
2
ZAAWANSOWANA

OBIEKTOWOŚĆ

Nuda jest wrogiem programistów.
Bjarne Stroustrup

C++ jest zasłużonym członkiem licznej obecnie rodziny języków obiektowych. Oferuje on
wszystkie koniecznie mechanizmy, służące praktycznej realizacji idei programowania
zorientowanego obiektowo. Poznaliśmy je w dwóch rozdziałach poprzedniej części kursu.
Między C++ a innymi językami OOP występują jednak pewne różnice. Nasz język ma
wiele specyficznych dla siebie możliwości, które mają za zadanie ułatwienie życia
programiście. Często też przyczyniają się do powstania obiektywnie lepszych programów.

W tym rozdziale poznamy tę właśnie stronę OOPu w C++. Przedstawione tu zagadnienia,
choć w zasadzie niezbędne do wystarczającej znajomości języka, są w dużej części
przydatnymi udogonieniami. Nie niezbędnymi, lecz wielce interesującymi i praktycznymi.
Poznanie ich sprawi, że nasze obiektowe programy będą wygodne w konstruowaniu i
późniejszej modyfikacji. Programowanie stanie się po prostu łatwiejsze i przyjemniejsze -
a to chyba będzie bardzo znaczącym osiągnięciem.
Zobaczmy więc, jakie wyjątkowe konstrukcje OOP oferuje nam C++.

O przyjaźni
W czasie pierwszych spotkań z programowaniem obiektowym wspominałem dość często
o jego zaletach, wymieniając wśród nich podział kodu na drobne i łatwe to zarządzania
kawałki. Tymi fragmentami (także pod względem koncepcyjnym) są oczywiście klasy.
Plusem, jaki niesie za soba stosowanie klas, jest wyodrębnienie kodu i danych w obiekty
zajmujące się konkretnymi zadaniami i reprezentującymi konkretne obiekty. Instancje
klas współpracują ze sobą i dzięki temu wypełniają zadania aplikacji. Tak to wygląda -
przynajmniej w teorii :)

Atutem klas jest niezależność, zwana fachowo hermetyzacją lub enkapsulacją. Objawia
się ona tym, iż dana klasa posiada pewien zestaw pól i metod, z którym tylko wybrane są
dostępne dla świata zewnętrznego. Jej wewnętrzne sprawy są całkowicie chronione; służą
ku temu specyfikatory dostępu, jak private i protected.
Opatrzone nimi składowe są w zasadzie całkiem odseparowane od świata zewnętrznego,
bo ten jest dla nich potencjalnie groźny. Upubliczniając swoje pole klasa narażałaby
przecież swoje dane na przypadkowe lub celowe, ale zawsze niepożądane modyfikacje.
To tak jakby wyjść z domu i zostawić drzwi niezamknięte na klucz: nie jest to wpradzie
bezpośrednie zaproszenie dla złodzieja, ale taka okazja może go uczynić - w myśl
znanego powiedzenia.
Ale przecież nie wszyscy są źli - każdy ma przynajmniej kilku przyjaciół. Przyjaciel jest
to osoba, na którą można liczyć; o której wiemy, że nie zrobi nam nic złego. Większość
ludzi uważa, że przyjaźń jest w życiu bardzo ważna - i nie muszą nas do tego

Zaawansowane C++ 374

przekonywać żadni socjologowie. Wszyscy wiemy to dobrze z własnego, życiowego
doświadczenia.

No dobrze, ale co to ma wspólnego z programowaniem?… Otóż bardzo wiele, zwłaszcza z
programowaniem obiektowym. Mianowicie, klasa także może mieć przyjaciół: mogą
być nimi globalne funkcje, metody innych klas, a także inne klasy w całości. Cóż to
jednak znaczy, że klasa ma jakiegoś przyjaciela?… Wyjaśnijmy więc, że:

Przyjaciel (ang. friend) danej klasy ma dostęp do jej wszystkich składników - także
tych chronionych, a nawet prywatnych.

Jeżeli zatem klasa posiada przyjaciela, to oznacza to, że dała mu „klucze” (dostęp) do
swojego „mieszkania” (niepublicznych składowych). Przyjaciel klasy ma do nich prawie
takie samo prawo, jak metody tejże klasy. Pewne drobne różnice wyjaśnimy sobie przy
okazji osobnego omówienia zaprzyjaźnionych funkcji i klas.

Dowiedzmy się teraz, jak zaprzyjaźnić z klasą jakiś inny element programu. Jest
oczywiście i jak zwykle bardzo proste ;) Należy bowiem umieścić w definicji klasy tzw.
deklarację przyjaźni (ang. friend declaration):

friend deklaracja_przyjaciela;

Słowem kluczowym friend poprzedzamy w niej deklarację_przyjaciela. Tą deklaracją
może być:

 prototyp funkcji globalnej
 prototyp metody ze zdefiniowanej wcześniej klasy
 nazwa zadeklarowanej wcześniej klasy

Oto najprostszy i niezbyt mądry przykład:

class CFoo
{
 private:
 std::string m_strBardzoOsobistyNapis;

 public:
 // konstruktor
 CFoo() { m_strBardzoOsobistyNapis = "Kocham C++!"; }

 // deklaracja przyjaźni z funkcją
 friend void Wypisz(CFoo*);
};

// zaprzyjaźniona funkcja
void Wypisz(CFoo* pFoo)
{
 std::cout << pFoo->m_strBardzoOsobistyNapis;
}

Zaprzyjaźniony byt - w tym przypadku funkcja - ma tu pełen dostęp do prywatnego pola
klasy CFoo. Może więc wypisać jego zawartość dla każdego obiektu tej klasy, jaki
zostanie mu podany.

Deklaracja przyjaźni w tym przykładzie wydaje się być umieszczona w sekcji public
klasy CFoo. Tak jednak nie jest, gdyż:

Zaawansowana obiektowość 375

Deklaracja przyjaźni może być umieszczona w każdym miejscu definicji klasy i
zawsze ma to samo znaczenie.

Jest więc obojętne, gdzie się ona pojawi. Zwykle piszemy ją albo na początku, albo na
końcu klasy, wyróżniając na przykład zmniejszonym wcięciem. Pokazujemy w ten
sposób, że nie podlega ona specyfikatorom dostępu.
Nie ma więc czegoś takiego jak „publiczna deklaracja przyjaźni” lub „prywatna deklaracja
przyjaźni”. Przyjaciel pozostaje przyjacielem niezależnie od tego, czy się nim chwalimy,
czy nie.

Skoro teraz wiemy już z grubsza, czym są przyjaciele klas, omówimy sobie osobno
zaprzyjaźnianie funkcji globalnych oraz innych klas i ich metod.

Funkcje zaprzyjaźnione
Najpierw zobaczymy, jak zaprzyjaźnić klasę z funkcją - tak, aby funkcja miała dostęp do
niepublicznych składników z danej klasy.

Deklaracja przyjaźni z funkcją
Chcąc uczynić jakąś funkcję przyjacielem klasy, musimy w definicji klasy podać
deklarację zaprzyjaźnionej funkcji, poprzedzając ją słowem kluczowym friend.

Ilustracją tego faktu nie będzie poniższy przykład. Mamy w nim klasę opisującą okrąg -
CCircle. Zaprzyjaźniona z nią funkcja PrzecinajaSie() sprawdza, czy podane jej dwa
okręg mają punkty wspólne:

#include <cmath>

class CCircle
{
 private:
 // środek okręgu
 struct { float x, y; } m_ptSrodek;

 // jego promień
 float m_fPromien;

 public:
 // konstruktor
 CCircle (float fPromien, float fX = 0.0f, float fY = 0.0f)
 { m_fPromien = fPromien;
 m_ptSrodek.x = fX;
 m_ptSrodek.y = fY; }

 // deklaracja przyjaźni z funkcją
 friend bool PrzecinajaSie(CCircle&, CCircle&);
};

// zaprzyjaźniona funkcja
bool PrzecinajaSie(CCircle& Okrag1, CCircle& Okrag2)
{
 // obliczamy odległość między środkami
 float fRoznicaX = Okrag2.m_ptSrodek.x - Okrag1.m_ptSrodek.x;
 float fRoznicaY = Okrag2.m_ptSrodek.y - Okrag1.m_ptSrodek.y;
 float fOdleglosc = sqrt(fRoznicaX*fRoznicaX + fRoznicaY*fRoznicaY);

Zaawansowane C++ 376

 // odległość ta musi być mniejsza od sumy promieni, ale większa
 // od ich bezwzględnej różnicy
 return (fOdleglosc < Okrag1.m_fPromien + Okrag2.m_fPromien
 && fOdleglosc > abs(Okrag1.m_fPromien - Okrag2.m_fPromien);
}

Bardzo dobrze widać tu ideę przyjaźni: funkcja PrzecinajaSie() ma dostęp do
składowych m_ptSrodek oraz m_fPromien z obiektów klasy CCircle - mimo że są
prywatne pola klasy. CCircle deklaruje jednak przyjaźń z funkcją PrzecinajaSie(), a
zatem udostępnia jej swoje osobiste dane.

Zauważmy jeszcze, że w deklaracji przyjaźni podajemy cały prototyp funkcji, a nie tylko
jej nazwę. Możliwe jest bowiem zdefiniowanie kilku funkcji o tej nazwie, np. tak:

bool PrzecinajaSie(CCircle&, CCircle&);
bool PrzecinajaSie(CRectangle&, CRectangle&);
bool PrzecinajaSie(CPolygon&, CPolygon&);
// itd. (wraz z ewentualnymi kombinacjami krzyżowymi)

Klasa będzie jednak przyjaźniła się tylko z tą funkcją, której deklarację zamieścimy po
słowie friend. Zapamiętajmy po prostu, że:

Jedna zwykła deklaracja przyjaźni oznacza przyjaźń z jedną funkcją.

Na co jeszcze trzeba zwrócić uwagę
Wszystko wydawałoby się raczej proste. Nie zaszkodzi jednak powiedzieć wprost o
pewnych „oczywistych” faktach związanych z zaprzyjaźnionymi funkcjami.

Funkcja zaprzyjaźniona nie jest metodą
Jedno słówko friend może bardzo wiele zmienić. Porównajmy choćby te dwie klasy:

class CFoo
{
 public:
 void Funkcja();
};

class CBar
{
 public:
 friend void Funkcja();
};

Różnią się one tylko tym słówkiem… ale jest to różnica znacząca. W pierwszej klasie
Funkcja() jest jej metodą: zadeklarowaliśmy ją tak, jak wszystkie normalne metody
klas. Znamy to już dobrze, gdyż proces definiowania metod poznaliśmy przy pierwszym
spotkanie z OOPu. Do pełni szczęścią na leży jeszcze tylko zdefiniować ciało emtody
CFoo::Funkcja() i wszystko będzie w porządku.
Deklaracja w drugiej klasie jest natomiast opatrzona słówkiem friend, które zupełnie
zmienia jej znaczenie. Funkcja() nie jest tu metodą klasy CBar. Jest wprawdzie
zaprzyjaźniona z nią, ale nie jest jej składnikiem: nie ma dostępu do wskaźnika this.
Aby z tej zaprzyjaźnionej funkcji mógł być w ogóle jakiś użytek, trzeba jej zapewnić
dostęp do obiektu klasy CBar, bo jej samej nikt go „nie da”. Wobec braku parametrów
funkcji pewnie będzie to wymagało zadeklarowania globalnej zmiennej obiektowej typu
CBar.

Zaawansowana obiektowość 377

Pamiętaj zatem, iż:

Funkcje zaprzyjaźnione z klasą nie są jej składnikami. Nie posiadają dostępu do
wskaźnika this tej klasy, gdyż nie są jej metodami.

W praktyce więc należy jakoś podać takiej funkcji obiekt klasy, która się z nią przyjaźni.
Zobaczyliśmy w poprzednim przykładzie, że prawie zawsze odbywa się to poprzez
parametry. Referencja do obiektu klasy CCircle była parametrem zaprzyjaźnionej z nią
funkcji PrzecinajaSie(). Tylko posiadając dostęp do obiektu klasy, która się z nią
przyjaźni, funkcja zaprzyjaźniona może odnieść jakąś korzyść ze swojego
uprzywilejowanego statusu.

Deklaracja przyjaźni jest też deklaracją funkcji
Mamy też drugi ważny fakt związany z deklaracją funkcji zaprzyjaźnionej.

Deklaracja przyjaźni jako prototyp funkcji

Otóż, taka deklaracja przyjaźni jest jednocześnie deklaracją funkcji jako takiej. Musimy
zauważyć, że w zaprezentowanych przykładach funkcje, które były przyjacielami klasy,
zostały zdefiniowane dopiero po definicji tejże klasy. Wcześniej kompilator nic o nich nie
wiedział - a mimo to pozwolił na ich zaprzyjaźnienie! Czy to jakaś niedoróbka?

Ależ skąd! Kompilator uznaje po prostu deklarację przyjaźni z funkcją także za deklarację
samej funkcji. Linijka ze słowem friend pełni więc funkcję prototypu funkcji, która może
być swobodnie zdefiniowana w zupełnie innym miejscu. Z kolei wcześniejsze
prototypowanie funkcji, przed deklaracją przyjaźni, nie jest konieczne. Mówiąc po ludzku,
w poniższym kodzie:

bool PrzecinajaSie(CCircle&, CCircle&);

class CCircle
{
 // (ciach - szczegóły)

 friend bool PrzecinajaSie(CCircle&, CCircle&);
};

// gdzieś dalej definicja funkcji...

początkowy prototyp funkcji PrzecinajaSie(), umieszczony przed definicją CCircle, nie
jest koniecznie wymagany. Bez niego kompilator skorzysta po prostu z deklaracji
przyjaźni jak z normalnej deklaracji funkcji.

Deklaracja przyjaźni z funkcją może być jednocześnie deklaracją samej funkcji.
Wcześniejsza wiedza kompilatora o istnieniu zaprzyjaźnianej funkcji nie jest niezbędna,
aby funkcja ta mogła zostać zaprzyjaźniona.

Dodajemy definicję

Najbardziej zaskakujące jest jednak to, że deklarując przyjaźń z jakąś funkcją możemy
tę funkcję jednocześnie… zdefiniować! Nic nie stoi na przeszkodzie, aby po zakończeniu
deklaracji nie stawiać średnika, lecz otworzyć nawias klamrowy i wpisać treść funkcji:

class CVector2D
{
 private:
 float m_fX, m_fY;

Zaawansowane C++ 378

 public:
 CVector2D(float fX = 0.0f, float fY = 0.0f)
 { m_fX = fX; m_fY = fY; }

 // zaprzyjaźniona funkcja dodająca dwa wektory
 friend CVector2D Dodaj(CVector2D& v1, CVector2D& v2)
 { return CVector2D(v1.m_fX + v2.m_fX, v1.m_fY + v2.m_fY); }
};

Nie zapominajmy, że nawet wówczas funkcja zaprzyjaźniona nie jest metodą klasy -
pomimo tego, że jej umieszczenie wewnątrz definicji klasy sprawia takie wrażenie. W tym
przypadku funkcja Dodaj() jest nadal funkcją globalną - wywołujemy ją bez pomocy
żadnego obiektu, choć oczywiście przekazujemy jej obiekty CVector2D w parametrach i
taki też obiekt otrzymujemy z powrotem:

CVector2D vSuma = Dodaj(CVector2D(1.0f, 2.0f), CVector2D(0.0f, -1.0f));

Umieszczenie definicji funkcji zaprzyjaźnionej w bloku definicji klasy ma jednak pewien
skutek. Otóż funkcja staje się wtedy funkcją inline, czyli jest rozwijana w miejscu swego
wywołania. Przypomina pod tym względem metody klasy, ale jeszcze raz powtarzam, że
metodą nie jest.

Może najlepiej będzie, jeśli zapamiętasz, że:

Wszystkie funkcje zdefiniowane wewnątrz definicji klasy są automatycznie inline,
jednak tylko te bez słówka friend są jej metodami. Pozostałe są funkcjami
globalnymi, lecz zaprzyjaźnionymi z klasą.

Klasy zaprzyjaźnione
Zaprzyjaźnianie klas z funkcjami globalnymi wydaje się może nieco dziwnym
rozwiązaniem (gdyż częściowo łamie zaletę OOPu - hermetyzację), ale niejednokrotnie
bywa przydatnym mechanizmem. Bardziej obiektowym podejściem jest przyjaźń klas z
innymi klasami - jako całościami lub tylko z ich pojedynczymi metodami.

Przyjaźń z pojedynczymi metodami
Wiemy już, że możemy zadeklarować przyjaźń klasy z funkcją globalną. Teraz dowiemy
się, że przyjacielem może być także inny rodzaj funkcji - metoda klasy.

Ponownie spojrzyj na odpowiedni przykład:

// deklaracja zapowiadająca klasy CCircle
class CCircle;

class CGeometryManager
{
 public:
 bool PrzecinajaSie(CCircle&, CCircle&);
};

class CCircle
{
 // (pomijamy resztę)

 friend bool CGeometryManager::PrzecinajaSie(CCircle&, CCircle&);
};

Zaawansowana obiektowość 379

Tym razem funkcja PrzecinajaSie() stała się składową klasy CGeometryManager. To
bardziej obiektowe rozwiązanie - tym bardziej dobre, że nie przeszkadza w
zadeklarowaniu przyjaźni z tą funkcją. Teraz jednak klasa z CCircle przyjaźni się z
metodą innej klasy - CGeometryManager. Odpowiednią zmianę (dość naturalną) widać
więc w deklaracji przyjaźni.

Przyjaźń z metodami innych klas byłaby bardzo podobna do przyjaźni z funkcjami
globalnymi gdyby nie jeden szkopuł. Kompilator musi mianowicie znać deklarację
zaprzyjaźnianej metody (CGeometryManager::PrzecinajaSie()) już wcześniej. To
zaś wiążę się z koniecznością zdefiniowania jej macierzystej klasy (CGeometryManager).
Do tego potrzebujemy jednak informacji o klasie CCircle, aby mogła ona wystąpić jako
typ agrumentu metody PrzecinajaSie(). Rozwiązaniem jest deklaracja
zapowiadająca, w które informujemy kompilator, że CCircle jest klasą, nie mówiac
jednak niczego więcej. Z takimi deklaracjami spotkaliśmy się już wcześniej i jeszcze
spotkamy się nie raz - szczególnie w kontekście przyjaźni międzyklasowej.

„Chwileczkę! A co z tą zaprzyjaźnianą metodą, CGeometryManager::PrzecinajaSie()?
Czyżby miała ona nie posiadać dostępu do wskaźnika this, mimo że jest funkcją
składową klasy?…”
Odpowiedź brzmi: i tak, i nie. Wszystko zależy bowiem od tego, o który wskaźnik this
nam dokładnie chodzi. Jeżeli o ten pochodzący od CGeometryManager, to wszystko jest w
jak najlepszym porządku: metoda PrzecinajaSie() posiada go oczywiście, zatem ma
dostęp do składników swojej macierzystej klasy. Jeśli natomiast mamy na myśli klasę
CCircle, to faktycznie metoda PrzecinajaSie() nie ma dojścia do wskaźnika this… tej
klasy! Zgadza się to całkowicie z faktem, iż funkcja zaprzyjaźniona nie jest metodą
klasy, która się z nią przyjaźni - tak więc nie posiada wskaźnika this tej klasy (tutaj
CCircle). Funkcja może być jednak metodą innej klasy (tutaj CGeometryManager), a
dostęp do jej składników będzie mieć zawsze - takie są przecież podstawowe założenia
programowania obiektowego.

Przyjaźń z całą klasą
Deklarując przyjaźń jednej klasy z metodami innej klasy, można pójść o krok dalej.
Dlaczego na przykład nie powiązać przyjaźnią od razu wszystkich metod pewnej klasy z
naszą?… Oczywiście możnaby pracowicie zadeklarować przyjaźń ze wszystkimi metodami
tamtej klasy, ale jest prostsze rozwiązanie. Może zaprzyjaźnić jedną klasę z drugą.

Deklaracja przyjaźni z całą klasą jest nad wyraz prosta:

friend class nazwa_zaprzyjaźnionej_klasy;

Zastępuje ona deklaracje przyjaźni ze wszystkimi metodami klasy o podanej nazwie,
wyszczególnionymi osobno. Taka forma jest poza tym nie tylko krótsza, ale też ma kilka
innych zalet.
Wpierw jednak spójrzmy na przykład:

class CPoint;

class CRect
{
 private:
 // ...

 public:
 bool PunktWewnatrz(CPoint&);
};

Zaawansowane C++ 380

class CPoint
{
 private:
 float m_fX, m_fY;

 public:
 CPoint(float fX = 0.0f, float fY = 0.0f)
 { m_fX = fX; m_fY = fY; }

 // deklaracja przyjaźni z Crect
 friend class CRect;
};

Wyznanie przyjaźni, który czyni klasa CPoint, sprawia, że zaprzyjaźniona klasa CRect ma
pełen dostęp do jej składników niepublicznych. Metoda CRect::PunktWewnatrz() może
więc odczytać współrzędne podanego punktu i sprawdzić, czy leży on wewnątrz
prostokąta opisanego przez obiektt klasy CRect.

Zauważmy jednocześnie, że klasa CPoint nie ma tutaj podobnego dostępu do
prywatnych składowych CRect. Klasa CRect nie zadeklarowała bowiem przyjaźni z klasą
CPoint. Wynika stąd bardzo ważna zasada:

Przyjaźń klas w C++ nie jest automatycznie wzajemna. Jeżeli klasa A deklaruje
przyjaźń z klasą B, to klasa B nie jest od razu także przyjacielem klasy A. Obiekty klasy B
mają więc dostęp do niepublicznych danych klasy A, lecz nie odwrotnie.

Dość często aczkolwiek życzymy sobie, aby klasy wzajemnie deklarowały sobie przyjaźń.
Jest to jak najbardziej możliwe: po prostu w obu klasach muszą być deklaracje przyjaźni:

class CBar;

class CFoo
{
 friend class CBar;
};

class CBar
{
 friend class CFoo;
};

Wymaga to zawsze zastosowania deklaracji zapowiadającej, gdyż kompilator musi
wiedzieć, że dana nazwa jest klasą, zanim pozwoli na jej zastosowanie w konstrukcji
friend class. Nie musi natomiast znać całej definicji klasy, co było wymagane dla
przyjaźni z pojedynczymi metodami. Gdyby tak było, to wzajemna przyjaźń klas nie
byłaby możliwa. Kompilator zadowala się na szczęście samą informacją „CBar jest klasą”,
bez wnikania w szczegóły, i przyjmuje deklarację przyjaźni z klasą, o której w zasadzie
nic nie wie.

Kompilator nie przyjmie natomiast deklaracji przyjaźni z pojedynczą metodą nieznanej
bliżej klasy. Sprawia to, że wybiórcza przyjaźń dwóch klas nie jest możliwa, bo
wymagałaby niemożliwego: zdefiniowania pierwszej klasy przed definicją drugiej oraz
zdefiniowania drugiej przed definicją pierwszej. To oczywiście niemożliwe, a kompilator
nie zadowoli się niestety samą deklaracją zapowiadającą - jak to czyni przy deklarowaniu
całkowitej przejaźni (friend class klasa;).

Zaawansowana obiektowość 381

Jeszcze kilka uwag
Przyjaźń nie jest szczegolnie zawiłym aspektem programowania obiektowego w C++.
Wypada jednak nieco uściślić jej wpływ na pozostałe elementy OOPu.

Cechy przyjaźni klas w C++
Przyjaźń klas w C++ ma trzy znaczące cechy, na które chcę teraz zwrócić uwagę.

Przyjaźń nie jest automatycznie wzajemna
W prawdziwym życiu ktoś, kogo uważamy za przyjaciela, ma zwykle to samo zdanie o
nas. To więcej niż naturalne.

W programowaniu jest inaczej. Można to uznać za kolejny argument, iż jest ono zupełnie
oderwane od rzeczywistości, a można po prostu przyjąć to do wiadomości. A prawda jest
taka:

Klasa deklarująca przyjaźń udostępnia przyjacielowi swoje niepubliczne składowe - lecz
nie powoduje to od razu, że klasa zaprzyjaźniona jest tak samo otwarta.

Powiedziałem już, że chcąc stworzyć wzajemny związek przyjaźni trzeba umieścić
odpowiednie deklaracje w obu klasach. Wymaga to zawsze zapowiadającej deklaracji
przynajmniej jeden z powiązanych klas.

Przyjaźń nie jest przechodnia
Inaczej mówiąc: przyjaciel mojego przyjaciela nie jest moim przyjacielem. Przekładając
to na C++:

Jeżeli klasa A deklaruje przyjaźń z klasą B, zaś klasa B z klasą C, to nie znaczy to, że
klasa C jest od razu przyjacielem klasy A.

Gdybyśmy chcieli, żeby tak było, powinniśmy wyraźnie to zadeklarować:

friend class C;

Przyjaźń nie jest dziedziczna
Przyjaźń nie jest również dziedziczona. Tak więc przyjaciel klasy bazowej nie jest
automatycznie przyjacielem klasy pochodnej. Aby tak było, klasa pochodna musi sama
zadeklarować swojego przyjaciela.
Można to uzasadnić na przykład w ten sposób, że deklaracja przyjaźni nie jest
składnikiem klasy - tak jak metoda czy pole. Nie można więc go odziedziczyć. Inne
wytłumaczenie: deklaracja friend nie ma przypisanego specyfikatora dostępu (public,
private…), zatem nie wiadomo by było, co z nią zrobić w procesie dziedziczenia; jak
wiemy, składniki private nie są dziedziczone, a pozostałe owszem106.

Dwie ostatnie uwagi możemy też uogólnić do jednej:

Klasa ma tylko tych przyjaciół, których sama sobie zadeklaruje.

106 Jest tak, gdy stosujemy dziedziczenie publiczne (class pochodna : public bazowa), ale tak robimy niemal
zawsze.

Zaawansowane C++ 382

Zastosowania
Mówiąc o zastosowaniach przyjaźni, musimy rozgraniczyć zaprzyjaźnione klasy i funkcje
globalne.

Wykorzystanie przyjaźni z funkcją
Do czego mogą przydać się zaprzyjaźnione funkcje?… Teoretycznie korzyści jest wiele,
ale w praktyce na przód wysuwa się jedno główne zastosowanie. To przeciążanie
operatorów.

O tym użytecznym mechaniźmie języka będziemy mówić w dalszej części tego rozdziału.
Teraz mogę powiedzieć, że jest to sposób na zdefiniowanie własnych działań
podejmowanych w stosunku do klas, których obiekty występują w wyrażeniach z
operatorami: arytmetycznymi, bitowymi, logicznymi, i tak dalej. Precyzyjniej: chodzi o
stworzenie funkcji, które zostaną wykonywane na argumentach operatorów, będących
naszymi klasami. Takie funkcje potrzebują często dostępu do prywatnych składników
klas, na rzecz których przeciążamy operatory. Tutaj właśnie przydają się funkcje
globalne, jako że zapewniają taki dostęp, a jednocześnie swobodę definiowania kolejności
argumentów operatora.
Jeśli nie bardzo to rozumiesz, nie przejmuj się. Przeciążanie operatorów jest w
rzeczywistości bardzo proste, a zaprzyjaźnione funkcji globalne upraszczają to jeszcze
bardziej. Wkrótce sam się o tym przekonasz.

Korzyści czerpane z przyjaźni klas
A co można zyskać zaprzyjaźniając klasy? Tutaj trudniej o konkretną odpowiedź.
Wszystko zależy od tego, jak zaprojektujemy swój obiektowy program. Warto jednak
wiedzieć, że mamy taką właśnie możliwość, jak zaprzyjaźnianie klas. Jak wszystkie z
pozoru nieprzydatne rozwiązania, okaże się ona użyteczna w najmniej spodziewanych
sytuacjach.

Tą pocieszającą konkluzją zakończyliśmy omawianie przyjaźni klas i funkcji w C++.
Kolejnym elementem OOPu, na jakim skupimy swoją uwagę, będą konstruktory. Ich rola
w naszym ulubionym języka jest bowiem wcale niebagatelna i nieogranicza się tylko do
inicjalizacji obiektów… Zobaczmy sami.

Konstruktory w szczegółach
Konstruktory pełnią w C++ wyjątkowo dużo ról. Choć oczywiście najważniejsza (i w
zasadzie jedyną poważną) jest inicjalizacja obiektów - instancji klas, to niejako przy
okazji mogą one dokonywać kilku innych, przydatnych operacji. Wszystkie one wiążą się
z tym głównym zadaniem.
W tym podrozdziale nie będziemy więc mówić o tym, co robi konstruktor (bo to wiemy),
ale jak może to robić. Innymi słowy, dowiesz się, jak wykorzystać różne rodzaje
konstruktorów do własnych szczytnych celów programistycznych.

Mała powtórka
Najpierw jednak przyda się małe powtórzenie wiedzy, która będzie nam teraz przydatna.
Przy okazji może ją trochę usystematyzujemy; powinno się też wyjaśnić to, co do tej
pory mogło być dla ciebie ewentualnie niejasne.

Zaczniemy od przypomnienia konstruktorów, a później procesu inicjalizacji.

Zaawansowana obiektowość 383

Konstruktory
Konstruktor jest specjalną metodą klasy, wywoływaną podczas tworzenia obiektu. Nie
jest on, jak się czasem błędnie sądzi, odpowiedzialny za alokację pamięci dla obiektu,
lecz tylko za wstępne ustawienie jego pól. Niejako przy okazji może on aczkolwiek
podejmować też inne czynności, jak zwykła metoda klasy.

Cechy konstruktorów
Konstruktory tym jednak różnią się od zwykłych metod, iż:

 nie posiadają wartości zwracanej. Konstruktor nic nie zwraca (bo i komu?…),
nawet typu pustego, czyli void. Zgoda, można się spierać, że wynikiem jego
działania jest obiekt, lecz konstruktor nie jest jedynym mechanizmem, który
bierze udział w jego tworzeniu: liczy się jeszcze alokacja pamięci. Dlatego też
przyjmujemy, że konstruktor nie zwraca wartości. Widać to zresztą w jego
deklaracji

 nie mogą być wywoływane za pośrednictwem wskaźnika na funkcje. Przyczyna
jest prosta: nie można pobrać adresu konstruktora

 mają mnóstwo ograniczeń co do przydomków w deklaracjach:
 nie można ich czynić metodami stałymi (const)
 nie mogą być metodami wirtualnymi (virtual), jako że sposób ich

wywoływania w warunkach dziedziczenia jest zupełnie odmienny od obu
typów metod: wirtualnych i niewirtualnych. Wspominałym o tym przy
okazji dziedziczenia.

 nie mogą być metodami statycznymi klas (static). Z drugiej strony
posiadają unikalną cechę metod statycznych, jaką jest możliwość
wywołania bez konieczności posiadania obiektu macierzystej klasy.
Konstruktory mają jednak dostęp do wskaźnika this na tworzony obiekt,
czego nie można powiedzieć o zwykłych metodach statycznych

 nie są dziedziczone z klas bazowych do pochodnych

Widać więc, że konstruktor to bardzo dziwna metoda: niby zwraca jakąś wartość
(tworzony obiekt), ale nie deklarujemy mu wartości zwracanej; nie może być wirtualny,
ale w pewnym sensie jest; nie może być statyczny, ale posiada cechy metod
statycznych; jest funkcją, ale nie można pobrać jego adresu, itd. To wszystko wydaje się
nieco zakręcone, lecz wiemy chyba, że nie przeszkadza to wcale w normalnym używaniu
konstruktorów. Zamiast więc rozstrząsać fakty, czym te metody są, a czym nie, zajmijmy
się ich definiowaniem.

Definiowanie
W C++ konstruktor wyróżnia się jeszcze tym, że jego nazwa odpowiada nazwie klasy, na
rzecz której pracuje. Przykładowa deklaracja konstruktora może więc wyglądać tak:

class CFoo
{
 private:
 int m_nPole;

 public:
 CFoo(int nPole) { m_nPole = nPole; }
};

Jak widzimy, nie podajemy tu żadnej wartości zwracanej.

Przeciążanie

Zwykłe metody klasy także można przeciążać, ale w przypadku konstruktorów dzieje się
to nadzwyczaj często. Znowu posłużymy się przykładem wektora:

Zaawansowane C++ 384

class CVector2D
{
 private:
 float m_fX, m_fY;

 public:
 // konstruktor, trzy sztuki
 CVector2D() { m_fX = m_fY = 0.0f; }
 CVector2D(float fDlugosc)
 { m_fX = m_fY = fDlugosc / sqrt(2); }
 CVector2D(float fX, float fY) { m_fX = fX; m_fY = fY; }
};

Definiując przeciążone konstruktory powinniśmy, analogicznie jak w przypadku innych
metod oraz zwykłych funkcji, wystrzegać się niejednoznaczności. W tym przypadku
powstałaby ona, gdyby ostatni wariant zapisać jako:

CVector2D(float fX = 0.0f, float fY = 0.0f);

Wówczas mógłby on być wywołany z jednym argumentem, podobnie jak konstruktor
nr 2. Kompilator nie zdecyduje, który wariant jest lepszy i zgłosi błąd.

Konstruktor domyślny

Konstruktor domyślny (ang. default constructor), zwany też domniemanym, jest to
taki konstruktor, który może być wywołany bez podawania parametrów.

W klasie powyżej jest to więc pierwszy z konstruktorów. Gdybyśmy jednak całą trójkę
zastąpili jednym:

CVector2D(float fX = 0.0f, float fY = 0.0f) { m_fX = fX; m_fY = fY; }

to on także byłby konstruktorem domyślnym. Ilość podanych do niego parametrów może
być bowiem równa zeru. Widać więc, że konstruktor domyślny nie musi być akurat tym,
który faktycznie nie posiada parametrów w swej deklaracji (tzw. parametrów
formalnych).
Naturalnie, klasa może mieć tylko jeden konstruktor domyślny. W tym przypadku
oznacza to, że konstruktor w formie CVector2D(), CVector2D(float fDlugosc = 0.0f)
czy jakikolwiek inny tego typu nie jest dopuszczalny. Powstałaby bowiem
niejednoznaczność, a kompilator nie wiedziałby, którą metodę powinien wywoływać.

Za wygeneroowanie domyślnego konstruktora może też odpowiadać sam kompilator.
Zrobi to jednak tylko wtedy, gdy sami nie podamy jakiegolwiek innego
konstruktora. Z drugiej strony, nasz własny konstruktor domyślny zawsze przesłoni ten
pochodzący od kompilatora. W sumie mamy więc trzy możliwe sytuacje:

 nie podajemy żadnego własnego konstruktora - kompilator automatycznie
generuje domyślny konstruktor publiczny

 podajemy własny konstruktor domyślny (jeden i tylko jeden) - jest on używany
 podajemy własne konstruktory, ale żaden z nich nie może być domyślny, czyli

wywoływany przez parametrów - wówczas klasa nie ma konstruktora domyślnego

Tak więc tylko w dwóch pierwszych sytuacjach klasa posiada domyślny konstruktor. Jaka
jest jednak korzyść z jego obecności? Otóż jest ona w sumie niewielka:

 tylko obiekty posiadające konstruktor domyślny mogą być elementami tablic.
Podkreślam: chodzi o obiekty, nie o wskaźniki do nich - te mogą być łączone w
tablice bez względu na konstruktory

Zaawansowana obiektowość 385

 tylko klasę posiadającą konstruktor domyślny można dziedziczyć bez dodatkowych
zabiegów przy konstruktorze klasy pochodnej

Tę drugą zasadę wprowadziłem przy okazji dziedziczenia, choć nie wspominałem o owych
„dodatkowych zabiegach”. Będą one treścią tego podrozdziału.

Kiedy wywoływany jest konstruktor
Popatrzmy teraz na sytuacje, w których pracuje knnstruktor. Nie jest ich zbyt wiele, tylko
kilka.

Niejawne wywołanie

Niejawne wywołanie (ang. implicit call) występuje wtedy, gdy to kompilator wywołuje
nasz konstruktor. Jest parę takich sytuacji:

 najprostsza: gdy deklarujemy zmienną obiektową, np.:

CFoo Foo;

 w momencie tworzenia obiektu, który zawiera w sobie pola będące zmiennymi
obiektowymi innych klas

 w chwili tworzenia obiektu klasy pochodnej jest wywoływany konstruktor klasy
bazowej

Jawne wywołanie

Konstruktor możemy też wywołać jawnie. Mamy wtedy wywołanie niejawne (ang. explicit
call), które występuje np. w takich sytuacjach:

 przy konstruowaniu obiektu operatorem new
 przy jawnym wywołaniu konstruktora: nazwa_klasy([parametry])

W tym drugim przypadku mamy tzw. obiekt chwilowy. Zwracaliśmy taki obiekt, kopiując
go do rezultatu funkcji Dodaj(), prezentując funkcje zaprzyjaźnione.

Inicjalizacja
Teraz powiemy sobie więcej o inicjalizacji. Jest to bowiem proces ściśle związany z
aspektami konstruktorów, które omówimy w tym podrozdziale.

Inicjalizacja (ang. initialization) jest to nadanie obiektowi wartości początkowej w
chwili jego tworzenia.

Kiedy się odbywa
W naturalny sposób inicjalizację wiążemy z deklaracją zmiennych. Odbywa się ona
jednak także w innych sytuacjach.

Dwie kolejne związane z funkcjami. Otóż jest to:

 przekazanie wartości poprzez parametr
 zwrócenie wartości jako rezultatu funkcji

Wreszcie, ostatnia sytuacja związana jest inicjalizacją obiektów klas - poznamy ją za
chwilę.

Jak wygląda
Inicjalizacja w ogólności wygląda mniej więcej tak:

typ zmienna = inicjalizator;

Zaawansowane C++ 386

inicjalizator może mieć jednak różną postać, w zależności od typu deklarowanej
zmiennej.

Inicjalizacja typów podstawowych

W przypadku zmiennych typow elementarnych sprawa jest najprostsza. W inicjalizatorze
podajemy po prostu odpowiednią wartość, jaka zostanie przypisana temu typowi, np.:

unsigned nZmienna = 42;
float fZmienna = 10.5;

Zauważmy, że bardzo często inicjalizacja związana jest niejawną konwersją wartości do
odpowiedniego typu. Tutaj na przykład 42 (typu int) zostanie zamienione na typ
unsigned, zaś 10.5 (double) na typ float.

Agregaty

Bardziej złozone typy danych możemy inicjalizować w specjalny sposób, jako tzw.
agregaty. Agregatem jest tablica innych agregatów (względnie elementów typów
podstawowych) lub obiekt klasy, która:

 nie dziedziczy z żadnej klasy bazowej
 posiada tylko składniki publiczne (public, ewentualnie bez specyfikatora w

przypadku typów struct)
 nie posiada funkcji wirtualnych
 nie posiada zadeklarowanego konstruktora

Agregaty możemy inicjalizować w specjalny sposób, podając wartości wszystkich ich
elementów (pól). Znamy to już tablic, np.:

int aTablica[13] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41 };

Podobnie może to się odbywać także dla struktur (tudzież klas), spełniających cztery
podane warunki:

struct VECTOR3 { float x, y, z; };
VECTOR3 vWektor = { 6.0f, 12.5f, 0.0f };

W przypadku bardziej skomplikowanych, „zagnieżdżonych” agregatów, będziemy mieli
więcej odpowiednich par nawiasów klamrowych:

VECTOR3 aWektory[3] = { { 0.0f, 2.0f, -3.0f },
 { -1.0f, 0.0f, 0.0f },
 { 8.0f, 6.0f, 4.0f } };

Można je aczkolwiek opuścić i napisać te 9 wartości jednym ciągiem, ale przyznasz
chyba, że w tej postaci inicjalizacja wygląda bardziej przejrzyście. Po inicjalizatorze widać
przynajmniej, że inicjujemy tablicę trój-, a nie dziewięcioelementową.

Inicjalizacja konstruktorem

Ostatni sposób to inicjalizacja obiektu jego własnym konstruktorem - na przykład:

std::string strZmienna = "Hmm...";

Tak, to jest jak najbardziej taki właśnie przykład. W rzeczywistości kompilator rozwinie
go bowiem do:

std::string strZmienna("Hmm...");

Zaawansowana obiektowość 387

gdyż w klasie std::string istnieje odpowiedni konstruktor przyjmujący jeden argument
typu napisowego107:

string(const char[]);

Konstruktor jest tu więc wywoływany niejawnie - jest to tak zwany konstruktor
konwertujący, któremu przyjrzymy się bliżej w tym rozdziale.

Listy inicjalizacyjne
W definicji konstruktora możemy wprowadzić dodatkowy element - tzw. listę
inicjalizacyjną:

nazwa_klasy::nazwa_klasy([parametry]) : lista_inicjalizacyjna
{
 ciało_konstruktora
}

Lista inicjalizacyjna (ang. initializers’ list) ustala sposób inicjalizacji obiektów tworzonej
klasy.

Za pomocą takiej listy możemy zainicjalizować pola klasy (i nie tylko) jeszcze przed
wywołaniem samego konstruktora. Ma to pewne konsekwencje i bywa przydatne w
określonych sytuacjach.

Inicjalizacja składowych
Dotychczas dokonywaliśmy inicjalizacji pól klasy w taki oto sposób:

class CVector2D
{
 private:
 float m_fX, m_fY;

 public:
 CVector2D(float fX = 0.0f, float fY = 0.0f)
 { m_fX = fX; m_fY = fY; }
};

Przy pomocy listy inicjalizacyjnej zrobimy to samo mniej więcej tak:

CVector2D(float fX = 0.0f, float fY = 0.0f) : m_fX(fX), m_fY(fY) { }

Jaka jest różnica?

 konstruktor może u nas być pusty. To najprawdopodobniej sprawi, że kompilator
zastosuje wobec niego jakąś optymalizację

 działania m_fX(fX) i m_fY(fY) (zwróćmy uwagę na składnię), mają charakter
inicjalizacji pól, podczas gdy przypisania w ciele konstruktora są przypisaniami
właśnie

 lista inicjalizacyjna jest wykonywana jeszcze przed wejściem w ciało
konstruktora i wykonaniem zawartych tam instrukcji

Drugi i trzeci fakt jest bardzo ważny, ponieważ dają nam one możliwość umieszczania w
klasie takich pól, które nie moga obyć się bez inicjalizacji, a więc:

107 W rzeczywistości ten konstruktor wygląda znacznie obszerniej, bo w grę wchodzą jeszcze szablony z
biblioteki STL. Nic jednak nie stałoby na przeszkodzie, aby tak to właśnie wyglądało.

Zaawansowane C++ 388

 stałych (pól z przydomkiem const)
 stałych wskaźników (typ* const)
 referencji
 obiektów, których klasy nie mają domyślnych konstruktorów

Lista inicjalizacyjna gwarantuje, że zostaną one zainicjalizowane we właściwym czasie -
podczas tworzenia obiektu:

class CFoo
{
 private:
 const float m_fPole;
 // nie może być: const float m_fPole = 42; !!

 public:
 // konstruktor - inicjalizacja pola
 CFoo() : m_fPole(42)
 {
 /* m_fPole = 42; // też nie może być - za późno!
 // m_fPole musi mieć wartość już
 // na samym początku wykonywania
 // konstruktora */
 }
};

Mówiłem też, że inicjalizacja przy pomocy listy inicjalizacyjnej jest szybsza od przypisań
w ciele konstruktora. Powinniśmy więc stosować ją, jeżeli mamy taką możliwość, a
decyzja na którejś z dwóch rozwiązań nie robi nam różnicy. Zauważmy też, że zapis na
liście inicjalizacyjnej jest po prostu krótszy.

W liście inicjalizacyjnej możemy umieszczać nie tylko „czyste” stałe i argumenty
konstruktora, lecz także zlożone wyrażenia - nawet z wywołaniami metod czy funkcji
globalnych. Nie ma więc żadnych ograniczeń w stosunku do przypisania.

Wywołanie konstruktora klasy bazowej
Lista inicjalizacyjna pozwala zrobić coś jeszcze zanim właściwy konstruktor ruszy do
pracy. Pozwala to nie tylko na inicjalizację składowych klasy, które tego wymagają, ale
także - a może przede wszystkim - wywołanie konstruktorów klas bazowych.

Przy pierwszym spotkaniu z dziedziczeniem mówiłem, że klasa, która ma być
dziedziczona, powinna posiadać bezparametrowy konstruktor. Było to spowodowane
kolejnością wywoływania konstruktorów: jak wiemy, najpierw pracuje ten z klasy
bazowej (poczynając od najstarszego pokolenia), a dopiero potem ten z klasy pochodnej.
Kompilator musi więc wiedzieć, jak wywołać konstruktor z klasy bazowej. Jeżeli nie
pomożemy mu w decyzji, to uprze się na konstruktor domyslny - bezparametrowy.

Teraz będziemy już wiedzieć, jak można pomóc kompilatorowi. Służy do tego właśnie
lista inicjalizacyjna. Oprócz inicjalizacji pól klasy możemy też wywoływać w niej
konstruktory klas bazowych. W ten sposób zniknie konieczność posiadania przez nie
konstruktora domyślnego.
Oto jak może to wyglądać:

class CIndirectBase
{
 protected:
 int m_nPole1;

Zaawansowana obiektowość 389

 public:
 CIndirectBase(int nPole1) : m_nPole1(nPole) { }
};

class CDirectBase : public CIndirectBase
{
 public:
 // wywołanie konstruktora klasy bazowej
 CDirectBase(int nPole1) : CIndirectBase(nPole1) { }
};

class CDerived : public CDirectBase
{
 protected:
 float m_fPole2;

 public:
 // wywołanie konstruktora klasy bezpośrednio bazowej
 CDerived(int nPole1, float fPole2)
 : CDirectBase(nPole1), m_fPole2(fPole2) { }
};

Zwróćmy uwagę szczególnie na klasę CDerived. Jej konstruktor wywołuje konstruktor z
klasy bazowej bezpośredniej - CDirectBase, lecz nie z pośredniej - CIndirectBase. Nie
ma po prostu takiej potrzeby, gdyż za relacje między konstruktorami klas CDirectBase i
CIndirectBase odpowiada tylko ta ostatnia. Jak zresztą widać, wywołuje ona jedyny
konstruktor CIndirectBase.

Spójrzmy jeszcze na parametry wszystkich konstruktorów. Jak widać, zachowują one
parametry konstruktorów klas bazowych - zapewne dlatego, że same nie potrafią podać
dla nich sensownych danych i będą ich żądać od twórcy obiektu. Uzyskane dane
przekazują jednak do swoich przodków; powstaje w ten sposób swoista sztafeta, w której
dane z konstruktora najniższego poziomu dziedziczenia trafiają w końcu do klasy
bazowej. Po drodze są one przekazywane z rąk do rąk i ewentualnie zostawiane w polach
klas pośrednich.
Wszystko to dzieje się za pośrednictwem list inicjalizacyjnej. W praktyce ich
wykorzystanie eliminuje więc bardzo wiele sytuacji, które wymagają definiowania ciała
konstruktora. Sam się zresztą przekonasz, że całe mnóstwo pisanych przez ciebie klas
bedzie zawierało puste konstruktory, realizujące swoje funkcje wyłącznie poprzez listy
inicjalizacyjne.

Konstruktory kopiujące
Teraz porozmawiamy sobie o kopiowaniu obiektów, czyli tworzeniu ich koncepcyjnych
duplikatów. W C++ mamy na to dwie wydzielone rodzaje metod klas:

 konstruktory kopiujące, tworzące nowe obiekty na podstawie już istniejących
 przeciążone operatory przypisania, których zadaniem jest skopiowanie stanu

jednego obiektu do drugiego, już istniejącego

Przeciążaniem operatorów zajmiemy się dalszej części rozdziału. W tej sekcji przyjrzymy
się natomiast konstruktorom kopiującym.

O kopiowaniu obiektów
Wydawałoby się, że nie ma nic prostszego od skopiowania obiektu. Okazuje się jednak,
że często nieodzowne są specjalne mechanizmy temu służące… Sprawdźmy to.

Zaawansowane C++ 390

Pole po polu
Gdy mówimy o kopiowaniu obiektów i nie zastanawiamy się nad tym dłużej, to sądzimy,
że to po prostu skopiowanie danych - zawartości pól - z jednego obszaru pamięci do
drugiego. Przykładowo, spójrzmy na dwa wektory:

CVector2D vWektor1(1.0f, 2.0f, 3.0f);
CVector2D vWektor2 = vWektor1;

Całkiem słusznie oczekujemy, że po wykonaniu kopiowania vWektor1 do vWektor2 oba
obiekty będą miały identyczne wartości pól. W przypadku takich struktur danych jak
wektory, jest to zupełnie wystarczające. Dlaczego? Otóż wszystkie ich pola są całkowicie
odrębnymi zmiennymi - nie mają żadnych koneksji z otaczającym je światem. Trudno
przecież oczekiwać, żeby liczby typu float robiły cokolwiek innego poza
przechowywaniem wartości. Ich proste skopiowanie jest więc właściwym sposobem
wykonania kopii wektora - czyli obiektu klasy CVector2D.

Samowystarczalne obiekty mogą być kopiowane poprzez dosłowne przepisanie wartości
swoich pól.

Gdy to nie wystarcza…
Nie wszyscy obiekty podpadają jednak pod ustanowioną wyżej kategorię. Czy pamiętasz
może klasę CIntArray, którą pokazałem, omawiając wskaźniki? Jeśli nie, to spójrz
jeszcze raz na jej definicję (usprawnioną wykorzystaniem list inicjalizacyjnych):

class CIntArray
{
 // domyślny rozmiar tablicy
 static const unsigned DOMYSLNY_ROZMIAR = 5;

 private:
 // wskaźnik na właściwą tablicę oraz jej rozmiar
 int* m_pnTablica;
 unsigned m_uRozmiar;

 public:
 // konstruktory
 CIntArray() // domyślny
 : m_uRozmiar(DOMYSLNY_ROZMIAR),
 m_pnTablica(new int [m_uRozmiar]) { }
 CIntArray(unsigned uRozmiar) // z podaniem rozmiaru tablicy
 : m_uRozmiar(uRozmiar);
 m_pnTablica(new int [m_uRozmiar]) { }

 // destruktor
 ~CIntArray() { delete[] m_pnTablica; }

 //---

 // pobieranie i ustawianie elementów tablicy
 int Pobierz(unsigned uIndeks) const
 { if (uIndeks < m_uRozmiar) return m_pnTablica[uIndeks];
 else return 0; }
 bool Ustaw(unsigned uIndeks, int nWartosc)
 { if (uIndeks >= m_uRozmiar) return false;
 m_pnTablica[uIndeks] = uWartosc;
 return true; }

 // inne

Zaawansowana obiektowość 391

 unsigned Rozmiar() const { return m_uRozmiar; }
};

Pytanie brzmi: jak skopiować tablicę typu CIntArray?… Niby nic prostszego:

CIntArray aTablica1;
CIntArray aTablica2 = aTablica1; // hmm...

W rzeczywistości mamy tu bardzo poważny błąd. Metoda „pole po polu” zupełnie nie
sprawdza się w przypadku tej klasy. Problemem jest pole m_pnTablica: jesli skopiujemy
ten wskaźnik, to otrzymamy nic innego, jak tylko kopię wskaźnika. Będzie się on
odnosił do tego samego obszaru pamięci. Zamiast więc dwóch fizycznych tablic mamy
tylko jedną, a obiekty Tablica1 i Tablica2 to jedynie kopie opakowań dla wskaźnika na tę
tablicę. Odwołując się do danych, zapisanych w rzekomo odrębnych tablicach klasy
CIntArray, faktycznie będziemy odnosić się do tych samych elementów! To poważny
błąd, co gorsza niewykrywalny aż do momentu wyprodukowania błędnych rezultatów
przez program.

Coś więc trzeba z tym zrobić - domyślasz się, że rozwiązaniem są tytułowe konstruktory
kopiujące. Jeszcze zanim je poznamy, powinieneś zapamiętać:

Jeżeli obiekt pracuje na jakimś zewnętrznym zasobie (np. pamięci operacyjnej) i posiada
do niego odwołanie (np. wskaźnik), to jego klasę koniecznie należy wyposażyć w
konstruktor kopiujący. Bez niego zostanie bowiem podczas kopiowanie obiektu zostanie
skopiowane samo odwołanie do zasobu (czyli wskaźnik) zamiast stworzenia jego
duplikatu (czyli alokacji nowej porcji pamięci).

Trzeba też wiedzieć, że konieczność zdefiniowania konstruktora kopiującego zwykle
automatycznie pociąga za sobą wymóg obecności przeciążonego operatora przypisania.

Konstruktor kopiujący
Zobaczmy zatem, jak działają te cudowne konstruktory kopiujące. Jednak oprócz
zachwycania się nimi poznamy także sposób ich użycia (definiowania) w C++.

Do czego służy konstruktor kopiujący

Konstruktor kopiujący (ang. copy constructor) służy do tworzenia nowego obiektu
danej klasy na podstawie już istniejącego, innego obiektu tej klasy.

Konstruktor ten, jak wszystkie konstruktory, wkracza do akcji podczas kreowania nowego
obiektu klasy. Czym się w takim razie różni od zwykłego konstruktora?… Przypomnijmy
dwie sporne linijki z poprzedniego paragrafu:

CIntArray aTablica1;
CIntArray aTablica2 = aTablica1;

Pierwsza z nich to normalne stworzenie obiektu klasy CIntArray. Pracuje tu zwykły
konstruktor, domyślny zresztą.
Natomiast druga linijka może być także zapisana jako:

CIntArray aTablica2 = CIntArray(aTablica1);

albo nawet:

CIntArray aTablica2(aTablica1);

Zaawansowane C++ 392

W niej pracuje konstruktor kopiujący, gdyż dokonujemy tu inicjalizacji nowego
obiektu starym.

Konstruktor kopiujący jest wywoływany w momencie inicjalizacji nowotworzonego
obiektu przy pomocy innego obiektu tej samej klasy. Z tego powodu taki konstruktor
jest również zwany inicjalizatorem kopiującym.

Zaraz, jak to - przecież nie zdefiniowaliśmy dotąd żadnego specjalnego konstruktora! Jak
więc mógł on być użyty w kodzie powyżej?
Owszem, to prawda, ale kompilator wykonał robotę za nas. Jeśli nie zdefiniujemy
własnego konstruktora kopiującego, to klasa zostanie obdarzona jego najprostszym
wariantem. Będzie on wykonywał zwykłe kopiowanie wartości - dla nas całkowicie
niewystarczające.

Musimy zatem wiedzieć, jak definiować własne konstruktory kopiujące.

Konstruktor kopiujący a przypisanie - różnica mała lecz ważna

Możesz spytać: a co kompilator zrobi w takiej sytuacji:

CIntArray aTablica1;
CIntArray aTablica2;
aTablica1 = aTablica2; // a co to jest?...

Czy w trzeciej linijce także zostanie wywołany konstruktor kopiujący?…

Otóż nie. Nie jest bowiem inicjalizacja (a wtedy przecież pracuje konstruktor kopiujący),
lecz zwykłe przypisanie. Nie tworzymy tu nowego obiektu, lecz przypisujemy jeden już
istniejący obiekt do drugiego istniejącego obiektu. Wobec braku aktu kreacji nie ma tu
miejsca dla żadnego konstruktora.
Zamiast tego kompilator posługuje się operatorem przypisania. Jeżeli go przeciążymy (a
nauczymy się to robić już w tym rozdziale), zdefiniujemy własną akcję dla przypisywania
obiektów. W przypadku klasy CIntArray jest to niezbędne, bo nawet obecność
konstruktora kopiującego nie spowoduje, że zaprezentowany wyżej kod będzie
poprawny. Konstruktorów nie dotyczy przecież przypisanie.

Dlaczego konstruktor kopiujący

Ale w takim razie po co nam konstruktor kopiujący? Przecież jego praca jest w większości
normalnych sytuacji równoważna:

 wywołaniu zwykłego konstruktora (czyli normalnemu stworzeniu obiektu)
 wywołaniu operatora przypisania

Czy tak?

Cóż, niezupełnie. W zasadzie zgadza się to tylko dla takich obiektów, dla których
wystarczające jest kopiowanie „pole po polu”. Dla nich faktycznie nie potrzeba
specjalnego konstruktora kopiującego. Jeśli jednak mamy do czynienia z taką klasą, jak
CIntArray, konstruktor taki jest konieczny. Sposób jego pracy będzie się różnił od
zwykłego przypisania - weźmy choćby pod uwagę to, że konstruktor pracuje na pustym
obiekcie, natomiast przypisanie oznacza zastąpienie jednego obiektu drugim…

Dokładniej wyjaśnimy tę sprawę, gdy poznamy przeciążanie operatorów. Teraz
zobaczmy, jak możemy zdefiniować własny konstruktor kopiujący.

Definiowanie konstruktora kopiującego
Składnię definicji konstruktora kopiującego możemy zapisać tak:

nazwa_klasy::nazwa_klasy([const] nazwa_klasy& obiekt)

Zaawansowana obiektowość 393

{
 ciało_konstruktora
}

Bierze on jeden parametr, będący referencją do obiektu swojej macierzystej klasy.
Obiekt ten jest podstawą kopiowania - inaczej mówiąc, jest to ten obiekt, którego kopię
ma zrobić konstruktor. W inicjalizacji:

CIntArray aTablica2 = aTablica1;

parametrem konstruktora kopiującego będzie więc aTablica1, zaś tworzonym obiektem-
kopią Tablica2. Widać to nawet lepiej w równoważnej linijce:

CIntArray aTablica2(aTablica1);

Pozostaje jeszcze kwestia słówka const w deklaracji parametru konstruktora. Choć
teoretycznie jest ona opcjonalna, to w praktyce trudno znaleźć powód na uzasadnienie jej
nieobecności. Bez niej konstruktor kopiujący mógłby bowiem potencjalnie
zmodyfikować kopiowany obiekt!… Innym skutkiem byłaby też niemożność
kopiowania obiektów chwilowych.
Zapamiętaj więc:

Parametr konstruktora kopiującego praktycznie zawsze musi być stałą referencją.

Inicjalizator klasy CIntArray

Gdy wiemy już, do czego służą konstruktory kopiujące i jak się je definiuje, możemy tę
wiedzę wykorzystać. Zdefiniujmy inicjalizator dla klasy, która tak bardzo go potrzebuje -
CIntArray.

Nie będzie to trudne, jeżeli zastanowimy się wpierw, co ten konstruktor ma robić. Otóż
powinien on zaalokować pamieć równą rozmiarowi kopiowanej tablicy oraz przekopiować
z niej dane do nowego obiektu. Proste? Zatem do dzieła:

#include <cmemory>

CIntArray::CIntArray(const CIntArray& aTablica)
{
 // alokujemy pamięć
 m_uRozmiar = aTablica.m_uRozmiar;
 m_pnTablica = new int [m_uRozmiar];

 // kopiujemy pamięć ze starej tablicy do nowej
 memcpy (m_pnTablica, aTablica.m_pnTablica, m_uRozmiar * sizeof(int));
}

Po dodaniu tego prostego kodu tworzenie tablicy na podstawie innej, już istniejącej:

CIntArray aTablica2 = aTablica1;

jest już całkowicie poprawne.

Konwersje
Trzecim i ostatnim aspektem konstruktorów, jakim się tu zajmiemy, bedzie ich
wykorzystanie do konwersji typów. Temat ten jest jednak nieco szerszy niż
wykorzystanie samych tylko konstruktorów, więc omówimy go sobie w całości.

Zaawansowane C++ 394

Konwersje niejawne (ang. implicit conversions) mogą nam ułatwić programowanie - jak
większość rzeczy w C++ :) W tym przypadku pozwalają na przykład uchronić się od
konieczności definiowania wielu przeciążonych funkcji.
Najlepszą ilustracją będzie tu odpowiedni przykład. Akurat tak się dziwnie składa, że
podręczniki programowania podają tu najczęściej jakąś klasę złożonych liczb. Nie warto
naruszac tej dobrej tradycji - zatem spójrzmy na taką oto klasę liczby wymiernej:

class CRational
{
 private:
 // licznik i mianownik
 int m_nLicznik;
 int m_nMianownik;

 public:
 // konstruktor
 CRational(int nLicznik, int nMianownik)
 : m_nLicznik(nLicznik), m_nMianownik(nMianownik) { }

 //---

 // metody dostępowe
 int Licznik() const { return m_nLicznik; }
 void Licznik(int nLicznik) { m_nLicznik = nLicznik; }
 int Mianownik() const { return m_nMianownik; }
 void Mianownik(int nMianownik)
 { m_nMianownik = (nMianownik != 0 ? nMianownik : 1); }
};

Napiszemy teraz funkcję mnożącą przez siebie dwie takie liczby (czyli dwa ułamki). Jeśli
nie spaliśmy na lekcjach matematyki w szkole podstawowej, to będzie ona wyglądać
chociażby tak:

CRational Pomnoz(const CRational& Liczba1, const CRational& Liczba2)
{
 return CRational(Liczba1.Licznik() * Liczba2.Licznik(),
 Liczba1.Mianownik() * Liczba2.Mianownik());
}

Możemy teraz używać naszej funkcji na przykład w ten sposób:

CRational Raz(1, 2), Dwa(2, 3);
CRational Wynik = Pomnoz(Raz, Dwa);

Niestety, jest pewna niedogodność. Nie możemy zastosować np. takiego wywołania:

CRational Wynik = Pomnoz(Raz, 5);

Drugi argument nie może być bowiem typu int, lecz musi być obiektem typu CRational.
To niezbyt dobrze: wiemy przecież, że 5 (i każda liczba całkowita) jest także liczbą
wymierną.

My to wiemy, ale kompilator nie. W tej sekcji poznamy zatem sposoby na informowanie
go o takich faktach - czyli właśnie niejawne konwersje.

Sposoby dokonywania konwersji
Sprecyzujmy, o co nam właściwie chodzi. Otóż chcemy, aby liczby całkowite (typu int)
mogły być przez kompilator interpretowane jako obiekty naszej klasy CRational.

Zaawansowana obiektowość 395

Fachowo mówimy, że chcemy zdefiniować sposób konwersji typu int na typ CRational.

Właśnie o takich konwersjach będziemy mówić w niniejszym paragrafie. Poznamy dwa
sposoby na realizację automatycznej zamiany typów w C++.

Konstruktory konwertujące
Pierwszym z nich jest tytułowy konstruktor konwertujący.

Konstruktor z jednym obowiązkowym parametrem

Konstruktor konwertujący może przyjmować dokładnie jeden parametr
określonego typu i wykonywać jego konwersję na typ swojej klasy.

Jest to ten mechanizm, którego aktualnie potrzebujemy. Zdefiniujmy więc konstruktor
konwertujący w klasie CRational:

CRational::CRational(int nLiczba)
 : m_nLicznik(nLiczba), m_nMianownik(1) { }

Od tej pory wywołanie typu:

CRational Wynik = Pomnoz(Raz, 5);

albo nawet:

CRational Wynik = Pomnoz(14, 5);

jest całkowicie poprawne. Kompilator wie bowiem, w jaki sposób zamienić „obiekt” typu
int na obiekt typu CRational.

To samo osiągnać można nawet prościej. Zasada „jeden argument” dla konstruktora
konwertującego działa tak samo jak „brak argumentów” dla konstruktora domyślnego. A
zatem dodatkowe argumenty mogą być, lecz muszą mieć wartości domyślne.
W naszej klasie możemy więc po prostu zmodyfikować normalny konstruktor:

CRational(int nLicznik, int nMianownik = 1)
 : m_nLicznik(nLicznik), m_nMianownik(nMianownik) { }

W ten sposób za jednym zamachem mamy normalny konstruktor, jak też konwertujący.
Ba, można pójść nawet jeszcze dalej:

CRational(int nLicznik = 0, int nMianownik = 1)
 : m_nLicznik(nLicznik), m_nMianownik(nMianownik) { }

Ten konstruktor może być wywołany bez parametrów, z jednym lub dwoma. Jest on więc
jednocześnie domyślny i konwertujący. Duży efekt małym kosztem.

Konstruktor konwertujący nie musi koniecznie definiować konwersji z typu
podstawowego. Może wykorzystywać dowolny typ. Popatrzmy na to:

class CComplex
{
 private:
 // część rzeczywista i urojona
 float m_fRe;
 float m_fIm;

 public:

Zaawansowane C++ 396

 // zwykły konstruktor (który jest również domyślny
 // oraz konwertujący z float do CComplex)
 CComplex(float fRe = 0, float fIm = 0)
 : m_fRe(fRe), m_fIm(fIm) { }

 // konstruktor konwertujący z CRational do CComplex
 CComplex(const CRational& Wymierna)
 : m_fRe(Wymierna.Licznik()
 / (float) Wymierna.Mianownik()),
 m_fIm(0) { }

 //---

 // metody dostępowe
 float Re() const { return m_fRe; }
 void Re(float fRe) { m_fRe = fRe; }
 float Im() const { return m_fIm; }
 void Im(float fIm) { m_fIm = fIm; }
};

Klasa CComplex posiada zdefiniowane konstruktory konwertujące zarówno z float, jak i
CRational. Poza tym, że odpowiada to oczywistemu faktowi, iż liczby rzeczywiste i
wymierne są także zespolone, pozwala to na napisanie takiej funkcji:

CComplex Dodaj(const CComplex& Liczba1, const CComplex& Liczba2)
{
 return CComplex(Liczba1.Re() + Liczba2.Re(),
 Liczba2.Im() + Liczba2.Im());
}

oraz wywoływanie jej zarówno z parametrami typu CComplex, jaki CRational i float:

CComplex Wynik;
Wynik = Dodaj(CComplex(1, 5), 4);
Wynik = Dodaj(CRational(10, 3), CRational(1, 3));
Wynik = Dodaj(1, 2);
// itd.

Można zapytać: „Czy konstruktor konwertujący z float do CComplex jest konieczny?
Przecież jest już jeden, z float do CRational, i drugi - z CRational do CComplex. Oba
robią w sumie to, co trzeba!” Tak, to byłaby prawda. W sumie jednak jest to bardzo
głęboko ukryte. Istotą niejawnych konwersji jest właśnie to, że są niejawne: programista
nie musi się o nie martwić. Z drugiej strony oznacza to, że pewien kod jest wykonywany
„za plecami” kodera. Przy jednej niedosłownej zamianie nie jest to raczej problemem, ale
przy większej ich liczbie trudno byłoby zorientować się, co tak naprawdę jest zamieniane
w co.
Oprócz tego jest jeszcze bardziej prozaiczny powód: gdyby pozwalać na wielokrotne
konwersje, kompilator musiałby sprawdzać mnóstwo potencjalnych dróg konwersji.
Znacznie wydłużyłoby to czas kompilacji.

Nie jest więc dziwne, że:

Kompilator C++ dokonuje zawsze co najwyżej jednej niejawnej konwersji.

Nie jest przy tym ważne, czy do konwersji stosujemy konstruktory czy też operatory
konwersji, które poznamy w następnym akapicie.

Zaawansowana obiektowość 397

Słówko explicit

Dowiedzieliśmy się, że każdy jednoargumentowy konstruktor definiuje konwersję
typu swojego parametru do typu klasy konstruktora. W ten sposób możemy określać, jak
kompilator ma zamienić jakiś typ (na przykład wbudowany lub inną klasę) w typ naszych
obiektów.

Łatwo przeoczyć fakt, że tą drogą jednoargumentowy konstruktor (który jest w sumie
konstruktorem jak każdy inny…) nabiera nowego znaczenia. Już nie tylko inicjalizuje
obiekt swej klasy, ale i podaje sposób konwersji.
Dotąd mówiliśmy, że to dobrze. Nie zawsze jednak tak jest. Czasem piszemy w klasie
jednoparametrowy konstruktor wcale nie po to, aby ustalić jakąkolwiek konwersję.
Nierzadko bowiem tego wymaga logika naszej klasy. Spójrzmy chociażby na konstruktor
z CIntArray:

CIntArray(unsigned uRozmiar)
 : m_uRozmiar(uRozmiar);
 m_pnTablica(new int [m_uRozmiar]) { }

Przyjmuje on parametr typu int - rozmiar tablicy. Niestety (tak, niestety!) jest tutaj
także konstruktorem konwertującym z typu int na typ CIntArray. Z tegoż powodu
zupełnie poprawne staje się bezsensowne przypisanie108 w rodzaju:

CIntArray aTablica;
aTablica = 10; // Ojć! Tworzymy 10-elementową tablicę!

W powyższym kodzie tworzona jest tablica o odpowiedniej liczbie elementów i
przypisywana zmiennej Tablica. Na pewno nie możemy na to pozwolić - takie
przypisanie to przecież ewidentny błąd, który powinien zostać wykryty przez kompilator.

Jednak musimy mu o tym powiedzieć i w tym celu posługujemy się słówkiem explicit
(‘jawny’):

explicit CIntArray(unsigned uRozmiar)
 : m_uRozmiar(uRozmiar);
 m_pnTablica(new int [m_uRozmiar]) { }

Gdy opatrzymy nim deklarację konstruktora jednoargumentowanego, będzie to znakiem,
iż nie chcemy, aby wykonywał on niejawną konwersję. Po zastosowaniu tego manewru
sporny kod nie będzie się już kompilował. I bardzo dobrze.

Jeżeli potrzebujesz konstruktora jednoparametrowego, który będzie działał
wyłacznie jako zwykły (a nie też jako konwertujący), umieść w jego deklaracji słowo
kluczowe explicit.

Jak wiemy konstruktor konwertujący może mieć więcej argumentów, jeśli ma też
parametry opcjonalne. Do takich konstruktorów również można stosować explicit, jeśli
jest to konieczne.

Operatory konwersji
Teraz poznamy drugi sposób konwersji typów - funkcje (operatory) konwertujące.

108 A także podobna do niego inicjalizacja oraz każde użycie liczby int w miejsce tablicy CIntArray.

Zaawansowane C++ 398

Stwarzamy sobie problem

Zostawmy wyższą matematykę liczb zespolonych w klasie CComplex i zajmijmy się klasą
CRational. Jak wiemy, reprezentowane przez nią liczby wymierne są także liczbami
rzeczywistymi. Byłoby zatem dobrze, abyśmy mogli przekazywać je w tych miejscach,
gdzie wymagane są liczby zmiennoprzecinkowe, np.:

float abs(float x);
float sqrt(float x);
// itd.

Niestety, nie jest to możliwe. Obecnie musimy sami dzielić licznik przez mianownik, aby
otrzymać liczbę typu float z typu CRational. Dlaczego jednak kompilator nie miałby
tutaj pomóc? Zdefiniujmy niejawną konwersję z typu CRational do float!
W tym momencie napotkamy poważny problem. Konwersja do typu CRational była jak
najbardziej możliwa poprzez konstruktor, natomiast zamiana z typu CRational na float
nie może być już tak zrealizowana. Nie możemy przecież dodać konstruktora
konwertującego do „klasy” float, bo jest to elementarny typ podstawowy. Zresztą,
nawet jeśli nasz docelowy typ byłby klasą, to nie zawsze byłoby to możliwe. Konieczna
byłaby bowiem modyfikacja definicji tej klasy, a to jest możliwe tylko dla naszych
własnych klas.

Tak więc konstruktory konwertujące na niewiele nam się zdadzą. Potrzebujemy innego
sposobu…

Definiowanie operatora konwersji

Tą nową metodą jest operator konwersji. Metodą w sensie dosłownym - musimy bowiem
zdefiniować go jako metodę klasy CRational:

CRational::operator float()
{
 return m_nLicznik / static_cast<float>(m_nMianownik);
}

Ogólnie więc funkcja w postaci:

klasa::operator typ()
{
 ciało_funkcji
}

definiuje sposób, w jaki dokonywna jest konwersja klasy do podanego typu. Zatem:

Operatorów konwersji możemy używać, aby zdefiniować niejawną konwersję typu
swojej klasy na inny, dowolny typ.

Zyskujemy to, na czym nam zależało. Odtąd możemy swobodnie przekazywać liczby
wymierne w tych miejscach, gdzie funkcje żądają liczb rzeczywistych:

CRational Liczba(3, 4);
float fPierwiastek = sqrt(Liczba);

Jest to zasługa operatorów konwersji.

Operatory konwersji, w przeciwieństwie do konstruktorów, są dziedziczone i mogą być
metodami wirtualnymi.

Zaawansowana obiektowość 399

Wybór odpowiedniego sposobu
Mamy więc dwa sposoby konwersji typów. Nasuwa się pytanie: który wybrać? Pytanie to
jest zasadne, bowiem jeśli w konwersji dwóch typów użyjemy obu dróg (konstruktor oraz
operator), to powstanie wieloznaczność. Gdy kompilator będzie zmuszony sięgnąć po
konwersję, nie będzie mógł zdecydować się na żaden sposób i zaprotestuje.

Aby odpowiedzieć na to ważne pytanie, przypomnijmy, jak działają obie metody
konwersji:

 konstruktor konwertujący dokonuje zamiany innego typu w obiekt naszej klasy
 operator konwersji zamienia obiekt naszej klasy w obiekt innego typu

Schemat 38. Sposoby dokonywania niejawnych konwersji w C++

Wszystko zależy więc od tego, który z typów - źródłowy, docelowy - jest klasą, do której
definicji mamy dostęp:

 jeżeli jesteśmy w posiadaniu definicji klasy docelowej, to możemy zastosować
konstruktor konwertujący

 jeśli mamy dostęp do klasy źródłowej, możliwe jest zastosowanie operatora
konwersji

W przypadku gdy oba warunki są spełnione (tzn. chcemy wykonać konwersję z
własnoręcznie napisanej klasy do innej własnej klasy), wybór sposobu jest w dużej
mierze dowolny. Trzeba jednak pamiętać, że:

 konstruktory nie są dziedziczone, więc w jeśli chcemy napisac konwersję typu do
klasy pochodnej, potrzebujemy osobnego konstruktora w tej klasie

 konstruktory nie są metodami wirtualnymi, w przeciwieństwie do operatorów
konwersji

 argument konstruktora konwertującego musi mieć typ ściśle dopasowany do
zadeklarowanego

W sumie więc wnioski z tego są takie (czytaj: przechodzimy do sedna :D):

 chcąc wykonać konwersję typu podstawowego (lub klasy bibliotecznej) do typu
własnej klasy, stosujemy konstruktor konwertujący

 chcąc dokonać konwersji typu własnej klasy do typu podstawowego (lub klasy
bibliotecznej), wykorzystujemy operator konwersji

 definiując konwersję między dwoma własnymi klasami możemy wybrać, kierując
się innymi przesłankami, jak np. wpływem dziedziczenia na konwersje czy nawet
kolejnością definicji obu klas w pliku nagłówkowym

Zbiorem dobrych rad odnośnie stosowania różnych typów konwersji zakończyliśmy
omawianie zaawansowanych aspektów konstruktorów w C++.

Zaawansowane C++ 400

Przeciążanie operatorów
W tym podrozdziale przyjrzymy się unikalnej dla C++, a jednocześnie wspaniałej
technice przeciążania operatorów. To jedno z największych osiągnięć tego języka w
zakresie ułatwiania programowania i uczynienia go przyjemniejszym.

Zanim jednak poznamy tę cudowność, czas na krótką dygresję :) Jak już wielokrotnie
wspomniałem, C++ jest członkiem bardzo licznej dzisiaj rodziny języków obiektowych.
Takie języki charakteryzuje możliwość tworzenia własnych typów danych - klas -
zawierających w sobie (kapsułkujących) pewne dane (pola) oraz pewne działania
(metody). Na tym polega OOP.
Żaden język programowania nie może się jednak obyć bez mniej lub bardziej
rozbudowanego wachlarza typów podstawowych. W C++ mamy ich mnóstwo, z czego
większość jest spadkiem po jego poprzedniku, języku C.

Z jednej strony mamy więc typy wbudowane (w C++: int, float, unsigned, itd.), a
drugiej typy definiowane przez użytkownika (struktury, klasy, unie). W jakim stopniu są
one do siebie podobne?…
Pomyślisz: „Głupie pytanie! One przecież wcale nie są do siebie podobne. Typów
podstawowych używamy przeciez inaczej niż klas, i na odwrót. Nie ma mowy o jakimś
większym podobieństwie - może poza tym, że dla wszystkich typów możemy deklarować
zmienne i parametry funkcji… No i może jeszcze występują podobne konwersje…” Jeżeli
faktycznie tak pomyślałeś, to nie będziesz zdziwiony, że twórcy wielu języków
obiektowych także przyjęli taką strategię. W językach Java, Object Pascal (Delphi), Visual
Basic, PHP i jeszcze wielu innych, typy definiowane przez użytkownika (klasy) są jakby
wydzieloną częścią języka. Mają niewiele punktów wspólnych z typami wbudowanymi,
poza tymi naprawdę niezbędnymi, które sam wyliczyłeś.
Jednak wcale nie musi tak być i C++ jest tego najlepszym przykładem. Autorzy tego
języka (z Bjarne Stroustrupem na czele) dążyli bowiem do tego, aby definiowane przez
programistę typy były funkcjonalnie jak najbardziej zbliżone do typów wbudowanych. Już
sam fakt, że możemy tworzyć obiekty na dwa sposoby - jak normalne zmienne oraz
poprzez new - dobrze o tym świadczy. Możliwość zdefiniowania konstruktorów
kopiujących i konwersji świadczy o tym jeszcze bardziej.
Ale ukoronowaniem tych wysiłków jest obecność w C++ mechanizmu przeciążania
operatorów.

Czy więc jest ten wspaniały mechanizm?

Przeciążanie operatorów (ang. operator overloading), zwane też ich
przeładowaniem, polega na nadawaniu operatorom nowych znaczeń - tak, aby mogły
być one wykorzystane w stosunku do obiektów zdefiniowanych klas.

Polega to więc na napisaniu takiego kodu, który sprawi, że wyrażenia w rodzaju:

a = b + c
a /= d
if (b == c) { /* ... */ }

będą poprawne nie tylko wtedy, gdy a, b, c i d będą zmiennymi, należącymi do typów
wbudowanych. Po przeciążeniu operatorów (tutaj: +, =, /= i ==) dla określonych klas
będzie można pisać takie wyrażenia: zawierające operatory i obiekty naszych klas. W ten
sposób zdefiniowane przez nas klasy nie będą się różniły praktycznie niczym od typów
wbudowanych.

Zaawansowana obiektowość 401

Dlaczego to jest takie cudowne?… By się o tym przekonać, przypomnijmy sobie
zdefiniowaną ongiś klasę liczb wymiernych - CRational. Napisaliśmy sobie wtedy
funkcję, która zajmowała się ich mnożeniem. Używaliśmy jej w ten sposób:

CRational Liczba1(1, 2), // 1/2, czyli pół :)
 Liczba2(5, 1), // 5
 Wynik; // zmienna na wynik

Wynik = Pomnoz(Liczba1, Liczba2;

Nie wyglądało to zachwycająco, szczególnie jeśli uświadomimy sobie, że dla typów
wbudowanych ostatnia linijka mogłaby prezentować się tak:

Wynik = Liczba1 * Liczba2;

Nie dość, że krócej, to jeszcze ładniej… Czemu my tak nie możemy?!

Ależ tak, właśnie możemy! Przeciążanie operatorów pozwala nam na to! Znając tę
technikę, możemy zdefiniowac nowe znaczenie dla operator mnożenia, czyli *. Nauczymy
go pracy z liczbami wymiernymi - obiektami naszej klasy CRational - i od tego momentu
pokazane wyżej mnożenie będzie dla nich poprawne! Co więcej, będzie działało zgodnie
z naszymi oczekiwaniami: tak, jak funkcja Pomnoz(). Czyż to nie piękne?

Na takie wspaniałości pozwala nam przeciążanie operatorów. Na co więc jeszcze czekamy
- zobaczmy, jak to się robi!… Hola, nie tak prędko! Jak sama nazwa wskazuje, technika
ta dotyczy operatorów, a dokładniej: wyposażania ich w nowe znaczenia. Zanim się za to
zabierzemy, warto byłoby znać przedmiot naszych manipulacji. Powinniśmy zatem
przyjrzeć się operatorom w C++: ich rodzajom, wbudowanej funkcjonalności oraz innym
właściwościom.
I to właśnie zrobimy najpierw. Tylko nie narzekaj :P

Cechy operatorów
Obok słów kluczowych i typów, operatory są podstawowymi elementami każdego języka
programowania wysokiego poziomu. Przypomnijmy sobie, czym jest operator.

Operator to jeden lub kilka znaków (zazwyczaj niebędących literami), które mają
specjalne znaczenie w języku programowania.

Dotychczas używaliśmy bardzo wielu operatorów - niemal wszystkich, jakie występują w
C++ - ale dotąd nie zajęliśmy się nimi całościowo. Poznałeś wprawdzie takie pojęcia jak
operatory unarne, binarne, priorytety, jednak teraz będzie zasadne ich powtórzenie.

Zbierzmy więc tutaj wszystkie cechy operatorów występujących w C++.

Liczba argumentów
Operator sam w sobie nie może wykonywać żadnej czynności (to różni go od funkcji),
gdyż potrzebuje jakichś „parametrów”. W tym przypadku mówimy zwykle o argumentach
operatora - operandach.

Operatory dzielą się z grubsza na dwie duże grupy, jeżeli chodzi o liczbę swoich
argumentów. Są to operatory jedno- i dwuargumentowe. W C++ mamy jeszcze operator
warunkowy ?:, uznawany za ternarny (trójargumentowy), ale jest on wyjątkiem, którym
nie należy zaprzątać sobie głowy.

Zaawansowane C++ 402

Operatory jednoargumentowe
Te operatory fachowo nazywa się unarnymi (ang. unary operators). Stanowią one
całkiem liczną rodzinę, która charakteryzuje się jednym: każdy jej członek wymaga do
działania jednego argumentu. Stąd nazwa tego rodzaju operatorów.

Najbardziej znanym operatorem unarnym (nawet dla tych, którzy nie mają pojęcia o
programowaniu!) jest zwykły minus. Formalnie nazywa się go operatorem negacji albo
zmiany znaku, a działa on w ten sposób, że zmienia jakaś liczbę na liczbę do niej
przeciwną:

int nA = 5;
int nB = -nA; // nB ma wartość -5 (a nA nadal 5)

Podobnie działają operatory ! i ~, z tym że operują one (odpowiednio): na wyrażeniach
logicznych i na ciągach bitów. Istnieją też operatory jednoargumentowane o zupełnie
innej funkcjonalności; wszystkie je przypomnimy sobie w następnej sekcji.

Operatory dwuargumentowe
Jak sama nazwa wskazuje, te operatory przyjmują po dwa argumenty. Nazywamy je
binarnymi (ang. binary operators). Nie ma to nic wspólnego z binarną reprezentacją
danych, lecz po prostu z ilością operandów.

Typowymi operatorami dwuargumentowymi są operatory arytmetyczne, czyli popularne
„znaki działań”:

int nA = 8, nB = -2, nC;
nC = nA + nB; // 6
nC = nA - nB; // 10
nC = nA * nB; // -16
nC = nA / nB; // -4

Mamy też operatory logiczne oraz bitowe, Warto wspomnieć (o czym będziemy jeszcze
bardzo szeroko mówić), że przypisanie (=) to także operator dwuargumentowy, dość
specyficzny zresztą.

Priorytet
Operatory mogą występować w złożonych wyrażeniach, a ich argumenty mogą pokrywać
się. Oto prosty przykład:

int nA = nB * 4 + 18 / nC - nD % 3;

Zapewne wiesz, że w takiej sytuacji kompilator kieruje się priorytetami operatorów
(ang. operators’ precedence), aby rozstrzygnąć problem. Owe priorytety to nic innego,
jak swoista „kolejność działań”. Różni się ona od tej znanej z matematyki tylko tym, że w
C++ mamy także inne operatory niż arytmetyczne.
Dla znaków +, -, *, /, % priorytety są aczkolwiek dokładnie takie, jakich nauczyliśmy się
w szkole. Wyrażenia zawierające te operatory możemy więc pisać bez pomocy nawiasów.
Jeżeli jednak są one skomplikowane, albo używamy w nich także innych rodzajów
operatorów, wówczas konieczne należy pomagać sobie nawiasami. Lepiej przecież
postawić po kilka znaków więcej niż co chwila sięgać do stosownej tabelki pierwszeństwa.

Zaawansowana obiektowość 403

Łączność
Gdy w wyrażeniu pojawi się obok siebie kilka operatorów tego samego rodzaju, mają one
oczywiście ten sam priorytet. Trzeba jednak nadal rozstrzygnąć, w jakiej kolejności
działania będą wykonywane.

Tutaj pomaga łączność operatorów (ang. operators’ associativity). Określa ona, od
której strony będą obliczane wyrażenia (lub ich fragmenty) z sąsiedztwem operatorów o
tych samych priorytetach. Mamy dwa rodzaje łączności:

 łączność lewostronna (ang. left-to-right associativity), która rozpoczyna
obliczenia od lewej strony i wykorzystuje cząstkowe wyniki jako lewostronne
argumenty dla kolejnych operatorów

 łączność prawostronna (ang. right-to-left associativity) - tutaj obliczenia są
wykonywane, poczynając od prawej strony. Częściowe wyniki są następnie
używane jako prawostronne argumenty kolejnych operatorów

Najlepiej zilustrować to na przykładzie. Jeżeli mamy takie oto wyrażenie:

nA + nB + nC + nD + nE + nF + nG + nH

to oczywiście priorytety wszystkich operatorów są te same. Zaczyna dominować łączność,
która w przypadku operatorów arytmetycznych (oraz im podobnych, jak bitowe, logiczne
i relacyjne) jest lewostronna. To naturalne, po przecież takie obliczenia również
przeprowadzalibyśmy „od lewej do prawej”.
Kompilator będzie więc obliczał powyższe wyrażenie w ten sposób:

((((((nA + nB) + nC) + nD) + nE) + nF) + nG) + nH

Zauważmy, że akurat w przypadku plusa łączność nie ma znaczenia, bo dodawanie jest
przecież przemienne. Gdyby jednak chodziło o odejmowanie czy dzielenie, wówczas
byłoby to bardzo ważne.

Łączność prawostronna dotyczy na przykład operatora przypisania:

nA = nB = nC = nD = nE = nF

Innymi słowy, powyższe wyrażenie zostanie potraktowane tak:

nA = (nB = (nC = (nD = (nE = nF))))

Oznacza to, że kompilator wykona najpierw skrajnie prawe przypisanie, a zwróconą przez
to wyrażenie wartość (równą wartości przypisywanej) wykorzysta w kolejnym
przypisaniu, i tak dalej. W sumie więc wszystkie zmienne będą potem równe zmiennej
nF.

Operatory w C++
Język C++ posiada całe multum różnych operatorów. Pod tym względem jest chyba
rekordzistą wśród wszystkich języków programowania. Świadczy to zarówno o jego
wielkich możliwościach, jak i sporej elastyczności.
Co ciekawe, dotąd praktycznie nie ma jednoznacznej definicji operatora w tym języku, a
w wielu źródłach można znaleźć nieco różniące się między sobą zestawy operatorów. Są
to jednak głównie niuanse, których rozstrzyganie dla przeciętnego programisty nie jest
wcale istotne.

Zaawansowane C++ 404

W tej sekcji powtórzymy sobie i uzupełnimy wiadomości na temat wszystkich operatorów
C++ - przynajmniej tych, co do których nie ma wątpliwości, że faktycznie są
operatorami. Podzielimy je sobie na kilka kategorii.

Operatory arytmetyczne
Już na samym początku zetknęliśmy się z operatorami arytmetycznymi. Nic dziwnego, to
przecież najprostszy i „najbardziej naturalny” rodzaj operatorów. Znają go wszyscy
absolwenci przedszkola.

Unarne operatory arytmetyczne
Mamy dwa podstawowe jednoargumentowe operatory arytmetyczne:

 operator zachowania znaku, czyli +. On praktycznie nie robi nic - zachowuje
znak liczby, przy której stoi. Obecny w C++ chyba tylko dla zgodności z zasadami
matematyki

 operator zmiany znaku, czyli -. Zamienia liczbę na przeciwną, zupełnie tak jak w
arytmetyce

Trochę przykładów:

int nA = 7
int nB = +nA; // 7
int nB = -NA; // -7

Myślę, że jest to na tyle oczywiste, że nie wymaga dalszych komentarzy.

Inkrementacja i dekrementacja

Specyficzne dla C++ są operatory inkrementacji i dekrementacji. W odróżnieniu od
większości operatorów, modyfikują one swój argument. Dokładniej mówiąc, dodają
one (inkrementacja) lub odejmują (dekrementacja) jedynkę do (od) swego operandu.

Operatorem inkrementacji jest ++, zaś dekrementacji --. Oto przykład:

int nX = 9;
++nX; // teraz nX == 10
--nX; // teraz znowu nX == 9

Powyższy kod można też zapisać jako:

nX++;
nY++;

Jeżeli ignorujemy wartość zwracaną przez te operatory, to użycie którejkolwiek wersji
(zwanej, jak wiesz, prein/dekrementacją oraz postin/dekrementacją) nie sprawa różnicy
- przynajmniej dla typów podstawowych.
Gdy natomiast zapisujemy gdzieś zwracaną wartość, to powinniśmy pamiętać o różnicy
między znaczeniem operatorów w obu miejscach (na początku i na końcu zmiennej).
Mówiliśmy już o tym, ale przypomnę jeszcze raz:

Prein/dekrementacja zwraca wartość już zwiększoną (zmniejszoną) o 1.
Postin/dekrementacja zwraca oryginalną wartość.

Wariant postfiksowy jest generalnie bardziej kosztowny, ponieważ wymaga
przygotowania tymczasowego obiektu, w którym zostanie zachowana pierwotna wartość
w celu jej późniejszego zwrotu. Dla typów podstawowych to kwestia kilku bajtów, ale dla
klas zdefiniowanych przez użytkownika (które mogą przeciążać oba operatory - czym się
rzecz jasna zajmiemy za momencik) może to być spora różnica.

Zaawansowana obiektowość 405

Binarne operatory arytmetyczne
Przypomnijmy, że w C++ mamy pięć takich operatorów, zwanych popularnie „znakami
działań”:

 operator dodawania - plus (+). Dodaje dwie liczby do siebie
 operator odejmowania - minus (-). Zwraca wynik odejmowania drugiego

argumentu od pierwszego
 operator mnożenia - gwiazdka (*). Mnoży oba argmenty
 operator dzielenia - slash (/). W zależności od typu swoich operandów może albo

wykonywać dzielenie całkowitoliczbowe (gdy oba argumenty są liczbami
całkowitymi), albo zmiennoprzecinkowe

 operator reszty z dzielenia, czyli %. Zwraca resztę z dzielenia podanych liczb

Znowu popatrzmy na kilka przykładów:

int nA = 9, nB = 4, nX;
float fX;

nX = nA + nB; // 13
nX = nA - nB; // 5
nX = nA * nB; // 36
nX = nA / nB; // 2
fX = nA / static_cast<float>(nB); // 2.25f
nX = nA % nB; // 1

Ponownie nie ma tu nic nieoczekiwanego.

Operatory bitowe
Przedstawione wyżej operatory arytmetyczne działają na liczbach na zasadach, do jakich
przyzwyczaiła nas matematyka. Nie ma w tym przypadku znaczenia, że operacje
przeprowadzane są na komputerze. Nie ma też znaczenia wewnętrzna reprezentacja
liczb.

Jak wiemy, komputery przechowują dane w postaci ciągów zer i jedynek, zwanych
bitami. Pojedyncze bity mogą przechowywać tylko elementarną informację - 0 (bit
ustawiony) lub 1 (bit nieustawiony). Aby przedstawiać bardziej złożone dane - choćby
liczby - należy bity łączyć ze sobą. Powstają w ten sposób wektory bitowe, ciągi bitów
(ang. bitsets) lub słowa (ang. words). Są po prostu sekwencje zer i jedynek.
Do operacji na wektorach bitów C++ posiada sześć operatorów. Obecnie nie są one tak
często używane jak na przykład w czasach C, ale nadal są bardzo przydatne. Omówię je
tu pokrótce.

O wiele obszerniejsze omówienie tych operatorów, wraz z zastosowaniami, znajdziesz w
Dodatku C, Manipulacje bitami.

Operacje logiczno-bitowe
Cztery operatory: ~, &, | i ^ wykonują na bitach operacje zbliżone do logicznych, gdzie
bit ustawiony (1) odgrywa rolę wyrażenia prawdziwego, zaś nieustawiony (0) -
fałszywego. Oto te operatory:

 negacja bitowa (operator ~) zmienia w całym ciągu (zwykle liczbie) wszystkie
bity na przeciwne. Ustawione zmieniają się na nieustawione i odwrotnie

 koniunkcja bitowa (operator &) porównuje ze sobą odpowiadające bity dwóch
słów: tam, gdzie napotka na dwie jedynki, wypisuje do wyniku także jedynkę; w
przeciwnym wypadku zero

Zaawansowane C++ 406

 alternatywa bitowa (operator |) również działa na dwóch słowach. Porównując
ich kolejne bity, zwraca w bicie wyniku zero, jeżeli stwierdzi w operandach dwa
nieustawione bity oraz jedynkę w przeciwnym wypadku

 bitowa różnica symetryczna (operator ^) porównuje bity słów i zwraca 1, jeżeli
są różne i 0, gdy są sobie równe

Operator ~ jest jednoargumentowy (unarny), zaś pozostałe dwa są binarne - i wcale nie
dlatego, że pracują w systemie dwójkowym :)

Przesunięcie bitowe
Mamy też dwa operatory przesunięcia bitowego (ang. bitwise shift). Jest to:

 przesunięcie w lewo (operator <<). Przesuwa on bity w lewą stronę słowa o
podaną liczbę miejsc

 przesunięcie w prawo (operator >>) działa analogicznie, tylko że przesuwa bity
w prawą stronę słowa

Z obu operatorów korzystamy podobnie, tj. w ten sposób:

słowo << ile_miejsc
słowo >> ile_miejsc

Oto kilka przykładów - dla uproszczenia z liczbami zapisanymi binarnie (niestety, w C++
nie można tego zrobić):

00010010 << 3 // 10010000
1111000 >> 4 // 00001111
00111100 << 5 // 10000000

Jak widać, bity które „wyjeżdżają” w wyniku przesunięcia poza granicę słowa są tracone.
Pustki są natomiast wypełniane zerami.

Operatory strumieniowe

Czytając ten akapit na pewno pomyślałeś: „Jakie operatory bitowe?! Przecież to są
‘strzałki’, których używamy razem ze strumieniami wejścia i wyjścia!” Tak, to również
prawda - ale to tylko jedna jej strona.
Faktem jest, że << i >> to przede wszystkim operatory przesunięcia bitowego. Nie
przeszkadza to jednak, aby miały one także inne znaczenie - co więcej, mają je one tylko
w odniesieniu do strumieni. W sumie więc pełnią one w C++ aż dwie funkcje.

Czy domyślasz się, dlaczego?… Ależ tak, właśnie tak - operatory te zostały przeciążone
przez twórców Biblioteki Standardowej C++. Posiadają one dodatkową funkcjonalność,
która pozwala na ich używanie razem z obiektami cout i cin109. W odniesieniu do samych
liczb nadal jednak są one operatorami przesunięcia bitowego.
Nieco więcej informacji o tych operatorach otrzymasz przy okazji omawiania strumieni
STL. Tam też nauczysz się przeciążać je dla swoich własnych klas - tak, aby ich obiekty
można było zapisywać do strumieni i odczytywać z nich w identyczny sposób, jak typy
wbudowane.

Operatory porównania
Bardzo ważnym rodzaje operatorów są operatory porównania, czyli znaki: < (mniejszy), >
(większy), <= (mniejszy lub równy), >= (większy lub równy), == (równy) oraz != (różny).

109 Również clog, cerr oraz wszystkimi innymi obiektami, wywodzącymi się od klas istream i ostream oraz ich
pochodnych. Po więcej informacji odsyłam do rozdziału o strumieniach Biblioteki Standardowej.

Zaawansowana obiektowość 407

O tych operatorach wiemy w zasadzie wszystko, bo używamy ich nieustannie. O tym, jak
działają, powiedzieliśmy sobie zresztą bardzo wcześnie.
Zwrócę jeszcze tylko uwagę, aby nie mylić operatora równości (==) z operatorem
przypisania (=). Omyłkowe użycie tego drugiego w miejsce pierwszego nie zostanie
bowiem oprotestowane przez kompilator (co najwyżej wygeneruje on ostrzeżenie).
Dlaczego tak jest - wyjaśnię przy okazji operatrów przypisania.

Operatory logiczne
Te operatory służą do łączenia wyrażeń logicznych (true lub false) w złożone warunki.
Takie warunki możemy potem wykorzystać z instrukcjach if oraz pętlach, co zresztą
niejednokrotnie robiliśmy.

W C++ mamy trzy operatory logiczne, będące odpowiednikami pewnych operatorów
bitowych. Różnica polega jednak na tym, że operatory logiczne działają na wartościach
liczb (lub wyrażeń logicznych: fałszywe oznacza 0, zaś prawdziwe - 1) zaś bitowe - na
wartościach bitów.
Oto te trzy operatory:

 negacja (zaprzeczenie, operator !) powoduje zamianę prawdy (1) na fałsz (0)
 koniunkcja (iloczyn logiczny, operator &&) dwóch wyrażeń zwraca prawdę tylko

wówczas, gdy oba jej argumenty są prawdziwe
 alternatywa (suma logiczna, operator ||) jest prawdziwa, gdy choć jeden z jej

argumentów jest prawdziwy (różny od zera)

Warto zapamiętać, że w wyrażeniach zawierających operatory && i || wykonywanych jest
tylko tyle obliczeń, ile jest koniecznych do zdeterminowania wartości warunkowych.
Przykładowo, w poniższym kodzie:

int nZmienna;
std::cin >> nZmienna;
if (nZmienna >= 1 && nZmienna <= 10) { /* ... */ }

jeżeli stwierdzona zostanie falszywość pierwszej części koniunkcji (nZmienna >= 1), to
druga nie będzie już sprawdzana i cały warunek uznany zostanie za fałszywy. Podobnie
dzieje się przy alternatywie, której pierwszy argument jest prawdziwy - wówczas całe
wyrażenie również reprezentuje prawdę.

Argumenty operatorów logicznych są więc zawsze obliczane od lewej do prawej.

Wśród operatorów nie ma różnicy symetrycznej, zwanej alternatywą wykluczającą
(ang. XOR - eXclusive OR). Można ją jednak łatwo uzyskać, wykorzystując tożsamość:

()a b a b⊕ ⇔ ¬ ⇔

co w przełożeniu na C++ wygląda tak:

if (!(a == b)) { /* ... */ } // a i b to wyrażenia logiczne

Operatory przypisania
Kolejną grupę stanowią operatory przypisania. C++ ma ich kilkanaście, choć wiemy, że
tak naprawdę tylko jeden jest do szczęścia potrzebny. Pozostałe stworzono dla wygody
programisty, jak zresztą wiele mechanizmów w C++.

Popatrzmy więc na operatory przypisania.

Zaawansowane C++ 408

Zwykły operator przypisania
Operator przypisania (ang. assignment operator) ma postać pojedynczego znaku ‘równa
się’ (=). Doskonale też wiemy, jak się go używa:

int nX;
nX = 7;

Po wykonaniu tego kodu, zmienna nX będzie miał wartość 7.

L-wartość i r-wartość

Zauważmy, że odwrotne przypisanie:

7 = nX; // żle!

jest niepoprawne. Nie możemy nic przypisać do siódemki, bo ona nie zajmuje żadnej
komórki w pamięci - w przeciwieństwie do zmiennej, jak np. nX.

Zarówno 7, jak i nX, są jednak poprawnymi wyrażeniami języka C++. Widzimy
aczkolwiek, że różnią się pod względem „współpracy z przypisaniem”. nX może być celem
przypisania, zaś 7 - nie.
Mówimy, że nX jest l-wartością, zaś 7 - r-wartością lub p-wartością.

L-wartość (ang. l-value) jest wyrażeniem mogącym wystąpić po lewej stronie
operatora przypisania - stąd ich nazwa.

R-wartość (ang. r-value), po polsku zwana p-wartością, może wystąpić tylko po
prawej stronie operatora przypisania.

Zauważmy, że nic nie stoi na przeszkodzie, aby nX pojawiło się po prawej stronie
operatora przypisania:

int nY;
nY = nX;

Jest tak, ponieważ:

Każda l-wartość jest jednocześnie r-wartością (p-wartością) - lecz nie odwrotnie!

Domyślasz się pewnie, że w C++ każde wyrażenie jest r-wartością, ponieważ
reprezentuje jakieś dane. L-wartościami są natomiast te wyrażenia, które:

 odpowiadają komórkom pamięci operacyjnej
 nie są oznaczone jako stałe (const)

Najbardziej typowymi rodzajami l-wartości są więc:

 zmienne wszystkich typów niezadeklarowane jako const
 wskaźniki do powyższych zmiennych, wobec których stosujemy operator

dereferencji, czyli gwiazdkę (*)
 niestałe referencje do tychże zmiennych
 elementy niestałych tablic
 niestałe pola klas, struktur i unii, które podpadają pod jeden z powyższych

punktów i nie występują w ciele stałych metod110

110 Wyjątkiem są pola oznaczone słowem mutable, które zawsze mogą być modyfkowane.

Zaawansowana obiektowość 409

R-wartości to oczywiście te, jak i wszystkie inne wyrażenia.

Rezultat przypisania

Wyrażeniem jest także samo przypisanie, gdyż samo w sobie reprezentuje pewną
wartość:

std::cout << (nX = 5);

Ta linijka kodu wyprodukuje rezultat:

5

co pozwala nam ugólnić, iż:

Rezultatem przypisania jest przypisywana wartość.

Ten fakt powoduje, że w C++ możliwe są, niespotykane w innych językach, wielokrotne
przypisania:

nA = nB = nC = nD = nE;

Ponieważ operator(y) przypisania mają łączność prawostronną, więc ten wiersz zostanie
obliczony jako:

nA = (nB = (nC = (nD = nE)));

Innymi słowy, nE zostanie przypisane do nD. Następnie rezultat tego przypisania (czyli
nE, bo to było przypisywane) zostanie przypisany do nC. To także wyprodukuje rezultat -
i to ten sam, nE - który zostanie przypisany nB. To przypisanie również zwróci ten sam
wynik, który zostanie wreszcie umieszczony w nA. W ten więc sposób wszystkie zmienne
będą miały ostatecznie tą samą wartość, co nE.
Tą techniką możemy wykonać tyle przypisań naraz, ile tylko sobie życzymy.

Uwaga na przypisanie w miejscu równości

Niestety, traktowanie przypisania jako wyrażenia ma też swoją ciemną stronę. Bardzo
łatwo jest umieścić je omyłkowo w warunku if lub pętli zamiast operatora ==, np.:

while (nA = 5)
 std::cin >> nA;

Jeżeli nasz kompilator jest lekkoduchem, to może nas nie ostrzec przed
niebezpieczeństwem tej pętli. A zagrożenie jest spore, bo jest nic innego, jak pętla
nieskończona. Podobno komputer Cray wykonałby ją w dwie sekundy - jeżeli chcesz,
możesz sprawdzić, ile zajmie to twojej maszynie ;D Lepiej jednak zaradzić powstałemu
problemowi.
Jak on jednak powstaje?… Otóż sprawa jest dość prosta, a wszystkiemu winien warunek
pętli. Jest to przecież przypisanie - przypisanie wartości 5 do zmiennej nA. Jako test
logiczny wykorzystywana jest wartość tego przypisania - czyli piątka. Pięć jest
oczywiście różne od zera, zatem zostanie uznane za warunek prawdziwy. Tak oto pętla
się zapętla i zaciska na szyi biednego programisty.

Możemy się kłocić, że to wina C++, który nie dość, że uznaje liczby całkowite (jak 5) za
wyrażenia logiczne, to jeszcze pozwala na wykonywanie przypisania w warunkach if’ów i
pętli. Możliwości te zostały jednak dopuszczone z uzasadnionych względów (praca ze
wskaźnikami), więc wcale niewykluczone, że kiedyś je docenimy. Niezależnie od tego, czy

Zaawansowane C++ 410

będziemy świadomie wykonywać przypisania w podobnych sytuacjach, musimy pamiętać,
że:

Należy zwracać baczną uwagę na każde przypisanie występujące w warunku instrukcji if
lub pętli. Może to być bowiem niedoszłe porównanie.

Zaleca się, aby opatrywać stosownym komentarzem każde zamierzone użycie
przypisania w tych newralgicznych miejscach. Dzięki temu unikniemy nieporozumień z
kompilatorem, innymi programistami i… samym sobą!

Złożone operatory przypisania
Dla wygody programisty C++ posiada jeszcze dziesięć innych operatorów przypisania. Są
one po prostu krótszym zapisem często stosowanych instrukcji. Ich postać i „rozwinięcia”
przedstawia to oto tabelka:

przypisanie „rozwinięcie”
a += b a = a + b
a -= b a = a - b
a *= b a = a * b
a /= b a = a / b
a %= b a = a % b
a &= b a = a & b
a |= b a = a | b
a ^= b a = a ^ b
a <<= b a = a << b
a >>= b a = a >> b

Tabela 17. Złożone operatory przypisania w C++

‘Rozwinięcie’ wziąłem w cudzysłów, ponieważ nie jest tak, że jakiś mechanizm w rodzaju
makrodefinicji zamienia te skrócone wyrażenia do ich „pełnych” form. O nie, one są
kompilowane w tej postaci. Ma to taki skutek, że wyrażenie po lewej stronie operatora
jest obliczane jeden raz. W wersji „rozwiniętej” byłoby natomiast obliczane dwa razy.

Podobna zasada obowiązuje też w operatorach pre/postin/dekrementacji.

Jest to też realizacja bardziej fundamentalnej reguły, która mówi, że składniki każdego
wyrażenia są obliczane tylko raz.

Operatory wskaźnikowe
Wskaźniki były ongiś kluczową cechą języka C, a i w C++ nie straciły wiele ze swojego
znaczenia. Do ich obsługi mamy w naszym ulubionym języku trzy operatory.

Pobranie adresu
Jednoargumentowy operator & służy do pobrania adresu obiektu, przy którym stoi. Oto
przykład:

int nZmienna;
int* pnWskaznik = &nZmienna;

Argument tego operatora musi być l-wartością. To raczej oczywiste, bo przecież musi
ona rezydować w jakimś miejscu pamięci. Inaczej niemożliwe byłoby pobranie adresu
tego miejsca. Typowo operandem dla & jest zmienna lub funkcja.

Zaawansowana obiektowość 411

Dostęp do pamięci poprzez wskaźnik
Do obszaru pamięci, do którego posiadamy wskaźnik, możemy odnieść się na kilka
sposobów. Dokładnie: na dwa.

Dereferencja

Najprostszym i najczęściej stosowanym sposobem jest dereferencja:

int nZmienna;
int* pnWskaznik = &nZmienna;
*pnWskaznik = 42;

Odpowiada za nią jednoargumentowy operator *, zwany operatorem dereferencji lub
adresowania pośredniego. Pozwala on na dostęp do miejsca w pamięci, któremu
odpowiada wskaźnik. Operator ten wykorzystuje ponadto typ wskaźnika, co gwarantuje,
że odczytana zostanie właściwa ilość bajtów. Dla int* będzie to sizeof(int), zatem
*pnWskaznik reprezetuje u nas liczbę całkowitą.

To, czy *wskaźnik jest l-wartością, czy nie, zależy od stałości wskaźnika. Jeżeli jest to
stały wskaźnik (const typ*), wówczas nie możemy modyfikować pokazywanej przezeń
pamięci. Mamy więc do czynienia z r-wartością. W pozostałych przypadkach mamy l-
wartość.

Indeksowanie

Jeżeli wskaźnik pokazuje na tablicę, to możemy dostać się do jej kolejnych elementów za
pomocą operatora indeksowania (ang. subscript operator) - nawiasów kwadratowych
[].

Oto zupełnie banalny przykład:

std::string aBajka[3];

aBajka[0] = "Dawno, dawno temu, ...";
aBajka[1] = "w odleglej galaktyce...";
aBajka[2] = "zylo sobie siedmiu kransoludkow...";

Jeżeli zapytasz „A gdzie tu wskaźnik?”, to najpierw udam, że tego nie słyszałem i pozwolę
ci na chwilę zastanowienia. A jeśli nadal będziesz się upierał, że żadnego wskaźnika tu
nie ma, to będę zmuszony nałożyć na ciebie wyrok powtórnego przeczytania rozdziału o
wskaźnikach. Chyba tego nie chcesz? ;-)

Wskaźnikiem jest tu oczywiście aBajka - jaka nazwa tablicy wskazuje na jej pierwszy
element. W zasadzie więc można dokonać jego dereferencji i dostać się do tego
elementu:

*aBajka = "Dawno, dawno temu, ...";

Przesuwając wskaźnik przy pomocy dodawania można też dostać się do pozostałej części
tablicy:

*(aBajka + 1) = "w odleglej galaktyce...";
*(aBajka + 2) = "zylo sobie siedmiu kransoludkow...";

Taki zapis jest jednak dość kłopotliwy w interpretacji - choć koniecznie trzeba go znać
(przydaje się przy iteratorach STL). C++ ma wygodniejszy sposób dostepu do elementów
tablicy o danym indeksie - jest to właśnie operator indeksowania.

Zaawansowane C++ 412

Na koniec muszę jeszcze przypomnieć, że wyrażenie:

tablica[i]

odpowiada (i-1)-emu elementowi tablicy. A to dlatego, że:

W C++ elementy tablic (oraz łańcuchów znaków) liczymy od zera.

Skoro już tak się powtarzam, to przypomnę jeszcze, że:

W n-elementowej tablicy nie istnieje element o indeksie n. Próba odwołania się do
niego spowoduje błąd ochrony pamięci.

Zasada ta nie dotyczy aczkolwiek łańcuchów znaków, gdzie n-ty element to zawsze znak
o kodzie 0 ('\0'). Jest to zaszłość zakonserwowana w czasach C, która przetrwała do
dziś.

Operatory pamięci
Mamy w C++ kilka operatorów zajmujących się pamięcią. Jedne służą do jej alokacji,
drugie do zwalniania, a jeszcze inne do pobierania rozmiaru typów i obiektów.

Alokacja pamięci
Alokacja pamięci to przydzielenie jej określonej ilości dla programu, by ten mógł ją
wykorzystać do własnych celów. Pozwala to dynamicznie tworzyć zmienne i tablice.

new

new jest przeznaczony do dynamicznego tworzenia zmiennych. Obiekty stworzone przy
pomocy tego operatora są tworzone na stercie, a nie na stosie, zatem nie znikają po
opuszczeniu swego zakresu. Tak naprawdę to w ogóle nie stosuje się do nich pojęcie
zasięgu.

Tworzenie obiektów poprzez new jest banalnie proste:

float pfZmienna = new float;

Oczywiście nie ma zbyt wielkiego sensu tworzenie zmiennych typów podstawowych czy
nawet prostych klas. Jeżeli jednak mamy do czynienia z dużymi obiektami, które muszą
istnieć przez dłuższy czas i być dostępne w wielu miejscach programu, wtedy musimy
tworzyć je dynamicznie poprzez new.

W przypadku kreowania obiektów klas, new dba o prawidłowe wywołanie konstrukturów,
więc nie trzeba się tym martwić.

new[]

Wersję operatora new, która służy do alokowania tablic, nazywam new[], aby w ten
sposób podkreślić jej związek z delete[].

new[] potrafi alokować tablice dynamiczne po podanym rozmiarze. Aby użyć tej
możliwości po nazwie docelowego typu określamy wymiary pożądanej tablicy, np.:

float** matMacierz4x4 = new float [4][4];

Zaawansowana obiektowość 413

W wyniku dostajemy odpowiedni wskaźnik lub ewentualnie wskaźnik do wskaźnika (do
wskaźnika do wskaźnika itd. - zależnie od liczby wymiarów), który możemy zachować w
zmiennej określonego typu.
Do powstałej tablicy odwołujemy się tak samo, jak do tablic statycznych:

for (unsigned i = 0; i < 4; ++i)
 for (unsigned j = 0; j < 4; ++j)
 matMacierz4x4[i][j] = (i == j ? 1.0f : 0.0f);

Dynamiczna tablica istnieje jednak na stercie, więc tak samo jak wszystkie obiekty
tworzone w czasie działania programu nie podlega regułom zasięgu.

Zwalnianie pamięci
Pamięć zaalokowana przy pomocy new i new[] musi zostać zwolniona przy pomocy
odpowiadających im operatorów delete i delete[]. Wiesz doskonale, że w przeciwnym
razie dojdzie do groźnego błędu wycieku pamięci.

delete

Za pomocą delete niszczymy pamięć zaalokowaną przez new. Dla operatora tego należy
podać wskaźnik na tenże blok pamięci, np.:

delete pfZmienna;

delete zapewnia wywołanie destruktora klasy, jeżeli takowy jest konieczny. Destruktor
taki może być wiązany wcześnie (jak zwykła metoda) lub późno (jak metoda wirtualna) -
ten drugi sposób jest zalecany, jeżeli chcemy korzystać z dobrodziejstw polimorfizmu.

delete[]

Analogicznie, delete[] służy do zwalniania dynamicznych tablic. Nie musimy podawać
rozmiaru takiej tablicy, gdy ją niszczymy - wystarczy tylko wskaźnik:

delete[] matMacierz4x4;

Koniecznie pamiętajmy, aby nie mylić obu postaci operatora delete[] - w szczególności
nie można stosować delete do zwalniania pamięci przydzielonej przez new[].

Operator sizeof

sizeof pozwala na pobranie rozmiaru obiektu lub typu:

int nZmienna;
if (sizeof(nZmienna) != sizeof(int))
 std::cout << "Chyba mamy zepsuty kompilator :D";

Jest to operator czasu kompilacji, więc nie może korzystać z informacji uzyskanych w
czasie działania programu. W szczególności, nie może pobrać rozmiaru dynamicznej
tablicy - nawet mimo takich prob:

int* pnTablica = new int [5];

std::cout << sizeof(pnTablica); // to samo co sizeof(int*)
std::cout << sizeof(*pnTablica); // to samo co sizeof(int)

Taki rozmiar trzeba po prostu zapisać gdzieś po alokacji tablicy.

sizeof zwraca wartość należącą do predefiniownego typu size_t. Zwykle jest to liczba
bez znaku lub bardzo duża liczba ze znakiem.

Zaawansowane C++ 414

Ciekawostka: operator __alignof

W Visual C++ istnieje jeszcze podobny do sizeof operator __alignof. Używamy go w
ten sam sposób, podając mu zmienną lub typ. W wyniku zwraca on tzw. wyrównanie
(ang. alignment) danego typu danych. Jest to liczba, która określa sposób organizacji
pamięci dla danego typu danych. Przykładowo, jeżeli wyrównywanie wynosi 8, to znaczy
to, iż obiekty tego typu są wyrównane w pamięci do wielokrotności ośmiu bajtów (ich
adresy są wielokrotnocią ośmiu).
Wyrównanie sprawia rzecz jasna, że dane zajmują w pamięci nieco więcej miejsca niż
faktycznie mogłyby. Zyskujemy jednak szybciej, ponieważ porcje pamięci wyrównane do
całkowitych potęg dwójki (a takie jest zawsze wyrównanie) są przetwarzane szybciej.

Wyrównanie można kontrolować poprzez __declspec(align(liczba)). Np. poniższa
struktura:

__declspec(align(16)) struct FOO { int nA, nB; };

będzie tworzyć zmienne zajmujące w pamięci fragmenty po 16 bajtów, choć jej faktyczny
rozmiar jest dwa razy mniejszy111.
Polecając wyrównywanie do 1 bajta określimy praktyczny jego brak:

#define PACKED __declspec(align(1))

Typy danych opatrzone taką deklaracją będą więc ciasno upakowane w pamięci. Może to
dać pewną jej oszczędność, ale zazwyczaj spadek prędkości dostępu do danych nie jest
tego wart.

Operatory typów
Istnieją języki programowania, które całkiem dobrze radzą sobie bez posiadania ściśle
zarysowanych typów danych. C++ do nich nie należy: w nim typ jest sprawą bardzo
ważną, a do pracy z nim oddelegowano kilka specjalnych operatorów.

Operatory rzutowania
Rzutowanie jest zmianą typu wartości, czyli jej konwersją. Mamy parę operatorów, które
zajmują się tym zadaniem i robią to w różny sposób.

Wśród nich są tak zwane cztery „nowe” operatory, o składni:

określenie_cast<typ_docelowy>(wyrażenie)

To właśnie one są zalecane do używania we wszystkich sytuacjach, wymagających
rzutowania. C++ zachowuje aczkolwiek także starą formę rzutowania, znaną z C.

static_cast

Ten operator może być wykorzystywany do większości konwersji, jakie zdarza się
przeprowadzać w C++. Nie oznacza to jednak, że pozwala on na wszystko:

Poprawność rzutowania static_cast jest sprawdzana w czasie kompilacji programu.

static_cast można używać np. do:

 konwersji między typami numerycznymi
 rzutowania liczby na typ wyliczeniowy (enum)

111 Jeżeli int ma 4 bajty długości, a tak jest na każdej platformie 32-bitowej.

Zaawansowana obiektowość 415

 rzutowania wskaźników do klas związanych relacją dziedziczenia

Jeżeli chodzi o ostatnie zastosowanie, to należy pamiętać, że tylko konwersja wskaźnika
na obiekt klasy pochodnej do wskaźnika na obiekt klasy bazowej jest zawsze bezpieczna.
W odwrotnym przypadku trzeba być pewnym co do wykonalności rzutowania, aby nie
narobić sobie kłopotów. Taką pewność można uzyskać na przykład za pomocą sposobu z
metodami wirtualnymi, który zaprezentowałem w rozdziale 1.7, lub poprzez operator
typeid.
Inną możliwością jest też użycie operatora dynamic_cast.

dynamic_cast

Przy pomocy dynamic_cast można rzutować wskaźniki i referencje do obiektów w dół
hierarchii dziedziczenia. Oznacza to, że można zamienić odwołanie do obiektu klasy
bazowej na odwołanie do obiektu klasy pochodnej. Wygląda to np. tak:

class CFoo { /* ... */ };
class CBar : public CFoo { /* ... */ };

void Funkcja(CFoo* pFoo)
{
 CBar* pBar = dynamic_cast<CBar*>(pFoo);

 // ...
}

Taka zamiana nie zawsze jest możliwa, bo przecież dany wskaźnik (referencja)
niekoniecznie musi pokazywać na obiekt żądanej klasy pochodnej. Operacja jest jednak
bezpieczna, ponieważ:

Poprawność rzutowania dynamic_cast jest sprawdzana w czasie działania programu.

Wiemy doskonale, w jaki sposób poznać rezultat tego sprawdzania. dynamic_cast
zwraca po prostu NULL (wskaźnik pusty, zero), jeżeli rzutowanie nie mogło zostać
wykonane. Należy to zawsze skontrolować:

if (!pBar)
{
 // OK - pBar faktycznie pokazuje na obiekt klasy CBar
}

Dla skrócenia zapisu można wykorzystać wartość zwracaną operatora przypisania:

if (pBar = dynamic_cast<CBar*>(pFoo))
{
 // rzutowanie powiodło się
}

Znak = jest tu oczywiście zamierzony. Warunek będzie miał bowiem wartość równą
rezultatowi rzutowania, zatem będzie prawdziwy tylko wtedy, gdy się ono powiedzie.
Zwrócony wskaźnik będzie wtedy różny od zera.

reinterpret_cast

reinterpret_cast może służyć do dowolnych konwersji między wskaźnikami, a także do
rzutowania wskaźników na typy liczbowe i odwrotnie. Wachlarz możliwości jest więc
szeroki, niestety:

Poprawność rzutowania reinterpret_cast nie jest sprawdzana.

Zaawansowane C++ 416

Łatwo więc może dojść do niebezpiecznych konwersji. Ten operator powinien być
używany tylko jako ostatnia deska ratunku - jeżeli inne zawiodą, a my jesteśmy
przekonani o względnym bezpieczeństwie planowanej zamiany. Wykorzystanie tego
operatora generalnie jednak powinno być bardzo rzadkie.

reintepret_cast możemy potencjalnie użyć np. do uzyskania dostępu do pojedynczych
bitów w zmiennej o większej ich ilości:

unsigned __int32 u32Zmienna; // liczba 32-bitowa
unsigned __int8* pu8Bajty; // wskaźnik na liczby 8-bitowe (bajty)

// zamieniamy wskaźnik do 4 bajtowej zmiennej na wskaźnik do
// 4-elementowej tablicy bajtów
pu8Bajty = reinterpret_cast<unsigned __int8*>(&u32Zmienna);

// wyświetlamy kolejne bajty zmiennej u32Zmienna
for (unsigned i = 0; i < 4; ++i)
 std::cout << "Bajt nr " << i << ": " << pu8Bajty[i] << std::endl;

Widać więc, że najlepiej sprawdza się w operacjach niskopoziomowych. Tutaj możnaby
oczywiście użyć przesunięcia bitowego, ale tablica wygląda z pewnością przejrzyściej.

const_cast

Ostatni z „nowych” operatorów rzutowania ma dość ograniczone zastosowanie:

const_cast służy do usuwania przydomków const i volatile z opatrzonych nimi
wskaźników do zmiennych.

Obecność tego operatora służy chyba tylko temu, aby możliwe było całkowite zastąpienie
sposobów rzutowania znanych z C. Jego praktyczne użycie należy do sporadycznych
sytuacji.

Rzutowanie w stylu C

C++ zachowuje „stare” sposoby rzutowania typów. Jednym z nich jest rzutowanie
nazywane, całkiem adekwatnie, rzutowaniem w stylu C (ang. C-style cast):

(typ) wyrażenie

Ta składnia konwersji jest nadal często używana, gdyż jest po prostu krótsza. Należy
jednak wiedzieć, że nie odróżnia ona różnych sposobów rzutowania i w zależności od
typu i wyrażenia może się zachowywać jak static_cast, reinterpret_cast lub
const_cast.

Rzutowanie funkcyjne

Inną składnię ma rzutowanie funkcyjne (ang. function-style cast):

typ(wyrażenie)

Przypomina ona wywołanie funkcji, choć oczywiście żadna funkcja nie jest tu
wywoływana. Ten rodzaj rzutowania działa tak samo jak rzutowanie w stylu C,
aczkolwiek nie można w nim stosować co niektórych nazw typów. Nie można na przykład
wykonać:

int*(&fZmienna)

Zaawansowana obiektowość 417

i to z dość prozaicznego powodu. Po prostu gwiazdka i nawias otwierający występujące
obok siebie zostaną potraktowane jako błąd składniowy. W tej sytuacji można sobie
ewetualnie pomóc odpowiednim typedef’em.

Operator typeid

typeid służy pobrania informacji o typie podanego wyrażenia podczas działania
programu. Jest to tzw. RTTI, czyli informacja o typie czasu wykonania (ang. Run-
Time Type Information).
Przygotowanie do wykorzystania tego operatora objemuje włączenie RTTI (co dla Visual
C++ opisałem w rozdziałe 1.7) oraz dołączenie standardowego nagłówka typeinfo:

#include <typeinfo>

Potem możemy już stosować typeid np. tak:

class CFoo { /* ... */ };
class CBar : public CFoo { /* ... */ };

int nZmienna;
CFoo* pFoo = new CBar;
std::cout << typeid(nZmienna).name(); // int
std::cout << typeid(pFoo).name(); // class CFoo *
std::cout << typeid(*pFoo).name(); // class CBar

Jak widać, operator ten jest leniwy i jeśli tylko może, będzie korzystać z informacji
dostępnych w czasie kompilacji programu. Ażeby więc poznać np. typ polimorficznego
obiektu, na który pokazujemy wskaźnikiem, trzeba użyć derefrencji…

Operatory dostępu do składowych
Pięć kolejnych operatorów służy do wybierania składników klas, struktur, unii, itd. Przy
ich pomocy można więc dostać się do zagnieżdżonych składowych. Nie zawsze jest to
jednak możliwe - wszystko zależy od ich widoczności, czyli od tego, jakimi
specyfikatorami dostępu są one opatrzone (private, protected, public).
O tychże specyfikatorach mówiliśmy już bardzo wiele, więc teraz przypomnijmy sobie
tylko same operatory wyłuskania.

Wyłuskanie z obiektu
Mając zmienną obiektową, do jej składników odwołujemy się poprzez operator kropki (.),
np. tak:

struct FOO { int x; };

FOO Foo;
Foo.x = 10;

W podobny działa operator .*, który służy aczkolwiek do wyłowienia składnika poprzez
wskaźnik do niego:

int FOO::*p2mnSkladnik = &FOO::x;
Foo.*p2mnSkladnik = 42;

Wskaźniki na składowe są przedmiotem następnego podrozdziału.

Zaawansowane C++ 418

Wyłuskanie ze wskaźnika
Gdy mamy wskaźnik na obiekt, wówczas zamiast kropki używamy innego operatora
wyłuskania - strzałki (->):

FOO* pFoo = new FOO;
pFoo->x = 16;

Tutaj także mamy odpowiednik, służący do wybierania składowych za pośrednictwem
wskaźnika na nie:

pFoo->*p2mnSkladnik += 80;

W powyższej linijce mamy dwa wskaźniki, stojące po obydwu stronach operatora ->*. O
pierwszym rodzaju powiedzieliśmy sobie na samym początku programowania
obiektowego - to po prostu zwyczajny wskaźnik na obiekt. Drugi to natomiast wskaźnik
do składowej klasy - o tym typie wskaźników pisze więcej następny podrozdział.

Operator zasięgu
Ten operator, nazywany też operatorem rozwikłania zakresu (ang. scope resolution
operator) służy w C++ do rozróżniania nazw, które rezydują w różnych zakresach.
Znamy dwa podstawowe zastosowania tego operatora:

 dostęp do przesłoniętych zmiennych globalnych
 dostęp do składowych klasy

Ogólnie, operatora tego używamy, aby dostać się do identyfikatora zagnieżdżoneego
wewnątrz nazwanych zakresów:

zakres_poziom1::[zakres_poziom2::[zakres_poziom3::[...]]]nazwa

Nazwy zakresów odpowiadają m.in. strukturom, klasom i uniom. Przykładowo, FOO z
poprzedniego akapitu było nazwą zakresu - oprócz tego, rzecz jasna, także nazwą
struktury. Przy pomocy operatora :: można odnieść się do jej zawartości.

Zakresy można też tworzyć poprzez tzw. przestrzenie nazw (ang. namespaces). Jest to
bardzo dobre narzędzie, służące organizacji kodu i zapobiegające konfliktom oznaczeń.
Opisuje je rozdział Sztuka organizacji kodu.
Do tej pory cały czas korzystaliśmy z pewnej szczególnej przestrzeni nazw - std.
Pamiętasz doskonale, że przy niej także używaliśmy operatora zakresu.

Pozostałe operatory
Ostatnie trzy operatory trudno zakwalifikować do jakiejś konkretnej grupy, więc zebrałem
je tutaj.

Nawiasy okrągłe
Nawiasy () to dość oczywisty operator. W C++ służy on głównie do:

 grupowania wyrażeń w celu ich obliczania w pierwszej kolejności
 deklarowania funkcji i wskaźników na nie
 wywoływania funkcji
 rzutowania

Brak nawiasów może być przyczyną błędnego (innego niż przewidywane) obliczania
wyrażeń, a także nieprawidłowej interpretacji niektórych deklaracji (np. funkcji i
wskaźników na nie). Obfite stawianie nawiasów jest szczególnie ważne w
makrodefinicjach.

Zaawansowana obiektowość 419

Z kolei nadmiar nawiasów jeszcze nikomu nie zaszkodził :)

Operator warunkowy
Operator ?: jest nazywamy ternarnym, czyli trójargumentowym. Jako jedyny bierze
bowiem trzy dane:

warunek ? wynik_dla_prawdy : wynik_dla_fałszu

Umiejętne użycie tego operatora skraca kod i pozwala uniknąć niepotrzebnych instrukcji
if. Co ciekawe, może on być także użyty w deklaracjach, np. pól w klasach. Wtedy
jednak wszystkie jego operandy muszą być stałymi.

Przecinek
Przecinek (ang. comma) to operator o najniższym priorytecie. Oprócz tego, że oddziela
on argumenty funkcji, może też występować samodzielnie, np.:

(nX + 17, 26, rand() % 5, nY)

W takim wyrażeniu operandy są obliczane od lewej do prawej, natomiast wynikiem jest
wartość ostatniego wyrażenia. Tutaj więc będzie to nY.

Przecinek przydaje się, gdy chcemy wykonać pewną dodatkową czynność w trakcie
wyliczania jakiejś wartości. Przykładowo, spójrzmy na taką pętlę odczytującą znaki:

char chZnak;
while (chZnak = ReadChar(), chZnak != ' ')
{
 // zrób coś ze znakiem, który nie jest spacją
}

ReadChar() jest funkcją, która pobiera następny znak (np. z pliku). Sama pętla ma zaś
wykonywać się aż do napotkania spacji. Zanim jednak można sprawdzić, czy dany znak
jest spacją, trzeba go odczytać. Robimy to w warunku pętli, posługując się przecinkiem.
Bez niego trzebaby najprawdopodobniej zmienić całą pętlę na do, co spowodowałoby
konieczność powtórzenia kodu wywołującego ReadChar(). Inne wyjście to użycie pętli
nieskończonej. C++ pozwala jednak osiągnąć ten sam efekt na kilka sposobów, spośród
których wybieramy ten najbardziej nam pasujący.

Nowe znaczenia dla operatorów
Przypomnieliśmy sobie wszystkie operatory C++ i ich domyślne znaczenia. Nam to
jednak nie wystarcza - chcemy przecież zdefiniować dla nich całkiem nowe funkcje.
Zobaczmy zatem, jak możemy to uczynić.

Funkcje operatorowe
Pomyślmy: co właściwie robi kompilator, gdy natrafi w wyrażeniu na jakiś operator? Czy
tylko sobie znanymi sposobami oblicza on docelową wartość, czy może jednak jest w tym
jakaś zasada?…

Otóż tak. Działanie operatora definiuje pewna funkcja, zwana funkcją operatorową
(ang. operator function). Istnieje wiele takich funkcji, które są wbudowane w kompilator i
działają na typach podstawowych. Dodawanie, odejmowanie i inne predefiniowane
działania na liczbach są dostępne bez żadnych starań z naszej strony.
Kiedy natomiast chcemy przeciążyć jakiś operatory, to oznacza to konieczność napisania
własnej funkcji dla nich. Zwyczajnie, trzeba podać jej argumenty oraz wartość zwracaną i

Zaawansowane C++ 420

wypełnić kodem. Nie ma w tym żadnej „magii”. Za chwilę zresztą przekonasz się, jak to
działa.

Kilka uwag wstępnych
Zobaczmy więc, jak można zdefiniować dodatkowe znaczenia dla operatorów w C++.

Ogólna składnia funkcji operatorowej

Przeciążenie operatora oznacza napisanie dla niego funkcji, odpowiedzialnej za jego nowe
działanie. Oto najbardziej ogólna składnia takiej funkcji:

zwracany_typ operator symbol([parametry])
{
 treść_funkcji
}

Zamiast nazwy mamy tu słowo kluczowe operator, za którym należy podać symbol
przeciążanego operatora (można go oddzielić od spacją, lecz nie jest to wymagane).
Jeżeli więc chcemy np. zdefiniowiać nowe znaczenie dla plusa (+), to piszemy funkcję
operator+().

Jak każda funkcja, także i ta przyjmuje pewne parametry. Ich liczba zależy ściśle od
tego, jaki operator chcemy przeładować. Jeśli jest to operator binarny, to siłą rzeczy
konieczne będą dwa parametry; dla jednoargumentowych operatorów wystarczy jeden
parametr.
Ale uwaga - parametry podane w nawiasie niekoniecznie są jedynymi, które funkcja
otrzymuje. Pamiętasz zapewne, że metody klas mają ukryty parametr - obiekt, na rzecz
którego metoda została wywołana, dostępny poprzez wskaźnik this. Otóż ten parametr
jest brany pod uwagę w tym przypadku. Pamiętaj więc, że:

Funkcja operatorowa przyjmuje tyle argumentów, ile ma przeciążany przy jej pomocy
operator. Do tych argumentów zalicza się wskaźnik this, jeżeli jest to metoda klasy.

Od tej zasady istnieje tylko jeden wyjątek (a w zasadzie dwa). Stanowią go operatory
postinkrementacji i postdekrementacji: wprowadzono do nich dodatkowy parametr typu
int, który należy zignorować. Dzięki temu możliwe jest odróżnienie tych operatorów od
wariantów prefiksowych.

Operatory, które możemy przeciążać

Możemy przeciążać bardzo wiele operatorów - zarówno takich, dla których natychmiast
znajdziemy praktyczne zastosowanie, jak i tych, których przeciążanie wydawałoby się
dziwaczne. Oto kompletna lista przeciążalnych operatorów:

+ - * / % & | ^ << <<
~ && || ! == != < <= > >=
+= -= *= /= %= &= |= ^= <<= >>=
++ -- = -> ->* () [] new delete ,

Tabela 18. Przeciążalne operatory C++

Przeładowywać możemy te i tylko te operatory. W większości książek i kursów za chwilę
nastąpiłaby podobna (acz znacznie krótsza) lista operatorów, których przeciążać nie
można. Z doświadczenia wiem jednak, że rodzi to niewyobrażalną ilośc nieporozumień,
spowodowaną nieprecyzyjnym określeniem, co jest operatorem, a co nie. Dlatego też nie
podaję żadnej takiej tabelki - zapamiętaj po prostu, że przeciążać można wyłącznie te
operatory, które wymieniłem wyżej.

Zaawansowana obiektowość 421

Muszę jednak podać kilka wyjaśnień odnośnie tej tabelki:
 operatory: +, -, *, & można przeciążać zarówno w wersji jedno-, jak i

dwuargumentowej
 operatory inkrementacji (++) i dekrementacji (--) przeciążamy oddzielnie dla

wersji prefiksowej i postfiksowej
 przeciążenie new i delete powoduje także zdefiniowanie ich działania dla wersji

tablicowych (new[] i delete[])
 operatory () i [] to nawiasy: okrągłe (grupowanie wyrażeń) i kwadratowe

(indeksowanie, wybór elementów tablicy)
 operatory -> i ->* mają predefiniowane działanie dla wskaźników na obiekty -

jego nie możemy zmienić. Możemy natomiast zdefiniowiać ich działanie dla
samych obiektów

Czego nie możemy zmienić

Przeciążając operatory możemy zdefiniować dla nich dodatkowe znaczenie. Nie możemy
jednak:

 tworzyć własnych operatorów, jak np. @, ?, === czy \
 zmienić liczby argumentów, na których pracują przeciążane operatory.

Przykładowo, nie stworzymy dwuargumentowego operatora ! czy
jednoargumentowego ||

 zmodyfikować priorytetu operatora
 zmienić łączności przeładowanego operatora

Dla każdego typu C++ automatycznie generuje też pięć niezbędnych operatorów, których
nie musimy przeciążać, aby działały poprawnie, Są to:

 zwykły operator przypisania (=). Dokonuje on dosłownego kopiowania obiektu
(„pole po polu”)

 operator pobrania adresu (jednoargumentowy &). Zwraca on adres obiektu w
pamięci

 new dokonuje alokacji pamięci dla obiektu
 delete niszczy i usuwa obiekt z pamięci
 przecinek (,) - jego znaczenie jest takie same, jak dla typów wbudowanych

Możliwe jest aczkolwiek przeciążenie tych pięciu symboli, aby działały inaczej dla naszych
klas. Nie można jednak unieważnić ich domyślnej funkcjonalności, jaką dostarcza
kompilator dla każdego typu. Mówiąc potocznie, nie można ich „rozdefiniować”.

Pozostałe sprawy

Warto jeszcze powiedzieć o pewnych „naturalnych” sprawach:
 przynajmniej jeden argument przeciążanego operatora musi być innego typu niż

wbudowane. To naturalne: operatory przeciążamy na rzecz własnych typów
(klas), bo działania na typach podstawowych są wyłaczną domeną kompilatora.
Nie wtrącamy się w nie

 funkcja operatorowa nie może posiadać parametrów domyślnych
 przeciążenia nie kumulują się, tzn. jeżeli na przykład przeciążymy operatory +

oraz =, nie będzie to oznaczało automatycznego zdefiniowania operatora +=.
Każde nowe znaczenie dla operatora musimy podać sami

Definiowanie przeciążonych wersji operatorów
Operator możemy przeciążyć na kilka sposobów, w zależności od tego, gdzie umieścimy
funkcję operatorową. Może być ona bowiem zarówno składnikiem (metodą) klasy, na
rzecz której działa, jak i funkcją globalną.

Zaawansowane C++ 422

Na te dwa przypadki popatrzymy sobie, definiując operator mnożenia (dwuargumentowy
*) dla klasy CRational, znanej z poprzednich podrozdziałów. Chcemy sprawić, aby jej
obiekty można było mnożyć przez inne liczby wymierne, np. tak:

CRational JednaPiata(1, 5), TrzyCzwarte(3, 4);
CRational Wynik = JednaPiata * TrzyCzwarte;

To będzie spore udogodnienie, więc zobaczmy, jak mozna to zrobić.

Operator jako funkcja składowa klasy

Wpierw spróbujmy zdefiniować operator*() jako funkcję składową klasy. Wiemy, że
nasz operator jest dwuargumentowy; wiemy także, że każda metoda klasy przyjmuje
jeden ukryty parametr - wskaźnik this. Wynika stąd, że funkcja operatorowa będzie u
nas miał tylko jeden „prawdziwy” parametr i wyglądała na przykład tak:

CRational CRational::operator*(const CRational& Liczba) const
{
 return CRational(m_nLicznik * Liczba.m_nLicznik,
 m_nMianownik * Liczba.m_nMianownik);
}

To wystarczy - po tym zabiegu możemy bez problemu mnożyć przez siebie zarówno dwa
obiekty klasy CRational:

CRational DwieTrzecie(2, 3), TrzySiodme(3, 7);
CRational Wynik = DwieTrzecie * TrzySiodme;

jak i jeden obiekt przez liczbę całkowitą:

CRational Polowa(1, 2);
CRational Calosc = Polowa * 2;

Jak to działa?… Najlepiej prześledzić funkcjonowanie operatora, jeżeli wyrażenia
zawierające go:

DwieTrzecie * TrzySiodme
Polowa * 2

zapiszemy z jawnie wywołaną funkcją operatorową:

DwieTrzecie.operator*(TrzySiodme)
Polowa.operator*(2)

Widać wyraźnie, że pierwszy argument operatora jest przekazywany jako wskaźnik this.
Drugi jest natomiast normalnym parametrem funkcji operator*().
A jakim sposobem zyskaliśmy od razu możliwość mnożenia także przez liczby całkowite?
Myślę, że to nietrudne. Zadziałała tu po prostu niejawna konwersja, zrealizowana przy
pomocy konstruktora klasy CRational. Drugie wyrażenie jest więc w rzeczywistości
wywołaniem:

Polowa.operator*(CRational(2))

Mimochodem uzyskaliśmy zatem dodatkową funkcjonalność. A wszystko za pomocą
jednej funkcji operatorowej (no i jednego konstruktora).

Zaawansowana obiektowość 423

Problem przemienności

Nasz entuzjazm szybko może jednak osłabnąć. jeżeli zechcemy wypróbować
przemienność tak zdefiniowanego mnożenia. Nie będzie przeszkód dla dwóch liczb
wymiernych:

CRational Wynik = TrzySiodme * DwieTrzecie;

albo dla pary całkowita-wymierna kompilator zaprotestuje:

CRational Calosc = 2 * Polowa; // błąd!

Dlaczego tak się dzieje? Ponowny rzut oka na jawne wywołanie operator*() pomoże
rozwikłać problem:

TrzySiodme.operator*(DwieTrzecie) // OK
2.operator*(Polowa) // ???

Wyraźnie widać przyczynę. Dla dwójki nie można wywołać funkcji operator*(), bo taka
funkcja nie istnieje dla typu int - on przecież nie jest nawet klasą. Nic więc dziwnego, że
użycie operatora zdefiniowanego jako metoda nie powiedzie się.
„Zaraz - a co z niejawną konwersją? Dlaczego ona nie zadziałała?” Faktycznie, możnaby
przypuszczać, że konstruktor konwertujący może zamienić 2 na obiekt klasy CRational i
uczynić wyrażenie poprawnym:

CRational(2).operator*(Polowa) // OK

To jest nieprawda. Powodem jest to, iż:

Niejawne konwersje nie działają przy wyłuskiwaniu składników obiektu.

Kompilator nie rozwinie więc problematycznego wyrażenia do powyższej postaci i zgłosi
błąd.

Operator jako zwykła funkcja globalna

Wynika z tego prosty wniosek: Houston, mamy problem :) Nie rozwiążemy go na pewno,
definiując operator*() jako funkcję składową klasy. Trzebaby bowiem dostać się do
definicji klasy int i dodać do niej odpowiednią metodę. Szkoda tylko, że nie mamy
dostępu do tej definicji, co zresztą nie zaskakuje, bo int nie jest przecież żadną klasą.
Gdyby jednak załoga Apollo 13 załamywała się po napotkaniu tak prostych problemów,
nie wróciłaby na Ziemię cała i zdrowa. Nasza sytuacja nie jest aż tak dramatyczna,
chociaż „częściowo przemienny” operator mnożenia też nie jest szczytem komfortu.
Trzeba coś na to poradzić.

Rozwiązanie oczywiście istnieje: należy uczynić operator*() funkcją globalną:

CRational operator*(const CRational& Liczba1, const CRational& Liczba2)
{
 return CRational(Liczba1.Licznik() * Liczba2.Licznik(),
 Liczba1.Mianownik() * Liczba2.Mianownik());
}

Zmieni to bardzo wiele. Odtąd dwa rozważane wyrażenia będą rozwijane do postaci:

operator*(TrzySiodme, DwieTrzecie) // OK
operator*(2, Polowa) // też OK!

Zaawansowane C++ 424

W tej formie oba argumenty operatora są normalnymi parametrami funkcji operator*().
Ma więc ona teraz dwa wyraźne parametry, wobec których może zajść niejawna
konwersja. W tym przypadku 2 faktycznie będzie więc interpretowane jako
CRational(2), zatem mnożenie powiedzie się bez przeszkód.
To spostrzeżenie można uogólnić:

Globalna funkcja operatorowa pozwala kompilatorowi na dokonywanie niejawnych
konwersji wobec wszystkich argumentów operatora.

Jest to prosty sposób na definiowanie przemiennych działań na obiektach różnych typów,
między którymi istnieją określenia konwersji.

Operator jako zaprzyjaźniona funkcja globalna

Porównajmy jeszcze treść obu wariantów funkcji operator*(): jako metody klasy
CRational i jako funkcji globalnej. Widzimy, że w pierwszym przypadku operowała ona
bezpośrednio na prywatnych polach m_nLicznik i m_nMianownik. Jako funkcja globalna
musiała z kolei posiłkować się metodami dostępowymi - Licznik() i Mianownik().
Nie powinno cię to dziwić. operator*() jako zwykła funkcja globalna jest właśnie -
zwykłą funkcją globalną, zatem nie ma żadnych specjalnych uprawnień w stosunku do
klasy CRational. Jest tak nawet pomimo faktu, że definiuje dlań operację mnożenia.

Żadne specjalne uprawnienia nie są potrzebne, bo funkcja doskonale radzi sobie bez
nich. Czasem jednak operator potrzebuje dostępu do niepublicznych składowych klasy,
których nie uzyska za pomocą publicznego interfejsu. W takiej sytuacji konieczne staje
się uczynienie funkcji operatorowej zaprzyjaźnioną.
Podkreślmy jeszcze raz:

Globalna funkcja operatorowa nie musi być zaprzyjaźniona z klasą, na rzecz której
definiuje znaczenie operatora.

Ten fakt pozwala na przeciążanie operatorów także dla nieswoich klas. Jak bardzo może
to być przydatne, zobaczymy przy okazji omawiania strumieni STL z Biblioteki
Standardowej.

Sposoby przeciążania operatorów
Po generalnym zapoznaniu się z przeciążaniem operatorów, czas na konkretne przykłady.
Dowiedzmy się więc, jak przeciążać poszczególne typy operatorów.

Najczęściej stosowane przeciążenia
Najpierw poznamy takie rodzaje przeciążonych operatorów, które stosuje się najczęściej.
Pomocą będzie nam tu głównie służyć klasa CVector2D, którą jakiś czas temu
pokazałem:

class CVector2D
{
 private:
 float m_fX, m_fY;

 public:
 explicit CVector2D(float fX = 0.0f, float fY = 0.0f)
 { m_fX = fX; m_fY = fY; }
};

Zaawansowana obiektowość 425

Nie jest to przypadek. Operatory przeciążamy bowiem najcześciej dla tego typu klas,
zwanych narzędziowymi. Wektory, macierze i inne przydatne „obiekty matematyczne” są
właśnie idealnymi kandydatami na klasy z przeładowanymi operatorami.

Pokazane tu przeciążenia nie będą jednak tylko sztuką dla samej sztuki. Wspomniane
obiekty będą nam bowiem niezbędne z programowaniu grafiki przy użyciu DirectX. A że
przy okazji ilustrują tę ciekawą technikę programistyczną, jaką jest przeciążanie
operatorów, tym lepiej dla nas :)

Spójrzmy zatem, jakie ciekawe operatory możemy przedefiniować na potrzeby tego typu
klas.

Typowe operatory jednoargumentowe

Operatory unarne, jak sama nazwa wskazuje, przyjmują jeden argument. Chcąc dokonać
ich przeciążenia, mamy do wyboru:

 zdefiniowanie odpowiedniej metody w klasie, na rzecz której dokonujemy
redefinicji:

klasa klasa::operator symbol() const;

 napisanie globalnej funkcji operatorowej:

klasa operator symbol(const klasa&);

Zauważyłeś zapewne, że w obu wzorach podaję parametry oraz typ zwracanej
wartości112. Przestrzeganie tego schematu nie jest jednak wymogiem języka, lecz raczej
powszechnie przyjętej konwencji dotyczącej przeciążania operatorów. Mówi ona, że:

Działanie operatorów wobec typów zdefiniowanych przez programistę powinno w miarę
możliwości pokrywać się z ich funkcjonalnością dla typów wbudowanych.

Co to znaczy?… Otóż większość operatorów jednoargumentowych (poza
in/dekrementacją) nie modyfikuje w żaden sposób przekazanych im obiektów.
Przykładowo, operator jednoargumentowego minusa - zastosowany wobec liczby zwraca
po prostu liczbę przeciwną.
Chcąc zachować tę konwencję, należy umieścić w odpowiednich miejscach deklaracje
stałości const. Naturalnie nie trzeba tego bezwarunkowo robić - pamiętajmy jednak, że
przestrzeganie szeroko przyjętych (i rozsądnych!) zwyczajów jest zawsze w interesie
programisty. Dotyczy to zarówno piszącego, jak i czytającego i konserwującego kod.

No, ale dość tych tyrad. Pora na zastosowanie zdobytej wiedzy w praktyce. Zastanówmy
się, jakie operatory możemy logicznie przeciążyć dla naszej klasy CVector2D. Nie jest ich
wiele - w zasadzie tylko plus (+) oraz minus (-). Pierwszy nie powinien w ogóle zmieniać
obiektu wektora i zwrócić go w nienaruszonym stanie, zaś drugi musi oddać wektor o
przeciwnym zwrocie.
Sądzę, że bez problemu napisałbyś takie funkcje. Są one przecież niezwykle proste:

class CVector2D
{
 // (pomijamy szczegóły)

 public:
 // (tu też)

112 Nie dotyczy to operatorów inkrementacji i dekrementacji, których omówienie znajduje się dalej.

Zaawansowane C++ 426

 CVector2D operator+() const
 { return CVector2D(+m_fX, +m_fY); }
 CVector2D operator-() const
 { return CVector2D(-m_fY, -m_fY); }
};

Co do drugiego operatora, to chyba nie ma żadnych wątpliwości. Natomiast
przeładowywanie plusa może wydawać się wręcz śmieszne. To jednak całkowicie
uzasadniona praktyka: jeśli operator ten działa dla typów wbudowanych, to powinien
także funkcjononować dla naszego wektora. Aczkolwiek treść metody operator+() to
faktycznie przykład-analogia do operator-(): rozsądniej byłoby po prostu zwrócić *this
(czyli kopię wektora) niż tworzyć nowy obiekt.

Obie metody umieszczamy bezpośrednio w definicji klasy, bo są one na tyle krótkie, żeby
zasługiwać na atrybut inline.

Inkrementacja i dekrementacja

To, co przed chwilą powiedziałem o operatorach jednoargumentowych, nie stosuje się do
operatorów inkrementacji (++) i dekrementacji (--). Ściśle mówiąc, nie stosuje się w
całości. Mamy tu bowiem dwie odmienne kwestie.

Pierwszą z nich jest to, iż oba te operatory nie są już tak „grzeczne” i nie pozostawiają
swojego argumentu w stanie nienaruszonym. Potrzebny jest im więc dostęp do obiektu,
który zezwalałby na jego modyfikację. Trudno oczekiwać, aby wszystkie funkcje miały do
tego prawo, zatem operator++() i operator--() powinny być co najmniej
zaprzyjaźnione z klasą. A najlepiej, żeby były po prostu jej metodami:

klasa klasa::operator++(); // lub operator--()

Druga sprawa jest nieco innej natury. Wiemy bowiem, że inkrementacja i dekrementacja
występuje w dwóch wersjach: przedrostkowej i przyrostkowej. Z zaprezentowanej wyżej
składni wynika jednak, że możemy przeładować tylko jedną z nich. Czy tak?…

Bynajmniej. Powyższa forma jest prototypem funkcji operatorowej dla
preinkrementacji, czyli dla przedrostkowego wariantu operatora. Nie znaczy to jednak,
że wersji postfiksowej nie można przeciążyć. Przeciwnie, jest to jak najbardziej możliwe
w ten oto sposób:

klasa klasa::operator++(int); // lub operator--(int)

Nie jest on zbyt elegancki i ma wszelkie znamiona „triku”, ale na coś trzeba było się
zdecydować… Dodatkowy argument typu int jest tu niczym innym, jak środkiem do
rozróżnienia obu typów in/dekrementacji. Nie pełni on poza tym żadnej roli, a już na
pewno nie trzeba go podawać podczas stosowania postfiksowego operatora ++ (--). Jest
on nadal jednoargumentowy, a dodatkowy parametr jest tylko mało satysfakcjonującym
wyjściem z sytuacji.

W początakach C++ tego nie było, gdyż po prostu niemożliwe było przeciążanie
przyrostkowych operatorów inkrementacji (dekrementacji). Później jednak stało się to
dopuszczalne - opuścimy już jednak zasłonę milczenia na sposób, w jaki to zrealizowano.

Tak samo jak w przypadku wszystkich operatorów zaleca się, aby zachowanie obu wersji
++ i -- było spójne z typami podstawowymi. Jeśli więc przeciążamy prefiksowy
operator++() lub (i) operator--(), to w wyniku powinien on zwracać obiekt już po
dokonaniu założonej operacji zwiększenia o 1.
Dla spokoju sumienia lepiej też przeciążyć obie wersje tych operatorów. Nie jest to
uciążliwe, bo możemy korzystać z już napisanych funkcji. Oto przykład dla CVector2D:

Zaawansowana obiektowość 427

// preinkrementacja
CVector2D CVector2D::operator++() { ++m_fX; ++m_fY; return *this; }

// postinkrementacja
CVector2D CVector2D::operator++(int)
{
 CVector2D vWynik = *this;
 ++(*this);
 return vWynik;
}

// (dekrementacja przebiega analogicznie)

Spostrzeżmy, że nic nie stoi na przeszkodzie, aby w postinkrementacji użyć operatora
preinkrementacji:

++(*this);

Przy okazji można dostrzec wyraźnie, dlaczego wariant prefiskowy jest wydajniejszy. W
odmianie przyrostkowej trzeba przecież ponieść koszt stworzenia tymczasowego obiektu,
aby go potem zwrócić jako rezultat.

Typowe operatory dwuargumentowe

Operatory dwuargumentowe, czyli binarne, przyjmują po argumenty. Powiedzmy sobie
od razu, że nie muszą być to operandy tych samych typów. Wobec tego nie ma czegoś
takiego, jak ogólna składnia prototypu funkcji operatora binarnego.

Ponownie jednak możemy mieć do czynienia z dwoma drogami implementacji takiej
funkcji:

 jako metody jednej z klas, na obiektach której pracuje operator. Jego jawne
wywołanie wygląda wówczas tak:

operand1.operator symbol(operand2)

 jako funkcji globalnej - zaprzyjaźnionej bądź nie:

operator symbol(operand1, operand2)

Obie linijki zastępują normalne użycie operatora w formie:

operand1 symbol operand2

O tym, która możliwość przeciążania jest lepsza, wspominałem już na początku. Przy
wyborze największą rolę odgrywają ewentualne niejawne konwersje - jeżeli chcemy, by
kompilator takowych dokonywał.
W bardzo uproszczonej formie można powiedzieć, że jeśli jednym z argumentów ma być
typ wbudowany, to funkcja operatorowa jest dobrym kandydatem na globalną (z
przyjaźnią bądź nie, zależnie od potrzeb). W innym przypadku możemy pozostać przy
metodzie klasy - lub kierować się innymi przesłankami, jak w poniższych przykładach…

Celem ujrzenia tych przykładów wróćmy do naszego wektora. Jak wiemy, na wektorach
w matematyce możemy dokonywać mnóstwa operacji. Nie wszystkie nas interesują, więc
tutaj zaimplementujemy sobie tylko:

 dodawanie i odejmowanie wektorów
 mnożenie i dzielenie wektora przez liczbę
 iloczyn skalarny

Zaawansowane C++ 428

Czy będzie to trudne? Myślę, że ani trochę. Zacznijmy od dodawania i odejmowania:

class CVector2D
{
 // (pomijamy szczegóły)

 // dodawanie
 friend CVector2D operator+(const CVector2D& vWektor1,
 const CVector2D& vWektor2)
 {
 return CVector2D(vWektor1.m_fX + vWektor2.m_fX,
 vWektor1.m_fY + vWektor2.m_fY);
 }

 // (analogicznie definiujemy odejmowanie: operator-())
};

Zastosowałem tu funkcję zaprzyjaźnioną - przypominam przy okazji, że nie jest to
metoda klasy CVector2D, choć pewnie na to wygląda. Umieszczenie jej wewnątrz bloku
klasy to po prostu zaakcentowanie faktu, że funkcja niejako należy do „definicji” wektora
- nie tej stricte programistycznej, ale matematycznej. Oprócz tego pozwala nam to na
zgrupowanie wszystkich funkcji związanych z wektorem w jednym miejscu, no i na
czerpanie zalet wydajnościowych, bo przecież operator+() jest tu funkcją inline.

Kolejny punkt programu to mnożenie i dzielenie przez liczbę. Tutaj opłaca się zdefiniować
je jako metody klasy:

class CVector2D
{
 // (pomijamy szczegóły)

 public:
 // (tu też)

 // mnożenie wektor * liczba
 CVector2D operator*(float fLiczba) const
 { return CVector2D(m_fX * fLiczba, m_fY * fLiczba); }

 // (analogicznie definiujemy dzielenie: operator/())
};

Dlaczego? Ano dlatego, że pierwszy argument ma być naszym wektorem, zatem
odpowiada nam fakt, iż będzie to this. Drugi operand deklarujemy jako liczbę typu
float.
Ale chwileczkę… Przecież mnożenie jest przemienne! W naszej wersji operatora * liczba
może jednak stać tylko po prawej stronie!
„Ha, a nie mówiłem! operator*() jako metoda jest niepoprawny - trzeba zdefiniować go
jako funkcję globalną!” Hola, nie tak szybko. Faktycznie, powyższa funkcja nie wystarczy,
ale to nie znaczy, że mamy ją od razu wyrzucać. Przy zastosowaniu funkcji globalnych
musielibyśmy przecież także napisać ich dwie sztuki:

CVector2D operator*(const CVector2D& vWektor, float fLiczba);
CVector2D operator*(float fLiczba, const CVector2D& vWektor);

Zaawansowana obiektowość 429

W każdym więc przypadku jeden operator*() nie wystarczy113. Musimy dodać jego
kolejną wersję:

class CVector2D
{
 // (pomijamy szczegóły)

 // mnożenie liczba * wektor
 friend CVector2D operator*(float fLiczba, const CVector2D& vWektor)
 { return vWektor * fLiczba; }
};

Korzystamy w niej z uprzednio zdefiniowanej. Kwestia, czy należy poprzednią wersję
operatora także zamienić na zwykłą funkcję zaprzyjaźnioną, jest otwarta. Jeżeli razi cię
niekonsekwencja (jeden wariant jako metoda, drugi jako zwykła funkcja), możesz to
zrobić.

Na koniec dokonamy… trzeciej definicji operator*(). Tym razem jednak będzie to
operator mnożenia dwóch wektorów - czyli iloczynu skalarnego (ang. dot product).
Przypomnijmy, że takie działanie jest po prostu sumą iloczynów odpowiadających sobie
współrzędnych wektora. Jego wynikiem jest więc pojedyncza liczba.
Ponieważ operator będzie działał na dwóch obiektach CVector2D, decyzja co do sposobu
jego zapisania nie ma znaczenia. Aby pozostać w zgodzie z tym ustalonym dla
operatorów dodawania i mnożenia, niech będzie to funkcja zaprzyjaźniona:

class CVector2D
{
 // (pomijamy szczegóły)

 // iloczyn skalarny
 friend float operator*(const CVector2D& vWektor1,
 const CVector2D& vWektor2)
 {
 return vWektor1.m_fX * vWektor2.m_fX,
 + vWektor1.m_fY * vWektor2.m_fY;
 }
};

Definiowanie operatorów binarnych jest więc bardzo proste, czyż nie? :D

Operatory przypisania

Teraz porozmawiamy sobie o pewnym wyjątkowym operatorze. Jest on unikalny pod
wieloma względami; mowa o operatorze przypisania (ang. assignment operator)
tudzież podstawienia.

Dość często nie potrzebujemy nawet jego wyraźnego zdefiniowania. Kompilator dla
każdej klasy generuje bowiem taki operator, o domyślnym działaniu. Taki automatyczny
operator dokonuje przypisania „składnik po składniku” - tak więc po jego zastosowaniu
przypisywane obiekty są sobie równe na poziomie wartości pól114. Taka sytuacja nam
często odpowiada - przykładowo, dla naszej klasy CVector2D będzie to idealne
rozwiązanie. Niekiedy jednak nie jest to dobre wyjście - za chwilę zobaczymy, dlaczego.
Powiedzmy jeszcze tylko, że domyślny operator przypisania nie jest tworzony przez
kompilator, jeżeli klasa:

113 Pomijam tu zupełnie fakt, że za chwilę funkcję tę zdefiniujemy po raz trzeci - tym razem jako iloczyn
skalarny dwóch wektorów.
114 W tym kopiowanie „pole po polu” wykorzystywane są aczkolwiek indywidualne operatory przypisania od klas,
które instancjujemy w postaci pól. Nie zawsze więc obiekty takie faktycznie są sobie doskonale równe.

Zaawansowane C++ 430

 ma składnik będący stałą (const typ) lub stałym wskaźnikiem (typ* const)
 posiada składnik będący referencją
 istnieje prywatny (private) operator przypisania:

 w klasie bazowej
 w klasie, której obiekt jest składnikiem naszej klasy

Nawet jeśli żaden z powyższych punktów nie dotyczy naszej klasy, domyślne działanie
operatora przypisania może nam nie odpowiadać. Wtedy należy go zdefiniować samemu
w ten oto sposób:

klasa& klasa::operator=(const klasa&);

Jest to najczęstsza forma występowania tego operatora, umożliwiająca kontrolę
przypisywania obiektów tego samego typu co macierzysta klasa. Możliwe jest aczkolwiek
przypisywanie dowolnego typu - czasami jest to przydatne.
Jest jednak coś, na co musimy zwrócić uwagę w pierwszej kolejności:

Operatory przypisania (zarówno prosty, jak i te złożone) muszą być zdefiniowane jako
niestatyczna funkcja składowa klasy, na której pracują.

Widać to z zaprezentowanej deklaracji. Nie widać z niej jednak, że:

Przeciążony operator przypisania nie jest dziedziczony.

Dlaczego - o tym mówiłem przy okazji wprowadzania samego dziedziczenia.

OK, wystarczy tej teorii. Czas zobaczyć definiowanie tego opratora w praktyce.
Wspomniałem już, że dla klasy CVector2D w zupełności wystarczy operator tworzony
przez kompilator. Mamy jednak inną klasę, dla której jest to wręcz niedopuszczalne
rozwiązanie. To CIntArray, nasza tablica liczb.
Dlaczego nie możemy skorzystać dla z niej z przypisania „składnik po składniku”? Z
bardzo prostego powodu: spowoduje to przecież skopiowanie wskaźników na tablice, a
nie samych tablic.
Zauważmy, że z tego samego powodu napisaliśmy dla CIntArray konstruktor kopiujący.
To nie przypadek.

Jeżeli klasa musi mieć konstruktor kopiujący, to najprawdopodobniej potrzebuje także
własnego operatora przypisania (i na odwrót).

Zajmijmy się więc napisaniem tego operatora. Aby to uczynić, pomyślmy, co powinno się
stać w takim przypisaniu:

CIntArray aTablica1(7), aTablica2(8);
aTablica1 = aTablica2;

Po jego dokonaniu obie tablice musza zawierać te same elementy, lecz jednocześnie być
niezależne - modyfikacja jednej nie może pociągać za sobą zmiany zawartości drugiej.
Operator przypisania musi więc:

 zniszczyć tablicę w obiekcie aTablica1
 zaalokować w tym obiekcie tyle pamięci, aby pomieścić zawartość aTablica2
 skopiować ją tam

Te trzy kroki są charakterystyczne dla większości implementacji operatora przypisania.
Dzielą one kod funkcji operatorowej na dwie części:

 część „destruktorową”, odpowiedzialną za zniszczenie zawartości obiektu, który
jest celem przypisania

Zaawansowana obiektowość 431

 część „konstruktorową”, zajmującą się kopiowaniem

Nie można jednak ograniczyć go do prostego wywołania destruktora, a potem
konstruktora kopiującego - choćby z tego względu, że tego drugiego nie da się tak po
prostu wywołać.

Dobrze, teraz to już naprawdę zaczniemy coś kodować :) Napiszemy operator przypisania
dla klasy CIntArray:

CIntArray& CIntArray::operator=(const CIntArray& aTablica)
{
 // usuwamy naszą tablicę
 delete[] m_pnTablica;

 // alokujemy tyle pamięci, aby pomieścić przypisywaną tablicę
 m_uRozmiar = aTablica.m_uRozmiar;
 m_pnTablica = new int [m_uRozmiar];

 // kopiujemy tablicę
 memcpy (m_pnTablica, aTablica.m_pnTablica, m_uRozmiar * sizeof(int));

 // zwracamy wynik
 return *this;
}

Nie jest on chyba niespodzianką - mamy tu wszystko, o czym mówiliśmy wcześniej. Tak
więc na początku zwalniamy tablicę w obiekcie, będącym celem przypisania. Później
alokujemy nową - na tyle dużą, aby zmieścić przypisywany obiekt. Wreszcie dokonujemy
kopiowania.

I pewnie jeszcze tylko jedna sprawa zaprząta twoją uwagę: dlaczego funkcja zwraca w
wyniku *this?…
Nie jest trudno odpowiedzieć na to pytanie. Po prostu realizujemy tutaj konwencję znaną
z typów podstawowych, mówiącą o rezultacie przypisania, Pozwala to też na
dokonywanie wielokrotnych przypisać, np. takich:

CIntArray aTablica1(4), aTablica2(5), aTablica3(6);
aTablica1 = aTablica2 = aTablica3;

Powyższy kod bedzie działał identycznie, jak dla typów podstawowych. Wszystkie tablice
staną się więc kopiami obiektu aTablica3.
Aby to osiągnąć, wystarczy trzymać się prostej zasady:

Operator przypisania powinien zwracać referencję do *this.

Wydawałoby się, że teraz wszystko jest już absolutnie w porządku, jeżeli chodzi o
przypisywanie obiektów klasy CIntArray. Niestety, znowu zawodzi nas czujność.
Popatrzmy na taki oto kod:

CIntArray aTablica;
aTablica = aTablica; // co się stanie z tablicą?

Być może przypisywanie obiektu do niego samego jest dziwne, ale jednak kompilator
dopuszcza je dla typów podstawowych, gdyż jest dla nich nieszkodliwe. Nie można tego
samego powiedzieć o naszej klasie i jej operatorze przypisania.
Wywołanie funkcji operator=() spowoduje bowiem usunięcie wewnętrznej tablicy w
obu obiektach (bo są one przecież jednym i tym samym bytem), a następnie próbę

Zaawansowane C++ 432

skopiowania tej usuniętej tablicy do nowej! Będziemy mogli mówić o szczęściu, jeśli
spowoduje to „tylko” błąd access violation i awaryjne zakończenie programu…

Przed taką ewentualnością musimy się więc zabezpieczyć. Nie jest to trudne i ogranicza
się do prostego sprawdzenia, czy nie mamy do czynienia z przypisywaniem obiektu do
jego samego. Robimy to tak:

klasa& klasa::operator=(const klasa& obiekt)
{
 if (&obiekt == this) return *this;

 // (reszta instrukcji)
}

albo tak:

klasa& klasa::operator=(const klasa& obiekt)
{
 if (&obiekt != this)
 {
 // (reszta instrukcji)
 }
}

W instrukcji if porównujemy wskaźniki: adres przypisywanego obiektu oraz this. W ten
wyłapujemy ich ewentualną identyczność i zapobiegamy katastrofie.

Operator indeksowania
Skoro jesteśmy już przy naszej tablicy, warto zająć się operatorem o wybitnie
tablicowym charakterze. Mówię oczywiście o nawiasach kwadratowych [], czyli
operatorze indeksowania (ang. subscript operator).

Operator ten definiujemy zwykle w taki oto sposób:

typ_wartości& klasa::operator[](typ_klucza);

Znowu widzimy, że jest to metoda klasy i po raz kolejny nie jest to przypadkiem:

Operator indeksowania musi być zdefiniowany jako niestatyczna metoda klasy.

To już drugi operator, którego dotyczy taki wymóg. Podpada pod niego jeszcze następna
dwójka, której przeciążanie omówimy za chwilę. Najpierw zajmijmy się operatorem
indeksowania.

Przede wszystkim chciałbyś pewnie wiedzieć, jak on działa. Nie jest to trudne; jeżeli
przeciążymy ten operator, to wyrażenie w formie:

obiekt[klucz]

zostanie przez kompilator zinterpretowane jako wywołanie w postaci:

obiekt.operator[](klucz)

Do funkcji operatorowej poprzez parametr trafia więc klucz, czyli wartość, jaką
podajemy w nawiasach kwadratowych. Co ciekawe, nie musi to być wcale wartość typu
int, ani nawet wartość liczbowa - równie dobrze sprawdza się tu całkiem dowolny typ

Zaawansowana obiektowość 433

danych, nawet napisy. Pozwala to tworzyć klasy tzw. tablic asocjacyjnych, znanych na
przykład z języka PHP115.

Ponieważ wspomniałem już o tablicach, zajmijmy się tą, która sami kiedyś napisaliśmy i
ciągle udoskonalamy. Nie da się ukryć, że CIntArray wiele zyska na przeciążeniu
operatora []. Jeżeli zrobimy to umiejętnie, będzie można używac go tak samo, jak
czynimy to w stosunku do zwykłych tablic języka C++.
Aby jednak to zrobić, musimy zwrócić uwagę na pewien szczególny fakt. W stosunku do
typów wbudowanych operator [] jest mianowicie bardzo elastyczny: w szczególności
pozwala on zarówno na odczyt, jak i modyfikację elementów tablicy:

int aTablica[10]
aTablica[7] = 100; // zapis
std::cout << aTablica[7]; // odczyt

Wyrażenie z operatorem [] może stać zarówno po lewej, jak i po prawej stronie znaku
przypisania. Tę cechę wypadałoby zachować we własnej jego wersji - znaczy to, że:

Operator indeksowania powinien w wyniku zwracać l-wartość.

Gwarantuje to, że jego użycie będzie zgodne z tym dla typów podstawowych.
Zaakcentowałem ten wymóg, pisząc w składni operatora referencję jako typ zwracanej
wartości. To właśnie spowoduje pożądane zachowanie.

Jeżeli nie możemy sobie pozwolić sobie na zwracanie l-wartości, to powinniśmy raczej
całkowicie zrezygnować z przeładowania operatora [] i poprzestać na metodach
dostępowych - takich jak Pobierz() i Ustaw() w klasie CIntArray.

Zabierzmy się teraz do pracy: napiszemy przeciążoną wersję operatora indeksowania dla
klasy CIntArray. Dzięki temu będziemy mogli manipulować elementami tablicy w taki
sam sposób, jaki znamy dla normalnych tablic. To będzie całkiem spory krok naprzód.
Osiągnięcie tego nie jest przy tym trudne - wręcz przeciwnie, u nas będzie niezwykle
proste:

int& CIntArray::operator[](unsigned uIndeks)
 { return m_pnTablica[uIndeks]; }

To wszystko! Zwrócenie referencji do elementu w prawidziwej, wewnętrznej tablicy
pozwoli na niczym nieskrępowany dostęp do jej zawartości. Teraz możemy w wygodny
sposób odczytywać i zapisywać liczby w naszej tablicy:

CIntArray aTablica(4);

aTablica[0] = 1;
aTablica[1] = 4;
aTablica[2] = 9;
aTablica[3] = 16;

for (unsigned i = 0; i < aTablica.Rozmiar(); ++i)
 std::cout << aTablica[i] << ", ";

Obecnie jest już ona funkcjonalnie identyczna z tablicą typu int[]. Możemy jednak
zacząć czerpać także pewne korzyści z napisania tej klasy. Skoro juz przeciążamy

115 Zazwyczaj lepszym rozwiązaniem jest skorzystanie z mapy STL, czyli klasy std::map. Omówimy ją, kiedy
przejdziemy do opisu klas pojemnikowych Biblioteki Standardowej.

Zaawansowane C++ 434

operator [], to zadbajmy, aby wykonywał po drodze jakąś pożyteczną czynność - na
przykład sprawdzał poprawność żądanego indeksu:

int& CIntArray::operator[](unsigned uIndeks)
 { return m_pnTablica[uIndeks < m_uRozmiar ? uIndeks : m_uRozmiar-1];
}

Przy takiej wersji funkcji nie grozi nam już błąd przekroczenia zakresu (ang. subscript out
of range). W razie podania nieprawidłowego numeru elementu, funkcja zwróci po prostu
odwołanie do ostatniej liczby w tablicy. Nie jest to najlepsze rozwiązanie, ale
przynajmniej zabezpiecza przed błędem czasu wykonania.

Znacznie lepszym wyjściem jest rzucenie wyjątku, który poinformuje wywołującego o
zainstaniałym problemie. O wyjątkach porozmawiamy sobie w następnym rozdziale.

Operatory wyłuskania
C++ pozwala na przeładowanie dwóch operatorów wyłuskania: -> oraz ->*. Nie jest to
częsta praktyka, a jeśli nawet jest stosowana, to przeciążaniu podlega zwykle tylko
pierwszy z tych operatorów. Możesz więc pominąć ten akapit, jeżeli nie wydaje ci się
konieczna znajomość sposobu przeładowywania operatorów wyłuskania.

Operator ->

Operator -> kojarzy nam się z wybieraniem składnika poprzez wskaźnik do obiektu.
Wygląda to np. tak:

CFoo* pFoo = new CFoo;
pFoo->Metoda();
delete pFoo;

Jeżeli jednak spróbowaliśmy użyć tego operatora w stosunku do samego obiektu (lub
referencji do niego):

CFoo Foo;
Foo->Metoda(); // !!!

to bez wątpienia otrzymalibyśmy komunikat o błędzie. Domyślnie nie jest bowiem
możliwe użycie operatora -> w stosunku do samych obiektów. Jest on aplikowalny tylko
do wskaźników.

Ale w C++ nawet ta żelazna może zostać nagięta. Możliwe jest bowiem nadanie
operatorowi -> znaczenia i dopuszczenie do jego używania razem ze zmiennymi
obiektowymi. Aby to uczynić, trzeba oczywiście przeciążyć ten operator.
Czynimy to taką oto funkcją:

jakaś_klasa* klasa::operator->();

Nie wygląda ona na skomplikowaną… ale znowu jest to metoda klasy! Tak więc:

Operator wyłuskania -> musi być niestatyczną funkcją składową klasy.

Powiedzmy sobie teraz, jak on działa. Nie jest przecież wcale takie oczywiste - choćby z
tego względu, że z niewiadomych na razie powodów operator zadowala się zaledwie
jednym argumentem… (Jest on rzecz jasna przekazywany poprzez wskaźnik this)
A oto i odpowiedź. Kiedy przeciążymy operator ->, wyrażenie w formie:

obiekt->składnik

Zaawansowana obiektowość 435

zostanie zmienione na:

(obiekt.operator->())->składnik

Mamy tu już jawne wywołanie operator->(), ale nadal pojawia się strzałka w swej
normalnej postaci. Otóż jest to konieczne; w tym kodzie -> stojący tuż przy składniku
jest już bowiem zwykłym operatorem wyłuskania ->. Zwykłym - to znaczy takim, który
oczekuje wskaźnika po swojej lewej stronie - a nie obiektu, jak operator przeciążony.
Wynika z tego wyrażenie:

obiekt.operator->()

musi reprezentować wskaźnik, aby całość działała poprawnie. Dlatego też funkcja
operator->() zwraca w wyniku typ wskaźnikowy. Jednocześnie nie interesuje się ona
tym, co stoi po prawej stronie strzałki - to jest już bowiem sprawą tego normalnego,
wbudowanego w kompilator operatora ->.
Podsumowując, można powiedzieć, że:

Funkcja operator->() dokonuje raczej zamiany obiektu na wskaźnik niż faktycznego
przedefiniowania znaczenia operatora ->.

Godne uwagi jest to, że wskaźnik zwracany przez tę funkcje wcale nie musi być
wskaźnikiem na obiekt jej macierzystej klasy. Może to być wskaźnik na dowolną klasę,
co zresztą obrazuje składnia funkcji.

Zastanawiasz się pewnie: „A po co mi przeciążanie tego operatora? Może po to, aby do
składników obiektu odnosić się nie tylko kropką (.), ale i strzałką (->)?” Odradzam
przeciążanie operatora w tym celu, bo to raczej ukryje błędy w kodzie niż ułatwi
programowanie.
Operator -> możemy jednak przeciążyć i będzie to przydatne przy pisaniu klas tzw.
inteligentnych wskaźników.

Inteligentny wskaźnik (ang. smart pointer) to klasa będąca opakowaniem dla
normalnych wskaźników i zapewniająca wobec nich dodatkowe, „inteligentne”
zachowanie.

Rodzajów tych inteligentnych zachowań jest doprawdy mnóstwo. Może to być kontrola
odwołań do wskaźnika - zarówno w prostej formie zliczania, jak i zaawansowanej
komunikacji z mechanizmem zajmującym się usuwaniem nieużywanych obiektów
(odśmiecaczem, ang. garbage collector). Innym zastosowaniem może być ochrona przed
wyciekami pamięci spowodowanymi nagłym opuszczeniem zakresu.

My napiszemy sobie najprostszą wersję takiego wskaźnika. Będzie on przechowywał
odwołanie do obiektu CFoo, które przekażemy mu w konstruktorze, i zwalniał je w swoim
destruktorze. Oto kod klasy wskaźnika:

class CFooSmartPtr
{
 private:
 // opakowywany, właściwy wskaźnik
 CFoo* m_pWskaznik;

 public:
 // konstruktor i destruktor
 CFooSmartPtr(CFoo* pFoo) : m_pWskaznik(pFoo) { }
 ~CFooSmartPtr() { if (m_pWskaznik) delete m_pWskaznik; }

Zaawansowane C++ 436

 //---

 // operator dereferencji
 CFoo operator*() { return *m_pWskaznik; }

 // operator wyłuskania
 CFoo* operator->() { return m_pWskaznik }
};

Ta klasa jest uboższą wersją std::auto_ptr z Biblioteki Standardowej. Służy ona do
bezpiecznego obchodzenia się z pamięcią w sytuacjach związanych z wyjątkami.
Omówimy ją sobie w następnym rozdziale (wrócimy tam zresztą także i do powyższej
klasy).

Co nam daje taki wskaźnik? Jeżeli go użyjemy, to zapobiegnie on wyciekowi pamięci,
który może zostać spowodowany przez nagłe opuszczenie zakresu (np. w wyniku wyjątku
- patrz następny rozdział). Jednocześnie nie umniejszamy sobie w żaden sposób wygody
kodowania - nadal możemy korzystać ze składni, do której się przyzwyczailiśmy:

CFooSmartPtr pFoo = new CFoo;

// wywołanie metody na dwa sposoby
pFoo->Metoda(); // naprawdę: (pFoo.operator->())->Metoda()
(*pFoo).Metoda(); // naprawdę: (pFoo.operator*()).Metoda()

Proszę tylko nie sądzić, że odtąd powinniśmy używać tylko takich sprytnych wskaźników.
O nie, one nie są panaceum na wszystko i mają całkiem konkretne zastosowania. Nie
należy ich traktowac jako złoty środek - szczególnie jako środek przeciwko
zapomnialskiemu niezwalnianiu zaalokowanej pamięci.

Ciekawostka: operator ->*

Drugi z operatorów wyłuskania, ->*, jest bardzo rzadko używany. Nie dziwi więc, że
sytuacje, w których jest on przeciążany, są wręcz sporadyczne. Niemniej, skoro już
mówimy o przeciążaniu, to możemy wspomnieć także o nim.

Wpierw przydałoby się aczkolwiek, abyś znał mechanizm wskaźników na składowe klasy,
opisany w następnym podrozdziale.

->* jest używany do wybierania składników obiektu poprzez wskaźniki do składowych.
Podobnie jak ->, nie ma on predefiniowanego znaczenia dla zmiennych obiektowych, a
jedynie dla wskaźników na obiekty. Na tym jednak podobieństwa się kończą.

->* jest przeciążany jako operator binarny dla konkretnego zestawu dwóch danych,
które stanowią:

 referencja do obiektu (argument lewostronny)
 wskaźnik do składowej klasy (argument prawostronny)

Nie ma też wymogu, aby funkcja operator->*() była funkcją składową klasy. Może być
równie dobrze funkcją globalną.

Jak więc przeciążyć ten operator? Ponieważ, jak mówiłem, definiujemy go dla
konkretnego typu składnika, postać prototypu funkcji operator->*() różni się dla
wskaźników do pól oraz do metod klasy.
W pierwszym przypadku składnia przeciążenia wygląda mniej więcej tak:

typ_pola& klasa::operator->*(typ_pola klasa::*);
typ_pola& operator->*(klasa&, typ_pola klasa::*);

Zaawansowana obiektowość 437

Jest chyba dość logiczne, że typ docelowego pola oraz typ zwracany przez funkcję
operatorową musi się zgadzać. Dość podobnie jest dla metod:

zwracany_typ klasa::operator->*(zwracany_typ (klasa::*)([parametry]));
zwracany_typ operator->*(klasa&, zwracany_typ (klasa::*)([parametry]));

Tutaj funkcja musi zwracać ten sam typ, co metoda klasy, na której wskaźnik
przyjmujemy.

Jak wygląda przeciążanie w praktyce? Spójrzmy na przykład na taką oto klasę:

class CFoo
{
 public:
 int nPole1, nPole2;

 //---

 // operator ->*
 int& operator->*(int CFoo::*) { return nPole1; }
};

Po takim redefiniowaniu operatora, wszystkie wskaźniki na składowe typu int w klasie
CFoo będą „prowadziły” tylko i wyłącznie do pola nPole1.

Operator wywołania funkcji
Czas na kolejny operator, chyba jeden z bardziej interesujących. To operator
wywołania funkcji (ang. function-call operator), czyli nawiasy okrągłe ().

Nawiasy mają jeszcze dwa znaczenia w C++: grupują one wyrażenia oraz pozwalają
wykonywać rzutowanie (w stylu C lub funkcyjnym). Żadnego z tych pozostałych znaczeń
nie możemy jednak zmieniać. Przeciążeniu może ulec tylko operator wywołania funkcji.

Tak jest, on także może być przeciążony. O czym w tym przypadku należy pamiętać?…
Otóż:

Operator wywołania funkcji może być zdefiniowany tylko jako niestatyczna funkcja
składowa klasy.

Jest to ostatni rodzaj operator, którego dotyczy to ograniczenie. Przypominam, że
pozostałymi są: operatory przypisania, indeksowania oraz wyłuskania (->).

Na tym zastrzeżeniu kończą się jednak jakiegolwiek obostrzeżenia nakładane na to
przeciążenie. operator()() (tak, dwie pary nawiasów) może być bowiem funkcją
przyjmującą dowolne argumenty i zwracającą dowolny typ wartości:

zwracany_typ klasa::operator()([parametry]);

To jedyny operator, który może przyjmować każdą ilość argumentów. To zresztą
zrozumiałe: skoro normalnie służy on do wywoływania funkcji, mogących mieć przecież
dowolną liczbę parametrów, to i jego przeciążona wersja nie powinna nakładać
ograniczeń w tym zakresie. Podobnie dzieje się, jeżeli chodzi o typ zwracanej wartości.
Oznacza to również, że możliwe jest zdefiniowanie wielu wersji przeciążonego operatora
(). Muszą one jednak być rozróżnialne w tym sam sposób, jak przeładowane funkcje.
Powinny więc posiadać inną liczbę, kolejność i/lub typy parametrów.

Zaawansowane C++ 438

Do czego może nam przydać się taka potęga i elastyczność? Możliwości jest bardzo wiele,
może do nich należeć np. wybór elementu tablicy wielowymiarowej. Do ciekawszych
zastosowań należy jednak tworzenie tzw. obiektów funkcyjnych (ang. function
objects) - funktorów.
Funktory są to obiekty przypominające zwykłe funkcje, jednak różnią się tym, iż mogą
posiadać stan. Mają go, ponieważ w rzeczywistości są to klasy, które zawierają jakieś
publiczne pola, zaś składnię wywołania funkcji uzyskują za pomocą przeciążenia
operatora ().
Oto prosty przykład - funktor obliczający średnią arytmetyczną z podanych liczb i
aktualizujący wynik z każdym kolejnym wywołaniem:

class CAverageFunctor
{
 private:
 // aktualny wynik
 double m_fSrednia;

 // ilość wywołań
 unsigned m_uIloscLiczb;

 public:
 // konstruktor
 CAverageFunctor() : m_fSrednia(0.0), m_uIloscLiczb(0) { }

 //---

 // funkcja resetująca stan funktora
 void Reset() { m_fSrednia = m_uIloscLiczb = 0; }

 //---

 // operator wywołania funkcji - oblicza średnią
 double operator()(double fLiczba)
 {
 // liczymy nową średnią, uwzględniającą dodaną liczbę
 // oraz aktualizujemy zmienną przechowują ilość liczb
 // wszystko w jednym wyrażeniu - za to kochamy C++ ;D
 m_fSrednia = ((m_fSrednia * m_uIloscLiczb) + fLiczba)
 / m_uIloscLiczb++);

 // zwracamy nową średnią
 return m_fSrednia;
 }
};

Użycie tego obiektu wygląda tak:

CAverageFunctor Srednia;

Srednia(4); // średnia z 4
Srednia(18.5); // średnia z 4 i 18.5
Srednia(-6); // średnia z 4, 18.5 i -6
Srednia(42); // średnia z 4, 18.5, -6 i 42
Srednia.Reset(); // zresetowanie funktora, wartość przepada

Srednia(56); // średnia z 56
Srednia(90); // średnia z 56 i 90
Srednia(4 * atan(1)); // średnia z 56, 90 i pi
std::cout << Srednia(13); // wyświetlenie średniej z 56, 90, pi i 13

Zaawansowana obiektowość 439

Naturalnie, matematycy złapaliby się za głowę widząc taki algorytm obliczania średniej.
Bardzo skutecznie prowadzi on bowiem to kumulowania błędów związanych z
niedokładnym zapisem liczb w komputerze. Jest to jednak całkiem dobra ilustracja
koncepcji funkctora.
W Bibliotece Standardowej mamy całkiem sporo klas funktorów, z którymi będziesz mógł
się wkrótce zapoznać.

Operatory zarządzania pamięcią
Oto kolejne dwa wyjątkowe operatory: new i delete. Jak doskonale wiemy, służą one do
dynamicznego tworzenia w pamięci operacyjnej (a dokładniej na stercie) zmiennych,
tablic i obiektów. To może wydawać się niemal niesamowite, ale je także możemy
przeładować!

Wpierw jednak muszę przypomnieć, że praca tych operatorów nie ogranicza się w
rzeczywistości tylko do przydzielenia pamięci (new) i jej zwolnienia (delete). Jesteśmy
świadomi, że może za tym iść także zainicjowanie lub sprzątniecie alokowanego obszaru
pamięci. Oznacza to na przykład wywołanie konstruktora (new) i destruktora (delete)
klasy, której obiekt tworzymy.
Widzimy więc, że oba operatory wykonują więcej niż jedną czynność. Zmodyfikować
możemy jednak tylko jedną z nich:

Przeciążone operatory new i delete mogą jedynie zmienić sposób alokowania i
zwalniania pamięci. Nie można ingerować w inicjalizację (wywołanie konstruktorów) i
sprzątanie (przywołanie destruktorów), które temu towarzyszą.

Zauważmy, że fakt ten niweluje dla nas różnice między operatorem new a new[] oraz
delete i delete[]. Na poziomie alokacji (zwalniania) pamięci niczym się one bowiem nie
różnią. Dlatego też dla potrzeb przeciążania mówimy tylko o operatorach new i delete,
mając jednak w pamięci tę uwagę.

Czy to, że kontrolujemy jedynie zarządzanie pamięcią znaczy, że przeciążanie tych
operatorów nie jest interesujące?… Przeciwnie - alokacja i zwalnianie pamięci to są
właśnie te czynności, które najbardziej nas interesują. Napisanie własnego algorytmu ich
wykonywania, albo chociaż śledzenia tych standardowych, jest podstawą działania tak
zwanych menedżerów pamięci (ang. memory managers). Są to mechanizmy
zajmujące się kontrolą wykorzystania pamięci operacyjnej, zapobiegające zwykle jej
wyciekom i często optymalizujące program.

Stworzenie dobrego menedżera pamięci nie jest oczywiście proste, jednak przeciążenie
new i delete to bardzo łatwa czynność. Aby ją wykonać, spójrzmy na prototypy obu
funkcji - operator new() i operator delete():

void* [klasa::]operator new(size_t);
void [klasa::]operator delete(void*);

To nie pomyłka: funkcje te mają ściśle określone listy parametrów oraz typy zwracanych
wartości. W tym względzie jest to wyjątek wśród wszystkich operatorów.
operator new() przyjmuje jeden parametr typu size_t - jest to ilość bajtów, jaka ma
być zaalokowana. W zamian powinien on zwrócić void* - jak można się domyślać:
wskaźnik do przydzielonego obszaru pamięci o żądanym rozmiarze.
Z kolei funkcja dla operatora delete potrzebuje tylko parametru, będącego wskaźnikiem.
Jest to rzecz jasna wskaźnik do obszaru pamięci, który ma być zwolniony. W zamian
funkcja zwraca void, czyli nic. Oczywiste.

Zaawansowane C++ 440

Mniej oczywista jest opcjonalna fraza klasa::. Owszem, sugeruje ona, że obie funkcje
mogą być metodami klasy lub funkcjami globalnymi. W przeciwieństwie do pozostałych
operatorów ma to jednak znaczenie: new i delete jako metody mają bowiem inne
znaczenie niż new i delete - funkcje globalne. Mamy mianowicie możliwość lokalnego
przeciążenia obydwu operatorów, jak również zdefiniowania ich nowych, globalnych
wersji. Omówimy sobie oba te przypadki.

Lokalne wersje operatorów

Operatory new i delete możemy przeciążyć w stosunku do pojedynczej klasy. W takiej
sytuacji będą one używane do alokowania i (lub) zwalniania pamięci dla obiektów
wyłącznie tej klasy.
Może to się przydać np. do zapobiegania fragmentacji pamięci, spowodowanej częstym
tworzeniem i zwalnianiem małych obiektów. W takim przypadku operator new może
zarządzać większym kawałkiem pamięci i wirtualnie „odcinać” z niego mniejsze
fragmenty dla kolejnych obiektów. delete dokonywałby wtedy tylko pozornej dealokacji
pamięci.

Zobaczmy zatem, jak odbywa się przeładowanie lokalnych operatorów new i delete. Oto
prosty przykład, korzystający w zasadzie ze standardowych sposób przydzielania i
oddawania pamięci, ale jednocześnie wypisujący informacje o tych czynnościach:

class CFoo
{
 public:
 // new
 void* operator new(size_t cbRozmiar)
 {
 // informacja na konsoli
 std::cout << "Alokujemy " << cbRozmiar << " bajtow";

 // alokujemy pamięć i zwracamy wskaźnik
 return ::new char [cbRozmiar];
 }

 // delete
 void operator delete(void* pWskaznik)
 {
 // informacja
 std::cout << "Zwalniamy wskaznik " << pWskaznik;

 // usuwamy pamięć
 ::delete pWskaznik;
 }
};

Kiedy teraz spróbujemy stworzyć dynamicznie obiekt klasy CFoo:

CFoo* pFoo = new CFoo;

to odbędzie się to z jednoczesnym powiadomieniem o tym fakcie przy pomocy strumienia
wyjścia. Analogicznie będzie w przypadku usunięcia:

delete pFoo;

Nadal jednak możemy skorzystać z normalnych wersji new i delete - wystarczy
poprzedzić ich nazwy operatorem zakresu:

CFoo* pFoo = ::new CFoo;

Zaawansowana obiektowość 441

// ...
::delete pFoo;

Tak też robimy w ciele naszych funkcji operatorowych. Mamy dzięki temu pewność, że
wywołujemy standardowe operatory i nie wpadamy w pułapkę nieskończonej rekurencji.
W przypadku lokalnych operatorów nie jest to bynajmniej konieczne, ale warto tak czynić
dla zaznaczenia faktu korzystania z wbudowanych ich wersji.

Globalna redefinicja

new i delete możemy też przeładować w sposób całościowy i globalny. Zastąpimy w ten
sposób wbudowane sposoby alokacji pamięci dla każdego użycia tych operatorów.
Wyjątkiem będzie tylko jawne poprzedzenie ich operatorem zakresu, ::.

Jak dokonać takiego fundamentalnego przeciążenia? Bardzo podobnie, jak to robiliśmy w
„trybie lokalnym”. Tym razem nasze funkcje operator new() i operator delete() będa
po prostu funkcjami globalnymi:

// new
void* operator new(size_t cbRozmiar)
{
 // informacja na konsoli
 std::cout << "Alokujemy " << cbRozmiar << " bajtow";

 // alokujemy pamięć i zwracamy wskaźnik
 return ::new char [cbRozmiar];
}

// delete
void operator delete(void* pWskaznik)
{
 // informacja
 std::cout << "Zwalniamy wskaznik " << pWskaznik;

 // usuwamy pamięć
 ::delete pWskaznik;
}

Ponownie pełnią one u nas wyłącznie funkcję monitorującą, ale to oczywiście nie jest
jedyna możliwość. Wszystko zależy od potrzeb i fantazji.
Koniecznie zwróćmy jeszcze uwagę na sposób, w jaki w tych przeciążanych funkcjach
odwołujemy się do oryginalnych operatorów new i delete. Używamy ich w formie ::new i
::delete, aby omyłkowo nie użyć własnych wersji… które przecież właśnie piszemy!
Gdybyśmy tak nie robili, spowodowałoby to wpadnięcie w niekończący się ciąg wywołań
rekurencyjnych. Pamiętajmy zatem, że:

Jeśli w treści przeciążonych, globalnych operatorów new i delete musimy skorzystać z ich
standardowej wersji, koniecznie należy użyć formy ::new i ::delete.

Z domyślnych wersji operatorów pamięci możemy też korzystać świadomie nawet po ich
przeciążeniu:

int* pnZmienna1 = new int; // przeciażona wersja
int* pnZmienna2 = ::new int; // oryginalna wersja

Naturalnie, trzeba wtedy zdawać sobie sprawę z tego przeciążenia i na własne życzenie
użyć operatora ::. To gwarantuje nam, że nikt inny, jak tylko kompilator będzie
zajmował się zarządzaniem pamięci.

Zaawansowane C++ 442

Nie wpadajmy jednak w paranoję. Jeżeli korzystamy z kodu, w którym
zaimplementowano inny sposób nadzorowania pamięci, to nie należy bez wyraźnego
powodu z niego rezygnować. W końcu po to ktoś (może ty?) pisał ów mechanizm, żeby
był on wykorzystywany w praktyce, a nie z premedytacją omijany.

Cały czas mniej lub bardziej subtelnie sugeruję, że operatory new i delete należy
przeciążać razem. Nie jest to jednak formalny wymóg języka C++ i jego kompilatorów.
Zwykle jednak tak właśnie trzeba czynić, aby wszystko działało poprawnie - zwłaszcza,
jeśli stosujemy inny niż domyślny sposób alokacji pamięci.

Operatory konwersji
Na koniec przypomnę jeszcze o pewnym mechanizmie, który w zasadzie nie zalicza się do
operatorów, ale używa podobnej składni i dlatego także nazywamy go operatorami.
Rzecz jasna są to operatory konwersji.

Składnia takich operatorów to po prostu:

klasa::operator typ();

Jak doskonale pamiętamy, celem funkcji tego typu jest zmiana obiektu klasy do danego
typu. Przy jej pomocy kompilator może dokonywać niejawnych konwersji.
Innym (lecz nie zawsze stosowalnym) sposobem na osiągnięcie podobnych efektów jest
konstruktor konwertujący. O obu tych drogach mówiliśmy sobie wcześniej.

Wskazówki dla początkującego przeciążacza
Przeciążanie operatorów jest wspaniałą możliwością języka C++. Nie ma jednak żadnego
przymusu stosowania jej - dość powiedzieć, że do tej pory świetnie radziliśmy sobie bez
niej. Nie ma aczkolwiek powodu, aby ją całkiem odrzucać - trzeba tylko nauczyć się ją
właściwie wykorzystywać. Temu właśnie służy ten paragraf.

Zachowujmy sens, logikę i konwencję
Jakkolwiek język C++ jest znany ze swej elastyczności, przez lata jego użytkowania
wypracowano wiele reguł, żądzących między innymi działaniem operatorów. Chcąc
przeciążać operatory dla własnych klas, należałoby ich w miarę możliwości przestrzegać -
zwłaszcza, że często są one zbieżne ze zdrowym rozsądkiem.

Podczas przeładowania operatorów trzeba po prostu zachować ich pierwotny sens. Jak to
zrobić?…

Symbole operatorów powinny odpowiadać ich znaczeniom

W pierwszej kolejności należy powstrzymać się od radosnej twórczości, sprzecznej z
wszelką logiką. Może i zabawne będzie użycie operatora == jako symbolu dodawania, ^ w
charakterze operatora mnożenia i & jako znaku odejmowania. Pomyśl jednak, co w takiej
sytuacji oznaczać będzie zapis:

if (Foo ^ Bar & (Baz == Qux) == Thud)

Łagodnie mówiąc: nie jest to zbyt oczywiste, prawda? Pamiętaj zatem, żeby symbole
operatorów odpowiadały ich naturalnym znaczeniom, a nie tworzyły uciążliwe dla
programisty rebusy.

Zapewnijmy analogiczne zachowania jak dla typów wbudowanych

Wszystkie operatory posiadają już jakieś zdefiniowane działanie dla typów wbudowanych.
Dla naszych klas może ono całkiem różnić się od tego początkowego, ale dobrze byłoby,
aby przynajmniej zależności między poszczególnymi operatorami zostały zachowane.

Zaawansowana obiektowość 443

Co to znaczy? Zauważmy na przykład, że trzy poniższe instrukcje:

int nA;

// o te
nA = nA + 1;
nA += 1;
nA++;

dla typu int (i dla wszystkich podstawowych typów) są w przybliżeniu równoważne.
Dobrze byłoby, ale dla naszych przeładowanych operatorów te „tożsamości” zostały
zachowane.
Podobnie jest dla typów wskaźnikowych:

CFoo* pFoo = new CFoo;

// instrukcje robiące to samo
pFoo->Metoda();
(*pFoo).Metoda();
// ewentualnie jeszcze pFoo[0].Metoda()

delete pFoo;

Jeśli tworzymy klasy inteligentnych wskaźników, należałoby wobec tego przeciążyć dla
nich operatory ->, * i ewentualnie [] (a także operator bool(), aby można je było
stosować w wyrażeniach warunkowych).

Nie przeciążajmy wszystkiego
Na koniec jeszcze jedna, „oczywista” uwaga: nie ma sensu przeciążać wszystkich
operatorów - przynajmniej do chwili, gdy nie piszemy klasy symulującej wszystkie typy w
C++. Jeżeli mimo wszystko wykonamy tę niepotrzebną zwykle pracę i udostępnimy
naszą pięknie opakowaną klasę innym programistom, najprawdopodobniej zignorują oni
te przeciążenia, które nie będą miały dla nich sensu. A jeśli sami używać będziemy takiej
klasy, to zapewne szybko sami przekonamy się, że uporczywe używanie operatorów nie
ma zbytniego sensu. Drogą naturalnej selekcji w obu przypadkach zostaną więc w użyciu
tylko te operatory, które są naprawdę potrzebne.
Nie powinniśmy jednak czekać, aż życie zweryfikuje nasze przypuszczenia, bo
przeciążając niepotrzebnie operatory, stracimy mnóstwo czasu. Lepiej więc od razu
zastanowić się, co warto przeładować, a czego nie. Kierujmy się w tym jedną, prostą
zasadą:

Symbol operatora powinien kojarzyć się z czynnością przez niego wykonywaną.

Zastosowanie się do tej reguły likwiduje zazywczaj większość niepewności.

Zakończyliśmy w ten sposób poznawanie przydatnej techniki programowania, jaką jest
przeciążanie operatorów dla naszych własnych klas.

W następnym podrozdziale, dla odmiany, zapoznamy się ze znacznie mniej przydatną
techniką ;)) Chodzi o wskaźniki do składników klasy. Mimo tej mało zachęcającej
zapowiedzi, zapraszam do przeczytania tego podrozdziału.

Zaawansowane C++ 444

Wskaźniki do składowych klasy
W ostatnim rozdziale części pierwszej poznaliśmy zwykłe wskaźniki języka C: pokazujące
na zmienne oraz na funkcje. Tutaj zajmiemy się pewną nowością, jaką do wskaźników
wprowadziło programowanie obiektowe: wskaźnikami do składowych (ang. pointers-
to-members).

Ten podrozdział nie jest niezbędny do kontynuowania nauki języka C++. Jeżeli
stwierdzisz, że jest ci na razie niepotrzebny lub za trudny, możesz go opuścić. Zalecam to
szczególnie przy pierwszym czytaniu kursu.

Podobnie jak dla normalnych wskaźników, wskaźniki na składowe także mogą odnosić się
do danych (pól) oraz do kodu (metod). Omówimy sobie osobno każdy z tych rodzajów
wskaźników.

Wskaźnik na pole klasy
Wskaźniki na pola klas są obiektowym odpowiednikiem zwykłych wskaźników na
zmienne, jakie doskonale znamy. Funkcjonują one jednak nieco inaczej. Jak? O tym
traktuje niniejsza sekcja.

Wskaźnik do pola wewnątrz obiektu
Przypomnijmy, jak wygląda zwykły wskaźnik - na przykład na typ int:

int nZmienna;
int* pnZmienna = &nZmienna;

Zadeklarowany tu wskaźnik pnZmienna został ustawiony na adres zmiennej nZmienna.
Wobec tego poniższa linijka:

*pnZmienna = 14;

spowoduje przypisanie liczby 14 do nZmienna. Stanie się to za pośrednictwem wskaźnika.

Wskaźnik na obiekt
To już znamy. Wiemy też, że możemy tworzyć także wskaźniki do obiektów swoich
własnych klas:

class CFoo
{
 public:
 int nSkladnik;
};

CFoo Foo;
CFoo* pFoo = &Foo;

Przy pomocy takich wskaźników możemy odnosić się do składników obiektu. W tym
przypadku możemy na przykład zmodyfikować pole nSkladnik:

pFoo->nSkladnik = 76;

Sprawi to rzecz jasna, że zmieni się pole nSkladnik w obiekcie Foo - jego adres ma
bowiem wskaźnik pFoo. Wypisanie wartości pola tego obiektu:

Zaawansowana obiektowość 445

std::cout << Foo.nSkladnik;

uświadomi więc nam, że ma ono wartość 76. Ustawiliśmy ją bowiem za pośrednictwem
wskaźnika. To też już znamy dobrze.

Pokazujemy na składnik obiektu
Czas więc na nowość. Pytanie brzmi: czy zwykłym wskaźnikiem można odnieść się do
pola we wnętrzu obiektu?…

A owszem. Wystarczy pomyśleć, że wyrażenie:

Foo.nSkladnik

jest l-wartością typu int, zatem można pobrać jej adres zapisać we wskaźniku typu
int*:

int* pnSkladnikFoo = &(Foo.nSkladnik);

Powiedzmy jeszcze wyraźnie, co tu zrobiliśmy. Otóż pobraliśmy adres konkretnego pola
(nSkladnik) w konkretnym obiekcie (Foo). Jest to najzupełniej możliwe, bo przecież
obiekt reprezentują w pamięci jego pola. Skoro zaś możemy odnieść się do obiektu jako
całości, to możemy także pobrać adres jego pól.
Jeśli teraz wypiszemy wartośc pola przy pomocy tego wskażnika:

std::cout << *pnSkladnikFoo;

to zobaczymy oczywiście 76, jako że nic nie zmieniliśmy od poprzedniego akapitu.

Muszę jeszcze powiedzieć, że manewr z pobraniem adresu pola w obiekcie powiedzie się
tylko wtedy, jeżeli to pole jest publiczne. W innej sytuacji wyrażenie Foo.nSkladnik
zostanie odrzucone przez kompilator.
Zawsze można aczkolwiek pobierać adresy pól wewnątrz klasy (np. w jej metodach) oraz
w funkcjach i klasach zaprzyjaźnionych. Te obszary kodu mają bowiem dostęp do
wszystkich składników - także niepublicznych i mogą z nimi robić cokolwiek: na przykład
pobierać ich adresy w pamięci.

Wskaźnik do pola wewnątrz klasy
Kontynuujemy naszą zabawę. Teraz weźmy pod lupę trochę inną klasę, z którą już
mnóstwo razy się spotykaliśmy - wektor:

struct VECTOR3 { float x, y, z; };

Formalnie jest to struktura, ale jak wiemy, w C++ różnica między strukturą a klasą jest
drobnostką i sprowadza się do domyślnej widoczności składników. Dla słówka struct jest
to public, więc nasze trzy pola są tu publiczne bez konieczności jawnego określania tego
faktu.

Mając klasę (albo strukturę - jak kto woli) z trzema polami możemy ją naturalnie
instancjować (czyli stworzyć jej obiekt):

VECTOR3 Wektor;

Następnie możemy też pobrać adres jej pola - którejś ze współrzędnych:

float* pfX = &Wektor.x;

Zaawansowane C++ 446

Miejsce pola w definicji klasy
Przyjrzyjmy się jednak definicji klasy. Mamy w niej trzy takie same pola, następujące
jedno po drugim. Pierwsze (x), drugie (y) i trzecie (z)… Jeżeli ci to pomoże, możesz
nawet wyobrazić sobie nasz wektor jako trójelementową tablicę, w której nazwaliśmy
poszczególne elementy (pola). Zamiast odwoływać się do nich poprzez indeksy,
potrafimy posłużyć się ich nazwami (x, y, z).
Porównanie z tablicą jest jednak całkiem trafne - choćby dlatego, że nasze pola są
ułożone w pamięci w kolejności występowania w definicji klasy. Najpierw mamy więc x,
potem y, a dalej z. Polu x możemy więc przypisać „indeks” 0, y - 1, a dla z „indeks” 2.

Słowo ‘indeks’ biorę tu w cudzysłów, bo jest to tylko takie pojęcie pomocnicze. Wiesz, że
w przypadku tablic indeksy są ostatecznie zamieniane na wskaźniki w ten sposób, że do
adresu całej tablicy (czyli jej pierwszego elementu) dodawany jest indeks:

int* aTablica[5];

// te dwie linijki są równoważne
aTablica[3] = 12;
*(aTablica + 3) = 12;

Dodawanie, jakie występuje w ostatnim wierwszu, nie jest dosłownym dodaniem trzech
bajtów do wskaźnika aTablica, jest przesunięciem się o trzy elementy. Właściwie więc
kompilator zamienia to na:

aTablica + 3 * sizeof(int)

i tak oto uzyskuje adres czwartego elementu tablicy (o indeksie 3). Spójrzmy na
dodawane wyrażenie:

3 * sizeof(int)

Określa ono przesunięcie (ang. offset) elementu tablicy o indeksie 3 względem jej
początku. Znając tę wartość kompilator oraz adres pierwszego elementu tablicy,
kompilator może wyliczyć pozycję w pamięci dla elementu numer 3.

Dlaczego jednak o tym mówię?… Otóż bardzo podobna operacja zachodzi przy
odwoływaniu się do pola w obiekcie klasy (struktury). Kiedy bowiem odnosimy się
jakiegoś pola w ten oto sposób:

Wektor.y

to po pierwsze, kompilator zamienia to wyrażenie tak, aby posługiwać się wskaźnikami,
bo to jest jego „mową ojczystą”:

(&Wektor)->y

Następnie stosuje on ten sam mechanizm, co dla elementów tablic. Oblicza więc adres
pola (tutaj y) według schematu:

&Wektor + offset_pola_y

W tym przypadku sprawa nie jest aczkolwiek taka prosta, bo definicja klasy może
zawierać pola wielu różnych typów o róznych rozmiarach. Offset nie będzie więc mógł być
wyliczany tak, jak to się dzieje dla elementu tablicy. On musi być znany już wcześniej…
Skąd?

Z definicji klasy! Określając naszą klasę w ten sposób:

Zaawansowana obiektowość 447

struct VECTOR3 { float x, y, z; };

zdefiniowaliśmy nie tylko jej składniki, ale też kolejność pól w pamięci. Oczywiście nie
musimy podawać dokładnych liczb, precyzujących położenie np. pola z względem obiektu
klasy VECTOR3. Tym zajmie się już sam kompilator: przeanalizuje całą definicję i dla
każdego pola wyliczy sobie oraz zapisze gdzieś odpowiednie przesunięcie.

I tę właśnie liczbę nazywamy wskaźnikiem na pole klasy:

Wskaźnik na pole klasy jest określeniem miejsca w pamięci, jakie zajmuje pole
danej klasy, względem początku obiektu w pamięci.

W przeciwnieństwie do zwykłego wskaźnika nie jest to więc liczba bezwzględna. Nie
mówi nam, że tu-i-tu znajduje się takie-a-takie pole. Ona tylko informuje, o ile bajtów
należy się przesunąć, poczynając od adresu obiektu, a znaleźć w pamięci konkretne pole
w tym obiekcie.

Może jeszcze lepiej zrozumiesz to na przykładzie kodu. Jeżeli stworzymy sobie obiekt
(statycznie, dynamicznie - nieważne) - na przykład obiekt naszego wektora:

VECTOR3* pWektor = new VECTOR3;

i pobierzemy adres jego pola - na przykład adres pola y w tym obiekcie:

int* pnY = &pWektor->y;

to różnica wartości obu wskaźników (adresów) - na obiekt i na jego pole:

pnY - pWektor

bedzie niczym innym, jak właśnie offsetem tegoż pola, czyli jego miejscem w definicji
klasy! To jest ten rodzaj wskaźników C++, jakim się chcemy tutaj zająć.

Pobieranie wskaźnika
Zauważmy, że offset pola jest wartością globalną dla całej klasy. Każdy bowiem obiekt
ma tak samo rozmieszczone w pamięci pola. Nie jest tak, że wśród kilku obiektów naszej
klasy VECTOR3 jeden ma pola ułożone w kolejności x, y, z, drugi - y, z, x, trzeci - z, y, x,
itp. O nie, tak nie jest: wszystkie pola są poukładane dokładnie w takiej kolejności,
jaką ustaliliśmy w definicji klasy, a ich umiejscowienie jest dla każdego obiektu
identyczne.

Uzyskanie offsetu danego pola, czyli wskaźnika na pole klasy, może więc odbywać się bez
konieczności posiadania obiektu. Wystarczy tylko podać, o jaką klasę i o jakie pole nam
chodzi, np.:

&VECTOR3::y

Powyższe wyrażenie zwróci nam wskaźnik na pole y w klasie VECTOR3. Powtarzam
jeszcze raz (abyś dobrze to zrozumiał), iż będzie to ilość bajtów, o jaką należy się
przesunąć poczynając od adresu jakiegoś obiektu klasy VECTOR3, aby natrafić na pole y
tegoż obiektu. Jeżeli jest to dla ciebie zbyt trudne, to możesz mysleć o tym wskaźniku
jako o „indeksie” pola y w klasie VECTOR3.

Zaawansowane C++ 448

Deklaracja wskaźnika na pole klasy
No dobrze, pobranie wskaźnika to jedno, ale jego zapisanie i wykorzystanie to zupełnie
coś innego. Najpierw więc dowiedzmy się, jak można zachować wartość uzyskaną
wyrażeniem &VECTOR3::y do późniejszego wykorzystania.

Być może domyślasz się, że będzie potrzebowali specjalnej zmiennej typu
wskaźnikowego - czyli wskaźnika na pole klasy. Aby go zadeklarować, musimy
przypomnieć sobie, czym charakteryzują się wskaźniki w C++.
Nie jest to trudne. Każdy wskaźnik ma swój typ: w przypadku wskaźników na zmienne
był to po prostu typ docelowej zmiennej. Dla wskaźników na funkcje sprawa była bardziej
skomplikowana, niemniej też miały one swoje typy.

Podobnie jest ze wskaźnikami na składowe klasy. Każdy z nich ma przypisaną klasę, na
które składniki pokazuje - dotyczy to zarówno odniesień do pól, którymi zajmujemy się
teraz, jak i do metod, które poznamy za chwilę.
Oprócz tego wskaźnik na pole klasy musi też znać typ docelowego pola, czyli wiedzieć,
jaki rodzaj danych jest w nim przechowywany.

Czy wiemy to wszystko? Tak. Wiemy, że naszą klasą jest VECTOR3. Pamiętamy też, że jej
wszystkie pola zadeklarowaliśmy jako float. Korzystając z tej informacji, możemy
zadeklarować wskaźnik na pola typu float w klasie VECTOR3:

float VECTOR3::*p2mfWspolrzedna;

Huh, co za zakręcona deklaracja… Gdzie tu jest w ogóle nazwa tej zmiennej?…
Spokojnie, nie jest to aż takie straszne - to tylko tak wygląda :) Nasz wskaźnik nazywa
się oczywiście p2mfWspolrzedna116, zaś niezbyt przyjazna forma deklaracji stanie się
jaśniejsza, jeżeli popatrzymy na jej ogólną składnię:

typ klasa::*wskaźnik;

Co to jest? Otóż jest to deklaracja wskaźnika, pokazującego na pola podanego typu,
znajdujące się we wnętrzu określonej klasy. Nic prostrzego, prawda? ;-)

Teraz, kiedy mamy już zmienną odpowiedniego typu wskaźnikowego, możemy przypisać
jej względny adres pola y w klasie VECTOR3:

p2mfWspolrzedna = &VECTOR3::y;

Pamiętajmy, że w ten sposób nie pokazujemy na konkretną współrzędną Y (pole y) w
konkretnym wektorze (obiekcie VECTOR3), lecz na miejsce pola w definicji klasy.
Pojedynczo taki wskaźnik nie jest więc użyteczny, bo jego wartośc nabiera znaczenia
dopiero w momencie zastosowania jej dla konkretnego obiektu. Jak to zrobić -
zobaczymy w następnym akapicie.

Zwróćmy jeszcze uwage, że y nie jest jedynym polem typu float w klasie VECTOR3. Z
równym powodzeniem możemy pokazywać naszym wskaźnikiem także na pozostałe:

p2mfWspolrzedna = &VECTOR3::x;
p2mfWspolrzedna = &VECTOR3::z;

116 p2mf to skrót od ‘pointer-to-member float’.

Zaawansowana obiektowość 449

Warunkiem jest jednak, aby pole było publiczne. W przeciwnym wypadku wyrażenie
klasa::pole byloby nielegalne (poza klasą) i nie możnaby zastosować wobec niego
operatora &.

Użycie wskaźnika
Wskaźnik na pole klasy jest adresem względnym, offsetem. Aby skorzystać z niego
praktycznie, musimy posiadać jakiś obiekt; kompilator będzie dzięki temu wiedział, gdzie
się dany obiekt zaczyna w pamięci. Posiadając dodatkowo offset pola w definicj klasy,
będziemy mogli odwoływać się do tego pola w tym konkretnym obiekcie.

A zatem do dzieła. Stwórzmy sobie obiekt naszej klasy:

VECTOR3 Wektor;

Potem zadeklarujmy wskaźnik na i ustawmy go na jedno z trzech pól klasy VECTOR3:

float VECTOR3::*p2mfPole = &VECTOR3::x;

Teraz przy pomocy tego wskaźnika możemy odwołac się do tego pola w naszym obiekcie.
Jak? O tak:

Wektor.*p2mfPole = 12; // wpisanie liczby do pola obiektu Wektor,
 // na które pokazuje wskaźnik p2mfPole

Cała zabawa polega tu na tym, że p2mfPole może pokazywać na dowolne z trzech pól
klasy VECTOR3 - x, y lub z. Przy pomocy wskaźnika możemy jednak do każdego z nich
odwoływać się w ten sam sposób.

Co nam to daje? Mniej więcej to samo, co w przypadku zwykłych wskaźników. Wskaźnik
na pole klasy możemy przekazać i wykorzystać gdzie indziej. W tym przypadku
potrzebujemy aczkolwiek jeszcze jednej danej: obiektu naszej klasy, w kontekście
którego użyjemy wskaźnika.
Może czas na jakiś konkretny przykład. Wyobraźmy sobie funkcję, która zeruje jedną
współrzędną tablicy wektorów. Teraz możemy ją napisać:

void WyzerujWspolrzedna(VECTOR3 aTablica[], unsigned uRozmiar,
 float VECTOR3::*p2mfWspolrzedna)
{
 for (unsigned i = 0; i < uRozmiar; ++i)
 aTablica[i].*p2mfWspolrzedna = 0;
}

W zależności od tego, jak ją wywołamy:

VECTOR3 aWektory[50];

WyzerujWspolrzedna (aWektory, 50, &VECTOR3::x);
WyzerujWspolrzedna (aWektory, 50, &VECTOR3::y);
WyzerujWspolrzedna (aWektory, 50, &VECTOR3::z);

spowoduje ona wyzerowanie różnych współrzędnych wektorów w podanej tablicy.

Wskaźnik na pole klasy możemy też wykorzystać, gdy na samym obiekcie operujemy
także przy pomocy wskaźnika (tym razem zwykłego, na obiekt). Stosujemy wtedy
aczkolwiek inną składnię:

// deklaracja i inicjalizacja obu wskaźników - na obiekt i pole klasy

Zaawansowane C++ 450

VECTOR3* pWektor = new VECTOR3;
float VECTOR3::p2mfPole = &VECTOR3::z;

// zapisanie wartości do pola z obiektu *pWektor przy pomocy wskaźników
pWektor->*p2mfPole = 42;

Jak widać, w kontekście wskaźników na składowe operatory .* i ->* są dokładnymi
odpowiednikami operatorów wyłuskania . i ->. Tych drugim używamy jednak wtedy, gdy
odwołujemy się do składników obiektu poprzez ich nazwy, natomiast tych pierwszych -
jeśli posługujemy się wskaźnikami do składowych.

Operator ->*, podobnie jak ->, może być przeciążony. Z kolei .*, tak samo jak . - nie.

Wskaźnik na metodę klasy
Normalne wskaźniki mogą też pokazywać na kod, czyli funkcje. Obiektowym
odpowiednikiem tego faktu są wskaźniki do metod klasy. Zajmiemy się nimi w tej sekcji.

Wskaźnik do statycznej metody klasy
Zwyczajny wskaźnik do funkcji globalnej deklarujemy np. tak:

int (*pfnFunkcja)(float);

Przypominam, że aby odczytać deklarację funkcji pasujących do tego wskaźnika,
wystarczy usunąć gwiazdkę oraz nawiasy otaczające jego nazwę. Tutaj więc możemy do
wskaźnika pfnFunkcja przypisać adresy wszystkich funkcji globalnych, które przyjmują
jeden parametr typu float i zwracają liczbę typu int:

int Foo(float) { /* ... */ }

// ...

pfnFunkcja = Foo; // albo pfnFunkcja = &Foo;

Jednak nie tylko funkcje globalne mogą być wskazywane przez takie wskaźniki.

Wskaźniki do zwykłych funkcji potrafią też pokazywać na statyczne metody klas.

Nietrudno to wyjaśnić. Takie metody to tak naprawdę funkcje globalne o nieco
zmienionym zasięgu i notacji wywołania. Najważniejsze, że nie posiadają one ukrytego
parametru - wskaźnika this - ponieważ ich wywołanie nie wymaga obecności żadnego
obiektu klasy. Nie korzystają one więc z konwencji wywołania thiscall (właściwej
metodom niestatycznym), a zatem możemy zadeklarować zwykłe wskaźniki, które będą
nań pokazywać.
Warunkiem jest jednak to, aby metoda statyczna była zadeklarowana jako public. W
przeciwnym razie wyrażenie nazwa_klasy::nazwa_metody nie będzie legalne.

Podobne uwagi można poczynić dla statycznych pól, na które można pokazywać przy
pomocy zwykłych wskaźników na zmienne.

Wskaźnik do niestatycznej metody klasy
A jak jest z metodami niestatycznymi? Czy na nie też możemy pokazywać zwykłymi
wskaźnikami?…

Zaawansowana obiektowość 451

Niestety nie. Fakt ten może się wydać zaskakujący, ale można go wyjaśnić nawet na
kilka sposobów.
Po pierwsze: wspomniałem już, że metody niestatyczne korzystają ze specjalnej
konwencji thiscall. Oprócz normalnych parametrów musza one bowiem dostać obiekt,
który w ich wnętrzu będzie reprezentowany przez wskaźnik this. C++ nie pozwala na
zadeklarowanie funkcji używających konwencji thiscall - nie bardzo wiadomo, jak taka
deklaracja miałaby wyglądać117.
Po drugie: metody niestatyczne potrzebują wskaźnika this. Gdyby dopuścić do sytuacji,
w której wskaźniki na funkcje mogą pokazywać na metody, wówczas trzebaby było
zapewnić jakoś dostarczenie tego wskaźnika this (czyli obiektu, na rzecz którego
metoda jest wywoływana). Jak? Poprzez dodatkowy parametr?… Wtedy mielibyśmy
koszmarną nieścisłość składni: deklaracje wskaźników do funkcji nie zgadzałyby się z
prototypami pasujących do nich metod.

Nawet jeśli nie bardzo zrozumiałeś te argumenty, musisz przyjąć, że na niestatyczne
metody klasy nie pokazujemy zwykłymi wskaźnikami do funkcji. Zamiast tego
wykorzystujemy drugi rodzaj wskaźników na składowe klasy.

Wykorzystanie wskaźników na metody
Mam tu na myśli wskaźniki na metody klas.

Wskaźnik do metody w klasie (ang. pointer-to-member function) określa miejsce
deklaracji tej metody w definicji klasy.

Widać tu analogie ze wskaźnikami do pól klasy. Tutaj także określamy umiejscowienie
danej metody względem…

No właśnie - względem czego?! W przypadku pól mogliśmy jeszcze mówić, że wskaźnik
jest określeniem przesunięcia (offsetu), który pozwala znaleźć pole danego obiektu, gdy
mamy adres początku tegoż obiektu. Ale przecież metody nie podlegają tym zasadom.
Dla wszystkich obiektów mamy przecież jeden zestaw metod. Jak więc można
mówić o tym, że wskaźniki na nie działają w ten sam sposób?…
Ekhm, tego raczej nie powiedziałem. Wskaźniki te mogą działać ten sam sposób, czyli
być adresami względnymi. Mogą one także być adresami bezwzględnymi (w sumie -
dlaczego nie? Przecież metody to też funkcje), a nawet indeksami jakiejś wewnętrznej
tablicy czy jeszcze dziwniejszymi liczbami z gatunku identyfikatorów-uchwytów. Tak
naprawdę nie powinno nas to interesować, gdyż jest to wewnętrzna sprawa
kompilatora. Dla nas wskaźniki te pokazują po prostu na jakąś metodę wewnątrz danej
klasy. Jak to robią - to już nie nasze zmartwienie.

Deklaracja wskaźnika

Spójrzmy lepiej na jakiś przykład. Weźmy taką oto klasę:

class CNumber
{
 private:
 float m_fLiczba;

 public:
 // konstruktor
 CNumber(float m_fLiczba = 0.0f) : m_fLiczba(fLiczba) { }

117 Zauważmy, że deklaracja metody „wyjęta” z klasy i umieszczona poza nią automatycznie stanie się funkcją
globalną. Nie trzeba dokonywać żadnych zmian w jej prototypie, polegających np. na usunięciu słowa
thiscall. Takiego słowa kluczowego po prostu nie ma: C++ odróżnia metody od zwykłych funkcji wyłącznie
po miejscu ich zadeklarowania.

Zaawansowane C++ 452

 //---

 // kilka metod
 float Dodaj(float x) { return (m_fLiczba += x); }
 float Odejmij(float x) { return (m_fLiczba -= x); }
 float Pomnoz(float x) { return (m_fLiczba *= x); }
 float Podziel(float x) { return (m_fLiczba /= x); }
};

Nie jest ona może zbyt mądra - nie ma przeciążonych operatorów i w ogóle wykonuje
dość dziwną czynność enkapsulacji typu podstawowego - ale dla naszych celów będzie
wystarczająca. Zwróćmy uwagę na jej cztery metody: wszystkie biorą argument typu
float i takąż liczbę zwracają. Jeżeli chcielibyśmy zadeklarować wskaźnik, mogący
pokazywać na te metody, to robimy to w ten sposób118:

float (CNumber::*p2mfnMetoda)(float);

Wskaźnik p2mfnMetoda może pokazywać na każdą z tych czterech metod, tj.:

float CNumber::Dodaj(float x);
float CNumber::Odejmij(float x);
float CNumber::Pomnoz(float x);
float CNumber::Podziel(float x);

Można stąd całkiem łatwo wywnioskować ogólną składnię deklaracji takiego wskaźnika. A
więc, dla metody klasy o nagłówku:

zwracany_typ nazwa_klasy::nazwa_metody([parametry])

deklaracja odpowiadającego jej wskaźnika wygląda tak:

zwracany_typ (nazwa_klasy::*nazwa_wskaźnika)([parametry]);

Deklaracja wskaźnika na metodę klasy wygląda tak, jak nagłówek tej metody, w którym
fraza nazwa_klasy::nazwa_metody została zastąpiona przez sekwencję
(nazwa_klasy::*nazwa_wskaźnika). Na końcu deklaracji stawiamy oczywiście średnik.

Sposób jest więc bardzo podobny jak przy zwykłych wskaźnikach na funkcje. Ponownie
też istotne stają się nawiasy. Gdybyśmy bowiem je opuścili w deklaracji p2mfnMetoda,
otrzymalibyśmy:

float CNumber::*p2mfnMetoda(float);

co zostanie zinterpretowane jako:

float CNumber::* p2mfnMetoda(float);

czyli funkcja biorąca jeden argument float i zwracająca wskaźnik do pól typu float w
klasie CNumber. Zatem znowu - zamiast wskaźnika na funkcję otrzymujemy funkcję
zwracającą wskaźnik.

Dla wskaźników na metody klas nie ma problemu z umieszczenia słowa kluczowego
konwencji wywołania, bo wszystkie metody klas używają domyślnej i jedynie słusznej w

118 p2mfn to skrót od ‘pointer-to-member function’.

Zaawansowana obiektowość 453

ich przypadku konwencji thiscall. Nie ma możliwości jej zmiany (mam nadzieję, że jest
oczywiste, dlaczego…).

Pobranie wskaźnika na metodę klasy

Kiedy mamy już zadeklarowany właściwy wskaźnik, powiążmy go z którąś z metod klasy
CNumber. Robimy to w prosty i raczej przewidywalny sposób:

p2mfnMetoda = &CNumber::Dodaj;

Podobnie jak dla zwykłych funkcji, także i tutaj operator & nie jest niezbędny:

p2mfnMetoda = CNumber::Odejmij;

Znowu też stosuje się tu zasada o publiczności składowych. Jeżeli spróbujemy pobrać
wskaźnik na metodę prywatną lub chronioną, to kompilator oczywiście zaprotestuje.

Użycie wskaźnika

Czas wreszcie na akcję. Zobaczmy, jak można wywołać metodę pokazywaną przez
wskaźnik:

CNumber Liczba = 42;
std::cout << (Liczba.*p2mfnMetoda)(2);

Potrzebujemy naturalnie jakiegoś obiektu klasy CNumber, aby na jego rzecz wywołać
metodę. Tworzymy go więc; dalej znowu korzystamy z operatora .*, wywołując przy
jego pomocy metodę klasy CNumber dla naszego obiektu - przekazujemy jej jednocześnie
parametr 2. Ponieważ po naszej zabawie z przypisywaniem p2mfnMetoda pokazywał na
metodę Odejmij(), na ekranie zobaczylibyśmy:

40

Zwracam jeszcze uwagę na nawiasy w wywołaniu metody. Tutaj są one konieczne (w
przeciwieństwie do zwykłych wskaźników na funkcje) - bez nich kompilator uzna linijkę
za błędną.

Domyślasz się, że jeśli posiadalibyśmy tylko wskaźnik na obiekt, to do wywołania jego
metody posłużylibyśmy się operatorem ->*. Identycznie jak przy wskaźnikach na pola
klasy.

Ciekawostka: wskaźnik do metody obiektu
Zatrzymajmy się na chwilkę… Jeżeli przebrnąłeś przed ten rozdział od początku aż dotąd,
to szczerze ci gratuluję. Wskaźniki na składowe nie są bynajmniej łatwą częścią języka -
choćby dlatego, że operują dość dziwnymi koncepcjami („miejsce w definicji klasy”…). Co
gorsza, czytając o nich jakoś trudno od razu wpaść na sensowne zastosowanie tego
mechanizmu.
Wiem, że podobne odczucia mogły ci towarzyszyć przy lekturze opisów wielu innych
elementów języka. Później jednak nieczęsto widziałeś zastosowania omawianych
wcześniej rzeczy w dalszej częściu kursu, a pewnie sam znalajdowałeś niektóre z nich po
odpoczynku od lektury i dłuższym zastanowieniu.

Tutaj muszę cię nieco zmartwić. Wskaźniki na składowe klasy są w praktyce bardzo
rzadko używane, bo w zasadzie trudno znaleźć dla nich jakieś użyteczne zastosowanie.
To chyba najdobitniejszy przykład językowego wodotrysku - na szczęście C++ nie
posiada zbyt wiele takich nadmiarowych udziwnień.

Zaawansowane C++ 454

Spróbujemy jednak znaleźć dla nich jakieś zastosowanie… Okazuje się, że jest to
możliwe. Wskaźników tych możemy bowiem użyć do symulowania innego rodzaju
wskaźników - nieobecnych niestety w C++, ale za to bardzo przydatnych.
Jakie to wskaźniki? Spójrz na poniższą tabelę. Grupuje ona wszystkie znane (i
nieznane ;D) w programowaniu strukturalnym i obiektowym rodzaje wskaźników, wraz z
ich nazwami w C++:

rodzaj
wskaźnika

obiektowe

na składowe niestatyczne cel
wskaźnika

strukturalne
na składowe

statyczne w klasach w obiektach

dane wskaźniki do zmiennych
wskaźniki do pól

klasy
wskaźniki do
zmiennych

kod wskaźniki do funkcji
wskaźniki do
metod klasy

BRAK

Tabela 19. Różne rodzaje wskaźników

Wynika z niej, że znamy już wszystkie rodzaje wskaźników, jakie posiada w swoim
arsenale C++. A co z tymi brakującymi?…

Czym one są?… Otóż są to takie wskaźniki, które potrafią pokazywać na konkretną
metodę w konkretnym obiekcie. Podobnie jak wskaźniki do pól obiektu, są one
samodzielne. Ich użycie nie wymaga więc żadnych dodatkowych informacji: dokonując
zwyczajnej dereferencji takiego wskaźnika, wywoływalibyśmy określoną metodę w
odniesieniu do określonego obiektu. Zupełnie tak, jak dla zwykłych wskaźników do
funkcji - tyle tylko, że tutaj nie wywołujemy funkcji globalną, lecz metodę obiektu.

„No dobrze, nie mamy tego rodzaju wskaźników… Ale co z tego? Na pewno są one równie
„użyteczne”, jak te co poznaliśmy niedawno!” Otóż wręcz przeciwnie! Tego rodzaju
wskaźniki są niezwykle przydatne! Pozwalają one bowiem na implementację funkcji
zwrotnych (ang. callback functions) z zachowaniem pełnej obiektowości programu.

Cóż to są - te funkcje callback? Są to takie funkcje, których adresy przekazujemy komuś,
aby ten ktoś mógł je dla nas wywołać w odpowiednim momencie. Ten odpowiedni
moment to na przykład zajście jakiegoś zdarzenia, na które oczekujemy (wciśnięcie
klawisza, wybicie północy na zegarze, itp.) albo chociażby wystąpienie błędu. W każdej
tego typu sytuacji nasz program może być o tym natychmiast poinformowany. Bez
funkcji zwrotnych musiałby zwykle dokonywać mozolnego odpytywania „ktosia”, aby
dowiedzieć się, czy dana okoliczność wystąpiła. To mało efektywne rozwiązanie.
Funkcje callback są lepsze. Jednak w C++ tylko funkcje globalne lub statyczne metody
klas mogą być takimi funkcjami. Powód jest prosty: jedynie na takie metody możemy
pokazywać samodzielnymi wskaźnikami.

A to jest zupełnie niezadowolające w programowaniu obiektowym. Zmusza to przecież do
pisania kodu poza klasami programu. W dodatku trzeba jakoś zapewnić sensowną
komunikację między tym kodem-outsiderem, a obiektową resztą programu. W sumie
mamy mnóstwo kłopotów.
Wymyślono rzecz jasna pewien sposób na obejście tego problemu, polegający na
wykorzystaniu metod wirtualnych, dziedziczenia i polimorfizmu. Nie jest to jednak idealne
rozwiązanie - przynajmniej nie w C++.

Powiedziałem jednak, że nasze świeżo poznane wskaźniki mogą pomóc w poradzeniu
sobie z tym problemem. Zobaczmy jak to zrobić.

Bardzo, ale to bardzo odradzam czytanie tych dwóch punktów przy pierwszym kontakcie
z tekstem (to zresztą dotyczy prawie wszystkich Ciekawostek). Sprawa jest wprawdzie

Zaawansowana obiektowość 455

bardzo ciekawa i niezwykle przydatna, lecz jej zawiłość może cię szybko odstręczyć od
wskaźników klasowych - albo nawet od programowania obiektowego, co by było znacznie
gorszą katastrofą.

Wskaźnik na metodę obiektu konkretnej klasy

Najpierw zajmijmy się prostszym przypadkiem. Znajdźmy sposób na symulację
wskaźnika, za pośrednictwem którego możnaby wywoływać metodę:

 o określonej sygnaturze (nagłówku)
 na rzecz określonego obiektu
 należącego do określonej klasy

Dosyć dużo tych „określeń”… Najlepiej będzie, jeśli popatrzysz na działanie tego
wskaźnika. Przypomnij sobie klasę CNumber; stwórzmy obiekt tej klasy:

CNumber Liczba;

Teraz wyobraźmy sobie, że w języku C++ pojawiła się możliwość zadeklarowania
wskaźników, o jakie nam chodzi. Niech p2ofnMetoda będzie tym pożądanym
wskaźnikiem119. Wówczas można z nim zrobić coś takiego:

// przypisanie wskaźnikowi "adresu metody" Dodaj w obiekcie Liczba
p2ofnMetoda = Liczba.Dodaj;

// wywołanie metody Dodaj() dla obiektu Liczba()
(*p2ofnMetoda)(10);

Jak widać, dokonujemy tu zwykłej dereferencji - zupełnie tak, jak w przypadku
wskaźników na funkcje globalne. Tym sposobem wywołujemy jednak metodę klasy dla
konkretnego obiektu. Ostatnia linijka jest więc równoważna tej:

Liczba.Dodaj(10);

Zamiast wywołania obiekt.metoda() mamy więc (*wskaźnik_do_metody_obiektu)(). I
o to nam chodzi.

Wróćmy teraz do rzeczywistości. Niestety C++, nie posiada wskaźników na metody
obiektów, lecz chcemy przynajmniej częściowo uzupełnić ten brak. Jak to zrobić?…
Przyjrzyjmy się temu, co chcemy osiągnąć. Chcemy mianowicie, aby nasz wskaźnik
zastępował wywołanie:

obiekt.metoda([parametry])

w ten sposób:

(*wskaźnik)([parametry])

Wskaźnik musi więc zawierać informacje zarówno o obiekcie, którego dotyczy metoda,
jak i samej metodzie. Jeden wskaźnik?… Nie - dwa:

 pierwszy to wskaźnik na obiekt, na rzecz którego metoda będzie wywoływana
 drugi to wskaźnik na metodę klasy, która ma być wywoływana

Chcąc stworzyć nasz wskaźnik, musimy więc połączyć te dwie dane. Zróbmy to! Najpierw
zdefiniujmy sobie jakąś klasę, na której metody będziemy pokazywać:

119 p2ofn to skrót od ‘pointer to object-function’.

Zaawansowane C++ 456

class CFoo
{
 public:
 void Metoda(int nParam)
 { std::cout << "Wywolano z " << nParam; }
};

Dalej - dodajmy obiekt, który będzie brał udział w wywołaniu:

CFoo Foo;

Przypomnijmy wreszcie, że chcemy zrobić taki wskaźnik, którego użycie zastapi nam
wywołanie:

Foo.Metoda();

Potrzebujemy do tego wspomnianych dwóch rodzajów wskaźników:

 wskaźnika na obiekty klasy CFoo
 wskaźnika na metody klasy CFoo biorące int i niezwracające wartości

Połączymy oba te wskaźniki w jedną strukturę, dodając przy okazji pomocnicze funkcje -
jak konstruktor oraz operator():

struct METHODPOINTER
{
 // rzeczone oba wskaźniki
 CFoo* pObject; // wskaźnik na obiekt
 void (CFoo::*p2mfnMethod)(int); // wskaźnik na metodę

 //---

 // konstruktor
 METHODPOINTER(CFoo* pObj, void (CFoo::*p2mfn)(int))
 : pObject(pObj), p2mfnMethod(p2mfn) { }

 // operator wywołania funkcji
 void operator() (int nParam)
 { (pObject->*p2mfnMethod(nParam); }
};

Teraz możemy już pokazać takim wskaźnikiem na metodę naszego obiektu. Podajemy po
prostu zarówno wskaźnik na obiekt, jak i na metodę klasy:

METHODPOINTER p2ofnMetoda(&Foo, &CFoo::Metoda);

To wprawdzie pewna niedogodność (nie możemy podać po prostu Foo.Metoda, lecz
musimy pamiętać nazwę klasy), ale i tak jest to całkiem dobre rozwiązanie. Naszą
metodę możemy bowiem wywołać w najprostszy możliwy sposób:

p2ofnMetoda (69); // to samo co Foo.Liczba (69);

To właśnie chcieliśmy osiągnać.

Jest to aczkolwiek rozwiązanie dla szczególnego przypadku. A jak wygląda to w
przypadku ogólnym?… Mniej więcej w ten sposób:

struct WSKAŹNIK
{
 // wskaźniki

Zaawansowana obiektowość 457

 klasa* pObject;
 zwracany_typ (klasa::*p2mfnMethod)([parametry_formalne]);

 //---

 // konstruktor
 WSKAŹNIK(klasa* pObj,
 zwracany_typ (klasa::*p2mfn)([parametry_formalne]))
 : pObject(pObj), p2mfnMethod(p2mfn) { }

 // operator wywołania funkcji
 zwracany_typ operator() ([parametry_formalne])
 { [return] (pObject->*p2mfnMethod([parametry_aktualne]); }
};

Niestety, preprocesor na niewiele nam się przyda w tym przypadku. Tego rodzaju
struktury musiałbyś wpisywać do kodu samodzielnie.

Wskaźnik na metodę obiektu dowolnej klasy

Nasz callback wydaje się działać (bo i działa), ale jego przydatność jest niestety
niewielka. Wskaźnik potrafi bowiem pokazywać tylko na metodę w konkretnej klasie,
natomiast do zastosowań praktycznych (jak informowanie o zdarzeniach czy błędach)
powinien on umieć wskazać na zgodną ustalonym prototypem metodę obiektu w
dowolnej klasie.
Tak więc niezależnie od tego, czy nasz obiekt byłby klasy CFoo, CVector2D,
CEllipticTable czy CBrokenWindow, jeśli tylko klasa ta posiada metodę o określonej
sygnaturze, to powinno dać się na nią wskazać w konkretnym obiekcie. Dopiero wtedy
dostaniemy do ręki wartościowy mechanizm.

Ten mechanizm ma nazwę: closure. Trudno to przetłumaczyć na polski (dosłownie jest to
‘przymknięcie’, ‘domknięcie’, itp.), więc będziemy posługiwać się dotychczasową nazwą
‘wskaźnik na metodę obiektu’.

Czy można go osiągnąć w C++?… Owszem. Wymaga to jednak dość daleko idącego
kroku: otóż musimy sobie zdefiniować uniwersalną klasę bazową. Z takiej klasy będą
dziedziczyć wszystkie inne klasy, których obiekty i ich metody mają być celami
tworzonych wskaźników. Taka klasa może być bardzo prosta, nawet pusta:

class IObject { };

Można do niej dodać wirtualny destruktor czy inne wspólne dla wszystkich klas składowe,
jednak to nie jest tutaj ważne. Grunt, żeby taka klasa była obecna.

Teraz sprecyzujmy problem. Załóżmy, że mamy kilka innych klas, zawierających metody
o właściwej dla nas sygnaturze:

class CFoo : public IObject
{
 public:
 float Funkcja(int x) { return x * 0.75f; }
};

class CBar : public IObject
{
 public:
 float Funkcja(int x) { return x * 1.42f; }
};

Zaawansowane C++ 458

Zauważmy z IObject. Czego chcemy? Otóż poszukujemy sposobu na
zaimplementowanie wskaźnika, który będzie pokazywał na metodę Funkcja() zarówno w
obiektach klasy CFoo, jak i CBar. Nawet więcej - chcemy takiego wskaźnika, który pokaże
nam na dowolną metodę biorącą int i zwracają float w dowolnym obiekcie
dowolnej klasy w naszym programie. Mówiłem już, że w praktyce ta „dowolna klasa”
musi dziedziczyć po IObject.

Cóż więc zrobić? „Może znowu sięgniemy po dwa wskaźniki - jeden na obiekt, a drugi na
metodę klasy…?” Punkt dla ciebie. Faktycznie, tak właśnie zrobimy. Postać naszego
wskaźnika nie różni się więc zbytnio od tej z poprzedniego punktu:

struct METHODPOINTER
{
 // rzeczone oba wskaźniki
 IObject* pObject; // wskaźnik na obiekt
 float (IObject::*p2mfnMethod)(int); // wskaźnik na metodę

 //---

 // konstruktor
 METHODPOINTER(IObject* pObj, float (IObject::*p2mfn)(int))
 : pObject(pObj), p2mfnMethod(p2mfn) { }

 // operator wywołania funkcji
 float operator() (int x)
 { return (pObject->*p2mfnMethod(x); }
};

„Chwileczkę… Deklarujemy tutaj wskaźnik na metody klasy IObject, biorące int i
zwracające float… Ale przecież IObject nie ma takich metod - ba, u nas nie ma nawet
żadnych metod! Takim wskaźnikiem nie pokażemy więc na żadną metodę!”
Bingo, kolejny punkt za uważną lekturę :) Rzeczywiście, taki wskaźnik wydaje się
bezużyteczny. Pamiętajmy jednak, że w sumie chcemy pokazywać na metodę obiektu,
a nie na metodę klasy. Zaś nasze obiekty będą pochodzić od klasy IObject, bo ich
własne klasy po IObject dziedziczą. W sumie więc wskaźnikiem na metodę klasy
bazowej będziemy pokazywać na metodę klasy pochodnej. To jest poprawne - za chwilę
wyjaśnię bliżej, dlaczego.

Najpierw spróbujmy użyć naszego wskaźnika. Stwórzmy więc obiekt którejś z klas:

CBar* pBar = new CBar;

i ustawmy nasz wskaźnik na metodę Funkcja() w tym obiekcie - tak, jak to robiliśmy
dotąd:

METHODPOINTER p2ofnMetoda(pBar, &CBar::Funkcja);

I jak?… Mamy przykrą niespodziankę. Każdy szanujący się kompilator C++ najpewniej
odrzuci tę linijkę, widząc niezgodność typów. Jaką niezgodność?
Pierwszy parametr jest absolutnie w porządku. To znana i lubiana konwersja wskaźnika
na obiekt klasy pochodnej (CBar*) do wskaźnika na obiekt klasy bazowej (IObject*).
Brak zastrzeżeń nikogo nie dziwi - przecież na tym opiera się cały polimorfizm.
To drugi parametr sprawia problem. Kompilator nie zezwala na zamianę typu:

float (CBar::*)(int)

na typ:

Zaawansowana obiektowość 459

float (IObject::*)(int)

Innymi słowy, nie pozwala na konwersję wskaźnik na metodę klasy pochodnej do
wskaźnika na metodę klasy bazowej. Jest to uzasadnione: wskaźnik na metodę (ogólnie:
na składową) może być bowiem poprawny w klasie pochodnej, natomiast nie zawsze
będzie poprawny w klasie bazowej. Obiekt klasy bazowej może być przecież mniejszy, nie
zawierać pewnych elementów, wprowadzonych w młodszym pokoleniu. W takim wypadku
wskaźnik będzie „strzelał w próżnię”, co skończy się błędem ochrony pamięci120.
Tak mogłoby być, jednak u nas tak nie będzie. Naszego wskaźnika na metodę użyjemy
przecież tylko i wyłacznie do wywołania metody obiektu pBar. Klasa obiektu oraz klasa
wskaźnika w tym przypadku zgadzają się, są identyczne - to CBar. Nie ma żadnego
ryzyka.

Kompilator bynajmniej o tym nie wie i nie należy go wcale za to winić. Musimy sobie po
prostu pomóc rzutowaniem:

METHODPOINTER p2ofnMetoda(pBar,
 static_cast<float (IObject::*)(int)>
 (&CBar::Funkcja));

Wiem, że wygląda to okropnie, ale przecież nic nie stoi na przeszkodzie, aby pomóc sobie
odpowiednim makrem.

Zresztą, liczy się efekt. Teraz możemy wywołać metodę pBar->Funkcja() w ten prosty
sposób:

p2ofnMetoda (42); // to samo co pBar->Funkcja (42);

Jest też zupełnie możliwe, aby pokazać naszym wskaźnikiem na analogicznę metodę w
obiekcie klasy CFoo:

CFoo Foo;
p2ofnMetoda.pObject = &Foo;
p2ofnMetoda.p2mfnMethod = static_cast<float (IObject::*)(int)>
 (&CFoo::Funkcja));

p2ofnMetoda (14); // to samo co Foo.Funkcja (14)

Zmieniając ustawienie wskaźnika musimy jednak pamiętać, by:

Klasy docelowego obiektu oraz docelowej metody muszą być identyczne. Inaczej
ryzykujemy bład ochrony pamięci.

Zaprezentowane rozwiązanie może nie jest szczególnie eleganckie, ale wystarczające. Nie
zmienia to jednak faktu, że wbudowana obsługa wskaźników na metody obiektów w C++
byłaby wielce pożądana.

Nieco lepszą implementację wskaźników tego rodzaju, korzystającą m.in. z szablonów,
możesz znaleźć w moim artykule Wskaźnik na metodę obiektu.

120 Konwersja w drugą stronę (ze wskaźnika na składową klasy bazowej do wskaźnika na składową klasy
pochodnej) jest z kolei zawsze możliwa. Jest tak dlatego, że klasa pochodna nie może usunąć żadnego
składnika klasy bazowej, lecz co najwyżej rozszerzyć ich zbiór. Wskaźnik będzie więc zawsze poprawny.

http://avocado.risp.pl/modules.php?op=modload&name=Sections&file=index&req=viewarticle&artid=21

Zaawansowane C++ 460

Czy masz już dość? :) Myślę, że tak. Wskaźniki na składowe klas (czy też obiektów) to
nie jest najłatwiejsza część OOPu w C++ - śmiem twierdzić, że wręcz przeciwnie. Mamy
ją już jednak za sobą.

Jeżeli aczkolwiek chciałbyś się dowiedzieć na ten temat nieco więcej (także o zwykłych
wskaźnikach na funkcje), to polecam świetną witrynę The Function Pointer Tutorials.

W ten sposób poznaliśmy też całą ofertę narzędzi języka C++ w zakresie programowania
obiektowego. Możemy sobie pogratulować.

Podsumowanie
Ten długi rozdział był poświęcony kilku specyficznym dla C++ zagadnieniom
programowania obiektowego. Zdecydowana większość z nich ma na celu poprawienie
wygody, czasem efektywności i „naturalności” kodowania.
Cóż więc zdążyliśmy omówić?…

Na początek poznaliśmy zagadnienie przyjaźni między klasami a funkcjami i innymi
klasami. Zobaczyłeś, że jest to prosty sposób na zezwolenie pewnym ściśle określonym
fragmentom kodu na dostęp do niepublicznych składowych jakiejś klasy.
Dalej przyjrzeliśmy się bliżej konstruktorom klas. Poznaliśmy ich listy inicjalizacyjne, rolę
w kopiowaniu obiektów oraz niejawnych konwersjach między typami.
Następnie dowiedzieliśmy się (prawie) wszystkiego na temat bardzo przydatnego
udogodnienia programistycznego: przeciążania operatorów. Przy okazji powtórzyliśmy
sobie wiadomości na temat wszystkich operatorów języka C++.
Wreszcie, odważniejsi spośród czytelników zapoznali się także ze specyficznym rodzajem
wskaźników: wskaźnikami na składniki klasy.

Następny rozdział będzie natomiast poświęcony niezwykle istotnemu mechanizmowi
wyjątków.

Pytania i zadania
Być może zaprezentowane w tym rozdziale techniki służą tylko wygodzie programisty, ale
nie zwalnia to kodera z ich dokładnej znajomości. Odpowiedz więc na powyższe pytania i
wykonaj ćwiczenia.

Pytania
1. Jakie specjalne uprawnienia ma przyjaciel klasy? Co może być takim

przyjacielem?
2. W jaki sposób deklarujemy zaprzyjaźnioną funkcję?
3. Co oznacza deklaracja przyjaźni z klasą?
4. Jak można sprawić, aby dwie klasy przyjaźniły się z wzajemnością?
5. Co to jest konstruktor domyślny? Jakie są korzyści klasy z jego posiadania?
6. Czym jest inicjalizacja? Kiedy i jak przebiega?
7. Do czego służy lista inicjalizacyjna konstruktora?
8. Kiedy konieczny jest konstruktor kopiujący?
9. W jaki sposób możemy definiować niejawne konwersje?
10. Co powoduje słowo kluczowe explicit w deklaracji konstruktora?
11. Kiedy konstruktor konwertujący jest jednocześnie domyślnym?
12. Wymień podstawowe cechy operatorów w języku programowania.
13. Jakie rodzaje operatorów posiada C++?
14. Na czym polega przeciążenie operatora?
15. Jaki status mogą posiadać funkcje operatorowe? Czym się one różnią?

http://www.function-pointer.org/

Zaawansowana obiektowość 461

16. Jak można skorzystać z niejawnych konwersji, pisząc przeciążone wersje
operatorów binarnych?

17. Które operatory mogą być przeciążane wyłącznie jako niestatyczne metody klas?
18. Kiedy konieczne jest zdefiniowanie własnego operatora przypisania?
19. Ile argumentów ma operator wywołania funkcji?
20. O czym należy pamiętać, przeciążając operatory?
21. O czym informuje wskaźnik do składowej klasy?
22. Jakim wskaźnikiem pokazujemy na pole w obiekcie, a jakim na pole w klasie?
23. Czy zwykłym wskaźnikiem do funkcji możemy pokazać na metodę obiektu?

Ćwiczenia
1. Zdefiniuj dwie klasy, które będą ze sobą wzajemnie zaprzyjaźnione.
2. Przejrzyj definicje klas z poprzednich rozdziałów i popatrz na ich konstruktory. W

których przypadkach możnaby użyć w nich list inicjalizacyjnych?
3. Do klas CRational i CComplex dodaj operatory niejawnych konwersji na typ bool.

Co dzięki temu zyskałeś?
4. (Trudniejsze) Wzbogać wspomniane klasy także o operatory dodawania,

odejmowania i dzielenia (tylko CRational) oraz o odpowiadające im operatory
złożonego przypisania i in/dekrementacji.

5. Napisz funktor obliczający największą z podawanych mu liczb typu float. Niech
stosuje on ten sam interfejs i sposób działania, co klasa CAverageFunctor.

