rozmiaru dynamicznej
tablicy - nawet mimo takich prob:

int* pnTablica = new int [5];

std::cout << sizeof (pnTablica); // to samo co sizeof (int*)
std::cout << sizeof (*pnTablica); // to samo co sizeof (int)

Taki rozmiar trzeba po prostu zapisa¢ gdzies po alokacji tablicy.

sizeof zwraca wartos¢ nalezacq do predefiniownego typu size t. Zwykle jest to liczba
bez znaku lub bardzo duza liczba ze znakiem.

414 Zaawansowane C++

Ciekawostka: operator _alignof

W Visual C++ istnieje jeszcze podobny do sizeof operator alignof. Uzywamy go w
ten sam sposdb, podajac mu zmienng lub typ. W wyniku zwraca on tzw. wyréwnanie
(ang. alignment) danego typu danych. Jest to liczba, ktora okresla sposdb organizacji
pamieci dla danego typu danych. Przyktadowo, jezeli wyrownywanie wynosi 8, to znaczy
to, iz obiekty tego typu sg wyrdwnane w pamieci do wielokrotnosci osmiu bajtéw (ich
adresy sg wielokrotnocig o$smiu).

Wyrdéwnanie sprawia rzecz jasna, ze dane zajmujg w pamieci nieco wiecej miejsca niz
faktycznie mogtyby. Zyskujemy jednak szybciej, poniewaz porcje pamieci wyréwnane do
catkowitych poteg dwojki (a takie jest zawsze wyrdownanie) sg przetwarzane szybciej.

Wyrdwnanie mozna kontrolowac poprzez declspec(align(liczba)). Np. ponizsza
struktura:

__declspec(align(1l6)) struct FOO { int nA, nB; };

bedzie tworzy¢ zmienne zajmujace w pamieci fragmenty po 16 bajtow, choc¢ jej faktyczny
rozmiar jest dwa razy mniejszy!l.

Polecajac wyréwnywanie do 1 bajta okreslimy praktyczny jego brak:

#define PACKED _ declspec(align(1))

Typy danych opatrzone takg deklaracjg beda wiec ciasno upakowane w pamieci. Moze to
dac¢ pewna jej oszczednosc, ale zazwyczaj spadek predkosci dostepu do danych nie jest
tego wart.

Operatory typow

Istniejq jezyki programowania, ktére catkiem dobrze radza sobie bez posiadania Scisle
zarysowanych typéw danych. C++ do nich nie nalezy: w nim typ jest sprawg bardzo
wazng, a do pracy z nim oddelegowano kilka specjalnych operatoréw.

Operatory rzutowania
Rzutowanie jest zmiang typu wartosci, czyli jej konwersjg. Mamy pare operatorow, ktore
zajmujq sie tym zadaniem i robig to w rézny sposob.

Wsradd nich sg tak zwane cztery ,nowe” operatory, o skfadni:

okreslenie cast<typ docelowy>(wyrazenie)
To witasnie one sg zalecane do uzywania we wszystkich sytuacjach, wymagajacych
rzutowania. C++ zachowuje aczkolwiek takze starg forme rzutowania, znang z C.

static cast

Ten operator moze by¢ wykorzystywany do wiekszosci konwersji, jakie zdarza sie
przeprowadzaé¢ w C++. Nie oznacza to jednak, ze pozwala on na wszystko:

Poprawnosc¢ rzutowania static cast jest sprawdzana w czasie kompilacji programu.

static cast mozna uzywac np. do:
» konwersji miedzy typami numerycznymi
» rzutowania liczby na typ wyliczeniowy (enum)

11 jezeli int ma 4 bajty dtugosci, a tak jest na kazdej platformie 32-bitowej.

Zaawansowana obiektowos¢ 415

> rzutowania wskaznikéw do klas zwigzanych relacjg dziedziczenia

Jezeli chodzi o ostatnie zastosowanie, to nalezy pamietaé, ze tylko konwersja wskaznika
na obiekt klasy pochodnej do wskaznika na obiekt klasy bazowej jest zawsze bezpieczna.
W odwrotnym przypadku trzeba by¢ pewnym co do wykonalnosci rzutowania, aby nie
narobi¢ sobie ktopotow. Takg pewnos$¢ mozna uzyskac na przyktad za pomocg sposobu z
metodami wirtualnymi, ktéry zaprezentowatem w rozdziale 1.7, lub poprzez operator
typeid.

Inng mozliwosciq jest tez uzycie operatora dynamic cast.

dynamic cast

Przy pomocy dynamic cast mozna rzutowac wskazniki i referencje do obiektéw w do6t
hierarchii dziedziczenia. Oznacza to, ze mozna zamieni¢ odwotanie do obiektu klasy
bazowej na odwotanie do obiektu klasy pochodnej. Wyglada to np. tak:

class CFoo {/* ... %/ };
class CBar : public CFoo {/* ... %/ };

void Funkcja (CFoo* pFoo)
{

CBar* pBar = dynamic cast<CBar*>(pFoo) ;

//
}

Taka zamiana nie zawsze jest mozliwa, bo przeciez dany wskaznik (referencja)
niekoniecznie musi pokazywac na obiekt zadanej klasy pochodnej. Operacja jest jednak
bezpieczna, poniewaz:

Poprawnosc¢ rzutowania dynamic cast jest sprawdzana w czasie dziatania programu.

Wiemy doskonale, w jaki sposob poznac rezultat tego sprawdzania. dynamic cast
zwraca po prostu NULL (wskaznik pusty, zero), jezeli rzutowanie nie mogto zostac
wykonane. Nalezy to zawsze skontrolowac:

if (!pBar)
{
// OK - pBar faktycznie pokazuje na obiekt klasy CBar

}
Dla skrocenia zapisu mozna wykorzysta¢ warto$¢ zwracang operatora przypisania:

if (pBar = dynamic_ cast<CBar*>(pFoo))
{

// rzutowanie powiodio sie

}

Znak = jest tu oczywiscie zamierzony. Warunek bedzie miat bowiem wartos¢ réwna
rezultatowi rzutowania, zatem bedzie prawdziwy tylko wtedy, gdy sie ono powiedzie.
Zwrocony wskaznik bedzie wtedy rézny od zera.

reinterpret cast

reinterpret cast moze stuzy¢ do dowolnych konwersji miedzy wskaznikami, a takze do
rzutowania wskaznikow na typy liczbowe i odwrotnie. Wachlarz mozliwosci jest wiec
szeroki, niestety:

Poprawnosc¢ rzutowania reinterpret cast nie jest sprawdzana.

416 Zaawansowane C++

tatwo wiec moze dojs¢ do niebezpiecznych konwersji. Ten operator powinien by¢
uzywany tylko jako ostatnia deska ratunku - jezeli inne zawiodg, a my jestesmy
przekonani o wzglednym bezpieczenstwie planowanej zamiany. Wykorzystanie tego
operatora generalnie jednak powinno by¢ bardzo rzadkie.

reintepret cast mozemy potencjalnie uzy¢ np. do uzyskania dostepu do pojedynczych
bitdow w zmiennej o wiekszej ich ilosci:

unsigned int32 u32Zmienna; // liczba 32-bitowa
unsigned int8* pu8Bajty; // wskaznik na liczby 8-bitowe (bajty)

// zamieniamy wskaznik do 4 bajtowe] zmiennej na wskaznik do
// 4-elementowej tablicy bajtéw
pu8Bajty = reinterpret cast<unsigned __ int8*>(&u32Zmienna);

// wyswietlamy kolejne bajty zmiennej u32Zmienna
for (unsigned i = 0; 1 < 4; ++1)
std::cout << "Bajt nr " << i << ": " << pu8Bajtyl[i] << std::endl;

Wida¢ wiec, ze najlepiej sprawdza sie w operacjach niskopoziomowych. Tutaj moznaby
oczywiscie uzy¢ przesuniecia bitowego, ale tablica wyglada z pewnoscig przejrzysciej.
const cast

Ostatni z ,nowych” operatoréow rzutowania ma do$¢ ograniczone zastosowanie:

const cast stuzy do usuwania przydomkoOw const i volatile z opatrzonych nimi
wskaznikow do zmiennych.

Obecnosc¢ tego operatora stuzy chyba tylko temu, aby mozliwe byto catkowite zastgpienie
sposobdow rzutowania znanych z C. Jego praktyczne uzycie nalezy do sporadycznych
sytuacji.

Rzutowanie w stylu C

C++ zachowuje ,stare” sposoby rzutowania typéw. Jednym z nich jest rzutowanie
nazywane, catkiem adekwatnie, rzutowaniem w stylu C (ang. C-style cast):

(typ) wyrazenie

Ta sktadnia konwersji jest nadal czesto uzywana, gdyz jest po prostu krétsza. Nalezy
jednak wiedzie¢, ze nie odrdznia ona réznych sposobdw rzutowania i w zaleznosci od
typu i wyrazenia moze sie zachowywac jak static cast, reinterpret cast lub
const cast.

Rzutowanie funkcyjne
Inng sktadnie ma rzutowanie funkcyjne (ang. function-style cast):

typ(wyrazenie)

Przypomina ona wywotanie funkcji, cho¢ oczywiscie zadna funkcja nie jest tu
wywotywana. Ten rodzaj rzutowania dziata tak samo jak rzutowanie w stylu C,
aczkolwiek nie mozna w nim stosowac co niektérych nazw typoéw. Nie mozna na przyktad
wykonac:

int* (&fZmienna)

Zaawansowana obiektowos¢ 417

i to z dosc¢ prozaicznego powodu. Po prostu gwiazdka i nawias otwierajacy wystepujace
obok siebie zostang potraktowane jako btad sktadniowy. W tej sytuacji mozna sobie
ewetualnie pomoc odpowiednim typedef’em.

Operator typeid

typeid stuzy pobrania informacji o typie podanego wyrazenia podczas dziatania
programu. Jest to tzw. RTTI, czyli informacja o typie czasu wykonania (ang. Run-
Time Type Information).

Przygotowanie do wykorzystania tego operatora objemuje wtaczenie RTTI (co dla Visual
C++ opisatem w rozdziate 1.7) oraz dotaczenie standardowego nagtéwka typeinfo:

#include <typeinfo>
Potem mozemy juz stosowac typeid np. tak:

class CFoo {/* ... %/ };
class CBar : public CFoo {/* ... %/ };

int nZmienna;

CFoo* pFoo = new CBar;

std::cout << typeid(nZmienna) .name () ; // int
std::cout << typeid (pFoo) .name () ; // class CFoo *
std::cout << typeid (*pFoo) .name () ; // class CBar

Jak wida¢, operator ten jest leniwy i jesli tylko moze, bedzie korzystac z informacji
dostepnych w czasie kompilacji programu. Azeby wiec poznaé np. typ polimorficznego
obiektu, na ktéry pokazujemy wskaznikiem, trzeba uzy¢ derefrencji...

Operatory dostepu do sktadowych

Pie¢ kolejnych operatorow stuzy do wybierania sktadnikéw klas, struktur, unii, itd. Przy
ich pomocy mozna wiec dostac sie do zagniezdzonych sktadowych. Nie zawsze jest to
jednak mozliwe - wszystko zalezy od ich widocznosci, czyli od tego, jakimi
specyfikatorami dostepu sg one opatrzone (private, protected, public).

O tychze specyfikatorach méwilismy juz bardzo wiele, wiec teraz przypomnijmy sobie
tylko same operatory wytuskania.

Wytuskanie z obiektu

Majac zmienng obiektowg, do jej sktadnikéw odwotujemy sie poprzez operator kropki (.),
np. tak:

struct FOO { int x; };

FOO Foo;
Foo.x = 10;

W podobny dziata operator . *, ktory stuzy aczkolwiek do wytowienia sktadnika poprzez
wskaznik do niego:

int FOO::*p2mnSkladnik = &FOO::x;
Foo.*p2mnSkladnik = 42;

Wskazniki na sktadowe sg przedmiotem nastepnego podrozdziatu.

418 Zaawansowane C++

Wytuskanie ze wskaznika

Gdy mamy wskaznik na obiekt, wowczas zamiast kropki uzywamy innego operatora
wytuskania - strzatki (->):

FOO* pFoo = new FOO;
pFoo->x = 16;

Tutaj takze mamy odpowiednik, stuzacy do wybierania sktadowych za posrednictwem
wskaznika na nie:

pFoo->*p2mnSkladnik += 80;

W powyzszej linijce mamy dwa wskazniki, stojgce po obydwu stronach operatora ->*. O
pierwszym rodzaju powiedzieliSmy sobie na samym poczatku programowania
obiektowego - to po prostu zwyczajny wskaznik na obiekt. Drugi to natomiast wskaznik
do sktadowej klasy - o tym typie wskaznikéw pisze wiecej nastepny podrozdziat.

Operator zasiegu

Ten operator, nazywany tez operatorem rozwiklania zakresu (ang. scope resolution
operator) stuzy w C++ do rozrdzniania nazw, ktére rezydujg w réznych zakresach.
Znamy dwa podstawowe zastosowania tego operatora:

> dostep do przestonietych zmiennych globalnych

> dostep do sktadowych klasy

Ogdlnie, operatora tego uzywamy, aby dostac sie do identyfikatora zagniezdzoneego
wewnatrz nazwanych zakreséw:

zakres pozioml::[zakres poziomZ::[zakres poziom3::[...]]llnazwa

Nazwy zakresow odpowiadajg m.in. strukturom, klasom i uniom. Przyktadowo, Fo0 z
poprzedniego akapitu byto nazwa zakresu - oprdcz tego, rzecz jasna, takze nazwg
struktury. Przy pomocy operatora : : mozna odnie$¢ sie do jej zawartosci.

Zakresy mozna tez tworzy¢ poprzez tzw. przestrzenie nazw (ang. namespaces). Jest to
bardzo dobre narzedzie, stuzgce organizacji kodu i zapobiegajace konfliktom oznaczen.
Opisuje je rozdziat Sztuka organizacji kodu.

Do tej pory caty czas korzystaliSmy z pewnej szczegdlnej przestrzeni nazw - std.
Pamietasz doskonale, Zze przy niej takze uzywaliSmy operatora zakresu.

Pozostate operatory

Ostatnie trzy operatory trudno zakwalifikowac do jakiej$ konkretnej grupy, wiec zebratem
je tutaj.

Nawiasy okragte

Nawiasy () to dos¢ oczywisty operator. W C++ stuzy on gidwnie do:
grupowania wyrazen w celu ich obliczania w pierwszej kolejnosci
deklarowania funkcji i wskaznikéw na nie

wywolywania funkcji

rzutowania

VVVY

Brak nawiaséw moze by¢ przyczyng btednego (innego niz przewidywane) obliczania
wyrazen, a takze nieprawidtowej interpretacji niektérych deklaracji (np. funkcji i
wskaznikow na nie). Obfite stawianie nawiaséw jest szczegdlnie wazne w
makrodefinicjach.

Zaawansowana obiektowos¢ 419

Z kolei nadmiar nawiasoéw jeszcze nikomu nie zaszkodzit :)

Operator warunkowy

Operator 2: jest nazywamy ternarnym, czyli tréjargumentowym. Jako jedyny bierze
bowiem trzy dane:

warunek ? wynik dla prawdy : wynik dla fatszu

Umiejetne uzycie tego operatora skraca kod i pozwala unikng¢ niepotrzebnych instrukcji
if. Co ciekawe, moze on by¢ takze uzyty w deklaracjach, np. pdl w klasach. Wtedy
jednak wszystkie jego operandy muszg by¢ statymi.

Przecinek

Przecinek (ang. comma) to operator o najnizszym priorytecie. Oprocz tego, ze oddziela
on argumenty funkcji, moze tez wystepowaé samodzielnie, np.:

(nX + 17, 26, rand() % 5, nY)

W takim wyrazeniu operandy sa obliczane od lewej do prawej, natomiast wynikiem jest
wartosc ostatniego wyrazenia. Tutaj wiec bedzie to ny.

Przecinek przydaje sie, gdy chcemy wykonac¢ pewng dodatkowg czynnosé w trakcie
wyliczania jakiej$ wartosci. Przyktadowo, spojrzmy na taka petle odczytujaca znaki:

char chZnak;
while (chZnak = ReadChar (), chZnak != " ")
{
// zrdb co$ ze znakiem, ktdry nie jest spacja

}

ReadChar () jest funkcja, ktéra pobiera nastepny znak (np. z pliku). Sama petla ma zas
wykonywac sie az do napotkania spacji. Zanim jednak mozna sprawdzié, czy dany znak
jest spacja, trzeba go odczytac¢. Robimy to w warunku petli, postugujac sie przecinkiem.
Bez niego trzebaby najprawdopodobniej zmienic catg petle na do, co spowodowatoby
koniecznos¢ powtdrzenia kodu wywotujacego ReadChar () . Inne wyjscie to uzycie petli
nieskoriczonej. C++ pozwala jednak osiggnac¢ ten sam efekt na kilka sposobéw, sposréd
ktérych wybieramy ten najbardziej nam pasujacy.

Nowe znaczenia dla operatorow

PrzypomnieliSmy sobie wszystkie operatory C++ i ich domysIne znaczenia. Nam to
jednak nie wystarcza - chcemy przeciez zdefiniowac dla nich catkiem nowe funkcje.
Zobaczmy zatem, jak mozemy to uczynié.

Funkcje operatorowe

Pomysimy: co wilasciwie robi kompilator, gdy natrafi w wyrazeniu na jakis operator? Czy
tylko sobie znanymi sposobami oblicza on docelowg wartos¢, czy moze jednak jest w tym
jakas zasada?...

Otodz tak. Dziatanie operatora definiuje pewna funkcja, zwana funkcja operatorowa
(ang. operator function). Istnieje wiele takich funkcji, ktére sg wbudowane w kompilator i
dziatajg na typach podstawowych. Dodawanie, odejmowanie i inne predefiniowane
dziatania na liczbach sg dostepne bez zadnych staran z naszej strony.

Kiedy natomiast chcemy przecigzyc¢ jakis operatory, to oznacza to koniecznosé¢ napisania
wiasnej funkcji dla nich. Zwyczajnie, trzeba podac jej argumenty oraz warto$¢ zwracang i

420 Zaawansowane C++

wypetni¢ kodem. Nie ma w tym zadnej ,magii”. Za chwile zreszta przekonasz sie, jak to
dziata.

Kilka uwag wstepnych

Zobaczmy wiec, jak mozna zdefiniowa¢ dodatkowe znaczenia dla operatoréw w C++.

Ogdlna sktadnia funkcji operatorowej

Przecigzenie operatora oznacza napisanie dla niego funkcji, odpowiedzialnej za jego nowe
dziatanie. Oto najbardziej ogdlna sktadnia takiej funkcji:

zwracany typ operator symbol([parametry])

{
tres¢ funkcji

}

Zamiast nazwy mamy tu stowo kluczowe operator, za ktérym nalezy podac¢ symbol
przecigzanego operatora (mozna go oddzieli¢ od spacja, lecz nie jest to wymagane).
Jezeli wiec chcemy np. zdefiniowia¢ nowe znaczenie dla plusa (+), to piszemy funkcje
operator+ ().

Jak kazda funkcja, takze i ta przyjmuje pewne parametry. Ich liczba zalezy scisle od
tego, jaki operator chcemy przetadowac. Jesli jest to operator binarny, to sitg rzeczy
konieczne bedg dwa parametry; dla jednoargumentowych operatorow wystarczy jeden
parametr.

Ale uwaga - parametry podane w nawiasie niekoniecznie sg jedynymi, ktore funkcja
otrzymuje. Pamietasz zapewne, ze metody klas majg ukryty parametr - obiekt, na rzecz
ktérego metoda zostata wywotana, dostepny poprzez wskaznik this. Otdz ten parametr
jest brany pod uwage w tym przypadku. Pamietaj wiec, ze:

Funkcja operatorowa przyjmuje tyle argumentdw, ile ma przecigzany przy jej pomocy
operator. Do tych argumentéw zalicza sie wskaznik this, jezeli jest to metoda klasy.

Od tej zasady istnieje tylko jeden wyjatek (a w zasadzie dwa). Stanowig go operatory
postinkrementacji i postdekrementacji: wprowadzono do nich dodatkowy parametr typu
int, ktéry nalezy zignorowadé. Dzieki temu mozliwe jest odrdznienie tych operatoréw od
wariantow prefiksowych.

Operatory, ktore mozemy przecigzac

Mozemy przecigzac¢ bardzo wiele operatorow - zaréowno takich, dla ktérych natychmiast
znajdziemy praktyczne zastosowanie, jak i tych, ktérych przecigzanie wydawatoby sie
dziwaczne. Oto kompletna lista przecigzalnych operatoréw:

+ - x /= | A << <<
~ & Y == = < <= > o=
4= —= *= /= %= g= |= ~= <<= >>=
++ -—— = -> ->* () [] new delete ,

Tabela 18. Przeciazalne operatory C++

Przetadowywac¢ mozemy te i tylko te operatory. W wiekszosci ksigzek i kurséw za chwile
nastgpitaby podobna (acz znacznie krotsza) lista operatoréw, ktérych przecigzac nie
mozna. Z doswiadczenia wiem jednak, ze rodzi to niewyobrazalng iloSc nieporozumien,
spowodowang nieprecyzyjnym okresleniem, co jest operatorem, a co nie. Dlatego tez nie
podaje zadnej takiej tabelki - zapamietaj po prostu, ze przecigza¢ mozna wylacznie te
operatory, ktére wymienitem wyzej.

Zaawansowana obiektowos¢ 421

Musze jednak podac kilka wyjasnien odnosnie tej tabelki:

> operatory: +, -, *, & mozna przecigzac¢ zaréwno w wersji jedno-, jak i
dwuargumentowej

> operatory inkrementacji (++) i dekrementacji (--) przecigzamy oddzielnie dla
wersji prefiksowej i postfiksowej

» przecigzenie new i delete powoduje takze zdefiniowanie ich dziatania dla wersji
tablicowych (new[] i delete[])

> operatory () i [] to nawiasy: okragte (grupowanie wyrazen) i kwadratowe
(indeksowanie, wybdr elementow tablicy)

> operatory -> i ->* majg predefiniowane dziatanie dla wskaznikdédw na obiekty -
jego nie mozemy zmieni¢. Mozemy natomiast zdefiniowia¢ ich dziatanie dla
samych obiektow

Czego nie mozemy zmienic

Przecigzajac operatory mozemy zdefiniowaé dla nich dodatkowe znaczenie. Nie mozemy
jednak:
> tworzy¢ wiasnych operatoréw, jak np. @, ?, === czy \
> zmieni¢ liczby argumentéw, na ktérych pracujg przecigzane operatory.
Przyktadowo, nie stworzymy dwuargumentowego operatora ! czy
jednoargumentowego | |
> zmodyfikowac priorytetu operatora
> zmienic¢ tgcznosci przetadowanego operatora

Dla kazdego typu C++ automatycznie generuje tez pie¢ niezbednych operatorow, ktérych
nie musimy przecigzaé, aby dziataty poprawnie, Sa to:
> zwykly operator przypisania (=). Dokonuje on dostownego kopiowania obiektu
(,pole po polu”)
» operator pobrania adresu (jednoargumentowy &). Zwraca on adres obiektu w
pamieci
» new dokonuje alokacji pamieci dla obiektu
» delete niszczy i usuwa obiekt z pamieci
> przecinek (,) - jego znaczenie jest takie same, jak dla typow wbudowanych

Mozliwe jest aczkolwiek przecigzenie tych pieciu symboli, aby dziataty inaczej dla naszych
klas. Nie mozna jednak uniewazni¢ ich domysinej funkcjonalnosci, jakg dostarcza
kompilator dla kazdego typu. Méwiac potocznie, nie mozna ich ,rozdefiniowac”.

Pozostate sprawy

Warto jeszcze powiedzie¢ o pewnych ,naturalnych” sprawach:

> przynajmniej jeden argument przecigzanego operatora musi by¢ innego typu niz
wbudowane. To naturalne: operatory przecigzamy na rzecz wtasnych typow
(klas), bo dziatania na typach podstawowych sg wyfaczng domeng kompilatora.
Nie wtrgcamy sie w nie

> funkcja operatorowa nie moze posiadac¢ parametrow domysinych

» przecigzenia nie kumulujg sig, tzn. jezeli na przyktad przeciqgzymy operatory +
oraz =, nie bedzie to oznaczato automatycznego zdefiniowania operatora +=.
Kazde nowe znaczenie dla operatora musimy poda¢ sami

Definiowanie przecigzonych wersji operatorow

Operator mozemy przecigzy¢ na kilka sposobow, w zaleznosci od tego, gdzie umiescimy
funkcje operatorowa. Moze by¢ ona bowiem zaréwno sktadnikiem (metodq) klasy, na
rzecz ktorej dziata, jak i funkcjg globalna.

422 Zaawansowane C++

Na te dwa przypadki popatrzymy sobie, definiujac operator mnozenia (dwuargumentowy
*) dla klasy CRational, znanej z poprzednich podrozdziatéw. Chcemy sprawié, aby jej
obiekty mozna byto mnozy¢ przez inne liczby wymierne, np. tak:

CRational JednaPiata(l, 5), TrzyCzwarte (3, 4);
CRational Wynik = JednaPiata * TrzyCzwarte;

To bedzie spore udogodnienie, wiec zobaczmy, jak mozna to zrobic.

Operator jako funkcja sktadowa klasy

Wpierw spréobujmy zdefiniowac operator* () jako funkcje sktadowg klasy. Wiemy, ze
nasz operator jest dwuargumentowy; wiemy takze, ze kazda metoda klasy przyjmuje
jeden ukryty parametr - wskaznik this. Wynika stad, ze funkcja operatorowa bedzie u
nas miat tylko jeden ,prawdziwy” parametr i wygladata na przyktad tak:

CRational CRational::operator* (const CRational& Liczba) const

{

return CRational(m nLicznik * Liczba.m nLicznik,
m nMianownik * Liczba.m nMianownik) ;

}

To wystarczy - po tym zabiegu mozemy bez problemu mnozy¢ przez siebie zarowno dwa
obiekty klasy CrRational:

CRational DwieTrzecie (2, 3), TrzySiodme (3, 7);
CRational Wynik = DwieTrzecie * TrzySiodme;

jak i jeden obiekt przez liczbe catkowitq:

CRational Polowa(l, 2);
CRational Calosc = Polowa * 2;

Jak to dziata?... Najlepiej przesledzi¢ funkcjonowanie operatora, jezeli wyrazenia
zawierajace go:

DwieTrzecie * TrzySiodme
Polowa * 2

zapiszemy z jawnie wywotang funkcjg operatorowq:

DwieTrzecie.operator* (TrzySiodme)
Polowa.operator* (2)

Wida¢ wyraznie, ze pierwszy argument operatora jest przekazywany jako wskaznik this.
Drugi jest natomiast normalnym parametrem funkcji operator* ().

A jakim sposobem zyskaliSmy od razu mozliwo$¢ mnozenia takze przez liczby catkowite?
Mysle, ze to nietrudne. Zadziatata tu po prostu niejawna konwersja, zrealizowana przy
pomocy konstruktora klasy cRational. Drugie wyrazenie jest wiec w rzeczywistosci
wywotaniem:

Polowa.operator* (CRational (2))

Mimochodem uzyskaliSmy zatem dodatkowa funkcjonalnos$¢. A wszystko za pomoca
jednej funkcji operatorowej (no i jednego konstruktora).

Zaawansowana obiektowos¢ 423

Problem przemiennosSci

Nasz entuzjazm szybko moze jednak ostabng¢. jezeli zechcemy wyprébowad
przemiennos¢ tak zdefiniowanego mnozenia. Nie bedzie przeszkod dla dwdch liczb
wymiernych:

CRational Wynik = TrzySiodme * DwieTrzecie;
albo dla pary catkowita-wymierna kompilator zaprotestuje:

CRational Calosc = 2 * Polowa; // biad!

Dlaczego tak sie dzieje? Ponowny rzut oka na jawne wywotanie operator* () pomoze
rozwiktac¢ problem:

TrzySiodme.operator* (DwieTrzecie) // OK
2 .operator* (Polowa) /] 227

Wyraznie wida¢ przyczyne. Dla dwojki nie mozna wywotac funkcji operator* (), bo taka
funkcja nie istnieje dla typu int - on przeciez nie jest nawet klasg. Nic wiec dziwnego, ze
uzycie operatora zdefiniowanego jako metoda nie powiedzie sie.

,Zaraz - a co z niejawng konwersjq? Dlaczego ona nie zadziatata?” Faktycznie, moznaby
przypuszczac, ze konstruktor konwertujacy moze zamieni¢ 2 na obiekt klasy CRational i
uczyni¢ wyrazenie poprawnym:

CRational (2) .operator* (Polowa) // OK

To jest nieprawda. Powodem jest to, iz:

Niejawne konwersje nie dziatajq przy wytuskiwaniu sktadnikow obiektu.

Kompilator nie rozwinie wiec problematycznego wyrazenia do powyzszej postaci i zgtosi
btad.

Operator jako zwykta funkcja globalna

Wynika z tego prosty wniosek: Houston, mamy problem :) Nie rozwigzemy go na pewno,
definiujac operator* () jako funkcje sktadowg klasy. Trzebaby bowiem dostac¢ sie do
definicji klasy int i doda¢ do niej odpowiednig metode. Szkoda tylko, ze nie mamy
dostepu do tej definicji, co zresztg nie zaskakuje, bo int nie jest przeciez zadng klasa.
Gdyby jednak zatoga Apollo 13 zatamywata sie po napotkaniu tak prostych problemédw,
nie wrocitaby na Ziemie cata i zdrowa. Nasza sytuacja nie jest az tak dramatyczna,
chociaz ,,czesciowo przemienny” operator mnozenia tez nie jest szczytem komfortu.
Trzeba cos$ na to poradzié.

Rozwigzanie oczywiscie istnieje: nalezy uczynic¢ operator* () funkcjg globalna:

CRational operator* (const CRationalé& Liczbal, const CRational& LiczbaZ2)

{
return CRational (Liczbal.Licznik() * Liczba2.Licznik(),
Liczbal.Mianownik () * Liczba2.Mianownik());

}

Zmieni to bardzo wiele. Odtad dwa rozwazane wyrazenia beda rozwijane do postaci:

operator* (TrzySiodme, DwieTrzecie) // OK
operator* (2, Polowa) // tez OK!

424 Zaawansowane C++

W tej formie oba argumenty operatora sq normalnymi parametrami funkcji operator* ().
Ma wiec ona teraz dwa wyrazne parametry, wobec ktérych moze zajs¢ niejawna
konwersja. W tym przypadku 2 faktycznie bedzie wiec interpretowane jako

CRational (2), zatem mnozenie powiedzie sie bez przeszkod.

To spostrzezenie mozna uogdlni¢:

Globalna funkcja operatorowa pozwala kompilatorowi na dokonywanie niejawnych
konwersji wobec wszystkich argumentéw operatora.

Jest to prosty sposdb na definiowanie przemiennych dziatan na obiektach réznych typéw,
miedzy ktorymi istniejg okreslenia konwersji.

Operator jako zaprzyjazniona funkcja globalna

Poréwnajmy jeszcze tre$¢ obu wariantéw funkcji operator* () : jako metody klasy
CRational i jako funkcji globalnej. Widzimy, ze w pierwszym przypadku operowata ona
bezposrednio na prywatnych polach m nLicznik i m nMianownik. Jako funkcja globalna
musiata z kolei positkowac¢ sie metodami dostepowymi - Licznik () i Mianownik ().

Nie powinno cie to dziwi¢. operator* () jako zwykta funkcja globalna jest wtasnie -
zwyktg funkcja globalng, zatem nie ma zadnych specjalnych uprawnien w stosunku do
klasy cRational. Jest tak nawet pomimo faktu, ze definiuje dlan operacje mnozenia.

Zadne specjalne uprawnienia nie sg potrzebne, bo funkcja doskonale radzi sobie bez
nich. Czasem jednak operator potrzebuje dostepu do niepublicznych sktadowych klasy,
ktérych nie uzyska za pomoca publicznego interfejsu. W takiej sytuacji konieczne staje
sie uczynienie funkcji operatorowej zaprzyjazniona.

Podkres$lmy jeszcze raz:

Globalna funkcja operatorowa nie musi by¢ zaprzyjazniona z klasg, na rzecz ktorej
definiuje znaczenie operatora.

Ten fakt pozwala na przecigzanie operatoréw takze dla nieswoich klas. Jak bardzo moze
to by¢ przydatne, zobaczymy przy okazji omawiania strumieni STL z Biblioteki
Standardowej.

Sposoby przecigzania operatorow

Po generalnym zapoznaniu sie z przecigzaniem operatoréw, czas na konkretne przykifady.
Dowiedzmy sie wiec, jak przecigza¢ poszczegolne typy operatorow.

Najczesciej stosowane przecigzenia

Najpierw poznamy takie rodzaje przecigzonych operatoréow, ktére stosuje sie najczesciej.
Pomocg bedzie nam tu gtéwnie stuzy¢ klasa cvector2D, ktorg jakis czas temu
pokazatem:

class CVector2D
{
private:
float m fX, m fY;

public:
explicit CVector2D(float fX = 0.0f, float fY = 0.0f)
{ m fX = fX; m fY = fY; }

Zaawansowana obiektowos¢ 425

Nie jest to przypadek. Operatory przecigzamy bowiem najczesciej dla tego typu klas,
zwanych narzedziowymi. Wektory, macierze i inne przydatne , obiekty matematyczne” sg
wiasnie idealnymi kandydatami na klasy z przetadowanymi operatorami.

| Pokazane tu przecigzenia nie bedq jednak tylko sztuka dla samej sztuki. Wspomniane

| obiekty bedq nam bowiem niezbedne z programowaniu grafiki przy uzyciu DirectX. A ze
| przy okazji ilustrujq te ciekawaq technike programistyczna, jaka jest przecigzanie

| operatordw, tym lepiej dla nas :)

Spéjrzmy zatem, jakie ciekawe operatory mozemy przedefiniowac na potrzeby tego typu
klas.

Typowe operatory jednoargumentowe

Operatory unarne, jak sama nazwa wskazuje, przyjmujg jeden argument. Chcac dokonac
ich przecigzenia, mamy do wyboru:
> zdefiniowanie odpowiedniej metody w klasie, na rzecz ktérej dokonujemy
redefinicji:

klasa klasa::operator symbol () const;
> napisanie globalnej funkcji operatorowej:
klasa operator symbol (const klasaé&);
Zauwazytes zapewne, ze w obu wzorach podaje parametry oraz typ zwracanej

wartosci'?, Przestrzeganie tego schematu nie jest jednak wymogiem jezyka, lecz raczej
powszechnie przyjetej konwencji dotyczacej przecigzania operatoréow. Mowi ona, ze:

Dziatanie operatorow wobec typow zdefiniowanych przez programiste powinno w miare
mozliwosci pokrywac sie z ich funkcjonalnoscig dla typow wbudowanych.

Co to znaczy?... Ot6z wiekszos¢ operatorow jednoargumentowych (poza
in/dekrementacjg) nie modyfikuje w Zzaden sposdb przekazanych im obiektdw.
Przykfadowo, operator jednoargumentowego minusa - zastosowany wobec liczby zwraca
po prostu liczbe przeciwna.

Chcac zachowac te konwencje, nalezy umiesci¢ w odpowiednich miejscach deklaracje
statosci const. Naturalnie nie trzeba tego bezwarunkowo robi¢ - pamietajmy jednak, ze
przestrzeganie szeroko przyjetych (i rozsadnych!) zwyczajow jest zawsze w interesie
programisty. Dotyczy to zaréwno piszacego, jak i czytajgcego i konserwujacego kod.

No, ale do$¢ tych tyrad. Pora na zastosowanie zdobytej wiedzy w praktyce. Zastandwmy
sie, jakie operatory mozemy logicznie przecigzy¢ dla naszej klasy cvector2p. Nie jest ich
wiele - w zasadzie tylko plus (+) oraz minus (-). Pierwszy nie powinien w ogdle zmieniac
obiektu wektora i zwréci¢ go w nienaruszonym stanie, zas drugi musi odda¢ wektor o
przeciwnym zwrocie.

Sadze, ze bez problemu napisatbys takie funkcje. Sq one przeciez niezwykle proste:

class CVector2D

{
// (pomijamy szczegdly)

public:
// (tu tez)

112 Nje dotyczy to operatoréw inkrementacji i dekrementacji, ktérych omdwienie znajduje sie dalej.

426 Zaawansowane C++

CVector2D operator+ () const
{ return CVector2D(+m fX, +m fY); }
CVector2D operator-() const

{ return CVector2D(-m_fY, -m fY); }
i

Co do drugiego operatora, to chyba nie ma zadnych watpliwosci. Natomiast
przetadowywanie plusa moze wydawac sie wrecz Smieszne. To jednak catkowicie
uzasadniona praktyka: jesli operator ten dziata dla typéw wbudowanych, to powinien
takze funkcjononowac dla naszego wektora. Aczkolwiek tres¢ metody operator+ () to
faktycznie przykfad-analogia do operator- () : rozsadniej bytoby po prostu zwrdéci¢ *this
(czyli kopie wektora) niz tworzy¢ nowy obiekt.

Obie metody umieszczamy bezposrednio w definicji klasy, bo sg one na tyle krétkie, zeby
zastugiwac na atrybut inline.

Inkrementacja i dekrementacja

To, co przed chwilg powiedziatem o operatorach jednoargumentowych, nie stosuje sig do
operatorow inkrementacji (++) i dekrementacji (--). Scisle mowiac, nie stosuje sie w
catosci. Mamy tu bowiem dwie odmienne kwestie.

Pierwszg z nich jest to, iz oba te operatory nie s juz tak ,grzeczne” i nie pozostawiajg
swojego argumentu w stanie nienaruszonym. Potrzebny jest im wiec dostep do obiektu,
ktéry zezwalatby na jego modyfikacje. Trudno oczekiwaé, aby wszystkie funkcje miaty do
tego prawo, zatem operator++ () i operator--() powinny by¢ co najmniej
zaprzyjaznione z klasg. A najlepiej, zeby byty po prostu jej metodami:

klasa klasa::operator++(); // lub operator--()

Druga sprawa jest nieco innej natury. Wiemy bowiem, ze inkrementacja i dekrementacja
wystepuje w dwdch wersjach: przedrostkowej i przyrostkowej. Z zaprezentowanej wyzej
sktadni wynika jednak, ze mozemy przetadowac tylko jedng z nich. Czy tak?...

Bynajmniej. Powyzsza forma jest prototypem funkcji operatorowej dla
preinkrementacji, czyli dla przedrostkowego wariantu operatora. Nie znaczy to jednak,
ze wersji postfiksowej nie mozna przecigzy¢. Przeciwnie, jest to jak najbardziej mozliwe
w ten oto sposédb:

klasa klasa::operator++ (int); // lub operator--(int)

Nie jest on zbyt elegancki i ma wszelkie znamiona ,triku”, ale na co$ trzeba bylo sie
zdecydowac... Dodatkowy argument typu int jest tu niczym innym, jak $rodkiem do
rozrdéznienia obu typow in/dekrementacji. Nie petni on poza tym zadnej roli, a juz na
pewno nie trzeba go podawac podczas stosowania postfiksowego operatora ++ (--). Jest
on nadal jednoargumentowy, a dodatkowy parametr jest tylko mato satysfakcjonujagcym
wyjsciem z sytuacji.

W poczatakach C++ tego nie byto, gdyz po prostu niemozliwe byto przecigzanie
przyrostkowych operatoréw inkrementacji (dekrementacji). P6zniej jednak stato sie to
dopuszczalne - opuscimy juz jednak zastone milczenia na sposob, w jaki to zrealizowano.

Tak samo jak w przypadku wszystkich operatorow zaleca sie, aby zachowanie obu wersji
++ i —— byto spdjne z typami podstawowymi. Jesli wiec przecigzamy prefiksowy
operator++ () lub (i) operator--(), to w wyniku powinien on zwracac¢ obiekt juz po
dokonaniu zatozonej operacji zwiekszenia o 1.

Dla spokoju sumienia lepiej tez przecigzy¢ obie wersje tych operatoréw. Nie jest to
ucigzliwe, bo mozemy korzystac¢ z juz napisanych funkcji. Oto przyktad dla cvector2D:

Zaawansowana obiektowos¢ 427

// preinkrementacja
CVector2D CVector2D::operator++ () { ++m_£fX; ++m fY; return *this; }

// postinkrementacija
CVector2D CVector2D::operator++ (int)

{
CVector2D vWynik = *this;

++ (*this) ;
return vWynik;

}

// (dekrementacja przebiega analogicznie)

Spostrzezmy, ze nic nie stoi na przeszkodzie, aby w postinkrementacji uzy¢ operatora
preinkrementacji:

++ (*this) ;

Przy okazji mozna dostrzec wyraznie, dlaczego wariant prefiskowy jest wydajniejszy. W
odmianie przyrostkowej trzeba przeciez poniesc¢ koszt stworzenia tymczasowego obiektu,
aby go potem zwroci¢ jako rezultat.

Typowe operatory dwuargumentowe

Operatory dwuargumentowe, czyli binarne, przyjmujg po argumenty. Powiedzmy sobie
od razu, ze nie muszg by¢ to operandy tych samych typow. Wobec tego nie ma czegos
takiego, jak ogolna sktadnia prototypu funkcji operatora binarnego.

Ponownie jednak mozemy mie¢ do czynienia z dwoma drogami implementacji takiej
funkcji:
> jako metody jednej z klas, na obiektach ktérej pracuje operator. Jego jawne
wywofanie wyglada wowczas tak:

operandl.operator symbol (operand?)
> jako funkcji globalnej - zaprzyjaznionej badz nie:
operator symbol (operandl, operandZ2)

Obie linijki zastepuja normalne uzycie operatora w formie:

operandl symbol operand2

O tym, ktora mozliwos¢ przecigzania jest lepsza, wspominatem juz na poczatku. Przy
wyborze najwieksza role odgrywajgq ewentualne niejawne konwersje - jezeli chcemy, by
kompilator takowych dokonywat.

W bardzo uproszczonej formie mozna powiedzie¢, ze jesli jednym z argumentéw ma by¢
typ wbudowany, to funkcja operatorowa jest dobrym kandydatem na globalng (z
przyjaznig badz nie, zaleznie od potrzeb). W innym przypadku mozemy pozosta¢ przy
metodzie klasy - lub kierowac sie innymi przestankami, jak w ponizszych przyktadach...

Celem ujrzenia tych przykfadéw wro¢my do naszego wektora. Jak wiemy, na wektorach
w matematyce mozemy dokonywac¢ mndstwa operacji. Nie wszystkie nas interesujg, wiec
tutaj zaimplementujemy sobie tylko:

> dodawanie i odejmowanie wektorow

» mnozenie i dzielenie wektora przez liczbe

» iloczyn skalarny

428 Zaawansowane C++

Czy bedzie to trudne? Mysle, ze ani troche. Zacznijmy od dodawania i odejmowania:

class CVector2D

{
// (pomijamy szczegdly)

// dodawanie
friend CVector2D operator+ (const CVector2D& vWektorl,
const CVector2D& vWektor?2)

{
return CVector2D(vWektorl.m fX + vWektor2.m fX,

viWektorl.m fY + vWektor2.m fY);
}

// (analogicznie definiujemy odejmowanie: operator-())

i

Zastosowatem tu funkcje zaprzyjazniong - przypominam przy okazji, ze nie jest to
metoda klasy cvector2D, cho¢ pewnie na to wyglada. Umieszczenie jej wewnatrz bloku
klasy to po prostu zaakcentowanie faktu, ze funkcja niejako nalezy do ,definicji” wektora
- nie tej stricte programistycznej, ale matematycznej. Oprdcz tego pozwala nam to na
zgrupowanie wszystkich funkcji zwigzanych z wektorem w jednym miejscu, no i na
czerpanie zalet wydajnosciowych, bo przeciez operator+ () jest tu funkcja inline.

Kolejny punkt programu to mnozenie i dzielenie przez liczbe. Tutaj optaca sie zdefiniowac
je jako metody klasy:

class CVector2D

{
// (pomijamy szczegbdily)

public:
// (tu tez)

// mnozenie wektor * liczba
CVector2D operator* (float fLiczba) const
{ return CVector2D(m fX * fLiczba, m fY * fLiczba); }

// (analogicznie definiujemy dzielenie: operator/())

b

Dlaczego? Ano dlatego, ze pierwszy argument ma by¢ naszym wektorem, zatem
odpowiada nam fakt, iz bedzie to this. Drugi operand deklarujemy jako liczbe typu
float.

Ale chwileczke... Przeciez mnozenie jest przemienne! W naszej wersji operatora * liczba
moze jednak stac tylko po prawej stronie!

,Ha, a nie méwitem! operator* () jako metoda jest niepoprawny - trzeba zdefiniowac go
jako funkcje globalng!” Hola, nie tak szybko. Faktycznie, powyzsza funkcja nie wystarczy,
ale to nie znaczy, ze mamy jg od razu wyrzucaé. Przy zastosowaniu funkcji globalnych
musielibysmy przeciez takze napisac ich dwie sztuki:

CVector2D operator* (const CVector2D& vWektor, float fLiczba);
CVector2D operator* (float fLiczba, const CVector2D& vWektor);

Zaawansowana obiektowos¢ 429

W kazdym wiec przypadku jeden operator* () nie wystarczy!!3. Musimy doda¢ jego
kolejng wersje:

class CVector2D

{
// (pomijamy szczegbily)

// mnozenie liczba * wektor
friend CVector2D operator* (float fLiczba, const CVector2D& vWektor)
{ return vWektor * fLiczba; }

}i

Korzystamy w niej z uprzednio zdefiniowanej. Kwestia, czy nalezy poprzednig wersje
operatora takze zamieni¢ na zwyktg funkcje zaprzyjazniong, jest otwarta. Jezeli razi cie
niekonsekwencja (jeden wariant jako metoda, drugi jako zwykta funkcja), mozesz to
zrobic.

Na koniec dokonamy... trzeciej definicji operator* (). Tym razem jednak bedzie to
operator mnozenia dwdch wektoréw - czyli iloczynu skalarnego (ang. dot product).
Przypomnijmy, ze takie dziatanie jest po prostu sumg iloczynéw odpowiadajacych sobie
wspotrzednych wektora. Jego wynikiem jest wiec pojedyncza liczba.

Poniewaz operator bedzie dziatat na dwdch obiektach cvector2Dd, decyzja co do sposobu
jego zapisania nie ma znaczenia. Aby pozosta¢ w zgodzie z tym ustalonym dla
operatorow dodawania i mnozenia, niech bedzie to funkcja zaprzyjazniona:

class CVector2D

{
// (pomijamy szczegbily)

// iloczyn skalarny
friend float operator* (const CVector2D& vWektorl,
const CVector2D& vWektor2)

{

return vWektorl.m fX * vWektor2.m fX,
+ vWektorl.m fY * vWektor2.m fY;

b

Definiowanie operatorow binarnych jest wiec bardzo proste, czyz nie? :D

Operatory przypisania

Teraz porozmawiamy sobie o pewnym wyjatkowym operatorze. Jest on unikalny pod
wieloma wzgledami; mowa o operatorze przypisania (ang. assignment operator)
tudziez podstawienia.

Dos¢ czesto nie potrzebujemy nawet jego wyraznego zdefiniowania. Kompilator dla
kazdej klasy generuje bowiem taki operator, o domysinym dziataniu. Taki automatyczny
operator dokonuje przypisania ,sktadnik po skfadniku” - tak wiec po jego zastosowaniu
przypisywane obiekty sq sobie réwne na poziomie wartosci pol'**. Taka sytuacja nam
czesto odpowiada - przykfadowo, dla naszej klasy cvector2D bedzie to idealne
rozwigzanie. Niekiedy jednak nie jest to dobre wyjscie - za chwile zobaczymy, dlaczego.
Powiedzmy jeszcze tylko, ze domys$iny operator przypisania nie jest tworzony przez
kompilator, jezeli klasa:

113 pomijam tu zupetnie fakt, ze za chwile funkcje te zdefiniujemy po raz trzeci - tym razem jako iloczyn
skalarny dwdch wektordw.

114 W tym kopiowanie ,pole po polu” wykorzystywane s aczkolwiek indywidualne operatory przypisania od klas,
ktore instancjujemy w postaci pdl. Nie zawsze wiec obiekty takie faktycznie sg sobie doskonale rowne.

430 Zaawansowane C++

> ma sktadnik bedacy statg (const typ) lub statym wskaznikiem (typ* const)
» posiada skfadnik bedacy referencjg
> istnieje prywatny (private) operator przypisania:

v w klasie bazowej

v w klasie, ktdérej obiekt jest sktadnikiem naszej klasy

Nawet jesli zaden z powyzszych punktow nie dotyczy naszej klasy, domysine dziatanie
operatora przypisania moze nam nie odpowiada¢. Wtedy nalezy go zdefiniowa¢ samemu
w ten oto sposob:

klasa& klasa::operator=(const klasat&);

Jest to najczestsza forma wystepowania tego operatora, umozliwiajaca kontrole
przypisywania obiektow tego samego typu co macierzysta klasa. Mozliwe jest aczkolwiek
przypisywanie dowolnego typu - czasami jest to przydatne.

Jest jednak cos, na co musimy zwréci¢ uwage w pierwszej kolejnosci:

Operatory przypisania (zaréwno prosty, jak i te ztozone) muszg by¢ zdefiniowane jako
niestatyczna funkcja sktadowa klasy, na ktorej pracuja.

Widac to z zaprezentowanej deklaracji. Nie widac z niej jednak, ze:

Przecigzony operator przypisania nie jest dziedziczony.

Dlaczego - o tym moéwitem przy okazji wprowadzania samego dziedziczenia.

OK, wystarczy tej teorii. Czas zobaczy¢ definiowanie tego opratora w praktyce.
Wspomniatem juz, ze dla klasy Cvector2D w zupetnosci wystarczy operator tworzony
przez kompilator. Mamy jednak inng klase, dla ktérej jest to wrecz niedopuszczalne
rozwigzanie. To CIntArray, nasza tablica liczb.

Dlaczego nie mozemy skorzystaé dla z niej z przypisania ,sktadnik po sktadniku”? Z
bardzo prostego powodu: spowoduje to przeciez skopiowanie wskaznikéw na tablice, a
nie samych tablic.

Zauwazmy, ze z tego samego powodu napisaliSmy dla cIntArray konstruktor kopiujacy.
To nie przypadek.

Jezeli klasa musi mie¢ konstruktor kopiujacy, to najprawdopodobniej potrzebuje takze
wilasnego operatora przypisania (i na odwrot).

Zajmijmy sie wiec napisaniem tego operatora. Aby to uczyni¢, pomyslimy, co powinno sie
sta¢ w takim przypisaniu:

CIntArray aTablical(7), aTablica2(8);
aTablical = aTablica?2;

Po jego dokonaniu obie tablice musza zawiera¢ te same elementy, lecz jednoczesnie by¢
niezalezne - modyfikacja jednej nie moze pocigga¢ za soba zmiany zawartosci drugiej.
Operator przypisania musi wiec:

> zniszczy¢ tablice w obiekcie aTablical

> zaalokowac w tym obiekcie tyle pamieci, aby pomiesci¢ zawartos$¢ aTablica?

> skopiowac jg tam

Te trzy kroki sg charakterystyczne dla wiekszosci implementacji operatora przypisania.
Dzielg one kod funkcji operatorowej na dwie czesci:
> czesé ,destruktorowq”, odpowiedzialng za zniszczenie zawartosci obiektu, ktory
jest celem przypisania

Zaawansowana obiektowos¢ 431

> czesc ,konstruktorowq”, zajmujaca sie kopiowaniem

Nie mozna jednak ograniczy¢ go do prostego wywotania destruktora, a potem
konstruktora kopiujgcego - chocby z tego wzgledu, ze tego drugiego nie da sie tak po
prostu wywoftac.

Dobrze, teraz to juz naprawde zaczniemy co$ kodowac :) Napiszemy operator przypisania
dla klasy cIntArray:

CIntArray& CIntArray::operator=(const CIntArray& aTablica)
{

// usuwamy nasza tablice
delete[] m pnTablica;

// alokujemy tyle pamieci, aby pomies$cié przypisywana tablice
m uRozmiar = aTablica.m uRozmiar;
m pnTablica = new int [m uRozmiar];

// kopiujemy tablice
memcpy (m _pnTablica, aTablica.m pnTablica, m uRozmiar * sizeof (int));

// zwracamy wynik
return *this;

}

Nie jest on chyba niespodziankg - mamy tu wszystko, o czym mowili§my wczeéniej. Tak
wiec na poczatku zwalniamy tablice w obiekcie, bedacym celem przypisania. Pozniej
alokujemy nowa - na tyle duzg, aby zmiesci¢ przypisywany obiekt. Wreszcie dokonujemy
kopiowania.

I pewnie jeszcze tylko jedna sprawa zaprzata twojgq uwage: dlaczego funkcja zwraca w
wyniku *this?...

Nie jest trudno odpowiedzie¢ na to pytanie. Po prostu realizujemy tutaj konwencje znang,
z typdw podstawowych, moéwigcg o rezultacie przypisania, Pozwala to tez na
dokonywanie wielokrotnych przypisaé, np. takich:

CIntArray aTablical(4), aTablica2(5), aTablica3(6);
aTablical = aTablica2 = aTablica3;

Powyzszy kod bedzie dziatat identycznie, jak dla typow podstawowych. Wszystkie tablice
stang sie wiec kopiami obiektu aTablica3.
Aby to osiggna¢, wystarczy trzymac sie prostej zasady:

Operator przypisania powinien zwracac referencje do *this.

Wydawatoby sie, ze teraz wszystko jest juz absolutnie w porzadku, jezeli chodzi o
przypisywanie obiektow klasy cIntarray. Niestety, znowu zawodzi nas czujnosé.
Popatrzmy na taki oto kod:

CIntArray aTablica;
aTablica = aTablica; // co sie stanie z tablica?

By¢ moze przypisywanie obiektu do niego samego jest dziwne, ale jednak kompilator
dopuszcza je dla typow podstawowych, gdyz jest dla nich nieszkodliwe. Nie mozna tego
samego powiedzie¢ o naszej klasie i jej operatorze przypisania.

Wywofanie funkcji operator=() spowoduje bowiem usuniecie wewnetrznej tablicy w
obu obiektach (bo sg one przeciez jednym i tym samym bytem), a nastepnie prébe

432 Zaawansowane C++

skopiowania tej usunietej tablicy do nowej! Bedziemy mogli méwi¢ o szczesciu, jesli
spowoduje to ,tylko” btad access violation i awaryjne zakohczenie programu...

Przed takq ewentualnoscia musimy sie wiec zabezpieczyc¢. Nie jest to trudne i ogranicza
sie do prostego sprawdzenia, czy nie mamy do czynienia z przypisywaniem obiektu do
jego samego. Robimy to tak:

klasa& klasa::operator=(const klasa& obiekt)

{
if (&obiekt == this) return *this;

// (reszta instrukciji)

}
albo tak:

klasa& klasa::operator=(const klasa& obiekt)
{

if (&obiekt != this)

{

// (reszta instrukciji)
}
}

W instrukcji if poréwnujemy wskazniki: adres przypisywanego obiektu oraz this. W ten
wytapujemy ich ewentualng identycznos$c¢ i zapobiegamy katastrofie.

Operator indeksowania

Skoro jestesmy juz przy naszej tablicy, warto zaja¢ sie operatorem o wybitnie
tablicowym charakterze. Méwie oczywiscie o nawiasach kwadratowych [], czyli
operatorze indeksowania (ang. subscript operator).

Operator ten definiujemy zwykle w taki oto sposdb:

typ wartosci& klasa::operator|[] (typ klucza);

Znowu widzimy, ze jest to metoda klasy i po raz kolejny nie jest to przypadkiem:

Operator indeksowania musi by¢ zdefiniowany jako niestatyczna metoda klasy.

To juz drugi operator, ktérego dotyczy taki wymédg. Podpada pod niego jeszcze nastepna
dwadjka, ktérej przecigzanie oméwimy za chwile. Najpierw zajmijmy sie operatorem
indeksowania.

Przede wszystkim chciatby$ pewnie wiedzie¢, jak on dziata. Nie jest to trudne; jezeli
przecigzymy ten operator, to wyrazenie w formie:

obiekt[klucz]
zostanie przez kompilator zinterpretowane jako wywotanie w postaci:

obiekt.operator|[] (klucz)

Do funkcji operatorowej poprzez parametr trafia wiec klucz, czyli wartos¢, jaka
podajemy w nawiasach kwadratowych. Co ciekawe, nie musi to by¢ wcale wartos¢ typu
int, ani nawet wartosc¢ liczbowa - rownie dobrze sprawdza sie tu catkiem dowolny typ

Zaawansowana obiektowosé 433

danych, nawet napisy. Pozwala to tworzy¢ klasy tzw. tablic asocjacyjnych, znanych na
przykfad z jezyka PHP!'>,

Poniewaz wspomniatem juz o tablicach, zajmijmy sie tg, ktdra sami kiedys$ napisaliSmy i
ciggle udoskonalamy. Nie da sie ukry¢, ze cIntArray wiele zyska na przecigzeniu
operatora []. Jezeli zrobimy to umiejetnie, bedzie mozna uzywac go tak samo, jak
czynimy to w stosunku do zwyktych tablic jezyka C++.

Aby jednak to zrobi¢, musimy zwrdci¢ uwage na pewien szczegdlny fakt. W stosunku do
typow wbudowanych operator [] jest mianowicie bardzo elastyczny: w szczegdlnosci
pozwala on zaréwno na odczyt, jak i modyfikacje elementéw tablicy:

int aTablica[l1l0]
aTablica[7] = 100; // zapis
std::cout << aTablical[7]; // odczyt

Wyrazenie z operatorem [] moze stac¢ zaréwno po lewej, jak i po prawej stronie znaku
przypisania. Te ceche wypadatoby zachowac we wtasnej jego wersji - znaczy to, ze:

Operator indeksowania powinien w wyniku zwracac I-wartos¢.

Gwarantuje to, ze jego uzycie bedzie zgodne z tym dla typow podstawowych.
Zaakcentowatem ten wymdg, piszac w sktadni operatora referencje jako typ zwracanej
wartosci. To wiasnie spowoduje pozgdane zachowanie.

Jezeli nie mozemy sobie pozwoli¢ sobie na zwracanie |-wartosci, to powinniSmy raczej
catkowicie zrezygnowac z przetadowania operatora [] i poprzesta¢ na metodach
dostepowych - takich jak pobierz () i Ustaw () w klasie CIntArray.

Zabierzmy sie teraz do pracy: napiszemy przecigzong wersje operatora indeksowania dla
klasy cIntArray. Dzieki temu bedziemy mogli manipulowac elementami tablicy w taki
sam sposob, jaki znamy dla normalnych tablic. To bedzie catkiem spory krok naprzaod.
Osiggniecie tego nie jest przy tym trudne - wrecz przeciwnie, u nas bedzie niezwykle
proste:

int& CIntArray::operator[] (unsigned uIndeks)
{ return m pnTablicaluIndeks]; }

To wszystko! Zwrdcenie referencji do elementu w prawidziwej, wewnetrznej tablicy
pozwoli na niczym nieskrepowany dostep do jej zawartosci. Teraz mozemy w wygodny
sposob odczytywacd i zapisywac liczby w naszej tablicy:

CIntArray aTablica (4);

aTablica[0] = 1;
aTablicall] = 4;
aTablical[2] = 9;
aTablica[3] = 16;
for (unsigned 1 = 0; 1 < aTablica.Rozmiar(); ++1)

std::cout << aTablicali] << ", ";

Obecnie jest juz ona funkcjonalnie identyczna z tablicg typu int []. Mozemy jednak
zaczgc czerpac takze pewne korzysci z napisania tej klasy. Skoro juz przecigzamy

115 7azwyczaj lepszym rozwigzaniem jest skorzystanie z mapy STL, czyli klasy std: :map. Oméwimy ja, kiedy
przejdziemy do opisu klas pojemnikowych Biblioteki Standardowej.

434 Zaawansowane C++

operator [], to zadbajmy, aby wykonywat po drodze jakas$ pozyteczng czynnosc - na
przyktad sprawdzat poprawnos$¢ zadanego indeksu:

int& CIntArray::operator[] (unsigned ulndeks)
{ return m pnTablicaluIndeks < m uRozmiar ? uIndeks : m uRozmiar-1];

}

Przy takiej wersji funkcji nie grozi nam juz btad przekroczenia zakresu (ang. subscript out
of range). W razie podania nieprawidtowego numeru elementu, funkcja zwrdci po prostu
odwotanie do ostatniej liczby w tablicy. Nie jest to najlepsze rozwigzanie, ale
przynajmniej zabezpiecza przed btedem czasu wykonania.

Znacznie lepszym wyjsciem jest rzucenie wyjatku, ktory poinformuje wywotujacego o
zainstaniatym problemie. O wyjatkach porozmawiamy sobie w nastepnym rozdziale.

Operatory wytuskania

C++ pozwala na przetadowanie dwodch operatoréow wytuskania: -> oraz ->*. Nie jest to
czesta praktyka, a jesli nawet jest stosowana, to przecigzaniu podlega zwykle tylko
pierwszy z tych operatorow. Mozesz wiec poming¢ ten akapit, jezeli nie wydaje ci sie
konieczna znajomos¢ sposobu przetadowywania operatoréw wytuskania.

Operator ->

Operator -> kojarzy nam sie z wybieraniem skfadnika poprzez wskaznik do obiektu.
Wyglada to np. tak:

CFoo* pFoo = new CFoo;
pFoo->Metoda () ;
delete pFoo;

Jezeli jednak sprébowalismy uzy¢ tego operatora w stosunku do samego obiektu (lub
referencji do niego):

CFoo Foo;
Foo->Metoda () ; // v

to bez watpienia otrzymalibysmy komunikat o btedzie. Domysinie nie jest bowiem
mozliwe uzycie operatora -> w stosunku do samych obiektéw. Jest on aplikowalny tylko
do wskaznikdw.

Ale w C++ nawet ta zelazna moze zostac¢ nagieta. Mozliwe jest bowiem nadanie
operatorowi -> znaczenia i dopuszczenie do jego uzywania razem ze zmiennymi
obiektowymi. Aby to uczynic¢, trzeba oczywiscie przecigzy¢ ten operator.
Czynimy to takg oto funkcja:

jakas klasa* klasa::operator->();

Nie wyglada ona na skomplikowana... ale znowu jest to metoda klasy! Tak wiec:

Operator wytuskania -> musi by¢ niestatyczna funkcja sktadowa klasy.

Powiedzmy sobie teraz, jak on dziata. Nie jest przeciez wcale takie oczywiste - choc¢by z
tego wzgledu, ze z niewiadomych na razie powodow operator zadowala sie zaledwie
jednym argumentem... (Jest on rzecz jasna przekazywany poprzez wskaznik this)

A oto i odpowiedz. Kiedy przecigzymy operator ->, wyrazenie w formie:

obiekt->sktadnik

Zaawansowana obiektowosé 435

zostanie zmienione na:

(obiekt.operator->())->sktadnik

Mamy tu juz jawne wywotanie operator->(), ale nadal pojawia sie strzatka w swej
normalnej postaci. Otéz jest to konieczne; w tym kodzie -> stojacy tuz przy sktadniku
jest juz bowiem zwyklym operatorem wyluskania ->. Zwyktym - to znaczy takim, ktéry
oczekuje wskaznika po swojej lewej stronie - a nie obiektu, jak operator przecigzony.
Wynika z tego wyrazenie:

obiekt.operator->()

musi reprezentowac wskaznik, aby cato$¢ dziatata poprawnie. Dlatego tez funkcja
operator->() zwraca w wyniku typ wskaznikowy. Jednoczesnie nie interesuje sie ona
tym, co stoi po prawej stronie strzatki - to jest juz bowiem sprawa tego normalnego,
wbudowanego w kompilator operatora ->.

Podsumowujac, mozna powiedzie¢, ze:

Funkcja operator->() dokonuje raczej zamiany obiektu na wskaznik niz faktycznego
przedefiniowania znaczenia operatora ->.

Godne uwagi jest to, ze wskaznik zwracany przez te funkcje wcale nie musi by¢
wskaznikiem na obiekt jej macierzystej klasy. Moze to by¢ wskaznik na dowolna klase,
co zreszty obrazuje sktadnia funkcji.

Zastanawiasz sie pewnie: ,A po co mi przecigzanie tego operatora? Moze po to, aby do
sktadnikéw obiektu odnosic sie nie tylko kropka (.), ale i strzatkg (->)?” Odradzam
przecigzanie operatora w tym celu, bo to raczej ukryje btedy w kodzie niz utatwi
programowanie.

Operator -> mozemy jednak przecigzyc¢ i bedzie to przydatne przy pisaniu klas tzw.
inteligentnych wskaznikow.

Inteligentny wskaznik (ang. smart pointer) to klasa bedaca opakowaniem dla
normalnych wskaznikéw i zapewniajaca wobec nich dodatkowe, ,inteligentne”
zachowanie.

Rodzajow tych inteligentnych zachowan jest doprawdy mndstwo. Moze to by¢ kontrola
odwotan do wskaznika - zarowno w prostej formie zliczania, jak i zaawansowanej
komunikacji z mechanizmem zajmujacym sie usuwaniem nieuzywanych obiektow
(od$miecaczem, ang. garbage collector). Innym zastosowaniem moze by¢ ochrona przed
wyciekami pamieci spowodowanymi nagtym opuszczeniem zakresu.

My napiszemy sobie najprostszg wersje takiego wskaznika. Bedzie on przechowywat
odwotanie do obiektu cFoo, ktére przekazemy mu w konstruktorze, i zwalniat je w swoim
destruktorze. Oto kod klasy wskaznika:

class CFooSmartPtr
{
private:
// opakowywany, wtasciwy wskaznik
CFoo* m pWskaznik;

public:
// konstruktor i1 destruktor
CFooSmartPtr (CFoo* pFoo) : m pWskaznik (pFoo) {1}
~CFooSmartPtr () { if (m pWskaznik) delete m pWskaznik; }

436 Zaawansowane C++

// operator dereferencii
CFoo operator* () { return *m pWskaznik; }

// operator wytuskania
CFoo* operator->() { return m pWskaznik }

}i

Ta klasa jest ubozszg wersjg std: :auto ptr z Biblioteki Standardowej. Stuzy ona do
bezpiecznego obchodzenia sie z pamiecig w sytuacjach zwigzanych z wyjatkami.
Omowimy jg sobie w nastepnym rozdziale (wrécimy tam zresztq takze i do powyzszej
klasy).

Co nam daje taki wskaznik? Jezeli go uzyjemy, to zapobiegnie on wyciekowi pamieci,
ktéry moze zostaé¢ spowodowany przez nagte opuszczenie zakresu (np. w wyniku wyjatku
- patrz nastepny rozdziat). Jednoczesnie nie umniejszamy sobie w zaden sposéb wygody
kodowania - nadal mozemy korzystac ze sktadni, do ktérej sie przyzwyczailismy:

CFooSmartPtr pFoo = new CFoo;

// wywolanie metody na dwa sposoby
pFoo->Metoda () ; // naprawde: (pFoo.operator->())->Metoda ()
(*pFoo) .Metoda () ; // naprawde: (pFoo.operator* ()) .Metoda ()

Prosze tylko nie sadzi¢, ze odtad powinnismy uzywac tylko takich sprytnych wskaznikdow.
O nie, one nie sq panaceum na wszystko i majq catkiem konkretne zastosowania. Nie
nalezy ich traktowac jako ztoty srodek - szczegdlnie jako Srodek przeciwko
zapomnialskiemu niezwalnianiu zaalokowanej pamieci.

Ciekawostka: operator ->~*

Drugi z operatorow wytuskania, ->*, jest bardzo rzadko uzywany. Nie dziwi wiec, ze
sytuacje, w ktorych jest on przecigzany, sg wrecz sporadyczne. Niemniej, skoro juz
mdéwimy o przecigzaniu, to mozemy wspomniec takze o nim.

Wpierw przydatoby sie aczkolwiek, abys$ znat mechanizm wskaznikéw na sktadowe klasy,
opisany w nastepnym podrozdziale.

->* jest uzywany do wybierania sktadnikdéw obiektu poprzez wskazniki do sktadowych.
Podobnie jak ->, nie ma on predefiniowanego znaczenia dla zmiennych obiektowych, a
jedynie dla wskaznikéw na obiekty. Na tym jednak podobienistwa sie koncza.

->* jest przecigzany jako operator binarny dla konkretnego zestawu dwdch danych,
ktére stanowia:

> referencja do obiektu (argument lewostronny)

> wskaznik do sktadowej klasy (argument prawostronny)
Nie ma tez wymogu, aby funkcja operator->=* () byta funkcjg sktadowg klasy. Moze by¢
rownie dobrze funkcja globalna.

Jak wiec przecigzyc¢ ten operator? Poniewaz, jak méwitem, definiujemy go dla
konkretnego typu sktadnika, posta¢ prototypu funkcji operator->* () rozni sie dla
wskaznikow do pol oraz do metod klasy.

W pierwszym przypadku skfadnia przecigzenia wyglada mniej wiecej tak:

typ pola& klasa::operator->* (typ pola klasa::*);
typ pola& operator->*(klasa&, typ pola klasa::*);

Zaawansowana obiektowos¢ 437

Jest chyba dos¢ logiczne, ze typ docelowego pola oraz typ zwracany przez funkcje
operatorowg musi sie zgadza¢. Dos¢ podobnie jest dla metod:

zwracany typ klasa::operator->* (zwracany typ (klasa::*) ([parametryl));
zwracany typ operator->*(klasa&, zwracany typ (klasa::*) ([parametryl));

Tutaj funkcja musi zwracac ten sam typ, co metoda klasy, na ktérej wskaznik
przyjmujemy.

Jak wyglada przecigzanie w praktyce? Spdjrzmy na przykfad na takg oto klase:

class CFoo

{
public:
int nPolel, nPole2;

// operator ->*
int& operator->*(int CFoo::*) { return nPolel; }

}i

Po takim redefiniowaniu operatora, wszystkie wskazniki na sktadowe typu int w klasie
CFoo beda , prowadzity” tylko i wytacznie do pola npolel.

Operator wywotania funkcji

Czas na kolejny operator, chyba jeden z bardziej interesujgcych. To operator
wywolania funkcji (ang. function-call operator), czyli nawiasy okragte ().

Nawiasy majq jeszcze dwa znaczenia w C++: grupuja one wyrazenia oraz pozwalajg
| wykonywac rzutowanie (w stylu C lub funkcyjnym). Zadnego z tych pozostatych znaczen
| nie mozemy jednak zmieniac. Przecigzeniu moze ulec tylko operator wywotania funkcji.

Tak jest, on takze moze byc¢ przecigzony. O czym w tym przypadku nalezy pamietac?...
Otoéz:

Operator wywotania funkcji moze byc¢ zdefiniowany tylko jako niestatyczna funkcja
sktadowa klasy.

Jest to ostatni rodzaj operator, ktérego dotyczy to ograniczenie. Przypominam, ze
pozostatymi sq: operatory przypisania, indeksowania oraz wytuskania (->).

Na tym zastrzezeniu konczg sie jednak jakiegolwiek obostrzezenia naktadane na to
przecigzenie. operator () () (tak, dwie pary nawiaséow) moze by¢ bowiem funkcjg
przyjmujacg dowolne argumenty i zwracajacq dowolny typ wartosci:

zwracany typ klasa::operator () ([parametryl);

To jedyny operator, ktéry moze przyjmowac kazdg ilos¢ argumentéw. To zresztg,
zrozumiate: skoro normalnie stuzy on do wywotywania funkcji, mogacych miec¢ przeciez
dowolng liczbe parametréw, to i jego przecigzona wersja nie powinna naktadac
ograniczen w tym zakresie. Podobnie dzieje sie, jezeli chodzi o typ zwracanej wartosci.
Oznacza to rowniez, ze mozliwe jest zdefiniowanie wielu wersji przecigzonego operatora
(). Muszg one jednak byc¢ rozréznialne w tym sam sposéb, jak przetadowane funkcje.
Powinny wiec posiadac inng liczbe, kolejnosc¢ i/lub typy parametréw.

438 Zaawansowane C++

Do czego moze nam przydac sie taka potega i elastycznos$c¢? Mozliwosci jest bardzo wiele,
moze do nich naleze¢ np. wybdér elementu tablicy wielowymiarowej. Do ciekawszych
zastosowan nalezy jednak tworzenie tzw. obiektow funkcyjnych (ang. function
objects) - funktorow.

Funktory sg to obiekty przypominajgce zwykte funkcje, jednak réznig sie tym, iz mogq
posiadac stan. Majg go, poniewaz w rzeczywistosci sg to klasy, ktére zawierajq jakies
publiczne pola, zas sktadnie wywotania funkcji uzyskujg za pomoca przecigzenia
operatora ().

Oto prosty przyktad - funktor obliczajgcy $rednig arytmetyczng z podanych liczb i
aktualizujgcy wynik z kazdym kolejnym wywotaniem:

class CAverageFunctor
{
private:
// aktualny wynik
double m fSrednia;

// 1lo$¢ wywotan
unsigned m ulloscLiczb;

public:
// konstruktor
CAverageFunctor() : m fSrednia(0.0), m uIloscLiczb(0) { }
[m e e
// funkcja resetujaca stan funktora
void Reset () { m fSrednia = m ulloscLiczb = 0; }
/) m e e
// operator wywolania funkcji - oblicza $rednia

double operator () (double fLiczba)
{
// liczymy nowa Srednia, uwzgledniajaca dodang liczbe
// oraz aktualizujemy zmienna przechowujg i1ilos¢ liczb
// wszystko w jednym wyrazeniu - za to kochamy C++ ;D
m fSrednia = ((m fSrednia * m ulloscLiczb) + fLiczba)
/ m uIloscLiczb++);

// zwracamy nowg S$redniag
return m_fSrednia;

}i
Uzycie tego obiektu wyglada tak:

CAverageFunctor Srednia;

Srednia (4) ; // érednia z 4

Srednia (18.5); // $rednia z 4 i 18.5

Srednia (-6) ; // érednia z 4, 18.5 i -6

Srednia (42); // $rednia z 4, 18.5, -6 1 42
Srednia.Reset () ; // zresetowanie funktora, warto$é przepada
Srednia (56) ; // $rednia z 56

Srednia (90) ; // $rednia z 56 1 90

Srednia (4 * atan(l)); // érednia z 56, 90 i pi

std::cout << Srednia(l13); // wyswietlenie $redniej z 56, 90, pi i 13

Zaawansowana obiektowosé 439

Naturalnie, matematycy ztapaliby sie za gtowe widzac taki algorytm obliczania $Sredniej.
Bardzo skutecznie prowadzi on bowiem to kumulowania btedéw zwigzanych z
niedoktadnym zapisem liczb w komputerze. Jest to jednak catkiem dobra ilustracja
koncepcji funkctora.

W Bibliotece Standardowej mamy catkiem sporo klas funktoréw, z ktérymi bedziesz mogt
sie wkrétce zapoznad.

Operatory zarzgdzania pamieciq

Oto kolejne dwa wyjatkowe operatory: new i delete. Jak doskonale wiemy, stuzg one do
dynamicznego tworzenia w pamieci operacyjnej (a doktadniej na stercie) zmiennych,
tablic i obiektéw. To moze wydawac sie niemal niesamowite, ale je takze mozemy
przetadowac!

Wpierw jednak musze przypomnieé, ze praca tych operatoréw nie ogranicza sie w
rzeczywistosci tylko do przydzielenia pamieci (new) i jej zwolnienia (delete). JesteSmy
swiadomi, ze moze za tym i$¢ takze zainicjowanie lub sprzatniecie alokowanego obszaru
pamieci. Oznacza to na przyktad wywotanie konstruktora (new) i destruktora (delete)
klasy, ktorej obiekt tworzymy.

Widzimy wiec, ze oba operatory wykonujg wiecej niz jedng czynnos¢. Zmodyfikowacé
mozemy jednak tylko jedng z nich:

Przecigzone operatory new i delete mogq jedynie zmieni¢ sposob alokowania i
zwalniania pamieci. Nie mozna ingerowac w inicjalizacje (wywotanie konstruktorow) i
sprzatanie (przywotanie destruktorow), ktore temu towarzysza.

Zauwazmy, ze fakt ten niweluje dla nas réznice miedzy operatorem new a new[] oraz
delete i delete[]. Na poziomie alokacji (zwalniania) pamieci niczym sie one bowiem nie
rozniq. Dlatego tez dla potrzeb przecigzania mowimy tylko o operatorach new i delete,
majac jednak w pamieci te uwage.

Czy to, ze kontrolujemy jedynie zarzadzanie pamiecig znaczy, ze przecigzanie tych
operatorow nie jest interesujgce?... Przeciwnie - alokacja i zwalnianie pamieci to sgq
wiasnie te czynnosci, ktore najbardziej nas interesujg. Napisanie wtasnego algorytmu ich
wykonywania, albo chociaz $ledzenia tych standardowych, jest podstawa dziatania tak
zwanych menedzeréw pamieci (ang. memory managers). Sq to mechanizmy
zajmujace sie kontrolg wykorzystania pamieci operacyjnej, zapobiegajace zwykle jej
wyciekom i czesto optymalizujgce program.

Stworzenie dobrego menedzera pamieci nie jest oczywiscie proste, jednak przecigzenie
new i delete to bardzo tatwa czynnosé. Aby jg wykona¢, spdjrzmy na prototypy obu
funkcji - operator new () i operator delete():

void* [klasa::]operator new(size t);
void [klasa::]operator delete (void*);

To nie pomytka: funkcje te majg $cisle okreslone listy parametrow oraz typy zwracanych
wartosci. W tym wzgledzie jest to wyjatek wsrdd wszystkich operatorow.

operator new () przyjmuje jeden parametr typu size t - jest to ilos¢ bajtéw, jaka ma
by¢ zaalokowana. W zamian powinien on zwrdci¢ void* - jak mozna sie domyslac:
wskaznik do przydzielonego obszaru pamieci o zadanym rozmiarze.

Z kolei funkcja dla operatora delete potrzebuje tylko parametru, bedacego wskaznikiem.
Jest to rzecz jasna wskaznik do obszaru pamieci, ktéry ma by¢ zwolniony. W zamian
funkcja zwraca void, czyli nic. Oczywiste.

440 Zaawansowane C++

Mniej oczywista jest opcjonalna fraza klasa::. Owszem, sugeruje ona, ze obie funkcje
mogg by¢ metodami klasy lub funkcjami globalnymi. W przeciwienstwie do pozostatych
operatorow ma to jednak znaczenie: new i delete jako metody majgq bowiem inne
znaczenie niz new i delete - funkcje globalne. Mamy mianowicie mozliwo$¢ lokalnego
przecigzenia obydwu operatordéw, jak réwniez zdefiniowania ich nowych, globalnych
wersji. Omowimy sobie oba te przypadki.

Lokalne wersje operatorow

Operatory new i delete mozemy przecigzy¢ w stosunku do pojedynczej klasy. W takiej
sytuacji bedg one uzywane do alokowania i (lub) zwalniania pamieci dla obiektow
wytacznie tej klasy.

Moze to sie przydac np. do zapobiegania fragmentacji pamieci, spowodowanej czestym
tworzeniem i zwalnianiem matych obiektoéw. W takim przypadku operator new moze
zarzadzac wiekszym kawatkiem pamieci i wirtualnie ,,odcinac¢” z niego mniejsze
fragmenty dla kolejnych obiektéw. delete dokonywatby wtedy tylko pozornej dealokacji
pamieci.

Zobaczmy zatem, jak odbywa sie przetadowanie lokalnych operatoréw new i delete. Oto
prosty przyktad, korzystajacy w zasadzie ze standardowych sposéb przydzielania i
oddawania pamieci, ale jednoczesnie wypisujacy informacje o tych czynnosciach:

class CFoo

{
public:
// new
void* operator new(size t cbRozmiar)

{
// informacja na konsoli
std::cout << "Alokujemy " << cbRozmiar << " bajtow";

// alokujemy pamieé¢ 1 zwracamy wskaznik
return ::new char [cbRozmiar];

}

// delete
void operator delete(void* pWskaznik)

{
// informacja
std::cout << "Zwalniamy wskaznik " << pWskaznik;

// usuwamy pamiec
::delete pWskaznik;

}i
Kiedy teraz sprobujemy stworzy¢ dynamicznie obiekt klasy croo:
CFoo* pFoo = new CFoo;

to odbedzie sie to z jednoczesnym powiadomieniem o tym fakcie przy pomocy strumienia
wyjscia. Analogicznie bedzie w przypadku usuniecia:

delete pFoo;

Nadal jednak mozemy skorzystac z normalnych wersji new i delete - wystarczy
poprzedzic¢ ich nazwy operatorem zakresu:

CFoo* pFoo = ::new CFoo;

Zaawansowana obiektowos¢ 441

/...
::delete pFoo;

Tak tez robimy w ciele naszych funkcji operatorowych. Mamy dzieki temu pewnos¢, ze
wywotujemy standardowe operatory i nie wpadamy w putapke nieskorniczonej rekurencii.
W przypadku lokalnych operatoréw nie jest to bynajmniej konieczne, ale warto tak czynic
dla zaznaczenia faktu korzystania z wbudowanych ich wersji.

Globalna redefinicja

new i delete mozemy tez przetadowaé w sposob catosciowy i globalny. Zastgpimy w ten
sposOb wbudowane sposoby alokacji pamieci dla kazdego uzycia tych operatoréw.
Wyjatkiem bedzie tylko jawne poprzedzenie ich operatorem zakresu, ::.

Jak dokona¢ takiego fundamentalnego przecigzenia? Bardzo podobnie, jak to robilismy w
LLtrybie lokalnym”. Tym razem nasze funkcje operator new () i operator delete () beda
po prostu funkcjami globalnymi:

// new
void* operator new(size t cbRozmiar)

{
// informacja na konsoli
std::cout << "Alokujemy " << cbRozmiar << " bajtow";

// alokujemy pamieé¢ 1 zwracamy wskaznik
return ::new char [cbRozmiar];

}

// delete
void operator delete(void* pWskaznik)

{
// informacja
std::cout << "Zwalniamy wskaznik " << pWskaznik;

// usuwamy pamiec
::delete pWskaznik;
}

Ponownie petnig one u nas wytacznie funkcje monitorujaca, ale to oczywiscie nie jest
jedyna mozliwos¢. Wszystko zalezy od potrzeb i fantazji.

Koniecznie zwrd¢my jeszcze uwage na sposob, w jaki w tych przecigzanych funkcjach
odwotujemy sie do oryginalnych operatoréw new i delete. Uzywamy ich w formie : :new i
: :delete, aby omytkowo nie uzy¢ wiasnych wersji... ktére przeciez wiasnie piszemy!
Gdybysmy tak nie robili, spowodowatoby to wpadniecie w niekonczacy sie cigg wywotan
rekurencyjnych. Pamietajmy zatem, ze:

Jesli w tresci przecigzonych, globalnych operatorow new i delete musimy skorzystac z ich
standardowej wersji, koniecznie nalezy uzyc¢ formy ::newi ::delete.

Z domysinych wersji operatoréw pamieci mozemy tez korzysta¢ swiadomie nawet po ich
przecigzeniu:

int* pnZmiennal = new int; // przeciazona wersja
int* pnZmienna? ::new int; // oryginalna wersja

Naturalnie, trzeba wtedy zdawac sobie sprawe z tego przecigzenia i na wlasne zyczenie
uzy¢ operatora : :. To gwarantuje nam, ze nikt inny, jak tylko kompilator bedzie
zajmowat sie zarzadzaniem pamigci.

442 Zaawansowane C++

Nie wpadajmy jednak w paranoje. Jezeli korzystamy z kodu, w ktorym
zaimplementowano inny sposdb nadzorowania pamieci, to nie nalezy bez wyraznego
powodu z niego rezygnowac. W koncu po to kto$ (moze ty?) pisat 6w mechanizm, zeby
byt on wykorzystywany w praktyce, a nie z premedytacjg omijany.

| Caly czas mniej lub bardziej subtelnie sugeruje, ze operatory new i delete nalezy

| przecigza¢ razem. Nie jest to jednak formalny wymoég jezyka C++ i jego kompilatoréw.
Zwykle jednak tak wtasnie trzeba czynié, aby wszystko dziatato poprawnie - zwtaszcza,
| jesli stosujemy inny niz domysiny sposéb alokacji pamieci.

Operatory konwersji

Na koniec przypomne jeszcze o pewnym mechanizmie, ktéry w zasadzie nie zalicza sie do
operatorow, ale uzywa podobnej sktadni i dlatego takze nazywamy go operatorami.
Rzecz jasha sg to operatory konwersji.

Skfadnia takich operatoréw to po prostu:

klasa::operator typ();

Jak doskonale pamietamy, celem funkcji tego typu jest zmiana obiektu klasy do danego
typu. Przy jej pomocy kompilator moze dokonywaé niejawnych konwers;ji.
Innym (lecz nie zawsze stosowalnym) sposobem na osiggniecie podobnych efektow jest
konstruktor konwertujacy. O obu tych drogach moéwiliSmy sobie wczesniej.

Wskazdwki dla poczatkujacego przecigzacza

Przecigzanie operatoréw jest wspaniatg mozliwoscig jezyka C++. Nie ma jednak zadnego
przymusu stosowania jej - dos¢ powiedzie¢, ze do tej pory $wietnie radzilismy sobie bez
niej. Nie ma aczkolwiek powodu, aby jg catkiem odrzuca¢ - trzeba tylko nauczy¢ sie jq
wiasciwie wykorzystywac. Temu wtasnie stuzy ten paragraf.

Zachowujmy sens, logike i konwencje

Jakkolwiek jezyk C++ jest znany ze swej elastycznosci, przez lata jego uzytkowania
wypracowano wiele regut, zadzacych miedzy innymi dziataniem operatoréw. Chcac
przecigzac operatory dla wtasnych klas, nalezatoby ich w miare mozliwosci przestrzegac -
zwilaszcza, ze czesto sg one zbiezne ze zdrowym rozsadkiem.

Podczas przetadowania operatoréow trzeba po prostu zachowac ich pierwotny sens. Jak to
zrobié?...

Symbole operatoréw powinny odpowiadac ich znaczeniom

W pierwszej kolejnosci nalezy powstrzymac sie od radosnej tworczosci, sprzecznej z
wszelkg logika. Moze i zabawne bedzie uzycie operatora == jako symbolu dodawania, ~ w
charakterze operatora mnozenia i s jako znaku odejmowania. Pomysl jednak, co w takiej
sytuacji oznaczac bedzie zapis:

if (Foo ~ Bar & (Baz == Qux) == Thud)

tagodnie méwigc: nie jest to zbyt oczywiste, prawda? Pamietaj zatem, zeby symbole
operatorow odpowiadaty ich naturalnym znaczeniom, a nie tworzyty ucigzliwe dla
programisty rebusy.

Zapewnijmy analogiczne zachowania jak dla typow wbudowanych

Wszystkie operatory posiadajg juz jakie$ zdefiniowane dziatanie dla typéw wbudowanych.
Dla naszych klas moze ono catkiem rézni¢ sie od tego poczatkowego, ale dobrze bytoby,
aby przynajmniej zaleznosci miedzy poszczegdlnymi operatorami zostaty zachowane.

Zaawansowana obiektowos¢ 443

Co to znaczy? Zauwazmy na przykitad, ze trzy ponizsze instrukcje:
int nA;

// o te

nA = nA + 1;
nA += 1;
nA++;

dla typu int (i dla wszystkich podstawowych typdw) sa w przyblizeniu réwnowazne.
Dobrze bytoby, ale dla naszych przetadowanych operatoréw te ,tozsamosci” zostaty
zachowane.

Podobnie jest dla typéw wskaznikowych:

CFoo* pFoo = new CFoo;

// instrukcje robiace to samo
pFoo->Metoda () ;

(*pFoo) .Metoda () ;

// ewentualnie jeszcze pFoo[0].Metoda ()

delete pFoo;

Jesli tworzymy klasy inteligentnych wskaznikéw, nalezatoby wobec tego przecigzy¢ dla
nich operatory ->, * i ewentualnie [] (a takze operator bool (), aby mozna je byto
stosowac¢ w wyrazeniach warunkowych).

Nie przecigzajmy wszystkiego

Na koniec jeszcze jedna, ,,oczywista” uwaga: nie ma sensu przecigzac¢ wszystkich
operatorow - przynajmniej do chwili, gdy nie piszemy klasy symulujgcej wszystkie typy w
C++. Jezeli mimo wszystko wykonamy te niepotrzebng zwykle prace i udostepnimy
naszg pieknie opakowanag klase innym programistom, najprawdopodobniej zignorujg oni
te przecigzenia, ktore nie bedg miaty dla nich sensu. A jesli sami uzywaé bedziemy takiej
klasy, to zapewne szybko sami przekonamy sie, ze uporczywe uzywanie operatorow nie
ma zbytniego sensu. Drogq naturalnej selekcji w obu przypadkach zostang wiec w uzyciu
tylko te operatory, ktére sg naprawde potrzebne.

Nie powinniSmy jednak czekac¢, az zycie zweryfikuje nasze przypuszczenia, bo
przecigzajac niepotrzebnie operatory, stracimy mnoéstwo czasu. Lepiej wiec od razu
zastanowic sie, co warto przetadowac, a czego nie. Kierujmy sie w tym jedng, prostg
zasadaq:

Symbol operatora powinien kojarzy¢ sie z czynnoscig przez niego wykonywana.

Zastosowanie sie do tej reguty likwiduje zazywczaj wiekszos$¢ niepewnosci.

Xk k

ZakonczyliSmy w ten sposob poznawanie przydatnej techniki programowania, jakg jest
przecigzanie operatoréow dla naszych wtasnych klas.

W nastepnym podrozdziale, dla odmiany, zapoznamy sie ze znacznie mniej przydatng
technika ;)) Chodzi o wskazniki do sktadnikow klasy. Mimo tej mato zachecajgcej
zapowiedzi, zapraszam do przeczytania tego podrozdziatu.

444 Zaawansowane C++

Wskazniki do sktadowych klasy

W ostatnim rozdziale czesci pierwszej poznaliSmy zwykte wskazniki jezyka C: pokazujace
na zmienne oraz na funkcje. Tutaj zajmiemy sie pewng nowoscig, jakg do wskaznikow
wprowadzito programowanie obiektowe: wskaznikami do sktadowych (ang. pointers-
to-members).

Ten podrozdziat nie jest niezbedny do kontynuowania nauki jezyka C++. Jezeli |
stwierdzisz, ze jest ci na razie niepotrzebny lub za trudny, mozesz go opusci¢. Zalecam to
szczegolnie przy pierwszym czytaniu kursu. !

Podobnie jak dla normalnych wskaznikow, wskazniki na sktadowe takze mogq odnosi¢ sie
do danych (podl) oraz do kodu (metod). Omdwimy sobie osobno kazdy z tych rodzajow
wskaznikow.

Wskaznik na pole klasy

Wskazniki na pola klas sa obiektowym odpowiednikiem zwyktych wskaznikéw na
zmienne, jakie doskonale znamy. Funkcjonujg one jednak nieco inaczej. Jak? O tym
traktuje niniejsza sekcja.

Wskaznik do pola wewnatrz obiektu
Przypomnijmy, jak wyglada zwykty wskaznik - na przykfad na typ int:

int nZmienna;
int* pnZmienna = &nZmienna;

Zadeklarowany tu wskaznik pnzZmienna zostat ustawiony na adres zmiennej nZmienna.
Wobec tego ponizsza linijka:

*pnZmienna = 14;

spowoduje przypisanie liczby 14 do nZmienna. Stanie sie to za posrednictwem wskaznika.

Wskaznik na obiekt

To juz znamy. Wiemy tez, ze mozemy tworzy¢ takze wskazniki do obiektéw swoich
witasnych klas:

class CFoo

{
public:
int nSkladnik;
i

CFoo Foo;
CFoo* pFoo = &Foo;

Przy pomocy takich wskaznikédw mozemy odnosi¢ sie do sktadnikdw obiektu. W tym
przypadku mozemy na przyktad zmodyfikowac pole nskladnik:

pFoo->nSkladnik = 76;

Sprawi to rzecz jasna, ze zmieni sie pole nSkladnik w obiekcie Foo - jego adres ma
bowiem wskaznik pFoo. Wypisanie wartosci pola tego obiektu:

Zaawansowana obiektowos¢ 445

std::cout << Foo.nSkladnik;

uswiadomi wiec nam, ze ma ono wartosc¢ 76. UstawiliSmy jg bowiem za posrednictwem
wskaznika. To tez juz znamy dobrze.

Pokazujemy na sktadnik obiektu

Czas wiec na nowos¢. Pytanie brzmi: czy zwykiym wskaznikiem mozna odnies¢ sie do
pola we wnetrzu obiektu?...

A owszem. Wystarczy pomysleé, ze wyrazenie:

Foo.nSkladnik

jest I-wartoscig typu int, zatem mozna pobrac¢ jej adres zapisa¢ we wskazniku typu

int*:
int* pnSkladnikFoo = & (Foo.nSkladnik);

Powiedzmy jeszcze wyraznie, co tu zrobiliSmy. Otdz pobraliSmy adres konkretnego pola
(nSkladnik) w konkretnym obiekcie (Foo). Jest to najzupetniej mozliwe, bo przeciez
obiekt reprezentujg w pamieci jego pola. Skoro zas mozemy odniesc¢ sie do obiektu jako
catosci, to mozemy takze pobrac¢ adres jego pol.

Jesli teraz wypiszemy wartosc pola przy pomocy tego wskaznika:

std::cout << *pnSkladnikFoo;
to zobaczymy oczywiscie 76, jako ze nic nie zmieniliSmy od poprzedniego akapitu.

Musze jeszcze powiedzieé, ze manewr z pobraniem adresu pola w obiekcie powiedzie sie
tylko wtedy, jezeli to pole jest publiczne. W innej sytuacji wyrazenie Foo.nSkladnik
zostanie odrzucone przez kompilator.

Zawsze mozna aczkolwiek pobiera¢ adresy pdl wewnatrz klasy (np. w jej metodach) oraz
w funkcjach i klasach zaprzyjaznionych. Te obszary kodu majg bowiem dostep do
wszystkich sktadnikow - takze niepublicznych i mogg z nimi robi¢ cokolwiek: na przyktad
pobierac¢ ich adresy w pamieci.

Wskaznik do pola wewnatrz klasy

Kontynuujemy naszag zabawe. Teraz wezmy pod lupe troche inng klase, z ktorg juz
mndstwo razy sie spotykalismy - wektor:

struct VECTOR3 { float x, y, z; };

Formalnie jest to struktura, ale jak wiemy, w C++ rdznica miedzy strukturg a klasg jest
drobnostkg i sprowadza sie do domysinej widocznosci sktadnikéw. Dla stéwka struct jest
to public, wiec nasze trzy pola sg tu publiczne bez koniecznosci jawnego okreélania tego
faktu.

Majac klase (albo strukture - jak kto woli) z trzema polami mozemy jg naturalnie
instancjowac (czyli stworzyc jej obiekt):

VECTOR3 Wektor;
Nastepnie mozemy tez pobrac¢ adres jej pola - ktérejs ze wspotrzednych:

float* pfX = &Wektor.x;

446 Zaawansowane C++

Miejsce pola w definicji klasy

Przyjrzyjmy sie jednak definicji klasy. Mamy w niej trzy takie same pola, nastepujace
jedno po drugim. Pierwsze (x), drugie (y) i trzecie (z)... Jezeli ci to pomoze, mozesz
nawet wyobrazi¢ sobie nasz wektor jako tréjelementowg tablice, w ktorej nazwalismy
poszczegdlne elementy (pola). Zamiast odwotywac sie do nich poprzez indeksy,
potrafimy postuzy¢ sie ich nazwami (x, vy, z).

Poréwnanie z tablicg jest jednak catkiem trafne - chocby dlatego, ze nasze pola sg
utozone w pamieci w kolejnosci wystepowania w definicji klasy. Najpierw mamy wiec x,
potem vy, a dalej z. Polu x mozemy wiec przypisac ,indeks” 0, v - 1, a dla z ,indeks” 2.

Stowo ‘indeks’ biore tu w cudzystéw, bo jest to tylko takie pojecie pomocnicze. Wiesz, ze
w przypadku tablic indeksy sg ostatecznie zamieniane na wskazniki w ten sposéb, ze do
adresu catej tablicy (czyli jej pierwszego elementu) dodawany jest indeks:

int* aTablical[5];
// te dwie linijki sa rdéwnowazne

aTablical[3] = 12;
* (aTablica + 3) = 12;

Dodawanie, jakie wystepuje w ostatnim wierwszu, nie jest dostownym dodaniem trzech
bajtéw do wskaznika aTablica, jest przesunieciem sie o trzy elementy. Wiasciwie wiec
kompilator zamienia to na:

aTablica + 3 * sizeof(int)

i tak oto uzyskuje adres czwartego elementu tablicy (o indeksie 3). Spéjrzmy na
dodawane wyrazenie:

3 * sizeof(int)
Okresla ono przesuniecie (ang. offset) elementu tablicy o indeksie 3 wzgledem jej
poczatku. Znajac te wartos¢ kompilator oraz adres pierwszego elementu tablicy,
kompilator moze wyliczy¢ pozycje w pamieci dla elementu numer 3.
Dlaczego jednak o tym médwie?... Otdz bardzo podobna operacja zachodzi przy
odwotywaniu sie do pola w obiekcie klasy (struktury). Kiedy bowiem odnosimy sie
jakiegos pola w ten oto sposdb:

Wektor.y

to po pierwsze, kompilator zamienia to wyrazenie tak, aby postugiwaé sie wskaznikami,
bo to jest jego ,mowaq ojczysty”:

(&Wektor) ->y

Nastepnie stosuje on ten sam mechanizm, co dla elementéw tablic. Oblicza wiec adres
pola (tutaj y) wedtug schematu:

&Wektor + offset pola_y
W tym przypadku sprawa nie jest aczkolwiek taka prosta, bo definicja klasy moze
zawierac pola wielu réznych typow o réznych rozmiarach. Offset nie bedzie wiec mogt by¢
wyliczany tak, jak to sie dzieje dla elementu tablicy. On musi by¢ znany juz wczesniej...
Skad?

Z definicji klasy! Okreslajac nasza klase w ten sposob:

Zaawansowana obiektowos¢ 447

struct VECTOR3 { float x, vy, z; };

zdefiniowalismy nie tylko jej sktadniki, ale tez kolejnos¢ pdl w pamieci. Oczywiscie nie
musimy podawac doktadnych liczb, precyzujacych potozenie np. pola z wzgledem obiektu
klasy VECTOR3. Tym zajmie sie juz sam kompilator: przeanalizuje catg definicje i dla
kazdego pola wyliczy sobie oraz zapisze gdzie$ odpowiednie przesuniecie.

I te wiasnie liczbe nazywamy wskaznikiem na pole klasy:

Wskaznik na pole klasy jest okresleniem miejsca w pamieci, jakie zajmuje pole
danej klasy, wzgledem poczatku obiektu w pamieci.

W przeciwnienstwie do zwyktego wskaznika nie jest to wiec liczba bezwzgledna. Nie
mowi nam, ze tu-i-tu znajduje sie takie-a-takie pole. Ona tylko informuje, o ile bajtow
nalezy sie przesungc¢, poczynajac od adresu obiektu, a znalez¢ w pamieci konkretne pole
w tym obiekcie.

Moze jeszcze lepiej zrozumiesz to na przyktadzie kodu. Jezeli stworzymy sobie obiekt
(statycznie, dynamicznie - niewazne) - na przyktad obiekt naszego wektora:

VECTOR3* pWektor = new VECTOR3;
i pobierzemy adres jego pola - na przykfad adres pola y w tym obiekcie:
int* pnY = &pWektor->y;
to réznica wartosci obu wskaznikéw (adreséw) - na obiekt i na jego pole:
pnY - pWektor

bedzie niczym innym, jak wtasnie offsetem tegoz pola, czyli jego miejscem w definicji
klasy! To jest ten rodzaj wskaznikéw C++, jakim sie chcemy tutaj zajac.

Pobieranie wskaznika

Zauwazmy, ze offset pola jest wartoscig globalng dla catej klasy. Kazdy bowiem obiekt
ma tak samo rozmieszczone w pamieci pola. Nie jest tak, ze wsrdd kilku obiektow naszej
klasy VECTOR3 jeden ma pola utozone w kolejnosci x, v, z, drugi - vy, z, x, trzeci - z, vy, x,
itp. O nie, tak nie jest: wszystkie pola sg pouktadane doktadnie w takiej kolejnosci,
jaka ustalilismy w definicji klasy, a ich umiejscowienie jest dla kazdego obiektu
identyczne.

Uzyskanie offsetu danego pola, czyli wskaznika na pole klasy, moze wiec odbywa¢ sie bez
koniecznosci posiadania obiektu. Wystarczy tylko poda¢, o jaka klase i o jakie pole nam
chodzi, np.:

&VECTOR3: :y

Powyzsze wyrazenie zwréci nam wskaznik na pole y w klasie VECTOR3. Powtarzam
jeszcze raz (aby$ dobrze to zrozumiat), iz bedzie to ilos¢ bajtow, o jaka nalezy sie
przesung¢ poczynajgc od adresu jakiego$ obiektu klasy VECTOR3, aby natrafi¢ na pole y
tegoz obiektu. Jezeli jest to dla ciebie zbyt trudne, to mozesz mysle¢ o tym wskazniku
jako o ,indeksie” pola y w klasie VECTOR3.

448 Zaawansowane C++

Deklaracja wskaznika na pole klasy

No dobrze, pobranie wskaznika to jedno, ale jego zapisanie i wykorzystanie to zupetnie
cos innego. Najpierw wiec dowiedzmy sie, jak mozna zachowac wartosé¢ uzyskang,
wyrazeniem &VECTOR3: : y do pdzniejszego wykorzystania.

By¢ moze domyslasz sie, ze bedzie potrzebowali specjalnej zmiennej typu
wskaznikowego - czyli wskaznika na pole klasy. Aby go zadeklarowa¢, musimy
przypomniec sobie, czym charakteryzujqg sie wskazniki w C++.

Nie jest to trudne. Kazdy wskaznik ma swdj typ: w przypadku wskaznikédw na zmienne
byt to po prostu typ docelowej zmiennej. Dla wskaznikdw na funkcje sprawa byta bardziej
skomplikowana, niemniej tez miaty one swoje typy.

Podobnie jest ze wskaznikami na sktadowe klasy. Kazdy z nich ma przypisang klase, na
ktore sktadniki pokazuje - dotyczy to zaréwno odniesien do pol, ktérymi zajmujemy sie
teraz, jak i do metod, ktére poznamy za chwile.

Oprocz tego wskaznik na pole klasy musi tez znac typ docelowego pola, czyli wiedzie¢,
jaki rodzaj danych jest w nim przechowywany.

Czy wiemy to wszystko? Tak. Wiemy, ze naszg klasg jest VECTOR3. Pamietamy tez, ze jej
wszystkie pola zadeklarowalismy jako float. Korzystajac z tej informacji, mozemy
zadeklarowa¢ wskaznik na pola typu float w klasie VECTOR3:

float VECTOR3::*p2mfWspolrzedna;

Huh, co za zakrecona deklaracja... Gdzie tu jest w ogdle nazwa tej zmiennej?...
Spokojnie, nie jest to az takie straszne - to tylko tak wyglada :) Nasz wskaznik nazywa
sie oczywiscie p2mfWspolrzednall®, zaé niezbyt przyjazna forma deklaracji stanie sie
jasniejsza, jezeli popatrzymy na jej ogolng sktadnie:

typ klasa::*wskazZnik;

Co to jest? Otoz jest to deklaracja wskaznika, pokazujacego na pola podanego typu,
znajdujace sie we wnetrzu okreslonej klasy. Nic prostrzego, prawda? ;-)

Teraz, kiedy mamy juz zmienng odpowiedniego typu wskaznikowego, mozemy przypisac
jej wzgledny adres pola y w klasie VECTOR3:

p2mfWspolrzedna = &VECTOR3::y;

Pamietajmy, ze w ten sposéb nie pokazujemy na konkretng wspoétrzedna Y (pole y) w
konkretnym wektorze (obiekcie VECTOR3), lecz na miejsce pola w definicji klasy.
Pojedynczo taki wskaznik nie jest wiec uzyteczny, bo jego wartosc nabiera znaczenia
dopiero w momencie zastosowania jej dla konkretnego obiektu. Jak to zrobic -
zobaczymy w nastepnym akapicie.

Zwroémy jeszcze uwage, ze y nie jest jedynym polem typu float w klasie VECTOR3. Z
rownym powodzeniem mozemy pokazywac naszym wskaznikiem takze na pozostate:

p2mfWspolrzedna = &VECTOR3: :x;
p2mfWspolrzedna &VECTOR3::z;

116 pomf to skrét od ‘pointer-to-member float’.

Zaawansowana obiektowos¢ 449

Warunkiem jest jednak, aby pole byto publiczne. W przeciwnym wypadku wyrazenie
klasa: :pole byloby nielegalne (poza klasg) i nie moznaby zastosowac wobec niego
operatora s.

Uzycie wskaznika

Wskaznik na pole klasy jest adresem wzglednym, offsetem. Aby skorzystac z niego
praktycznie, musimy posiadac jaki$ obiekt; kompilator bedzie dzieki temu wiedziat, gdzie
sie dany obiekt zaczyna w pamiegci. Posiadajac dodatkowo offset pola w definicj klasy,
bedziemy mogli odwotywa¢ sie do tego pola w tym konkretnym obiekcie.

A zatem do dziefa. Stworzmy sobie obiekt naszej klasy:

VECTOR3 Wektor;

Potem zadeklarujmy wskaznik na i ustawmy go na jedno z trzech pdl klasy VECTOR3:

float VECTOR3::*p2mfPole = &VECTOR3::x;

Teraz przy pomocy tego wskaznika mozemy odwotac sie do tego pola w naszym obiekcie.
Jak? O tak:

Wektor.*p2mfPole = 12; // wpisanie liczby do pola obiektu Wektor,
// na ktdére pokazuje wskaznik p2mfPole

Cafta zabawa polega tu na tym, ze p2mfPole moze pokazywac na dowolne z trzech pdl
klasy VECTOR3 - x, y lub z. Przy pomocy wskaznika mozemy jednak do kazdego z nich
odwotywac sie w ten sam sposéb.

Co nam to daje? Mniej wiecej to samo, co w przypadku zwyktych wskaznikow. Wskaznik
na pole klasy mozemy przekazac i wykorzysta¢ gdzie indziej. W tym przypadku
potrzebujemy aczkolwiek jeszcze jednej danej: obiektu naszej klasy, w kontekscie
ktérego uzyjemy wskaznika.

Moze czas na jaki$ konkretny przyktad. Wyobrazmy sobie funkcje, ktora zeruje jedng
wspotrzedng tablicy wektoréw. Teraz mozemy jg napisac:

void WyzerujWspolrzedna (VECTOR3 aTablical[], unsigned uRozmiar,
float VECTOR3::*p2mfWspolrzedna)
{

for (unsigned i = 0; i < uRozmiar; ++1i)
aTablicali].*p2mfWspolrzedna = 0;
}

W zaleznosci od tego, jak jg wywotamy:
VECTOR3 aWektory[50];
WyzerujWspolrzedna (aWektory, 50, &VECTOR3::x)

WyzerujWspolrzedna (aWektory, 50, &VECTOR3::vy);
WyzerujWspolrzedna (aWektory, 50, &VECTOR3::z);

spowoduje ona wyzerowanie réznych wspotrzednych wektoréw w podanej tablicy.
Wskaznik na pole klasy mozemy tez wykorzystaé, gdy na samym obiekcie operujemy

takze przy pomocy wskaznika (tym razem zwyktego, na obiekt). Stosujemy wtedy
aczkolwiek inng skfadnie:

// deklaracja i inicjalizacja obu wskaznikdéw - na obiekt i pole klasy

450 Zaawansowane C++

VECTOR3* pWektor = new VECTOR3;
float VECTOR3: :p2mfPole = &VECTOR3::z;

// zapisanie wartos$ci do pola z obiektu *pWektor przy pomocy wskaznikdw
pWektor->*p2mfPole = 42;

Jak wida¢, w kontekscie wskaznikow na sktadowe operatory . * i ->* sg doktadnymi
odpowiednikami operatorow wytuskania . i ->. Tych drugim uzywamy jednak wtedy, gdy
odwotujemy sie do sktadnikow obiektu poprzez ich nazwy, natomiast tych pierwszych -
jesli postugujemy sie wskaznikami do sktadowych.

Operator ->*, podobnie jak ->, moze by¢ przecigzony. Z kolei . *, tak samo jak . - nie.

Wskaznik na metode klasy

Normalne wskazniki mogq tez pokazywac na kod, czyli funkcje. Obiektowym
odpowiednikiem tego faktu s wskazniki do metod klasy. Zajmiemy sie nimi w tej sekcji.

Wskaznik do statycznej metody klasy
Zwyczajny wskaznik do funkcji globalnej deklarujemy np. tak:

int (*pfnFunkcja) (float):;

Przypominam, ze aby odczytac deklaracje funkcji pasujacych do tego wskaznika,
wystarczy usungc¢ gwiazdke oraz nawiasy otaczajace jego nazwe. Tutaj wiec mozemy do
wskaznika pfnFunkcja przypisac¢ adresy wszystkich funkcji globalnych, ktore przyjmuja
jeden parametr typu float i zwracajq liczbe typu int:

int Foo(float) { /% ... %/}
//
pfnFunkcja = Foo; // albo pfnFunkcja = &Foo;

Jednak nie tylko funkcje globalne moga by¢ wskazywane przez takie wskazniki.

Wskazniki do zwyklych funkcji potrafig tez pokazywac na statyczne metody klas.

Nietrudno to wyjasni¢. Takie metody to tak naprawde funkcje globalne o nieco
zmienionym zasiegu i notacji wywotania. Najwazniejsze, ze nie posiadajq one ukrytego
parametru - wskaznika this - poniewaz ich wywotanie nie wymaga obecnosci zadnego
obiektu klasy. Nie korzystajg one wiec z konwencji wywotania thiscall (wtasciwej
metodom niestatycznym), a zatem mozemy zadeklarowa¢ zwykie wskazniki, ktére bedq
nan pokazywac.

Warunkiem jest jednak to, aby metoda statyczna byta zadeklarowana jako public. W
przeciwnym razie wyrazenie nazwa klasy::nazwa metody hie bedzie legalne.

Podobne uwagi mozna poczyni¢ dla statycznych poél, na ktére mozna pokazywac przy
pomocy zwyktych wskaznikdw na zmienne.

WskazZnik do niestatycznej metody klasy

A jak jest z metodami niestatycznymi? Czy na nie tez mozemy pokazywac zwyktymi
wskaznikami?...

Zaawansowana obiektowos¢ 451

Niestety nie. Fakt ten moze sie wydac zaskakujacy, ale mozna go wyjasni¢ nawet na
kilka sposobdw.

Po pierwsze: wspomniatem juz, ze metody niestatyczne korzystajg ze specjalnej
konwencji thiscall. Oprécz normalnych parametrow musza one bowiem dostac obiekt,
ktéry w ich wnetrzu bedzie reprezentowany przez wskaznik this. C++ nie pozwala na
zadeklarowanie funkcji uzywajacych konwencji thiscall - nie bardzo wiadomo, jak taka
deklaracja miataby wygladaé'?’.

Po drugie: metody niestatyczne potrzebujg wskaznika this. Gdyby dopusci¢ do sytuacii,
w ktorej wskazniki na funkcje mogq pokazywac na metody, wowczas trzebaby byto
zapewnic jakos$ dostarczenie tego wskaznika this (czyli obiektu, na rzecz ktérego
metoda jest wywotywana). Jak? Poprzez dodatkowy parametr?... Wtedy mielibysmy
koszmarng niescistos¢ sktadni: deklaracje wskaznikéw do funkcji nie zgadzatyby sie z
prototypami pasujacych do nich metod.

Nawet jesli nie bardzo zrozumiates$ te argumenty, musisz przyjaé, ze na niestatyczne
metody klasy nie pokazujemy zwyktymi wskaznikami do funkcji. Zamiast tego
wykorzystujemy drugi rodzaj wskaznikéw na sktadowe klasy.

Wykorzystanie wskaznikow na metody

Mam tu na mysli wskazniki na metody klas.

Wskaznik do metody w klasie (ang. pointer-to-member function) okresla miejsce
deklaracji tej metody w definicji klasy.

Widac¢ tu analogie ze wskaznikami do pdl klasy. Tutaj takze okreslamy umiejscowienie
danej metody wzgledem...

No wiasnie - wzgledem czego?! W przypadku pdl mogliSmy jeszcze méwic, ze wskaznik
jest okresleniem przesuniecia (offsetu), ktéry pozwala znalez¢ pole danego obiektu, gdy
mamy adres poczatku tegoz obiektu. Ale przeciez metody nie podlegajg tym zasadom.
Dla wszystkich obiektow mamy przeciez jeden zestaw metod. Jak wiec mozna
moéwi¢ o tym, ze wskazniki na nie dziatajg w ten sam sposéb?...

Ekhm, tego raczej nie powiedziatem. Wskazniki te moga dziata¢ ten sam sposdb, czyli
by¢ adresami wzglednymi. Mogg one takze by¢ adresami bezwzglednymi (w sumie -
dlaczego nie? Przeciez metody to tez funkcje), a nawet indeksami jakiej$ wewnetrznej
tablicy czy jeszcze dziwniejszymi liczbami z gatunku identyfikatorow-uchwytéw. Tak
naprawde nie powinno nas to interesowaé, gdyz jest to wewnetrzna sprawa
kompilatora. Dla nas wskazniki te pokazujg po prostu na jakas metode wewnatrz danej
klasy. Jak to robig - to juz nie nasze zmartwienie.

Deklaracja wskaznika
Spojrzmy lepiej na jakis przyktad. Wezmy takg oto klase:

class CNumber
{
private:
float m fLiczba;

public:
// konstruktor
CNumber (float m fLiczba = 0.0f) : m fLiczba(fLiczba) { }

17 zauwazmy, ze deklaracja metody ,wyjeta” z klasy i umieszczona poza nig automatycznie stanie sie funkcjq
globalna. Nie trzeba dokonywac zadnych zmian w jej prototypie, polegajacych np. na usunieciu stowa
thiscall. Takiego stowa kluczowego po prostu nie ma: C++ odréznia metody od zwyktych funkcji wytacznie
po miejscu ich zadeklarowania.

452 Zaawansowane C++

// kilka metod

float Dodaj(float x) { return (m fLiczba += x); }
float Odejmij (float x) { return (m fLiczba -= x); }
float Pomnoz (float x) { return (m fLiczba *= x); }
float Podziel(float x) { return (m fLiczba /= x); }

i
Nie jest ona moze zbyt madra - nie ma przecigzonych operatorow i w ogdle wykonuje
dos¢ dziwng czynnos¢ enkapsulacji typu podstawowego - ale dla naszych celéow bedzie
wystarczajgca. Zwréémy uwage na jej cztery metody: wszystkie biorg argument typu

float i takaz liczbe zwracajq. Jezeli chcielibysmy zadeklarowac wskaznik, mogacy
pokazywaé na te metody, to robimy to w ten sposob!!®:

float (CNumber::*p2mfnMetoda) (float);

Wskaznik p2mfnMetoda moze pokazywac na kazdg z tych czterech metod, tj.:
float CNumber::Dodaj (float x);
float CNumber::0dejmij (float x);

float CNumber::Pomnoz (float Xx);
float CNumber::Podziel (float x);

Mozna stad catkiem tatwo wywnioskowac¢ ogolng sktadnie deklaracji takiego wskaznika. A
wiec, dla metody klasy o nagtéwku:

zwracany typ nazwa klasy::nazwa metody ([parametry])
deklaracja odpowiadajacego jej wskaznika wyglada tak:

zwracany typ (nazwa klasy::*nazwa wskaZnika) ([parametryl);

Deklaracja wskaznika na metode klasy wyglada tak, jak nagtéwek tej metody, w ktérym
fraza nazwa klasy::nazwa metody zostata zastgpiona przez sekwencje
(nazwa klasy::*nazwa wskaznika). Na koncu deklaracji stawiamy oczywiscie Srednik.

Sposdb jest wiec bardzo podobny jak przy zwykitych wskaznikach na funkcje. Ponownie
tez istotne stajg sie nawiasy. Gdybysmy bowiem je opuscili w deklaracji p2mfnMetoda,
otrzymalibysmy:

float CNumber::*p2mfnMetoda (float);

co zostanie zinterpretowane jako:

float CNumber::* p2mfnMetoda (float);

czyli funkcja biorgca jeden argument float i zwracajaca wskaznik do pdl typu float w
klasie cNumber. Zatem znowu - zamiast wskaznika na funkcje otrzymujemy funkcje
zwracajacq wskaznik.

| Dla wskaznikéw na metody klas nie ma problemu z umieszczenia stowa kluczowego
| konwencji wywotania, bo wszystkie metody klas uzywajg domyslnej i jedynie stusznej w

118 nomfn to skrét od ‘pointer-to-member function’.

Zaawansowana obiektowosé 453

ich przypadku konwencji thiscall. Nie ma mozliwosci jej zmiany (mam nadzieje, ze jest
| oczywiste, dlaczego...).

Pobranie wskaznika na metode klasy

Kiedy mamy juz zadeklarowany wtasciwy wskaznik, powigzmy go z ktéras z metod klasy
CNumber. Robimy to w prosty i raczej przewidywalny sposob:

p2mfnMetoda = &CNumber::Dodaj;

Podobnie jak dla zwyktych funkcji, takze i tutaj operator & nie jest niezbedny:
p2mfnMetoda = CNumber::0dejmij;

Znowu tez stosuje sie tu zasada o publicznosci sktadowych. Jezeli spréobujemy pobrac
wskaznik na metode prywatng lub chroniong, to kompilator oczywiscie zaprotestuje.

Uzycie wskaznika

Czas wreszcie na akcje. Zobaczmy, jak mozna wywota¢ metode pokazywang przez
wskaznik:

CNumber Liczba = 42;
std::cout << (Liczba.*p2mfnMetoda) (2);

Potrzebujemy naturalnie jakiegos$ obiektu klasy cNumber, aby na jego rzecz wywotac
metode. Tworzymy go wiec; dalej znowu korzystamy z operatora . *, wywotujac przy
jego pomocy metode klasy cNumber dla naszego obiektu - przekazujemy jej jednoczesnie
parametr 2. Poniewaz po naszej zabawie z przypisywaniem p2mfnMetoda pokazywat na
metode 0dejmij (), na ekranie zobaczylibysmy:

40

Zwracam jeszcze uwage ha hawiasy w wywotaniu metody. Tutaj sq one konieczne (w
przeciwienstwie do zwyktych wskaznikdw na funkcje) - bez nich kompilator uzna linijke
za btedna.

Domyslasz sie, ze jesli posiadalibysmy tylko wskaznik na obiekt, to do wywotania jego
metody postuzylibysmy sie operatorem ->+*. Identycznie jak przy wskaznikach na pola
klasy.

Ciekawostka: wskaznik do metody obiektu

Zatrzymajmy sie na chwilke... Jezeli przebrnates przed ten rozdziat od poczatku az dotad,
to szczerze ci gratuluje. Wskazniki na sktadowe nie sq bynajmniej fatwa czescig jezyka -
choc¢by dlatego, ze operujg dos¢ dziwnymi koncepcjami (,miejsce w definicji klasy”...). Co
gorsza, czytajac o nich jakos trudno od razu wpasc¢ na sensowne zastosowanie tego
mechanizmu.

Wiem, ze podobne odczucia mogty ci towarzyszy¢ przy lekturze opiséw wielu innych
elementow jezyka. Pozniej jednak nieczesto widziates zastosowania omawianych
wczesniej rzeczy w dalszej czesciu kursu, a pewnie sam znalajdowates niektére z nich po
odpoczynku od lektury i dluzszym zastanowieniu.

Tutaj musze cie nieco zmartwi¢. Wskazniki na sktadowe klasy sg w praktyce bardzo
rzadko uzywane, bo w zasadzie trudno znalez¢ dla nich jakie$ uzyteczne zastosowanie.
To chyba najdobitniejszy przyktad jezykowego wodotrysku - na szczescie C++ nie
posiada zbyt wiele takich nadmiarowych udziwnien.

454

Zaawansowane C++

Sprobujemy jednak znalez¢ dla nich jakie$ zastosowanie... Okazuje sie, ze jest to
mozliwe. Wskaznikow tych mozemy bowiem uzy¢ do symulowania innego rodzaju

wskaznikow - nieobecnych niestety w C++, ale za to bardzo przydatnych.

Jakie to wskazniki? Spdjrz na ponizszg tabele. Grupuje ona wszystkie znane (i
nieznane ;D) w programowaniu strukturalnym i obiektowym rodzaje wskaznikéw, wraz z
ich nazwami w C++:

rodzaj .
wskaznika > truktural obiektowe
cel strukturaine ™ o skiadowe na skfadowe niestatyczne
wskazZnika v statyczne w klasach w obiektach
dane wskazniki do zmiennych wskazniki do pol wskgzn|k| do
klasy zmiennych
kod wskazniki do funkgji wskazniki do BRAK
metod klasy

Tabela 19. R6zne rodzaje wskaznikow

Wynika z niej, ze znamy juz wszystkie rodzaje wskaznikéw, jakie posiada w swoim
arsenale C++. A co z tymi brakujacymi?...

Czym one sg?... Otdz sq to takie wskazniki, ktére potrafig pokazywac¢ na konkretna
metode w konkretnym obiekcie. Podobnie jak wskazniki do pdl obiektu, sg one
samodzielne. Ich uzycie nie wymaga wiec zadnych dodatkowych informacji: dokonujac
zwyczajnej dereferencji takiego wskaznika, wywotywalibySmy okreslona metode w
odniesieniu do okreslonego obiektu. Zupetnie tak, jak dla zwyktych wskaznikéw do
funkgji - tyle tylko, ze tutaj nie wywotujemy funkcji globalng, lecz metode obiektu.

~No dobrze, nie mamy tego rodzaju wskaznikéw... Ale co z tego? Na pewno sg one réwnie
~Uzyteczne”, jak te co poznaliSmy niedawno!” Otéz wrecz przeciwnie! Tego rodzaju
wskazniki sg niezwykle przydatne! Pozwalajg one bowiem na implementacje funkcji
zwrotnych (ang. callback functions) z zachowaniem petnej obiektowosci programu.

Coz to sg - te funkcje callback? Sa to takie funkcje, ktorych adresy przekazujemy komus,
aby ten kto$ mogt je dla nas wywota¢ w odpowiednim momencie. Ten odpowiedni
moment to na przyktad zajscie jakiegos$ zdarzenia, na ktore oczekujemy (wcisniecie
klawisza, wybicie pétnocy na zegarze, itp.) albo chociazby wystgpienie btedu. W kazdej
tego typu sytuacji nasz program moze by¢ o tym natychmiast poinformowany. Bez
funkcji zwrotnych musiatby zwykle dokonywac¢ mozolnego odpytywania , ktosia”, aby
dowiedzie¢ sie, czy dana okoliczno$¢ wystgpita. To mato efektywne rozwigzanie.

Funkcje callback sa lepsze. Jednak w C++ tylko funkcje globalne lub statyczne metody
klas moga by¢ takimi funkcjami. Powdd jest prosty: jedynie na takie metody mozemy
pokazywac samodzielnymi wskaznikami.

A to jest zupetnie niezadowolajgce w programowaniu obiektowym. Zmusza to przeciez do
pisania kodu poza klasami programu. W dodatku trzeba jako$ zapewni¢ sensowng
komunikacje miedzy tym kodem-outsiderem, a obiektowg resztg programu. W sumie
mamy mnodstwo kiopotow.

Wymyslono rzecz jasna pewien sposéb na obejscie tego problemu, polegajacy na
wykorzystaniu metod wirtualnych, dziedziczenia i polimorfizmu. Nie jest to jednak idealne
rozwigzanie - przynajmniej nie w C++.

Powiedziatem jednak, ze nasze $swiezo poznane wskazniki mogg pomdc w poradzeniu
sobie z tym problemem. Zobaczmy jak to zrobic.

Bardzo, ale to bardzo odradzam czytanie tych dwéch punktéw przy pierwszym kontakcie
| z tekstem (to zresztg dotyczy prawie wszystkich Ciekawostek). Sprawa jest wprawdzie

Zaawansowana obiektowosé 455

| bardzo ciekawa i niezwykle przydatna, lecz jej zawitoé¢é moze cie szybko odstreczyé od
| wskaznikow klasowych - albo nawet od programowania obiektowego, co by byto znacznie |
| gorsza katastrofa. ’

Wskaznik na metode obiektu konkretnej klasy

Najpierw zajmijmy sie prostszym przypadkiem. Znajdzmy sposéb na symulacje
wskaznika, za posrednictwem ktérego moznaby wywotywaé metode:

> o okreslonej sygnaturze (nagtowku)

> na rzecz okreslonego obiektu

> nalezacego do okreslonej klasy

Dosy¢ duzo tych ,okreslen”... Najlepiej bedzie, jesli popatrzysz na dziatanie tego
wskaznika. Przypomnij sobie klase CNumber; stwdrzmy obiekt tej klasy:

CNumber Liczba;

Teraz wyobrazmy sobie, ze w jezyku C++ pojawita sie mozliwos$¢ zadeklarowania
wskaznikow, o jakie nam chodzi. Niech p2ofnMetoda bedzie tym pozgadanym
wskaznikiem!!®, Wéwczas mozna z nim zrobi¢ co$ takiego:

// przypisanie wskaznikowi "adresu metody" Dodaj w obiekcie Liczba
p2ofnMetoda = Liczba.Dodaj;

// wywolanie metody Dodaj () dla obiektu Liczba/()
(*p2ofnMetoda) (10) ;

Jak wida¢, dokonujemy tu zwyktej dereferencji - zupetnie tak, jak w przypadku
wskaznikow na funkcje globalne. Tym sposobem wywotujemy jednak metode klasy dla
konkretnego obiektu. Ostatnia linijka jest wiec réwnowazna tej:

Liczba.Dodaj (10);

Zamiast wywotania obiekt.metoda () mamy WieC (*wskaznik do metody obiektu) (). 1
o to nam chodzi.

Wroémy teraz do rzeczywistosci. Niestety C++, nie posiada wskaznikdw na metody
obiektdw, lecz chcemy przynajmniej czesciowo uzupetni¢ ten brak. Jak to zrobic?...
Przyjrzyjmy sie temu, co chcemy osiggng¢. Chcemy mianowicie, aby nasz wskaznik
zastepowat wywotanie:

obiekt.metoda ([parametry])

w ten sposdb:

(*wskaznik) ([parametryl])

Wskaznik musi wiec zawiera¢ informacje zaréwno o obiekcie, ktérego dotyczy metoda,
jak i samej metodzie. Jeden wskaznik?... Nie - dwa:
> pierwszy to wskaznik na obiekt, na rzecz ktérego metoda bedzie wywotywana
> drugi to wskaznik na metode klasy, ktéra ma by¢ wywotywana

Chcac stworzyé nasz wskaznik, musimy wiec potaczy¢ te dwie dane. Zrobmy to! Najpierw
zdefiniujmy sobie jakas klase, na ktorej metody bedziemy pokazywac:

119 h20fn to skrét od ‘pointer to object-function’.

456 Zaawansowane C++

class CFoo

{
public:
volid Metoda (int nParam)
{ std::cout << "Wywolano z " << nParam; }

}i
Dalej - dodajmy obiekt, ktéry bedzie brat udziat w wywotaniu:
CFoo Foo;

Przypomnijmy wreszcie, ze chcemy zrobic¢ taki wskaznik, ktérego uzycie zastapi nam
wywotanie:

Foo.Metoda () ;

Potrzebujemy do tego wspomnianych dwdch rodzajow wskaznikow:
> wskaznika na obiekty klasy cFoo
» wskaznika na metody klasy CFoo biorgce int i niezwracajgce wartosci

Potaczymy oba te wskazniki w jedng strukture, dodajac przy okazji pomocnicze funkcje -
jak konstruktor oraz operator():

struct METHODPOINTER
{

// rzeczone oba wskazniki

CFoo* pObject; // wskaznik na obiekt
void (CFoo::*p2mfnMethod) (int); // wskaznik na metode
e

// konstruktor
METHODPOINTER (CFoo* pOb3j, void (CFoo::*p2mfn) (int))
pObject (pObj), p2mfnMethod (p2mfn) { }

// operator wywolania funkcji
void operator () (int nParam)
{ (pObject->*p2mfnMethod (nParam); }

}i

Teraz mozemy juz pokazac takim wskaznikiem na metode naszego obiektu. Podajemy po
prostu zaréwno wskaznik na obiekt, jak i na metode klasy:

METHODPOINTER p2o0fnMetoda (&Foo, &CFoo::Metoda) ;

To wprawdzie pewna niedogodno$¢ (nie mozemy podac po prostu Foo.Metoda, lecz
musimy pamietac¢ nazwe klasy), ale i tak jest to catkiem dobre rozwigzanie. Naszg
metode mozemy bowiem wywotaé w najprostszy mozliwy sposéb:

p2ofnMetoda (69) ; // to samo co Foo.Liczba (69);
To wiasnie chcieliSmy osiggnac.

Jest to aczkolwiek rozwigzanie dla szczegdlnego przypadku. A jak wyglada to w
przypadku ogdlnym?... Mniej wiecej w ten sposob:

struct WSKAZNIK
{

// wskazniki

Zaawansowana obiektowos¢ 457

klasa* pObject;
zwracany typ (klasa::*p2mfnMethod) ([parametry formalne]l);

// konstruktor
WSKAZNIK (klasa* pOb7j,
zwracany typ (klasa::*p2mfn) ([parametry formalne]))
: pObject (pObj), p2mfnMethod (p2mfn) { }

// operator wywolania funkcji
zwracany typ operator () ([parametry formalne])
{ [return] (pObject->*p2Z2mfnMethod([parametry aktualnel); }
i

Niestety, preprocesor na niewiele nam sie przyda w tym przypadku. Tego rodzaju
struktury musiatby$ wpisywac do kodu samodzielnie.

Wskaznik na metode obiektu dowolnej klasy

Nasz callback wydaje sie dziata¢ (bo i dziata), ale jego przydatnos¢ jest niestety
niewielka. Wskaznik potrafi bowiem pokazywac tylko na metode w konkretnej klasie,
natomiast do zastosowan praktycznych (jak informowanie o zdarzeniach czy btedach)
powinien on umie¢ wskazac¢ na zgodng ustalonym prototypem metode obiektu w
dowolnej klasie.

Tak wiec niezaleznie od tego, czy nasz obiekt bytby klasy CFoo, CVector2D,
CEllipticTable czy CBrokenWindow, jesli tylko klasa ta posiada metode o okreslonej
sygnaturze, to powinno dac sie na nig wskaza¢ w konkretnym obiekcie. Dopiero wtedy
dostaniemy do reki warto$ciowy mechanizm.

Ten mechanizm ma nazwe: closure. Trudno to przettumaczy¢ na polski (dostownie jest to
‘przymkniecie’, ‘domkniecie’, itp.), wiec bedziemy postugiwac sie dotychczasowa nazwg
‘wskaznik na metode obiektu’.

Czy mozna go osiggna¢ w C++7?... Owszem. Wymaga to jednak dos¢ daleko idgcego
kroku: otdZz musimy sobie zdefiniowa¢ uniwersalna klase bazowaq. Z takiej klasy bedg
dziedziczy¢ wszystkie inne klasy, ktérych obiekty i ich metody majg byc¢ celami
tworzonych wskaznikow. Taka klasa moze by¢ bardzo prosta, nawet pusta:

class IObject { };

Mozna do niej doda¢ wirtualny destruktor czy inne wspdlne dla wszystkich klas sktadowe,
jednak to nie jest tutaj wazne. Grunt, zeby taka klasa byta obecna.

Teraz sprecyzujmy problem. Zatézmy, ze mamy kilka innych klas, zawierajacych metody
o wtasciwej dla nas sygnaturze:

class CFoo : public IObject
{
public:
float Funkcja(int x) { return x * 0.75f; }
bi

class CBar : public IObject
{
public:
float Funkcja(int x) { return x * 1.42f; }
i

458 Zaawansowane C++

Zauwazmy z I0bject. Czego chcemy? Otdz poszukujemy sposobu na
zaimplementowanie wskaznika, ktory bedzie pokazywat na metode Funkcja () zardwno w
obiektach klasy cFoo, jak i cBar. Nawet wiecej - chcemy takiego wskaznika, ktory pokaze
nam na dowolng metode bioraca int i zwracajg float w dowolnym obiekcie
dowolnej klasy w naszym programie. Mowitem juz, ze w praktyce ta ,dowolna klasa”
musi dziedziczy¢ po I0bject.

Coz wiec zrobi¢? ,,Moze znowu siegniemy po dwa wskazniki - jeden na obiekt, a drugi na
metode klasy...?"” Punkt dla ciebie. Faktycznie, tak wiasnie zrobimy. Posta¢ naszego
wskaznika nie rézni sie wiec zbytnio od tej z poprzedniego punktu:

struct METHODPOINTER
{

// rzeczone oba wskazniki

IObject* pObject; // wskaznik na obiekt
float (IObject::*p2mfnMethod) (int) ; // wskaznik na metode
/) o

// konstruktor
METHODPOINTER (IObject* pObj, float (IObject::*p2mfn) (int))
: pObject (pObj), p2mfnMethod (p2mfn) { }

// operator wywolania funkcji
float operator () (int x)
{ return (pObject->*p2mfnMethod(x); }
}i

~Chwileczke... Deklarujemy tutaj wskaznik na metody klasy 10bject, biorgce int i
zwracajace float... Ale przeciez 10bject nie ma takich metod - ba, u nas nie ma nawet
zadnych metod! Takim wskaznikiem nie pokazemy wiec na zadng metode!”

Bingo, kolejny punkt za uwazna lekture :) Rzeczywiscie, taki wskaznik wydaje sie
bezuzyteczny. Pamietajmy jednak, ze w sumie chcemy pokazywa¢ na metode obiektu,
a nie na metode klasy. Zas nasze obiekty beda pochodzi¢ od klasy 10bject, bo ich
wiasne klasy po I0bject dziedziczg. W sumie wiec wskaznikiem na metode klasy
bazowej bedziemy pokazywac na metode klasy pochodnej. To jest poprawne - za chwile
wyjasnie blizej, dlaczego.

Najpierw sprobujmy uzy¢ naszego wskaznika. Stworzmy wiec obiekt ktorejs z klas:

CBar* pBar = new CBar;

i ustawmy nasz wskaznik na metode Funkcja () w tym obiekcie - tak, jak to robilismy
dotad:

METHODPOINTER p2ofnMetoda (pBar, &CBar::Funkcja);

I jak?... Mamy przykra niespodzianke. Kazdy szanujacy sie kompilator C++ najpewniej
odrzuci te linijke, widzac niezgodnos¢ typow. Jakg niezgodnosc?

Pierwszy parametr jest absolutnie w porzadku. To znana i lubiana konwersja wskaznika
na obiekt klasy pochodnej (cBar*) do wskaznika na obiekt klasy bazowej (10bject*).
Brak zastrzezen nikogo nie dziwi - przeciez na tym opiera sie caty polimorfizm.

To drugi parametr sprawia problem. Kompilator nie zezwala na zamiane typu:

float (CBar::*) (int)

na typ:

Zaawansowana obiektowosé 459

float (IObject::*) (int)

Innymi stowy, nie pozwala na konwersje wskaznik na metode klasy pochodnej do
wskaznika na metode klasy bazowej. Jest to uzasadnione: wskaznik na metode (ogdlinie:
na skfadowa) moze by¢ bowiem poprawny w klasie pochodnej, natomiast nie zawsze
bedzie poprawny w klasie bazowej. Obiekt klasy bazowej moze byc¢ przeciez mniejszy, nie
zawiera¢ pewnych elementéw, wprowadzonych w mtodszym pokoleniu. W takim wypadku
wskaznik bedzie ,strzelat w préznie”, co skofczy sie btedem ochrony pamieci*®.

Tak mogtoby by¢, jednak u nas tak nie bedzie. Naszego wskaznika na metode uzyjemy
przeciez tylko i wyfacznie do wywotania metody obiektu pBar. Klasa obiektu oraz klasa
wskaznika w tym przypadku zgadzajg sie, sg identyczne - to cBar. Nie ma zadnego
ryzyka.

Kompilator bynajmniej o tym nie wie i nie nalezy go wcale za to wini¢. Musimy sobie po
prostu pomaoc rzutowaniem:

METHODPOINTER p2ofnMetoda (pBar,

static_cast<float (IObject::*) (int)>
(&CBar: :Funkcja));

Wiem, ze wyglada to okropnie, ale przeciez nic nie stoi na przeszkodzie, aby pomodc sobie
odpowiednim makrem.

Zreszty, liczy sie efekt. Teraz mozemy wywotaé metode pBar->Funkcja () W ten prosty
sposéb:

p2ofnMetoda (42); // to samo co pBar->Funkcja (42);

Jest tez zupetnie mozliwe, aby pokazac¢ naszym wskaznikiem na analogiczne metode w
obiekcie klasy CFoo:

CFoo Foo;

p2ofnMetoda.pObject = &Foo;

p2ofnMetoda.p2mfnMethod = static cast<float (IObject::*) (int)>
(&CFoo: :Funkcja)) ;

p2ofnMetoda (14); // to samo co Foo.Funkcja (14)

Zmieniajac ustawienie wskaznika musimy jednak pamietac, by:

Klasy docelowego obiektu oraz docelowej metody muszg by¢ identyczne. Inaczej
ryzykujemy btad ochrony pamigci.

Zaprezentowane rozwigzanie moze nie jest szczegdlnie eleganckie, ale wystarczajgce. Nie
zmienia to jednak faktu, ze wbudowana obstuga wskaznikdw na metody obiektow w C++
bytaby wielce pozadana.

Nieco lepszg implementacje wskaznikéw tego rodzaju, korzystajacg m.in. z szablondw,
mozesz znalez¢ w moim artykule Wskaznik na metode obiektu.

Xk k

120 Konwersja w druga strone (ze wskaznika na sktadowa klasy bazowej do wskaznika na sktadowa klasy
pochodnej) jest z kolei zawsze mozliwa. Jest tak dlatego, ze klasa pochodna nie moze usuna¢ zadnego
skfadnika klasy bazowej, lecz co najwyzej rozszerzy¢ ich zbiér. Wskaznik bedzie wiec zawsze poprawny.

http://avocado.risp.pl/modules.php?op=modload&name=Sections&file=index&req=viewarticle&artid=21

460 Zaawansowane C++

Czy masz juz dosc? :) Mysle, ze tak. Wskazniki na sktadowe klas (czy tez obiektéw) to
nie jest najtatwiejsza cze$¢ OOPu w C++ - Smiem twierdzi¢, ze wrecz przeciwnie. Mamy
ja juz jednak za soba.

Jezeli aczkolwiek chciatbys sie dowiedzie¢ na ten temat nieco wiecej (takze o zwyktych
wskaznikach na funkcje), to polecam $wietng witryne The Function Pointer Tutorials.

W ten sposob poznaliSmy tez catg oferte narzedzi jezyka C++ w zakresie programowania
obiektowego. Mozemy sobie pogratulowac.

Podsumowanie

Ten dtugi rozdziat byt poswiecony kilku specyficznym dla C++ zagadnieniom
programowania obiektowego. Zdecydowana wiekszos$¢ z nich ma na celu poprawienie
wygody, czasem efektywnosci i ,naturalnosci” kodowania.

Cdz wiec zdazyliSmy omowic?...

Na poczatek poznalismy zagadnienie przyjazni miedzy klasami a funkcjami i innymi
klasami. Zobaczytes, ze jest to prosty sposdb na zezwolenie pewnym Scisle okreslonym
fragmentom kodu na dostep do niepublicznych skfadowych jakiejs klasy.

Dalej przyjrzeliSmy sie blizej konstruktorom klas. Poznaliémy ich listy inicjalizacyjne, role
w kopiowaniu obiektow oraz niejawnych konwersjach miedzy typami.

Nastepnie dowiedzieliSmy sie (prawie) wszystkiego na temat bardzo przydatnego
udogodnienia programistycznego: przecigzania operatorow. Przy okazji powtorzyliSmy
sobie wiadomosci na temat wszystkich operatoréow jezyka C++.

Wreszcie, odwazniejsi sposrdd czytelnikdw zapoznali sie takze ze specyficznym rodzajem
wskaznikow: wskaznikami na sktadniki klasy.

Nastepny rozdziat bedzie natomiast poswiecony niezwykle istotnemu mechanizmowi
wyjatkow.

Pytania i zadania

By¢ moze zaprezentowane w tym rozdziale techniki stuzg tylko wygodzie programisty, ale
nie zwalnia to kodera z ich doktadnej znajomosci. Odpowiedz wiec na powyzsze pytania i
wykonaj ¢wiczenia.

Pytania

1. Jakie specjalne uprawnienia ma przyjaciel klasy? Co moze by¢ takim
przyjacielem?

2. W jaki sposéb deklarujemy zaprzyjazniong funkcje?

3. Co oznacza deklaracja przyjazni z klasg?

4. Jak mozna sprawi¢, aby dwie klasy przyjaznity sie z wzajemnosciq?

5. Co to jest konstruktor domysiny? Jakie sg korzysci klasy z jego posiadania?

6. Czym jest inicjalizacja? Kiedy i jak przebiega?

7. Do czego stuzy lista inicjalizacyjna konstruktora?

8. Kiedy konieczny jest konstruktor kopiujacy?

9. W jaki sposdb mozemy definiowac niejawne konwersje?

10. Co powoduje stowo kluczowe explicit w deklaracji konstruktora?

11. Kiedy konstruktor konwertujacy jest jednoczesnie domysinym?

12. Wymien podstawowe cechy operatorow w jezyku programowania.

13.Jakie rodzaje operatorow posiada C++?

14.Na czym polega przecigzenie operatora?

15. Jaki status mogaq posiadac¢ funkcje operatorowe? Czym sie one réznig?

http://www.function-pointer.org/

Zaawansowana obiektowos¢ 461

16.

17.
18.
19.
20.
21.

Jak mozna skorzystac z niejawnych konwersji, piszac przecigzone wersje
operatorow binarnych?

Ktore operatory mogg by¢ przecigzane wyfacznie jako niestatyczne metody klas?
Kiedy konieczne jest zdefiniowanie wtasnego operatora przypisania?

Ile argumentéw ma operator wywotania funkcji?

O czym nalezy pamietac, przecigzajac operatory?

O czym informuje wskaznik do sktadowej klasy?

22.Jakim wskaznikiem pokazujemy na pole w obiekcie, a jakim na pole w klasie?
23. Czy zwyktym wskaznikiem do funkcji mozemy pokazac¢ na metode obiektu?
Cwiczenia

1. Zdefiniuj dwie klasy, ktére bedg ze sobg wzajemnie zaprzyjaznione.

2. Przejrzyj definicje klas z poprzednich rozdziatéw i popatrz na ich konstruktory. W
ktérych przypadkach moznaby uzy¢ w nich list inicjalizacyjnych?

3. Do klas crational i CComplex dodaj operatory niejawnych konwersji na typ bool.
Co dzieki temu zyskates?

4, (Trudniejsze) Wzboga¢ wspomniane klasy takze o operatory dodawania,
odejmowania i dzielenia (tylko CRational) oraz o odpowiadajgce im operatory
ztozonego przypisania i in/dekrementacji.

5. Napisz funktor obliczajacy najwiekszg z podawanych mu liczb typu float. Niech

stosuje on ten sam interfejs i sposdb dziatania, co klasa CAverageFunctor.

