
3
WYJĄTKI

Doświadczenie - to nazwa, jaką nadajemy

naszym błędom.
Oscar Wilde

Programiści nie są nieomylni. O tym wiedzą wszyscy, a najlepiej oni sami. W końcu to
głównie do nich należy codzienna walka z większymi i mniejszymi błędami, wkradającymi
się do kodu źródłowego. Dobrze, jeśli są to tylko usterki składniowe w rodzaju braku
potrzebnego średnika albo domykającego nawiasu. Wtedy sam kompilator daje o nich
znać.
Nieco gorzej jest, gdy mamy do czynienia z błędami objawiającymi się dopiero podczas
działania programu. Może to spowodować nawet produkowanie nieprawidłowych wyników
przez naszą aplikację (błędy logiczne).
Wszystkie tego rodzaju sytuację mają jędna cechę wspólną. Można bowiem (i należy) im
zapobiegać: możliwe i pożądane jest takie poprawienie kodu, aby błędy tego typu nie
pojawiały się. Aplikacja będzie wtedy działała poprawnie…

Ale czy na pewno? Czy twórca aplikacji może przewidzieć wszystkie sytuacje, w jakich
znajdzie się jego program? Nawet jeśli jego kod jest całkowicie poprawny i wolny od
błędów, to czy gwarantuje to jego poprawne działanie za każdym razem?…
Gdyby odpowiedż na chociaż jedno z tych pytań brzmiała „Tak”, to programiści pewnie
rwaliby sobie z głów o połowę mniej włosów niż obecnie. Niestety, nikt o zdrowym
rozsądku nie może obiecać, że jego kod będzie zawsze działać zgodnie z oczekiwaniami.
Naturalnie, jeżeli jest on napisany dobrze, to w większości przypadków tak właśnie
będzie. Od każdej reguły zawsze jednak mogą wystąpić wyjątki…

W tym rozdziale będziemy mówić właśnie o takich wyjątkach - albo raczej o sytuacjach
wyjątkowych. Poznamy możliwości C++ w zakresie obsługi takich niecodziennych
zdarzeń i ogólne metody radzenia sobie z nimi.

Mechanizm wyjątków w C++
Czym właściwie jest taka sytuacja wyjątkowa, która może narobić tyle zamieszania?…
Otóż:

Sytuacja wyjątkowa (ang. exceptional state) ma miejsce wtedy, gdy warunki
zewnętrzne uniemożliwiają danemu fragmentowi kodu poprawne wykonanie. Ów
fragment nie jest winny zaistnienia sytuacji wyjątkowej.

Ogólnie sytuacją wyjątkową można nazwać każdy błąd występujący podczas działania
programu, który nie jest spowodowany przez błędy w jego kodzie. To coś w rodzaju
przykrej niespodzianki: nieprawidołowych danych, nieprzewidzianego braku zasobów, i
tak dalej. Takie przypadki mogą zdarzyć się w każdym programie, nawet napisanym
pozornie bezbłędnie i działającym doskonale w zwykłych warunkach. Sytuacje
wyjątkowe, jak sama ich nazwa wskazuje, zdarzają się bowiem tylko w warunkach
wyjątkowych…

Zaawansowane C++ 464

Tradycyjne metody obsługi błędów
Wystąpieniu sytuacji wyjątkowej zwykle nie można zapobiec - a przynajmniej nie może
tego zrobić ten kawałek kodu, w którym ona faktycznie występuje. Jego rolą powinno być
zatem poinformowanie o zainstniałym zdarzeniu kodu, który stoi „wyżej” w strukturze
programu. Kod wyższego poziomu może wtedy podjąć jakieś sensowne akcje, a jeśli nie
jest to możliwe - w ostateczności zakończyć działanie programu.

Działania wykonywane w reakcji na błędy są dość specyficzne dla każdego programu.
Obejmowac mogą na przykład zapisanie informacji o zdarzeniu w specjalnym dzienniku,
pokazanie komunikatu dla użytkownika czy też jeszcze inne czynności. Tym
zagadnieniem nie bedziemy się więc zajmować.
Zobaczmy raczej, jakimi sposobami może odbywać się powiadamianie o błędach. Tutaj
istnieje kilka potencjalnym rozwiązań - niektóre są lepsze, inne nieco gorsze… Oto te
najczęściej wykorzystywane.

Dopuszczalne sposoby
Do całkiem dobrych metod informowania o niespodziewanych sytuacjach należy
zwracanie jakiejś specjalnej wartości - indykatora. Wywołujący daną funkcję może wtedy
sprawdzić, czy błąd wystąpił, kontrolując rezultaty zwrócone przez podprogram.

Zwracanie nietypowego wyniku
Najprostszą drogą poinformowania o błędzie jest zwrócenie pewnej specjalnej wartości,
która w normalnych warunkach nie m prawa wystąpić. Aby to zilustrować, załóżmy przez
chwilę, że mamy napisać funkcję obliczającą pierwiastek kwadratowy z podanej liczby.
Wiedząc to, ochoczo zabieramy się do pracy, produkując np. taki oto kod:

float Pierwiastek(float x)
{
 // stała określąjąca dokładność
 static const float EPSILON = 0.0001f;

 /* liczymy pierwiastek kwadratowy metodą Newtona */

 // wybieramy punkt początkowy (połowę wartości)
 float fWynik = x / 2;

 // wykonujemy tyle iteracji, aby otrzymać rozsądne przybliżenie
 while (abs(x - fWynik * fWynik) > EPSILON)
 fWynik = (fWynik + x / fWynik) / 2;

 // zwracamy wynik
 return fWynik;
}

Funkcja ta wykorzystuje iteracyjną metodę Newtona do obliczania pierwiastka, ale to nie
jest dla nas zbyt ważne, bowiem dotyczy zwykłej sytuacji. My natomiast mówimy o
sytuacjach niezwykłych. Co nią będzie dla naszej funkcji?…

Na pewno będzie to podanie jej liczby ujemnej. Dopóki pozostajemy na gruncie prostej
matematyki, jest to dla nas błędna wartość - nie można wyciągnąć pierwiastka
kwadratowego z liczby mniejszej od zera.
Nie można jednak wykluczyć, że nasza funkcja otrzyma kiedyś liczbę ujemną. Będzie to
błąd, sytuacja wyjątkowa - i trzeba będzie na nią zareagować. Ściśle mówiąc, trzeba
będzie poinformować o niej wywołującego funkcję.

Wyjątki 465

Specjalny rezultat

Jak można to zrobić?… Prostym sposobem jest zwrócenie specjalnej wartości. Niech
będzie to wartość, która w normalnych warunkach nie ma prawa być zwrócona. W tym
przypadku powinna to być taka liczba, której prawidłowe zwrócenie przez Pierwiastek()
nie powinno mieć miejsca.
Jaka to liczba? Oczywiście - dowolna liczba ujemna. Powiedzmy, że np. -1:

if (x < 0) return -1;

Po dodaniu tego sprawdzenia funkcja będzie już odporna na sytuacje z nieprawidłowym
argumentem. Wywołujący ją będzie musiał natomiast sprawdzać, czy rezultat funkcji nie
jest przypadkiem informacją o błędzie - np. w ten sposób:

float fLiczba;
float fPierwiastek;

if ((fPierwiastek = Pierwiastek(fLiczba)) < 0)
 std::cout << "Nieprawidlowa liczba";
else
 std::cout << "Pierwiastek z " << fLiczba << " to " << fPierwiastek;

Jak widać, przy wykorzystaniu wartości zwracanej operatora przypisania nie jest to
szczególnie uciążliwe.

Wady tego rozwiązania

Takie rozwiązanie ma jednak kilka mankamentów. Pierwszą widać już tutaj: nie wygląda
ono szczególnie estetycznie od strony wywołującego. Druga kwestia jest poważniejsza.

Jest nią problem doboru wartości specjalnej, sygnalizującej błąd. Zwracam uwagę, że nie
ma ona prawa pojawienia się w jakiejkolwiek poprawnej sytuacji - musi ona
jednoznacznie identyfikować błąd, a nie przydatny rezultat.
W przypadku funkcji Pierwiastek() było to proste, gdyż potencjalnych wartości jest
mnóstwo: możemy przecież wykorzystać wszystkie liczby ujemne - poprawnym wynikiem
funkcji jest bowiem tylko liczba dodatnia. Nie zawsze jednak musi tak być - czas na
kolejny przykład matematyczny, tym razem z logarytmem o dowolnej podstawie:

float LogA(float a, float x) { return log(x) / log(a); }

Tutaj także możliwe jest podanie nieprawidłowych argumentów: wystarczy, żeby choć
jeden z nich był ujemny lub aby podstawa logarytmu (a) była równa jeden. Nie warto
polegać na reakcji funkcji bibliotecznej log() w razie zaistnienia takiej sytuacji; lepiej
samemu coś na to poradzić.
No właśnie - ale co? Możemy oczywiście skontrolować poprawność argumentów funkcji:

if (a < 0 || a == 1.0f || x < 0)
 /* błąd, ale jak o nim powiedzieć?... */

ale nie bardzo wiadomo, jaką specjalną wartość należałoby zwrócić. W zakresie typu
float nie ma bowiem żadnej „wolnej” liczby, ponieważ poprawny wynik logarytmu może
być każdą liczbą rzeczywistą.
Ostatecznie można zwrócić zero, który to wynik zachodzi normalnie tylko dla x równego
1. Wówczas jednak sprawdzanie potencjalnego błędu byłoby bardzo niewygodne:

// sprawdzamy, czy rezultat jest równy zero, a argument różny od jeden;
// jeżeli tak, to błąd
if (((fWynik = LogA(fPodstawa, fLiczba)) == 0.0f) && fLiczba != 1.0f)
 std::cout << "Zly argument funkcji";

Zaawansowane C++ 466

else
 std::cout << "Logarytm o podst. " << fPodstawa << " z " << fLiczba
 << " wynosi " << fWynik;

To chyba przesądza fakt, iż łączenie informacji o błędzie z właściwym wynikiem nie jest
dobrym pomysłem.

Oddzielenie rezultatu od informacji o błędzie
Obie te dane trzeba od siebie odseparować. Funkcja powinna zatem zwracać dwie
wartości: jedną „właściwą” oraz drugą, informującą o powodzeniu lub niepowodzeniu
operacji.

Ma to rozliczne zalety - między innymi:

 pozwala przekazać więcej danych na temat charakteru błędu
 upraszcza kontrolę poprawności wykonania funkcji
 umożliwia swobodę zmian w kodzie i ewentualne rozszerzenie funkcjonalności

Wydaje się jednak, że jest dość poważny problem: jak funkcja miałaby zwracać dwie
wartości?… Cóż, chyba brak ci pomysłowości - istnieje bowiem kilka dróg zrealizowania
tego mechanizmu.

Wykorzystanie wskaźników

Nasza funkcja, oprócz normalnych argumentów, może przyjmować jeden wskaźnik. Za
jego pośrednictwem przekazana zostanie dodatkowa wartość. Może to być informacja o
błędzie, ale częściej (i wygodniej) umieszcza się tam właściwy rezultat funkcji.

Jak to wygląda? Oto przykład. Funkcja StrToUInt() dokonuje zamiany liczby naturalnej
zapisanej jako ciąg znaków (np. "21433") na typ unsigned:

#include <cmath>

bool StrToUInt(const std::string& strLiczba, unsigned* puWynik)
{
 // sprawdzamy, czy podany napis w ogóle zawiera znaki
 if (strLiczba.empty()) return false;

 /* dokonujemy konwersji */

 // zmienna na wynik
 unsigned uWynik = 0;

 // przelatujemy po kolejnych znakach, sprawdzając czy są to cyfry
 for (unsigned i = 0; i < strLiczba.length(); ++i)
 if (strLiczba[i] > '0' && strLiczba[i] < '9')
 {
 // OK - cyfra; mnożymy aktualny wynik przez 10
 // i dodajemy tę cyfrę
 uWynik *= 10;
 uWynik += strLiczba[i] - '0';
 }
 else
 // jeżeli znak nie jest cyfrą, to kończymy niepowodzeniem
 return false;

 // w przypadku sukcesu przepisujemy wynik i zwracamy true
 *puWynik = uWynik;
 return true;
}

Wyjątki 467

Nie jest ona może najszybsza, jako że wykorzystuje najprostszy, „naturalny” algorytm
konwersji. Nam jednak chodzi o coś innego: o sposób, w jaki funkcja zwraca rezultat i
informację o ewentualnym błędzie.
Jak można zauważyć, typem zwracanym przez funkcję jest bool. Nie jest to więc
zasadniczy wynik, lecz tylko znacznik powodzenia lub niepowodzenia działań. Zasadniczy
rezultat to kwestia ostatniego parametru funkcji: należy tam przekazać wskaźnik na
zmienną, która otrzyma wynikową liczbę.

Brzmi to może nieco skomplikowanie, ale w praktyce korzystanie z tak napisanej funkcji
jest bardzo proste:

std::string strLiczba;
unsigned uLiczba;

if (StrToUInt(strLiczba, &uLiczba))
 std::cout << strLiczba << " razy dwa == " << uLiczba * 2;
else
 std::cout << strLiczba << " - nieprawidlowa liczba";

Możesz się spierać: „Ale przecież tutaj mamy wybitnego kandydata na połączenie
rezultatu z informacją o błędzie! Wystarczy zmienić zwracany typ na int - wtedy
wszystkie wartości ujemne mogłyby informować o błędzie!…”
Chyba jednak sam widzisz, jak to rozwiązanie byłoby naciągane. Nie dość, że użylibyśmy
nieadekwatnego typu danych (który ma mniejszy zakres interesujących nas liczb
dodatnich niż unsigned), to jeszcze ograniczylibyśmy możliwość przyszłej rozbudowy
funkcji. Załóżmy na przykład, że na bazie StrToUInt() chcesz napisać funkcję
StrToInt():

bool StrToInt(const std::string& strLiczba, int* pnWynik);

Nie jest to trudne, jeżeli wykorzystujemy zaprezentowaną tu technikę informacji o
błędach. Gdybyśmy jednak poprzestali na łączeniu rezultatu z informacją o błedzie,
wówczas byłoby to problemem. Oto stracilibyśmy przecież całą „ujemną połówkę” typu
int, bo ona teraz także musiałaby być przeznaczona na poprawne wartości.

Dla wprawy w ogólnym programowaniu możesz napisać funkcję StrToInt(). Jest to
raczej proste: wystarczy dodać sprawdzanie znaku ‘minus’ na początku liczby i nieco
zmodyfikować pętlę for.

Widać więc, że mimo pozornego zwiększenia poziomu komplikacji, ten sposób
informowania o błedach jest lepszy. Nic dziwnego, że stosują go zarówno funkcje
Windows API, jak i interfejsu DirectX.

Użycie struktury

Dla nieobytych ze wskaźnikami (mam nadzieję, że do nich nie należysz) sposób
zaprezentowany wyżej może się wydawać dziwny. Istnieje też nieco inna metoda na
odseparowanie właściwego rezultatu od informacji o błędzie.

Otóż parametry funkcji pozostawiamy bez zmian, natomiast inny będzie typ zwracany
przez nią. W miejsce pojedynczej wartości (jak poprzednio: unsigned) użyjemy
struktury:

struct RESULT
{
 unsigned uWynik;
 bool bBlad;

Zaawansowane C++ 468

};

Zmodyfikowany prototyp będzie więc wyglądał tak:

RESULT StrToUInt(const std::string& strLiczba);

Myślę, że nietrudno zgadnąć, jakie zmiany zajdą w treści funkcji.

Wywołanie tak spreparowanej funkcji nie odbiega od wywołania funkcji z „wymieszanym”
rezultatem. Musi ono wyglądać co najmniej tak:

RESULT Wynik = StrToUInt(strLiczba);
if (Wynik.bBlad)
 /* błąd */

Można też użyć warunku:

if ((Wynik = StrToUInt(strLiczba)).bBlad)

który wygląda pewnie dziwnie, ale jest składniowo poprawny, bo przecież wynikiem
przypisania jest zmienna typu RESULT.

Tak czy inaczej, nie jest to zbyt pociągająca droga. Jest jeszcze gorzej, jeśli
uświadomimy sobie, że dla każdego możliwego typu rezultatu należałoby definiować
odrębną strukturę. Poza tym prototyp funkcji staje się mniej czytelny, jako że typ jej
właściwego rezultatu (unsigned) już w nim nie występuje. 121

Dlatego też o wiele lepiej używać metody z dodatkowym parametrem wskaźnikowym.

Niezbyt dobre wyjścia
Oba zaprezentowane w poprzednim paragrafie sposoby obsługi błędów zakładały proste
poinformowanie wywołującego funkcję o zainstniałym problemie. Mimo tej prostoty,
sprawdzają się one bardzo dobrze.

Istnieją aczkolwiek także inne metody raportowania błędów, które nie mają już tak
licznych zalet i nie są szeroko stosowane w praktyce. Oto te metody.

Wywołanie zwrotne
Idea wywołania zwrotnego (ang. callback) jest nieskomplikowana. Jeżeli w pisanej
przez nas funkcji zachodzi sytuacja wyjątkowa, wywołujemy inną funkcję pomocniczną.
Taka funkcja może pełnić rolę „ratunkową” i spróbować naprawić okoliczności, które
doprowadziły do powstania problemu - jak np. błędne argumenty dla naszej funkcji. W
ostateczności może to być tylko sposób na powiadomienie o nienaprawialnej sytuacji
wyjątkowej.

Uwaga o wygodnictwie

Zaleta wywołania zwrotnego uwidacznia się w powyższym opisie. Przy jego pomocy nie
jesteśmy skazani na bierne przyjęcie do wiadomości wystąpienia błędu; przy odrobinie
dobrej woli można postarać się go naprawić.
Nie zawsze jest to jednak możliwe. Można wprawdzie poprawić nieprawidłowy parametr,
przekazany do funkcji, ale już nic nie zaradzimy chociażby na brak pamięci.

121 Wykorzystanie szablonów zlikwidowałoby obie te niedogodności, ale czy naprawdę są one tego warte…?

Wyjątki 469

Poza tym, technika callback z góry czyni pesymistyczne zalożenie, że sytuacje wyjątkowe
będą trafiały się na tyle często, że konieczny staje się mechanizm wywołań zwrotnych.
Jego stosowanie nie zawsze jest współmierne do problemu, czasem jest to zwyczajne
strzelanie z armaty do komara. Przykładowo, w funkcji Pierwiastek() spokojnie
możemy sobie pozwolić na inne sposoby informowania o błędach - nawet w obliczu faktu,
że naprawienie nieprawidłowego argumentu byłoby przecież możliwe. Funkcja ta nie jest
bowiem na tyle kosztowna, aby opłacało się chronić ją przed niespodziewanym
zakończeniem.
Dlaczego jednak wywołanie zwrotne jest taki „ciężkim” środkiem? Otóż wymaga ono
specjalnych przygotowań. Od strony programisty-klienta obejmują one przede wszystkim
napisania odpowiednich funkcji zwrotnych. Od strony piszącego kod biblioteczny
wymagają natomiast gruntowego obmyślenia mechanizmu takich funkcji zwrotnych: tak,
aby nie mnożyć ich ponad miarę, a jednocześnie zapewnić dla siebie pewną wygodę i
uniwersalność.

Uwaga o logice

Funkcje callback są też bardzo kłopotliwe z punktu widzenia logiki programu i jego
konstrukcji. Zakładają bowiem, by kod niższego poziomu - jak funkcje biblioteczne w
rodzaju wspomnianej Pierwiastek() lub StrToUInt() - wywoływały kod wyższego
poziomu, związany bezpośrednio z działaniem samej aplikacji. Łamie to naturalną
hierarchię „warstw” kodu i burzy porządek jego wykonywania.

Uwaga o niedostatku mechanizmów

Wreszcie trzeba wspomnieć, że w C++ nie ma dobrych sposobów na realizację funkcji
zwrotnych. Owszem, mamy wskaźniki na funkcje - jednak one pozwalają pokazywać
jedynie na funkcje globalne lub statyczne metody klas. Nie posiadamy natomiast
niezbędnego w programowaniu obiektowym mechanizmu wskaźnika na niestatyczną
metodę obiektu (ang. closure), przez co trudno jest zrealizować callback.

W poprzednim rozdziale opisałem pewien sposób na obejście tego problemu, ale jak
wszystkie połowiczne rozwiązania, nie jest on zbyt elegancki…

Zakończenie programu
Wyjątkowy błąd może spowodować jeszcze jedną możliwą akcję: natychmiastowe
zakończenie działania programu.

Brzmi to bardzo drastycznie i takie jest w istocie. Naprawdę trudno wskazać sytuację, w
której byłoby konieczne przerwanie wykonywania aplikacji - zwłaszcza niepoprzedzone
żadnym ostrzeżeniem czy zapytaniem do użytkownika. Chyba tylko krytyczne braki
pamięci lub niezbędnych plików mogą być tego częściowym usprawiedliwieniem.
Na pewno jednak fatalnym pomysłem jest stosowanie tego rozwiązania dla każdej
sytuacji wyjątkowej. I chyba nawet nie muszę mówić, dlaczego…

Wyjątki
Takie są tradycyjne sposobu obsługi sytuacji wyjątkowych. Były one przydatne przez
wiele lat i nadal nie straciły nic ze swojej użyteczności. Nie myśl więc, że mechanizm,
który zaraz pokażę, może je całkowicie zastąpić.

Tym mechanizmem są wyjątki (ang. exceptions). Skojarzenie tej nazwy z sytuacjami
wyjątkowymi jest jak najbardziej wskazane. Wyjątki służą właśnie do obsługi
niecodzienych, niewystępujących w normalnym toku programu wypadków.
Spójrzmy więc, jak może się to odbywać w C++.

Zaawansowane C++ 470

Rzucanie i łapanie wyjątków
Technikę obsługi wyjątków można streścić w trzech punktach, które od razu wskażą nam
jej najważniejsze elementy. Tak więc, te trzy założenia wyjątków są następujące:

 jeżeli piszemy kod, w którym może zdarzyć się coś wyjątkowego i niecodziennego,
czyli po prostu sytuacja wyjątkowa, oznaczamy go odpowiednio. Tym
oznaczeniem jest ujęcie kodu w blok try (‘spróbuj’). To całkiem obrazowa nazwa:
kod wewnątrz tego bloku nie zawsze może być poprawnie wykonany, dlatego
lepiej jest mówić o próbie jego wykonania: jeżeli się ona powiedzie, to bardzo
dobrze; jeżeli nie, będziemy musieli coś z tym fantem zrobić…

 załóżmy, że wykonuje się nasz kod wewnątrz bloku try i stwierdzamy w nim, że
zachodzi sytuacja wyjątkowa, którą należy zgłosić. Co robimy? Otóż używamy
instrukcji throw (‘rzuć’), podając jej jednocześnie tzw. obiekt wyjątku
(ang. exception object). Ten obiekt, mogący być dowolnym typem danych, jest
zwykle informacją o rodzaju i miejscu zainstniałego błędu

 rzucenie obiektu wyjątku powoduje przerwanie wykonywania bloku try, zaś nasz
rzucony obiekt „leci” sobie przez chwilę - aż zostanie przez kogoś złapany. Tym
zaś zajmuje się blok catch (‘złap’), następujący bezpośrednio po bloku try. Jego
zadaniem jest reakcja na sytuację wyjątkową, co zazwyczaj wiąże się z
odczytaniem obiektu wyjątku (rzuconego przez throw) i podjęciem jakiejś
sensownej akcji

A zatem mechanizmem wyjątków żądzą te trzy proste zasady:

Blok try obejmuje kod, w którym może zajść sytuacja wyjątkowa.

Instrukcja throw wewnątrz bloku try służy do informowania o takiej sytuacji przy
pomocy obiektu wyjątku.

Blok catch przechwytuje obiekty wyrzucone przez throw i reaguje na zainstaniałe
sytuacje wyjątkowe.

Tak to wygląda w teorii - teraz czas na obejrzenie kodu obsługi wyjątków w C++.

Blok try-catch

Obsługa sytuacji wyjątkowych zawiera się wewnątrz bloków try i catch. Wyglądają one
na przykład tak:

try
{
 ryzykowne_instrukcje
}
catch (...)
{
 kod_obsługi_wyjątków
}

ryzykowne_instrukcje zawarte wewnątrz bloku try są kodem, który poddawany jest
pewnej specjalnej ochronie na wypadek wystąpienia wyjątku. Na czym ta ochrona polega
- będziemy mówić w następnym podrozdziale. Na razie zapamiętaj, że w bloku try
umieszczamy kod, którego wykonanie może spowodować sytuację wyjątkową, np.
wywołania funkcji bibliotecznych.
Jeżeli tak istotnie się stanie, to wówczas sterowanie przenosi się do bloku catch.
Instrukcja catch „łapie” występujące wyjątki i pozwala przeprowadzić ustalone działania
w reakcji na nie.

Wyjątki 471

Instrukcja throw

Kiedy wiadomo, że wystąpiła sytuacja wyjątkowa?… Otóż musi ona zostać
zasygnalizowana przy pomocy instrukcji throw:

throw obiekt;

Wystąpienie tej instrukcji powoduje natychmiastowe przerwanie normalnego toku
wykonywania programu. Sterowanie przenosi się wtedy do najbliższego pasującego bloku
catch.
Rzucony obiekt pełni natomiast funkcję informującą. Może to być wartość dowolnego
typu - również będąca obiektem zdefiniowanej przez nas klasy, co jest szczególnie
przydatne. obiekt zostaje „wyrzucony” poza blok try; można to porównać do pilota
katapultującego się z samolotu, który niechybnie ulegnie katastrofie. Wystąpienie throw
jest bowiem sygnałem takiej katastrofy - sytuacji wyjątkowej.

Wędrówka wyjątku

Zaraz za blokiem try następuje najczęściej odpowiednia instrukcja catch, która złapie
obiekt wyjątku. Wykona potem odpowiednie czynności, zawarte w swym bloku, a
następnie program rozpocznie wykonywanie dalszych instrukcji, zaraz za blokiem
catch.
Jeśli jednak wyjątek nie zostanie przechwycony, to może on opuścić swą macierzystą
funkcję i dotrzeć do tej, którą ją wywołała. Jeśli i tam nie znajdzie odpowiadającego
bloku catch, to wyjdzie jeszcze bardziej „na powierzchnię”. W przypadku gdy i tam nie
będzie pasującej instrukcji catch, będzie wyskakiwał jeszcze wyżej, i tak dalej.
Proces ten nazywamy odwijaniem stosu (ang. stack unwinding) i trwa on dopóki jakaś
instrukcja catch nie złapie lecącego wyjątku. W skrajnym (i nieprawidłowym) przypadku,
odwijanie może zakończyć się przerwaniem działania programu - mówimy wtedy, że
wystąpił niezłapany wyjątek (ang. uncaught exception).

Schemat 39. Wędrówka wyjątku rzuconego w funkcji

Zarówno o odwijaniu stosu, jak i o łapaniu i niezłapaniu wyjątków będziemy szerzej
mówić w przyszłym podrozdziale.

throw a return

Instrukcja throw jest trochę podobna do instrukcji return, której używamy do
zakończenia funkcji i zwrócenia jej rezultatu. Istnieją jednak ważne różnice:

 return powoduje zawsze przerwanie tylko jednej funkcji i powrót do miejsca, z
którego ją wywołano. throw może natomiast wcale nie przerywać wykonywania

Zaawansowane C++ 472

funkcji (jeżeli znajdzie w niej pasującą instrukcję catch), lecz równie dobrze może
przerwać działanie wielu funkcji, a nawet całego programu

 w przypadku return możliwe jest „rzucenie” obiektu należącego tylko do jednego,
ściśle określonego typu. Tym typem jest typ zwracany przez funkcję, określany w
jej deklaracji. throw może natomiast wyrzucać obiekt dowolnego typu, zależnie
od potrzeb

 return jest normalnym sposobem powrotu z funkcji, który stosujemy we
wszystkich typowych sytuacjach. throw jest zaś używany w sytuacjach
wyjątkowych; nie powinno się używać go jako zamiennika dla return, bo
przeznaczenie obu tych instrukcji jest inne

Widać więc, że mimo pozornego podobieństwa instrukcje te są zupełnie różne. return
jest typową instrukcją języka programowania, bez której tworzenie programów byłoby
niemożliwe. throw jest z kolei częścią większej calości - mechanizmu obsługi wyjątków -
będącym po prostu specjalnym mechanizmem radzenia sobie z sytuacjami kryzysowymi.
Mimo jej przydatności, stosowanie tej techniki nie jest obowiązkowe.
Skoro jednak mamy wybierać między używaniem a nieużywaniem wyjątków (a takich
wyborów będziesz dokonywał często), należy wiedzieć o wyjątkach coś więcej. Dlatego
też kontynuujemy zajmowanie się tym tematem.

Właściwy chwyt
W poprzednich akapitach kilkakrotnie używałem sformułowania „pasujący blok catch”
oraz „odpowiednia instrukcja catch”. Cóż one znaczą?…

Jedną z zalet mechanizmu wyjątków jest to, że instrukcja throw może wyrzucać obiekty
dowolnego typu. Poniższe wiersze są więc całkowicie poprawne:

throw 42u;
throw "Straszny blad!";
throw CException("Wystapil wyjatek", __FILE__, __LINE__);
throw 17.5;

Te cztery instrukcje throw rzucają (odpowiednio) obiekty typów unsigned, const
char[], zdefiniowanej przez użytkownika klasy CException oraz double. Wszystkie one
są zapewne cennymi informacjami o błędach, które należałoby odczytać w bloku catch.
Niewykluczone przecież, że nawet najmniejsza pomoc „z miejsca katastrofy” może być
dla nas przydatna.

Dlatego też w mechanizmie wyjątków przewidziano sposób nie tylko na oddanie
sterowania do bloku catch, ale też na przesłanie tam jednego obiektu. Jest to oczywiście
ten obiekt, który podajemy instrukcji throw.
catch otrzymuje natomiast jego lokalną kopię - w podobny sposób, w jaki funkcje
otrzymują kopie przekazanych im parametrów. Aby jednak tak się stało, blok catch musi
zadeklarować, z jakiego typu obiektami chce pracować:

catch (typ obiekt)
{
 kod
}

W ten sposób bedzie miał dostęp do każdego złapanego obiektu wyjątku, który należy
do podanego typu. Da mu to możliwość wykorzystania go - chociażby po to, aby
wyświetlić użytkownikowi zawarte w nim informacje:

Wyjątki 473

try
{
 srand (static_cast<unsigned>(time(NULL)))

 // losujemy rzucony wyjątek
 switch (rand() % 4)
 {
 case 0: throw "Wyjatek tekstowy";
 case 1: throw 1.5f; // wyjątek typu float
 case 2: throw -12; // wyjątek typu int
 case 3: throw (void*) NULL; // pusty wskaźnik
 }
}
catch (int nZlapany)
{
 std::cout << "Zlapalem wyjatek liczbowy z wartoscia " << nZlapany;
}

Komunikaty o błędach powinny być w zasadzie kierowane do strumienia cerr, a nie
cout. Tutaj jednak, dla zachowania prostoty, będę posługiwał się standardowym
strumieniem wyjścia. O pozostałych dwóch rodzajach strumieni wyjściowych pomówimy
w rozdziale o strumieniach STL.

W tym kawałku kodu blok catch złapie liczbę typu int - jeżeli takowa zostanie
wyrzucona przez instrukcję throw. Przechwyci ją w postaci lokalnej zmiennej nZlapany,
aby potem wyświetlić jej wartość w konsoli.

A co z pozostałymi wyjątkami? Nie mamy instrukcji catch, które by je łapały. Wobec
tego zostaną one wyrzucone ze swej macierzystej funkcji i będą wędrowały tą ścieżką aż
do natrafienia pasujących bloków catch. Jeżeli ich nie znajdą, spowodują zakończenie
programu.
Powinniśmy zatem zapewnić obsługę także i tych wyjątków. Robimy w taki sposób, iż
dopisujemy po prostu brakujące bloki catch:

catch (const char szNapis[])
{
 std::cout << szNapis;
}
catch (float fLiczba)
{
 std::cout << "Zlapano liczbe: " << fLiczba;
}
catch (void* pWskaznik)
{
 std::cout << "Wpadl wskaznik " << pWskaznik;
}

Bloków catch, nazywanych procedurami obsługi wyjątków (ang. exception handlers),
może być dowolna ilość. Wszystko zależy od tego, ile typów wyjątków zamierzamy
przechwytywać.

Kolejność bloków catch

Obecność kilku bloków catch po jednej instrukcji try to powszechna praktyka. Dzięki
niej można bowiem zabezpieczyć się na okoliczność różnych rodzajów wyjątków. Warto
więc o tym porozmawiać.

Zaawansowane C++ 474

Dopasowywanie typu obiektu wyjątku

Załóżmy więc, że mamy taką oto sekwencję try-catch:

try
{
 // rzucamy wyjątek
 throw 90;
}
catch (float fLiczba) { /* ... */ }
catch (int nLiczba) { /* ... */ }
catch (double fLiczba) { /* ... */ }

W bloku try rzucamy jako wyjątek liczbę 90. Ponieważ nie podajemy jej żadnych
przyrostków, kompilator uznaje, iż jest to wartość typu int. Nasz obiekt wyjątku jest
więc obiektem typu int, który leci na spotkanie swego losu.

Gdzie się zakończy jego droga?… Wszystko zależy od tego, który z trzech bloków catch
przechwyci ten wyjątek. Wszystkie one są do tego zdolne: typ int pasuje bowiem
zarówno do typu float, jak i double (no i oczywiście int).
Mówiąc „pasuje”, mam tu na myśli dokładnie taki sam mechanizm, jaki jest uruchamiany
przy wywoływaniu funkcji z parametrami. Mając bowiem trzy funkcje:

void Funkcja1(float);
void Funkcja2(int);
void Funkcja3(double);

każdej z nich możemy przekazać wartość typu int. Naturalnie, jest on najbardziej
zgodna z Funkcja2(), ale pozostałe też się do tego nadają. W ich przypadku zadziałają
po prostu wbudowane, niejawne konwersje: kompilator zamieni liczbę na int na typ
float lub double.

A jednak to tylko część prawdy. Zgodność typu wyjątku z typem zadeklarowanym w
bloku catch to tylko jedno z kryterium wyboru - w dodatku wcale nie najważniejsze!
Otóż najpierw w grę wchodzi kolejność instrukcji catch. Kompilator przegląda je w takim
samym porządku, w jakim występują w kodzie, i dla każdej z nich wykonuje test
dopasowania argumentu. Jeśli stwierdzi jakąkolwiek zgodność (niekoniecznie
najlepszą możliwą), ignoruje wszystkie pozostałe bloki catch i wybiera ten pierwszy
pasujący.

Co to znaczy w praktyce? Spójrzmy na nasz przykład. Mamy obiekt typu int, który
zostanie kolejno skonfrontowany z typami trzech bloków catch: float, int i double.
Wobec przedstawionych wyżej zasad, który z nich zostanie wybrany?…
Odpowiedź nie jest trudna. Już pierwsze dopasowanie int do float zakończy się
sukcesem. Nie będzie ono wprawdzie najlepsze (wymagać będzie niejawnej konwersji),
ale, jak podkresliłem, kompilator poprzestanie właśnie na nim. Porządek bloków catch
weźmie po prostu górę nad ich zgodnością.
Pamiętaj więc zasadę dopasowywania typu obiektu rzuconego do wariantów catch:

Typy w blokach catch są sprawdzane wedle ich kolejności w kodzie, a wybierana jest
pierwsza pasująca możliwość. Przy dopasowywania brane są pod uwagę wszystkie
niejawne konwersje.

Szczególnie natomiast weź sobie do serca, iż:

Kolejność bloków catch często ma znaczenie.

Wyjątki 475

Mimo że z pozoru przypominają one funkcje, funkcjami nie są. Obowiązują w nich więc
inne zasady wyboru właściwego wariantu.

Szczegóły przodem

Jak w takim razie należy ustawiać procedury obsługi wyjątków, aby działały one zgodnie
z naszymi życzeniami?… Popatrzmy wpierw na taki przykład:

try
{
 // ...
 throw 16u; // unsigned
 // ...
 throw -87; // int
 // ...
 throw 9.242f; // float
 // ...
 throw 3.14157; // double
}
catch (double fLiczba) { /* ... */ }
catch (int nLiczba) { /* ... */ }
catch (float fLiczba) { /* ... */ }
catch (unsigned uLiczba) { /* ... */ }

Pytanie powinno tutaj brzmieć: co jest źle na tym obrazku? Domyślasz się, że chodzi o
kolejność bloków catch. Sprawdźmy.
W bloku try rzucamy jeden z czterech wyjątków - typu unsigned, int, float oraz
double. Co się z nimi dzieje? Oczywiście trafiają do odpowiednich blobków catch… czy
aby na pewno?

Niezupełnie. Wszystkie te liczby zostaną bowiem od razu dopasowane do pierwszego
wariantu z parametrem double. Typ double swobodnie potrafi pomieścić wszystkie
cztery typy liczbowe, zatem wszystkie cztery wyjątkie trafią wyłącznie do pierwszego
bloku catch! Pozostałe trzy są w zasadzie zbędne!
Kolejność procedur obsługi jest zatem nieprawidłowa. Poprawnie powinny być one
ułożone w ten sposób:

catch (unsigned uLiczba) { /* ... */ }
catch (int nLiczba) { /* ... */ }
catch (float fLiczba) { /* ... */ }
catch (double fLiczba) { /* ... */ }

To gwarantuje, że wszystkie wyjątki trafią do tych bloków catch, które im dokładnie
odpowiadają. Korzystamy tu z faktu, że:

 typ unsigned w pierwszym bloku przyjmie tylko wyjątki typu unsigned
 typ int w drugim bloku mógłby przejąć zarówno liczby typu unsigned, jak i int.

Te pierwszą są jednak przechwycane przez poprzedni blok, zatem tutaj trafiają
wyłącznie wyjątki faktycznego typu int

 typ float może przyjąć typy unsigned, int i float. Pierwsze dwa są już jednak
obsłużone, więc ten blok catch dostaje tylko „prawdziwe” liczby
zmiennoprzecinkowe pojedynczej precyzji

 typ double pasuje do każdej liczby, ale tutaj blok catch z tym typem dostanie
jedynie te wyjątki, które są faktycznie typu double. Pozostałe liczby zostaną
przechwycone przez poprzednie warianty

Między typami unsigned, int, float i double zachodzi tu po prosta relacja polegająca
na tym, że każdy z nich jest szczególnym przypadkiem następnego:

Zaawansowane C++ 476

unsigned ⊂ int ⊂ float ⊂ double

„Najbardziej szczególny” jest typ unsigned i dlatego on występuje na początku. Dalej
mamy już coraz bardziej ogólne typy liczbowe.
Taka zasada konstrurowania sekwencji bloków catch jest poprawna w każdym
przypadku, nie tylko dla typów liczbowych,

Umieszczając kilka bloków catch jeden po drugim, zadbaj o to, aby występowały one w
porządku rosnącej ogólności. Niech najpierw pojawią się bloki o najbardziej
wyspecjalizowanych typach, a dopiero potem typy coraz bardziej ogólne.

Możesz kręcić nosem na takie nieścisłe sformulowania. Bo i co to znaczy, że dany typ jest
ogólniejszy niż inny?… W grę wchodzą tu niejawne konwersje - jak wiemy, kompilator
stosuje je przy dopasowywaniu w blokach catch. Można zatem powiedzieć, że:

Typ A jest ogólniejszy od typu B, jeżeli istnieje niejawna konwersja z B do A,
niepowodująca utraty danych.

W tym sensie double jest ogólniejszy od każdego z typów: unsigned, int i float,
ponieważ w każdym przypadku istnieją niejawne konwersje standardowe, zamieniające
te typy na double. To zresztą zgodne ze zdrowym rozsądkiem i wiedzą matematyczną,
która mówi, nam że liczby naturalne i całkowite są także liczbami rzeczywistymi.
Innym rodzajem konwersji, który będzie nas interesował w tym rozdziale, jest zamiana
odwołania do obiektu klasy pochodnej na odwołanie do obiektu klasy bazowej. Użyjemy
jej do budowy hierarchii klas dla wyjątków.

Zagnieżdżone bloki try-catch

Wewnątrz bloku try może znaleźć się dowolny kod, jaki może być umieszczany we
wszystkich blokach instrukcji C++. Przypisania, instrukcje warunkowe, pętle, wywołania
funkcji - wszystko to jest dopuszczalne. Co więcej, w bloku try mogę się znaleźć… inne
bloki try-catch. Nazywami je wtedy zagnieżdżonymi, zupełnie tak samo jak
zagnieżdżone instrukcje if czy pętle.

Formalnie składnia takiego zagnieżdżenia może wyglądać tak:

try
{
 try
 {
 ryzykowne_instrukcje_wewnętrzne
 }
 catch (typ_wewnętrzny_1 obiekt_wewnętrzny_1)
 {
 wewnętrzne_instrukcje_obsługi_1
 }
 catch (typ_wewnętrzny_2 obiekt_wewnętrzny_2)
 {
 wewnętrzne_instrukcje_obsługi_2
 }
 // ...

 ryzykowne_instrukcje_zewnętrzne
}
catch (typ_zewnętrzny_1 obiekt_zewnętrzny_1)
{
 zewnętrzne_instrukcje_obsługi_1

Wyjątki 477

}
catch (typ_zewnętrzny_1 obiekt_zewnętrzny_2)
{
 zewnętrzne_instrukcje_obsługi_2
}
// ...

dalsze_instrukcje

Mimo pozornego skomplikowania jej funkcjonowanie jest intuicyjne. Jeżeli podczas
wykonywania ryzykownych_instrukcji_wewnętrznych rzucony zostanie wyjątek, to
wpierw będzie on łapany przez wewnętrzne bloki catch. Dopiero gdy one przepuszczą
wyjątek, do pracy wezmą się bloki zewnętrzne.
Jeżeli natomiast któryś z zestawów catch (wewnętrzny lub zewnętrzny) wykona swoje
zadanie, to program będzie kontynuował od następnych linijek po tym zestawie. Tak więc
w przypadku, gdy wyjątek złapie wewnętrzny zestaw, wykonywane będą
ryzykowne_instrukcje_zewnętrzne; jeśli zewnętrzny - dalsze_instrukcje.
No a jeśli żaden wyjątek nie wystąpi? Wtedy wykonają się wszystkie instrukcje poza
blokami catch, czyli: ryzykowne_instrukcje_wewnętrzne,
ryzykowne_instrukcje_zewnętrzne i wreszcie dalsze_instrukcje.

Takie dosłowne zagnieżdżanie bloków try-catch jest w zasadzie rzadkie. Częściej
wewnętrzny blok występuje w funkcji, której wywołanie mamy w zewnętrznym bloku.
Oto przykład:

void FunkcjaBiblioteczna()
{
 try
 {
 // ...
 }
 catch (typ obiekt)
 {
 // ...
 }
 // ...
}

void ZwyklaFunkcja()
{
 try
 {
 FunkcjaBiblioteczna();
 // ...
 }
 catch (typ obiekt)
 {
 // ...
 }
}

Takie rozwiązanie ma prostą zaletę: FunkcjaBiblioteczna() może złapać i obsłużyć te
wyjątki, z którymi sama sobie poradzi. Jeżeli nie potrzeba angażować w to wywołującego,
jest to duża zaleta. Część wyjątków najprawdopodobniej jednak opuści funkcję - tylko
tymi będzie musiał zająć się wywołujący. Wewnętrzne sprawy wywoływanej funkcji
(także wyjątki) pozostaną jej wewnętrznymi sprawami.
Ogólnie można powiedzieć, że:

Zaawansowane C++ 478

Wyjątki powinny być łapane w jak najbliższym od ich rzucenia miejscu, w którym
możliwe jest ich obsłużenie.

O tej ważnej zasadzie powiemy sobie jeszcze przy okazji uwag o wykorzystaniu
wyjątków.

Złapanie i odrzucenie

Przy zagnieżdżaniu bloków try (nieważne, czy z pośrednictwem funkcji, czy nie) może
wystąpić częsta w praktyce sytuacja. Możliwe jest mianowicie, że po złapaniu wyjątku
przez bardziej wewnętrzny catch nie potrafimy podjąć wszystkich akcji, jakie byłyby
dla niego konieczne. Przykładowo, możemy tutaj jedynie zarejestrować go w dzienniku
błędów; bardziej użyteczną reakcję powinien zająć się „ktoś wyżej”.
Moglibyśmy pominąć wtedy ten wewnętrzny catch, ale jednocześnie pozbawilibyśmy się
możliwości wczesnego zarejestrowania błędu. Lepiej więc pozostawić go na miejscu, a po
zakończeniu zapisywania informacji o wyjątku wyrzucić go ponownie. Robimy to
instrukcją throw bez żadnych parametrów:

throw;

Ta instrukcja powoduje ponowne rzucenie tego samego obiektu wyjątku. Teraz jednak
będą mogły zająć się nim bardziej zewnętrzne bloki catch. Będą one pewnie bardziej
kompetentne niż nasze siły szybkiego reagowania.

Blok catch(...), czyli chwytanie wszystkiego

W połączeniu z zagnieżdżonymi blokami try i instrukcją throw; czesto występuje
specjalny rodzaj bloku catch. Nazywany jest on uniwersalnym, a powstaje poprzez
wpisanie po catch wielokropka (trzech kropek) w nawiasie:

try
{
 // instrukcje
}
catch (...)
{
 // obsługa wyjątków
}

Uniwersalność tego specjalnego rodzaju catch polega na tym, iż pasują do niego
wszystkie obiekty wyjątków. Jeżeli kompilator, transportując wyjątek, natrafi na
catch(...), to bezwarunkowo wybierze właśnie ten wariant, nie oglądając się na
żadne inne. catch(...) jest więc „wszystkożerny”: pochłania dowolne typy wyjątków.

‘Pochłania’ to zresztą dobre słowo. Wewnątrz bloku catch(...) nie mamy mianowicie
żadnych informacji o obiekcie wyjątku. Nie tylko o jego wartości, ani nawet o jego typie.
Wiemy jedynie, że jakiś wyjątek wystąpił - i skromną tą wiedzą musimy się zadowolić.
Po co nam wobec tego taki dziwny blokcatch?… Jest on przydatny tam, gdzie możemy
jakoś wykorzystać samo powiadomienie o wyjątku, nie znając jednak jego typu ani
wartości. Wewnątrz catch(...) możemy jedynie podjać pewne domyślne działania.
Możemy na przykład dokonać małego zrzutu pamięci (ang. memory dump), zapisując w
bezpiecznym miejscu wartości zmiennych na wypadek zakończenia programu. Możemy
też w jakiś sposób przygotować się do właściwej obsługi błędów.
Cokolwiek zrobimy, na koniec powinniśmy przekazać wyjątek dalej, czyli użyć
konstrukcji:

throw;

Wyjątki 479

Jeżeli tego nie zrobimy, to catch(...) zdusi w zarodku wszelkie wyjątki, nie pozwalając
na to, by dotarły one dalej.

Na tym kończą się podstawowe informacje o mechanizmie wyjątków. To jednak nie
wszystkie aspekty tej techniki. Musimy sobie jeszcze porozmawiać o tym, co dzieje się
między rzuceniem wyjątku poprzez throw i jego złapaniem przy pomocy catch.
Porozmawiamy zatem o odwijaniu stosu.

Odwijanie stosu
Odwijanie stosu (ang. stack unwinding) jest procesem ściśle związanym z wyjątkami.
Jakkolwiek sama jego istota jest raczej prosta, musimy wiedzeć, jakie ma on
konsekwencje w pisanym przez nas kodzie.

Między rzuceniem a złapaniem
Odwijanie stosu rozpoczyna się wraz z rzuceniem jakiegokolwiek wyjątku przy pomocy
instrukcji throw i postępuje aż do momentu natrafienia na pasujący do niego blok catch.
W skrajnym przypadku odwijanie może doprowadzić do zakończenia działania programu -
jest tak jeśli odpowiednia procedura obsługi wyjątku nie zostanie znaleziona.

Wychodzenie na wierzch
Na czym jednak polega samo odwijanie?… Otóż można opisać je w skrócie jako
wychodzenie punktu wykonania ze wszystkich bloków kodu. Co to znaczy,
najlepiej wyjaśnić na przykładzie.

Załóżmy, że mamy taką oto sytuację:

try
{
 for (/* ... */)
 {
 switch (/* ... */)
 {
 case 1:
 if (/* ... */)
 {
 // ...
 throw obiekt;
 }
 }
 }
}
catch
{
 // ...
}

Instrukcja throw występuje to wewnątrz 4 zagnieżdżonych w sobie bloków: try, for,
switch i if. My oczywiście wiemy, że najważniejszy jest ten pierwszy, bo zaraz za nim
występuje procedura obsługi wyjątku - catch.
Co się dzieje z wykonywaniem programu, gdy następuje sytuacja wyjątkowa? Otóż nie
skacze on od razu do odpowiedniej instrukcji catch. Byłoby to może najszybsze z

Zaawansowane C++ 480

punktu widzenia wydajności, ale jednocześnie całkowicie niedopuszczalne. Dlaczego tak
jest - o tym powiemy sobie w następnym paragrafie.

Jak więc postępuje kompilator? Rozpoczyna to sławetne odwijanie stosu, któremu
poświęcony jest cały ten podrozdział. Działa to mniej więcej tak, jakby dla każdego
bloku, w którym się aktualnie znajdujemy, zadziałała instrukcja break. Powoduje to
wyjście z danego bloku.
Po każdej takiej operacji jest poza tym sprawdzana obecność następującego dalej bloku
catch. Jeżeli takowy jest obecny, i pasuje on do typu obiektu wyjątku, to wykonywana
jest procedura obsługi wyjątku w nim zawarta. Proste i skuteczne :)

Zobaczmy to na naszym przykładzie. Instrukcja throw znajduje się tu przede wszystkim
wewnątrz bloku if - i to on będzie w pierwszej kolejności odwinięty. Potem nie zostanie
znaleziony blok catch, zatem opuszczone zostaną także bloki switch, for i wreszcie try.
Dopiero w tym ostatnim przypadku natrafimy na szukaną procedurę obsługi, która
zostanie wykonana.
Warto pamiętać, że - choć nie widać tego na przykładzie - odwijanie może też dotyczyć
funkcji. Jeżeli zajdzie konieczność odwinięcia jej bloku, to sterowanie wraca do
wywołującego funkcję.

Porównanie throw z break i return

Nieprzypadkowo porównałem instrukcję throw do break, a wcześniej do return. Czas
jednak zebrać sobie cechy wyróżniające i odróżniające te trzy instrukcje. Oto stosowna
tabela:

instrukcja
cecha

throw break return

przekazywanie
sterowania

do najbliższego
pasującego bloku

catch

jeden blok wyżej
(wyjście z pętli lub

bloku switch)

zakończenie działania
funkcji i powrót do kodu,

który ją wywołał

wartość
obiekt wyjątku
dowolnego typu

nie jest związany z
żadną wartością

wartość tego samego
typu, jaki został

określony w deklaracji
funkcji

zastosowanie
obsługa sytuacji

wyjątkowych
ogólne programowanie

Tabela 20. Porównanie throw z break i return

Wszystkie te trzy własności trzech instrukcji są bardzo ważne i koniecznie musisz o nich
pamiętać. Nie będzie to chyba dla ciebie problemem, skoro dwie z omawianych instrukcji
znasz doskonale, a o wszystkich aspektach trzeciej porozmawiamy sobie jeszcze całkiem
obszernie.

Wyjątek opuszcza funkcję
Rzucenie oraz złapanie i obsługa wyjątku może odbywać się w ramach tej samej funkcji.
Często jednak mamy sytuację, w której to jedna funkcja sygnalizuje sytuację wyjątkową,
a dopiero inna (wywołująca ją) zajmuje się reakcją na zainstniały problem. Jest to
zupełnie dopuszczalne, co zresztą parokrotnie podkreślałem.

W procesie odwijania stosu obiekt wyjątku może więc opuścić swoją macierzystą funkcję.
Nie jest to żaden błąd, lecz normalna praktyka. Nie zwalnia ona jednak z obowiązku
złapania wyjątku: nadal ktoś musi to zrobić. Ktoś - czyli wywołujący funkcję.

Wyjątki 481

Specyfikacja wyjątków

Aby jednak można było to uczynić, należy wiedzieć, jakiego typu wyjątki funkcja może
wyrzucać na zewnątrz. Dzięki temu możemy opakować jej przywołanie w blok try i
dodać za nim odpowiednie instrukcje catch, chwytające właściwe obiekty.

Skąd mamy uzyskać tę tak potrzebną wiedzę? Wydawałoby się, że nic prostszego.
Wystarczy przejrzeć kod funkcji, znaleźć wszystkie instrukcje throw i określić typ
obiektów, jakie one rzucają. Następnie należy odrzucić te, które są obsługiwane w samej
funkcji i zająć się tylko wyjątkami, które z niej „uciekają”.
Ale to tylko teoria i ma ona jedną poważną słabostkę. Wymaga przecież dostępu do kodu
źródłowego funkcji, a ten nie musi być wcale osiągalny. Wiele bibliotek jest
dostarczanych w formie skompilowanej, zatem nie ma szans na ujrzenie ich wnętrza.
Mimo to ich funkcjom nikt całkowicie nie zabroni rzucania wyjątków.

Dlatego należało jakoś rozwiązać ten problem. Uzupełniono więc deklaracje funkcji o
dodatkową informację - specyfikację wyjątków.

Specyfikacja albo wyszczególnienie wyjątków (ang. exceptions’ specification) mówi
nam, czy dana funkcja wyrzuca z siebie jakieś nieobsłużone obiekty wyjątków, a jeśli
tak, to informuje także o ich typach.

Takie wyszczególnienie jest częścią deklaracji funkcji - umieszczamy je na jej końcu, np.:

void Znajdz(int* aTablica, int nLiczba) throw(void*);

Po liście parametrów (oraz ewentualnych dopiskach typu const w przypadku metod
klasy) piszemy po prostu słowo throw. Dalej umieszczamy w nawiasie listę typów
wyjątków, które będą opuszczały funkcję i których złapanie będzie należało do
obowiązków wywołującego. Oddzielamy je przecinkami.
Ta lista typów jest nieobowiązkowa, podobnie zresztą jak cała fraza throw(). Są to
jednak dwa szczególne przypadki - wyglądają one tak:

void Stepuj();
void Spiewaj() throw();

Brak specyfikacji oznacza tyle, iż dana funkcja może rzucać na zewnątrz wyjątki
dowolnego typu. Natomiast podanie throw bez określenia typów wyjątków informuje,
że funkcja w ogóle nie wyrzuca wyjątków na zewnątrz. Widząc tak zadeklarowaną
funkcję możemy więc mieć pewność, że jej wywołania nie trzeba umieszczać w bloku try
i martwić się o obsługę wyjątków przez catch.

Specyfikacja wyjątków jest częścią deklaracji funkcji, zatem będzie ona występować
np. w pliku nagłówkowym zewnętrznej biblioteki. Jest to bowiem niezbędna informacja,
potrzebna do korzystania z funkcji - podobnie jak jej nazwa czy parametry. Kiedy jednak
tamte wiadomości podpowiadają, w jaki sposób wywoływać funkcję, wyszczególnienie
throw() mówi nam, jakie wyjątki musimy przy okazji tego wywołania obsługiwać.
Warto też podkreślić, że mimo swej obecności w deklaracji funkcji, specyfikacja wyjątków
nie należy do typu funkcji. Do niego nadal zaliczamy wyłącznie listę parametrów oraz
typ wartości zwracanej. Na pokazane wyżej funkcje Stepuj() i Spiewaj() można więc
pokazywać tym samym wskaźnikiem.

Kłamstwo nie popłaca

Specyfikacja wyjątków jest przyczeniem złożonym przez twórcę funkcji jej
użytkownikowi. W ten sposób autor procedury zaświadcza, że jego dzieło będzie
wyrzucało do wywołującego wyjątki wyłącznie podanych typów.

Zaawansowane C++ 482

Niestety, życie i programowanie uczy nas, że niektóre obietnice mogą być tylko
obiecankami. Załóżmy na przykład, że w nowej wersji biblioteki, z której pochodzi
funkcja, dokonano pewnych zmian. Teraz rzucany jest jeszcze jeden, nowy typ wyjątków,
którego obsługa spada na wywołującego.
Zapomniano jednak zmienić deklarację funkcji - wygląda ona nadal np. tak:

bool RobCos() throw(std::string);

Obiecywanym typem wyjątków jest tu tylko i wyłącznie std::string. Przypuśćmy
jednak, że w wyniku poczynionych zmian funkcja może teraz rzucać także liczby typu int
- typu, którego nazwa nie występuje w specyfikacji wyjątków.

Co się wtedy stanie? Czy wystąpi błąd?… Powiedzmy. Jednak to nie kompilator nam o
nim powie. Nie zrobi tego nawet linker. Otóż:

O rzuceniu przez funkcję niezadeklarowanego wyjątku dowiemy się dopiero w
czasie działania programu.

Wygląda to tak, iż program wywoła wtedy specjalną funkcję unexpected()
(‘niespodziewany’). Jest to funkcja biblioteczna, uruchamiana w reakcji na niedozwolony
wyjątek.
Co robi ta funkcja? Otóż… wywołuje ona drugą funkcję, terminate() (‘przerwij’). O niej
będziemy jeszcze rozmawiać przy okazji niezłapanych wyjątków. Na razie zapamiętaj, że
funkcja ta po prostu kończy działanie programu w mało porządny sposób.

Wyrzucenie przez funkcję niezadeklarowanego wyjątku kończy się awaryjnym
przerwaniem działania programu.

Spytasz pewnie: „Dlaczego tak drastycznie?” Taka reakcja jest jednak uzasadniona, gdyż
do czynienia ze zwyczajnym oszustwem.
Oto ktoś (twórca funkcji) deklaruje, że będzie ona wystrzeliwać z siebie wyłącznie
określone typy wyjątków. My posłusznie podporządkowujemy się tej obietnicy:
ujmujemy wywołanie funkcji w blok try i piszemy odpowiednie bloki catch. Wszystko
robimy zgodnie ze specyfikacją throw().
Tymczasem zostajemy oszukani. Obietnica została złamana: funkcja rzuca nam
wyjątek, którego się zupełnie nie spodziewaliśmy. Nie mamy więc kodu jego obsługi -
albo nawet gorzej: mamy go, ale nie tam gdzie trzeba. W każdym przypadku jest to
sytuacja nie do przyjęcia i stanowi wystarczającą podstawę do zakończenia działania
programu.

To domyślne możemy aczkolwiek zmienić. Nie zaleca się wprawdzie, aby mimo
niespodziewanego wyjątku praca programu była kontynuowana. Jeżeli jednak napiszemy
własną wersję funkcji unexpected(), będziemy mogli odróżnić dwie sytuacje:

 niezłapany wyjątek - czyli taki wyjątek, którego nie schwycił żaden blok catch
 nieprawidłowy wyjątek - taki, który nie powinien się wydostać z funkcji

Różnica jest bardzo ważna, bowiem w tym drugim przypadku nie jesteśmy winni
zaistniałemu problemu. Dokładniej mówiąc, nie jest winny kod wywołujący funkcję -
przyczyna tkwi w samej funkcji, a zawinił jej twórca. Jego obietnice dotyczące wyjątków
okazały się obietnicami bez pokrycia.
Rozdzielenie tych dwóch sytuacji pozwoli nam uchronić się przed poprawianiem kodu,
który być może wcale tego nie wymaga. Z powodu niezadeklarowanego wyjątku nie ma
bowiem potrzeby dokonywania zmian w kodzie wywołującym funkcję. Później będą one
oczywiście konieczne; później - to znaczy wtedy, gdy powiadomimy twórcę funkcję o
jego niekompetencji, a ten z pokorą naprawi swój błąd.

Wyjątki 483

Jak zatem możemy zmienić domyślną funkcję unexpected()? Czynimy to… wywołując
inną funkcję - set_unexpected():

unexpected_handler set_unexpected(unexpected_handler pfnFunction);

Tym, który ta funkcja przyjmuje i zwraca, to unexpected_handler. Jest to alias ta
wskaźnik do funkcji: takiej, która nie bierze żadnych parametrów i nie zwraca żadnej
wartości.
Poprawną wersją funkcji unexpected() może więc być np. taka funkcja:

void MyUnexpected()
{
 std::cout << "--- UWAGA: niespodziewany wyjątek ---" << std::endl;
 exit (1);
}

Po przekazaniu jej do set_unexpected():

set_unexpected (MyUnexpected);

będziemy otrzymywali stosowną informację w przypadku wyrzucenia niedozwolonego
wyjątku przez jakąkolwiek funkcję programu.

Niezłapany wyjątek
Przekonaliśmy się, że proces odwijania stosu może doprowadzić do przerwania działania
funkcji i poznaliśmy tego konsekwencje. Nieprawidłowe sygnalizowanie lub obsługa
wyjątków mogą nam jednak sprawić jeszcze jedną niespodziankę.
Odwijanie może się mianowicie zakończyć niepowodzeniem, jeśli żaden pasujący blok
catch nie zostanie znaleziony. Mówimy wtedy, że wystąpił nieobsłużony wyjątek.

Co następuje w takim wypadku? Otóż program wywołuje wtedy funkcję terminate(). Jej
nazwa wskazuje, że powoduje ona przerwanie programu. Faktycznie funkcja ta wywołuje
inną funkcję - abort() (‘przestań’). Ona zaś powoduje brutalne i nieznoszące żadnych
kompromisów przerwanie działania programu. Po jej wywołaniu możemy w oknie konsoli
ujrzeć komunikat:

Abnormal program termination

Taki też napis będzie pożegnaniem z programem, w którym wystąpi niezłapany wyjątek.
Możemy to jednak zmienić, pisząc własną wersję funkcji terminate().

Do ustawienia nowej wersji służy funkcja set_terminate(). Jest ona bardzo podobna do
analogicznej funkcji set_unexpected():

terminate_handler set_terminate(terminate_handler pfnFunction);

Występujący tu alias terminate_handler jest także wskaźnikiem na funkcję, która nic
nie bierze i nie zwraca. W parametrze set_terminate() podajemy więc wskaźnik do
nowej funkcji terminate(), a w zamian otrzymujemy wskaźnik do starej - zupełnie jak w
set_unexpected().
Oto przykładowa funkcja zastępcza:

void MyTerminate()
{
 std::cout << "--- UWAGA: blad mechanizmu wyjatkow ---" << std::endl;

Zaawansowane C++ 484

 exit (1);
}

Wypisywany przez nas komunikat jest tak ogólny (nie brzmi np. "niezlapany
wyjatek"), ponieważ terminate() jest wywoływana także w nieco innych sytuacjach, niż
niezłapany wyjątek. Powiemy sobie o nich we właściwym czasie.

Zastosowana tutaj, jak w i MyUnexpected() funkcja exit() służy do normalnego (a nie
awaryjnego) zamknięcie programu. Podajemy jej tzw. kod wyjścia (ang. exit code) -
zwyczajowo zero oznacza wykonanie bez błędów, inna wartość to nieprawidłowe działanie
aplikacji (tak jak u nas).

Porządki
Odwijanie stosu jest w praktyce bardziej złożonym procesem niż to się wydaje. Oprócz
przetransportowania obiektu wyjątku do stosownego bloku catch kompilator musi
bowiem zadbać o to, aby reszta programu nie doznała przy okazji jakichś obrażeń.
O co chodzi? O tym porozmawiamy sobie w tym paragrafie.

Niszczenie obiektów lokalnych
Wspominając o opuszczaniu kolejno zagnieżdżonych bloków czy nawet funkcji,
posłużyłem się porównaniu z break i return. throw ma z nimi jeszcze jedną cechę
wspólną - nie licząc tych odróżniających.

Wychodzenie z bloków przebiega mianowicie w sposób całkiem „czysty” - tak jak w
normalnym kodzie. Oznacza, to że wszystkie stworzone obiekty lokalne są niszczone,
a ich pamięć zwalniania.
W przypadku typów podstawowych oznacza to po prostu usunięcie zmiennych z pamięci.
Dla klas mamy jeszcze wywoływanie destruktorów i wszystkie tego konsekwencje.

Można zatem powiedzieć, że:

Opuszczanie bloków kodu dokonywane podczas odwijania stosu przebiega tak samo, jak
to się dzieje podczas normalnego wykonywania programu. Obiekty lokalne są więc
niszczone poprawnie.

Sama nazwa ‘odwijanie stosu’ pochodzi zresztą od tego sprzątania, dokonywanego przy
okazji „wychodzenia na wierzch” programu. Obiekty lokalne (zwane też automatycznymi)
są bowiem tworzone na stosie, a jego odwinięcie to właśnie usunięcie tych obiektów oraz
powrót z wywoływanych funkcji.

Wypadki przy transporcie
To niszczenie obiektów lokalnych może się wydawać tak oczywiste, że nie warto
poświęcać temu aż osobnego paragrafu. Jest jednak coś na rzeczy: czynność ta może być
bowiem powodem pewnych problemów, jeżeli nie będziemy jej świadomi. Jakich
problemów?…

Niedozwolone rzucenie wyjątku

Musimy powiedzieć sobie o jednej bardzo ważnej zasadzie związanej z mechanizmem
wyjątków w C++. Brzmi ona:

Nie należy rzucać następnego wyjątku w czasie, gdy kompilator zajmuje się obsługą
poprzedniego.

Co to znaczy? Czy nie możemy używać instrukcji throw w blokach catch?…

Wyjątki 485

Otóż nie - jest to dozwolone, ale w sumie nie o tym chcemy mówić :) Musimy sobie
powiedzieć, co rozumiemy poprzez „obsługę wyjątku dokonywaną przez kompilator”.

Dla nas obsługą wyjątku jest kod w bloku catch. Aby jednak mógł on być wykonany,
obiekt wyjątku oraz punkt sterowania programu muszą tam trafić. Tym zajmuje się
kompilator - to jest właśnie jego obsługa wyjątku: dostarczenie go do bloku catch.
Dalej nic go już nie obchodzi: kod z bloku catch jest traktowany jako normalne
instrukcje, bowiem sam kompilator uznaje już, że z chwilą rozpoczęcia ich wykonywania
jego praca została wykonana. Wyjątek został przyniesiony i to się liczy.
Tak więc:

Obsługa wyjątku dokonywana przez kompilator polega na jego dostarczeniu go
do odpowiedniego bloku catch przy jednoczesnym odwinięciu stosu.

Teraz już wiemy, na czym polega zastrzeżenie podane na początku. Nie możemy rzucić
następnego wyjątku w chwili, gdy kompilator zajmuje się jeszcze transportem
poprzedniego. Inaczej mówiąc, między wykonaniem instrukcji throw a obsługą wyjątku w
bloku catch nie może wystapić następna instrukcja throw.

Strefy bezwyjątkowe

„No dobrze, ale właściwie co z tego? Przecież po rzuceniu jednego wyjątku wszystkim
zajmuje się już kompilator. Jak więc moglibyśmy rzucić kolejny wyjątek, zanim ten
pierwszy dotrze do bloku catch?…”
Faktycznie, tak mogłoby się wydawać. W rzeczywistości istnieją aż dwa miejsca, z
których można rzucić drugi wyjątek.

Jeśli chodzi o pierwsze, to pewnie się go domyślasz, jeżeli uważnie czytałeś opis procesu
odwijania stosu i związanego z nim niszczenia obiektów lokalnych. Powiedziałem tam, że
przebiega ono w identyczny sposób, jak normalnie. Pamięć jest zawsze zwalniania, a w
przypadku obiektów klas wywoływane są destruktory.
Bingo! Destruktory są właśnie tymi procedurami, które są wywoływane podczas obsługi
wyjątku dokonywanej przez kompilator. A zatem nie możemy wyrzucać z nich żadnych
wyjątków, ponieważ może zdarzyć, że dany destruktor jest wywoływany podczas
odwijania stosu.

Nie rzucaj wyjątków z destruktorów.

Druga sytuacja jest bardziej specyficzna. Wiemy, że mechanizm wyjątków pozwala na
rzucanie obiektów dowolnego typu. Należą do nich także obiekty klas, które sami sobie
zdefiniujemy. Definiowanie takich specjalnych klas wyjątków to zresztą bardzo pożądana
i rozsądna praktyka. Pomówimy sobie jeszcze o niej.
Jednak niezależnie od tego, jakiego rodzaju obiekty rzucamy, kompilator z każdym
postępuje tak samo. Podczas transportu wyjątku do catch czyni on przynajmniej jedną
kopię obiektu rzucanego. W przypadku typów podstawowych nie jest to żaden problem,
ale dla klas wykorzystywane są normalne sposoby ich kopiowania. Znaczy to, że może
zostać użyty konstruktor kopiujący - nasz własny.
Mamy więc drugie (i na szczęście ostatnie) potencjalne miejsce, skąd można rzucić nowy
wyjątek w trakcie obsługi starego. Pamiętajmy więc o ostrzeżeniu:

Nie rzucajmy nowych wyjątków z konstruktorów kopiujących klas, których obiekty
rzucamy jako wyjątki.

Z tych dwóch miejsc (wszystkie destruktory i konstruktory kopiujące obiektów
rzucanych) nie powinniśmy rzucać żadnych wyjątków. W przeciwnym wypadku
kompilator uzna to za bardzo poważny błąd. Zaraz się przekonamy, jak poważny…

Zaawansowane C++ 486

Biblioteka Standardowa udostępnia prostą funkcję uncaught_exception(). Zwraca ona
true, jeżeli kompilator jest w trakcie obsługi wyjątku. Można jej użyć, jeśli koniecznie
musimy rzucić wyjątek w destruktorze; oczywiście powinniśmy to zrobić tylko wtedy, gdy
funkcja zwróci false.
Prototyp tej funkcji znajduje się w pliku nagłówkowym exception w przestrzeni nazw std.

Skutki wypadku

Co się stanie, jeżeli zignorujemy któryś z zakazów podanych wyżej i rzucimy nowy
wyjątek w trakcie obsługi innego?…

Będzie to wtedy bardzo poważna sytuacja. Oznaczać ona będzie, że kompilator nie jest w
stanie poprawnie przeprowadzić obsługi wyjątku. Inaczej mówiąc, mechanizm
wyjątków zawiedzie - tyle że będzie to rzecz jasna nasza wina.
Co może wówczas zrobić kompilator? Niewiele. Jedyne, co wtedy czyni, to wywołanie
funkcji terminate(). Skutkiem jest więc nieprzewidziane zakończenie programu.

Naturalnie, zmiana funkcji terminate() (poprzez set_terminate()) sprawi, że zamiast
domyślnej będzie wywoływana nasza procedura. Pisząc ją powinniśmy pamiętać, że
funkcja terminate() jest wywoływana w dwóch sytuacjach:

 gdy wyjątek nie został złapany przez żaden blok catch
 gdy został rzucony nowy wyjątek w trakcie obsługi poprzedniego

Obie są sytuacjami krytycznymi. Zatem niezależnie od tego, jakie dodatkowe akcje
będziemy podejmować w naszej funkcji, zawsze musimy na koniec zamknąć nasz
program. W aplikacjach konsolowych można uczynić to poprzez exit().

Zarządzanie zasobami w obliczu wyjątków
Napisałem wcześniej, że transport rzuconego wyjątku do bloku catch powoduje
zniszczenie wszystkich obiektów lokalnych znajdujących się „po drodze”. Nie musimy się
o to martwić; zresztą, nie troszczyliśmy się o nie także i wtedy, gdy nie korzystaliśmy z
wyjątków.

Obiekty lokalne nie są jednak jedynymi z jakich korzystamy w C++. Wiemy też, że
możliwe jest dynamiczne tworzenie obiektów na stercie, czyli w rezerwuarze pamięci.
Dokonujemy tego poprzez new.
Pamięć jest z kolei jednym z tak zwanych zasobów (ang. resources), czyli zewnętrznych
„bogactw naturalnych” komputera. Możemy do nich zaliczyć nie tylko pamięć operacyjną,
ale np. otwarte pliki dyskowe, wyłączność na wykorzystanie pewnych urządzeń lub
aktywne połączenia internetowe. Właściwe korzystanie z takich zasobów jest jednym z
zadań każdego poważnego programu.

Zazwyczaj odbywa się ono według prostego schematu:

 najpierw pozyskujemy żądany zasób w jakiś sposób (np. alokujemy pamięć
poprzez new)

 potem możemy do woli korzystać z tego zasobu (np. zapisywac dane do pamięci)
 na koniec zwalniamy zasób, jeżeli nie jest już nam potrzebny (czyli korzystamy z
delete w przypadku pamięci)

Najbardziej znany nam zasob, czyli pamięć opercyjna, jest przez nas wykorzystywany
choćby tak:

CFoo* pFoo = new CFoo; // alokacja (utworzenie) obiektu-zasobu
// (robimy coś...)

Wyjątki 487

delete pFoo; // zwolnienie obiektu-zasobu

Między stworzeniem a zniszczeniem obiektu może jednak zajść sporo zdarzeń. W
szczególności: możliwe jest rzucenie wyjątku.
Co się wtedy stanie?… Wydawać by się mogło, że obiekt zostanie zniszczony, bo przecież
tak było zawsze… Błąd! Obiekt, na który wskazuje pFoo nie zostanie zwolniony z
prostego powodu: nie jest on obiektem lokalnym, rezydującym na stosie, lecz tworzonym
dynamicznie na stercie. Sami wydajemy polecenie jego utworzenia (new), więc również
sami musimy go potem usunąć (poprzez delete). Zostanie natomiast zniszczony
wskaźnik na niego (zmienna pFoo), bo jest to zmienna lokalna - co aczkolwiek nie jest
dla nas żadną korzyścią.

Możesz zapytać: „A w czym problem? Skoro pamięć należy zwolnić, to zróbmy to przed
rzuceniem wyjątku - o tak:

try
{
 CFoo* pFoo = new CFoo;

 // ...
 if (warunek_rzucenia_wyjątku)
 {
 delete pFoo;
 throw wyjątek;
 }
 // ...

 delete pFoo;
}
catch (typ obiekt)
{
 // ...
}

To powinno rozwiązać problem.”
Taki sposób to jednak oznaka skrajnego i niestety nieuzasadnionego optymizmu. Bo kto
nam zagwarantuje, że wyjątki, które mogą nam przeszkadzać, będą rzucane wyłącznie
przez nas?… Możemy przecież wywołać jakąś zewnętrzną funkcję, która sama będzie
wyrzucała wyjątki - nie pytając nas o zgodę i nie bacząc na naszą zaalokowaną pamięć, o
której przecież nic nie wie!
„To też nie katastrofa”, odpowiesz, „Możemy przecież wykryć rzucenie wyjątku i w
odpowiedzi zwolnić pamięć:

try
{
 CFoo* pFoo = new CFoo;

 // ...
 try
 {
 // wywołanie funkcji potencjalnie rzucającej wyjątki
 FunkcjaKtoraMozeWyrzucicWyjatek();
 }
 catch (...)
 {
 // niszczymy obiekt
 delete pFoo;

 // rzucamy dalej otrzymany wyjątek

Zaawansowane C++ 488

 throw;
 }
 // ...

 delete pFoo;
}
catch (typ obiekt)
{
 // ...
}

Blok catch(...) złapie nam wszystkie wyjątki, a my w jego wnętrzu zwolnimy pamięć i
rzucimy je dalej poprzez throw;. Wszystko proste, czyż nie?”
Brawo, twoja pomysłowość jest całkiem duża. Już widzę te dziesiątki wywołań funkcji
bibliotecznych, zamkniętych w ich własne bloki try-catch(...), które dbają o zwalnianie
pamięci… Jak sądzisz, na ile eleganckie, efektywne (zarówno pod względem czasu
wykonania jak i zakodowania) i łatwe w konserwacji jest takie rozwiązanie?…

Jeżeli zastanowisz się nad tym choć trochę dłuższą chwilę, to zauważysz, że to bardzo złe
wyjście. Jego stosowanie (podobnie zresztą jak delete przed throw) jest świadectwem
koszmarnego stylu programowania. Pomyślmy tylko, że wymaga to wielokrotnego
napisania instrukcji delete - powoduje to, że kod staje się bardzo nieczytelny: na
pierwszy rzut oka można pomyśleć, że kilka(naście) razy usuwany jest obiekt, który
tworzymy tylko raz. Poza tym obecność tego samego kodu w wielu miejscach znakomicie
utrudnia jego zmianę.
Być może teraz pomyślałeś o preprocesorze i jego makrach… Jeśli naprawdę chciałbyś go
zastosować, to bardzo proszę. Potem jednak nie narzekaj, że wyprodukowałeś kod, który
stanowi zagadkę dla jasnowidza.

Teraz możesz się oburzyć: „No to co należy zrobić?! Przecież nie możemy dopuścić do
powstawania wycieków pamięci czy niezamykania plików! Może należy po prostu
zrezygnować z tak nieprzyjaznego narzędzia, jak wyjątki?” Cóż, możemy nie lubić
wyjątków (szczególnie w tej chwili), ale nigdy od nich nie uciekniemy. Jeżeli sami nie
będziemy ich stosować, to użyje ich ktoś inny, którego kodu my będziemy potrzebowali.
Na wyjątki nie powinniśmy się więc obrażać, lecz spróbować je zrozumieć. Rozwiązanie
problemu zasobów, które zaproponowaliśmy wyżej, jest złe, ponieważ próbuje wtrącić się
w automatyczny proces odwijania stosu ze swoim ręcznym zwalnianiem zasobów (tutaj
pamięci). Nie tędy droga; należy raczej zastosować taką metodę, która pozwoli nam
czerpać korzyści z automatyki wyjątków.
Teraz poznamy właściwy sposób dokonania tego.

Problem z niezwolnionymi zasobami występuje we wszystkich językach, w których
funkcjonują wyjątki. Trzeba jednak przyznać, że w większości z nich poradzono sobie z
nim znacznie lepiej niż w C++. Przykładowo, Java i Object Pascal posiadają możliwość
zdefiniowania dodatkowego (obok catch) bloku finally (‘nareszcie’). W nim zostaje
umieszczany kod wykonywany zawsze - niezależnie od tego, czy wyjątek w try wystąpił,
czy też nie. Jest to więc idealne miejsce na instrukcje zwalniające zasoby, pozyskane w
bloku try. Mamy bowiem gwarancję, iż zostaną one poprawnie oddane niezależnie od
okoliczności.

Opakowywanie
Pomysł jest dość prosty. Jak wiemy, podczas odwijania stosu niszczone są wszystkie
obiekty lokalne. W przypadku, gdy są to obiekty naszych własnych klas, do pracy ruszają
wtedy destruktory tych klas. Właśnie we wnętrzu tych destruktorów możemy umieścić
kod zwalniający przydzieloną pamięć czy jakikolwiek inny zasób.

Wyjątki 489

Wydaje się to podobne do ręcznego zwalniania zasobów przed rzuceniem wyjątku lub w
blokach catch(...). Jest jednak jedna bardzo ważna różnica: nie musimy tutaj
wiedzieć, w którym dokładnie miejscu wystąpi wyjątek. Kompilator bowiem i tak wywoła
destruktor obiektu - nieważne, gdzie i jaki wyjątek został rzucony.

Skoro jednak mamy używać destruktorów, to trzeba rzecz jasna zdefiniować jakieś klasy.
Potem zaś należy w bloku try tworzyć obiekty tychże klas, by ich destruktory zostały
wywołane w przypadku wyrzucenia jakiegoś wyjątku.
Jak to należy uczynić? Kwestia nie jest trudna. Najlepiej jest zrobić tak, aby dla każdego
pojedynczego zasobu (jak zaalokawany blok pamięci, otwarty plik, itp.) istniał jeden
obiekt. W momencie zniszczenia tego obiektu (z powodu rzucenia wyjątku) zostanie
wywołany destruktor jego klasy, który zwolni zasób (czyli np. usunie pamięć albo
zamknie plik).

Destruktor wskaźnika?…
To bardzo proste, prawda? ;) Ale żeby było jeszcze łatwiejsze, spójrzmy na prosty
przykład. Zajmiemy się zasobem, który najbardziej znamy, czyli pamięcią operacyjną;
oto przykład kodu, który może spowodować jej wyciek:

try
{
 CFoo* pFoo = new CFoo;

 // ...

 throw "Cos sie stalo";
 // obiekt niezwolniony, mamy wyciek!
}
// (tutaj catch)

Przyczyna jest oczywiście taka, iż odwijanie stosu nie usunie obiektu zaalokowanego
dynamicznie na stercie. Usunięty zostanie rzecz jasna sam wskaźnik (czyli zmienna
pFoo), ale na tym się skończy. Kompilator nie zajmie się obiektem, na który ów wskaźnik
pokazuje.

Zapytasz: „A czemu nie? Przecież mógłby to zrobić”. Pomyśl jednak, że nie musi to być
wcale jedyny wskaźnik pokazujący na dynamiczny obiekt. W przypadku usunięcia obiektu
wszystkie pozostałe stałyby się nieważne. Oprócz tego byłoby to złamanie zasady, iż
obiekty stworzone jawnie (poprzez new) muszą być także jawnie zniszczone (przez
delete).

My jednak chcielibyśmy, aby wraz z końcem życia wskaźnika skończył się także żywot
pamięci, na którą on pokazuje. Jak można to osiągnąć?
Cóż, gdyby nasz wskaźnik był obiektem jakiejś klasy, wtedy moglibyśmy napisać
instrukcję delete w jej destruktorze. Tak jest jednak nie jest: wskaźnik to typ
wbudowany122, więc nie możemy napisać dlań destruktora - podobnie jak nie możemy
tego zrobić dla typu int czy float.

Sprytny wskaźnik
Wskaźnik musiałby więc być klasą… Dlaczego nie? Podkreślałem w zeszłym rozdziale, że
klasy w C++ są tak pomyślane, aby mogły one naśladować typy podstawowe. Czemu
zatem nie możnaby stworzyć sobie takiej klasy, która działaby jak wskaźnik - typ

122 Wskaźnik może wprawdzie pokazywać na typ zdefiniowany przez użytkownika, ale sam zawsze będzie typem
wbudowanym. Jest to przecież zwykła liczba - adres w pamięci.

Zaawansowane C++ 490

wbudowany? Wtedy mielibyśmy pełną swobodę w określeniu jej destruktora, a także
innych metod.

Oczywiście, nie my pierwsi wpadliśmy na ten pomysł. To rozwiązanie jest szeroko znane i
nosi nazwę sprytnych wskaźników (ang. smart pointers). Takie wskaźniki są podobne
do zwykłych, jednak przy okazji oddają jeszcze pewne dodatkowe przysługi. W naszym
przypadku chodzi o dbałość o zwolnienie pamięci w przypadku wystąpienia wyjątku.
Sprytny wskaźnik jest klasą. Ma ona jednak odpowiednio przeciążone operatory - tak, że
korzystanie z jej obiektów niczym nie różni się od korzystania z normalnych wskaźników.
Popatrzmy na znany z zeszłego rozdziału przykład:

class CFooSmartPtr
{
 private:
 // opakowywany, właściwy wskaźnik
 CFoo* m_pWskaznik;

 public:
 // konstruktor i destruktor
 CFooSmartPtr(CFoo* pFoo) : m_pWskaznik(pFoo) { }
 ~CFooSmartPtr() { if (m_pWskaznik) delete m_pWskaznik; }

 //---

 // operator dereferencji
 CFoo& operator*() { return *m_pWskaznik; }

 // operator wyłuskania
 CFoo* operator->() { return m_pWskaznik; }
};

Jest to inteligentny wskaźnik na obiekty klasy CFoo; docelowy typ jest jednak nieistotny,
bo równie dobrze możnaby pokazywać na liczby typu int czy też inne obiekty. Ważna
jest zasada działania - zupełnie nieskomplikowana.
Klasy CFooSmartPtr używamy po prostu zamiast typu CFoo*:

try
{
 CFooSmartPtr pFoo = new CFoo;

 // ...

 throw "Cos sie stalo";
 // niszczony obiekt pFoo i wywoływany destruktor CFooSmartPtr
}
// (tutaj catch)

Dzięki przeciążeniu operatorów korzystamy ze sprytnego wskaźnika dokładnie w ten sam
sposób, jak ze zwykłego. Poza tym rozwiązujemy problem ze zwolnieniem pamięci:
zajmuje się tym destruktor klasy CFooSmartPtr. Stosuje on operator delete wobec
właściwego, wewnętrznego wskaźnika (typu „normalnego”, czyli CFoo*), usuwając
stworzony dynamicznie obiekt. Robi niezależnie od tego, gdzie i kiedy (i czy) wystąpił
jakikolwiek wyjątek. Wystarczy, że zostanie zlikwidowany obiekt pFoo, a to pociągnie za
sobą zwolnienie pamięci.

I o to nam właśnie chodziło. Wykorzystaliśmy mechanizm odwijania stosu do zwolnienia
zasobów, które normalnie byłyby pozostawione same sobie. Nasz problem został
rozwiązany.

Wyjątki 491

Nieco uwag
Aby jednak nie było aż tak bardzo pięknie, na koniec paragrafu muszę jeszcze trochę
poględzić :) Chodzi mianowicie o dwie ważne sprawy związane ze sprytnymi
wskaźnikami, których używamy w połączeniu z mechanizmem wyjątków.

Różne typy wskaźników

Zaprezentowana wyżej klasa CFooSmartPtr jest typem inteligentnego wskaźnika, który
może pokazywać na obiekty jakiejś zdefiniowanej wcześniej klasy CFoo. Przy jego
pomocy nie możemy odnosić się do obiektów innych klas czy typów podstawowych.

Jeśli jednak będzie to konieczne, wówczas musimy niestety napisać nową klasę
wskaźnika. Nie jest to trudne: wystarczy w definicji CFooSmartPtr zmienić wystąpienia
CFoo np. na int. W następnym rozdziale poznamy zresztą o wiele bardziej efektywną
technikę (mianowicie szablony), która uwolni nas od tej żmudnej pracy.
Za chwilę też przyjrzymy się rozwiązaniu, jakie przygotowali dla nas sami twórcy C++ w
Bibliotece Standardowej.

Używajmy tylko tam, gdzie to konieczne

Muszę też powtórzyć to, o czym już wspomniałem przy pierwszym spotkaniu ze
sprytnymi wskaźnikami. Otóż trzeba pamiętać, że nie są one uniwersalnym lekiem na
wszystkie bolączki programisty. Nie należy ich stosować wszędzie, ponieważ każdy rodzaj
inteligentnego wskaźnika (my na razie poznaliśmy jeden) ma ściśle określone
zastosowania.
W sytuacjach, w których z powodzeniem sprawdzają się zwykłe wskaźniki, powinniśmy
nadal z nich korzystać. Dopiero w takich przypadkach, gdy są one niewystarczające,
musimy sięgnąć go bardziej wyrafinowane rozwiązania. Takim przypadkiem jest właśnie
rzucanie wyjątków.

Co już zrobiono za nas
Metoda opakowywania zasobów może się wydawać nazbyt praco- i czasochłonna, a
przede wszystkim wtórna. Stosując ją pewnie szybko zauważyłbyś, że napisane przez
ciebie klasy powinny być obecne w niemal każdym programie korzystającym z wyjątków.

Naturalnie, mogą być one dobrym punktem wyjścia dla twojej własnej biblioteki z
przydatnymi kodami, używanymi w wielu aplikacjach. Niewykluczone, że kiedyś będziesz
musiał napisać przynajmniej kilka takich klas-opakowań, jeżeli zechcesz skorzystać z
zasobów innych niż pamięć operacyjna czy pliki dyskowe.
Na razie jednak lepiej chyba sprawdzą się narzędzia, które otrzymujesz wraz z językiem
C++ i jego Biblioteką Standardową. Zobaczmy pokrótce, jak one działają; ich dokładny
opis znajdziesz w kolejnych rozdziałach, poświęconych samej tylko Bibliotece
Standardowej.

Klasa std::auto_ptr

Sprytne wskaźniki chroniące przed wyciekami pamięci, powstającymi przy rzucaniu
wyjątków, są dość często używane w praktyce. Samodzielne ich definiowanie byłoby więc
uciążliwe. W C++ mamy więc już stworzoną do tego klasę std::auto_ptr.
Ściślej mówiąc, auto_ptr jest szablonem klasy. Co to dokładnie znaczy, dowiesz się w
następnym rozdziale. Póki co będziesz wiedział, iż pozwala to na używanie auto_ptr w
charakterze wskaźnika do dowolnego typu danych. Nie musimy już zatem definiowiać
żadnych klas.

Aby skorzystać z auto_ptr, trzeba jedynie dołączyć standardowy plik nagłówkowy
memory:

Zaawansowane C++ 492

#include <memory>

Teraz możemy już korzystać z tego narzędzia. Z powodzeniem może ono zastąpić naszą
pieczołowicie wypracowaną klasę CFooSmartPtr:

try
{
 std::auto_ptr<CFoo> pFoo(new CFoo);

 // ...

 throw "Cos sie stalo";
 // przy niszczeniu wskaźnika auto_ptr zwalniana jest pamięć
}
// (tutaj catch)

Konstrukcja std::auto_ptr<CFoo> pewnie wygląda nieco dziwnie, ale łatwo się do niej
przyzwyczaisz, gdy już poznasz szablony. Można z niej także wydedukować, że w
nawiasach kątowych <> podajemy typ danych, na który chcemy pokazywać poprzez
auto_ptr - tutaj jest to CFoo. Łatwo domyślić się, że chcąc mieć wskaźnik na typ int,
piszemy std::auto_ptr<int>, itp.
Zwróćmy jeszcze uwagę, w jaki sposob umieszcza się instrukcję new w deklaracji
wskaźnika. Z pewnych powodów, o których nie warto tu mówić, konstruktor klasy
auto_ptr jest opatrzony słówkiem explicit. Dlatego też nie można użyć znaku =, lecz
trzeba jawnie przekazać parametr, będący normalnym wskaźnikiem do zaalokowanego
poprzez new obszaru pamięci.
W sumie więc składnia deklaracji wskaźnika auto_ptr wygląda tak:

std::auto_ptr<typ> wskaźnik(new typ[(parametry_konstruktora_typu)]);

O zwolnienie pamięci nie musimy się martwić. Destruktor auto_ptr usunie ją zawsze;
niezależnie od tego, czy wyjątek faktycznie wystąpi.

Pliki w Bibliotece Standardowej
Oprócz pamięci drugim ważnym rodzajem zasobów są pliki dyskowe. O dokładnym
sposobie ich obsługi powiemy sobie aczkolwiek dopiero wtedy, gdy zajmiemy się
strumieniami Biblioteki Standardowej.

Tutaj chcę tylko wspomnieć, że metody dostępu do plików, jakie są tam oferowane,
całkowicie poprawnie współpracują z wyjątkami. Oto przykład:

#include <fstream>

try
{
 // stworzenie strumienia i otwarcie pliku do zapisu
 std::ofstream Plik("plik.txt", ios::out);

 // zapisanie czegoś do pliku
 Plik << "Coś";

 // ...

 throw "Cos sie stalo";
 // strumień jest niszczony, a plik zamykany
}
// (tutaj catch)

Wyjątki 493

Plik reprezentowany przez strumień Plik zostanie zawsze zamknięty. W każdym
przypadku - wystąpienia wyjątku lub nie - wywołany bowiem będzie destruktor klasy
ofstream, a on tym się właśnie zajmie. Nie trzeba więc martwić się o to.

Tak zakończymy omawianie procesu odwijania stosu i jego konsekwencji. Teraz
zobaczysz, jak w praktyce powinno się korzystać z mechanizmu wyjątków w C++.

Wykorzystanie wyjątków
Dwa poprzednie podrozdziały mówiły o tym, czym są wyjątki i jak działa ten mechanizm
w C++. W zasadzie na tym możnaby poprzestać, ale taki opis na pewno nie będzie
wystarczający. Jak każdy element języka, także i wyjątki należy używać we właściwy
sposób; korzystaniu z wyjątków w praktyce zostanie więc poświęcony ten podrozdział.

Wyjątki w praktyce
Zanim z pieśnią na ustach zabierzemy się do wykorzystywania wyjątków, musimy sobie
odpowiedzieć na jedno fundamentalne pytanie: czy tego potrzebujemy? Takie
postawienie sprawy jest pewnie zaskakujące - dotąd wszystkie poznawane przez nas
elementy C++ były właściwie niezbędne do efektywnego stosowania tego języka. Czy z
wyjątkami jest inaczej? Przyjrzyjmy się sprawie bliżej…

Może powiedzmy sobie o dwóch podstawowych sytuacjach, kiedy wyjątków nie
powinniśmy stosować. W zasadzie można je zamknąć w jedno stwierdzenie:

Nie powinno się wykorzystywać wyjątków tam, gdzie z powodzeniem wystarczają inne
techniki sygnalizowania i obsługi błędów.

Oznacza to, że:

 nie powinniśmy „na siłę” dodawać wyjątków do istniejącego programu. Jeżeli po
przetestowaniu działa on dobrze i efektywnie bez wyjątków, nie ma żadnego
powodu, aby wprowadzać do kodu ten mechanizm

 dla tworzonych od nowa, lecz krótkich programów wyjątki mogą być zbyt
potężnym narzędziem. Wysiłek włożony w jego zaprogramowanie (jak się zaraz
przekonamy - wcale niemały) nie musi się opłacać. Co oznacza pojęcie ‘krótki
program’, to już każdy musi sobie odpowiedzieć sam; zwykle uważa się, że
krótkie są te aplikacje, które nie przekraczają rozmiarami 1000-2000 linijek kodu

Widać więc, że nie każdy program musi koniecznie stosować ten mechanizm. Są
oczywiście sytuacje, gdy obyć się bez niego jest bardzo trudno, jednak nadużywanie
wyjątków jest zazwyczaj gorsze niż ich niedostatek. O obu sprawach (korzyściach
płynących z wyjątków i ich przesadnemu stosowaniu) powiemy sobie jeszcze później.

Załóżmy jednak, że zdecydowaliśmy się wykorzystywać wyjątki. Jak poprawnie
zrealizować te intencje? Jak większość rzeczy w programowaniu, nie jest to trudne :)
Musimy mianowicie:

 pomyśleć, jakie sytuacje wyjątkowe mogą wystąpić w naszej aplikacji i wyróżnić
wśród nich poszczególne rodzaje, a nawet pewną hierarchię. To pozwoli na
stworzenie odpowiednich klas dla obiektów wyjątków, czym zajmiemy się w
pierwszym paragrafie

Zaawansowane C++ 494

 we właściwy sposób zorganizować obsługę wyjątków - chodzi głównie o
rozmieszczenie bloków try i catch. Ta kwestia będzie przedmiotem drugiego
paragrafu

Potem możemy już tylko mieć nadzieję, że nasza ciężko wykonana praca… nigdy nie
będzie potrzebna. Najlepiej przecież byłoby, aby sytuacje wyjątkowe nie zdarzały się, a
nasze programy działały zawsze zgodnie z zamierzeniami… Cóż, praca programisty nie
jest usłana różami, więc tak nigdy nie będzie. Nauczmy się więc poprawnie reagować na
wszelkiego typu nieprzewidziane zdarzenia, jakie mogą się przytrafić naszym aplikacjom.

Projektowanie klas wyjątków
C++ umożliwia rzucenie w charakterze wyjątków obiektów dowolnych typów, także tych
wbudowanych. Taka możliwość jest jednak mało pociągająca, jako że pojedyncza liczba
czy napis nie niosą zwykle wystarczającej wiedzy o powstałej sytuacji.
Dlatego też powszechną praktyką jest tworzenie własnych typów (klas) dla obiektów
wyjątków. Takie klasy zawierają w sobie więcej informacji zebranych „z miejsca
katastrofy”, które mogą być przydatne w rozpoznaniu i rozwiązaniu problemu.

Definiujemy klasę
Co więc powinien zawierać taki obiekt? Najważniejsze jest ustalenie rodzaju błędu oraz
miejsca jego wystąpienia w kodzie. Typowym zestawem danych dla wyjątku może być
zatem:

 nazwa pliku z kodem i numer wiersza, w którym rzucono wyjątek. Do tego można
dodać jeszcze datę kompilacji programu, aby rozróżnić jego poszczególne wersje

 dane identyfikacyjne błędu - w najprostszej wersji tekstowy komunikat

Nasza klasa wyjątku mogłaby więc wyglądać tak:

#include <string>

class CException
{
 private:
 // dane wyjątku
 std::string m_strNazwaPliku;
 unsigned m_uLinijka;
 std::string m_strKomunikat;

 public:
 // konstruktor
 CException(const std::string& strNazwaPliku,
 unsigned uLinijka,
 const std::string& strKomunikat)
 : m_strNazwaPliku(strNazwaPliku),
 m_uLinijka(uLinijka),
 m_strKomunikat(strKomunikat) { }

 //---

 // metody dostępowe
 std::string NazwaPliku() const { return m_strNazwaPliku; }
 unsigned Linijka() const { return m_uLinijka; }
 std::string Komunikat() const { return m_strKomunikat; }
};

Dość obszerny konstruktor pozwala na podanie wszystkich danych za jednym zamachem,
w instrukcji throw:

Wyjątki 495

throw CException(__FILE__, __LINE__, "Cos sie stalo");

Dla wygody można sobie nawet zdefiniować odpowiednie makro, jako że __FILE__ i
__LINE__ pojawią się w każdej instrukcji rzucenia wyjątku. Jest to szczególnie przydatne,
jeżeli do wyjątku dołączymy jeszcze inne informacje pochodzące predefiniowanych
symboli preprocesora.

Także konstruktor klasy może dokonywać zbierania jakichś informacji od programu.
Mogą to być np. zrzuty pamięci (ang. memory dumps), czyli obrazy zawartości
kluczowych miejsc pamięci operacyjnej. Takie zaawansowane techniki są aczkolwiek
przydatne tylko w naprawdę dużych programach.

Po złapaniu takiego obiektu możemy pokazać związane z nim dane - na przykład tak:

catch (CException& Wyjatek)
{
 std::cout << " Wystapil wyjatek " << std::endl;
 std::cout << "---------------------------" << std::endl;

 std::cout << "Komunikat:\t" << Wyjatek.Komunikat() << std::endl;
 std::cout << "Plik:\t" << Wyjatek.NazwaPliku() << std::endl;
 std::cout << "Wiersz kodu:\t" << Wyjatek.Linijka() << std::endl;
}

Jest to już całkiem zadowalająca informacja o błędzie.

Hierarchia wyjątków
Pojedyncza klasa wyjątku rzadko jest jednak wystarczająca. Wadą takiego skromnego
rozwiązania jest to, że ze względu na charakter danych o sytuacji wyjątkowej, jakie
zawiera obiekt, ograniczamy sobie możliwość obsługi wyjątku. W naszym przypadku
trudno jest podjąć jakiekolwiek działania poza wyświetleniem komunikatu i zamknięciem
programu.

Dla zwiększenia pola manewru możnaby dodać do klasy jakieś pola typu wyliczeniowego,
określające bliżej rodzaj błędu; wówczas w bloku catch pojawiłaby się pewnie jakaś
instrukcja switch.
Jest aczkolwiek praktyczniejsze i bardziej elastyczne wyjście: możemy użyć
dziedziczenia.

Okazuje się, że rozsądne jest stworzenie hierarchii sytuacji wyjątków i odpowiadającej jej
hierarchii klas wyjątków. Opiera się to na spostrzeżeniu, że możliwe błędy możemy
najczęściej w pewien sposób sklasyfikować. Przykładowo, możnaby wyróżnić wyjątki
związane z pamięcią, z plikami dyskowymi i obliczeniami matematycznymi: wśród tych
pierwszych mielibyśmy np. brak pamięci (ang. out of memory) i błąd ochrony
(ang. access violation); dostęp do pliku może być niemożliwy chociażby z powodu jego
braku albo nieobecności dysku w napędzie; działania na liczbach mogą wreszcie
doprowadzić do dzielenia przez zero lub wyciągania pierwiastka z liczby ujemnej.
Taki układ, oprócz możliwości rozróźnienia poszczególnych typów wyjątków, ma jeszcze
jedną zaletę. Można bowiem dla każdego typu zakodować specyficzny dla niego sposób
obsługi, stosując do tego metody wirtualne - np. w ten sposób:

// klasa bazowa
class IException
{
 public:
 // wyświetl informacje o wyjątku

Zaawansowane C++ 496

 virtual void Wyswietl();
};

// --

// wyjątek związany z pamięcią
class CMemoryException : public IException
{
 public:
 // działania specyficzne dla tego rodzaju wyjątku
 virtual void Wyswietl();
};

// wyjątek związany z plikami
class CFilesException : public IException
{
 public:
 // działania specyficzne dla tego rodzaju wyjątku
 virtual void Wyswietl();
};

Pamiętajmy jednak, że nadmierne rozbudowywanie hierarchii też nie ma zbytniego
sensu. Nie wydaje się na przykład słuszne wyróżnianie osobnych klas dla wyjątków
dzielenia przez zero, pierwiastka kwadratowego z liczy ujemnej oraz podniesienia zera do
potęgi zerowej. Jest bowiem wielce prawdopodobne, że jedyna różnica między tymi
sytuacjami będzie polegała na treści wyświetlanego komunikatu. W takich przypadkach
zdecydowanie wystarczy pojedyncza klasa.

Organizacja obsługi wyjątków
Zdefiniowana uprzednio klasę lub jej hierarchię będziemy pewnie mieli okazję nieraz
wykorzystać. Ponieważ nie jest to takie oczywiste, warto poświęcić temu zagadnieniu
osobny paragraf.

Umiejscowienie bloków try i catch

Wydawałoby się, że obsługa wyjątków to bardzo prosta czynność - szczególnie, jeśli
mamy już zdefiniowany dla nich odpowiednie klasy. Niestety, polega to na czymś więcej
niż tylko napisaniu „niepewnego” kodu w bloku try i instrukcji obsługi błędów catch.

Kod warstwowy

Jednym z podstawowych powodów, dla których wprowadzono wyjątki w C++, była
konieczność zapewnienia jakiegoś sensownego sposobu reakcji na błędy w programach o
skomplikowanym kodzie. Każdy większy (i dobrze napisany) program ma bowiem
skłonność do „rozwarstwiania” kodu.
Nie jest to bynajmniej niepożądane zjawisko, wręcz przeciwnie. Polega ono na tym, że w
aplikacji możemy wyróżnić fragmenty wyższego i niższczego poziomu. Te pierwsze
odpowiadają za całą logikę aplikacji, w tym za jej komunikację z użytkownikiem; te
drugie wykonują bardziej wewnętrzne czynności, takie jak na przykład zarządzanie
pamięcią operacyjną czy dostęp do plików na dysku.

Taki podział jest korzystny, ponieważ ułatwia konserwację programu, a także
wykorzystywanie pewnych fragmentów kodu (zwłaszcza tych niskopoziomowych) w
kolejnych projektach. Funkcje odpowiedzialne za pewne proste czynności, jak
wspomniany dostęp do plików nie muszą nic wiedzieć o tym, kto je wywołuje - właściwie
to nawet nie powinny. Innymi słowy:

Kod niższego poziomu powinien być zazwyczaj niezależny od kodu wyższego poziomu.

Wyjątki 497

Tylko wtedy zachowujemy wymienione wyżej zalety „warstwowości” programu.

Podawanie błędów wyżej

Podział warstwowy wymusza poza tym dość ściśle ustalony przepływ danych w aplikacji.
Odbywa się on zawsze tak, że kod wyższego poziomu przekazuje do niższych warstw
konieczne informacje (np. nazwę pliku, który ma być otwarty) i odbiera rezultaty
wykonanych operacji (czyli zawartość pliku). Potem wykorzystuje je do swych własnych
zadań (np. do wyświetlenia pliku na ekranie).
Ten naturalny układ działa dobrze… dopóki się nie zepsuje :) Przyczyną mogą być
sytuacje wyjątkowe występujące w kodzie niższego poziomu. Typowym przykładem może
być brak żądanego pliku, wobec czego jego otwarcie nie jest możliwe. Funkcja, która
miała tego dokonać, nie będzie potrafiła poradzić sobie z tym błędem, ponieważ nazwa
pliku do otwarcie pochodziła z zewnątrz - „z góry”. Może jedynie poinformowaź
wywołującego o zainstniałej sytuacji.

I tutaj wkraczają na scenę opisane na samym początku rozdziału mechanizmy obsługi
błędów. Jednym z nich są właśnie wyjątki.

Dobre wypośrodkowanie

Ich stosowanie jest szczególnie wskazane właśnie wtedy, gdy nasz kod ma kilka
logicznych warstw, co zresztą powinno zdarzać się jak najczęściej. Wówczas odnosimy
jedną zasadniczą korzyść: nie musimy martwić się o sposób, w jaki informacja o błędzie
dotrze z „pokładów głębinowych” programu, gdzie wystąpiła, na „górne piętra”, gdzie
mogłaby zostać właściwie obsłużona.

Naszym problemem jest jednak co innego. O ile zazwyczaj dokładnie wiadomo, gdzie
wyjątek należy rzucić (wiadomo - tam gdzie coś się nie powiodło), o tyle trudność może
sprawić wybranie właściwego miejsca na jego złapanie:

 jeżeli będzie on „za nisko”, wtedy najprawdopodobniej nie będzie możliwe
podjęcie żadnych rozsądnych działań w reakcji na wyjątek. Przykładowo,
wymieniona funkcja otwierająca plik nie powinna sama łapać wyjątku, który rzuci,
bo będzie wobec niego bezradna. Skoro przecież rzuciła ten wyjątek, jest to
właśnie znak, iż nie radzi sobie z powstała sytuacją i oddaje inicjatywę komuś
bardziej kompetentnemu

 z drugiej strony, umieszczenie bloków catch „za wysoko” powoduje zbyt duże
zamieszanie w funkcjonowaniu programu. Powoduje to, że punkt wykonania
przeskakuje o całe kilometry, niespodziewanie przerywając wszystko znajdujące
się po drodze zdania. Nie należy bowiem zapominać, że po rzuceniu wyjątku nie
ma już powrotu - dalsze wykonywanie zostanie co najwyżej podjęte po
wykonaniu bloku catch, który ten wyjątek. Całkowitym absurdem jest więc np.
ujęcie całej zawartości funkcji main() w blok try i obsługa wszystkich wyjątków w
następującym dalej bloku catch. Nietrudno przecież domyślić się, że takie
rozwiązanie spowoduje zakończenie programu po każdym wystąpieniu wyjątku

Pytanie brzmi więc: jak osiągnąć rozsądny kompromis? Trzeba pogodzić ze sobą dwie
racje:

 konieczność sensownej obsługi wyjątku
 konieczność przywrócenia programu do normalnego stanu

Należy więc łapać wyjątek w takim miejscu, w którym już możliwe jest jego
obsłużenie, ale jednocześnie po jego zakończeniu program powinien nadal móc podjać
podjąć w miarę normalną pracę.

Przykład?… Jeżeli użytkownik wybierze opcję otwarcia pliku, ale potem poda nieistniejącą
nazwę, program powinien po prostu poinformować o tym i ponownie zapytać o nazwę

Zaawansowane C++ 498

pliku. Nie może natomiast zmuszać użytkownika do ponownego wybrania opcji otwarcia
pliku. A już na pewno nie może niespodziewanie kończyć swojej pracy - to byłoby wręcz
skandaliczne.

Chwytanie wyjątków w blokach catch

Poprawne chwytanie wyjątków w blokach catch to kolejne (ostatnie już na szczęście)
zagadnienie, o którym musimy pamiętać. Wiesz na ten temat już całkiem sporo, ale
nigdy nie zaszkodzi powtórzyć sobie przyswojone wiadomości i przyswoić nowe.

Szczegóły przodem - druga odsłona

Swego czasu zwróciłem ci uwagę na ważną sprawę kolejności bloków catch.
Uświadomiłem, że ich działanie tylko z pozoru przypomina przeciążone funkcje, jako że
porządek dopasowywania obiektu wyjątku ściśle pokrywa się z porządkiem samych
bloków catch, a same dopasowywanie kończy przy pierwszym sukcesie.

W związku należy tak ustawiać bloki catch, aby na początek szły te, które precyzyjniej
opisują typ wyjątku. Gdy zdefiniujemy sobie hierarchię klas wyjątków, ta zasada zyskuje
jeszcze pewniejszą podstawę. W przypadku typów podstawowych (int, double…) może
być dość trudne wyobrażenie się relacji „typ ogólny - typ szczegółowy”. Natomiast dla
klas jest to oczywiste: wchodzi tu bowiem w grę jednoznaczny związek dziedziczenia.
Jakie są więc konkretne wnioski? Ano takie, że:

Gdy stosujemy hierarchię klas wyjątków, powinniśmy najpierw próbować łapać
obiekty klas pochodnych, a dopiero potem obiekty klas bazowych.

Mam nadzieję, iż wiesz doskonale, z jakiej fundamentalnej reguły programowania
obiektowego wynika powyższa zasada123.
Jeżeli zastosujemy klasy wyjątków z poprzedniego paragrafu, to ilustracją może być taki
kawałek kodu:

try
{
 // ...
}
catch (CMemoryException& Wyjatek)
{
 // ...
}
catch (CFilesException& Wyjatek)
{
 // ...
}
catch (IException& Wyjatek)
{
 // ...
}

Instrukcje chwytające bardziej wyspecjalizowane wyjątki - CMemoryException i
CFilesException - umieszczamy na samej górze. Dopiero niżej zajmujemy się
pozostałymi wyjątkami, chwytając obiekty typu bazowego IException. Gdybyśmy czynili
to na początku, złapalibyśmy absolutnie wszystkie swoje wyjątki - nie dając sobie szansy
na rozróżnienie błędów pamięci od wyjątków plikowych lub innych.

123 Oczywiście wynika ona stąd, że obiekt klasy pochodnej jest jednocześnie obiektem klasy bazowej. Albo też
stąd, że zawsze istnieje niejawna konwersja z klasy pochodnej na klasy bazowej - jakkolwiek to wyrazimy,
będzie poprawnie.

Wyjątki 499

Widać więc po raz kolejny, że właściwe uporządkowanie bloków catch ma niebagatelne
znaczenie.

Lepiej referencją

We wszystkich przytoczonych ostatnio kodach łapałem wyjatki poprzez referencje do
nich, a nie poprzez same obiekty. Zbywaliśmy to dotąd milczeniem, ale czas ten fakt
wyjaśnić.

Przyczyna jest właściwie całkiem prosta. Referencje są, jak pamiętamy,
zakamuflowanymi wskaźnikami: faktycznie różnią się od wskaźników tylko drobnymi
szczegółami, jak choćby składnią. Zachowują jednak ich jedną cenną właściwość
obiektową: pozwalają na stosowanie polimorfizmu metod wirtualnych.
To doskonalne znane nam zjawisko jest więc możliwe do wykorzystania także przy
obsłudze wyjątków. Oto przykład:

try
{
 // ...
}
catch (IException& Wyjatek)
{
 // wywołanie metody wirtualnej, późno wiązanej
 Wyjatek.Wyswietl();
}

Metoda wirtualna Wyswietl() jest tu późno wiązana, zatem to, który jej wariant - z klasy
podstawowej czy pochodnej - zostanie wywołany, decyduje się podczas działania
programu. Jest to więc inny sposób na swoiste rozróżnienie typu wyjątku i podjęcie
działań celem jego obsługi.

Uwagi ogólne
Na sam koniec podzielę się jeszcze garścią uwag ogólnych dotyczących wyjątków. Przede
wszystkim zastanowimy się nad korzyściami z używania tego mechanizmu oraz
sytuacjami, gdzie często jest on nadużywany.

Korzyści ze stosowania wyjątków
Podstawowe zalety wyjątków przedstawiłem na początku rozdziału, gdy porównywałem je
z innymi sposobami obsługi błędów. Teraz jednak masz już za sobą dogłębne poznanie
tej techniki, więc pewnie zwątpiłeś w te przymioty ;) Nawet jeśli nie, to pokazane niżej
argumenty przemawiające na korzyść wyjątków mogą pomóc ci w decyzji co do ich
wykorzystania w konkretnej sytuacji.

Informacja o błędzie w każdej sytuacji
Pierwszą przewagą, jaką wyjątki mają nad innymi sposobami sygnalizowania błędów, jest
uniwersalność: możemy je bowiem stosować w każdej sytuacji i w każdej funkcji.

No ale czy to coś nadzwyczajnego? Przecież wydawałoby się, że zarówno technika
zwracania kodu błędu jak i wywołanie zwrotne, może być zastosowane wszędzie. To
jednak nieprawda; oba te sposoby wymagają odpowiedniej deklaracji funkcji,
uwzględniającej ich wykorzystanie. A nagłówek funkcji może być często ograniczony
przez sam język albo inne czynniki - jest tak na przykład w:

 konstruktorach
 większości przeciążonych operatorów
 funkcjach zwrotnych dla zewnętrznych bibliotek

Zaawansowane C++ 500

Do tej grupy możnaby zaliczyć też destruktory, ale jak przecież, z destruktorów nie
można rzucać wyjątków.

Dzięki temu, że wyjątki nie opierają się na normalnym sposobie wywoływania i powrotu z
funkcji, mogą być używane także i w tych specjalnych funkcjach.

Uproszczenie kodu
Jakkolwiek dziwnie to zabrzmi, wyjątki umożliwiają też znaczne uproszczenie kodu i
uczynienie go przejrzystszym. Jest tak, gdyż pozwalają one przenieść sekwencje
odpowiedzialne za obsługę błędów do osobnych bloków, z dala od właściwych instrukcji.

W normalnym kodzie procedury wyglądają mniej więcej tak:

 zrób coś
 sprawdź, czy się udało
 zrób coś innego
 sprawdź, czy się udało
 zrób jeszcze coś
 sprawdź, czy nie było błędów
 itd.

Wyróżnione tu sprawdzenia błędów są realizowane zwykle przy pomocy instrukcji if lub
switch. Przy ich użyciu kod staje się więc plątaniną instrukcji warunkowych, raczej
trudnych do czytania.
Gdy zaś używamy wyjątków, to obsługa błędów przenosi się na koniec algorytmu:

 zrób coś
 zrób coś innego
 zrób jeszcze coś
 itd.
 obsłuż ewentualne niepowodzenia

Oczywiście dla tych, którzy nie dbają o porządek w kodzie, jest to żaden argument, ale ty
się chyba do nich nie zaliczasz?

Wzrost niezawodności kodu
Wreszcie można wytoczyć najcięższe działa. Wyjątki nie pozwalają na obojętność - na
ignorowanie błędów.

Poprzedni akapit uświadamia, że tradycyjne metody w rodzaju zwracania rezultatu muszą
być aktywnie wspomagane przez programistę, który używa wykorzystujących je funkcji.
Nie musi jednak tego robić; kod skompiluje się tak samo poprawnie, jeżeli wartości
zwracane zostaną całkowicie pominięte. Co więcej, może to prowadzić do pominięcia
krytycznych błędów, które wprawdzie nie dają natychmiast katastrofalnych rezultatów,
ale potrafią „przyczaić się” w zakamarkach aplikacji, by ujawnić się w najmniej
spodziewanym momencie.
Mechanizm wyjątków jest skonstruowany zupełnie przeciwnie. Tutaj nie trzeba się
wysilać, aby błąd dał znać o sobie, bowiem wyjątek zawsze wywoła jakąś reakcję -
choćby nawet awaryjne zakończenie programu. Natomiast świadome zignorowanie
wyjątku wymaga z kolei pewnego wysiłku.

Tak więc tutaj mamy do czynienia z sytuacją, w której to nie programista szuka błedu,
lecz błąd szuka programisty. Jest to naturalnie znacznie lepsza sytuacja z punktu
widzenia niezawodności programu, bo pozwala na łatwiejsze odszukanie występujących
weń błędów.

Wyjątki 501

Nadużywanie wyjątków
Czytając o zaletach wyjątków, nie można wpaść w bezkrytyczny zachwyt nad nimi. One
nie są ani obowiązkową techniką programistyczną, ani też nie są lekarstwem na błędy w
programach, ani nawet nie są pasującym absolutnie wszędzie rozwiązaniem. Wyjątków
łatwo można nadużyć i dlatego chcę się przed tym przestrzec.

Nie używajmy ich tam, gdzie wystarczą inne konstrukcje
Początkujący programiści mają czasem skłonność do uważania, iż każde
niepowodzenie wykonania jakiegoś zadania zasługuje na rzucenie wyjątku. Oto (zły)
przykład:

// funkcja wyszukuje liczbę w tablicy
unsigned Szukaj(const CIntArray& aTablica, int nLiczba)
{
 // pętla porównuje kolejne elementy tablicy z szukaną liczbą
 for (unsigned i = 0; i < aTablica.Rozmiar{]; ++i)
 if (aTablica[i] == nLiczba)
 return i;

 // w razie niepowodzenia - wyjątek?...
 throw CError(__FILE__, __LINE__, "Nie znaleziono liczby");
}

Rzucanie wyjątku w razie nieznalezienia elementu tablicy to gruba przesada. Pomyślmy
tylko, że kod wykorzystujący tę funkcję musiałby wyglądać mniej więcej tak:

// szukamy liczby nZmienna w tablicy aTablicaLiczb

try
{
 unsigned uIndeks = Szukaj(aTablicaLiczb, nZmienna);

 // zrób coś ze znalezioną liczbą...
}
catch (CError& Wyjatek)
{
 std::cout << Wyjatek.Komunikat() << std::endl;
}

Może i ma on swój urok, ale chyba lepiej skorzystać z mniej urokliwej, ale na pewno
prostszej instrukcji if, porównującej po prostu rezultat funkcji Szukaj() z jakąś ustaloną
stałą (np. -1), oznaczającą niepowodzenie szukania. Pozwoli to na wydorębnienie
sytuacji faktycznie wyjątkowych od tych, które zdarzają się w normalnym toku działania
programu. Nieobecność liczby w tablicy należy zwykle do tej drugiej grupy i nie jest
wcale krytyczna dla funkcjonowania aplikacji - ergo: nie wymaga zastosowania
wyjątków.

Nie używajmy wyjątków na siłę
Nareszcie, muszę powstrzymać wszystkich tych, którzy z zapałem rzucili się do
implementacji wyjątków w swych gotowych i działających programach. Niesłusznie!
Prawdopodobnie będzie to kawał ciężkiej, nikomu niepotrzebnej roboty. Nie ma sensu jej
wykonywać, ponieważ zysk zwykle będzie nieadekwatny do włożonego wysiłku.

Co najwyżej można pokusić się o zastosowanie wyjątków w przypadku, gdy nowa wersja
danego programu wymaga napisania jego kodu od nowa. Decyzja o tym, czy tak ma się
stać w istocie, powinna być podjęta jak najwcześniej.

Zaawansowane C++ 502

Praktyczne wykorzystanie wyjątków to sztuka, jak zresztą całe programowanie.
Najlepszym nauczycielem będzie tu doświadczenie, ale jeśli zawartość tego podrozdziału
pomoże ci choć trochę, to jego cel będę mógł uważać za osiągnięty.

Podsumowanie
Ten rozdział omawiał mechanizm wyjątków w języku C++. Rozpoczął się od
przedstawienia kilku popularnych sposobów radzenia sobie z błędami, jakie moga
wystapić w trakcie działania programu. Później poznałeś same wyjątki oraz podstawowe
informacje o nich. Dalej zajęliśmy się zagadnieniem odwijania stosu i jego konsekwencji,
by wreszcie nauczyć się wykorzystywać wyjątki w praktyce.

Pytania i zadania
Rozdział kończymy tradycyjną porcją pytań i ćwiczeń.

Pytania
1. Kiedy możemy mówić, iż mamy do czynienia z sytuacją wyjątkową?
2. Dlaczego specjalny rezultat funkcji nie zawsze jest dobrą metodą informowania o

błędzie?
3. Czy różni się throw od return?
4. Dlaczego kolejność bloków catch jest ważna?
5. Jaka jest rola bloku catch(...)?
6. Czym jest specyfikacja wyjątków? Co dzieje się, jeżeli zostanie ona naruszona?
7. Które obiekty są niszczone podczas odwijania stosu?
8. W jakich funkcjach nie należy rzucać wyjątków?
9. W jaki sposób możemy zapewnić zwolnienie zasobów w przypadku wystąpienia

wyjątku?
10. Dlaczego warto definiować własne klasy dla obiektów wyjątków?

Ćwiczenia
1. Zastanów się, jakie informacje powinien zawierać dobry obiekt wyjątku. Które z

tych danych dostarcza nam sam kompilator, a które trzeba zapewnić sobie
samemu?

2. (Trudne) Mechanizm wyjątków został pomyślany do obsługi błędów w trakcie
działania programu. To jednak nie są jego jedyne możliwe zastosowanie; pomyśl,
do czego potencjalnie przydatne mogą być jeszcze wyjątki - a szczególnie
towarzyszący im proces odwijania stosu…

