WYJATKI

Doswiadczenie - to nazwa, jaka nadajemy

naszym btedom.
Oscar Wilde

Programisci nie sg nieomylni. O tym wiedzg wszyscy, a najlepiej oni sami. W koncu to
gtdwnie do nich nalezy codzienna walka z wiekszymi i mniejszymi btedami, wkradajgcymi
sie do kodu zrédtowego. Dobrze, jesli sg to tylko usterki sktadniowe w rodzaju braku
potrzebnego $rednika albo domykajacego nawiasu. Wtedy sam kompilator daje o nich
znac.

Nieco gorzej jest, gdy mamy do czynienia z btedami objawiajacymi sie dopiero podczas
dziatania programu. Moze to spowodowac nawet produkowanie nieprawidtowych wynikéw
przez naszg aplikacje (btedy logiczne).

Wszystkie tego rodzaju sytuacje majg jedna ceche wspdlng. Mozna bowiem (i nalezy) im
zapobiegac¢: mozliwe i pozgdane jest takie poprawienie kodu, aby btedy tego typu nie
pojawiaty sie. Aplikacja bedzie wtedy dziatata poprawnie...

Ale czy na pewno? Czy tworca aplikacji moze przewidzie¢ wszystkie sytuacje, w jakich
znajdzie sie jego program? Nawet jesli jego kod jest catkowicie poprawny i wolny od
bteddéw, to czy gwarantuje to jego poprawne dziatanie za kazdym razem?...

Gdyby odpowiedz na chociaz jedno z tych pytan brzmiata ,Tak”, to programisci pewnie
rwaliby sobie z gtdw o potowe mniej wtosow niz obecnie. Niestety, nikt o zdrowym
rozsadku nie moze obieca¢d, ze jego kod bedzie zawsze dziata¢ zgodnie z oczekiwaniami.
Naturalnie, jezeli jest on napisany dobrze, to w wiekszosci przypadkow tak wiasnie
bedzie. Od kazdej reguty zawsze jednak mogq wystapi¢ wyjatki...

W tym rozdziale bedziemy moéwic¢ wtasnie o takich wyjatkach - albo raczej o sytuacjach

wyjatkowych. Poznamy mozliwosci C++ w zakresie obstugi takich niecodziennych
zdarzen i ogélne metody radzenia sobie z nimi.

Mechanizm wyjatkow w C++

Czym wiasciwie jest taka sytuacja wyjatkowa, ktéra moze narobi¢ tyle zamieszania?...
Otoz:

Sytuacja wyjatkowa (ang. exceptional state) ma miejsce wtedy, gdy warunki
zewnetrzne uniemozliwiajg danemu fragmentowi kodu poprawne wykonanie. Ow
fragment nie jest winny zaistnienia sytuacji wyjatkowej.

Ogodlnie sytuacjg wyjatkowa mozna nazwac kazdy btad wystepujacy podczas dziatania
programu, ktory nie jest spowodowany przez btedy w jego kodzie. To co$ w rodzaju
przykrej niespodzianki: nieprawidotowych danych, nieprzewidzianego braku zasobdw, i
tak dalej. Takie przypadki mogg zdarzy¢ sie w kazdym programie, nawet napisanym
pozornie bezbtednie i dziatajgcym doskonale w zwyktych warunkach. Sytuacje
wyjatkowe, jak sama ich nazwa wskazuje, zdarzajg sie bowiem tylko w warunkach
wyjatkowych...

464 Zaawansowane C++

Tradycyjne metody obstugi btedow

Wystgpieniu sytuacji wyjatkowej zwykle nie mozna zapobiec - a przynajmniej nie moze
tego zrobi¢ ten kawatek kodu, w ktérym ona faktycznie wystepuje. Jego rolg powinno by¢
zatem poinformowanie o zainstniatym zdarzeniu kodu, ktéry stoi ,wyzej” w strukturze
programu. Kod wyzszego poziomu moze wtedy podjac jakies sensowne akcje, a jesli nie
jest to mozliwe - w ostatecznosci zakonczy¢ dziatanie programu.

Dziatania wykonywane w reakcji na btedy sg dosc¢ specyficzne dla kazdego programu.
Obejmowac mogag na przyktad zapisanie informacji o zdarzeniu w specjalnym dzienniku,
pokazanie komunikatu dla uzytkownika czy tez jeszcze inne czynnosci. Tym
zagadnieniem nie bedziemy sie wiec zajmowac.

Zobaczmy raczej, jakimi sposobami moze odbywac sie powiadamianie o btedach. Tutaj
istnieje kilka potencjalnym rozwigzan - niektore sg lepsze, inne nieco gorsze... Oto te
najczesciej wykorzystywane.

Dopuszczalne sposoby

Do catkiem dobrych metod informowania o niespodziewanych sytuacjach nalezy
zwracanie jakiejs specjalnej wartosci - indykatora. Wywotujacy dang funkcje moze wtedy
sprawdzi¢, czy btad wystapit, kontrolujac rezultaty zwrdcone przez podprogram.

Zwracanie nietypowego wyniku

Najprostszg drogg poinformowania o btedzie jest zwrdcenie pewnej specjalnej wartosci,
ktéra w normalnych warunkach nie m prawa wystgpic¢. Aby to zilustrowac, zatézmy przez
chwile, ze mamy napisac funkcje obliczajaca pierwiastek kwadratowy z podanej liczby.
Wiedzac to, ochoczo zabieramy sie do pracy, produkujac np. taki oto kod:

float Pierwiastek (float x)

{
// stata okre$lajaca dokltadnosé
static const float EPSILON = 0.0001f;

/* liczymy pierwiastek kwadratowy metoda Newtona */

// wybieramy punkt poczatkowy (polowe wartosci)
float fWynik = x / 2;

// wykonujemy tyle iteracji, aby otrzymaé rozsadne przyblizenie
while (abs(x - fWynik * fWynik) > EPSILON)
fWynik = (fWynik + x / fWynik) / 2;

// zwracamy wynik
return fWynik;

}

Funkcja ta wykorzystuje iteracyjng metode Newtona do obliczania pierwiastka, ale to nie
jest dla nas zbyt wazne, bowiem dotyczy zwykitej sytuacji. My natomiast méwimy o
sytuacjach niezwyktych. Co nig bedzie dla naszej funkgcji?...

Na pewno bedzie to podanie jej liczby ujemnej. Dopdki pozostajemy na gruncie prostej
matematyki, jest to dla nas btedna wartos¢ - nie mozna wyciagnac¢ pierwiastka
kwadratowego z liczby mniejszej od zera.

Nie mozna jednak wykluczy¢, ze nasza funkcja otrzyma kiedys liczbe ujemng. Bedzie to
btad, sytuacja wyjatkowa - i trzeba bedzie na nig zareagowaé. Scisle méwiac, trzeba
bedzie poinformowac o niej wywotujgcego funkcje.

Wyjatki 465

Specjalny rezultat

Jak mozna to zrobi¢?... Prostym sposobem jest zwrocenie specjalnej wartosci. Niech
bedzie to wartos$¢, ktora w normalnych warunkach nie ma prawa by¢ zwrécona. W tym
przypadku powinna to by¢ taka liczba, ktorej prawidtowe zwrdcenie przez Pierwiastek ()
nie powinno mie¢ miejsca.

Jaka to liczba? Oczywiscie - dowolna liczba ujemna. Powiedzmy, ze np. -1:

if (x < 0) return -1;

Po dodaniu tego sprawdzenia funkcja bedzie juz odporna na sytuacje z nieprawidtowym
argumentem. Wywotujacy ja bedzie musiat natomiast sprawdza¢, czy rezultat funkcji nie
jest przypadkiem informacjg o btedzie - np. w ten sposdb:

float flLiczba;
float fPierwiastek;

if ((fPierwiastek = Pierwiastek (fLiczba)) < 0)
std::cout << "Nieprawidlowa liczba";
else
std::cout << "Pierwiliastek z " << fliczba << " to " << fPierwiastek;

Jak wida¢, przy wykorzystaniu wartosci zwracanej operatora przypisania nie jest to
szczegolnie ucigzliwe.

Wady tego rozwigzania

Takie rozwigzanie ma jednak kilka mankamentow. Pierwszg widac¢ juz tutaj: nie wyglada
ono szczegolnie estetycznie od strony wywotujacego. Druga kwestia jest powazniejsza.

Jest nig problem doboru wartosci specjalnej, sygnalizujacej btad. Zwracam uwage, ze nie
ma ona prawa pojawienia sie w jakiejkolwiek poprawnej sytuacji - musi ona
jednoznacznie identyfikowac btad, a nie przydatny rezultat.

W przypadku funkcji Pierwiastek () byto to proste, gdyz potencjalnych wartosci jest
mndstwo: mozemy przeciez wykorzystac wszystkie liczby ujemne - poprawnym wynikiem
funkcji jest bowiem tylko liczba dodatnia. Nie zawsze jednak musi tak byc¢ - czas na
kolejny przykfad matematyczny, tym razem z logarytmem o dowolnej podstawie:

float LogA(float a, float x) { return log(x) / log(a); }

Tutaj takze mozliwe jest podanie nieprawidtowych argumentéw: wystarczy, zeby cho¢
jeden z nich byt ujemny lub aby podstawa logarytmu (a) byta réwna jeden. Nie warto
polegac¢ na reakcji funkcji bibliotecznej 10g () w razie zaistnienia takiej sytuacji; lepiej
samemu co$ na to poradzic.

No wiasnie - ale co? Mozemy oczywiscie skontrolowaé poprawnos¢ argumentow funkcji:

if (a <0 || a==1.0f || x < 0)
/* btad, ale jak o nim powiedziec¢?... */

ale nie bardzo wiadomo, jaka specjalng wartos¢ nalezatoby zwréci¢. W zakresie typu
float nie ma bowiem zadnej ,wolnej” liczby, poniewaz poprawny wynik logarytmu moze
by¢ kazda liczba rzeczywista.

Ostatecznie mozna zwrdcic zero, ktéry to wynik zachodzi normalnie tylko dla x réwnego
1. Wowczas jednak sprawdzanie potencjalnego btedu bytoby bardzo niewygodne:

// sprawdzamy, czy rezultat Jjest rdéwny zero, a argument rdézny od jeden;

// Jjezeli tak, to blad

if (((fWynik = LogA (fPodstawa, fliczba)) == 0.0f) && fLiczba != 1.0f)
std::cout << "Zly argument funkcji";

466 Zaawansowane C++

else
std::cout << "Logarytm o podst. " << fPodstawa << " z " << fLiczba
<< " wynosi " << fWynik;

To chyba przesadza fakt, iz tagczenie informacji o btedzie z wtasciwym wynikiem nie jest
dobrym pomystem.

Oddzielenie rezultatu od informacji o btedzie

Obie te dane trzeba od siebie odseparowaé. Funkcja powinna zatem zwracac dwie
wartosci: jedng ,wfasciwg” oraz drugq, informujacg o powodzeniu lub niepowodzeniu
operacji.

Ma to rozliczne zalety - miedzy innymi:
> pozwala przekaza¢ wiecej danych na temat charakteru btedu
> upraszcza kontrole poprawnosci wykonania funkcji
> umozliwia swobode zmian w kodzie i ewentualne rozszerzenie funkcjonalnosci

Wydaje sie jednak, ze jest do$¢ powazny problem: jak funkcja miataby zwraca¢ dwie
wartosci?... Céz, chyba brak ci pomystowosci - istnieje bowiem kilka drég zrealizowania
tego mechanizmu.

Wykorzystanie wskaznikéw

Nasza funkcja, oprécz normalnych argumentéw, moze przyjmowac jeden wskaznik. Za
jego posrednictwem przekazana zostanie dodatkowa wartosé. Moze to by¢ informacja o
btedzie, ale czesciej (i wygodniej) umieszcza sie tam wtasciwy rezultat funkcji.

Jak to wyglada? Oto przyktad. Funkcja strToUInt () dokonuje zamiany liczby naturalnej
zapisanej jako cigg znakdéw (np. "21433") na typ unsigned:

#include <cmath>

bool StrToUInt (const std::string& strlLiczba, unsigned* puWynik)
{

// sprawdzamy, czy podany napis w ogdle zawiera znaki

if (strlLiczba.empty()) return false;

/* dokonujemy konwersji */

// zmienna na wynik
unsigned uWynik = 0;

// przelatujemy po kolejnych znakach, sprawdzajac czy sa to cyfry
for (unsigned 1 = 0; 1 < strlLiczba.length(); ++1)
if (strLiczbali] > '0' && strLiczbali] < '9")
{
// OK - cyfra; mnozymy aktualny wynik przez 10
// 1 dodajemy te cyfre
uWynik *= 10;
uWynik += strliczbali] - '0';

else
// jezeli znak nie Jjest cyfra, to konczymy niepowodzeniem
return false;

// w przypadku sukcesu przepisujemy wynik 1 zwracamy true
*pullynik = uWynik;
return true;

Wyjatki 467

Nie jest ona moze najszybsza, jako ze wykorzystuje najprostszy, ,naturalny” algorytm
konwersji. Nam jednak chodzi o co$ innego: o sposob, w jaki funkcja zwraca rezultat i
informacje o ewentualnym btedzie.

Jak mozna zauwazy¢, typem zwracanym przez funkcje jest bool. Nie jest to wiec
zasadniczy wynik, lecz tylko znacznik powodzenia lub niepowodzenia dziatan. Zasadniczy
rezultat to kwestia ostatniego parametru funkcji: nalezy tam przekaza¢ wskaznik na
zmienng, ktdéra otrzyma wynikowa liczbe.

Brzmi to moze nieco skomplikowanie, ale w praktyce korzystanie z tak napisanej funkcji
jest bardzo proste:

std::string strliczba;
unsigned ulLiczba;

if (StrToUInt (strLiczba, &ulLiczba))

std::cout << strlLiczba << " razy dwa == " << ulLiczba * 2;
else
std::cout << strliczba << " - nieprawidlowa liczba";

Mozesz sie spierac: ,Ale przeciez tutaj mamy wybitnego kandydata na potaczenie
rezultatu z informacjg o btedzie! Wystarczy zmieni¢ zwracany typ na int - wtedy
wszystkie wartosci ujemne mogtyby informowac o btedzie!...”

Chyba jednak sam widzisz, jak to rozwigzanie bytoby naciggane. Nie dos¢, ze uzylibySmy
nieadekwatnego typu danych (ktéry ma mniejszy zakres interesujacych nas liczb
dodatnich niz unsigned), to jeszcze ograniczyliby$my mozliwos¢ przysztej rozbudowy
funkcji. Zatézmy na przyktad, ze na bazie strToUInt () chcesz napisac funkcje
StrToInt ():

bool StrToInt (const std::stringé& strLiczba, int* pnWynik);

Nie jest to trudne, jezeli wykorzystujemy zaprezentowang tu technike informacji o
btedach. Gdybysmy jednak poprzestali na taczeniu rezultatu z informacjg o btedzie,
wowczas bytoby to problemem. Oto straciliby$my przeciez catg ,,ujemng potdwke” typu
int, bo ona teraz takze musiataby by¢ przeznaczona na poprawne wartosci.

| Dla wprawy w ogdélnym programowaniu mozesz napisac funkcje strTolInt (). Jest to
raczej proste: wystarczy dodac sprawdzanie znaku ‘minus’ na poczatku liczby i nieco
. zmodyfikowa¢ petle for.

Widac¢ wiec, ze mimo pozornego zwiekszenia poziomu komplikacji, ten sposéb
informowania o btedach jest lepszy. Nic dziwnego, ze stosujg go zaréowno funkcje
Windows API, jak i interfejsu DirectX.

Uzycie struktury

Dla nieobytych ze wskaznikami (mam nadzieje, ze do nich nie nalezysz) sposdb
zaprezentowany wyzej moze sie wydawac dziwny. Istnieje tez nieco inna metoda na
odseparowanie wilasciwego rezultatu od informacji o btedzie.

Otéz parametry funkcji pozostawiamy bez zmian, natomiast inny bedzie typ zwracany
przez nig. W miejsce pojedynczej wartosci (jak poprzednio: unsigned) uzyjemy
struktury:

struct RESULT

{
unsigned uWynik;
bool bBlad;

468 Zaawansowane C++

i
Zmodyfikowany prototyp bedzie wiec wygladat tak:

RESULT StrToUInt (const std::string& strLiczba);
Mysle, ze nietrudno zgadnag, jakie zmiany zajdg w tresci funkcji.

Wywotanie tak spreparowanej funkcji nie odbiega od wywotania funkcji z ,wymieszanym”
rezultatem. Musi ono wyglada¢ co najmniej tak:

RESULT Wynik = StrToUInt (strlLiczba);
if (Wynik.bBlad)
/* btad */

Mozna tez uzy¢ warunku:

if ((Wynik = StrToUInt (strLiczba)) .bBlad)

ktéry wyglada pewnie dziwnie, ale jest sktadniowo poprawny, bo przeciez wynikiem
przypisania jest zmienna typu RESULT.

Tak czy inaczej, nie jest to zbyt pociagajaca droga. Jest jeszcze gorzej, jesli
uswiadomimy sobie, ze dla kazdego mozliwego typu rezultatu nalezatoby definiowac
odrebng strukture. Poza tym prototyp funkcji staje sie mniej czytelny, jako ze typ jej
wiasciwego rezultatu (unsigned) juz w nim nie wystepuje. 2!

Dlatego tez o wiele lepiej uzywac¢ metody z dodatkowym parametrem wskaznikowym.

Niezbyt dobre wyjscia

Oba zaprezentowane w poprzednim paragrafie sposoby obstugi btedéw zaktadaty proste
poinformowanie wywotujacego funkcje o zainstniatym problemie. Mimo tej prostoty,
sprawdzajq sie one bardzo dobrze.

Istniejg aczkolwiek takze inne metody raportowania btedow, ktére nie majg juz tak
licznych zalet i nie sq szeroko stosowane w praktyce. Oto te metody.

Wywotanie zwrotne

Idea wywotania zwrotnego (ang. callback) jest nieskomplikowana. Jezeli w pisanej
przez nas funkcji zachodzi sytuacja wyjatkowa, wywotujemy inng funkcje pomocniczna.
Taka funkcja moze petnic¢ role ,ratunkowg” i sprébowac naprawic¢ okolicznosci, ktére
doprowadzity do powstania problemu - jak np. btedne argumenty dla naszej funkcji. W
ostatecznosci moze to by¢ tylko sposéb na powiadomienie o nienaprawialnej sytuacji
wyjatkowej.

Uwaga o wygodnictwie

Zaleta wywotania zwrotnego uwidacznia sie w powyzszym opisie. Przy jego pomocy nie
jestesmy skazani na bierne przyjecie do wiadomosci wystgpienia btedu; przy odrobinie
dobrej woli mozna postarac sie go naprawic.

Nie zawsze jest to jednak mozliwe. Mozna wprawdzie poprawi¢ nieprawidtowy parametr,
przekazany do funkcji, ale juz nic nie zaradzimy chociazby na brak pamieci.

121 Wykorzystanie szablondw zlikwidowatoby obie te niedogodnosci, ale czy naprawde sg one tego warte...?

Wyjatki 469

Poza tym, technika callback z géry czyni pesymistyczne zalozenie, ze sytuacje wyjatkowe
beda trafiaty sie na tyle czesto, ze konieczny staje sie mechanizm wywotan zwrotnych.
Jego stosowanie nie zawsze jest wspotmierne do problemu, czasem jest to zwyczajne
strzelanie z armaty do komara. Przyktadowo, w funkcji pierwiastek () spokojnie
mozemy sobie pozwoli¢ na inne sposoby informowania o btedach - nawet w obliczu faktu,
ze naprawienie nieprawidlowego argumentu bytoby przeciez mozliwe. Funkcja ta nie jest
bowiem na tyle kosztowna, aby optacato sie chroni¢ jg przed niespodziewanym
zakonczeniem.

Dlaczego jednak wywotanie zwrotne jest taki ,ciezkim” srodkiem? Ot6z wymaga ono
specjalnych przygotowan. Od strony programisty-klienta obejmujg one przede wszystkim
napisania odpowiednich funkcji zwrotnych. Od strony piszacego kod biblioteczny
wymagajq natomiast gruntowego obmyslenia mechanizmu takich funkcji zwrotnych: tak,
aby nie mnozy¢ ich ponad miare, a jednocze$nie zapewnic dla siebie pewng wygode i
uniwersalnos¢.

Uwaga o logice

Funkcje callback sq tez bardzo ktopotliwe z punktu widzenia logiki programu i jego
konstrukcji. Zaktadajg bowiem, by kod nizszego poziomu - jak funkcje biblioteczne w
rodzaju wspomnianej Pierwiastek () lub strToUInt () - wywotywaty kod wyzszego
poziomu, zwigzany bezposrednio z dziataniem samej aplikacji. tamie to naturalng
hierarchie ,warstw” kodu i burzy porzadek jego wykonywania.

Uwaga o niedostatku mechanizmow

Wreszcie trzeba wspomnie¢, ze w C++ nie ma dobrych sposobow na realizacje funkcji
zwrotnych. Owszem, mamy wskazniki na funkcje - jednak one pozwalajg pokazywac
jedynie na funkcje globalne lub statyczne metody klas. Nie posiadamy natomiast
niezbednego w programowaniu obiektowym mechanizmu wskaznika na niestatyczng
metode obiektu (ang. closure), przez co trudno jest zrealizowac callback.

W poprzednim rozdziale opisatem pewien sposéb na obejscie tego problemu, ale jak
wszystkie potowiczne rozwigzania, nie jest on zbyt elegancki...

Zakonczenie programu

Wyijatkowy btad moze spowodowac jeszcze jedng mozliwg akcje: natychmiastowe
zakonczenie dziatania programu.

Brzmi to bardzo drastycznie i takie jest w istocie. Naprawde trudno wskaza¢ sytuacje, w
ktérej bytoby konieczne przerwanie wykonywania aplikacji - zwtaszcza niepoprzedzone
zadnym ostrzezeniem czy zapytaniem do uzytkownika. Chyba tylko krytyczne braki
pamieci lub niezbednych plikéw mogg byc¢ tego czesciowym usprawiedliwieniem.

Na pewno jednak fatalnym pomystem jest stosowanie tego rozwigzania dla kazdej
sytuacji wyjatkowej. I chyba nawet nie musze mowi¢, dlaczego...

Wyjatki

Takie sg tradycyjne sposobu obstugi sytuacji wyjatkowych. Byty one przydatne przez
wiele lat i nadal nie stracity nic ze swojej uzytecznosci. Nie mys$l wiec, ze mechanizm,
ktéry zaraz pokaze, moze je catkowicie zastgpic.

Tym mechanizmem sa wyjatki (ang. exceptions). Skojarzenie tej nazwy z sytuacjami
wyjatkowymi jest jak najbardziej wskazane. Wyjatki stuza wtasnie do obstugi
niecodzienych, niewystepujgcych w normalnym toku programu wypadkow.

Spéjrzmy wiec, jak moze sie to odbywac¢ w C++.

470 Zaawansowane C++

Rzucanie i tapanie wyjgtkow

Technike obstugi wyjatkow mozna stresci¢ w trzech punktach, ktére od razu wskazg nam
jej najwazniejsze elementy. Tak wiec, te trzy zatozenia wyjatkow sg nastepujace:
> jezeli piszemy kod, w ktérym moze zdarzyc sie co$ wyjatkowego i niecodziennego,
czyli po prostu sytuacja wyjatkowa, oznaczamy go odpowiednio. Tym
oznaczeniem jest ujecie kodu w blok try (‘sprébuj’). To catkiem obrazowa nazwa:
kod wewnatrz tego bloku nie zawsze moze by¢ poprawnie wykonany, dlatego
lepiej jest mowi¢ o probie jego wykonania: jezeli sie ona powiedzie, to bardzo
dobrze; jezeli nie, bedziemy musieli co$ z tym fantem zrobic...
> zatdézmy, ze wykonuje sie nasz kod wewnatrz bloku try i stwierdzamy w nim, ze
zachodzi sytuacja wyjatkowa, ktdrg nalezy zgtosi¢. Co robimy? Otdéz uzywamy
instrukcji throw (‘rzu¢’), podajac jej jednoczesnie tzw. obiekt wyjatku
(ang. exception object). Ten obiekt, mogacy by¢ dowolnym typem danych, jest
zwykle informacjg o rodzaju i miejscu zainstniatego btedu
» rzucenie obiektu wyjatku powoduje przerwanie wykonywania bloku try, zas nasz
rzucony obiekt ,leci” sobie przez chwile - az zostanie przez kogos$ ztapany. Tym
zas zajmuje sie blok catch (‘ztap’), nastepujacy bezposrednio po bloku try. Jego
zadaniem jest reakcja na sytuacje wyjatkowq, co zazwyczaj wigze sie z
odczytaniem obiektu wyjatku (rzuconego przez throw) i podjeciem jakiejs
sensownej akcji

A zatem mechanizmem wyjatkdw zadzg te trzy proste zasady:

Blok try obejmuje kod, w ktérym moze zajs¢ sytuacja wyjatkowa.

Instrukcja throw wewnatrz bloku try stuzy do informowania o takiej sytuacji przy
pomocy obiektu wyjatku.

Blok catch przechwytuje obiekty wyrzucone przez throw i reaguje na zainstaniate
sytuacje wyjatkowe.

Tak to wyglada w teorii - teraz czas na obejrzenie kodu obstugi wyjatkow w C++.

Blok try-catch

Obstuga sytuacji wyjatkowych zawiera sie wewnatrz blokéw try i catch. Wygladajg one
na przyktad tak:

try
{

ryzykowne instrukcje
}
catch (...)
{

kod obstugi wyjatkow
}

ryzykowne instrukcje zawarte wewnatrz bloku try sa kodem, ktéry poddawany jest
pewnej specjalnej ochronie na wypadek wystgpienia wyjatku. Na czym ta ochrona polega
- bedziemy méwi¢ w nastepnym podrozdziale. Na razie zapamietaj, ze w bloku try
umieszczamy kod, ktérego wykonanie moze spowodowac sytuacje wyjatkowa, np.
wywotania funkcji bibliotecznych.

Jezeli tak istotnie sie stanie, to wéwczas sterowanie przenosi sie do bloku catch.
Instrukcja catch ,fapie” wystepujace wyjatki i pozwala przeprowadzi¢ ustalone dziatania
w reakcji na nie.

Wyjatki 471

Instrukcja throw

Kiedy wiadomo, ze wystgpita sytuacja wyjatkowa?... Otd6z musi ona zostac
zasygnalizowana przy pomocy instrukcji throw:

throw obiekt;

Wystagpienie tej instrukcji powoduje natychmiastowe przerwanie normalnego toku
wykonywania programu. Sterowanie przenosi sie wtedy do najblizszego pasujacego bloku
catch.

Rzucony obiekt petni natomiast funkcje informujacg. Moze to by¢ warto$¢ dowolnego
typu - réwniez bedaca obiektem zdefiniowanej przez nas klasy, co jest szczegdlnie
przydatne. obiekt zostaje ,wyrzucony” poza blok try; mozna to poréwnac do pilota
katapultujacego sie z samolotu, ktéry niechybnie ulegnie katastrofie. Wystgpienie throw
jest bowiem sygnatem takiej katastrofy - sytuacji wyjatkowej.

Wedréwka wyjatku

Zaraz za blokiem try nastepuje najczesciej odpowiednia instrukcja catch, ktora ztapie
obiekt wyjatku. Wykona potem odpowiednie czynnosci, zawarte w swym bloku, a
nastepnie program rozpocznie wykonywanie dalszych instrukcji, zaraz za blokiem
catch.

Jesli jednak wyjatek nie zostanie przechwycony, to moze on opusci¢ swa macierzystg
funkcje i dotrze¢ do tej, ktdra jg wywotata. Jesli i tam nie znajdzie odpowiadajacego
bloku catch, to wyjdzie jeszcze bardziej ,na powierzchnie”. W przypadku gdy i tam nie
bedzie pasujacej instrukcji catch, bedzie wyskakiwat jeszcze wyzej, i tak dalej.

Proces ten nazywamy odwijaniem stosu (ang. stack unwinding) i trwa on dopdki jakas
instrukcja catch nie ztapie lecqcego wyjatku. W skrajnym (i nieprawidlowym) przypadku,
odwijanie moze zakonczy¢ sie przerwaniem dziatania programu - mowimy wtedy, ze
wystapit nieztapany wyjatek (ang. uncaught exception).

try
{

void Funkcja ()

instrukcje J,ff,
{
Funkejal) 1’ instrukcije

} throw obiekt;

catech

obstuga wyjatku HHH“*} // brak instrukeji catch

Schemat 39. Wedréwka wyjatku rzuconego w funkcji

Zaréwno o odwijaniu stosu, jak i o fapaniu i nieztapaniu wyjatkéw bedziemy szerzej
moéwié¢ w przysztym podrozdziale.

throw d return

Instrukcja throw jest troche podobna do instrukcji return, ktérej uzywamy do
zakonczenia funkcji i zwrocenia jej rezultatu. Istniejg jednak wazne réznice:
> return powoduje zawsze przerwanie tylko jednej funkcji i powrét do miejsca, z
ktérego jg wywotano. throw moze natomiast wcale nie przerywac¢ wykonywania

472 Zaawansowane C++

funkcji (jezeli znajdzie w niej pasujacg instrukcje catch), lecz réwnie dobrze moze
przerwac dziatanie wielu funkcji, a nawet catego programu

> w przypadku return mozliwe jest ,rzucenie” obiektu nalezacego tylko do jednego,
$cisle okreslonego typu. Tym typem jest typ zwracany przez funkcje, okreslany w
jej deklaracji. throw moze natomiast wyrzucac obiekt dowolnego typu, zaleznie
od potrzeb

» return jest normalnym sposobem powrotu z funkcji, ktory stosujemy we
wszystkich typowych sytuacjach. throw jest za$ uzywany w sytuacjach
wyjatkowych; nie powinno sie uzywac go jako zamiennika dla return, bo
przeznaczenie obu tych instrukcji jest inne

Widac wiec, ze mimo pozornego podobienstwa instrukcje te sg zupetnie rézne. return
jest typowgq instrukcja jezyka programowania, bez ktérej tworzenie programéw bytoby
niemozliwe. throw jest z kolei czescig wiekszej calosci - mechanizmu obstugi wyjatkow -
bedacym po prostu specjalnym mechanizmem radzenia sobie z sytuacjami kryzysowymi.
Mimo jej przydatnosci, stosowanie tej techniki nie jest obowigzkowe.

Skoro jednak mamy wybiera¢ miedzy uzywaniem a nieuzywaniem wyjatkow (a takich
wyboréw bedziesz dokonywat czesto), nalezy wiedzie¢ o wyjatkach co$ wiecej. Dlatego
tez kontynuujemy zajmowanie sie tym tematem.

Wtasciwy chwyt

W poprzednich akapitach kilkakrotnie uzywatem sformutowania , pasujacy blok catch”
oraz ,odpowiednia instrukcja catch”. C6zZ one znacza?...

Jedng z zalet mechanizmu wyjatkow jest to, ze instrukcja throw moze wyrzucac obiekty
dowolnego typu. Ponizsze wiersze sq wiec catkowicie poprawne:

throw 42u;

throw "Straszny blad!";

throw CException("Wystapil wyjatek", FILE , LINE);
throw 17.5;

Te cztery instrukcje throw rzucajg (odpowiednio) obiekty typdw unsigned, const
char[], zdefiniowanej przez uzytkownika klasy CException oraz double. Wszystkie one
sq zapewne cennymi informacjami o btedach, ktére nalezatoby odczyta¢ w bloku catch.
Niewykluczone przeciez, ze nawet najmniejsza pomoc ,z miejsca katastrofy” moze by¢
dla nas przydatna.

Dlatego tez w mechanizmie wyjatkow przewidziano sposoéb nie tylko na oddanie
sterowania do bloku catch, ale tez na przestanie tam jednego obiektu. Jest to oczywiscie
ten obiekt, ktéry podajemy instrukcji throw.

catch otrzymuje natomiast jego lokalna kopie - w podobny sposéb, w jaki funkcje
otrzymujg kopie przekazanych im parametréw. Aby jednak tak sie stato, blok catch musi
zadeklarowag, z jakiego typu obiektami chce pracowac:

catch (typ obiekt)

{
kod

}

W ten sposob bedzie miat dostep do kazdego ztapanego obiektu wyjatku, ktéry nalezy
do podanego typu. Da mu to mozliwo$¢ wykorzystania go - chociazby po to, aby
wyswietli¢ uzytkownikowi zawarte w nim informacje:

Wyjatki 473

try
srand (static cast<unsigned>(time (NULL)))

// losujemy rzucony wyjatek

switch (rand() % 4)

{
case O: throw "Wyjatek tekstowy";
case 1: throw 1.5f; // wyjatek typu float
case 2: throw -12; // wyjatek typu int
case 3: throw (void*) NULL; // pusty wskaznik

}

}
catch (int nZlapany)

{

std::cout << "Zlapalem wyjatek liczbowy z wartoscia " << nZlapany;

}

Komunikaty o btedach powinny by¢ w zasadzie kierowane do strumienia cerr, a nie
cout. Tutaj jednak, dla zachowania prostoty, bede postugiwat sie standardowym
strumieniem wyjscia. O pozostatych dwoch rodzajach strumieni wyjsciowych pomoéwimy
w rozdziale o strumieniach STL.

W tym kawatku kodu blok catch ztapie liczbe typu int - jezeli takowa zostanie
wyrzucona przez instrukcje throw. Przechwyci ja w postaci lokalnej zmiennej nZlapany,
aby potem wyswietli¢ jej warto$¢ w konsoli.

A co z pozostatymi wyjatkami? Nie mamy instrukcji catch, ktére by je fapaty. Wobec
tego zostang one wyrzucone ze swej macierzystej funkcji i bedg wedrowaty tg $ciezkq az
do natrafienia pasujgcych blokéw catch. Jezeli ich nie znajda, spowodujg zakonczenie
programu.

Powinnismy zatem zapewni¢ obstuge takze i tych wyjatkdw. Robimy w taki sposéb, iz
dopisujemy po prostu brakujgce bloki catch:

catch (const char szNapis|[])

{

std::cout << szNapis;

}
catch (float fLiczba)

{

std::cout << "Zlapano liczbe: " << fLiczba;

}
catch (void* pWskaznik)

{

std::cout << "Wpadl wskaznik " << pWskaznik;

}

Blokéw catch, nazywanych procedurami obstugi wyjatkow (ang. exception handlers),
moze by¢ dowolna ilo$¢. Wszystko zalezy od tego, ile typow wyjatkow zamierzamy
przechwytywac.

Kolejnos¢ blokéw catch

Obecnos¢ kilku blokéw catch po jednej instrukcji try to powszechna praktyka. Dzieki
niej mozna bowiem zabezpieczy¢ sie na okolicznos¢ réznych rodzajow wyjatkéw. Warto
wiec o tym porozmawiad.

474 Zaawansowane C++

Dopasowywanie typu obiektu wyjgtku
Zatbzmy wiec, ze mamy taka oto sekwencje try-catch:
try

{
// rzucamy wyjatek

throw 90;
}
catch (float fLiczba) { /% ... %/}
catch (int nLiczba) {/* ... *x/ }
catch (double fLiczba) /% ... %/}

W bloku try rzucamy jako wyjatek liczbe 90. Poniewaz nie podajemy jej zadnych
przyrostkow, kompilator uznaje, iz jest to wartos¢ typu int. Nasz obiekt wyjatku jest
wiec obiektem typu int, ktdry leci na spotkanie swego losu.

Gdzie sie zakonczy jego droga?... Wszystko zalezy od tego, ktory z trzech blokéw catch
przechwyci ten wyjatek. Wszystkie one sg do tego zdolne: typ int pasuje bowiem
zaréwno do typu float, jak i double (no i oczywiscie int).

Moéwigc ,pasuje”, mam tu na mysli doktadnie taki sam mechanizm, jaki jest uruchamiany
przy wywotywaniu funkcji z parametrami. Majac bowiem trzy funkcje:

void Funkcjal (float);
void Funkcja2 (int);
void Funkcja3 (double) ;

kazdej z nich mozemy przekazac¢ wartos¢ typu int. Naturalnie, jest on najbardziej
zgodna z Funkcija2 (), ale pozostate tez sie do tego nadaja. W ich przypadku zadziatajq
po prostu wbudowane, niejawne konwersje: kompilator zamieni liczbe na int na typ
float lub double.

A jednak to tylko czes$¢ prawdy. Zgodnos¢ typu wyjatku z typem zadeklarowanym w
bloku catch to tylko jedno z kryterium wyboru - w dodatku wcale nie najwazniejsze!
Otdz najpierw w gre wchodzi kolejnos¢ instrukcji catch. Kompilator przeglada je w takim
samym porzadku, w jakim wystepujg w kodzie, i dla kazdej z nich wykonuje test
dopasowania argumentu. Jesli stwierdzi jakakolwiek zgodnos$¢ (niekoniecznie
najlepsza mozliwg), ignoruje wszystkie pozostate bloki catch i wybiera ten pierwszy

pasujacy.

Co to znaczy w praktyce? Spojrzmy na nasz przyktad. Mamy obiekt typu int, ktory
zostanie kolejno skonfrontowany z typami trzech blokdw catch: float, int i double.
Wobec przedstawionych wyzej zasad, ktéry z nich zostanie wybrany?...

Odpowiedz nie jest trudna. Juz pierwsze dopasowanie int do float zakonczy sie
sukcesem. Nie bedzie ono wprawdzie najlepsze (wymagac bedzie niejawnej konwersiji),
ale, jak podkreslitem, kompilator poprzestanie wtasnie na nim. Porzadek blokéw catch
wezmie po prostu gére nad ich zgodnoscia.

Pamietaj wiec zasade dopasowywania typu obiektu rzuconego do wariantéw catch:

Typy w blokach catch sq sprawdzane wedle ich kolejnosci w kodzie, a wybierana jest
pierwsza pasujaca mozliwos¢. Przy dopasowywania brane sg pod uwage wszystkie
niejawne konwersje.

Szczegodlnie natomiast wez sobie do serca, iz:

Kolejnos¢ blokéw catch czesto ma znaczenie.

Wyjatki 475

Mimo ze z pozoru przypominajg one funkcje, funkcjami nie sq. Obowigzujg w nich wiec
inne zasady wyboru wtasciwego wariantu.

Szczegoty przodem

Jak w takim razie nalezy ustawiac procedury obstugi wyjatkdw, aby dziataty one zgodnie
Z haszymi zyczeniami?... Popatrzmy wpierw na taki przykfad:

try
{

//

throw 1l6u; // unsigned

Y/

throw -87; // int

Y/

throw 9.242f; // float

Y/

throw 3.14157; // double
}
catch (double fLiczba) {/* ... %/}
catch (int nLiczba) {/* ... */ }
catch (float fLiczba) {/* ... */ 1}
catch (unsigned uLiczba) /7 ... %/}

Pytanie powinno tutaj brzmie¢: co jest Zle na tym obrazku? Domyslasz sie, ze chodzi o
kolejnos¢ blokdéw catch. Sprawdzmy.

W bloku try rzucamy jeden z czterech wyjatkow - typu unsigned, int, float oraz
double. Co sie z nimi dzieje? Oczywiscie trafiajg do odpowiednich blobkdéw catch... czy
aby na pewno?

Niezupetnie. Wszystkie te liczby zostang bowiem od razu dopasowane do pierwszego
wariantu z parametrem double. Typ double swobodnie potrafi pomiesci¢ wszystkie
cztery typy liczbowe, zatem wszystkie cztery wyjatkie trafig wytgcznie do pierwszego
bloku catch! Pozostate trzy sq w zasadzie zbedne!

Kolejnos¢ procedur obstugi jest zatem nieprawidtowa. Poprawnie powinny by¢ one
utozone w ten sposéb:

catch (unsigned uliczba) /% ... %/}
catch (int nLiczba) {/* ... */ 1}
catch (float fLiczba) { /% ... %/}
catch (double fLiczba) {/* ... */ }

To gwarantuje, ze wszystkie wyjatki trafig do tych blokéw catch, ktére im doktadnie
odpowiadajq. Korzystamy tu z faktu, ze:
» typ unsigned w pierwszym bloku przyjmie tylko wyjatki typu unsigned
> typ int w drugim bloku mogtby przejac zaréwno liczby typu unsigned, jak i int.
Te pierwszg sg jednak przechwycane przez poprzedni blok, zatem tutaj trafiajg
wytacznie wyjatki faktycznego typu int
> typ float moze przyjac typy unsigned, int i float. Pierwsze dwa sg juz jednak
obstuzone, wiec ten blok catch dostaje tylko ,prawdziwe” liczby
zmiennoprzecinkowe pojedynczej precyzji
» typ double pasuje do kazdej liczby, ale tutaj blok catch z tym typem dostanie
jedynie te wyjatki, ktére sg faktycznie typu double. Pozostate liczby zostang
przechwycone przez poprzednie warianty

Miedzy typami unsigned, int, float i double zachodzi tu po prosta relacja polegajaca
na tym, ze kazdy z nich jest szczegdlnym przypadkiem nastepnego:

476 Zaawansowane C++

unsigned c int < float < double

~Najbardziej szczegdlny” jest typ unsigned i dlatego on wystepuje na poczatku. Dalej
mamy juz coraz bardziej ogdlne typy liczbowe.

Taka zasada konstrurowania sekwencji blokéw catch jest poprawna w kazdym
przypadku, nie tylko dla typow liczbowych,

Umieszczajac kilka blokéw catch jeden po drugim, zadbaj o to, aby wystepowaty one w
porzadku rosnacej ogolnosci. Niech najpierw pojawig sie bloki o najbardziej
wyspecjalizowanych typach, a dopiero potem typy coraz bardziej ogélne.

Mozesz kreci¢ nosem na takie niesciste sformulowania. Bo i co to znaczy, ze dany typ jest
ogdlniejszy niz inny?... W gre wchodza tu niejawne konwersje - jak wiemy, kompilator
stosuje je przy dopasowywaniu w blokach catch. Mozna zatem powiedzie¢, ze:

Typ A jest ogdlniejszy od typu B, jezeli istnieje niejawna konwersja z B do A,
niepowodujaca utraty danych.

W tym sensie double jest ogdlniejszy od kazdego z typdw: unsigned, int i float,
poniewaz w kazdym przypadku istniejg niejawne konwersje standardowe, zamieniajace
te typy na double. To zresztg zgodne ze zdrowym rozsgdkiem i wiedzg matematyczna,
ktéra méwi, nam ze liczby naturalne i catkowite sg takze liczbami rzeczywistymi.

Innym rodzajem konwersji, ktéry bedzie nas interesowat w tym rozdziale, jest zamiana
odwotania do obiektu klasy pochodnej na odwotanie do obiektu klasy bazowej. Uzyjemy
jej do budowy hierarchii klas dla wyjgtkow.

Zagniezdzone bloki try-catch

Wewnatrz bloku try moze znalez¢ sie dowolny kod, jaki moze by¢ umieszczany we
wszystkich blokach instrukcji C++. Przypisania, instrukcje warunkowe, petle, wywotania
funkcji - wszystko to jest dopuszczalne. Co wiecej, w bloku try moge sie znalez¢... inne
bloki try-catch. Nazywami je wtedy zagniezdzonymi, zupetnie tak samo jak
zagniezdzone instrukcje if czy petle.

Formalnie sktadnia takiego zagniezdzenia moze wygladac tak:

try

{
try
{

ryzykowne instrukcje wewnetrzne

}
catch (typ wewnetrzny 1 obiekt wewnetrzny 1)

{

wewnetrzne instrukcje obsiugi 1

}
catch (typ wewnetrzny 2 obiekt wewnetrzny 2)

{

wewnetrzne instrukcje obsitugi 2

}
//

ryzykowne instrukcje zewnetrzne

}
catch (typ zewnetrzny 1 obiekt zewnetrzny 1)

{

zewnetrzne instrukcje obsitugi 1

Wyjatki 477

}
catch (typ zewnetrzny 1 obiekt zewnetrzny 2)
{
zewnetrzne instrukcje obsitugi 2
}
//

dalsze instrukcje

Mimo pozornego skomplikowania jej funkcjonowanie jest intuicyjne. Jezeli podczas
wykonywania ryzykownych instrukcji wewnetrznych rzucony zostanie wyjatek, to
wpierw bedzie on tapany przez wewnetrzne bloki catch. Dopiero gdy one przepuszczg
wyjatek, do pracy wezmga sie bloki zewnetrzne.

Jezeli natomiast ktérys z zestawdw catch (wewnetrzny lub zewnetrzny) wykona swoje
zadanie, to program bedzie kontynuowat od nastepnych linijek po tym zestawie. Tak wiec
w przypadku, gdy wyjatek ztapie wewnetrzny zestaw, wykonywane bedg

ryzykowne instrukcje zewnetrzne; jesli zewnetrzny - dalsze instrukcje

No a jesli zaden wyjatek nie wystgpi? Wtedy wykonajg sie wszystkie instrukcje poza
blokami catch, czyli: ryzykowne instrukcje wewnetrzne,

ryzykowne instrukcje zewnetrzne i WreszcCie dalsze instrukcje.

Takie dostowne zagniezdzanie blokéw try-catch jest w zasadzie rzadkie. Czesciej

wewnetrzny blok wystepuje w funkcji, ktérej wywotanie mamy w zewnetrznym bloku.
Oto przyktad:

void FunkcjaBiblioteczna ()
{
try
{
//
}
catch (typ obiekt)
{
//
}
//
}

void ZwyklaFunkcja ()
{
try
{
FunkcjaBibliotecznal();
//
}
catch (typ obiekt)
{
//
}
}

Takie rozwigzanie ma prostg zalete: FunkcjaBiblioteczna () moze ztapac i obstuzyc te
wyjatki, z ktéorymi sama sobie poradzi. Jezeli nie potrzeba angazowa¢ w to wywotujacego,
jest to duza zaleta. Czes¢ wyjatkéw najprawdopodobniej jednak opusci funkcje - tylko
tymi bedzie musiat zajaé sie wywotujacy. Wewnetrzne sprawy wywotywanej funkcji
(takze wyjatki) pozostang jej wewnetrznymi sprawami.

Ogodlnie mozna powiedzie¢, ze:

478 Zaawansowane C++

Wyijatki powinny by¢ fapane w jak najblizszym od ich rzucenia miejscu, w ktéorym
mozliwe jest ich obstuzenie.

O tej waznej zasadzie powiemy sobie jeszcze przy okazji uwag o wykorzystaniu
wyjatkow.

Ztapanie i odrzucenie

Przy zagniezdzaniu blokéw try (niewazne, czy z posrednictwem funkcji, czy nie) moze
wystgpi¢ czesta w praktyce sytuacja. Mozliwe jest mianowicie, ze po ztapaniu wyjatku
przez bardziej wewnetrzny catch nie potrafimy podjaé¢ wszystkich akcji, jakie bytyby
dla niego konieczne. Przyktadowo, mozemy tutaj jedynie zarejestrowaé go w dzienniku
btedéw; bardziej uzyteczng reakcje powinien zajac sie , ktos$ wyzej”.

Mogliby$my poming¢ wtedy ten wewnetrzny catch, ale jednoczesnie pozbawilibysmy sie
mozliwosci wczesnego zarejestrowania btedu. Lepiej wiec pozostawi¢ go na miejscu, a po
zakonczeniu zapisywania informacji o wyjatku wyrzuci¢ go ponownie. Robimy to
instrukcjg throw bez zadnych parametréw:

throw;

Ta instrukcja powoduje ponowne rzucenie tego samego obiektu wyjatku. Teraz jednak
beda mogty zajac sie nim bardziej zewnetrzne bloki catch. Bedg one pewnie bardziej
kompetentne niz nasze sity szybkiego reagowania.

Blok catch(...), czyli chwytanie wszystkiego

W potaczeniu z zagniezdzonymi blokami try i instrukcjg throw; czesto wystepuje
specjalny rodzaj bloku catch. Nazywany jest on uniwersalnym, a powstaje poprzez
wpisanie po catch wielokropka (trzech kropek) w nawiasie:

try
{

// instrukcje

}
catch (...)

{
// obstuga wyjatkow

}

Uniwersalnosc¢ tego specjalnego rodzaju catch polega na tym, iz pasujg do niego
wszystkie obiekty wyjatkow. Jezeli kompilator, transportujac wyjatek, natrafi na

catch(...), to bezwarunkowo wybierze wtasnie ten wariant, nie ogladajac sie na
zadne inne. catch(...) jest wiec ,wszystkozerny”: pochtania dowolne typy wyjatkéw.
‘Pochtania’ to zresztg dobre stowo. Wewnatrz bloku catch(...) nie mamy mianowicie

zadnych informacji o obiekcie wyjatku. Nie tylko o jego wartosci, ani nawet o jego typie.
Wiemy jedynie, ze jakis wyjatek wystapit - i skromng tg wiedzg musimy sie zadowolié.
Po co nam wobec tego taki dziwny blokcatch?... Jest on przydatny tam, gdzie mozemy
jakos$ wykorzysta¢ samo powiadomienie o wyjatku, nie znajac jednak jego typu ani
wartosci. Wewnatrz catch(...) mozemy jedynie podja¢ pewne domysine dziatania.
Mozemy na przyktad dokona¢ matego zrzutu pamieci (ang. memory dump), zapisujac w
bezpiecznym miejscu wartosci zmiennych na wypadek zakonczenia programu. Mozemy
tez w jakis sposdb przygotowac sie do wtasciwej obstugi btedow.

Cokolwiek zrobimy, na koniec powinnismy przekazac wyjatek dalej, czyli uzy¢
konstrukgcji:

throw;

Wyjatki 479

Jezeli tego nie zrobimy, to catch (...) zdusi w zarodku wszelkie wyjatki, nie pozwalajac
na to, by dotarty one dalej.

Xk k

Na tym konczg sie podstawowe informacje o mechanizmie wyjatkéw. To jednak nie
wszystkie aspekty tej techniki. Musimy sobie jeszcze porozmawiac o tym, co dzieje sie
miedzy rzuceniem wyjatku poprzez throw i jego ztapaniem przy pomocy catch.
Porozmawiamy zatem o odwijaniu stosu.

Odwijanie stosu

Odwijanie stosu (ang. stack unwinding) jest procesem Scisle zwigzanym z wyjatkami.
Jakkolwiek sama jego istota jest raczej prosta, musimy wiedzeé, jakie ma on
konsekwencje w pisanym przez nas kodzie.

Miedzy rzuceniem a ztapaniem

Odwijanie stosu rozpoczyna sie wraz z rzuceniem jakiegokolwiek wyjatku przy pomocy
instrukcji throw i postepuje az do momentu natrafienia na pasujacy do niego blok catch.
W skrajnym przypadku odwijanie moze doprowadzi¢ do zakonczenia dziatania programu -
jest tak jesli odpowiednia procedura obstugi wyjatku nie zostanie znaleziona.

Wychodzenie na wierzch

Na czym jednak polega samo odwijanie?... Otz mozna opisac¢ je w skrécie jako
wychodzenie punktu wykonania ze wszystkich blokéw kodu. Co to znaczy,
najlepiej wyjasni¢ na przyktadzie.

Zatézmy, ze mamy takg oto sytuacje:

try
{
for (/* ... */)
{
switch (/* ... */)
{
case 1:
if (/* ... %))
{
//
throw obiekt;
}
}
}
}
catch
{
//

}

Instrukcja throw wystepuje to wewnatrz 4 zagniezdzonych w sobie blokéw: try, for,
switch i 1f. My oczywiscie wiemy, ze najwazniejszy jest ten pierwszy, bo zaraz za nim
wystepuje procedura obstugi wyjatku - catch.

Co sie dzieje z wykonywaniem programu, gdy nastepuje sytuacja wyjatkowa? Otéz nie
skacze on od razu do odpowiedniej instrukcji catch. Bytoby to moze najszybsze z

480 Zaawansowane C++

punktu widzenia wydajnosci, ale jednoczesnie catkowicie niedopuszczalne. Dlaczego tak
jest - o tym powiemy sobie w nastepnym paragrafie.

Jak wiec postepuje kompilator? Rozpoczyna to stawetne odwijanie stosu, ktéremu
poswiecony jest caty ten podrozdziat. Dziata to mniej wiecej tak, jakby dla kazdego
bloku, w ktérym sie aktualnie znajdujemy, zadziatata instrukcja break. Powoduje to
wyjscie z danego bloku.

Po kazdej takiej operacji jest poza tym sprawdzana obecnos¢ nastepujacego dalej bloku
catch. Jezeli takowy jest obecny, i pasuje on do typu obiektu wyjatku, to wykonywana
jest procedura obstugi wyjatku w nim zawarta. Proste i skuteczne :)

Zobaczmy to na naszym przykitadzie. Instrukcja throw znajduje sie tu przede wszystkim
wewnatrz bloku if - i to on bedzie w pierwszej kolejnosci odwiniety. Potem nie zostanie
znaleziony blok catch, zatem opuszczone zostang takze bloki switch, for i wreszcie try.
Dopiero w tym ostatnim przypadku natrafimy na szukang procedure obstugi, ktéra
zostanie wykonana.

Warto pamietac¢, ze - cho¢ nie widac tego na przykfadzie - odwijanie moze tez dotyczy¢
funkcji. Jezeli zajdzie koniecznos$¢ odwiniecia jej bloku, to sterowanie wraca do
wywotujgcego funkcje.

Porownanie throw Z break | return

Nieprzypadkowo poréwnatem instrukcje throw do break, a wczesniej do return. Czas
jednak zebrac¢ sobie cechy wyrodzniajace i odrozniajace te trzy instrukcje. Oto stosowna
tabela:

inscte"g::ji > throw break return
. do najblizszego jeden blok wyzej zakonczenie dziatania
prszf;iz.,.’,':,'zgle pasujacego bloku | (wyjscie z petli lub | funkcji i powrét do kodu,
catch bloku switch) ktoéry ja wywotat
wartos¢ tego samego
wartosé obiekt wyjatku nie jest zwigzany z typu, jaki zostat
dowolnego typu zadng wartoscig okreslony w deklaracji
funkgji
. obstuga sytuacji . .
zastosowanie ! 0golne programowanie
wyjatkowych

Tabela 20. Poréwnanie throw z break i return

Wszystkie te trzy wtasnosci trzech instrukcji sg bardzo wazne i koniecznie musisz o nich
pamietaé. Nie bedzie to chyba dla ciebie problemem, skoro dwie z omawianych instrukcji
znasz doskonale, a o wszystkich aspektach trzeciej porozmawiamy sobie jeszcze catkiem
obszernie.

Wyjgtek opuszcza funkcje

Rzucenie oraz ztapanie i obstuga wyjatku moze odbywac sie w ramach tej samej funkcji.
Czesto jednak mamy sytuacje, w ktorej to jedna funkcja sygnalizuje sytuacje wyjatkowa,
a dopiero inna (wywotujaca jq) zajmuje sie reakcjq na zainstniaty problem. Jest to
zupetnie dopuszczalne, co zresztg parokrotnie podkreslatem.

W procesie odwijania stosu obiekt wyjatku moze wiec opusci¢ swojg macierzystg funkcje.
Nie jest to zaden btad, lecz normalna praktyka. Nie zwalnia ona jednak z obowigzku
ztapania wyjatku: nadal kto$ musi to zrobi¢. Ktos - czyli wywotujacy funkcje.

Wyjatki 481

Specyfikacja wyjatkow

Aby jednak mozna byto to uczyni¢, nalezy wiedzie¢, jakiego typu wyjatki funkcja moze
wyrzucac na zewnatrz. Dzieki temu mozemy opakowac jej przywotanie w blok try i
dodac¢ za nim odpowiednie instrukcje catch, chwytajace wiasciwe obiekty.

Skad mamy uzyskac te tak potrzebng wiedze? Wydawatoby sie, ze nic prostszego.
Wystarczy przejrzec kod funkcji, znalez¢é wszystkie instrukcje throw i okresli¢ typ
obiektdw, jakie one rzucajg. Nastepnie nalezy odrzuci¢ te, ktére sg obstugiwane w samej
funkcji i zaja¢ sie tylko wyjatkami, ktére z niej ,uciekajq”.

Ale to tylko teoria i ma ona jedng powazng stabostke. Wymaga przeciez dostepu do kodu
zrédiowego funkcji, a ten nie musi by¢ wcale osiggalny. Wiele bibliotek jest
dostarczanych w formie skompilowanej, zatem nie ma szans na ujrzenie ich wnetrza.
Mimo to ich funkcjom nikt catkowicie nie zabroni rzucania wyjatkéw.

Dlatego nalezato jako$ rozwigzac ten problem. Uzupetniono wiec deklaracje funkcji o
dodatkowg informacje - specyfikacje wyjatkow.

Specyfikacja albo wyszczegodlnienie wyjatkow (ang. exceptions’ specification) mowi
nam, czy dana funkcja wyrzuca z siebie jakies nieobstuzone obiekty wyjatkow, a jesli
tak, to informuje takze o ich typach.

Takie wyszczegdlnienie jest czescig deklaracji funkcji - umieszczamy je na jej koncu, np.:
void Znajdz (int* aTablica, int nLiczba) throw(void¥*);

Po liscie parametréw (oraz ewentualnych dopiskach typu const w przypadku metod
klasy) piszemy po prostu stowo throw. Dalej umieszczamy w nawiasie liste typow
wyjatkow, ktére beda opuszczaty funkcje i ktérych ztapanie bedzie nalezato do
obowigzkéw wywotujacego. Oddzielamy je przecinkami.

Ta lista typdw jest nieobowigzkowa, podobnie zresztg jak cata fraza throw (). Sq to
jednak dwa szczegdlne przypadki - wygladajq one tak:

void Stepuj () ;
void Spiewaj () throw();

Brak specyfikacji oznacza tyle, iz dana funkcja moze rzuca¢ na zewnatrz wyjatki
dowolnego typu. Natomiast podanie throw bez okreslenia typow wyjatkéw informuje,
ze funkcja w ogoéle nie wyrzuca wyjatkéw na zewnatrz. Widzac tak zadeklarowang
funkcje mozemy wiec mie¢ pewnos¢, ze jej wywotania nie trzeba umieszcza¢ w bloku try
i martwic sie o obstuge wyjatkéw przez catch.

Specyfikacja wyjatkow jest czescia deklaracji funkcji, zatem bedzie ona wystepowac
np. w pliku nagtéwkowym zewnetrznej biblioteki. Jest to bowiem niezbedna informacja,
potrzebna do korzystania z funkcji - podobnie jak jej nazwa czy parametry. Kiedy jednak
tamte wiadomosci podpowiadajg, w jaki sposdéb wywotywac funkcje, wyszczegdlnienie
throw () mowi nam, jakie wyjatki musimy przy okazji tego wywotania obstugiwac.

Warto tez podkresli¢, ze mimo swej obecnosci w deklaracji funkcji, specyfikacja wyjatkéw
nie nalezy do typu funkcji. Do niego nadal zaliczamy wytacznie liste parametréw oraz
typ wartosci zwracanej. Na pokazane wyzej funkcje stepuj () i Spiewaj () mozna wiec
pokazywac tym samym wskaznikiem.

Ktamstwo nie poptaca

Specyfikacja wyjatkow jest przyczeniem ztozonym przez twoérce funkcji jej
uzytkownikowi. W ten sposdb autor procedury zaswiadcza, ze jego dzieto bedzie
wyrzucato do wywotujgcego wyjatki wylacznie podanych typow.

482 Zaawansowane C++

Niestety, zycie i programowanie uczy nas, ze niektdre obietnice mogg by¢ tylko
obiecankami. Zat6zmy na przykfad, ze w nowej wersji biblioteki, z ktérej pochodzi
funkcja, dokonano pewnych zmian. Teraz rzucany jest jeszcze jeden, nowy typ wyjatkow,
ktérego obstuga spada na wywotujacego.

Zapomniano jednak zmieni¢ deklaracje funkcji - wyglada ona nadal np. tak:

bool RobCos () throw(std::string);

Obiecywanym typem wyjatkdw jest tu tylko i wytacznie std: :string. Przypusé¢my
jednak, ze w wyniku poczynionych zmian funkcja moze teraz rzucac¢ takze liczby typu int
- typu, ktérego nazwa nie wystepuje w specyfikacji wyjatkow.

Co sie wtedy stanie? Czy wystgpi btad?... Powiedzmy. Jednak to nie kompilator nam o
nim powie. Nie zrobi tego nawet linker. Otéz:

O rzuceniu przez funkcje niezadeklarowanego wyjatku dowiemy sie dopiero w
czasie dziatania programu.

Wyglada to tak, iz program wywota wtedy specjalng funkcje unexpected ()
(‘niespodziewany’). Jest to funkcja biblioteczna, uruchamiana w reakcji na niedozwolony
wyjatek.

Co robi ta funkcja? Otéz... wywotuje ona drugg funkcje, terminate () (‘przerwij’). O niej
bedziemy jeszcze rozmawiac przy okazji nieztapanych wyjatkdw. Na razie zapamietaj, ze
funkcja ta po prostu konczy dziatanie programu w mato porzadny sposéb.

Wyrzucenie przez funkcje niezadeklarowanego wyjatku konczy sie awaryjnym
przerwaniem dziatania programu.

Spytasz pewnie: ,Dlaczego tak drastycznie?” Taka reakcja jest jednak uzasadniona, gdyz
do czynienia ze zwyczajnym oszustwem.

Oto ktos (twdrca funkcji) deklaruje, ze bedzie ona wystrzeliwac z siebie wytgcznie
okreslone typy wyjatkow. My postusznie podporzadkowujemy sie tej obietnicy:
ujmujemy wywotanie funkcji w blok try i piszemy odpowiednie bloki catch. Wszystko
robimy zgodnie ze specyfikacjg throw ().

Tymczasem zostajemy oszukani. Obietnica zostata ztamana: funkcja rzuca nam
wyjatek, ktérego sie zupetnie nie spodziewaliSmy. Nie mamy wiec kodu jego obstugi -
albo nawet gorzej: mamy go, ale nie tam gdzie trzeba. W kazdym przypadku jest to
sytuacja nie do przyjecia i stanowi wystarczajacg podstawe do zakonczenia dziatania
programu.

To domysine mozemy aczkolwiek zmieni¢. Nie zaleca sie wprawdzie, aby mimo
niespodziewanego wyjatku praca programu byta kontynuowana. Jezeli jednak napiszemy
wiasng wersje funkcji unexpected (), bedziemy mogli odréznié¢ dwie sytuacje:

> nieztapany wyjatek - czyli taki wyjatek, ktorego nie schwycit zaden blok catch

> nieprawidlowy wyjatek - taki, ktory nie powinien sie wydostac z funkcji

Roznica jest bardzo wazna, bowiem w tym drugim przypadku nie jesteSmy winni
zaistniatemu problemu. Doktadniej moéwigc, nie jest winny kod wywotujacy funkcje -
przyczyna tkwi w samej funkcji, a zawinit jej tworca. Jego obietnice dotyczace wyjatkow
okazaty sie obietnicami bez pokrycia.

Rozdzielenie tych dwdch sytuacji pozwoli nam uchroni¢ sie przed poprawianiem kodu,
ktéry by¢ moze wcale tego nie wymaga. Z powodu niezadeklarowanego wyjatku nie ma
bowiem potrzeby dokonywania zmian w kodzie wywotujacym funkcje. Pdzniej beda one
oczywiscie konieczne; pozniej - to znaczy wtedy, gdy powiadomimy twdrce funkcje o
jego niekompetencji, a ten z pokorg naprawi swoj bfad.

Wyjatki 483

Jak zatem mozemy zmieni¢ domysing funkcje unexpected () ? Czynimy to... wywotujac
inng funkcje - set unexpected():

unexpected handler set unexpected(unexpected handler pfnFunction);

Tym, ktoéry ta funkcja przyjmuje i zwraca, to unexpected handler. Jest to alias ta
wskaznik do funkcji: takiej, ktéra nie bierze zadnych parametrow i nie zwraca zadnej
wartosci.

Poprawng wersjg funkcji unexpected () moze wiec by¢ np. taka funkcja:

void MyUnexpected()
{

std::cout << "--- UWAGA: niespodziewany wyjatek ---" << std::endl;
exit (1);
}

Po przekazaniu jej do set unexpected():

set unexpected (MyUnexpected);

bedziemy otrzymywali stosowng informacje w przypadku wyrzucenia niedozwolonego
wyjatku przez jakakolwiek funkcje programu.

Nieztapany wyjatek

Przekonalismy sie, ze proces odwijania stosu moze doprowadzi¢ do przerwania dziatania
funkcji i poznaliSmy tego konsekwencje. Nieprawidtowe sygnalizowanie lub obstuga
wyjatkow mogg nam jednak sprawic jeszcze jedng niespodzianke.

Odwijanie moze sie mianowicie zakonczy¢ niepowodzeniem, jesli zaden pasujacy blok
catch nie zostanie znaleziony. Méwimy wtedy, ze wystgpit nieobstuzony wyjatek.

Co nastepuje w takim wypadku? Ot6z program wywotuje wtedy funkcje terminate (). J€j
nazwa wskazuje, ze powoduje ona przerwanie programu. Faktycznie funkcja ta wywotuje
inng funkcje - abort () (‘przestan’). Ona zas powoduje brutalne i nieznoszace zadnych
kompromiséw przerwanie dziatania programu. Po jej wywotaniu mozemy w oknie konsoli
ujrze¢ komunikat:

Abnormal program termination

Taki tez napis bedzie pozegnaniem z programem, w ktérym wystgpi nieztapany wyjatek.
Mozemy to jednak zmieni¢, piszac wiasng wersje funkcji terminate ().

Do ustawienia nowej wersji stuzy funkcja set terminate (). Jest ona bardzo podobna do
analogicznej funkcji set unexpected():

terminate handler set terminate(terminate handler pfnFunction);

Wystepujacy tu alias terminate handler jest takze wskaznikiem na funkcje, ktora nic
nie bierze i nie zwraca. W parametrze set terminate () podajemy wiec wskaznik do
nowej funkcji terminate (), @ w zamian otrzymujemy wskaznik do starej - zupetnie jak w
set unexpected().

Oto przyktadowa funkcja zastepcza:

void MyTerminate ()

{

std::cout << "--- UWAGA: blad mechanizmu wyjatkow ---" << std::endl;

484 Zaawansowane C++

exit (1);
}

Wypisywany przez nas komunikat jest tak ogdélny (nie brzmi np. "niezlapany
wyjatek"), poniewaz terminate () jest wywotywana takze w nieco innych sytuacjach, niz
nieztapany wyjatek. Powiemy sobie o nich we wtasciwym czasie.

Zastosowana tutaj, jak w i MyUnexpected () funkcja exit () stuzy do normalnego (a nie
awaryjnego) zamkniecie programu. Podajemy jej tzw. kod wyjscia (ang. exit code) - ,
zwyczajowo zero oznacza wykonanie bez bteddw, inna wartos¢ to nieprawidtowe dziatanie |
aplikacji (tak jak u nas). |

Porzadki

Odwijanie stosu jest w praktyce bardziej ztozonym procesem niz to sie wydaje. Oprécz
przetransportowania obiektu wyjatku do stosownego bloku catch kompilator musi
bowiem zadbac o to, aby reszta programu nie doznata przy okazji jakich$ obrazen.

O co chodzi? O tym porozmawiamy sobie w tym paragrafie.

Niszczenie obiektow lokalnych

Wspominajac o opuszczaniu kolejno zagniezdzonych blokéw czy nawet funkcji,
postuzytem sie poréwnaniu z break i return. throw ma z nimi jeszcze jedng ceche
wspolng - nie liczac tych odrézniajacych.

Wychodzenie z blokdw przebiega mianowicie w sposdéb catkiem ,czysty” - tak jak w
normalnym kodzie. Oznacza, to ze wszystkie stworzone obiekty lokalne sa niszczone,
a ich pamie¢ zwalniania.

W przypadku typéw podstawowych oznacza to po prostu usuniecie zmiennych z pamieci.
Dla klas mamy jeszcze wywotywanie destruktorow i wszystkie tego konsekwencje.

Mozna zatem powiedzie¢, ze:

Opuszczanie blokéw kodu dokonywane podczas odwijania stosu przebiega tak samo, jak
to sie dzieje podczas normalnego wykonywania programu. Obiekty lokalne sa wiec
niszczone poprawnie.

Sama nazwa ‘odwijanie stosu’ pochodzi zresztg od tego sprzatania, dokonywanego przy
okazji ,wychodzenia na wierzch” programu. Obiekty lokalne (zwane tez automatycznymi)
sg bowiem tworzone na stosie, a jego odwiniecie to wiasnie usuniecie tych obiektow oraz
powrét z wywotywanych funkcji.

Wypadki przy transporcie

To niszczenie obiektéw lokalnych moze sie wydawac tak oczywiste, ze nie warto
poswieca¢ temu az osobnego paragrafu. Jest jednak co$ na rzeczy: czynnos$c ta moze byc¢
bowiem powodem pewnych problemoéw, jezeli nie bedziemy jej Swiadomi. Jakich
problemow?...

Niedozwolone rzucenie wyjgtku

Musimy powiedzie¢ sobie o jednej bardzo waznej zasadzie zwigzanej z mechanizmem
wyjatkéw w C++. Brzmi ona:

Nie nalezy rzuca¢ nastepnego wyjatku w czasie, gdy kompilator zajmuje sie obstuga
poprzedniego.

Co to znaczy? Czy nie mozemy uzywac instrukcji throw w blokach catch?...

Wyjatki 485

Otéz nie - jest to dozwolone, ale w sumie nie o tym chcemy mowic¢ :) Musimy sobie
powiedzie¢, co rozumiemy poprzez ,,obstuge wyjatku dokonywang przez kompilator”.

Dla nas obstugg wyjatku jest kod w bloku catch. Aby jednak mdgt on by¢ wykonany,
obiekt wyjatku oraz punkt sterowania programu muszg tam trafi¢. Tym zajmuje sie
kompilator - to jest wlasnie jego obstuga wyjatku: dostarczenie go do bloku catch.
Dalej nic go juz nie obchodzi: kod z bloku catch jest traktowany jako normalne
instrukcje, bowiem sam kompilator uznaje juz, ze z chwilg rozpoczecia ich wykonywania
jego praca zostata wykonana. Wyjatek zostat przyniesiony i to sie liczy.

Tak wiec:

Obstuga wyjatku dokonywana przez kompilator polega na jego dostarczeniu go
do odpowiedniego bloku catch przy jednoczesnym odwinieciu stosu.

Teraz juz wiemy, na czym polega zastrzezenie podane na poczatku. Nie mozemy rzucic¢
nastepnego wyjatku w chwili, gdy kompilator zajmuje sie jeszcze transportem
poprzedniego. Inaczej méwigc, miedzy wykonaniem instrukcji throw a obstugg wyjatku w
bloku catch nie moze wystapi¢ nastepna instrukcja throw.

Strefy bezwyjatkowe

~No dobrze, ale wiasciwie co z tego? Przeciez po rzuceniu jednego wyjatku wszystkim
zajmuje sie juz kompilator. Jak wiec mogliby$my rzuci¢ kolejny wyjatek, zanim ten
pierwszy dotrze do bloku catch?...”

Faktycznie, tak mogtoby sie wydawac. W rzeczywistosci istniejg az dwa miejsca, z
ktérych mozna rzuci¢ drugi wyjatek.

Jesli chodzi o pierwsze, to pewnie sie go domyslasz, jezeli uwaznie czytate$ opis procesu
odwijania stosu i zwigzanego z nim niszczenia obiektéw lokalnych. Powiedziatem tam, ze
przebiega ono w identyczny sposdb, jak normalnie. Pamiec jest zawsze zwalniania, a w
przypadku obiektow klas wywotywane sa destruktory.

Bingo! Destruktory sg wtasnie tymi procedurami, ktére sg wywotywane podczas obstugi
wyjatku dokonywanej przez kompilator. A zatem nie mozemy wyrzucac z nich zadnych
wyjatkow, poniewaz moze zdarzy¢, ze dany destruktor jest wywotywany podczas
odwijania stosu.

Nie rzucaj wyjatkow z destruktoréw.

Druga sytuacja jest bardziej specyficzna. Wiemy, ze mechanizm wyjatkow pozwala na
rzucanie obiektéw dowolnego typu. Nalezg do nich takze obiekty klas, ktore sami sobie
zdefiniujemy. Definiowanie takich specjalnych klas wyjatkow to zresztg bardzo pozadana
i rozsgdna praktyka. Poméwimy sobie jeszcze o niej.

Jednak niezaleznie od tego, jakiego rodzaju obiekty rzucamy, kompilator z kazdym
postepuje tak samo. Podczas transportu wyjatku do catch czyni on przynajmniej jedng
kopie obiektu rzucanego. W przypadku typow podstawowych nie jest to zaden problem,
ale dla klas wykorzystywane sg normalne sposoby ich kopiowania. Znaczy to, ze moze
zostac uzyty konstruktor kopiujacy - nasz wiasny.

Mamy wiec drugie (i na szczescie ostatnie) potencjalne miejsce, skad mozna rzuci¢ nowy
wyjatek w trakcie obstugi starego. Pamietajmy wiec o ostrzezeniu:

Nie rzucajmy nowych wyjatkéw z konstruktoréw kopiujacych klas, ktoérych obiekty
rzucamy jako wyjatki.

Z tych dwdch miejsc (wszystkie destruktory i konstruktory kopiujace obiektéw
rzucanych) nie powinniSmy rzucac zadnych wyjatkow. W przeciwnym wypadku
kompilator uzna to za bardzo powazny btad. Zaraz sie przekonamy, jak powazny...

486 Zaawansowane C++

Biblioteka Standardowa udostepnia prostg funkcje uncaught exception (). Zwraca ona
true, jezeli kompilator jest w trakcie obstugi wyjatku. Mozna jej uzy¢, jesli koniecznie
musimy rzuci¢ wyjatek w destruktorze; oczywiscie powinnismy to zrobic¢ tylko wtedy, gdy
funkcja zwroci false.

Prototyp tej funkcji znajduje sie w pliku nagtdéwkowym exception w przestrzeni nazw std.

Skutki wypadku

Co sie stanie, jezeli zignorujemy ktory$ z zakazow podanych wyzej i rzucimy nowy
wyjatek w trakcie obstugi innego?...

Bedzie to wtedy bardzo powazna sytuacja. Oznacza¢ ona bedzie, ze kompilator nie jest w
stanie poprawnie przeprowadzi¢ obstugi wyjatku. Inaczej méwigc, mechanizm
wyjatkéw zawiedzie - tyle ze bedzie to rzecz jasna nasza wina.

Co moze wowczas zrobi¢ kompilator? Niewiele. Jedyne, co wtedy czyni, to wywotanie
funkcji terminate (). Skutkiem jest wiec nieprzewidziane zakonczenie programu.

Naturalnie, zmiana funkcji terminate () (poprzez set terminate ()) sprawi, ze zamiast
domysinej bedzie wywotywana nasza procedura. Piszac jg powinnismy pamietac, ze
funkcja terminate () jest wywotywana w dwoch sytuacjach:

> gdy wyjatek nie zostat ztapany przez zaden blok catch

> gdy zostat rzucony nowy wyjatek w trakcie obstugi poprzedniego

Obie sg sytuacjami krytycznymi. Zatem niezaleznie od tego, jakie dodatkowe akcje
bedziemy podejmowacé w naszej funkcji, zawsze musimy na koniec zamkna¢ nasz
program. W aplikacjach konsolowych mozna uczyni¢ to poprzez exit ().

Zarzadzanie zasobami w obliczu wyjatkow

Napisatem wczesniej, ze transport rzuconego wyjatku do bloku catch powoduje
zniszczenie wszystkich obiektéw lokalnych znajdujacych sie ,po drodze”. Nie musimy sie
o to martwic; zresztg, nie troszczyliSmy sie o nie takze i wtedy, gdy nie korzystaliSmy z
wyjatkow.

Obiekty lokalne nie s jednak jedynymi z jakich korzystamy w C++. Wiemy tez, ze
mozliwe jest dynamiczne tworzenie obiektow na stercie, czyli w rezerwuarze pamieci.
Dokonujemy tego poprzez new.

Pamiec jest z kolei jednym z tak zwanych zasoboéw (ang. resources), czyli zewnetrznych
~bogactw naturalnych” komputera. Mozemy do nich zaliczy¢ nie tylko pamiec operacyjna,
ale np. otwarte pliki dyskowe, wytacznosé na wykorzystanie pewnych urzadzen lub
aktywne potaczenia internetowe. Wtasciwe korzystanie z takich zasobow jest jednym z
zadan kazdego powaznego programu.

Zazwyczaj odbywa sie ono wedtug prostego schematu:
> najpierw pozyskujemy zadany zaséb w jakis sposéb (np. alokujemy pamiec
poprzez new)
» potem mozemy do woli korzystac z tego zasobu (np. zapisywac dane do pamieci)
> na koniec zwalniamy zasdb, jezeli nie jest juz nam potrzebny (czyli korzystamy z
delete w przypadku pamieci)

Najbardziej znany nam zasob, czyli pamiec opercyjna, jest przez nas wykorzystywany
chocby tak:

CFoo* pFoo = new CFoo; // alokacja (utworzenie) obiektu-zasobu
// (robimy cos$...)

Wyjatki 487

delete pFoo; // zwolnienie obiektu-zasobu

Miedzy stworzeniem a zniszczeniem obiektu moze jednak zaj$¢ sporo zdarzen. W
szczegolnosci: mozliwe jest rzucenie wyjatku.

Co sie wtedy stanie?... Wydawac by sie mogto, ze obiekt zostanie zniszczony, bo przeciez
tak byto zawsze... Bfgd! Obiekt, na ktory wskazuje pFoo nie zostanie zwolniony z
prostego powodu: nie jest on obiektem lokalnym, rezydujacym na stosie, lecz tworzonym
dynamicznie na stercie. Sami wydajemy polecenie jego utworzenia (new), wiec rowniez
sami musimy go potem usuna¢ (poprzez delete). Zostanie natomiast zniszczony
wskaznik na niego (zmienna pFoo), bo jest to zmienna lokalna - co aczkolwiek nie jest
dla nas zadna korzyscia.

Mozesz zapytac: ,A w czym problem? Skoro pamiec¢ nalezy zwolni¢, to zrébmy to przed
rzuceniem wyjatku - o tak:

try
{

CFoo* pFoo = new CFoo;

//
if (warunek rzucenia wyjatku)
{
delete pFoo;
throw wyjatek;
}
//

delete pFoo;
}
catch (typ obiekt)
{
//
}

To powinno rozwigzac¢ problem.”

Taki sposob to jednak oznaka skrajnego i niestety nieuzasadnionego optymizmu. Bo kto
nam zagwarantuje, ze wyjatki, ktére moga nam przeszkadza¢, bedq rzucane wytacznie
przez nas?... Mozemy przeciez wywofac jakas zewnetrzng funkcje, ktéra sama bedzie
wyrzucata wyjatki - nie pytajac nas o zgode i nie baczac na naszg zaalokowang pamie¢, o
ktérej przeciez nic nie wie!

»,T0 tez nie katastrofa”, odpowiesz, ,,Mozemy przeciez wykry¢ rzucenie wyjatku i w
odpowiedzi zwolni¢ pamiec:

try
{

CFoo* pFoo = new CFoo;

//
try
{
// wywotanie funkcji potencjalnie rzucajacej wyjatki
FunkcjaKtoraMozeWyrzucicWyjatek () ;
}
catch (...)
{
// niszczymy obiekt
delete pFoo;

// rzucamy dalej otrzymany wyjatek

488 Zaawansowane C++

throw;

}
//

delete pFoo;

}
catch (typ obiekt)

{
//
}

Blok catch(...) zfapie nam wszystkie wyjatki, a my w jego wnetrzu zwolnimy pamiec i
rzucimy je dalej poprzez throw;. Wszystko proste, czyz nie?”

Brawo, twoja pomystowos¢ jest catkiem duza. Juz widze te dziesigtki wywotan funkcji
bibliotecznych, zamknietych w ich wiasne bloki try-catch(...), ktére dbajg o zwalnianie
pamieci... Jak sadzisz, na ile eleganckie, efektywne (zaréwno pod wzgledem czasu
wykonania jak i zakodowania) i fatwe w konserwacji jest takie rozwigzanie?...

Jezeli zastanowisz sie nad tym cho¢ troche dtuzszg chwile, to zauwazysz, ze to bardzo zte
wyjscie. Jego stosowanie (podobnie zresztg jak delete przed throw) jest Swiadectwem
koszmarnego stylu programowania. Pomysimy tylko, ze wymaga to wielokrotnego
napisania instrukcji delete - powoduje to, ze kod staje sie bardzo nieczytelny: na
pierwszy rzut oka mozna pomysle¢, ze kilka(nascie) razy usuwany jest obiekt, ktory
tworzymy tylko raz. Poza tym obecno$¢ tego samego kodu w wielu miejscach znakomicie
utrudnia jego zmiane.

By¢ moze teraz pomyslates o preprocesorze i jego makrach... Jesli naprawde chciatby$ go
zastosowad, to bardzo prosze. Potem jednak nie narzekaj, ze wyprodukowates kod, ktory
stanowi zagadke dla jasnowidza.

Teraz mozesz sie oburzy¢: ,,No to co nalezy zrobi¢?! Przeciez nie mozemy dopusci¢ do
powstawania wyciekow pamieci czy niezamykania plikdw! Moze nalezy po prostu
zrezygnowac z tak nieprzyjaznego narzedzia, jak wyjatki?” C6z, mozemy nie lubié
wyijatkow (szczegdlnie w tej chwili), ale nigdy od nich nie uciekniemy. Jezeli sami nie
bedziemy ich stosowac, to uzyje ich ktos inny, ktérego kodu my bedziemy potrzebowali.
Na wyjatki nie powinnismy sie wiec obrazad, lecz sprobowac je zrozumiec. Rozwigzanie
problemu zasobow, ktére zaproponowaliSmy wyzej, jest zte, poniewaz probuje wtraci¢ sie
w automatyczny proces odwijania stosu ze swoim recznym zwalnianiem zasobdw (tutaj
pamieci). Nie tedy droga; nalezy raczej zastosowa¢ takg metode, ktéra pozwoli nam
czerpac korzysci z automatyki wyjatkow.

Teraz poznamy wiasciwy sposéb dokonania tego.

Problem z niezwolnionymi zasobami wystepuje we wszystkich jezykach, w ktorych
funkcjonujg wyjatki. Trzeba jednak przyznac, ze w wiekszosci z nich poradzono sobie z
nim znacznie lepiej niz w C++. Przyktadowo, Java i Object Pascal posiadajg mozliwos¢
zdefiniowania dodatkowego (obok catch) bloku finally (‘nareszcie’). W nim zostaje
umieszczany kod wykonywany zawsze - niezaleznie od tego, czy wyjatek w try wystapit,
czy tez nie. Jest to wiec idealne miejsce na instrukcje zwalniajace zasoby, pozyskane w
bloku try. Mamy bowiem gwarancje, iz zostang one poprawnie oddane niezaleznie od
okolicznosci.

Opakowywanie

Pomyst jest dosc¢ prosty. Jak wiemy, podczas odwijania stosu niszczone sg wszystkie
obiekty lokalne. W przypadku, gdy sa to obiekty naszych wiasnych klas, do pracy ruszajq
wtedy destruktory tych klas. Wtasnie we wnetrzu tych destruktorow mozemy umiescic
kod zwalniajacy przydzielong pamiec czy jakikolwiek inny zasob.

Wyjatki 489

Wydaje sie to podobne do recznego zwalniania zasobdéw przed rzuceniem wyjatku lub w
blokach catch(...). Jest jednak jedna bardzo wazna réznica: nie musimy tutaj
wiedzie¢, w ktorym doktadnie miejscu wystapi wyjatek. Kompilator bowiem i tak wywota
destruktor obiektu - niewazne, gdzie i jaki wyjatek zostat rzucony.

Skoro jednak mamy uzywac destruktordéw, to trzeba rzecz jasna zdefiniowac jakies klasy.
Potem zas nalezy w bloku try tworzy¢ obiekty tychze klas, by ich destruktory zostaty
wywotane w przypadku wyrzucenia jakiego$ wyjatku.

Jak to nalezy uczyni¢? Kwestia nie jest trudna. Najlepiej jest zrobi¢ tak, aby dla kazdego
pojedynczego zasobu (jak zaalokawany blok pamieci, otwarty plik, itp.) istniat jeden
obiekt. W momencie zniszczenia tego obiektu (z powodu rzucenia wyjatku) zostanie
wywofany destruktor jego klasy, ktory zwolni zaséb (czyli np. usunie pamie¢ albo
zamknie plik).

Destruktor wskaznika?...

To bardzo proste, prawda? ;) Ale zeby byto jeszcze fatwiejsze, spdjrzmy na prosty
przyktad. Zajmiemy sie zasobem, ktéry najbardziej znamy, czyli pamiecig operacyjna;
oto przyktad kodu, ktory moze spowodowac jej wyciek:

try
{

CFoo* pFoo = new CFoo;
//

throw "Cos sie stalo";
// obiekt niezwolniony, mamy wyciek!

}
// (tutaj catch)

Przyczyna jest oczywiscie taka, iz odwijanie stosu nie usunie obiektu zaalokowanego
dynamicznie na stercie. Usuniety zostanie rzecz jasna sam wskaznik (czyli zmienna
pFoo), ale na tym sie skoriczy. Kompilator nie zajmie sie obiektem, na ktéry 6w wskaznik
pokazuje.

Zapytasz: ,A czemu nie? Przeciez mdgiby to zrobi¢”. Pomys$l jednak, ze nie musi to by¢

| wcale jedyny wskaznik pokazujacy na dynamiczny obiekt. W przypadku usuniecia obiektu |
| wszystkie pozostate statyby sie niewazne. Oprécz tego bytoby to ztamanie zasady, iz '
obiekty stworzone jawnie (poprzez new) muszg by¢ takze jawnie zniszczone (przez

| delete).

My jednak chcielibysmy, aby wraz z koncem zycia wskaznika skonczyt sie takze zywot
pamieci, na ktérg on pokazuje. Jak mozna to osiggngc¢?

Coz, gdyby nasz wskaznik byt obiektem jakiej$ klasy, wtedy moglibysmy napisac
instrukcje delete w jej destruktorze. Tak jest jednak nie jest: wskaznik to typ
wbudowany!??, wiec nie mozemy napisa¢ dlan destruktora - podobnie jak nie mozemy
tego zrobi¢ dla typu int czy float.

Sprytny wskaznik

Wskaznik musiatby wiec by¢ klasa... Dlaczego nie? Podkreslatem w zesztym rozdziale, ze
klasy w C++ sg tak pomyslane, aby mogty one nasladowac typy podstawowe. Czemu
zatem nie moznaby stworzy¢ sobie takiej klasy, ktora dziataby jak wskaznik - typ

122 Wskaznik moze wprawdzie pokazywaé na typ zdefiniowany przez uzytkownika, ale sam zawsze bedzie typem
wbudowanym. Jest to przeciez zwykfa liczba - adres w pamieci.

490 Zaawansowane C++

wbudowany? Wtedy mielibysmy petng swobode w okresleniu jej destruktora, a takze
innych metod.

Oczywiscie, nie my pierwsi wpadliS$my na ten pomyst. To rozwigzanie jest szeroko znane i
nosi nazwe sprytnych wskaznikéw (ang. smart pointers). Takie wskazniki sg podobne
do zwyktych, jednak przy okazji oddaja jeszcze pewne dodatkowe przystugi. W naszym
przypadku chodzi o dbato$¢ o zwolnienie pamieci w przypadku wystgpienia wyjatku.
Sprytny wskaznik jest klasg. Ma ona jednak odpowiednio przecigzone operatory - tak, ze
korzystanie z jej obiektédw niczym nie rdézni sie od korzystania z normalnych wskaznikéw.
Popatrzmy na znany z zesztego rozdziatu przykiad:

class CFooSmartPtr
{
private:
// opakowywany, wtasciwy wskaznik
CFoo* m pWskaznik;

public:
// konstruktor i destruktor
CFooSmartPtr (CFoo* pFoo) : m pWskaznik (pFoo) {1}
~CFooSmartPtr () { if (m pWskaznik) delete m pWskaznik; }
/=

// operator dereferencii
CFoo& operator* () { return *m pWskaznik; }

// operator wyluskania
CFoo* operator->() { return m pWskaznik; }

}i

Jest to inteligentny wskaznik na obiekty klasy cFoo; docelowy typ jest jednak nieistotny,
bo réwnie dobrze moznaby pokazywac na liczby typu int czy tez inne obiekty. Wazna
jest zasada dziatania - zupetnie nieskomplikowana.

Klasy CFooSmartPtr uzywamy po prostu zamiast typu CFoo*:

try
{

CFooSmartPtr pFoo = new CFoo;
//

throw "Cos sie stalo";
// niszczony obiekt pFoo 1 wywoiywany destruktor CFooSmartPtr

}
// (tutaj catch)

Dzieki przecigzeniu operatorow korzystamy ze sprytnego wskaznika doktadnie w ten sam
sposob, jak ze zwyktego. Poza tym rozwigzujemy problem ze zwolnieniem pamieci:
zajmuje sie tym destruktor klasy CFooSmartPtr. Stosuje on operator delete wobec
wlasciwego, wewnetrznego wskaznika (typu ,normalnego”, czyli CFoo*), usuwajac
stworzony dynamicznie obiekt. Robi niezaleznie od tego, gdzie i kiedy (i czy) wystgpit
jakikolwiek wyjatek. Wystarczy, ze zostanie zlikwidowany obiekt pFoo, a to pociggnie za
sobg zwolnienie pamieci.

I o to nam wiasnie chodzito. WykorzystaliSmy mechanizm odwijania stosu do zwolnienia
zasobow, ktére normalnie bylyby pozostawione same sobie. Nasz problem zostat
rozwigzany.

Wyjatki 491

Nieco uwag

Aby jednak nie byto az tak bardzo pieknie, na koniec paragrafu musze jeszcze troche
pogledzi¢ :) Chodzi mianowicie o dwie wazne sprawy zwigzane ze sprytnymi
wskaznikami, ktérych uzywamy w potaczeniu z mechanizmem wyjatkow.

Rézne typy wskaznikow

Zaprezentowana wyzej klasa CFooSmartPtr jest typem inteligentnego wskaznika, ktory
moze pokazywac na obiekty jakiej$ zdefiniowanej wczesniej klasy cFoo. Przy jego
pomocy nie mozemy odnosic sie do obiektéw innych klas czy typéw podstawowych.

Jesli jednak bedzie to konieczne, wéwczas musimy niestety napisa¢ nowg klase
wskaznika. Nie jest to trudne: wystarczy w definicji CFooSmartPtr zmieni¢ wystgpienia
CFoo np. na int. W nastepnym rozdziale poznamy zresztg o wiele bardziej efektywng
technike (mianowicie szablony), ktéra uwolni nas od tej zmudnej pracy.

Za chwile tez przyjrzymy sie rozwigzaniu, jakie przygotowali dla nas sami tworcy C++ w
Bibliotece Standardowej.

Uzywajmy tylko tam, gdzie to konieczne

Musze tez powtdrzyc¢ to, o czym juz wspomniatem przy pierwszym spotkaniu ze
sprytnymi wskaznikami. Otdz trzeba pamietac, ze nie sg one uniwersalnym lekiem na
wszystkie bolgczki programisty. Nie nalezy ich stosowac wszedzie, poniewaz kazdy rodzaj
inteligentnego wskaznika (my na razie poznaliSmy jeden) ma scisle okreslone
zastosowania.

W sytuacjach, w ktérych z powodzeniem sprawdzajg sie zwykte wskazniki, powinnismy
nadal z nich korzysta¢. Dopiero w takich przypadkach, gdy sg one niewystarczajace,
musimy siegna¢ go bardziej wyrafinowane rozwigzania. Takim przypadkiem jest wiasnie
rzucanie wyjatkdow.

Co juz zrobiono za nas

Metoda opakowywania zasobéw moze sie wydawac nazbyt praco- i czasochtonna, a
przede wszystkim wtorna. Stosujac ja pewnie szybko zauwazytbys, ze napisane przez
ciebie klasy powinny by¢ obecne w niemal kazdym programie korzystajagcym z wyjatkow.

Naturalnie, mogg by¢ one dobrym punktem wyjscia dla twojej wiasnej biblioteki z
przydatnymi kodami, uzywanymi w wielu aplikacjach. Niewykluczone, ze kiedys$ bedziesz
musiat napisac przynajmniej kilka takich klas-opakowan, jezeli zechcesz skorzystac z
zasobdw innych niz pamiec operacyjna czy pliki dyskowe.

Na razie jednak lepiej chyba sprawdzg sie narzedzia, ktére otrzymujesz wraz z jezykiem
C++ i jego Bibliotekg Standardowa. Zobaczmy pokrétce, jak one dziatajg; ich doktadny
opis znajdziesz w kolejnych rozdziatach, poswieconych samej tylko Bibliotece
Standardowej.

Klasa std: :auto ptr

Sprytne wskazniki chronigce przed wyciekami pamieci, powstajacymi przy rzucaniu
wyijatkow, sg dosé czesto uzywane w praktyce. Samodzielne ich definiowanie bytoby wiec
ucigzliwe. W C++ mamy wiec juz stworzong do tego klasg std: :auto ptr.

Sciélej méwiac, auto ptr jest szablonem klasy. Co to doktadnie znaczy, dowiesz sie w
nastepnym rozdziale. Poki co bedziesz wiedziat, iz pozwala to na uzywanie auto _ptr w
charakterze wskaznika do dowolnego typu danych. Nie musimy juz zatem definiowiac
zadnych klas.

Aby skorzysta¢ z auto ptr, trzeba jedynie dofaczy¢ standardowy plik nagtéwkowy
memory:

492 Zaawansowane C++

#include <memory>

Teraz mozemy juz korzystacé z tego narzedzia. Z powodzeniem moze ono zastgpi¢ naszg
pieczotowicie wypracowang klase CFooSmartPtr:

try
{
std::auto _ptr<CFoo> pFoo (new CFoo0) ;

//

throw "Cos sie stalo";
// przy niszczeniu wskaznika auto ptr zwalniana jest pamiec¢

}
// (tutaj catch)

Konstrukcja std: :auto ptr<CFoo> pewnie wyglada nieco dziwnie, ale tatwo sie do niej
przyzwyczaisz, gdy juz poznasz szablony. Mozna z niej takze wydedukowa¢, ze w
nawiasach katowych <> podajemy typ danych, na ktéry chcemy pokazywac poprzez
auto ptr - tutaj jest to CFoo. tatwo domysli¢ sie, ze chcac mie¢ wskaznik na typ int,
piszemy std::auto ptr<int>, itp.

Zwroé¢my jeszcze uwage, w jaki sposob umieszcza sie instrukcje new w deklaracji
wskaznika. Z pewnych powodow, o ktorych nie warto tu méwic, konstruktor klasy
auto ptr jest opatrzony stowkiem explicit. Dlatego tez nie mozna uzy¢ znaku =, lecz
trzeba jawnie przekazac¢ parametr, bedacy normalnym wskaznikiem do zaalokowanego
poprzez new obszaru pamieci.

W sumie wiec skfadnia deklaracji wskaznika auto ptr wyglada tak:

std::auto ptr<typ> wskazZnik(new typl (parametry konstruktora typu)l);

O zwolnienie pamieci nie musimy sie martwi¢. Destruktor auto ptr usunie jg zawsze;
niezaleznie od tego, czy wyjatek faktycznie wystapi.

Pliki w Bibliotece Standardowej

Oprocz pamieci drugim waznym rodzajem zasobow sg pliki dyskowe. O doktadnym
sposobie ich obstugi powiemy sobie aczkolwiek dopiero wtedy, gdy zajmiemy sie
strumieniami Biblioteki Standardowej.

Tutaj chce tylko wspomnie¢, ze metody dostepu do plikéw, jakie sg tam oferowane,
catkowicie poprawnie wspétpracuja z wyjatkami. Oto przykfad:

#include <fstream>

try

{
// stworzenie strumienia i otwarcie pliku do zapisu
std::ofstream Plik("plik.txt", ios::out);

// zapisanie czego$ do pliku
Plik << "Cos";

//

throw "Cos sie stalo";
// strumien jest niszczony, a plik zamykany

}
// (tutaj catch)

Wyjatki 493

Plik reprezentowany przez strumien P1ik zostanie zawsze zamkniety. W kazdym
przypadku - wystgpienia wyjatku lub nie - wywotany bowiem bedzie destruktor klasy
ofstream, a on tym sie wtasnie zajmie. Nie trzeba wiec martwi¢ sie o to.

Xk k

Tak zakonczymy omawianie procesu odwijania stosu i jego konsekwencji. Teraz
zobaczysz, jak w praktyce powinno sie korzysta¢ z mechanizmu wyjatkéow w C++.

Wykorzystanie wyjatkow

Dwa poprzednie podrozdziaty mowity o tym, czym sg wyjatki i jak dziata ten mechanizm
w C++. W zasadzie na tym moznaby poprzestac, ale taki opis na pewno nie bedzie
wystarczajacy. Jak kazdy element jezyka, takze i wyjatki nalezy uzywacé we wiasciwy
sposob; korzystaniu z wyjatkow w praktyce zostanie wiec poswiecony ten podrozdziat.

Wyjatki w praktyce

Zanim z piesnig na ustach zabierzemy sie do wykorzystywania wyjatkow, musimy sobie
odpowiedzie¢ na jedno fundamentalne pytanie: czy tego potrzebujemy? Takie
postawienie sprawy jest pewnie zaskakujgce - dotad wszystkie poznawane przez nas
elementy C++ byty witasciwie niezbedne do efektywnego stosowania tego jezyka. Czy z
wyjatkami jest inaczej? Przyjrzyjmy sie sprawie blizej...

Moze powiedzmy sobie o dwdch podstawowych sytuacjach, kiedy wyjatkow nie
powinnismy stosowaé. W zasadzie mozna je zamkna¢ w jedno stwierdzenie:

Nie powinno sie wykorzystywa¢ wyjatkéw tam, gdzie z powodzeniem wystarczajg inne
techniki sygnalizowania i obstugi bteddw.

Oznacza to, ze:

> nie powinnismy ,na site” dodawac wyjatkow do istniejgcego programu. Jezeli po
przetestowaniu dziata on dobrze i efektywnie bez wyjatkdéw, nie ma zadnego
powodu, aby wprowadzac¢ do kodu ten mechanizm

> dla tworzonych od nowa, lecz krétkich programoéw wyjatki mogg by¢ zbyt
poteznym narzedziem. Wysitek wtozony w jego zaprogramowanie (jak sie zaraz
przekonamy - wcale niematy) nie musi sie optaca¢. Co oznacza pojecie ‘krotki
program’, to juz kazdy musi sobie odpowiedzie¢ sam; zwykle uwaza sie, ze
krotkie sg te aplikacje, ktore nie przekraczajg rozmiarami 1000-2000 linijek kodu

Widac¢ wiec, ze nie kazdy program musi koniecznie stosowac ten mechanizm. Sg
oczywiscie sytuacje, gdy oby¢ sie bez niego jest bardzo trudno, jednak naduzywanie
wyjatkow jest zazwyczaj gorsze niz ich niedostatek. O obu sprawach (korzysciach
ptynacych z wyjatkéw i ich przesadnemu stosowaniu) powiemy sobie jeszcze pdzniej.

Zatézmy jednak, ze zdecydowalismy sie wykorzystywac wyjatki. Jak poprawnie
zrealizowac te intencje? Jak wiekszos¢ rzeczy w programowaniu, nie jest to trudne :)
Musimy mianowicie:
> pomysleé, jakie sytuacje wyjatkowe mogg wystgpi¢ w naszej aplikacji i wyréznic
wsrdd nich poszczegolne rodzaje, a nawet pewng hierarchie. To pozwoli na
stworzenie odpowiednich klas dla obiektow wyjatkédw, czym zajmiemy sie w
pierwszym paragrafie

494 Zaawansowane C++

> we wiasciwy sposob zorganizowac obstuge wyjatkéw - chodzi gtdwnie o
rozmieszczenie blokdw try i catch. Ta kwestia bedzie przedmiotem drugiego
paragrafu

Potem mozemy juz tylko mie¢ nadzieje, ze nasza ciezko wykonana praca... nigdy nie
bedzie potrzebna. Najlepiej przeciez bytoby, aby sytuacje wyjatkowe nie zdarzaty sig, a
nasze programy dziataty zawsze zgodnie z zamierzeniami... Céz, praca programisty nie
jest ustana rézami, wiec tak nigdy nie bedzie. Nauczmy sie wiec poprawnie reagowac na
wszelkiego typu nieprzewidziane zdarzenia, jakie mogq sie przytrafi¢ naszym aplikacjom.

Projektowanie klas wyjgtkow

C++ umozliwia rzucenie w charakterze wyjatkow obiektéw dowolnych typdw, takze tych
wbudowanych. Taka mozliwosc¢ jest jednak mato pociggajaca, jako ze pojedyncza liczba
czy napis nie niosg zwykle wystarczajqcej wiedzy o powstatej sytuacii.

Dlatego tez powszechng praktyka jest tworzenie wiasnych typow (klas) dla obiektow
wyjatkow. Takie klasy zawierajg w sobie wiecej informacji zebranych ,z miejsca
katastrofy”, ktére mogq byc¢ przydatne w rozpoznaniu i rozwigzaniu problemu.

Definiujemy klase

Co wiec powinien zawierac taki obiekt? Najwazniejsze jest ustalenie rodzaju btedu oraz
miejsca jego wystgpienia w kodzie. Typowym zestawem danych dla wyjatku moze by¢
zatem:
> nazwa pliku z kodem i numer wiersza, w ktérym rzucono wyjatek. Do tego mozna
dodac jeszcze date kompilacji programu, aby rozréznic¢ jego poszczegdlne wersje
> dane identyfikacyjne btedu - w najprostszej wersji tekstowy komunikat

Nasza klasa wyjatku mogtaby wiec wygladac tak:
#include <string>

class CException
{
private:
// dane wyjatku
std::string m strNazwaPliku;
unsigned m ulLinijka;
std::string m strKomunikat;

public:
// konstruktor
CException (const std::string& strNazwaPliku,
unsigned uLinijka,
const std::string& strKomunikat)
: m strNazwaPliku(strNazwaPliku),
m ulLinijka (uLinijka),

m_strKomunikat (strKomunikat) {1}
A e
// metody dostepowe
std::string NazwaPliku () const { return m_strNazwaPliku; }
unsigned Linijka () const { return m ulLinijka; }
std::string Komunikat () const { return m strKomunikat; }

}i

Dos¢ obszerny konstruktor pozwala na podanie wszystkich danych za jednym zamachem,
w instrukcji throw:

Wyjatki 495

throw CException(FILE , LINE , "Cos sie stalo");

Dla wygody mozna sobie nawet zdefiniowac¢ odpowiednie makro, jako ze FILE i
__LINE pojawig sie w kazdej instrukcji rzucenia wyjatku. Jest to szczegdlnie przydatne,
jezeli do wyjatku dotgczymy jeszcze inne informacje pochodzace predefiniowanych
symboli preprocesora.

Takze konstruktor klasy moze dokonywac zbierania jakichs informacji od programu.
Moga to by¢ np. zrzuty pamieci (ang. memory dumps), czyli obrazy zawartosci
kluczowych miejsc pamieci operacyjnej. Takie zaawansowane techniki sg aczkolwiek
przydatne tylko w naprawde duzych programach.

Po zfapaniu takiego obiektu mozemy pokazaé zwigzane z nim dane - na przykfad tak:

catch (CException& Wyjatek)
{

std::cout << " Wystapil wyjatek " << std::endl;
std::cout << "o " << std::endl;
std::cout << "Komunikat:\t" << Wyjatek.Komunikat () << std::endl;
std::cout << "Plik:\t" << Wyjatek.NazwaPliku () << std::endl;

std::cout << "Wiersz kodu:\t" << Wyjatek.Linijka () << std::endl;
}

Jest to juz catkiem zadowalajaca informacja o btedzie.

Hierarchia wyjgtkow

Pojedyncza klasa wyjatku rzadko jest jednak wystarczajgca. Wada takiego skromnego
rozwigzania jest to, ze ze wzgledu na charakter danych o sytuacji wyjatkowej, jakie
zawiera obiekt, ograniczamy sobie mozliwo$¢ obstugi wyjatku. W naszym przypadku
trudno jest podjac jakiekolwiek dziatania poza wyswietleniem komunikatu i zamknieciem
programu.

Dla zwiekszenia pola manewru moznaby doda¢ do klasy jakie$ pola typu wyliczeniowego,
okreslajace blizej rodzaj btedu; wéwczas w bloku catch pojawitaby sie pewnie jakas
instrukcja switch.

Jest aczkolwiek praktyczniejsze i bardziej elastyczne wyjscie: mozemy uzy¢
dziedziczenia.

Okazuje sie, ze rozsadne jest stworzenie hierarchii sytuacji wyjatkéw i odpowiadajacej jej
hierarchii klas wyjatkdéw. Opiera sie to na spostrzezeniu, ze mozliwe btedy mozemy
najczesciej w pewien sposob sklasyfikowacé. Przyktadowo, moznaby wyrdzni¢ wyjatki
zwigzane z pamiecia, z plikami dyskowymi i obliczeniami matematycznymi: wsrdd tych
pierwszych mielibysmy np. brak pamieci (ang. out of memory) i btad ochrony

(ang. access violation); dostep do pliku moze by¢ niemozliwy chociazby z powodu jego
braku albo nieobecnosci dysku w napedzie; dziatania na liczbach mogg wreszcie
doprowadzi¢ do dzielenia przez zero lub wyciggania pierwiastka z liczby ujemnej.

Taki ukfad, oprécz mozliwosci rozréznienia poszczegdlnych typow wyjatkow, ma jeszcze
jedng zalete. Mozna bowiem dla kazdego typu zakodowac specyficzny dla niego sposdb
obstugi, stosujac do tego metody wirtualne - np. w ten sposdb:

// klasa bazowa
class IException
{
public:
// wyswietl informacje o wyjatku

496 Zaawansowane C++

virtual void Wyswietl () ;

// wyjatek zwiazany z pamiecig
class CMemoryException : public IException
{
public:
// dziatania specyficzne dla tego rodzaju wyjatku
virtual void Wyswietl () ;

b

// wyjatek zwiazany z plikami
class CFilesException : public IException
{
public:
// dziatania specyficzne dla tego rodzaju wyjatku
virtual void Wyswietl () ;

i

Pamietajmy jednak, ze nadmierne rozbudowywanie hierarchii tez nie ma zbytniego
sensu. Nie wydaje sie na przyktad stuszne wyroznianie osobnych klas dla wyjatkow
dzielenia przez zero, pierwiastka kwadratowego z liczy ujemnej oraz podniesienia zera do
potegi zerowej. Jest bowiem wielce prawdopodobne, ze jedyna roéznica miedzy tymi
sytuacjami bedzie polegata na tresci wyswietlanego komunikatu. W takich przypadkach
zdecydowanie wystarczy pojedyncza klasa.

Organizacja obstugi wyjatkow

Zdefiniowana uprzednio klase lub jej hierarchie bedziemy pewnie mieli okazje nieraz
wykorzystac. Poniewaz nie jest to takie oczywiste, warto poswieci¢ temu zagadnieniu
osobny paragraf.

Umiejscowienie blokow try i catch

Wydawatoby sie, ze obstuga wyjatkow to bardzo prosta czynnos¢ - szczegdlnie, jesli
mamy juz zdefiniowany dla nich odpowiednie klasy. Niestety, polega to na czyms wiecej
niz tylko napisaniu ,niepewnego” kodu w bloku try i instrukcji obstugi btedéw catch.

Kod warstwowy

Jednym z podstawowych powoddw, dla ktérych wprowadzono wyjatki w C++, byta
koniecznos$¢ zapewnienia jakiego$ sensownego sposobu reakcji na btedy w programach o
skomplikowanym kodzie. Kazdy wiekszy (i dobrze napisany) program ma bowiem
sktonnos¢ do ,rozwarstwiania” kodu.

Nie jest to bynajmniej niepozadane zjawisko, wrecz przeciwnie. Polega ono na tym, ze w
aplikacji mozemy wyroznic¢ fragmenty wyzszego i nizszczego poziomu. Te pierwsze
odpowiadajq za calq logike aplikacji, w tym za jej komunikacje z uzytkownikiem; te
drugie wykonujg bardziej wewnetrzne czynnosci, takie jak na przykfad zarzadzanie
pamiecig operacyjng czy dostep do plikéw na dysku.

Taki podziat jest korzystny, poniewaz uftatwia konserwacje programu, a takze
wykorzystywanie pewnych fragmentéw kodu (zwtaszcza tych niskopoziomowych) w
kolejnych projektach. Funkcje odpowiedzialne za pewne proste czynnosci, jak
wspomniany dostep do plikéw nie musza nic wiedzie¢ o tym, kto je wywotuje - wiasciwie
to nawet nie powinny. Innymi stowy:

Kod nizszego poziomu powinien by¢ zazwyczaj niezalezny od kodu wyzszego poziomu.

Wyjatki 497

Tylko wtedy zachowujemy wymienione wyzej zalety ,,warstwowosci” programu.
Podawanie btedéw wyzej

Podziat warstwowy wymusza poza tym dosc¢ Scisle ustalony przeptyw danych w aplikacji.
Odbywa sie on zawsze tak, ze kod wyzszego poziomu przekazuje do nizszych warstw
konieczne informacje (np. nazwe pliku, ktory ma by¢ otwarty) i odbiera rezultaty
wykonanych operacji (czyli zawartos¢ pliku). Potem wykorzystuje je do swych wiasnych
zadan (np. do wyswietlenia pliku na ekranie).

Ten naturalny ukfad dziata dobrze... dopdki sie nie zepsuje :) Przyczyng mogg by¢
sytuacje wyjatkowe wystepujace w kodzie nizszego poziomu. Typowym przykfadem moze
by¢ brak zadanego pliku, wobec czego jego otwarcie nie jest mozliwe. Funkcja, ktora
miata tego dokona¢, nie bedzie potrafita poradzi¢ sobie z tym btedem, poniewaz nazwa
pliku do otwarcie pochodzita z zewnatrz - ,z gory”. Moze jedynie poinformowaz
wywotujgcego o zainstniatej sytuaciji.

I tutaj wkraczajg na scene opisane na samym poczatku rozdziatlu mechanizmy obstugi
btedéw. Jednym z nich sg wiasnie wyjatki.

Dobre wyposrodkowanie

Ich stosowanie jest szczegolnie wskazane wtasnie wtedy, gdy nasz kod ma kilka
logicznych warstw, co zresztg powinno zdarzac sie jak najczesciej. Wowczas odnosimy
jedng zasadniczg korzys$¢: nie musimy martwic sie o sposéb, w jaki informacja o btedzie
dotrze z ,poktadow gtebinowych” programu, gdzie wystgpita, na ,gorne pietra”, gdzie
mogtaby zostac¢ wiasciwie obstuzona.

Naszym problemem jest jednak co innego. O ile zazwyczaj doktadnie wiadomo, gdzie
wyjatek nalezy rzuci¢ (wiadomo - tam gdzie co$ sie nie powiodto), o tyle trudnos¢ moze
sprawi¢ wybranie wiasciwego miejsca na jego ztapanie:
> jezeli bedzie on ,za nisko”, wtedy najprawdopodobniej nie bedzie mozliwe
podjecie zadnych rozsadnych dziatan w reakcji na wyjatek. Przyktadowo,
wymieniona funkcja otwierajgca plik nie powinna sama tapac wyjatku, ktory rzuci,
bo bedzie wobec niego bezradna. Skoro przeciez rzucita ten wyjatek, jest to
wiasnie znak, iz nie radzi sobie z powstata sytuacjg i oddaje inicjatywe komus
bardziej kompetentnemu
> z drugiej strony, umieszczenie blokdéw catch ,za wysoko” powoduje zbyt duze
zamieszanie w funkcjonowaniu programu. Powoduje to, ze punkt wykonania
przeskakuje o cate kilometry, niespodziewanie przerywajgc wszystko znajdujqce
sie po drodze zdania. Nie nalezy bowiem zapomina¢, ze po rzuceniu wyjatku nie
ma juz powrotu - dalsze wykonywanie zostanie co najwyzej podjete po
wykonaniu bloku catch, ktory ten wyjatek. Catkowitym absurdem jest wiec np.
ujecie catej zawartosci funkcji main () w blok try i obstuga wszystkich wyjatkéw w
nastepujgcym dalej bloku catch. Nietrudno przeciez domysli¢ sie, ze takie
rozwigzanie spowoduje zakonczenie programu po kazdym wystgpieniu wyjatku

Pytanie brzmi wiec: jak osiggna¢ rozsadny kompromis? Trzeba pogodzi¢ ze sobg dwie
racje:

> koniecznos$¢ sensownej obstugi wyjatku

> koniecznos$¢ przywrdcenia programu do normalnego stanu

Nalezy wiec tapa¢ wyjatek w takim miejscu, w ktorym juz mozliwe jest jego
obstuzenie, ale jednoczesnie po jego zakonczeniu program powinien nadal méc podjac
podja¢ w miare normalna prace.

Przyktad?... Jezeli uzytkownik wybierze opcje otwarcia pliku, ale potem poda nieistniejacq
nazwe, program powinien po prostu poinformowac o tym i ponownie zapytaé o nazwe

498 Zaawansowane C++

pliku. Nie moze natomiast zmusza¢ uzytkownika do ponownego wybrania opcji otwarcia
pliku. A juz na pewno nie moze niespodziewanie konczy¢ swojej pracy - to byloby wrecz
skandaliczne.

Chwytanie wyjatkow w blokach catch

Poprawne chwytanie wyjatkow w blokach catch to kolejne (ostatnie juz na szczescie)
zagadnienie, o ktorym musimy pamieta¢. Wiesz na ten temat juz catkiem sporo, ale
nigdy nie zaszkodzi powtdrzy¢ sobie przyswojone wiadomosci i przyswoi¢ nowe.

Szczegdty przodem - druga odstona

Swego czasu zwrocitem ci uwage na wazng sprawe kolejnosci blokow catch.
Uswiadomitem, ze ich dziatanie tylko z pozoru przypomina przecigzone funkcje, jako ze
porzadek dopasowywania obiektu wyjatku scisle pokrywa sie z porzadkiem samych
blokéw catch, a same dopasowywanie konczy przy pierwszym sukcesie.

W zwigzku nalezy tak ustawiac bloki catch, aby na poczatek szty te, ktére precyzyjniej
opisujg typ wyjatku. Gdy zdefiniujemy sobie hierarchie klas wyjatkow, ta zasada zyskuje
jeszcze pewniejszg podstawe. W przypadku typéw podstawowych (int, double...) moze
by¢ dosé trudne wyobrazenie sie relacji ,typ ogolny - typ szczegétowy”. Natomiast dla
klas jest to oczywiste: wchodzi tu bowiem w gre jednoznaczny zwigzek dziedziczenia.
Jakie sg wiec konkretne wnioski? Ano takie, ze:

Gdy stosujemy hierarchie klas wyjatkow, powinniSmy najpierw probowac tapac¢
obiekty klas pochodnych, a dopiero potem obiekty klas bazowych.

Mam nadzieje, iz wiesz doskonale, z jakiej fundamentalnej reguty programowania
obiektowego wynika powyzsza zasada'®3.
Jezeli zastosujemy klasy wyjatkow z poprzedniego paragrafu, to ilustracjg moze by¢ taki

kawatek kodu:

try
{
//
}
catch (CMemoryException& Wyjatek)
{
//
}
catch (CFilesException& Wyjatek)
{
//
}
catch (IExceptioné& Wyjatek)
{
//
}

Instrukcje chwytajace bardziej wyspecjalizowane wyjatki - CMemoryException i
CFilesException - umieszczamy na samej gérze. Dopiero nizej zajmujemy sie
pozostatymi wyjatkami, chwytajgc obiekty typu bazowego IException. Gdybysmy czynili
to na poczatku, ztapaliby$my absolutnie wszystkie swoje wyjatki - nie dajac sobie szansy
na rozrdznienie btedéw pamieci od wyjatkow plikowych lub innych.

123 Oczywiscie wynika ona stad, ze obiekt klasy pochodnej jest jednoczesnie obiektem klasy bazowej. Albo tez
stad, ze zawsze istnieje niejawna konwersja z klasy pochodnej na klasy bazowej - jakkolwiek to wyrazimy,
bedzie poprawnie.

Wyjatki 499

Wida¢ wiec po raz kolejny, ze wiasciwe uporzadkowanie blokdédw catch ma niebagatelne
znaczenie.

Lepiej referencjg

We wszystkich przytoczonych ostatnio kodach tapatem wyjatki poprzez referencje do
nich, a nie poprzez same obiekty. Zbywalismy to dotad milczeniem, ale czas ten fakt
wyjasnic.

Przyczyna jest wiasciwie catkiem prosta. Referencje sg, jak pamietamy,
zakamuflowanymi wskaznikami: faktycznie réznig sie od wskaznikéw tylko drobnymi
szczegodtami, jak choéby sktadnig. Zachowujq jednak ich jedng cenng wiasciwosé
obiektowgq: pozwalajg na stosowanie polimorfizmu metod wirtualnych.

To doskonalne znane nam zjawisko jest wiec mozliwe do wykorzystania takze przy
obstudze wyjatkéw. Oto przykiad:

try
{
//
}
catch (IException& Wyjatek)

{
// wywolanie metody wirtualnej, pdZno wigzanej
Wyjatek.Wyswietl () ;

}

Metoda wirtualna wyswietl () jest tu pézno wigzana, zatem to, ktéry jej wariant - z klasy
podstawowej czy pochodnej - zostanie wywotany, decyduje sie podczas dziatania
programu. Jest to wiec inny sposdb na swoiste rozréznienie typu wyjatku i podjecie
dziatan celem jego obstugi.

Uwagi ogdlne

Na sam koniec podziele sie jeszcze garscig uwag ogdlnych dotyczacych wyjatkdéw. Przede
wszystkim zastanowimy sie nad korzysciami z uzywania tego mechanizmu oraz
sytuacjami, gdzie czesto jest on naduzywany.

Korzysci ze stosowania wyjatkow

Podstawowe zalety wyjatkow przedstawitem na poczatku rozdziatu, gdy porownywatem je
z innymi sposobami obstugi btedéw. Teraz jednak masz juz za sobg dogtebne poznanie
tej techniki, wiec pewnie zwatpites w te przymioty ;) Nawet jesli nie, to pokazane nizej
argumenty przemawiajace na korzys¢ wyjatkow moga pomoc ci w decyzji co do ich
wykorzystania w konkretnej sytuacji.

Informacja o btedzie w kazdej sytuacji

Pierwszg przewaga, jaka wyjatki maja nad innymi sposobami sygnalizowania bteddw, jest
uniwersalnos$¢: mozemy je bowiem stosowacé w kazdej sytuacji i w kazdej funkcji.

No ale czy to co$ nadzwyczajnego? Przeciez wydawatoby sie, ze zaréwno technika
zwracania kodu btedu jak i wywotanie zwrotne, moze by¢ zastosowane wszedzie. To
jednak nieprawda; oba te sposoby wymagaja odpowiedniej deklaracji funkcji,
uwzgledniajacej ich wykorzystanie. A nagtéwek funkcji moze by¢ czesto ograniczony
przez sam jezyk albo inne czynniki - jest tak na przyktad w:

» konstruktorach

> wiekszosci przecigzonych operatorow

» funkcjach zwrotnych dla zewnetrznych bibliotek

500 Zaawansowane C++

Do tej grupy moznaby zaliczy¢ tez destruktory, ale jak przeciez, z destruktoréw nie
mozna rzucac¢ wyjatkow.

Dzieki temu, ze wyjatki nie opieraja sie na normalnym sposobie wywotywania i powrotu z
funkcji, mogq by¢ uzywane takze i w tych specjalnych funkcjach.

Uproszczenie kodu

Jakkolwiek dziwnie to zabrzmi, wyjatki umozliwiajg tez znaczne uproszczenie kodu i
uczynienie go przejrzystszym. Jest tak, gdyz pozwalajg one przenies¢ sekwencje
odpowiedzialne za obstuge btedéw do osobnych blokéw, z dala od wtasciwych instrukcji.

W normalnym kodzie procedury wygladaja mniej wiecej tak:
zréb cos

sprawdz, czy sie udato

zréb cos$ innego

sprawdz, czy sie udafto

zréb jeszcze cos

sprawdz, czy nie byto btedéw

itd.

VVVVVYYV

Wyrdznione tu sprawdzenia btedow sg realizowane zwykle przy pomocy instrukcji if lub
switch. Przy ich uzyciu kod staje sie wiec plataning instrukcji warunkowych, raczej
trudnych do czytania.

Gdy zas$ uzywamy wyjatkow, to obstuga bteddéw przenosi sie na koniec algorytmu:

zréb cos

zrob cos innego

zréb jeszcze co$

itd.

obstuz ewentualne niepowodzenia

VVVYVYYVY

Oczywiscie dla tych, ktérzy nie dbajg o porzadek w kodzie, jest to zaden argument, ale ty
sie chyba do nich nie zaliczasz?

Wzrost niezawodnosci kodu

Wreszcie mozna wytoczy¢ najciezsze dziata. Wyjatki nie pozwalajg na obojetnos¢ - na
ignorowanie btedow.

Poprzedni akapit uswiadamia, ze tradycyjne metody w rodzaju zwracania rezultatu muszg
by¢ aktywnie wspomagane przez programiste, ktory uzywa wykorzystujacych je funkcji.
Nie musi jednak tego robi¢; kod skompiluje sie tak samo poprawnie, jezeli wartosci
zwracane zostang catkowicie pominiete. Co wiecej, moze to prowadzi¢ do pominiecia
krytycznych btedéw, ktére wprawdzie nie dajg natychmiast katastrofalnych rezultatéw,
ale potrafig ,przyczaic sie” w zakamarkach aplikacji, by ujawnic¢ sie w najmniej
spodziewanym momencie.

Mechanizm wyjatkéw jest skonstruowany zupetnie przeciwnie. Tutaj nie trzeba sie
wysila¢, aby btad dat zna¢ o sobie, bowiem wyjatek zawsze wywota jakas reakcje -
choéby nawet awaryjne zakonczenie programu. Natomiast Swiadome zignorowanie
wyjatku wymaga z kolei pewnego wysitku.

Tak wiec tutaj mamy do czynienia z sytuacjg, w ktdrej to nie programista szuka btedu,
lecz btad szuka programisty. Jest to naturalnie znacznie lepsza sytuacja z punktu
widzenia niezawodnosci programu, bo pozwala na tatwiejsze odszukanie wystepujgcych
wen biedéw.

Wyjatki 501

Naduzywanie wyjatkow

Czytajac o zaletach wyjatkdw, nie mozna wpasc¢ w bezkrytyczny zachwyt nad nimi. One
nie sq ani obowigzkowg technikg programistyczng, ani tez nie sg lekarstwem na btedy w
programach, ani nawet nie sg pasujgcym absolutnie wszedzie rozwigzaniem. Wyjatkow

tatwo mozna naduzyc i dlatego chce sie przed tym przestrzec.

Nie uzywajmy ich tam, gdzie wystarczg inne konstrukcje

Poczatkujacy programisci majg czasem sktonnos$¢ do uwazania, iz kazde
niepowodzenie wykonania jakiego$ zadania zastuguje na rzucenie wyjatku. Oto (zty)
przykiad:

// funkcja wyszukuje liczbe w tablicy
unsigned Szukaj (const CIntArray& aTablica, int nLiczba)
{
// petla pordwnuje kolejne elementy tablicy z szukana liczba
for (unsigned i = 0; 1 < aTablica.Rozmiar{]; ++1i)
if (aTablica[i] == nLiczba)
return i;

// w razie niepowodzenia - wyjatek?...
throw CError(FILE , LINE , "Nie znaleziono liczby");
}

Rzucanie wyjatku w razie nieznalezienia elementu tablicy to gruba przesada. Pomysimy
tylko, ze kod wykorzystujacy te funkcje musiatby wyglada¢ mniej wiecej tak:

// szukamy liczby nZmienna w tablicy aTablicaliczb

try
{

unsigned ulIndeks = Szukaj (aTablicaliczb, nZmienna);

// zrdb co$ ze znalezionag liczba...

}
catch (CError& Wyjatek)

{
std::cout << Wyjatek.Komunikat () << std::endl;

}

Moze i ma on swoj urok, ale chyba lepiej skorzysta¢ z mniej urokliwej, ale na pewno
prostszej instrukcji if, poréwnujacej po prostu rezultat funkcji szukaj () z jaka$ ustalong
statg (np. -1), oznaczajacq niepowodzenie szukania. Pozwoli to na wydorebnienie
sytuacji faktycznie wyjatkowych od tych, ktdére zdarzajq sie w normalnym toku dziatania
programu. Nieobecnos$c liczby w tablicy nalezy zwykle do tej drugiej grupy i nie jest
wcale krytyczna dla funkcjonowania aplikacji - ergo: nie wymaga zastosowania

wyjatkow.

Nie uzywajmy wyjatkow na site

Nareszcie, musze powstrzymac wszystkich tych, ktérzy z zapatem rzucili sie do
implementacji wyjatkdw w swych gotowych i dziatajacych programach. Niestusznie!
Prawdopodobnie bedzie to kawat ciezkiej, nikomu niepotrzebnej roboty. Nie ma sensu jej
wykonywac, poniewaz zysk zwykle bedzie nieadekwatny do wiozonego wysitku.

Co najwyzej mozna pokusic¢ sie o zastosowanie wyjatkdw w przypadku, gdy nowa wersja
danego programu wymaga napisania jego kodu od nowa. Decyzja o tym, czy tak ma sie
sta¢ w istocie, powinna by¢ podjeta jak najwczesniej.

502 Zaawansowane C++

Xk k

Praktyczne wykorzystanie wyjatkow to sztuka, jak zresztg cate programowanie.
Najlepszym nauczycielem bedzie tu doswiadczenie, ale jesli zawartos¢ tego podrozdziatu
pomoze ci choc¢ troche, to jego cel bede mogt uwazac za osiggniety.

Podsumowanie

Ten rozdziat omawiat mechanizm wyjatkéw w jezyku C++. Rozpoczat sie od
przedstawienia kilku popularnych sposobdéw radzenia sobie z btedami, jakie moga
wystapi¢ w trakcie dziatania programu. Pézniej poznate$ same wyjatki oraz podstawowe
informacje o nich. Dalej zajeliSmy sie zagadnieniem odwijania stosu i jego konsekwencji,
by wreszcie nauczy¢ sie wykorzystywac wyjatki w praktyce.

Pytania i zadania

Rozdziat kohczymy tradycyjng porcjg pytan i cwiczen.

Pytania
1. Kiedy mozemy méwic, iz mamy do czynienia z sytuacjg wyjatkowa?
2. Dlaczego specjalny rezultat funkcji nie zawsze jest dobrg metodg informowania o

btedzie?

Czy rbzni sie throw od return?

Dlaczego kolejnos¢ blokdw catch jest wazna?

Jaka jest rola bloku catch(...)?

Czym jest specyfikacja wyjatkow? Co dzieje sie, jezeli zostanie ona naruszona?
Ktdre obiekty sg niszczone podczas odwijania stosu?

W jakich funkcjach nie nalezy rzuca¢ wyjatkow?

W jaki sposdb mozemy zapewni¢ zwolnienie zasobow w przypadku wystgpienia
wyjatku?

10. Dlaczego warto definiowa¢ wtasne klasy dla obiektow wyjatkow?

CONO U AW

Cwiczenia

1. Zastanéw sie, jakie informacje powinien zawiera¢ dobry obiekt wyjatku. Ktére z
tych danych dostarcza nam sam kompilator, a ktére trzeba zapewnié sobie
samemu?

2. (Trudne) Mechanizm wyjatkdéw zostat pomyslany do obstugi btedéw w trakcie
dziatania programu. To jednak nie sg jego jedyne mozliwe zastosowanie; pomysl,
do czego potencjalnie przydatne mogg by¢ jeszcze wyjatki - a szczegdlnie
towarzyszacy im proces odwijania stosu...

