
4
SZABLONY

Gdy coś się nie udaje, mówimy,

że to był tylko eksperyment.
Robert Penn Warren

Nieuchronnie, wielkimi krokami, zbliżamy się do końca kursu C++. Przed tobą jeszcze
tylko jedno, ostatnie i arcyważne zagadnienie: tytułowe szablony.

Ten element języka, jak chyba żaden inny, wzbudza wśród wielu programistów różne
niezdrowe emocje i kontrowersje; porównać je można tylko z reakcjami na preprocesor.
Nie są to aczkolwiek reakcje skrajnie negatywne: przeciwnie, szablony powszechnie
uważa się za jeden z największych atutów języka C++.
Problemem jest jednak to, iż obecne ich możliwości (mimo że już teraz ogromne) są
niezadowalające dla biegłych programistów. Dlatego też właśnie szablony są tą częścią
C++, która najszybciej podlega ewolucji. Trzeba jednak uświadomić sobie, że od
odgórnie narzuconego pomysłu Komitetu Standaryzacyjnego do implementacji stosownej
funkcji w kompilatorach wiedzie bardzo daleka droga. Skutek jest taki, że na palcach
jednej ręki można policzyć kompilatory, które w pełni odpowiadają tym zaleceniom i
oferuje szablony całkowicie zgodne ze standardem. Jest to zadziwiające, zważywszy że
sama idea szablonów liczy już sobie kilkanaście (!) lat.

Mam jednak także pocieszającą wiadomość. Otóż można kręcić nosem i narzekać, że
kompilator, którego używamy, nie jest w pełni „na czasie”, lecz dla większości
programistów nie będzie to miało wielkiego znaczenia. Oczywiście, najlepiej jest używać
zawsze najnowszych wersji narzędzi programistycznych; nie oznacza to wszakże, że
starsze ich wersje nie nadają się do niczego.
Skoro już o tym mówię, to przydałoby się wspomnieć, jak wygląda obsługa szablonów w
naszym ulubionym kompilatorze, czyli Visual C++. I tu czeka nas raczej miła
niespodzianka. Przede wszystkim warto wiedzieć, że jego aktualna wersja, zawarta w
pakiecie Microsoft Visual Studio .NET 2003, jest absolutnie zgodna z aktualnym
standardem języka C++ - naturalnie, także pod względem obsługi szablonów. Jeżeli
natomiast chodzi o starszą wersję Visual Studio .NET (nazywaną teraz często .NET 2001),
to tutaj sprawa także przedstawia się nie najgorzej. W codziennym, ani nawet nieco
bardziej egzotycznym programowaniu nie odczujemy bowiem żadnego niedostatku w
obsłudze szablonów przez ten kompilator.
Niestety, podobnie dobrych wiadomości nie mam dla użytkowników Visual C++ 6. To
leciwe już środowisko może szybko okazać się niewystarczające. Warto więc zaopatrzyć
w jego nowszą wersję.

W każdym jednak przypadku, niezależnie od posiadanego kompilatora, znajomość
szablonów jest niezbędna. Wpisały się one w praktykę programistyczną na tyle silnie, że
obecnie mało który program może się bez nich obejść. Poza tym przekonasz się wkrótce
na własnej skórze, że stosowanie szablonów zdecydowanie ułatwia typowe czynności
koderskie i sprawia, że tworzony kod staje się znacznie bardziej uniwersalny i elastyczny.
Najlepszym przykładem tego jest Biblioteka Standardowa języka C++, z której
fragmentów miałeś już okazję korzystać.
Zabierzmy się zatem do poznawania szablonów - na pewno tego nie pożałujesz :D

Zaawansowane C++ 506

Podstawy
Na początek przedstawię ci, czym w ogóle są szablony i pokaże kilka przykładów na ich
zastosowanie. Bardziej zaawansowanymi zagadnieniami zajmiemy się bowiem w
następnym podrozdziale. Na razie czas na krótkie wprowadzenie.

Idea szablonów
Mógłbym teraz podwinąć rękami, poprosić cię o uwagę i kawałek po kawałku wyjaśniać,
czym są te całe szablony. Na to również przyjdzie pora, ale najpierw lepiej chyba odkryć,
do czego mogą nam się te dziwne twory przydać. Dzięki temu może łatwiej przyjdzie ci
ich zrozumienie, a potem znajdowanie dlań zastosowań i wreszcie… polubienie ich! Tak,
szablony naprawdę można polubić - za robotę, której nam oszczedzają; nam: ciężko
przecież pracującym programistom ;-)
Zobacz zatem, jakie fundamentalne problemy pomogą ci niedługo rozwiązywać te
nieocenione konstrukcje…

Ścisłość C++ powodem bólu głowy
Pewnie słyszałeś już wcześniej, że C++ jest językiem o ścisłej kontroli typów. Znaczy to,
że typy danych pełnią w nim duże znaczenie i że zawsze istnieje wyraźne rozgraniczenie
pomiędzy nimi.
Jednocześnie wiele mechanizmów tego języka służy, paradoksalnie, właśnie zatarciu
granic pomiędzy typami danych. Wystarczy przypomnieć chociażby niejawne konwersje,
które pozwalają dokonywać „w locie” zamiany z jednego typu na drugi, w sposób
niezauważalny. Ponadto klasy w C++ są skonstruowane tak, aby w razie potrzeby mogły
niemal doskonale imitować typy wbudowane.

Mimo to, ściśły podział informacji na liczby, napisy, struktury itd. może być często sporą
przeszkodą…

Dwa typowe problemy
Kłopoty zaczynają się, gdy chcemy napisać kod, który powinien działać w odniesieniu do
kilku możliwych typów danych. Z grubsza można tu rozdzielić dwie sytuacje: gdy
próbujmy napisać uniwersalną funkcję i gdy podobną próbę czynimy przy definiowaniu
klasy.

Problem 1: te same funkcje dla różnych typów

Tradycyjnym, wręcz klasycznym przykładem tego pierwszego problemu jest funkcja
wyznaczająca większa liczbę spośród dwóch podanych. Prawdopodobnie z takiej funkcji
będziesz często skorzystał, więc kiedyś możesz ją zdefiniować np. jako:

int max(int nLiczba1, int nLiczba2)
{
 return (nLiczba1 > nLiczba2 ? nLiczba1 : nLiczba2);
}

Taka funkcja działa dobrze dla liczb całkowitych, ale już całkiem nie radzi sobie z liczbami
typu float czy double, bo zarówno wynik, jak i parametry są zaokrąglane do jedności.
Dla zdefiniowanych przez nas typów danych jest zaś zupełnie nieprzydatna, co chyba
zresztą całkowicie zrozumiałe.

Naturalnie, możemy sobie dodać inne, przeciążone wersje funkcji - jak chociażby taką:

double max(double fLiczba1, double fLiczba2)
{

Szablony 507

 return (fLiczba1 > fLiczba2 ? fLiczba1 : fLiczba2);
}

Takich wersji musiałoby być jednak bardzo wiele: za każdym kolejnym typem, dla
którego chcielibyśmy stosować max(), musiałaby iść odrębna funkcja. Ich definiowanie
byłoby uciążliwe i nudne, a podczas wykonywania tej nużącej czynności trudno byłoby nie
zwątpić, czy jest to aby na pewno słuszne rozwiązanie…

Problem 2: klasy operujące na dowolnych typach danych

Innym problemem są klasy, które z jakichś względów muszą być elastyczne i operować
na danych dowolnego typu. Koronnym przykładem są pojemniki, jak np. tablice
dynamiczne, podobne do naszej klasy CIntArray. Jak wiemy, ma ona sporą wadę: przy
jej pomocy nie można bowiem zarządzać tablicą elementów innego typu niż int. Chcąc
to osiągnąć, należałoby napisać nową klasę - zapewne bardzo podobną do wspomnianej.
Tę samę pracę trzebaby wykonać dla każdego następnego typu elementów…

To na pewno nie jest dobre wyjście!

Możliwe rozwiązania
„Ale jakie mamy wyjście?”, spytasz pewnie. Cóż, można sobie jakoś radzić…

Wykorzystanie preprocesora

Ogólną funkcję max() (i podobne) możemy zasymulować przy użyciu parametryzowanych
makr:

#define MAX(a,b) ((a) > (b) ? (a) : (b))

Sądzę jednak, że pamiętasz wady takich makrodefinicji. Nawiasy wokół a i b likwidują
wprawdzie problem pierwszeństwa operatorów, ale nie zabezpieczą przed podwójnym
obliczaniem wyrażeń. Wiesz przecież, że preprocesor działa na kodzie tak jak na tekście,
zatem np. wyrażenie w rodzaju:

MAX(10, rand())

nie zwróci nam wcale liczby pseudolosowej równej co najmniej 10. Zostanie ono bowiem
rozwinięte do:

((10) > (rand()) ? 10 : (rand()))

Funkcja rand() będzie więc obliczana dwukrotnie, z każdym razem dając oczywiście inny
wynik - bo takie jest jej przeznaczenie. Makro MAX() nie będzie więc zawsze działało
poprawnie.

Używanie ogólnych typów

Jeszcze mniej oczywisty jest sposób na zaimplementowanie ogólnej klasy, np. tablicy
przechowującej dowolny typ elementów. Tutaj aczkolwiek także istnieje pewne
rozwiązanie: można użyć ogólnego wskaźnika, tworząc tablicę elementów typu void*:

class CPtrArray
{
 private:
 // tablica i jej rozmiar
 void** m_ppvTablica;
 unsigned m_uRozmiar;

 // itd. (metody i przeciążone operatory)

Zaawansowane C++ 508

};

Będziemy musieli się jednak zmagać z niedogodnościami wskaźników void* - przede
wszystkim z utratą informacji o rzeczywistym typie danych:

CPtrArray Tablica(5);

// alokacja pamięci dla elementu (!)
Tablica[2] = new int;

// przypisanie - nieszczególnie ładne...
(static_cast<int>(Tablica[2])) = 10;

Każdorazowe rzutowanie na właściwy typ elementów (tutaj int) na pewno nie będzie
należało do przyjeności. Poza tym trzeba będzie pamiętać o zwolnieniu pamięci
zaalokowanej dla poszczególnych elementów. W przypadku małych obiektów, jak liczby,
nie ma to żadnego sensu…

Zatem nie! To na pewno nie jest zadowalające wyjście!

Szablony jako rozwiązanie
W porządku, dosyć tych bezowocnych poszukiwań. Myślę, że domyślasz się, iż to
szablony są tym rozwiązaniem, którego poszukujemy. Zatem nie tracąc więcej czasu,
znajdźmy je wreszcie :)

Kod niezależny od typu
Wróćmy wpierw do prób napisania funkcji max(). Patrząc na jej dwie wersje, dla typów
int i double, możemy łatwo zauważyć, że różnią się one bardzo niewiele. Właściwie to
można stwierdzić, że po prostu drugi z wariantów ma wpisane double tam, gdzie w
pierwszym widnieje typ int.
Gdybyśmy więc chcieli napisać ogólny wzorzec dla funkcji max(), wyglądałby on tak:

typ max(typ Parametr1, typ Parametr2)
{
 return (Parametr > Parametr2 ? Parametr1 : Parametr2);
}

No dobrze, możemy sobie pisać takie wzorce, ale co nam z tego? Nie znamy przecież
żadnego sposobu, aby przekazać go kompilatorowi do wykorzystania… Czy na pewno?…

Kompilator to potrafi
Ależ nie! Możemy ten wzorzec - ten szablon (ang. template) - wpisać do kodu, tworząc
ogólną funkcję max(). Trzeba to jedynie zrobić w odpowiedni sposób - tak, aby
kompilator wiedział, z czym ma do czynienia. Zobaczmy więc, jak można tego dokonać.

Składnia szablonu

A zatem: chcąc zdefiniować wzorzec funkcji max(), musimy napisać go w ten oto sposób
sposób:

template <typename TYP> TYP max(TYP Parametr1, TYP Parametr2)
{
 return (Parametr > Parametr2 ? Parametr1 : Parametr2);
}

Szablony 509

Dopóki nie wyjaśnimy sobie dokładnie kwestii umieszczania szablonów w plikach
źródłowych, zapamiętaj, aby wpisywać je w całości w plikach nagłówkowych.

W ten sposób tworzymy szablon funkcji (ang. function template) Zobaczmy, co się na
niego składa.

Zauważyłeś zapewne najpierw zupełnie nową część nagłówka funkcji:

template <typename TYP>

Jest ona obowiązkowa dla każdego rodzaju szablonów, nie tylko funkcji. Słowo kluczowe
template (‘szablon’) mówi bowiem kompilatorowi, że nie ma tu do czynienia ze zwykłym
kodem, lecz właśnie z szablonem.
Dalej następuje, ujęta w nawiasy ostre, lista parametrów szablonu. W tym przypadku
mamy tylko jeden taki parametr: słowo typename (‘nazwa typu’) informuje, że jest nim
typ. Okazuje się bowiem, że parametrami szablonu mogą być także „normalne” wartości,
podobne do argumentów funkcji - nimi też się zajmiemy, ale później. Na razie mamy tu
jeden parametr szablonu będący typem o jakże opisowej nazwie TYP.

Potem przychodzi już normalna definicja funkcji - z jedną drobną różnicą. Jak widać,
używamy w niej nazwy TYP zamiast właściwego typu danych (czyli int, double, itd.).
Stosujemy go jednak w tych samych miejscach, czyli jako typ wartości zwracanej oraz
typ obu przyjmowanych parametrów funkcji.
Treść szablonu odpowiada więc wzorcowi z poprzedniego akapitu. Różnica jest jednak
taka, że o ile tamten „kod” był niezrozumiały dla kompilatora, o tyle ten szablon jest jak
najbardziej poprawny i, co najważniejsze, działa zgodnie z oczekiwaniami. Nasza funkcja
max() potrafi już bowiem operować na dowolnym typie argumentów:

int nMax = max(-1, 2); // TYP = int
unsigned uMax = max(10u, 65u); // TYP = unsigned
float fMax = max(-12.4, 67); // TYP = double (!)

Najciekawsze jest to, iż to funkcja na podstawie swych argumentów „sama zgaduje”, jaki
typ danych ma być wstawiony w miejsce symbolicznej nazwy TYP. To właśnie jedna z
zalet szablonów funkcji: używamy ich zwykle tak samo, jak normalnych funkcji, a
jednocześnie zyskujemy zadziwiającą uniwersalność.

Popatrzmy jeszcze na ogólną składnię szablonu w C++:

template <parametry_szablonu> kod

Jak wspomniałem, słówko template jest tu obowiązkowe, bo dzięki nim niemu kompilator
wie, że ma do czynienia z szablonem. parametry_szablonu to najczęściej symboliczne
oznaczenia nieznanych z góry typów danych; oznaczenia te są wykorzystywane w
następującym dalej kodzie.
Na temat obu tych kluczowych części szablonu powiemy sobie jeszcze mnóstwo rzeczy.

Co może być szablonem

Wpierw ustalmy, do jakiego rodzaju kodu w C++ możemy „doczepić” frazę
template<...>, czyniąc ją szablonem. Generalnie mamy dwa rodzaje szablonów:

 szablony funkcji - są to więc taki funkcje, które mogą działać w odniesieniu do
dowolnego typu danych. Zazwyczaj kompilator potrafi bezbłędnie ustalić, jaki typ
jest właściwy w konkretnym wywołaniu (por. przykład zastosowania szablonu
max() z poprzedniego punktu)

Zaawansowane C++ 510

 szablony klas - czyli klasy, potrafiące operować na danych dowolnego typu. W tym
przypadku musimy zwykle podać ten właściwy typ; zobaczymy to wszystko nieco
dalej

Wkrótce aczkolwiek okazało się, że bardzo pożądane są także inne rodzaje szablonów -
głównie po to, aby ułatwić pracę z szablonami klas. My jednak zajmiemy się zwłaszcza
tymi dwoma rodzajami szablonów. Wpierw więc poznasz nieco bliżej szablony funkcji, a
potem zobaczysz także szablony klas.

Szablony funkcji
Szablon funkcji możemy wyobrazić sobie jako:

 ogólny algorytm, który działa poprawnie dla danych różnego typu
 zespół funkcji, zawierającą odrębne wersje funkcji dla poszczególnych typów

Oba te podejścia są całkiem słuszne, aczkolwiek jedno z nich bardziej odpowiada
rzeczywistości. Otóż:

Szablon funkcji reprezentuje zestaw (rodzinę) funkcji, działających dla dowolnej liczby
typów danych.

Zasada stojąca za szablonami jest taka, że kompilator sam dokonuje po prostu tego, co
mógłby zrobić programista, nudząc się przy tym niezmiernie. Na podstawie szablonu
funkcji generowane są więc jej konkretne egzemplarze (specjalizacje, będące
przeciążonymi funkcjami), operujące już na rzeczywistych typach danych. Potem są one
wywoływane w trakcie działania programu.

Proces ten nazywamy konkretyzacją (ang. instantiation) i zachodzi on dla wszelkiego
rodzaju szablonów. Zanim aczkolwiek może do niego dojść, szablno trzeba zdefiniować.
Zobaczmy więc, jak definiuje się szablony funkcji.

Definiowanie szablonu funkcji
Definicja szblonu funkcji nie różni się zbytnio od zwykłej definicji funkcji. Ot, po prostu
jeden typ (lub więcej) nie są w niej podane explicité, lecz wnioskowane z wywołania
funkcji szablonowej. Niemniej, temu wszystkiemu trzeba się przyjrzeć bliżej.

Podstawowa definicja szablonu funkcji
Oto jeden z prostszych chyba przykładów szablonu funkcji - wartość bezwzględna:

template <typename TYP> TYP Abs(TYP Liczba)
{
 return (Liczba >= 0 ? Liczba : -Liczba);
}

Posiada takiego szablonu ma tę niezaprzeczalną zaletę, że bez dodatkowego wysiłku
możemy posługiwać się tą funkcją dla liczb dowolnego typu: int, float, double, itd. Co
najważniejsze, w wyniku otrzymamy wartość tego samego typu, co podany parametr,
zatem nie musimy posługiwać się rzutowaniem - co byłoby konieczne w przypadku
zdefiniowania zwykłej funkcji dla najbardziej „pojemnego” typu double.
Dlaczego tak jest? Oczywiście dlatego, iż symboliczne oznaczenie TYP (czyli parametr
szablonu) występuje zarówno jako typ wartości zwracanej, jak i typ parametru funkcji.
W konkretnych egzemplarzach funkcji w obu miejscach wystąpi więc ten sam typ, np.
int.

Szablony 511

Stosowalność definicji

Można zapytać: „Czy powyższy szablon może działać tylko dla wbudowanych typów
liczbowych? Czy poradziłby sobie np. z wyznaczeniem wartości bezwzględnej z liczby
wymiernej, czyli obiektu zdefiniowanej ongiś klasy CRational?…”

Aby zdecydować o tym i o podobnych sprawach, musimy odpowiedzieć na inne pytanie:

Czy to, co robimy w treści szablonu funkcji, da się wykonać po podstawieniu żądanego typu w miejsce
parametru szablonu?

U nas więc typ danych, występujący na razie pod oznaczeniem TYP, musi udostępniać:

 operator porównania >=, pozwalający na konfrontację obiektu z zerem
 operator negacji -, służący tutaj do uzyskania liczby przeciwnej do danej
 publiczny konstruktor kopiujący, umożliwiający zwrot wyniku funkcji

Pod wszystkie te wymagania podpadają rzecz jasna wbudowane typy liczbowe. Jeśli zaś
wyposażylibyśmy klasę CRational we dwa wspomniane operatory, to także jej obiekty
mogłyby być argumentami funkcji Abs()! Wynika stąd, że:

Szablon funkcji może być stosowany dla tych typów danych, dla których poprawne
są wszystkie operacje, dokonywane na obiektach tychże typów w treści szablonu.

Łatwo można więc stwierdzić, że np. dla typu std::string ten szablon byłby
niedozwolony. Klasa std::string nie udostępnia bowiem operatora negacji, ani też nie
pozwala na porównywanie swych obiektów z liczbami całkowitymi.

Parametr szablonu użyty w ciele funkcji

Trudno zauważyć to na pierwszy rzut oka, ale przedstawiony wyżej szablon ma jeden
dość poważny zgrzyt. Mianowicie, wymusza on na podanym mu typie danych, aby
pozwalał na porównywanie go z typem int. Do takiego typu należy bowiem newralgiczne
0.

Nie jest to zbyt dobre i lepiej, żeby funkcja nie korzystała z takiego rozwiązania.
Interpretacja zera w różnych typach liczbowych może być bowiem całkiem odmienna od
zakładanej przez nas.
Lepiej więc, żeby punkt zerowy mógł być ustalony przez domyślny konstruktor.
Wówczas szablon będzie wyglądał tak - zmiana jest niewielka:

template <typename TYP> TYP Abs(TYP Liczba)
{
 return (Liczba >= TYP() ? Liczba : -Liczba);
}

Teraz będzie on jednak działał poprawnie dla każdego sensownego typu danych
liczbowych.

„Chwileczkę”, rzekniesz. „A co z typami podstawowymi? Przecież one nie mają
konstruktorów!” Faktycznie, słuszna uwaga. Taką uwagę poczynił pewnie swego czasu
któryś z twórców C++, gdyż zaowacowała ona wprowadzeniem do języka tzw.
inicjalizacji zerowej. Jest to bardzo prosta rzecz: otóż typy wbudowane (jak int czy
bool) zostały wyposażone w swego rodzaju „konstruktory”. Nie są to prawdziwe funkcje
składowe, jak w przypadku klas, lecz po prostu możliwość użycia tej samej składni
jawnego wywołania domyślnego konstruktora. Wygląda ona tak:

typ()

Zaawansowane C++ 512

i dla klas nie jest, jak sądzę, żadną niespodzianką. To samo jednak możemy uczynić
także w stosunku do podstawowych typów danych. W C++ są więc całkowicie poprawne
wyrażenia typu int(), float(), bool() czy unsigned(). Co ważniejsze w wyniku dają
one zero odpowiedniego typu - czyli działają tak, jakbyśmy napisali (odpowiednio): 0,
0.0f, false i 0u.

Inicjalizacja zerowa gwarantuje więc współpracę naszego szablonu z typami
podstawowymi, ponieważ wyrażenie TYP() da w każdym przypadku potrzebny nam tutaj
„obiekt zerowy”. Nieważne, czy będzie chodziło o typ podstawowy C++, czy też klasę
zdefiniowaną przez programistę.

Parametr szablonu i parametr funkcji

Mówiąc o szablonach funkcji, można się nieco zagubić w znaczeniu słowa ‘parametr’.
Mamy mianowicie aż dwa rodzaje parametrów:

 parametry funkcji - czyli te znane nam już od dawna, bo występuje one w każdej
niemal funkcji. Każdy taki parametr ma swój typ i nazwę

 parametry szablonu poznaliśmy w tym rozdziale. W przypadku szablonów funkcji
mogą to być wyłacznie nazwy typów. Parametry szablonu stosujemy więc w
nagłówku i w ciele funkcji tak, jak gdyby były to nazwy typów, np. float czy
VECTOR2D

To naturalne, że oba te rodzaje parametrów są ze sobą ściśle związane. Popatrzmy
choćby na nagłówek funkcji max():

template <typename TYP> TYP max(TYP Parametr1, TYP Parametr2)

Parametry tej funkcji to Parametr1 i Parametr2. Obydwa należą one do typu
oznaczonego po prostu jako TYP. Ów TYP mógłby być klasą, aliasem zdefiniowanym
poprzez typedef, wyliczeniem enum, itd. Tutaj jednak TYP jest parametrem szablonu:
deklarujemy go w nawiasach ostrych po słowie template przy pomocy typename.
Fakt, że TYP parametrów funkcji jest parametrem szablonu ma dalekosiężne i
dobroczynne konsekwencje. Powoduje to mianowicie, iż może on być wydedukowany z
argumentów wywołania funkcji:

// (było już dość przykładów wywoływania max(), więc jeden wystarczy :D)
std::cout << max(42, 69);

Nie musimy w powyższej linijce wyraźnie określać, że szablon max() ma być tu użyty do
wygenerowania funkcji pracującej na argumentach typu int. Ten typ zostanie po prostu
„wzięty” z argumentów wywołania (które są typu int właśnie). To jedna z wielkich zalet
szablonów funkcji.

Możliwe jest aczkolwiek jawne określenie typu, czyli parametru szablonu. O tym powiemy
sobie w następnym paragrafie.

Kilka parametrów szablonu

Dotąd widzieliśmy jednoparametrowe szablony funkcji, ale nie jest to kres możliwości
szablonów. Tak naprawdę bowiem mogą mieć one dowolną liczbę parametrów. Oto na
przykład inny wariant funkcji max():

template <typename TYP1, typename TYP2>
 TYP1 max(TYP1 Parametr1, TYP2 Parametr2)
{
 return (Parametr > Parametr2 ? Parametr1 : Parametr2);
}

Szablony 513

Podobnie jak parametry funkcji, parametry szablonu zawarte w nawiasach ostrych także
o oddzielamy przecinkami. Może ich być dowolna ilość; tutaj mamy dwa parametry
szablonu, które bezpośrednio przedkładają się na dwa parametry funkcji. Nowa wersja
funkcji max() potrafi więc porównywać wartości różnych typów - o ile oczywiście istnieje
odpowiedni operator >.
Oto przykład wykorzystania tego szablonu:

int nMax = max(-18, 42u); // TYP1 = int, TYP2 = unsigned
float fMax = max(9.5f, 34); // TYP1 = float, TYP2 = int
 fMax = max(6.78, 80); // TYP1 = double, TYP2 = int

W ostatnim wywołaniu wartością zwróconą przez max() będzie 80.0 typu double. Jej
przypisanie do mniej pojemnego typu float spowoduje zapewne ostrzeżenie
kompilatora.

Jak widać, argumenty funkcji nie muszą być tu konwertowane do wspólnego typu, jak to
się działo przy jednoparametrowym szablonie. W sumie jednak między oboma
szablonami nie ma wielkiej róznicy funkcjonalnej; podałem tu jedynie przykład na to, że
szablon funkcji może mieć więcej parametrów niż jeden.

Z powyższym szablonem jest jednak pewien dość istotny kłopot. Chodzi mianowicie o typ
wartości zwracanej. Wpisałem w nim wprawdzie TYP1, ale to nie ma żadnego
uzasadnienia, gdyż równie dobry (a raczej niedobry) były TYP2.
Problemem jest to, iż na etapie kompilacji nie wiemy rzecz jasna, jakie wartości zostaną
przekazane do funkcji. Nie wiemy wobec tego, jaki powinien być typ wartości zwracanej.
W takiej sytuacji należałoby użyć typu ogólniejszego, bardziej pojemnego: dla int i
float byłby to zatem float, i tak dalej (przypomnij sobie z poprzedniego rozdziału,
kiedy jakiś typ jest ogólniejszy od drugiego). Niestety, ponieważ z samego założenia
szablonów funkcji nie wiemy, dla jakich faktycznych typów będzie on użyty, nie możemy
nijak określić, który z tej dwójki będzie pojemniejszy. W zasadzie więc nie wiemy, jaki
powinien być typ wartości zwracanej!
Rozsądne rozwiązanie tego problemu nie leży niestety w zakresie możliwości
programisty. Potrzebny jest tutaj jakiś nowy mechanizm jezyka; zwykle mówi się w tym
kontekście o operatorze typeof (‘typ czegoś’). Miałby on zwracać nazwę typu z podanego
mu (stałego) wyrażenia. Nazwa ta mogłaby być potem użyta tak, jak każda inna nazwa
typu - a więc na przykład w charakterze rodzaju wartości zwracanej przez funkcję.
Obecnie istnieją kompilatory, które oferują operator typeof, ale oficjalny standard C++
póki co nic o nim nie mówi.

Specjalizacja szablonu funkcji
Podstawowy szablon funkcji definiuje nam ogólną rodzinę funkcji, której członkowie
(specjalizacje) dla każdego typu (parametru szablonu) zachowują się tak samo. Nasza
funkcja max() będzie więc zwracały większą liczbę niezależnie od tego, czy typem jest
liczby będzie double czy int.

Powiesz: „I bardzo dobrze! O to nam przecież chodzi.” No tak, ale jest pewien szkopuł.
Dla pewnych typów danych algorytm wyznaczania większej wartości może być
nieodpowiedni. Uogólniając sprawę, można zkonkludować, że niekiedy potrzebna nam
jest specjalna wersja szablonu funkcji, która dla jakiegoś konkretnego typu (parametru
szablonu) będzie się zachowywała inaczej niż dla reszty.
Wtedy właśnie musimy sami zdefiniować ową konkretną specjalizację szablonu
funkcji. Tym zajmiemy się w niniejszym paragrafie.

Zaawansowane C++ 514

Wyjątkowy przypadek

Twoja nauka C++ opiera się między innymi na serii narzuconych przypuszczeń, zatem
teraz przypuśćmy, że chcemy rozszerzyć nieco funkcjonalność szablonu funkcji max().
Zalóżmy mianowicie, że chcemy uczynić ją władną do współpracy nie tylko z liczbami, ale
też z taką oto klasą wektora:

#include <cmath>

struct VECTOR2
{
 // współrzędne tegoż wektora
 double x, y;

 //---

 // metoda licząca długość wektora
 double Dlugosc() const { return sqrt(x * x + y * y); }

 // (reszta jest średnio potrzebna, zatem pomijamy)
};

Naturalnie, możnaby wyposażyć ją w odpowiedni operator>(). My jednak chcemy
zdefiniować specjalizowaną wersję szablonu funkcji max(). Czynimy to w taki oto sposób:

template<> VECTOR2 max(VECTOR2 vWektor1, VECTOR2 vWektor2)
{
 // porówujemy długości wektorów; w przypadku równości zwracamy 1-szy
 return (vWektor1.Dlugosc() >= vWektor2.Dlugosc() ?
 vWektor1 : vWektor2);
}

Właściwie to można powiedzieć, że funkcja ta nie różni się prawie niczym od normalnej
funkcji max() (nieszablonowej). Dlatego też ważne jest opatrzenie jej frazą template<>
(z pustymi nawiasami ostrymi), bo dzięki temu kompilator może uznać nasza definicję za
specjalizację szablonu funkcji max().
Co do nagłówka funkcji, to jest to ten sam naglówek, co w oryginalnym szablonie - z tą
tylko różnicą, że TYP zostało zamienione na nazwę rzeczywistego typu, czyli VECTOR2. Ze
względu na tą jednoznaczność specjalizacja nie wymaga żadnych dalszych zabiegów. W
sumie jednak można (i zaleca się) bezpośrednie podanie typu, dla którego specjalizujemy
szablon:

template<> VECTOR2 max<VECTOR2>(VECTOR2 vWektor1, VECTOR2 vWektor2)

Dziwną frazę max<VECTOR2> można tu z powodzeniem traktować jako nazwę funkcji -
specjalizacji szablonu max() dla typu VECTOR2. W takiej zresztą roli poznamy podobne
konstrukcje, gdy zajmiemy się dokładniej użyciem funkcji szablonowych.

Ciekawostka: specjalizacja częściowa szablonu funkcji

Jak każda Ciekawostka, także i ta nie jest przeznaczona dla początkujących, a już na
pewno nie podczas pierwszego kontaktu z tekstem.

Poprzednio specjalizowaliśmy funkcję dla ściśle określonego typu danych. Teoretycznie
możnaby jednak zrobić coś innego: napisać specjalną jej wersję dla pewnego rodzaju
typów.

„No, teraz to już przesadzasz!”, możesz tak odpowiedzieć. To jednak może mieć sens;
wyobraźmy sobie, że przy pomocy max() spróbujemy porównać dwa wskaźniki. Co

Szablony 515

otrzymamy w wyniku takiego porównania?… Naturalnie, dostaniemy ten wskaźnik,
którego adres jest mniejszy.
Zapytam wprost: i co nam z tego? Lepiej chyba byłoby, aby porównanie dokonywane
było raczej na obiektach, do których te wskaźniki się odnoszą. Wtedy mielibyśmy
bardziej sensowny wynik i np. z dwóch wskaźników typu int* dostalibyśmy ten, który
odnosi się do większej liczby.

Takie działanie szablonu funkcji max() w odniesieniu do wskaźników - przy zachowaniu
jego normalnego działania dla pozostałych typów danych - nie jest możliwe do
osiągnięcia przy pomocy zwykłej specjalizacji, zaprezentowanej w poprzednim punkcie.
Trzebaby bowiem zdefiniować osobne wersje dla wszystkich typów wskaźników (int*,
CRational*, float*, …), jakich chcielibyśmy używać. Całkowicie przekreśla to sens
szablonów, które przecież opierają się właśnie na tym, że to sam kompilator generuje ich
wyspecjalizowane wersje w zależności od potrzeb.
Tutaj trzeba by użyć mechanizmu specjalizacji częściowej, znanego bardziej z
szablonów klas. Oznacza on ni mniej, ni więcej, jak tylko zdefiniowanie innej wersji
szablonu dla całej grupy typów (parametrów szablonu). W tym przypadku ta grupą są
typy wskaźnikowe, a szablon funkcji max() wyglądałby dla nich tak:

template <typename TYP>
 TYP* max<TYP*>(TYP* pWskaznik1, TYP* pWskaznik2)
{
 return (*pWskaznik1 > *pWskaznik2 ? pWskaznik1 : pWskaznik2);
}

Nazwa specjalizowanej funkcji, czyli max<TYP*>, gdzie TYP jest parametrem szablonu,
wskazuje jednoznacznie, iż chodzi nam o wersję funkcji przeznaczoną dla wskaźników.
Naturalnie, typ wartości zwracanej i parametrów funkcji musi być również taki sam.

Kiedy zostanie użyty ten bardziej wyspecjalizowany szablon?… Otóż wtedy, gdy jako
parametry funkcji max() zostaną przekazane jakieś wskaźniki, np.:

int nLiczba1 = 10, nLiczba2 = 98;
int* pnLiczba1 = &nLiczba1;
int* pnLiczba2 = &nLiczba2;

std::cout << *(max(pnLiczba1, pnLiczba2)); // szablon max<TYP*>(),
 // gdzie TYP = int

W tym więc przypadku wyświetlaną liczbą będzie zawsze 98, bo liczyć się będą tutaj
faktyczne wartości, a nie rozmieszczenie zmiennych w pamięci (a więc nie adresy, na
które pokazują wskaźniki).

Częściowe specjalizacje szablonów funkcji nie wyglądają może na zbytnio
skomplikowane. Może cię jednak zaskoczyć to, iż to jeden z najbardziej zaawansowanych
aspektów szablonów - tak bardzo, że póki co Standard C++ o nim nie wspomina (!), a
tylko nieliczne kompilatory obsługują go. Póki co jest to więc bardzo rzadko używana
technika i dlatego na razie należy ją traktować jako ciekawostkę.

Wywoływanie funkcji szablonowej
Skoro już mniej więcej wiemy, jak można definiować szablony funkcji, nauczmy się teraz
z nich korzystać. Zważywszy, że już to robiliśmy, nie powinno to sprawiać żadnych
trudności.

Zastanówmy się jednak, co dzieje się w momencie wywołania funkcji szablonowej. Oto
przykład takiego wywołania:

Zaawansowane C++ 516

max(12, 56)

max() jest tu szablonem funkcji, którego parametr (typ) jest stosowany w charakterze
typu obu parametrów funkcji, jak również zwracanej przez nią wartość. Nie podajemy
jednak tego typu dosłownie; to właśnie wielka zaleta szablonów funkcji, gdyż właściwy
typ - parametr szablonu, tutaj int - może być wydedukowany z jej wywołania. O tym,
jak to się dzieje, mówi następny akapit.

Aby jednak zrozumieć istotę szablonów funkcji, musimy choć z grubsza wiedzieć, jak
kompilator traktuje takie wywołania jak powyższe. Generalnie nie jest trudne. Jak
wspomniałem wcześniej, szablony w C++ są implementowane w ten sposób, iż podczas
kompilacji tworzony jest ich właściwy („nieszablonowy”) kod dla każdego typu, dla
którego używamy danego szablonu. Proces ten nazywamy konkretyzacją
(ang. instantiation) a poszczególne egzemplarze szablonów - specjalizacjami
(ang. specialization albo instance).
Tak więc kompilator musi sobie wytworzyć odpowiednie specjalizacje, które będą
wykorzystywane w miejscach użycia szablonu. W przykładzie powyżej szablon funkcji
max() posłuży do wygenerowania jej konkretnej wersji: funkcji max() dla parametru
szablonu równego int. Dopiero ta konkretna wersja - specjalizacja - będzie
skompilowana w normalny sposób, do normalnego kodu maszynowego. W ten sposób
zarówno funkcje, jak też klasy szablonowe zachowują niemal wszystkie cechy zwykłych
funkcji i klas.

To, jak szablon funkcji zostanie skonkretyzowany w danym przypadku, zależy wyłącznie
od sposobu jego użycia w kodzie. Przyjrzyjmy się więc sposobom na wywoływanie funkcji
szablonowych.

Jawne określenie typu
Zwykle używając szablonów funkcji pozwalamy kompilatorowi na samodzielne
wydedukowanie typu, dla którego ma on być skonkretyzowany. Zdarza się jednak, że
chcemy go sami wyraźnie określić. To również jest możliwe.

Wywoływanie konkretnej wersji funkcji szablonowej

Możemy więc zażyczyć sobie, aby funkcja max() działała w danym przypadku,
powiedzmy, na liczbach typu unsigned - mimo że typem jej argumentów będzie int:

unsigned uMax = max<unsigned>(45, 3); // 45 i 3 to liczby typu int

Składnia max<unsigned> pozwala nam podać żądany typ. Ściślej mówiąc, w nawiasach
ostrych podajemy parametry szablonu (w odróżnieniu od parametrów funkcji,
podanych jak zwykle w nawiasach okrągłych). Tutaj jest to jeden parametr, będący
typem; nadajemy mu „wartość” unsigned, czyli typu liczb bez znaku.

Takie wywołanie powoduje, że nie jest już przeprowadza żadna dedukacja typu
argumentów funkcji. Kompilator nie zważa już na nie, lecz oczekuje, że będą one
zgadzały się z typem pdoanym jawnie - parametrem szablonu. W tym więc przypadku
liczby muszą pasować do typu unsigned i oczywiście pasują do niego (są dodatnie), choć
ich właściwy typ to int. Nie gra on jednak żadnej roli, gdyż sami odgórnie narzuciliśmy
tutaj parametr szablonu.

Użycie wskaźnika na funkcję szablonową

max<unsigned> występuje tutaj w miejscu, gdzie zwykle pojawia się nazwa funkcji w
przypadku normalnych procedur. To nie przypadek: możemy tę frazę traktować właśnie
jako nazwę funkcji - konkretnej już funkcji, a nie jej szablonu.

Szablony 517

Nie jest to żadne pustosłowie, bowiem ma to konkretne konsekwencje. Nazwa
max<unsigned> działa mianowicie tak samo, jak każda inna nazwa funkcji. W
szczególności, możemy jej użyć do pobrania adresu funkcji szablonowej:

unsigned (*pfnUIntMax)(unsigned, unsigned) = max<unsigned>;

Zauważ różnicę: nie możemy pobrać adresu szablonu (czyli max), bo ten nie istnieje w
pamięci podczas działania programu. Jest on tylko instrukcją dla kompilatora (podobnie
jak makra są instrukcjami dla preprocesora), mówiącą mu, jak ma wygenerować
prawdziwe, specjalizowane funkcje. max<unsigned> jest taką właśnie wyspecjalizowaną
funkcją i ona już istnieje w pamięci, bowiem jest kompilowana do kodu maszynowego
tak, jak normalna funkcja. Możemy zatem pobrać jej adres.

Dedukcja typu na podstawie argumentów funkcji
Jawne podawanie parametrów szablonu funkcji jest generalnie nieczęsto stosowane.
Zdecydowanie największą zaletą tych szablonów jest to, iż potrafią same wykryć typ
argumentów funkcji i na tej podstawie dopasować odpowiedni parametr szablonu.
Spójrzmy, jak to się odbywa.

Jak to działa

A zatem, skąd kompilator wie, dla jakich parametrów ma skonkretyzować szablon
funkcji?… Innymi słowy, skąd bierze on właściwy typ dla funkcji szablonowej? Cóż, nie
jest to bardzo skomplikowane:

Parametry szablonu funkcji są dedukowane w oparciu o parametry jej wywołania
oraz niejawne konwersje.

Prześledżmy to na przykładzie wywołania szablonu funkcji:

template <typename TYP> TYP max(TYP Parametr1, TYP Parametr2);

w kilku formach:

max(67, 76) // 1
max(5.6, 6.5f) // 2
max(8.7f, 9.0f) // 3
max("Hello", std::string("world")) // 4

Pierwszy przykład jest jak sądze prosty. Obie liczby są tu typu int, zatem użytą tu
funkcją max<int>. Nie ma żadnych watpliwości.
Dalej jest ciekawiej. Parametry drugiego wywołania funkcji są typu double i float.
Mamy jednak jeden parametr szablonu (TYP), który musi przyjąć tą samą „wartość” w
wywołaniu funkcji. Co zatem zrobi kompilator? Wykorzysta on to, że między float i
double istnieje niejawna konwersja i wybierze typ double jako ogólniejszy. Użytym
wariantem będzie więc max<double>.
Kolejny przykład… to nic nowego :) Oba argumenty są tu typu float (skutek przyrostka
f), zatem wykorzystaną funkcją będzie max<float>.
Ostatnia, czwarta linijka jest zdecydowanie najciekawsza. Napisy "Hello" i "world"
mają z pewnością ten sam typ - const char[]. Niemniej, drugi parametr jest typu
std::string, bowiem jawnie tworzymy obiekt tej klasy przy użyciu konstruktora. Wobec
takiego obrotu sprawy kompilator musi pogodzić go z const char[]. Robi to, ponieważ

Zaawansowane C++ 518

istnieje niejawna konwersja łancucha typu C na std::string. Szablon funkcji zostanie
więc skonkretyzowany do max<std::string>124.

Ogólny wniosek z tych przykładów jest taki, że jeśli jeden parametr szablonu musi być
dopasowany na podstawie kilku różnych typów parametrów funkcji, to kompilator
próbuje zastosować niejawne konwersje celem sprowadzenia ich do jakiegoś jednego
typu ogólnego. Dopiero jeżeli ta próba się nie powiedzie, sygnalizowany jest błąd.

W zasadzie to trzeba powiedzieć: „jeżeli ta próba się nie powiedzie i nie ma żadnych
innych możliwych dopasowań”. Możliwe bowiem, że istnieją inne szablony, których
parametry pozwalają na problematyczne dopasowanie. Przykładowo, wywołanie max(18,
"tekst") nie mogłoby być dopasowane do jednoparametrowego szablonu max(), ale bez
problemu przypasowane zostałoby do szablonu dwuparametrowego max(), podanego
jakiś czas temu (i poniżej). Ten dopuszczałby przecież różne typy argumentów.
Reguła mówiąca, iż pierwsze niepowodzenie dopasowywania parametrów szablonu nie
jest błędem, funkcjonuje pod skrótem SFINAE (ang. Substitution Failure Is Not An Error -
porażka podstawiania nie jest błędem).

Dedukcja przy wykorzystaniu kilku parametrów szablonu

Proces dedukcji zaczyna nabierać rumieńców, gdy mamy do czynienia z szablonem o
większej liczbie parametrów niż jeden. Przypomnijmy sobie szablon funkcji max() z
dwoma parametrami (deklarację tylko, bo definicja jest chyba oczywista):

template <typename TYP1, typename TYP2>
 TYP1 max(TYP1 Parametr1, TYP2 Parametr2);

Tutaj wszystko jest nawet znacznie prostsze niż poprzednio. Dzięki temu, że każdy
parametr funkcji ma swój własny typ (parametr szablonu), kompilator ma ułatwione
zadanie. Nie musi już brać pod uwagę żadnych niejawnych konwersji.

Z powyższym szablonem związanym jest jednak pewien problem. Nie bardzo wiadomo,
jaki ma być typ zwracany tej funkcji. Może to być zarówno TYP1, jak i TYP2 - zależy po
prostu, która z wartości zwycięży w teście porównawczym. Tego jego nie sposób ustalić
w czasie kompilacji; można jednak dodać typ oddawany do parametrów szablonu:

template <typename TYP1, typename TYP2, typename ZWROT>
 ZWROT max(TYP1 Parametr1, TYP2 Parametr2);

Próba wywołania tej funkcji w zwykłej formie zakończy się jednak błędem - a to dlatego,
że ten nowy, trzeci parametr nie może zostać wydedukowany przez kompilator! Mówiłem
przecież, że dedukcja dokonywana jest wyłącznie na podstawie parametrów funkcji.
Wartość zwracana się zatem nie liczy.
„Hmm, to nie jest aż taki problem”, odpowiesz może. „Ten jeden parametr mogę przecież
podać; wpisze tam po prostu typ ogólniejszy spośród dwóch poprzedzających”. Tak się
jednak nie da! Nie możemy podać do szablonu ostatniego parametru, gdyż wpierw
musielibyśmy podać dwa poprzedzające go:

max<int, float, float>(17, 67f);

To chyba żadna niespodzianka: analogicznie jest z parametrami funkcji. W ten sposób
tracimy jednak wszystkie wspaniałości automatycznej dedukcji parametrów szablonu.

124 Porównywanie dwóch napisów może się wydawać dziwne, ale jest ono poprawne. Klasa std::string
posiada operator >, dokonujący porównania tekstów pod względem ich długości oraz przechowywanych weń
znaków (ich kolejności alfabetycznej).

Szablony 519

Istnieje aczkolwiek sposób na to. Należy przesunąć parametr ZWROT na początek listy
parametrów szablonu:

template <typename ZWROT, typename TYP1, typename TYP2>
 ZWROT max(TYP1 Parametr1, TYP2 Parametr2);

Teraz pozostałe dwa typy mogą być odgadnięte z parametrów funkcji. Tego szablonu
max() będziemy więc mogli używać, podając tylko typ wartości zwracanej:

max<float>(17, 67f);

Wynika stąd prosty wniosek:

Dedukcja parametrów szablonu następuje od końca (od prawej strony). Te parametry,
które mogą być wzięte z wywołania funkcji, powinny zatem znajdować się na końcu listy.

Szablony klas
Szablony funkcji mogą przedstawiać się wcale zachęcająco, jednak o wiele większą zaletą
C++ są szablony klas. Ponownie, możemy je traktować jako:

 swego rodzaju ogólne klasy (zwane czasem metaklasami), definiujące zachowanie
się obiektów w odniesieniu do dowolnych typów danych

 zespół klas, delegujących odrębne klasy do obsługi różnych typów

Po raz kolejny też to drugie podejście jest bardziej poprawne.

Szablon klasy reprezentuje zestaw (rodzinę) klas, mogących współpracować z różnymi
typami danych.

Konieczność istnienia szablonów klas bezpośrednio wynika z faktu, że C++ jest językiem
zorientowanym obiektowo. Do potrzeb programowania strukturalnego z pewnością
wystarczyłyby szablony funkcji; kiedy jednak chcemy w pełni korzystać z dobrodziejstw
OOPu i cieszyć się elastycznością szablonów, naturalnym jest użycie szablonów klas.
Z bardziej praktycznego punktu widzenia szablony klas są znacznie przydatniejsze i
częściej stosowane niż szablony funkcji. Typowym ich zastosowaniem są klasy
pojemnikowe, czyli znane i lubiane struktury danych - a one obok algorytmów, są według
klasyków informatyki podstawowymi składnikami programów. Niemniej przez lata
istnienia szablony klas dorobiły się także wielu całkiem niespodziewanych zastosowań.

Szablony klas intensywnie wykorzystuje Biblioteka Standardowa języka C++, a także
niezwykle popularna biblioteka Boost.

Niezależnie od tego, czy twój kontakt z tymi rodzajami szablonów będzie się ograniczał
wyłącznie do pojemników w rodzaju wektorów lub kolejek, czy też wymyślisz dla nich
znacznie więcej zastosowań, powinieneś dobrze poznać ten element języka C++. I te
temu właśnie służy niniejsza sekcja.

Definicja szablonu klas
Wpierw więc zajmiemy się definiowaniem szablonu klasy. Popatrzmy sobie najpierw na
prosty przykład szablonu, będący rozszerzeniem klasy CIntArray, przewijającej się przez
kilka poprzednich rozdziałów. Dalej zajmiemy się też bardziej zaawansowanymi
aspektami definicji szablonów klas.

Zaawansowane C++ 520

Prosty przykład tablicy
W rozdziale o wskaźnikach pokazałem ci prostą klasę dynamicznej tablicy int-ów -
CIntArray. Wtedy interesowała nas dynamiczna alokacja pamięci, więc nie przeszkadzał
nam fakt nieporęczności tejże klasy. Miała ona bowiem dwa mankamenty: nie pozwalała
na użycie nawiasów kwadratowych [] celem dostępu do elementów tablicy, no i potrafiła
przechowywać wyłącznie liczby typu int.
Obiecałem jednocześnie, że w swoim czasie pozbędziemy się obu tych niedogodności.
Miałeś się już okazję przekonać, że nie rzucam słów na wiatr, bowiem nauczyliśmy już
naszą klasę poprawnie reagować na operator []. Zapewne domyślasz się, że teraz
usuniemy drugi z mankamentów i wyposażymy ją w możliwość przechowywania
elementów dowolnego typu. Jak nietrudno zgadnąć, będzie to wymagało uczynienia jej
szablonem klasy.

Zanim przystąpimy do dzieła, spójrzmy na aktualną wersję naszej klasy:

class CIntArray
{
 // domyślny rozmiar tablicy
 static const unsigned DOMYSLNY_ROZMIAR = 5;

 private:
 // wskaźnik na właściwą tablicę oraz jej rozmiar
 int* m_pnTablica;
 unsigned m_uRozmiar;

 public:
 // konstruktory
 explicit CIntArray(unsigned uRozmiar = DOMYSLNY_ROZMIAR)
 : m_uRozmiar(uRozmiar);
 m_pnTablica(new int [m_uRozmiar]) { }
 CIntArray(const CIntArray&);

 // destruktor
 ~CIntArray() { delete[] m_pnTablica; }

 //---

 // pobieranie i ustawianie elementów tablicy
 int Pobierz(unsigned uIndeks) const
 { if (uIndeks < m_uRozmiar) return m_pnTablica[uIndeks];
 else return 0; }
 bool Ustaw(unsigned uIndeks, int nWartosc)
 { if (uIndeks >= m_uRozmiar) return false;
 m_pnTablica[uIndeks] = uWartosc;
 return true; }

 // inne
 unsigned Rozmiar() const { return m_uRozmiar; }

 //---

 // operator indeksowania
 int& operator[](unsigned uIndeks)
 { return m_pnTablica[uIndeks]; }

 // operator przypisania (dłuższy, więc nie w definicji)
 CIntArray& operator=(const CIntArray&);
};

Szablony 521

Przeróbmy ją zatem na szablon.

Definiujemy szablon

Jak więc zdefiniować szablon klasy w C++? Patrząc na ogólną składnię szablonu można
by nawet domyślić się tego, lecz spójrzmy na poniższy - pusty na razie - przykład:

template <typename TYP> class TArray
{
 // ...
};

Jest to szkielet definicji szablonu klasy TArray, czyli tablicy dynamicznej na elementy
dowolnego typu125. Widać tu znane już części: przede wszystkim, fraza template
<typename TYP> identyfikuje konstrukcję jako szablon i deklaruje parametry tegoż
szablonu. Tutaj mamy jeden parametr - będzie nim rzecz jasna typ elementów tablicy.

Dalej mamy właściwie zwykłą definicję klasy i w zasadzie jedyną dobrze widoczną różnicą
jest to, że wewnątrz niej możemy użyć nazwy TYP - parametru szablonu. U nas będzie
on pełnić identyczną rolę jak int w CIntArray, zatem pełna wersja szablonu TArray
będzie wyglądała następująco:

template <typename TYP> class TArray
{
 // domyślny rozmiar tablicy
 static const unsigned DOMYSLNY_ROZMIAR = 5;

 private:
 // wskaźnik na właściwą tablicę oraz jej rozmiar
 TYP* m_pTablica;
 unsigned m_uRozmiar;

 public:
 // konstruktory
 explicit TArray(unsigned uRozmiar = DOMYSLNY_ROZMIAR)
 : m_uRozmiar(uRozmiar),
 m_pTablica(new TYP [m_uRozmiar]) { }
 TArray(const TArray&);

 // destruktor
 ~TArray() { delete[] m_pTablica; }

 //---

 // pobieranie i ustawianie elementów tablicy
 TYP Pobierz(unsigned uIndeks) const
 { if (uIndeks < m_uRozmiar) return m_pTablica[uIndeks];
 else return TYP(); }
 bool Ustaw(unsigned uIndeks, TYP Wartosc)
 { if (uIndeks >= m_uRozmiar) return false;
 m_pTablica[uIndeks] = Wartosc;
 return true; }

 // inne
 unsigned Rozmiar() const { return m_uRozmiar; }

 //---

125 Litera T w nazwie TArray to skrót od template, czyli ‘szablon’.

Zaawansowane C++ 522

 // operator indeksowania
 TYP& operator[](unsigned uIndeks)
 { return m_pTablica[uIndeks]; }

 // operator przypisania (dłuższy, więc nie w definicji)
 TArray& operator=(const TArray&);
};

Możesz być nawet zaskoczony, że było to takie proste. Faktycznie, uczynienie klasy
CIntArray szablonem ograniczało się do zastąpienia nazwy int, użytej jako typ
elementów tablicy, nazwą parametru szablonu - TYP. Pamiętaj jednak, że nigdy nie
powinno się bezmyślnie dokonywać takiego zastępowania; int mógł być przecież choćby
typem licznika pętli for (for (int i = ...)) i w takiej sytuacji zastąpienie go przez
parametr szablonu nie miałoby żadnego sensu. Nie zapominaj więc, że jak zwykle
podczas programowania należy myśleć nad tym, co robimy.

Naturalnie, gdy już opanujesz szablony klas (co, jak sądzę, stanie się niedługo),
dojdziesz do wniosku, że wygodniej jest od razu definiowiać właściwy szablon niż
wychodzić od „specjalizowanej” klasy i czynić ją ogólną.

Implementacja metod poza definicją

Szablon jest już prawie gotowy. Musimy jeszcze dodać do niego implementacje dwóch
metod: konstruktora kopiującego i operatora przypisania - ze względu na ich długość
lepiej będzie, jeśli znajdą się poza definicją. W przypadku zwykłych klas było to jak
najbardziej możliwe… a jak jest dla szablonów?

Zapewne nie jest niespodzianką to, iż również tutaj jest to dopuszczalne. Warto jednak
uświadomić sobie, że metody szablonów klas są szablonami metod. Oznacza to ni
mniej, ni więcej, ale to, iż powinniśmy je traktować podobnie, jak szablony funkcji. Wiąże
się z tym głównie inna składnia.
Popatrz więc na przykład - oto szablonowa wersja konstruktora kopiującego:

template <typename TYP> TArray<TYP>::TArray(const TArray& aTablica)
{
 // alokujemy pamięć
 m_uRozmiar = aTablica.m_uRozmiar;
 m_pTablica = new TYP [m_uRozmiar];

 // kopiujemy pamięć ze starej tablicy do nowej
 memcpy (m_pTablica, aTablica.m_pTablica, m_uRozmiar * sizeof(TYP));
}

I znowu możemy mieć déja vu: kod zaczynamy ponownie sekwencją template <...>.
Łatwo to jednak uzasadnić: mamy tu bowiem do czynienia z szablonem, w którym
używamy przecież jego parametru TYP. Koniecznie więc musimy użyc wspomnianej
sekwencji po to, aby:

 kompilator wiedział, że ma do czynienia z szablonem, a nie zwykłym kodem
 możliwe było użycie nazw parametrów szablonu (tutaj mamy jeden - TYP) w jego

wnętrzu

Każdy „kawałek szablonu” trzeba zatem zacząć od owego template <...>, aby te dwa
warunki były spełnione. Jest to może i uciążliwe, lecz niestety konieczne.

Idźmy dalej - zostając jednak nadal w pierwszym wierszu kodu. Jest on nader
interesujący z tego względu, że aż trzykrotnie występuje w nim nazwa naszego szablonu,
TArray - na dodatek ma ona tutaj trzy różne znaczenia. Przenalizujmy je:

Szablony 523

 w pierwszym przypadku jest to wyraz TArray<TYP>. Jak pamiętamy z szablonów
funkcji, takie konstrukcje oznaczają zazwyczaj konkretne egzemplarze szablonu -
specjalizacje. W tym jednak wypadku podajemy tu parametr TYP, a nie jakiś
szczególny typ danych. W sumie cały ten zwrot pełni funkcję nazwy typu klasy;
potraktuj to po prostu jako obowiązkową część nagłówka, występującą zawsze
przed operatorem :: w implementacji metod. Podobnie było np. z CIntArray, gdy
chodziło o zwykłe metody zwykłych klas. Zapamiętaj zatem, że:

Sekwencja nazwa_szablonu<typ> pełni rolę nazwy typu klasy tam, gdzie jest to
konieczne.

 drugi raz używamy TArray w charakterze nazwy metody - konstruktora. Może to
nie być nieco mylące, bo przecież pisząc konstruktory normalnych klas po obu
stronach operatora zasięgu podawaliśmy tę samą nazwę. Musisz więc zapamiętać,
że:

Konstruktory i destruktory w szablonach klas mają nazwy odpowiadające nazwom
ich macierzystych szablonów i niczemu więcej, tzn. nie zawierają parametrów w
nawiasach ostrych.

 trzeci raz TArray jest użyta jako część typu parametru konstruktora kopiującego -
const TArray&. Być może zabłyśniesz tu kompetencją i krzykniesz, że to
niepoprawne i że jeśli chodzi nam o nazwę typu klasy szablonowej, to powinniśmy
wstawić TArray<TYP>, bo samo TArray to tylko nazwa szablonu. Odpowiem
jednak, że posunięcie to jest równie poprawne; mamy tu do czynienia z tak
zwaną nazwą wtrąconą. Polega to na tym, iż:

Sama nazwa szablonu może być stosowana wewnątrz niego w tych miejscach, gdzie
wymagany jest typ klasy szablonowej. Możemy więc posłużyć się nią do skrótowego
deklarowania pól, zmiennych czy parametrów funkcji bez potrzeby pisania nawiasów
ostrych i nazw parametrów szablonu.

Wobec nagłówka tak ciężkiego kalibru reszta tej funkcji nie przedstawia się chyba bardzo
skomplikowanie? :) W rzeczywistości to niemal dokładna kopia treści oryginalnego
konstruktora kopiującego - z tym, że typ int elementów CIntArray zastępuje tutaj
nieznany z góry TYP - parametr szablonu.

W podobny sposób należałoby jeszcze zaimplementować operator przypisania. Sądzę, że
nie sprawiłoby ci problemu samodzielne wykonanie tego zadania.

Korzystanie z tablicy

Gdy mamy już definiowany szablon klasy, chcielibyśmy zapewne skorzystać z niego.
Spróbujmy więc stworzyć sobie obiekt tablicy; ponieważ przez cały zajmowaliśmy się
tablicą int-ów, to teraz niech będzie to tablica napisów:

TArray<std::string> aNapisy(3);

Jak doskonale wiemy, to co widnieje po lewej stronie jest typem deklarowanej zmiennej.
W tym przypadku jest to więc TArray<std::string> - specjalizowana wersja naszego
szablonu klas. Używamy w niej składni, do której, jak sądzę, zaczynasz się już
przyzwyczajać. Po nazwie szablonu (TArray) wpisujemy więc parę nawiasów ostrych, a w
niej „wartość” parametru szablonu (typ std::string). U nas parametr ten określa
jednocześnie typ elementów tablicy - powyższa linijka tworzy więc trójelementową
tablicę łańcuchów znaków.
Całkiem podobnie wygląda tworzenie tablicy ze zmiennych innych typów, np.:

Zaawansowane C++ 524

TArray<float> aLiczbyRzeczywiste(7); // 7-el. tablica z liczbami float
TArray<bool> aFlagi(8) // zestaw ośmiu flag bool-owskich
TArray<CFoo*> aFoo; // tablica wskaźników na obiekty

Zwróćmy uwagę, że parametr(y) szablonu - tutaj: typ elementów tablicy - musimy
podać zawsze. Nie ma możliwości wydedukowania go, bo i skąd? Nie jest to przecież
funkcja, której przekazujemy parametry, lecz obiekt klasy, który tworzymy.

Postępowanie z taką tablicą nie różni się niczym od posługiwania się klasą CIntArray, a
więc pośrednio - również zwykłymi tablicami w C++. W szablonach C++ obowiązują po
prostu te same mechanizmy, co w zwykłych klasach: działają przeciążone operatory,
niejawne konwersje i reszta tych nietuzinkowych możliwości OOPu. Korzystanie z
szablonów klas jest więc nie tylko efektywne i elastycznie, ale i intuicyjne:

// wypełnienie tablicy
aNapisy[0] = "raz";
aNapisy[1] = "dwa";
aNapisy[2] = "trzy";

// pokazanie zawartości tablicy
for (unsigned i = 0; i < aNapisy.Rozmiar(); ++i)
 std::cout << aNapisy[i] << std::endl;

Przyznasz chyba teraz, że szablony klas przedstawiają się wyjątkowo zachęcająco?…
Dowiedzmy się zatem wicej o tych konstrukcjach.

Dziedziczenie i szablony klas
Nowy wspaniały wynalazek języka C++ - szablony - może współpracować ze starym
wspaniałym wynalazkiem języka C++ - dziedziczeniem. A tam, gdzie spotykają się dwa
wspaniałe wynalazki, musi być doprawdy cudownie :) Zajmijmy się więc dziedziczeniem
połączonym z szablonami klas.

Dziedziczenie klas szablonowych

Szablony klas (jak TArray) są podstawami do generowania specjalizowanych klas
szablonowych (jak np. TArray<int>). Ten specjalizowane klasy zasadniczo niczym nie
różnią się od innych uprzednio zdefiniowanych klas. Mogą więc na przykład być klasami
bazowymi dla nowych typów.

Czas na ilustrację zagadnienia w postaci przykładowego kodu. Oto klasa wektora liczb:

class CVector : public TArray<double>
{
 public:
 // operator mnożenia skalarnego
 double operator*(const CVector&);
};

Dziedziczy ona z TArray<double>, czyli zwykłej tablicy liczb. Dodaje ona jednak
dodatkową metodę - przeciążony operator mnożenia *, obliczający iloczyn skalarny:

double CVector::operator*(const CVector& aWektor)
{
 // jeżeli rozmiary wektorów nie są równe, rzucamy wyjątek
 if (Rozmiar() != aWektor.Rozmiar())
 throw CError(__FILE__, __LINE__, "Blad iloczynu skalarnego");

 // liczymy iloczyn

Szablony 525

 double fWynik = 0.0;
 for (unsigned i = 0; i < Rozmiar(); ++i)
 fWynik += (*this)[i] * aWektor[i];

 // zwracamy wynik
 return fWynik;
}

W samym akcie dziedziczenia, jak i w implementacji klasy pochodnej, nie ma żadnych
niespodzianek. Używamy po prostu TArray<double> tak, jak każdej innej nazwy klasy i
możemy korzystać z jej publicznych i chronionych składników. Należy oczywiście
pamiętać, że w tej klasie typ double występuje tam, gdzie w szablonie TArray pojawia
się parametr szablonu - TYP. Dotyczy to chociażby rezultatu operatora [], który jest
właśnie liczbą typu double:

fWynik += (*this)[i] * aWektor[i];

Myślę aczkolwiek, że fakt ten jest intuicyjny i dziedziczenie specjalizowanych klas
szablonowych nie będzie ci sprawiać kłopotu.

Dziedziczenie szablonów klas

Szablony i dziedziczenie umożliwiają również tworzenie nowych szablonów klas na
podstawie już istniejących, innych szablonów. Na czym polega różnica?… Otóż na tym, że
w ten sposób tworzymy nowy szablon klas, a nie pojedynczą, zwykłą klasę - jak to się
działo poprzednio. Wtedy definiowaliśmy normalną klasę przy pomocy innej, niemalże
normalnej klasy - różnica była tylko w tym, że tą klasą bazową była specjalizacja
szablonu (TArray<double>). Teraz natomiast będziemy konstruowali szablon klas
pochodnych przy użyciu szablonu klas bazowych. Cały czas będziemy więc poruszać
się w obrebie czysto szablonowego kodu z naszą ulubioną frazą template <...> ;)

Oto nasz nowy szablon - tablica, która potrafi dynamicznie zmieniać swój rozmiar w
czasie swego istnienia:

template <typename TYP> class TDynamicArray : public TArray<TYP>
{
 public:
 // funkcja dokonująca ponownego wymiarowania tablicy
 bool ZmienRozmiar(unsigned);
};

Ponieważ jest to szablon, więc rozpoczynamy go od zwyczajowego początku i listy
parametrów. Nadal będzie to jeden TYP elementów tablicy, ale nic nie stałoby na
przeszkodzie, aby lista parametrów szablonu została w jakiś sposób zmodyfikowana.
W dalszej kolejności widzimy znajomy początek definicji klasy. Jako klasę bazową
wstawiamy tu TArray<TYP>. Przypomina to poprzedni punkt, ale pamiętajmy, że teraz
korzystamy z parametru szablonu (TYP) zamiast z konkretnego typu (double). Nazwa
klasy bazowej jest więc tak samo „zszablonowana” jak cała reszta definicji
TDynamicArray.

Pozostaje jeszcze kwestia implementacji metody ZmienRozmiar(). Nie powinna być ona
niespodzienka, bowiem wiesz już, jak kodować metody szablonów klas poza blokiem ich
definicji. Treść funkcji jest natomiast niemal wierną kopią tej z rozdziału o wskaźnikach:

template <typename TYP>
 bool TDynamicArray<TYP>::ZmienRozmiar(unsigned uNowyRozmiar)
{
 // sprawdzamy, czy nowy rozmiar jest większy od starego

Zaawansowane C++ 526

 if (!(uNowyRozmiar > m_uRozmiar)) return false;

 // alokujemy nową tablicę
 TYP* pNowaTablica = new TYP [uNowyRozmiar];

 // kopiujemy doń starą tablicę i zwalniamy ją
 memcpy (pnNowaTablica, m_pTablica, m_uRozmiar * sizeof(TYP));
 delete[] m_pTablica;

 // "podczepiamy" nową tablicę do klasy i zapamiętujemy jej rozmiar
 m_pTablica = pNowaTablica;
 m_uRozmiar = uNowyRozmiar;

 // zwracamy pozytywny rezultat
 return true;
}

Widzimy więc, że dziedziczenie szablonu klasy nie jest wcale trudne. W jego wyniku
powstaje po prostu nowy szablon klas.

Deklaracje w szablonach klas
Pola i metody to najważniejsze składniki definicji klas - także tych szablonowych. Jeżeli
jednak chodzi o szablony, to znacznie częściej możemy tam spotkać również inne
deklaracje. Trzeba się im przyjrzeć, co teraz uczynimy.

Ten paragraf możesz pominąć przy pierwszym podejściu do lektury, jeśli wyda ci się zbyt
trudny, i przejść dalej.

Aliasy typedef

Cechą wyróżniającą szablony jest to, iż operują one na typach danych w podobny
sposób, jak inny kod na samych danych. Naturalnie, wszystkie te operacje są
przeprowadzane w czasie kompilacji programu, a ich większą częścią jest konkretyzacja -
tworzenie specjalizowanych wersji funkcji i klas na podstawie ich szablonów.

Proces ten sprawia jednocześnie, że niektóre przewidywalne i, zdawałoby się, znajome
konstrukcje językowe nabierają nowych cech. Należy do nich choćby instrukcja typedef;
w oryginale służy ona wyłącznie do tworzenia alternatywnych nazw dla typów np. tak:

typedef void* PTR;

Nie jest to żadna rewolucja w programowaniu, co zresztą podkreślałem, prezentując tę
instrukcję. Ciekawie zaczyna się robić dopiero wtedy, jeśli uświadomimy sobie, że
aliasowanym typem może być… parametr szablonu! Ale skąd on pochodzi?

Oczywiście - z szablonu klasy. Jeżeli bowiem umieścimy typedef wewnątrz definicji
takiego szablonu, to możemy w niej wykorzystać parametryzowany typ. Oto najprostszy
przykład:

template <typename TYP> class TArray
{
 public:
 // alias na parametr szablonu
 typedef TYP ELEMENT;

 // (reszta nieważna)
};

Szablony 527

Instrukcja typedef pozwala nam wprowadzenie czegoś w rodzaju „składowej klasy
reprezentującej typ”. Naturalnie, jest to tylko składowa w sensie przenośnym, niemniej
nazwa ELEMENT zachowuje się wewnątrz klasy i poza nią jako pełnoprawny typ danych -
równoważny parametrowi szablonu, TYP.
Przydatność takiego aliasu może się aczkolwiek wydawać wątpliwa, bo przecież łatwiej i
krócej jest pisać nazwę typu float niż TArray<float>::ELEMENT. typedef wewnątrz
szablonu klasy (lub nawet ogólnie - w odniesieniu do szablonów) ma jednak znacznie
sensowniejsze zastosowania, gdy współpracuje ze soba wiele takich szablonów.
Koronnym przykładem jest Biblioteka Standardowa C++, gdzie w ten sposób całkiem
można zyskać dostęp m.in. do tzw. iteratorów, wspomagającym pracę ze strukturami
danych.

Deklaracje przyjaźni

Częściej spotykanym elementem w zwykłych klasach są deklaracje przyjaźni. Naturalnie,
w szablonach klas nie moglo ich zabraknąć. Możemy tutaj również deklarować przyjaźnie
z funkcjami i klasami.

Dodatkowo możliwe jest (obsługują to nowsze kompilatory) uczynienie deklaracji
przyjaźni szablonową. Oto przykład:

template <typename T> class TBar { /* ... */ };

template <typename T> class TFoo
{
 // deklaracja przyjaźni z szablonem klasy TBar
 template <typename U> friend class TBar<U>;
};

Taka deklaracja sprawia, że wszystkie specjalizacje szablonu TBar będą zaprzyjaźnione
ze wszystkimi specjalizacjami szablonu TFoo. TFoo<int> będzie więc miała dostęp do
niepublicznych składowych TBar<double>, TBar<unsigned>, TBar<std::string> i
wszystkich innych specjalizacji szablonu TBar.
Zauważmy, że nie jest to równowaznaczne z zastosowaniem deklaracji:

friend class TBar<T>;

Ona spowoduje tylko, że zaprzyjaźnione zostaną te egzemplarze szablonów TBar i TFoo,
które konkretyzowano z tym samym parametrem T. TBar<float> będzie więc
zaprzyjaźniony z TFoo<float>, ale np. z TFoo<short> czy z jakąkolwiek inną
specjalizacją TFoo.

Szablony funkcji składowych

Istnieje bardzo ciekawa możliwość126: metody klas mogą być szablonami. Naturalnie,
możesz pomyśleć, że to żadna nowość, bo przecież w przypadku szablonów klas
wszystkie ich metody są swego rodzaju szablonami funkcji. Chodzi jednak o coś innego,
co najlepiej zobaczymy na przykładzie.

Nasz szablon TArray działa całkiem znośnie i umożliwia podstawową funkcjonalność w
zakresie tablic. Ma jednak pewną wadę; spójrzmy na poniższy kod:

TArray<float> aFloaty1(10), aFloaty2;
TArray<int> aInty(7);

126 Dostępna aczkolwiek tylko w niektórych kompilatorach (np. w Visual C++ .NET 2003), podobnie jak
szablony deklaracji przyjaźni.

Zaawansowane C++ 528

// ...

aFloaty1 = aFloaty2; // OK, przypisujemy tablicę tego samego typu
aFloaty2 = aInty; // BŁĄD! TArray<int> niezgodne z TArray<float>

Drugie przypisanie tablicy int-ów do tablicy float-ów nie jest dopuszczalne. To
niedobrze, ponieważ, logicznie rzecz ujmując, powinno to być jak najbardziej możliwe.
Kopiowanie mogłoby się przecież odbyć poprzez przepisanie poszczególnych liczb -
elementów tablicy aInty. Konwersja z int do float jest bowiem jak całkowicie
poprawna i nie powoduje żadnych szkodliwych efektów.
Kompilator jednak tego nie wie, gdyż w szablonie TArray zdefiniowaliśmy operator
przypisania wyłącznie dla tablic tego samego typu. Musielibyśmy więc dodać kolejną
jego wersję - tym razem uniwersalną, szablonową. Dzięki temu w razie potrzeby można
by jej użyć w takich właśnie przypisaniach. Jak to zrobić? Spójrzmy:

template <typename T> class TArray
{
 public:
 // szablonowy operator przypisania
 template <typename U>
 TArray<T>& operator=(const TArray<U>&);

 // (reszta nieważna)
};

Mamy więc tutaj znowu zagnieżdżoną deklarację szablonu. Druga fraza template <...>
jest nam potrzebna, aby uniezależnić od typu operator przypisania - uniezależnić nie
tylko w sensie ogólnym (jak to ma miejsce w całym szablonie TArray), ale też w
znaczeniu możliwej „inności” parametru tego szablonu (U) od parametru T macierzystego
szablonu TArray. Zatem przykładowo: jeżeli zastosujemy przypisanie tablicy
TArray<int> do TArray<float>, to T przyjmie „wartość” float, zaś U - int.

Wszystko jasne? To teraz czas na smakowity deser. Powyższy szablon metody trzeba
jeszcze zaimplementować. No i jak to zrobić?… Cóż, nic prostszego. Napiszmy więc tę
funkcję.
Zaczynamy oczywiście od template <...>:

template <typename T>

W ten sposób niejako otwieramy pierwszy z szablonów - czyli TArray. Ale to jeszcze nie
wszystko: mamy przecież w nim kolejny szablon - operator przypisania. Co z tym
począć?… Ależ tak, potrzebujemy drugiej frazy template <...>:

template <typename T> // od szablonu klasy TArray
 template <typename U> // od szablonu operatora przypisania

Ślicznie to wygląda, no ale to jeszcze nie wszystko. Dalej jednak jest już, jak sądzę,
prosto. Piszemy bowiem zwykły nagłówek metody, posiłkując się prototypem z definicji
funkcji. A zatem:

template <typename T>
 template <typename U>
 TArray<T>& TArray<T>::operator=(const TArray<U>& aTablica)
 {
 // ...
 }

Szablony 529

Stosuję tu takie dziwne formatowanie kodu, aby unaocznić ci jego najważniejsze
elementy. W normalnej praktyce możesz rzecz jasna skondensować go bardziej, pisząc
np. obie klauzule template <...> w jednym wierszu i nie wcinając kodu metody.

Wreszcie, czas na ciało funkcji - to chyba najprostsza część. Robimy podobnie, jak w
normalnym operatorze przypisania: najpierw niszczymy własną tablicę obiektu, tworzymy
nową dla przypisywanej tablicy i kopiujemy jej treść:

template <typename T>
 template <typename U>
 TArray<T>& TArray<T>::operator=(const TArray<U>& aTablica)
 {
 // niszczymy własną tablicę
 delete[] m_pTablica;

 // tworzymy nową, o odpowiednim rozmiarze
 m_uRozmiar = aTablica.Rozmiar();
 m_pTablica = new T [m_uRozmiar];

 // przepisujemy zawartość tablicy przy pomocy pętli
 for (unsigned i = 0; i < m_uRozmiar; ++i)
 m_pTablica = aTablica[i];

 // zwracamy referencję do własnego obiektu
 return *this;
 }

Niespodzianek raczej brak - może z wyjątkiem pętli użytej do kopiowania zawartości. Nie
posługujemy się tutaj memcpy() z prostgo powodu: chcemy, aby przy przepisywaniu
elementów zadziałały niejawne konwersje. Dokonują się one oczywiście w linijce:

m_pTablica = aTablica[i];

To właśnie ona sprawi, że w razie niedozwolonego przypisywania tablic (np.
TArray<std::string> do TArray<double>) kompilacja nie powiedzie. Natomiast we
wszystkich innych przypadkach, jeśli istnieją niejawne konwersje między elementami
tablicy, wszystko będzie w porządku.

Do pełnego szczęścia należałoby jeszcze w podobny sposób zdefiniować konstruktor
konwertujący (albo kopiujący - zależy jak na to patrzeć), będący również szablonem
metody. To oczywiście zadanie dla ciebie :)

Korzystanie z klas szablonowych
Zdefiniowanie szablonu klasy to naturalnie dopiero połowa sukcesu. Pieczołowicie
stworzony szablon chcemy przecież wykorzystać w praktyce. Porozmawiajmy więc, jak to
zrobić.

Tworzenie obiektów
Najbardziej oczywistym sposobem korzystania z szablonu klasy jest tworzenie obiektów
bazujących na specjalizacji tegoż szablonu.

Stwarzamy obiekt klasy szablonowej

W kreowaniu obiektów klas szablonowych nie ma niczego nadzwyczajnego; robiliśmy to
już kilkakrotnie. Zobaczmy na najprostszy przykład - utworzenia tablicy elementów typu
long:

Zaawansowane C++ 530

TArray<long> aLongi;

long jest tu parametrem szablonu TArray. Jednocześnie cały wyraz TArray<long> jest
typem zmiennej aLongi. Analogia ze zwykłych typów danych działa więc tak samo dla
klas szablonowych.

Docierając do tego miejsca pewnie przypomniałeś już sobie o wskaźniku std::auto_ptr
z poprzedniego rozdziału. Patrząc na instrukcję jego tworzenia nietrudno wyciągnąć
wniosek: auto_ptr jest również szablonem klasy. Parametrem tego szablonu jest zaś
typ, na który wskaźnik pokazuje.

Przy okazji tego banalnego punktu zwrócę jeszcze uwage na pewien „fakt składniowy”.
Przypuśćmy więc, że zapragniemy stworzyć przy użyciu naszego szablonu tablicę
dwuwymiarową. Pamiętając o tym, że w C++ tablice wielowymiarowe są obsługiwane
jako tablice tablic, wyprodukujemy zapewne coś w tym rodzaju:

TArray<TArray<int>> aInty2D; // no i co tu jest źle?...

Koncepcyjnie wszystko jest tutaj w porządku: TArray<int> jest po prostu parametrem
szablonu, czyli określa tym elementów tablicy - mamy więc tablicę tablic elementów typu
int. Nieoczekiwanie jednak kompilator wykazuje się tu kompletną ignoracją i zupełnym
brakiem ogłady: problematyczne stają się bowiem dwa zamykające nawiasy ostre,
umieszczone obok siebie. Są one interpretowane jako… uwaga… operator przesunięcia
bitowego w prawo! Wiem, że to brzmi idiotycznie, bo przecież w tym kontekście
operator ten jest zupełnie niemożliwy do zastosowania. Muszę więc przeprosić cię za
większość nierozgarniętych kompilatorów, które w tym kontekście interpretują sekwencję
>> jako operator bitowy127.
No dobrze, ale co z tym fantem zrobić?… Otóż rozwiązanie jest nadzwyczaj proste: trzeba
oddzielić oba znaki, aby nie mogło już dochodzić do nieporozumień na linii kompilator-
programista:

TArray<TArray<int> > aInty2D; // i teraz jest OK

Może wygląda to nieadnie, ale póki co należy tak właśnie pisać. Zapamiętaj więc, że:

W miejsach, gdy w kodzie używającym szablonów mają wystąpić obok siebie dwa
ostre nawiasy zamykające (>>), należy wstawić między nimi spację (> >), by nie
pozwolić na ich interpretację jako operatora przesunięcia.

O tym i o podobnych lapsusach językowych napomknę więcej w stosownym czasie.

Co się dzieje, gdy tworzymy obiekt szablonu klasy

Aby ten paragraf nie był jedynie prezentacją rzeczy oczywistych (tworzenie obiektów klas
szablowych) i denerwujących (vide kwestia nawiasów ostrych), powiedzmy sobie jeszcze
o jednej sprawie. Co w zasadzie dzieje się, gdy w kodzie napotka kompilator na
instrukcję tworzącą obiekt klasy szablonowej?…
Oczywiście, ogólna odpowiedź brzmi „generuje odpowiedni kod maszynowy”. Warto
jednak zagłębić się nieco w szczegóły, bo dzięki temu spotka nas pewna miła
niespodzianka…

A zatem - co się dzieje? Przede wszystkim musimy sobie uświadomić fakt, że takie
„nazwy” jak TArray<int>, TDynamicArray<double> i inne nazwy szablonów klas z

127 To właściwie problem nie tylko kompilator, ale samego Standardu C++, który pozwala im na takie beztroskie
zachowanie. Pozostaje mieć nadzieję, że to się zmieni…

Szablony 531

podanymi parametrami nie reprezentują klas istniejących w kodzie programu. Są
one tylko instrukcjami dla kompilatora, mówiącymi mu, by wykonał dwie czynności:

 odnalazł wskazany szablon klas (TArray, TDynamicArray …) i sprawdził, czy
podane mu parametry są poprawne

 wykonał jego konkretyzację, czyli wygenerował odpowiednie klasy szablonowe

Właściwe klasy są więc tworzone dopiero w czasie kompilacji - działa to na nieco
podobnej zasadzie, jak rozwijanie makr preprocesora, choć jest oczywiście znacznie
bardziej zaawansowane. Najważniejsze dla nas, programistów nie są jednak szczegóły
tego procesu, lecz jedna cecha kompilatora - bardzo dla nas korzystna.
A chodzi o to, że kompilator jest… leniwy (ang. lazy)! Jego lenistwo polega na tym, że
wykonuje on wyłącznie tyle pracy, ile jest konieczne do poprawnej kompilacji - i nic
ponadto. W przypadku szablonów klas znaczy to po prostu tyle, że:

Konkretyzacji podlegają tylko te składowe klasy, które są faktycznie używane.

ten bardzo przyjemny dla nas fakt najlepiej zrozumieć, jeżeli przez chwilę wczujemy się
w rolę leniwego kompilatora. Przypuśćmy, że widzi on taką deklarację:

TArray<CFoo> aFoos;

Naturalnie, odszukuje on szablon TArray; przypuśćmy, że stwierdza przy tym, iż dla typu
CFoo nie był on jeszcze konkretyzowany. Innymi słowy, nie posiada definicji klasy
szablonowej dla tablicy elementów typu CFoo. Musi więc ją stworzyć. Cóż więc robi? Otóż
w pocie czoła generuje on dla siebie kod w mniej więcej takiej postaci128:

class TArray<CFoo>
{
 static const unsigned DOMYSLNY_ROZMIAR = 5;

 private:
 CFoo* m_pTablica;
 unsigned m_uRozmiar;

 public:
 explicit TArray(unsigned uRozmiar = DOMYSLNY_ROZMIAR)
 : m_uRozmiar(uRozmiar), m_pTablica(new CFoo [m_uRozmiar]) { }

};

„Chwila! A gdzie są wszystkie pozostałe metody?!” Możesz się zaniepokoić, ale poczekaj
chwilę… Powiedzmy, że oto dalej spotykamy instrukcję:

aFoos[0] = CFoo("Foooo!");

Co wtedy? Wracamy mianowicie do wygenerowanej przed chwilą definicji, a kompilator ją
modyfikuje i teraz wygląda ona tak:

class TArray<CFoo>
{
 static const unsigned DOMYSLNY_ROZMIAR = 5;

 private:
 CFoo* m_pTablica;
 unsigned m_uRozmiar;

128 Domniemane produkty pracy kompilatora zapisuję bez charakterystycznego formatowania.

Zaawansowane C++ 532

 public:
 explicit TArray(unsigned uRozmiar = DOMYSLNY_ROZMIAR)
 : m_uRozmiar(uRozmiar), m_pTablica(new CFoo [m_uRozmiar]) { }

 CFoo& operator[](unsigned uIndeks) { return m_pTablica[uIndeks]; }
};

Wreszcie kompilator stwierdza, że wyszedł poza zasięg zmiennej aFoos. Co wtedy dzieje
się z naszą klasą? Spójrzmy na nią:

class TArray<CFoo>
{
 static const unsigned DOMYSLNY_ROZMIAR = 5;

 private:
 CFoo* m_pTablica;
 unsigned m_uRozmiar;

 public:
 explicit TArray(unsigned uRozmiar = DOMYSLNY_ROZMIAR)
 : m_uRozmiar(uRozmiar), m_pTablica(new CFoo [m_uRozmiar]) { }
 ~TArray() { delete m_pTablica; }

 CFoo& operator[](unsigned uIndeks) { return m_pTablica[uIndeks]; }
};

Czy już rozumiesz? Przypuszczam, że tak. Zaakcentujmy jednak to ważne stwierdzenie:

Kompilator konkretyzuje wyłącznie te metody klasy szablonowej, które są
używane.

Korzyść z tego faktu jest chyba oczywista: generowanie tylko potrzebnego kodu sprawia,
że w ostatecznym rozrachunku jest go mniej. Programy są więc mniejsze, a przez to
także szybciej działają. I to wszystko dzięki lenistwu kompilatora! Czy więc nadal można
podzielać pogląd, że ta cecha charakteru jest tylko przywarą? :)

Funkcje operujące na obiektach klas szablonowych
Szablony funkcji są często przystosowane do manipulowanai obiektami klas
szablonowych - w zbliżony sposób, w jaki czynią to zwykłe funkcje z normalnymi klasami.
Popatrzmy na ten oto przykład funkcji Szukaj():

template <typename TYP> int Szukaj(const TArray<TYP>& aTablica,
 TYP Szukany)
{
 // przelatujemy po tablicy i porównujemy elementy
 for (unsigned i = 0; i < aTablica.Rozmiar(); ++i)
 if (aTablica[i] == Szukany)
 return i;

 // jeśli nic nie znajdziemy, zwracamy -1
 return -1;
}

Sama jej treść do szczególnie odkrywczych nie należy, a przeznaczenie jest, zdaje się,
oczywiste. Spójrzmy raczej na nagłówek, bo to on sprawia, że mówimy o tym szablonie
w kategoriach współpracy z szablonem klas TArray. Oto bowiem parametr szablonu TYP

Szablony 533

używany jest jako parametr od TArray (między innymi). Dzięki temu mamy więc ogólną
funkcję do pracy z dowolnym rodzajem tablicy.

Taka współpraca pomiędzy szablonami klas i szablonami funkcji jest naturalna.
Gdziekolwiek bowiem umieścimy frazę template <...>, powoduje ona uniezależnienie
kodu od konkretnego typu danych. A jeśli chcemy tą niezależność zachować, to
nieuknione jest tworzenie kolejnych szablonów. W ten sposób skonstruowanych jest
mnóstwo bibliotek języka C++, z Biblioteką Standardową na czele.

Specjalizacje szablonów klas
Teraz porozmawiamy sobie o definiowaniu specjalnych wersji szablonów klas dla
określonych parametrów (typów). Mechanizm ten działa dość podobnie jak w przypadku
szablonów funkcji, więc nie powinno być z tym zbyt wielu problemów.

Specjalizowanie szablonu klasy
Specjalizacja szablonu klasy oznacza ni mniej więcej, jak tylko zdefiniowanie pewnej
szczególnej wersji tegoż szablonu dla pewnego wyjątkowego typu (parametru szablonu).
Dodatkowo, istnieje możliwość specjlizacji pojedynczej metody; zajmiemy się pokrótce
oboma przypadkami.

Własna klasa specjalizowana

Jako przykład na własną, kompletną specjalizację szablonu klasy posłużymy się
oczywiście naszym szablonem tablicy jednowymiarowej - TArray. Działa on całkiem
dobrze w ogólnej wersji, lecz przecież chcemy zdefiniować jego specjalizację. W tym
przypadku może to być sensowne w odniesieniu do typu char. Tablica elementów tego
typu jest bowiem niczym innym, jak tylko łańcuchem znaków. Niestety, w obecnej formie
klasa TArray<char> nie może być jako traktowana napis (obiekt std::string), bo dla
kompilatora nie ma teraz żadnej praktycznej różnicy między wszystkimi typami tablic
TArray.

Aby to zmienić, musimy rzecz jasna wprowadzić swoją własną specjalizację TArray dla
parametru char. Klasa ta będzie różniła się od wersji ogólnej tym, iż wewnątrznym
mechanizmem przechowywania tablicy będzie nie tablica dynamiczna typu char* (w
ogólności: TYP*), lecz napis w postaci obiektu std::string. Pozwoli to na dodanie
operatora konwersji, aczkolwiek zmieni nieco kilka innych metod klasy. Spójrzmy więc na
tę specjalizację:

#include <string>

template<> class TArray<char>
{
 static const unsigned DOMYSLNY_ROZMIAR = 5;

 private:
 // rzeczona tablica w postaci napisu std::string
 std::string m_strTablica;

 public:
 // konstruktor
 explicit TArray(unsigned uRozmiar = DOMYSLNY_ROZMIAR)
 : m_strTablica(uRozmiar, '\0') { }
 // (destruktor niepotrzebny)

 //---

 // (pomijam metody Pobierz() i Ustaw())

Zaawansowane C++ 534

 unsigned Rozmiar() const
 { return static_cast<unsigned>(m_strTablica.length()); }
 bool ZmienRozmiar(unsigned);

 //---

 // operator indeksowania
 char& operator[](unsigned uIndeks) { return m_strTablica[i]; }

 // operator rzutowania na typ std::string
 operator std::string() const { return m_strTablica; }
};

Cóż można o niej powiedzieć?… Naturalnie, rozpoczynamy ją, jak każdą specjalizację
szablonu, od frazy template<>. Następnie musimy jawnie podać parametry szablonu
(char), czyli nazwę klasy szablonowej (TArray<char>). Wymóg ten istnieje, bo definicja
tej klasy może być zupełnie różna od definicji oryginalnego szablonu!

Popatrzmy choćby na naszą specjalizację. Nie używamy już w niej tablicy dynamicznej
inicjowanej podczas wywołania konstruktora. Zamiast tego mamy obiekt klasy
std::string, któremu w czasie tworzenia tablicy każemy przechowywać podaną liczbę
znaków. Fakt, że sami nie alokujemy pamięci sprawia też, że i sami nie musimy jej
zwalniać: napis m_strTablica usunie się sam - zatem destruktor jest już niepotrzebny.
Poza tym nie ma raczej wielu niespodzianek. Do najciekawszych należy pewnie operator
konwersji na typ std::string - dzięki niemu tablica TArray<char> może być używana
tam, gdzie konieczny jest łańcuch znaków C++. Dodanie tej niejawnej konwersji było
głównym powodem tworzenia własnej specjalizacji; jak widać, założony cel został
osiągnięty łatwo i szybko.

Pozostaje jeszcze do zrobienia implementacja metody ZmienRozmiar(), którą umieścimy
poza blokiem klasy. Kod wyglądać może tak:

bool TArray<char>::ZmienRozmiar(unsigned uNowyRozmiar)
{
 try
 {
 // metoda resize() klasy std::string zmienia długość napisu
 m_strTablica.resize (uNowyRozmiar, '\0');
 }
 catch (std::length_error&)
 {
 // w razie niepowodzenia zmiany rozmiaru zwracamy false
 return false;
 }

 // gdy wszystko się uda, zwracamy true
 return true;
}

Od razu zwróćmy uwagę na brak klauzuli template<>. Nie ma jej, bowiem tutaj nie
mamy do czynienia ze specjalizacją szablonu ZmienRozmiar(). Metoda ta jest po prostu
zwykłą funkcją klasy TArray<char> - podobnie było zresztą w oryginalnym szablonie
TArray. Implementujemy ją więc jako normalną metodę. Nie ma tu zatem znaczenia
fakt, że metoda ta jest częścią specjalizacji szablonu klasy. Najlepiej jest po prostu
zapamiętać, że dany szablon specjalizujemy raz i to wystarczy; gdybyśmy także tutaj
spróbowali dodać template<>, to przecież byłoby tak, jakbyśmy ponownie chcieli

Szablony 535

sprecyzować fragment czegoś (metodę), co już zostało precyzyjnie określone jako całość
(klasa).
Co do treści metody, to używamy tutaj funkcji std::string::resize() do zmiany
rozmiaru napisyu. Funkcja ta może rzucić wyjątek w przypadku niepowodzenia. My ten
wyjątek „przerabiamy” na rezultat funkcji: false, jeśli wystąpi, i true, gdy wszystko się
uda.

Specjalizacja metody klasy

Przyglądając się uważnie specjalizacji TArray dla typu char można odnieść wrażenie, że
przynajmniej częściowo został on stworzony poprzez skopiowanie składowych z definicji
samego szablonu TArray. Przykładowo, funkcja dla operatora [] jest praktycznie
identyczna z tą zamieszczoną w ogólnym szablonie (kwestia nazwy m_strTablica czy
m_pTablica jest przecież czysto symboliczna).
To może nam się nieszczególnie podobać, ale jest do przyjęcia. Gorzej, jeśli w klasie
specjalizowanej chcemy napisać nieco inną wersję tylko jednej metody z pierwotnego
szablonu. Czy wówczas jesteśmy skazani na specjalizowanie całej klasy oraz niewygodne
kopiowanie i bezsensowne zmiany prawie całego jej kodu?…

Odpowiedź brzmi na szczęście „Nie!” Niechęć do jednej metody szablonu klasy nie
oznacza, że musimy obrażać się na ów szablon jako całość. Możliwe jest
specjalizowanie metod dla szablonów klas; wyjaśnijmy to na przykładzie.

Przypuśćmy mianowicie, że zachciało nam się, aby tablica TArray zachowywała się w
specjalny sposób w odniesieniu do elementów będacych wskaźnikami typu int*. Otóż
pragniemy, aby przy niszczeniu tablicy zwalniana była także pamięć, do której odnoszą
się te wskaźniki (elementy tablicy). Nie rozwodźmy się nad tym, na ile jest to dorzeczne
programistycznie, lecz zastanówmy się raczej, jak to wykonać. Chwila zastanowienia i
rozwiązanie staje się jasne: potrzebujemy trochę zmienionej wersji destruktora. Powinien
on jeszcze przed usunięciem samej tablicy zadbać o zwolnienie pamięci przynależnej
zawartym weń wskaźnikom. Zmiana mała, lecz ważna.
Musimy więc zdefiniować nową wersję destruktora dla klasy TArray<int*>. Nie jest to
specjalnie trudne:

template<> TArray<int*>::~TArray()
{
 // przelatujemy po elementach tablicy (wskaźnikach) i każdemu
 // aplikujemy operator delete
 for (unsigned i = 0; i < Rozmiar(); ++i)
 delete m_pTablica[i];

 // potem jak zwykle usuwamy też samą tablicę
 delete[] m_pTablica;
}

Jak to zwykle w specjalizacjach, zaczynamy od template<>. Dalej widzimy natomiast
normalną w zasadzie definicję destruktora. To, iż jest ona specjalizacją metody dla
TArray z parametrem int* rozpoznajemy rzecz jasna po nagłówku - a dokładniej, po
nazwie klasy: TArray<int*>.
Reszta nie jest chyba zaskoczeniem. W destruktorze TArray<int*> wpierw więc
przechodzimy po całej tablicy, stosując operator delete dla każdego jej elementu
(wskaźnika). W ten sposób zwalniamy bloki pamięci (zmienne dynamiczne), na które
pokazują wskaźniki. Z kolei po skończonej robocie pozbywamy się także samej tablicy -
dokładnie tak, jak to czyniliśmy w szablonie TArray.

Zaawansowane C++ 536

Częściowa specjalizacja szablonu klasy
Pełna specjalizacja szablonu oznacza zdefiniowanie klasy dla konkretnego, precyzyjnie
określonego zestawy argumentów. W naszym przypadku było to dosłowne podanie typ
elementów tablict TArray, np. char.
Czasem jednak taka precyzja nie jest pożądana. Niekiedy zdarza się, że wygodniej
byloby wprowadzić bardziej szczegółową wersję szablonu, która nie operowałaby przy
tym konkretnymi typami. Wtedy właśnie wykorzystujemy specjalizację częściową
(ang. partial specialization). Zobaczymy to tradycyjnie na odpowiednim przykładzie.

Problem natury tablicowej

A zatem… Nasz szablon tablicy TArray sprawdza się całkiem dobrze. Dotyczy to
szczególnie prostych zastosowań, do których został pierwotnie pomyślany - jak na
przykład jednowymiarowa tablica liczb czy lista napisów. Idąc dalej, łatwo można sobie
jednak wyobrazić bardziej zaawansowane wykorzystanie tego szablonu - w tym także
jako dwuwymiarowej tablicy tablic, np.:

TArray<TArray<int> > aInty2D;

Naturalnie chcielibyśmy, aby taka funkcjonalnośc była nam dana niejako „z urzędu”, z
samej tylko definicji TArray. Zdawałoby się zresztą, że wszystko jest tutaj w porzadku i
że faktycznie możemy się posługiwać zmienną aInty2D jak tablicą o dwóch wymiarach.
Niestety, nie jest tak różowo; mamy tu przynajmniej dwa problemy.
Po pierwsze: w jaki sposób mielibyśmy ustalić rozmiar(y) takiej tablicy?… Typ zmiennej
aInty2D jest tu wprawdzie „podwójny”, ale przy jej tworzeniu nadal używany jest
normalny konstruktor TArray, który jest jednoparametrowy. Możemy więc podać
wyłącznie jeden wymiar tablicy, zaś drugi zawsze musiałby być równy wartości
domyślnej!
Oprócz tego oczywistego błędu (całkowicie wykluczającego użycie tablicy) mamy jeszcze
jeden mankament. Mianowicie, zawartość tablicy nie jest rozmieszczona w pamięci w
postaci jednego bloku, jak to czyni kompilator w wypadku statycznych tablic. Zamiast
tego każdy jej wiersz (podtablica) jest umieszczony w innym miejscu, co przy większej
ich liczbie, rozmiarach i częstym dostępie będzie ujemnie odbijało się na efektywności
kodu.

Rozwiązanie: przypadek szczególniejszy, ale nie za bardzo

Co można na to poradzić? Rozwiązaniem jest specjalne potraktowanie klasy
TArray<TArray<typ_elementu> > i zdefiniowanie jej odmiennej postaci - nieco innej niż
wyjściowy szablon TArray. Przedtem jednak zwróćmy uwagę, iż nie możemy tutaj
zastosować całkowitej specjalizacji tegoż szablonu, bowiem typ_elementu nadal jest tu
parametrem o dowolnej „wartości” (typie).

Jak się pewnie domyślasz, trzeba tu zastosować specjalizację częściową. Będzie ona
traktowała zagnieżdżone szablony TArray w specjalny sposób, zachowując jednak
możliwość dowolnego ustalania typu elementów tablicy. Popatrzmy więc na definicję tej
specjalizacji:

template <typename TYP> class TArray<TArray<TYP> >
{
 static const unsigned DOMYSLNY_ROZMIAR = 5;

 private:
 // wskaźnik na tablicę
 TYP* m_pTablica;

 // wymiary tablicy
 unsigned m_uRozmiarX;

Szablony 537

 unsigned m_uRozmiarY;

 public:
 // konstruktor i destruktor
 explicit TArray(unsigned uRozmiarX = DOMYSLNY_ROZMIAR,
 unsigned uRozmiarY = DOMYSLNY_ROZMIAR)
 : m_uRozmiarX(uRozmiarX), m_uRozmiar(uRozmiarY),
 m_pTablica(new TYP [uRozmiarX * uRozmiarY]) { }
 ~TArray() { delete[] m_pTablica; }

 //---

 // metody zwracające wymiary tablicy
 unsigned RozmiarX() const { return m_uRozmiarX; }
 unsigned RozmiarY() const { return m_uRozmiarY; }

 //---

 // operator () do wybierania elementów tablicy
 TYP& operator()(unsigned uX, unsigned uY)
 { return m_pTablica[uY * m_uRozmiarX + uX]; }

 // (pomijam konstruktor kopiujący i operator przypisania}
};

Tak naprawdę to w opisywanej sytuacji specjalizacja częściowa niekoniecznie może być
uznawana za najlepsze rozwiązanie. Dość logiczne jest bowiem zdefiniowanie sobie
zupełnie nowego szablonu, np. TArray2D i wykorzystywanie go zamiast misternej
konstrukcji TArray<TArray<...> >. Ponieważ jednak masz tutaj przede wszystkim
poznać zagadnienie specjalizacji częściowej, wyłącz na chwilę swój nazbyt czuły
wykrywacz naciąganych rozwiązań i w spokoju kontynuuj lekturę :D

Rozpoczyna się ona od sekwencji template <typename TYP> (a nie template<>), co
może budzić zaskoczenie. W rzeczywistości jest to logiczne i niezbędne: to prawda, że
mamy do czynienia ze specjalizacją szablonu, jednak jest to specjalizacja częściowa,
zatem nie określamy explicité wszystkich jego parametrów. Nadal więc posługujemy się
faktycznym szablonem - choćby w tym sensie, że typ elementów tablicy pozostaje
nieznany z góry i musi podlegać parametryzacji jako TYP. Klauzula template <typename
TYP> jest zatem niezbędna - podobnie zresztą jak we wszystkich przypadkach, gdy
tworzymy kod niezależny od konkretnego typu danych.

Tutaj klauzula ta wygląda tak samo, jak w oryginalnym szablnoie TArray. Warto jednak
wiedzieć, że nie musi wcale tak być. Przykładowo, jeśli specjalizowalibyśmy szablon o
dwóch parametrach, wówczas fraza template <...> mogłaby zawierać tylko jeden
parametr. Drugi musiałby być wtedy narzucony odgórnie w specjalizacji.

Kompilator wie jednak, że nie jest to taki zwyczajny szablon podstawowy. Dalej bowiem
określamy dokładnie, o jakie przypadki użycia TArray nam chodzi. Są to więc te
sytuacje, gdy klasa parametryzowana nazwą TYP (TArray<TYP>) sama staje się
parametrem szablonu TArray, tworząc swego rodzaju zagnieżdżenie (tablicę tablic) -
TArray<TArray<TYP> >. O tym świadczy pierwsza linijka naszej definicji, czyli:

template <typename TYP> class TArray<TArray<TYP> >

Sam blok klasy wynika bezpośrednio z tego, że programujemy tablicę dwuwymiarową
zamiast jednowymiarowej. Mamy więc dwa pola określające jej rozmiar - liczbę wierszy i
ilość kolumn. Wymiary te podajemy w nowym, dwuparametrowym konstruktorze:

Zaawansowane C++ 538

explicit TArray(unsigned uRozmiarX = DOMYSLNY_ROZMIAR,
 unsigned uRozmiarY = DOMYSLNY_ROZMIAR)
 : m_uRozmiarX(uRozmiarX), m_uRozmiar(uRozmiarY),
 m_pTablica(new TYP [uRozmiarX * uRozmiarY]) { }

Ten zaś dokonuje alokacji pojedynczego bloku pamięci na całą tablicę - a o to nam
przecież chodziło. Wielkość tego bloku jest rzecz jasna na tyle duża, aby pomieścić
wszystkie elementy - równa się ona iloczynowi wymiarów tablicy (bo np. tablica 4×7 ma
w sumie 28 elementów, itp.).
Niestety, fakt iż jest to tablica dwuwymiarowa, uniemożliwia przeciążenie w prosty
sposób operatora [] celem uzyskania dostępu do poszczególnych elementów tablicy.
Zamiast tego stosujemy więc inny rodzaj nawiasów - okrągłe. Te bowiem pozwalają na
podanie dowolnej liczby argumentów (indeksów); my potrzebujemy naturalnie dwóch:

TYP& operator()(unsigned uX, unsigned uY)
 { return m_pTablica[uY * m_uRozmiarX + uX]; }

Używamy ich potem, aby zwrócić element o żądanych indeksach. Wewnętrzna
m_pTablica jest aczkolwiek ciągła i jednowymiarowa (bo ma zajmować pojedynczy blok
pamięci), dlatego konieczne jest przeliczenie indeksów. Zajmuje się tym formułka uY *
m_uRozmiar + uX, sprawiając jednocześnie, że elementy tablicy są układane w pamięci
wierszami. „Przypadkowo” zgadza się to ze sposobem, jaki stosuje kompilator języka
C++.

Na koniec popatrzmy jeszcze na sposób użycia tej (częściowo) specjalizowanej wersji
szablonu TArray. Oto przykład kodu, który z niej korzysta:

TArray<TArray<double> > aMacierz4x4(4, 4);

// dostęp do elementów tablicy
for (unsigned i = 0; i < aMacierz4x4.RozmiarX(); ++i)
 for (unsigned j = 0; j < aMacierz4x4.RozmiarY(); ++j)
 aMacierz4x4(i, j) = i + j;

Tak więc dzięki specjalizacji częściowej klasa TArray<TArray<double> > i inne tego
rodzaju mogą działać poprawnie, co nie bylo możliwe, gdy obecna była jedynie
podstawowa wersja szablonu TArray.

Domyślne parametry szablonu klasy
Szablon klasy ma swoją listę parametrów, z których każdy może mieć swoją „wartość”
domyślną. Działa to w analogiczny sposób, jak argumenty domyślne wywołań funkcji.
Popatrzmy więc na tę technikę.

Typowy typ

Zanim jednak popatrzymy na samą technikę, popatrzmy na taki oto szablon:

// para
template <typename TYP1, typename TYP2> struct TPair
{
 // elementy pary
 TYP1 Pierwszy;
 TYP2 Drugi;

 //---

 // konstruktor

Szablony 539

 TPair(const TYP1& e1, const TYP2& e2) : Pierwszy(e1), Drugi(e2) { }
};

Reprezentuje on parę wartości różnych typów. Taka struktura może się wydawać lekko
dziwaczna, ale zapewniam, że znajduje ona swoje zastosowania w róznych
nieprzewidzianych momentach :) Zresztą nie o zastosowania tutaj chodzi, lecz o
parametey szablonu.
A mamy tutaj dwa takie parametry: typy obu obiektów. Użycie naszej klasy wyglądać
więc może chociażby tak:

TPair<int, int> Dzielnik(42, 84);
TPair<std::string, int> Slownie("dwanaście", 12);
TPair<float, int> Polowa(2.5f, 5);

Przypuśćmy teraz, że w naszym programie często zdarza się nam, iż jeden z obiektów w
parze należy do jakiegoś znanego z góry typu. W kodzie powyżej na przykład każda z
tych par ma jeden element typu int.
Chcąc zaoszczędzić sobie konieczności pisania tego podczas deklarowania zmiennych,
możemy uczynić int argumentem domyślnym:

template <typename TYP1, typename TYP2 = int> struct TPair
{
 // ...
};

Pisząc w ten sposób sprawiamy, że w razie niepodania „wartości” dla drugiego parametru
szablonu, ma on oznaczać typ int:

TPair<CFoo> Wielkosc(CFoo(), sizeof(CFoo)); // TPair<CFoo, int>
TPair<double> Pierwiastek(sqrt(2), 2); // TPair<double, int>
TPair<int> DwaRaz(12, 6); // TPair<int, int>

Określając parametr domyślny pamiętajmy jednak, że:

Parametr szablonu może mieć wartość domyślną tylko wtedy, gdy znajduje się na
końcu listy lub gdy wszystkie parametry za nim też mają wartość domyślną.

Niepoprawny jest zatem szablon:

template <typename TYP1 = int, typename TYP2> struct TPair; // ŹLE!

Nic aczkolwiek nie stoi na przeszkodzie, aby podać wartości domyślne dla wszystkich
parametrów:

template <typename TYP1 = std::string, typename TYP2 = int>
 struct TPair; // OK

Używając takiego szablonu, nie musimy już podawać żadnych typów, aczkolwiek należy
zachować nawiasy kątowe:

TPair<> Opcja("Ilość plików", 200); // TPair<std::string, int>

Obecnie domyślne argumenty można podawać wyłącznie dla szablonów klas. Jest to
jednak pozostałość po wczesnych wersjach C++, niemająca żadnego uzasadnienia, więc
jest całkiem prawdopodobne, że ograniczenie to zostanie wkrótce usunięte ze Standardu.
Co więcej, sporo kompilatorów już teraz pozwala na podawanie domyślnych argumentów
szablonów funkcji.

Zaawansowane C++ 540

Skorzystanie z poprzedniego parametru

Dobierając parametr domyślny szablonu, możemy też skorzystać z poprzedniego. Oto
przykład dla naszej pary:

template <typename TYP1, typename TYP2 = TYP1> struct TPair;

Przy takim postawieniu sprawy i podaniu jednego parametru szablonu będziemy mieli
pary identycznych obiektów:

TPair<int> DwaDo(8, 256);
TPair<std::string> Tlumaczenie("tablica", "array");
TPair<double> DwieWazneStale(3.14, 2.71);

Można jeszcze zauważyć, że identyczny efekt osiągnęlibyśmy przy pomocy częściowej
specjalizacji szablonu TPair dla tych samych argumentów:

template <typename TYP> struct TPair<TYP, TYP>
{
 // elementy pary
 TYP Pierwszy;
 TYP Drugi;

 //---

 // konstruktor
 TPair(const TYP& e1, const TYP& e2) : Pierwszy(e1), Drugi(e2) { }
};

Domyślne argumenty mają jednak tę oczywistą zaletę, że nie zmuszają do praktycznego
dublowania definicji klasy (tak jak powyżej). W tym konkretnym przypadku są one
znacznie lepszym wyborem. Jeżeli jednak postać szablonu dla pewnej klasy parametrów
ma się znacząco różnić, wówczas dosłownie napisana specjalizacja jest najczęściej
konieczna.

Na tym kończymy prezentację szablonów funkcji oraz klas. To aczkolwiek nie jest jeszcze
koniec naszych zmagań z szablonami w ogóle. Jest bowiem jeszcze kilka rzeczy
ogólniejszych, o których należy koniecznie wspomnieć. Przejdźmy więc do kolejnego
podrozdziału na temat szablonów.

Więcej informacji
Po zasadniczym wprowadzeniu w tematykę szablonów zajmiemy się nieco szczegółowiej
kilkoma ich aspektami. Najpierw więc przestudiujemy parametry szablonów, potem zaś
zwrócimy uwagę na pewne problemy, jakie moga wyniknąć podczas stosowania tego
elementu języka. Najwięcej uwagi poświęcimy tutaj sprawie organizacji kodu szablonów
w plikach nagłówkowych i modułach, gdyż jest to jedna z kluczowych kwestii.

Zatem poznajmy szablony trochę bliżej.

Parametry szablonów
Dowiedziałeś się na samym początku, że każdy szablon rozpoczyna się od obowiązkowej
frazy w postaci:

Szablony 541

[export] template <parametry>

O nieobowiązkowym słowie kluczowym export powiemy w następnej sekcji, w paragrafie
omawiającym tzw. model separacji.

Nazywamy ją klauzulą parametryzacji (ang. parametrization clause). Pełni ona w
kodzie dwojaką funkcję:

 informuje ona kompilator, że następujący dalej kod jest szablonem. Dzięki temu
kompilator wie, że nie powinien dlań przeprowadzać normalnej kompilacji, lecz
potraktować w sposób specjalny - czyli poddać konkretyzacji

 klauzula zawiera też deklaracje parametrów szablonu, które są w nim używane

Właśnie tymi deklaracjami oraz rodzajami i użyciem parametrów szablonu zajmiemy się
obecnie. Na początek warto więc wiedzieć, że parametry szablonów dzielimy na trzy
rodzaje:

 parametry będące typami
 parametry będące stałymi znanymi w czasie kompilacji (tzw. parametry

pozatypowe)
 szablony parametrów

Dotychczas w naszych szablonach niepodzielnie królowały parametry będące typami.
Nadal bowiem są to najczęściej wykorzystywane parametry szablonów; dotąd mówi się
nawet, że szablony i kod niezależny od typu danych to jedno i to samo.
My jednak nie możemy pozwolić sobie na ignorację w zakresie ich parametrów. Dlatego
też teraz omówimy dokładnie wszystkie rodzaje parametrów szablonów.

Typy
Parametry szablonów będące typami stanowią największą siłę szablonów, przyczynę ich
powstania, niespotykanej popularności i przydatności. Nic więc dziwnego, że pierwsze
poznane przez nas przykłady szablonów korzystały właśnie z parametryzowania typów.
Nabrałeś więc całkiem sporej wprawy w ich stosowaniu, a teraz poznasz kryjącą się za
tym fasadę teorii ;)

Przypominamy banalny przykład
W tym celu przywołajmy pierwszy przykład szablonu, z jakim mieliśmy do czynienia, czyli
szablon funkcji max():

template <typename T> T max(T a, T b)
{
 return (a > b ? a : b);
}

Ma on jeden parametr, będący typem; parametr ten nosi nazwę T. Jest to zwyczajowa
już nazwa dla takich parametrów szablonu, którą można spotkać niezwykle często.
Zgodnie z tą konwencją, nazwę T nadaje się parametrowi będącemu typem, jeśli jest on
jednocześnie jedynym parametrem szablonu i w związku z tym pełni jakąś szczególną
rolę. Może to być np. typ elementów tablicy czy, tak jak tutaj, typ parametrów funkcji i
zwracanej przez nią wartości.

Nazwa T jest tu więc symbolem zastępczym dla właściwego typu porównywanych
wartości. Jeżeli pojęcie to sprawia ci trudność, wyobraź sobie, że działa ono podobnie jak
alias typedef. Można więc przyjąć, że kompilator, stosując funkcję w konkretnym
przypadku, definiuje T jako alias na właściwy typ. Przykładowo, specjalizację max<int>
można traktować jako kod:

Zaawansowane C++ 542

typedef int T;
T max (T a, T b) { return (a > b ? a : b); }

Naturalnie, w rzeczywistości generowana jest po prostu funkcja:

int max<int>(int a, int b);

Niemniej powyższy sposób może ci z początku pomóc, jeśli dotąd nie rozumiałeś idei
parametru szablonu będącego typem.

class zamiast typename
Parametr szablonu będący typem oznaczaliśmy dotąd za pomocą słowa kluczowego
typename. Okazuje sie, że można to także robić poprzez słówko class:

template <class T> T max(T a, T b);

Nie oznacza to bynajmniej, że podany parametr szablonu może być wyłącznie klasą
zdefiniowaną przez użytkownika129. Przeciwnie, otóż:

Slowa class i typename w są synonimami w deklaracjach parametrów szablonu
będących typami.

Po co zatem istnieją dwa takie słowa?… Jest to spowodowane tym, iż pierwotnie jedynym
sposobem na deklarowanie parametrów szablonu było class. typename wprowadzono do
języka później, i to w całkiem innym przeznaczeniu (o którym też sobie powiemy). Przy
okazji aczkolwiek pozwolono na użycie tego nowego slowa w deklaracjach parametrów
szablonów, jako że znacznie lepiej pasuje tutaj niż class. Dlatego też mamy ostatecznie
dwa sposoby na zrobienie tego samego.

Można z tego wyciągnąć pewną korzyść. Wprawdzie dla kompilatora nie ma znaczenia,
czy do deklaracji parametrów używamy class czy typename, lecz nasz wybór może mieć
przecież znaczenie dla nas. Logiczne jest mianowicie używanie class wyłącznie tam,
gdzie faktycznie spodziewamy się, że przekazanym typem będzie klasa (bo np.
wywołujemy jej metody). W pozostałych przypadkach, gdy typ może być absolutunie
dowolny (jak choćby w uprzednich szablonach max() czy TArray), rozsądne jest
stosowanie typename.
Naturalnie, to tylko sugestia, bo jak mówiłem już, kompilatorowi jest w tej kwestii
wszystko jedno.

Stałe
Cenną właściwością szablonów jest możliwość użycia w nich innego rodzaju parametrów
niż tylko typy. Są to tak zwane parametry pozatypowe (ang. non-type parameters), a
dokładniej mówiąc: stałe.

Użycie parametrów pozatypowych
Ich wykorzystanie najlepiej będzie zobaczyć na paru rozsądnych przykładach.

129 Czyli typem zdefiniowanym poprzez struct, union lub class.

Szablony 543

Przykład szablonu klasy

W poprzednim paragrafie zdefiniowaliśmy sobie szablon klasy TArray. Służył on jako
jednowymiarowa tablica dynamiczna, której rozmiar podawaliśmy przy tworzeniu i
ewentualnie zmienialiśmy w trakcie korzystania z obiektu.
Można sobie jeszcze wyobrazić podobny szablon dla tablicy statycznej, której rozmiar jest
znany podczas kompilacji. Oto propozycja szablonu TStaticArray:

template <typename T, unsigned N> class TStaticArray
{
 private:
 // tablica
 T m_aTablica[N];

 public:
 // rozmiar tablicy jako stała
 static const unsigned ROZMIAR = N;

 //---

 // operator indeksowania
 T& operator[](unsigned uIndeks)
 { return m_aTablica[uIndeks]; }

 // (itp.)
};

Jak słusznie zauważyłeś, szablon ten zawiera dwa parametry. Pierwszy z nich to typ
elementów tablicy, deklarowany w znany sposób poprzez typename. Natomiast drugi
parametr jest właśnie przedmiotem naszego zainteresowania. Stosujemy w nim typ
unsigned, wobec czego będzie on stałą tego właśnie typu.
Popatrzmy najlepiej na sposób użycia tego szablonu:

TStaticArray<int, 10> a10Intow; // 10-elementowa tablica typu int
TStaticArray<float, 20> a20Floatow; // 20 liczb typu float
TStaticArray<
 TStaticArray<double, 5>,
 8> a8x5Double; // tablica 8×5 liczb typu double

Podobnie jak w przypadku parametrów będących typami możesz sobie wyobrazić, że
kompilator konkretyzuje szablon, definiując wartość N jako stałą. Klasa
TStaticArray<float, 10> odpowiada więc mniej więcej zapisowi w takiej postaci:

typedef float T;
const unsigned N = 10;

class TStaticArray
{
 private:
 T m_aTablica[N];

 // ...
};

Wynika z niego przede wszystkim to, iż:

Parametry pozatypowe szablonów są traktowane wewnątrz nich jako stałe.

Zaawansowane C++ 544

Oznacza to przede wszystkim, że muszą być one „wywoływane” z wartoścami, które są
obliczalne podczas kompilacji. Wszystkie pokazane powyżej konkretyzacje są więc
poprawne, bo 10, 20, 5 i 8 są rzecz jasna stałymi dosłownymi, a więc znanymi w czasie
kompilacji. Nie byłoby natomiast dozwolone użycie szablonu jako TStaticArray<typ,
zmienna>, gdzie zmienna niezadeklarowana została z przydomkiem const.

Przykład szablonu funkcji

Gdy mamy już zdefiniowany nowy szablon tablicy, możemy spróbować stworzyć dla
niego odpowiadającą wersję funkcji Szukaj(). Naturalnie, będzie to również szablon:

template <typename T, unsigned N>
 int Szukaj(const TStaticArray<T, N>& aTablica, T Szukany)
{
 // przegląd tablicy
 for (unsigned i = 0; i < N; ++i)
 if (aTablica[i] == Szukany)
 return i;

 // -1, gdy nie znaleziono
 return -1;
}

Widać tutaj, że parametr pozatypowy może być z równym powodzeniem użyty zarówno
w nagłówku funkcji (typ const TStaticArray<T, N>&), jak i w jej wnętrzu (warunek
zakończenia pętli for).

Dwie wartości, dwa różne typy

Wyobraźmy sobie, że mamy dwie tablice tego samego typu, ale o różnych rozmiarach:

TStaticArray<int, 20> a20Intow;
TStaticArray<int, 10> a10Intow;

Spróbujmy teraz przypisać tę mniejszą do większej, w ten oto sposób:

a20Intow = a10Intow; // hmm...

Teoretycznie powinno być to jak najbardziej możliwe. Pierwszym 10 elementów tablicy
a20Intow mogłoby być przecież zastąpione zawartością zmiennej a10Intow. Nie ma
zatem przeciwwskazań.
Niestety, kompilator odrzuci taki kod, mówiąc, iż nie znalazł żadnego pasującego
operatora przypisania ani niejawnej konwersji. I będzie to szczera prawda! Musimy
bowiem pamiętać, że:

Szablony klas konkretyzowane innym zestawem parametrów są zupełnie
odmiennymi typami.

Nic więc dziwnego, że TStaticArray<int, 10> i TStaticArray<int, 20> są traktowane
jako odrębne klasy, niezwiązane ze sobą (obie te nazwy, wraz z zawartością nawiasów
kątowych, są bowiem nazwami typów, o czym przypominam po raz któryś). W takim
wypadku domyślnie generowany operator przypisania zawodzi. Warto więc pamiętać o
powyższej zasadzie.

No ale skoro mamy już taki problem, to przydałoby się go rozwiązać. Odpowiednim
wyjściem jest własny operator przypisania zdefiniowany jako szablon składowej:

template <typename T, unsigned N> class TStaticArray
{

Szablony 545

 // ...

 public:
 // operator przypisania jednej tablicy do drugiej
 template <typename T2, unsigned N2>
 TStaticArray&
 operator=(const TStaticArray<T2, N2>& aTablica)
 {
 // kontrola przypisania zwrotnego
 if (&aTablica != this)
 {
 // sprawdzenie rozmiarów
 if (N2 > N)
 throw "Za duza tablica";

 // przepisanie tablicy
 for (unsigned i = 0; i < N2; ++i)
 (*this)[i] = aTablica[i];
 }

 return *this;
 }
};

Może i wygląda on nieco makabrycznie, ale w gruncie rzeczy działa na identycznej
zasadzie jak każdy rozsądny operator przypisania. Zauważmy, że parametryzacji podlega
w nim nie tylko rozmiar źródłówej tablicy (N2), ale też typ jej elementów (T2). To, czy
przypisanie faktycznie jest możliwe, zależy od tego, czy powiedzie się kompilacja
instrukcji:

(*this)[i] = aTablica[i];

A tak będzie oczywiście tylko wtedy, gdy istnieje niejawna konwersja z typu T2 do T.

Ograniczenia dla parametrów pozatypowych
Pozatypowe parametry szablonów w przeciwieństwie do parametrów funkcji nie mogą być
„wywoływane” z dowolnymi wartościami. Typami tychże parametrów mogą być bowiem
tylko:

 typy liczbowe, czyli int i jego pochodne (signed lub unsigned)
 typy wyliczeniowe (definiowane poprzed enum)
 wskaźniki do obiektów i funkcji globalnych
 wskaźniki do składowych klas

Lista ta jest dość krótka i może się wydawać nazbyt restrykcyjna. Tak jednak nie jest.
Głównie ze względu na sposób działania szablonów ich parametry pozatypowe są
ograniczone tylko do takich rodzajów.

Przyjrzyjmy się jeszcze kilku szczególnym przypadkom tych ograniczeń.

Wskaźniki jako parametry szablonu

Nie ma żadnych przeciwskazań, aby deklarować szablony z parametrami będącymi
typami wskaźnikowymi. Wygląda to na przykład tak:

template <int* P> class TClass
{
 // ...
};

Zaawansowane C++ 546

Gorzej wygląda sprawa z użyciem takiego szablonu. Otóż nie możemy przekazać mu
wskaźnika ani na obiekt chwilowy, ani na obiekt lokalny, ani nawet na obiekt o zasięgu
modułowym. Nie jest więc poprawny np. taki kod:

int nZmienna;
TClass<&nZmienna> Obiekt; // ŹLE! Wskaźnik na obiekt lokalny

Wyjaśnienie jest tu proste. Wszystkie takie obiekty mają po prostu zbyt mały zakres,
który nie pokrywa się z widocznością konkretyzacji szablonu. Aby tak było, obiekt, na
który wskaźnik podajemy, musiałby być globalny (łączony zewnętrznie):

extern int g_nZmienna = 42;
// ...
TClass<&g_Zmienna> Cos; // OK

Z identycznych powodów nie można do szablonów przekazywać łańcuchów znaków:

template <const char[] S> class TStringer { /* ... */ };
TStringer<"Hmm..."> Napisowiec; // NIE!

Łańcuch "Hmm..." jest tu bowiem obiektem chwilowym, zatem szybko przestałby istnieć.
Typ TStringer<"Hmm..."> musiałby natomiast egzystować i być potencjalnie dostępnym
w całym programie. To oczywiście wzajemnie się wyklucza.

Inne restrykcje

Oprócz powyższych obostrzeń są jeszcze dwa inne.

Po pierwsze, w charakterze parametrów szablonu nie można używać obiektów
własnych klas. Poniższe szablony są więc niepoprawne:

template <CFoo F> class TMetaFoo { /* ... */ };
template <std::string S> class TStringTemplate { /* ... */ };

Poza tym, w charakterze parametrów pozatypowych teoretrycznie niedozwolone są
wartości zmiennoprzecinkowe:

template <float F> class TCalc { /* ... */ };

Mówię ‘teoretycznie’, gdyż wiele kompilatorów pozwala na ich użycie. Nie ma bowiem ku
temu żadnych technicznych przeciwwskazań (w odróżnieniu od pozostałych ograniczeń
parametrów pozatypowych). Niemniej, w Standardzie C++ nadal zakorzenione jest to
przestarzałe ustalenie. Zapewne jednak tylko kwestią czasu jest jego usunięcie.

Szablony parametrów
Ostatnim rodzajem parametrów są tzw. szablony parametrów szablonów
(ang. template templates’ parameters). Pod tą dziwnie brzmiącą nazwą kryje się
możliwość przekazania jako parametru nie konkretnego typu, ale uprzednio
zdefiniowanego szablonu. Ponieważ zapewnie nie brzmi to zbyt jasno, najrozsądniej
będzie dojść do sedna sprawy przy pomocy odpowiedniego przykładu.

Idąc za potrzebą
A więc… Swego czasu stworzyliśmy sobie szablon ogólnej klasy TArray. Okazuje się
jednak, że niekiedy może być on niewystarczający. Chociaż dobrze nadaje się do samej
czynności przechowywania wartości, nie pomyśleliśmy o żadnych mechanizmach
operowania na tychże wartościach.

Szablony 547

Z drugiej strony, nie ma sensu zmiany dobrze działającego kodu w coś, co nie zawsze
będzie nam przyadtne. Takie czynności jak dodawnie, odejmowanie czy mnożenie tablic
mają bowiem sens tylko w przypadku wektorów liczb. Lepiej więc zdefiniować sobie nowy
szablon do takich celów:

template <typename T> class TNumericArray
{
 private:
 // wewnętrzna tablica
 TArray<T> m_aTablica;

 public:
 // ...

 // jakieś operatory...
 // (np. indeksowania)

 TNumericArray operator+(const TNumericArray& aTablica)
 {
 TNumericArray Wynik(*this);

 for (unsigned i = 0; i < Wynik.Rozmiar(); ++i)
 Wynik[i] += aTablica[i];

 return Wynik;
 }

 // (itp.)
};

W sumie nic specjalnego nie możemy powiedzieć o tym szablonie klasy TNumericArray.
Jak się pewnie domyślasz, to się za chwilę zmieni :)

Dodatkowy parametr: typ wewnętrznej tablicy

Może się okazać, że w naszym programie zmuszeni jesteśmy do operowania zarówno
wielkimi tablicami, jak i mniejszymi. W wypadku tych drugim wewnętrzny szablon TArray
służący do ich przechowywania pewnie zda egzamin, ale gdy liczba elementów rośnie,
mogą być konieczne bardziej wyrafinowane techniki zarządzania pamięcią.

Aby sprostać temu wymaganiu, rozsądnie byłoby umożliwić wybór typu wewnętrznej
tablicy dla szablonu TNumericArray:

template <typename T, typename TAB = TArray<T> >
 class TNumericArray
 {
 private:
 TAB m_aTablica;

 // ...
 };

Domyślnie byłby to nadal szablon TArray, niemniej przy takim szablonie TNumericArray
możnaby w miarę łatwo deklarować zarówno duże, jak i małe tablice:

TNumericArray<int> aMalaTablica(50);
TNumericArray<float, TOptimizedArray<float> > aDuzaTablica(1000);
TNumericArray<double, TSuperFastArray<double> > aGigaTablica(250000);

Zaawansowane C++ 548

W tym przykładzie zakładamy oczywiście, że TOptimizedArray i TSuperFastArray są
jakimiś uprzednio zdefiniowanymi szablonami tablic efektywniejszych od TArray. W
uzasadnionych przypadkach dużej liczby elementów ich użycie jest więc pewnie
pożądane, co też czynimy.

Drobna niedogodność

Powyższe rozwiązanie ma jednak pewien drobny mankament składniowy. Nietrudno
mianowicie zauważyć, że dwa razy piszemy w nim typ elementów tablic - float i double.
Pierwszy raz jest on podawany szablonowi TNumericArray, a drugi raz - szablonowi
wewnętrznej tablicy.

W sumie powoduje to zbytnią rozwlekłość nazwy całego typu TNumericArray<...>, a na
dodatek ujawnia osławiony problem nawiasów ostrych. Wydaje się przy tym, że
informację o typie podajemy o jeden raz za dużo; w końcu zamiast deklaracji:

TNumericArray<float, TOptimizedArray<float> > aDuzaTablica(1000);
TNumericArray<double, TSuperFastArray<double> > aGigaTablica(250000);

równie dobrze mogłoby się sprawdzać coś w tym rodzaju:

TNumericArray<float, TOptimizedArray> aDuzaTablica(1000);
TNumericArray<double, TSuperFastArray> aGigaTablica(250000);

Problem jednak w tym, że parametry szablonu TNumericArray - TOptimizedArray i
TSuperFastArray nie są zwykłymi typami danych (klasami), więc nie pasują do
deklaracji typename TAB. One same są szablonami klas, zdefiniowanymi zapewne kodem
podobnym do tego:

template <typename T> class TOptimizedArray { /* ... */ };
template <typename T> class TSuperFastArray { /* ... */ };

Można więc powiedzieć, że występuje to swoista „niezgodność typów” między pojęciami
‘typ’ i ‘szablon klasy’. Czy zatem nasz pomysł skrócenia sobie zapisu trzeba odrzucić?…

Deklarowanie szablonowych parametrów szablonów
Bynajmniej. Między innymi na takie okazje całkiem niedawno język C++ wyposażono w
możliwość deklarowania szczególnego rodzaju parametrów szablonu. Te specjalne
parametry charakteryzują się tym, że są nazwami zastępczymi dla szablonów klas.
Jako takie wymagają więc podania nie konkretnego typu danych, lecz jego uogólnienia -
szablonu klasy.

Dobrą, nieszablonową analogią dla tej niecodziennej konstrukcji jest sytuacja, gdy
funkcja przyjmuje jako parametr inną funkcję poprzez wskaźnik. W mniej więcej zbliżony
koncepcyjnie sposób działają szablonowe parametry szablonów.

Oto jak deklaruje się i używa tych specjalnych parametrów:

template <typename T, template <typename> class TAB = TArray>
 class TNumericArray
 {
 private:
 TAB<T> m_aTablica;

 // ...
 };

Szablony 549

Posługujemy się tu dwa razy słowem kluczowym template. Pierwsze użycie jest już
powszechnie znane; drugie występuje w liście parametrów szablonu TNumericArray i o
nie nam teraz chodzi. Przy jego pomocy deklarujemy bowiem szablon parametru.
Składnia:

template <typename> class TAB

oznacza tutaj, że do parametru TAB pasują wszystkie szablony klas (template <...>
class), które mają dokładnie jeden parametr będący typem (typename130). W przypadku
niepodania żadnego szablonu, zostanie wykorzystany domyślny - TArray.

Teraz, gdy nazwa TAB jest już nie klasą, lecz jej szablonem, używamy jej tak jak
szablonu. Deklaracja pola wewnętrznej tablicy wygląda więc następująco:

TAB<T> m_aTablica;

Jako parametr dla TAB podajemy T, czyli pierwszy parametr naszego szablonu
TNumericArray. W sumie jednak możnaby użyć dowolnego typu (także podanego
dosłownie, np. int), bo TAB zachowuje się tutaj tak samo, jak pełnoprawny szablon
klasy.

Naturalnie, teraz poprawne stają się propozycje deklaracji zmiennych z poprzedniego
akapitu:

TNumericArray<float, TOptimizedArray> aDuzaTablica(1000);
TNumericArray<double, TSuperFastArray> aGigaTablica(250000);

Na ile przydatne są szablony parametrów szablonów (zwane też czasem
metaszablonami - ang. metatemplates) musisz się właściwie przekonać sam. Jest to
jedna z tych cech języka, dla których trudno od razu znaleźć jakieś oszałamiające
zastosowanie, ale jednocześnie może okazać się przydatna w pewnych szczególnych
sytuacjach.

Problemy z szablonami
Szablony są rzeczywiście jednym z największych osiągnięć języka C++. Jednak, jak to
jest z większością zaawansowanych technik, ich stosowanie może za soba pociągać
pewne problemy. Nie, nie chodzi mi tu wcale o to, że szablony są trudne do nauczenia,
choć pewnie masz takie nieodparte wrażenie ;) Chciałbym raczej porozmawiać o kilku
pułapkach czyhających na programistę (szczególnie początkującego), który zechce
używać szablonów. Dzięki temu być może łatwiej unikniesz mniej lub bardziej poważnych
problemów z tymi konstrukcjami językowymi.

Zobaczmy więc, co może stanąć nam na drodze…

Ułatwienia dla kompilatora
Śledząc opis czynności, jakie wykonuje kompilator w związku z szablonami, można
zauważyć, że zmuszony jest do iście ekwilibrystycznych wygibasów. To zrozumiałe, jeśli
przypomnimy sobie, że kontrola typów jest w C++ jednym z filarów programowania, zaś
szablony częściowo służą właśnie do jej obejścia.

130 Nie podajemy nazwy parametru szablonu TAB, bo nie ma takiej potrzeby. Nazwa ta nie jest nam po prostu
do niczego potrzebna.

Zaawansowane C++ 550

Na kompilatorze spoczywa mnóstwo trudnych zdań, jeśli chodzi o kod wykorzystujący
szablony. Dlatego też niekiedy potrzebuje on wsparcia ze strony programisty, które
ułatwiłoby mu intepretację kodu źródłowego. O takich właśnie „ułatwieniach dla
kompilatora” traktuje niniejszy paragraf.

Nawiasy ostre
Niejednego nowicjusza w używaniu szablonów zjadł smok o nazwie „problem nawiasów
ostrych”. Nietrudno przecież wyprodukować taki kod, wierząc w jego poprawność:

typedef TArray<TArray<double>> MATRIX; // ojć!

Ta wiara zostaje jednak dośc szybko podkopana. Coraz częściej wprawdzie zdarza się, że
kompilator poprawnie rozpoznaje znaki >> jako zamykające nawiasy ostre. Niemniej,
nadal może to jeszcze powodować błąd lub co najmniej ostrzeżenie.

Poprawna wersja kodu, działająca w każdej sytuacji, to oczywiście:

typedef TArray<TArray<double> > MATRIX; // OK

Dodatkowa spacja wygląda tu rzecz jasna bardzo nieładnie, ale póki co jest konieczna.
Wcale niewykluczone jednak, że za jakiś czas także pierwsza wersja instrukcji typedef
będzie musiała być uznana za poprawną.

Nieoczywisty przykład

Można słusznie sądzić, że w powyższym przykładzie rozpoznanie sekwencji >> jako pary
nawiasów zamykających (a nie operatora przesunięcia w prawo) nie jest zadaniem ponad
siły kompilatora. Pamiętajmy aczkolwiek, że nie zawsze jest to takie oczywiste.

Spójrzmy choćby na taką deklarację:

TStaticArray<int, 16>>2> aInty; // chyba prosimy się o kłopoty...

Dla czytającego (i piszącego) kod człowieka jest całkiem wyraźne widoczne, że drugim
parametrem szablonu TStaticArray jest tu 16>>2 (czyli 64). Kompilator uczulony na
problem nawiasów ostrych zinterpretuje aczkolwiek poniższą linijkę jako:

TStaticArray<int, 16> >2> aInty; // ojej!

W sumie więc nie bardzo wiadomo, co jest lepsze. Właściwie jednak wyrażenia podobne
do powyższego są raczej rzadkie i prawdę mówiąc nie powinny być w ogóle stosowane.
Gdyby zachodziła taka konieczność, najlepiej posłużyć się pomocniczymi nawiasami
okrągłymi:

TStaticArray<int, (16>>2)> aInty; // OK

Wniosek z tego jest jeden: kiedy chodzi o nawiasy ostre i szablony, lepiej być
wyrozumiałym dla kompilatora i w odpowiednich miejscach pomóc mu w zrozumieniu, o
co nam tak naprawdę chodzi.

Ciekawostka: dlaczego tak się dzieje

Być może zastanawiasz się, dlaczego kompilator ma w ogóle problemy z poprawnym
rozpoznawianiem użycia nawiasów ostrych. Przecież nic podobnego nie dotyczy ani
nawiasów okrągłych (wyrażenia, wywołania funkcji, itd.), ani nawiasów kwadratowych
(indeksowanie tablicy), ani nawet nawiasów klamrowych (bloki kodu). Skąd więc
problemy wynikają problemy objawiające się w szablonach?…

Szablony 551

Przyczyną jest po części sposób, w jaki kompilatory C++ dokonują analizy kodu.
Dokładne omówienie tego procesu jest skomplikowane i niepotrzebne, więc je sobie
darujemy. Interesującą nas czynnością jest aczkolwiek jeden z pierwszych etapów
przetwarzania - tak zwana tokenizacja (ang. tokenization).
Tokenizacja polega na tym, iż kompilator, analizując kod znak po znaku, wyróżnia w nim
elementy leksykalne języka - tokeny. Do tokenów należą głównie identyfikatory (nazwy
zmiennych, funkcji, typów, itp.) oraz operatory. Kompilator wpierw dokonuje ich analizy
(parsowania) i tworzy listę takich tokenów.

Sęk polega na tym, że C++ jest językiem kontekstowym (ang. context-sensitive
language). Oznacza to, że identyczne sekwencje znaków mogą w nim znaczyć zupełnie
co innego w zależności od kontekstu. Przykładowo, fraza a*b może być zarówno
mnożeniem zmiennej a przez zmienną b, jak też deklaracją wskaźnika na typ a o nazwie
b. Wszystko zależy od znaczenia nazw a i b.
W przypadku operatorów mamy natomiast jeszcze jedną zasadę, zwaną zasadą
maksymalnego dopasowania (ang. maximum match rule). Mówi ona, że należy
zawsze próbować ująć jak najwięcej znaków w jeden token.

Te dwie cechy C++ (kontekstowość i maksymalne dopasowanie) dają w efekcie
zaprezentowane wcześniej problemy z nawiasami ostrymi. Problem jest bowiem w tym, iż
zależnie od kontekstu i sąsiedztwa znaki < i > mogą być interpretowane jako:

 operatory większości i mniejszości
 operatory przesunięcia bitowego
 nawiasy ostre

Nie ma to większego znaczenia, jeśli nie występują one w bliskim sąsiedztwie. W
przeciwnym razie zaczynają się poważne kłopoty - jak choćby tutaj:

TSomething<32>>4 > FOO> CosTam; // no i?...

Najlogiczniej więc byłoby unikać takich ryzykownych konstrukcji lub opatrywać je
dodatkowymi znakami (spacjami, nawiasami okrągłymi), które umożliwią kompilatorowi
jednoznaczną interpretację.

Nazwy zależne
Problem nawiasów ostrych jest w zasadzie kwestią wyłącznie składniową, spowodowaną
faktem wyboru takiego a nie innego rodzaju nawiasów do współpracy z szablonami.
Jednak jeśli nawet sprawy te zostałyby kiedyś rozwiązane (co jest mało prawdopodobne,
zważywszy, że piątego rodzaju nawiasów jeszcze nie wymyślono :D), to i tak kod
szablonów w pewnych sytuacjach będzie kłopotliwy dla kompilatora.

O co dokładnie chodzi?… Otóż trzeba wiedzieć, że szablony są tak naprawdę kompilowane
dwukrotnie (albo raczej w dwóch etapach):

 najpierw są one analizowane pod kątem ewentualnych błędów składniowych i
językowych w swej „czystej” (nieskonkretyzowanej) postaci. Na tym etapie
kompilator nie ma informacji np. o typach danych, do których odnoszą
symboliczne oznaczenia parametrów szablonów (T, TYP, itd.)

 później produkty konkretyzacji są sprawdzane pod kątem swej poprawności w
całkiem normalny już sposób, zbliżony do analizy zwykłego kodu C++

Nie byłoby w tym nic niepokojącego gdyby nie fakt, że w pewnych sytuacjach kompilator
może nie być wystarczająco kompetentny, by wykonać fazę pierwszą. Może się bowiem
okazać, że do jej przeprowadzania wymagane są informacje, które można uzyskać
dopiero po konketyzacji, czyli w fazie drugiej.

Zaawansowane C++ 552

Pewnie w tej chwili nie bardzo możesz sobie wyobrazić, o jakie informacje może tutaj
chodzić. Powiem więc, że sprawa dotyczy głównie właściwej interpretacji tzw. nazw
zależnych.

Nazwa zależna (ang. dependent name) to każda nazwa użyta wewnątrz szablonu,
powiązana w jakiś sposób z jego parametrami.

Fakt, że nazwy takie są powiązane z parametrami szablonu, sprawia, że ich znaczenie
może być różne w zależności od parametrów tego szablonu. Te wszystkie engimatyczne
stwierdzenia staną się bardziej jasne, gdy przyjrzymy się konkretnym przykładom
problemów i sposobom na ich rozwiązanie.

Słowo kluczowe typename

Czas więc na kawałek szablonu :) Popatrzmy na taką problematyczną funkcję, która ma
za zadanie wybrać największy spośród elementów tablicy:

template <class TAB> TAB::ELEMENT Najwiekszy(const TAB& aTablica)
{
 // zmienna na przechowanie wyniku
 TAB::ELEMENT Wynik = aTablica[0];

 // pętla szukająca
 for (unsigned i = 1; i < aTablica.Rozmiar(); ++i)
 if (aTablica[i] > Wynik)
 Wynik = aTablica[i];

 // zwrócenie wyniku
 return Wynik;
}

Można się zdziwić, czemu parametrem szablonu jest tu typ tablicy (czyli np.
TArray<int>), a nie typ jej elementów (int). Dzięki temu funkcja jest jednak bardziej
uniwersalna i niekoniecznie musiy współpracować wyłącznie z tablicami TArray.
Przeciwnie, może działać dla każdej klasy tablic (a więc np. dla TOptimizedArray i
TSuperFastArray z paragrafiu o metaszablonach), która ma:

 operator indeksowania
 metodę Rozmiar()
 alias ELEMENT na typ elementów tablicy

Niestety, ten ostatni punkt jest właśnie problemem. Ściślej mówiąc, to fraza
TAB::ELEMENT stanowi kłopot - ELEMENT jest tu bowiem nazwą zależną. My jesteśmy tu
święcie przekonani, że reprezentuje ona typ (int dla TArray<int> itd.), jednak
kompilator nie może brać takich informacji znikąd. On faktycznie musi to wiedzieć, aby
mógł uznać m.in. deklarację:

TAB::ELEMENT Wynik;

za poprawną. A skąd ma się tego dowiedzieć?… Nie ma ku temu żadnej możliwości na
etapie analizy samego szablonu. Dopiero konkretyzacja, gdy TAB jest zastępowane
prawdziwym typem danych, daje mu taką możliwość. Tyle że aby w ogóle mogło dojść do
konkretyzacji, szablon musi najpierw przejść test poprawności. Mówiąc wprost: aby
skontrolować bezbłędność szablonu kompilator musi najpierw… skontrolować bezbłędność
szablonu :D Dochodzimy zatem do błędnego koła.

A wyjście z niego jest jedno. Musimy w jakiś sposób dać do zrozumienia kompilatorowi,
że TAB::ELEMENT jest typem, a nie statycznym polem - bo taka jest właśnie druga

Szablony 553

możliwa interpretacja tej konstrukcji. Czynimy to poprzedzając problematyczną frazę
słówkiem typename:

typename TAB::ELEMENT Wynik;

Deklaracja nieco nam się rozwlekła, ale w przy korzystaniu z szablonów jest to już chyba
regułą :) W każdym razie teraz nie będzie już problemów ze zmienną Wynik; do pełnej
satysfakcji należy jeszcze podobny zabieg zastosować wobec typu zwracanego przez
funkcję:

template <class TAB>
 typename TAB::ELEMENT Najwiekszy(const TAB& aTablica)

Podobnie należy postąpić z każdym wystąpieniem TAB::ELEMENT w tym szablonie.
Powiem nawet więcej, formułując ogólną zasadę:

Należy poprzedzać słowem typename każdą nazwę zależną, która ma być
interpretowana jako typ danych.

Stosując się do niej, nie będziemy wprawiać w kompilatora w zakłopotanie i oszczędzimy
sobie dziwnie wyglądających komunikatów o błędach.

Ciekawostka: konstrukcje ::template, .template i ->template

Podobny, choć znacznie raczej ujawniający się problem dotyczy szablonów
zagnieżdżonych. Oto nieszczególnie sensowny przykład takiej sytuacji:

template <typename T> class TFoo
{
 public:
 // zagnieżdżony szablon klasy
 template <typename U> class TBar
 {
 public:
 // zagnieżdżony szablon statycznej metody
 template <typename V> static void Baz();
 }
};

Pytanie brzmi: jak wywołać metodę Baz()? No cóż, wyglądać to może tak:

template <typename T> void Funkcja()
{
 // wywołanie jako statycznej metody bez obiektu
 TFoo<T>::template TBar<T>::Baz();

 // utworzenie lokalnego obiektu i wywołanie metody
 typename TFoo<T>::template TBar<T> Bar;
 Bar.template Baz<T>();

 // utworzenie dynamicznego obiektu i wywołanie metody
 typename TFoo<T>::template TBar<T>* pBar;
 pBar = new typename TFoo<T>::template TBar<T>;
 pBar->template Baz<T>();
 delete pBar;
}

Zaawansowane C++ 554

Wiem, że wygląda to jak skryżowanie trolla z goblinem, ale mówimy teraz o naprawdę
specyficznym szczególiku, którego użycie jest bardzo rzadkie. Powyższy kod wyglałby
pewnie przejrzyściej, gdyby usunąć z niego wyrazy typename i template:

// UWAGA: ten kod NIE JEST poprawny!

// wywołanie jako statycznej metody bez obiektu
TFoo<T>::TBar<T>::Baz();

// utworzenie lokalnego obiektu i wywołanie metody
TFoo<T>::TBar<T> Bar;
Bar.Baz<T>();

// utworzenie dynamicznego obiektu i wywołanie metody
TFoo<T>::TBar<T>* pBar;
pBar = new TFoo<T>::TBar<T>;
pBar->Baz<T>();
delete pBar;

Tym samym jednak pozbawiamy kompilator informacji potrzebnych do skompilowania
szablonu. Rolę typename znamy, więc zajmijmy się dodatkowymi użyciami template.

Otóż tutaj template (a właściwie ::template, .template i ->template) służy do
poinformowania, że następująca dalej nazwa zależna jest szablonem. Patrząc na
definicję TFoo wiemy to oczywiście, jednak kompilator nie dowie się tego aż do chwili
konkretyzacji. Dla niego nazwy TBar i Baz mogą być równie dobrze składowymi
statycznymi, zaś następujące dalej znaki < i > - operatorami relacji. Musimy więc
wyprowadzić go błędu.

Stosuj kontrukcje ::template, .template i ->template zamiast samych operatorów
::, . i -> w tych miejscach, gdzie podana dalej nazwa zależna jest szablonem.

Stosowalność tych konstrukcji jest więc ograniczona i zawęża się do przypadków
zagnieżdżonych szablonów. W codziennej i nawet trochę bardziej niecodziennej praktyce
programistycznej można się bez nich obejść, aczkolwiek warto o nich wiedzieć, by móc je
zastosować w tych nielicznych sytuacjach ujawniającej się niewiedzy kompilatora.

Organizacja kodu szablonów
Wykorzystanie szablonów może nastręczać problemów natury logistycznej. Nie chodzi o
samą czynność ich implementacji czy późniejszego wykorzystania, ale o, zdawałoby się:
prozaiczną, sprawę następującą: jak rozmieścić kod szablonów w plikach z kodem
programu?…

Sprawa nie jest wcale taka prosta, bo kod korzystający z szablonów różni się znacznie
pod tym względem od zwykłego, „nieszablonowego” kodu. W sumie można powiedzieć,
że szablony są czymś między normalnymi instrukcjami języka, a dyrektywami
preprocesora.
Ten fakt wpływa istotnie na sposób ich organizacji w programie. Obecnie znanych jest
kilka możliwych dróg prowadzących do celu; nazywamy je modelami. W tym paragrafie
popatrzymy sobie zatem na wszystkie trzy modele porządkowania kodu szablonów.

Model włączania
Najwcześniejszym i do dziś najpopularniejszym sposobem zarządzania szablonami jest
model włączania (ang. inclusion model). Jest on jednocześnie całkiem prosty w
stosowaniu i często wystarczający. Przyjrzyjmy mu się.

Szablony 555

Zwykły kod

Wpierw jednak przypomnimy sobie, jak należy radzić sobie z kodem C++ bez szablonów.
Otóż, jak wiemy, wyróżniamy w nim pliki nagłówkowe oraz moduły kodu. I tak:

 pliki nagłówkowe są opatrzone rozszerzeniami .h, .hh, .hpp, lub .hxx i zawierają
deklaracje współużytkowanych części kodu. Należą do nich:

 prototypy funkcji
 deklaracje zapowiadające zmiennych globalnych (opatrzone słowem
extern)

 definicje własnych typów danych i aliasów, wprowadzane słowami typedef,
enum, struct, union i class

 implementacje funkcji inline
 moduły kodu są z kolei wyrózniane rozszerzeniami .c, .cc, .cpp lub .cxx i

przechowują definicje (tudzież implementacje) zadeklarowanych w nagłówkach
elementów programu. Są to więc:

 instrukcje funkcji globalnych oraz metod klas
 deklaracje zmiennych globalnych (bez extern) i statycznych pól klas

Ten system, spięty dyrektywami #include, działa wyśmienicie, oddzielając to, co jest
ważne do stosowania kodu od technicznych szczegółów jego implementacji. Co się jednak
dzieje, gdy na scenę wkraczają szablony?…

Próbujemy zastosować szablony

Spróbujmy więc podobną metodę zastosować wobec szablonu funkcji max(). Najpierw
umieśćmy jej prototyp (deklarację) w pliku nagłówkowym:

// max.hpp

// prototyp szablonu max()
template <typename T> T max(T, T);

Następnie treść funkcji podamy w module kodu max.cpp:

// max.cpp

#include "max.hpp"

// implementacja szablonu max()
template <typename T> T max(T a, T b)
{
 return (a > b ? a : b);
}

Wreszcie, wykorzystamy naszą funkcję w programie, wypisując na przykład na ekranie
większą z podanych liczb:

// TemplatesTryout - próba zastosowania szablonu funkcji

// main.cpp

#include <iostream>
#include <conio.h>
#include "max.hpp"

int main()
{
 std::cout << "Podaj dwie liczby:" << std::endl;

 double fLiczba1, fLiczba2;

Zaawansowane C++ 556

 std::cin >> fLiczba1;
 std::cin >> fLiczba2;

 std::cout << "Wieksza jest liczba " << max(fLiczba1, fLiczba2);
 getch();
}

Pieczołowicie wykonując te proste w gruncie rzeczy czynności, mamy prawo czuć się
zaskoczeni efektami. Próba wygenerowania gotowego programu skończy się bowiem
komunikatem linkera zbliżonym do poniższego:

error LNK2019: unresolved external symbol "double __cdecl max(double,double)" (?max@@YANNN@Z)
referenced in function _main

Wynika z niego klarownie, że funkcja max() w wersji skonkretyzowanej dla double… nie
istnieje! Jak to wyjaśnić?

Wytłumaczenie jest w miarę proste. Zwróć uwagę, że dołączenie pliku max.hpp włącza
do main.cpp jedynie deklarację szablonu, a nie jego definicję. Nie mając definicji
kompilator nie może natomiast skonkretyzować szablonu dla parametru double. Wobec
tego czyni on założenie, że funkcja max<double>() została wygenerowana gdzie indziej.
Nie ma w tym nic zdrożnego - ten sam mechanizm działa przecież dla zwykłych funkcji,
które są deklarowane (prototypowane) w pliku nagłówkowym, a implementowane w
innym module. Niestety, w tym przypadku jest to założenie błędne: konkretyzacja nie
zostanie bowiem przeprowadzona z powodu wspomnianego braku informacji (definicji
szablonu).
Ostatecznie więc powstaje zewnętrzne dowiązanie do specjalizacji szablonu max() dla
parametru double - specjalizacji, która nie istnieje! Ten fakt nie umknie już uwadze
linkera, czego skutkiem jest zaprezentowany wyżej błąd i porażka konsolidacji.

Rozwiązanie - istota modelu włączania

Sytuacja patowa? Bynajmniej. Istnieje oczywiście rozwiązanie tego problemu: trzeba po
prostu zapewnić widoczność definicji szablonu max() (czyli zawartości max.cpp) w
miejscu jego użycia (czyli main.cpp). Można to uczynić poprzez:

 dołączenie zawartości max.cpp do max.hpp (dodanie #include "max.cpp" na
końcu max.hpp)

 dołączenie max.cpp w module main.cpp zamiast dołączania max.hpp
 przeniesienie zawartości modułu max.cpp (czyli definicję szablonu max()) do pliku

nagłówkowego max.hpp

Wszystkie te sposoby są wariantami modelu włączania, o którym mówimy w tym
paragrafie. Zastosowanie któregokolwiek spowoduje pożądany efekt, czyli poprawną
kompilację kodu. W praktyce jednak najczęściej stosuje się sposób trzeci, czyli
umieszczanie całego kodu szablonów w pliku nagłówkowym.

Mimo takiego postępowania funkcje szablonowe nie będą rozwijane w miejscu
wywołania. Aby szablon funkcji był funkcją inline, należy jawnie poprzedzić ją
przydomkiem inline po klauzuli template <...>.

Model włączania działa całkiem dobrze zarówno dla małych, jak i nieco większych
średnich projektów. Jest z nim jednak związany pewien mankament: w oczywisty sposób
powoduje on rozrost plików nagłówkowych. Sprawia to, że koszt ich dołączania staje się
coraz większy, co w konsekwencji wydłuża czas kompilacji projektów. Staje się to
aczkolwiek zauważalne i znaczące dopiero w naprawdę dużych programach (rzędu
kilkunastu-kilkudziesięciu tysięcy linii).

Szablony 557

W sumie można więc powiedzieć, że model włączania jest zadowolającym sposobem
zarządzania kodem szablonów. Nie jest to jednak wystarczający argument za tym, aby
nie przyjrzeć się także innym modelom :)

Konkretyzacja jawna
W błędnym przykładzie programu z szablonem max() problem polegał na tym, że
kompilator nie miał okazji do właściwego skonkretyzowania szablonu. Model włączania
umożliwiał mu to w sposób automatyczny.
Istnieje aczkolwiek inna metoda na rozwiązanie tego problemu. Możemy mianowicie
zastosować model konkretyzacji jawnej (ang. explicit instantiation) i przejąć kontrolę
nad procesem rozwijania szablonów. Zobaczmy zatem, jak można to zrobić.

Instrukcje jawnej konkretyzacji

Wyjaśniłem, że powodem komunikatu linkera i nieudanej konsolidacji przykładu z
poprzedniego akapitu jest nieobecność funkcji max<double>() w żadnym ze
skompilowanych modułów. Możemy to zmienić, sami wprowadzając rzeczoną funkcję -
czyli jawnie ją skonkretyzować. Czynimy w następujący sposób:

// max_inst.cpp

#include "max.cpp"

// jawna konkretyzacjia szablonu max() dla parametru double
template double max<double>(double, double);

Mamy tutaj dyrektywę konkretyzacji jawnej (ang. explicit instantiation directive). Jak
widać, składa się ona z samego słowa template (bez nawiasów ostrych) oraz pełnej
deklaracji specjalizacji szablonu (czyli max<double>()). Tutaj akurat mamy funkcję, ale
podobnie konkretyzacja jawna wygląda klas. W każdym przypadku konieczna jest
definicja konkretyzowanego szablonu - stąd dołączenie do naszego nowego modułu
pliku max.cpp.

Nalezy zwrócić uwagę, aby każda specjalizacja szablonu była wprowadzana jawnie tylko
jeden raz. W przeciwnym razie zwróci na to uwagę linker.

Wady i zalety konkretyzacji jawnej

Zastosowanie takiego wybiegu spowoduje teraz poprawną kompilację i linkowanie
programu. Możemy się więc przekonać, że konkretyzacja jawna faktycznie działa.

Nie ma jednak róży bez kolców. Ten sposób zarządzania specjalizacjami szablonu ma
oczywistą wadę - jedną, ale za to bardzo dotkliwą. Wymaga on od programisty śledzenia
kodu, który wykorzystuje szablony, celem rozpoznawania wymaganych specjalizacji oraz
ich jawnego deklarowania. Zwykle robi się to w osobnym module (u nas max_inst.cpp),
aby nie zaśmiecać właściwego kodu programu.
Nie da się ukryć, że niweluje to jedną z bezdyskusyjnych zalet szablonów, czyli
możliwość zrzucenia na barki kompilatora kwestii wygenerowania właściwego ich kodu.
Jest to szczególnie niezadowalające w przypadku szablonów funkcji, gdzie przy każdym
ich wywołaniu musimy zastanowić się, jaka wersja szablonu zostanie w tym konkretnym
wypadku użyta. Faktycznie więc trudno nawet czerpać korzyści z automatycznej dedukcji
parametrów szablonu na podstawie parametrów funkcji - a to jest przecież jedno z
głównych dobrodziejstw szablonów.

Konkretyzacja jawna ma aczkolwiek także kilka zalet, do których należą:

 możliwość sprawowania kontroli nad procesem rozwijania szablonów
 zapobieganie nadmiernego rozdęciu plików nagłówkowych, a więc potencjalne

skrócenie czasu kompilacji

Zaawansowane C++ 558

 umożliwie dokładnego określenia miejsca (modułu kodu), w którym egzemplarz
szablonu (specjalizacja) zostanie utworzony

W większości przypadków te argumenty nie są jednak wystarczające, aby mogły
przeważyć na rzecz wykorzystania modelu konkretyzacji jawnej w praktyce. Podobnie
bowiem jak w przypadku modelu włączania, rozrost programu powoduje także
wydłużenie czasu przeznaczonego na konkretyzację. Różnica tkwi jednakże w tym, że w
tym pierwszym modelu całą pracą zajmuje się kompilator, który i tak nie ma nic
ciekawszego do roboty, natomiast konkretyzacja jawna zrzuca ten obowiązek na barki
wiecznie zapracowanego programisty.
W sumie więc ten model organizacji szablonów trudno uznać za praktyczny i wygodny.
Być może sprawdziłby się nieźle w małych programach, ale tam można sobie przecież
tym bardziej pozwolić na znacznie wygodniejszy model włączania.

Model separacji
Lekarstwem na bolączki modelu włączania ma być mechanizm eksportowania
szablonów. Technika ta, nazywana również modelem separacji, jest częścią samego
języka C++ i teoretycznie jest to właśnie ten sposób zarządzania kodem szablonów,
który ma być preferowany. Przynajmniej tako rzecze Standard C++.

Tym niemniej już od razu powiadomię, że w miarę poprawna obsługa tego modelu jest
dostępna dopiero w Visual Studio .NET 2003.

Wypadałoby zatem poznać bliżej to natywne rozwiązanie samego języka.

Szablony eksportowane

Idea tego modelu jest generalnie bardzo prosta:
 zachowany zostaje naturalny porządek oddzielania deklaracji/definicji od

implementacji. W pliku nagłówkowym umieszczamy więc wyłącznie deklaracje
(prototypy) szablonów funkcji oraz definicje szablonów klas. Postepujemy zatem
tak, jak próbowaliśmy czynić na samym początku - dopóki linker nie sprowadził
nas na ziemię

 zmiana polega jedynie na tym, że deklarację szablonu w pliku nagłówkowym
opatrujemy słowem kluczowym export

Stosując te dwie wskazówki do naszego błędnego przykładu TemplatesTryout,
należałoby jedynie zmodyfikować plik max.hpp. Zmiana ta jest zresztą niemal
kosmetyczna:

// max.hpp

// prototyp szablonu max() jako szablon eksportowany
export template <typename T> T max(T, T);

Jak się wydaje, dodanie słowa export przed deklarację szablonu załatwia sprawę.

W rzeczywistości słowo to powinno się znaleźć przed każdym użyciem klauzuli template
<...>. export ma jednak tę przyjemną właściwość, że po jednokrotnym jego
zastosowaniu w obrębie danego pliku z kodem wszystkie dalsze szablony otrzymują
ten przydomek niejawnie. A dzięki temu, że w pliku max.cpp znajduje się odpowiednia
dyrektywa #include:

// max.cpp

#include "max.hpp"

Szablony 559

// (dalej implementacja szablonu max())

również kod szablonu funkcji max() dostaje modyfikator export w prezencie od pliku
nagłówkowego max.hpp. Jeśli więc zdecydujemy się pisać kod szablonów w identyczny
sposób, jak zwykły kod C++, to nasza troska o właściwą kompilację szablonów powinna
ograniczać się do dodawania słowa kluczowego export przed deklaracjami template
<...> w plikach nagłówkowych.

Przynajmniej teoretycznie tak właśnie powinno być…

Nie ma róży bez kolców

Model separacji może ci się teraz wydawać rodzajem białej magii, likwidującej wszystkie
mankamenty organizacji kodu szablonów. Trzeba sobie jednak zdawać sprawę, że nie
jest on pozbawiony wad. Czas więc zdjąć z twarzy ten szczęśliwy uśmieszek i przyjrzeć
się rzeczywistości.

A rzeczywistość skrzeczy. Przede wszystkim należy wiedzieć, że mimo kilkuletniej już
obecności w Standardzie C++ i w świadomości sporej części programistów (przynajmniej
tych co bardziej zainteresowanych rozwojem języka), szablony eksportowane są w pełni
obsługiwane przez nieliczne kompilatory. Dopiero ich najnowsze wersje (jak na przykład
Visual Studio .NET 2003) radzą sobie ze słowem kluczowym export.
Ze względu na tak nikłe doświadczenia praktyczne trudno też przewidzieć potencjalne
problemy, jakie mogą (choć oczywiście nie muszą) przydarzyć się podczas korzystania z
modelu separacji. Te rzadkie kompilatory radzące sobie z tym modelem mogą bowiem
działać świetnie przy małych czy nawet średnich projektach, ale nie jest wcale
powiedziane, czy przy większych programach nie ujawnią się w nich jakieś kłopoty.
Wiadomo wszakże, że najlepszym probierzem jakości wszelkich produktów - także
możliwości kompilatorów - jest ich intensywne wykorzystywanie przez rzesze
użytkowników. W tym zaś przypadku nie jest to jeszcze powszechną praktyką
(przynajmniej nie tak bardzo, jak inne elementy C++), choć należy rzecz jasna
oczekiwać, że sytuacji będzie się z czasem poprawiać.

Druga sprawa związana jest z samym działaniem słowa kluczowego export. W
przybliżeniu można je scharakteryzować jako ukrycie funkcjonalności nieeleganckiego
modelu włączenia - oczywiście wraz z pewnymi usprawnieniami. Oznacza to więc, że nie
dokonują się tu żadne cuda: pozorne zerwanie związku między definicją a konkretyzacją
szablonu musi i tak być odtworzone przez kompilator. To sprawia, że jakoby niezależne
od siebie moduły kodu stają się związane właśnie ze względu na obecność w nich
implementacji szablonów. W ostateczności koszt czasowy kompilacji programu wcale nie
musi być wiele mniejszy od tego, jaki jest doświadczany w modelu włączania.

Wszystko to nie znaczy jednak, że nie należy spoglądać na model separacji przychylnym
okiem. Czas działa bowiem na jego korzyść. Gdy obsługa szablonów eksportowanych
stanie się powszechna, postępować będzie także jej usprawnienie pod względem
niezawodności i efektywności. Wcale niewykluczone, że na tym polu zostawi za jakiś czas
daleko w tyle model włączania.
A już teraz model separacji oferuje nam zaletę niespotykaną w innych rozwiązaniach
problemu szablonów: elegancję, podobną do tej znanej ze zwykłego, nieszablonowego
kodu. Dalej będzie zapewne już tylko lepiej.

Współpraca modelu włączania i separacji

Ucieszyć może także fakt, że stosunkowo łatwo zorganizować kod szablonów w taki
sposób, aby „przełączanie” między modelem włączania i separacji nie zajmowało więcej
niż kilka sekund (nie licząc rekompilacji). Dosyć dobrze do tego celu nadają się
dyrektywy preprocesora.

Zaawansowane C++ 560

Pomysł jest prosty. Należy tak zmodyfikować plik nagłówkowy z deklaracją szablonu (u
nas max.hpp), by w razie potrzeby „zawierał” on również jego definicję - czyli włączał ją
z modułu kodu (max.cpp). Oto propozycja takiej modyfikacji:

// max.hpp

// zabezpieczenie przed wielokrotnym dołączaniem - ważne!
#pragma once

// w zależności od tego, czy zdefiniowano makro USE_EXPORT,
// wprowadzamy do programu słowo kluczowe export
#ifdef USE_EXPORT
 #define EXPORT export
#else
 #define EXPORT
#endif

// deklaracja szablonu
EXPORT template <typename T> T max(T, T);

// jeżeli nie używamy modelu separacji, to potrzebujemy także
// definicji szablonu. Włączamy ją więc
#ifndef USE_EXPORT
 #include "max.cpp"
#endif

Decyzja co do używanego modelu ograniczać się tu będzie do zdefiniowania lub
niezdefiniowania makra USE_EXPORT przed dołączeniem pliku max.hpp:

// używanie modelu separacji; bez #define będzie to model włączania
#define USE_EXPORT
#include "max.hpp"

Trzeba jeszcze pamiętać, aby w tym pliku nagłówkowym przynajmniej pierwszą
deklarację szablonu (a najlepiej wszystkie) opatrzyć nazwą makra EXPORT. W zależności
od wybranego modelu będzie ono bowiem rozwinięte do słowa export lub do pustego
ciągu, co w wyniku da nam zastosowanie wybranego modelu.

Opisana „sztuczka” opiera się, w przypadku użycia modelu włączania, o sprzężenie
zwrotne dyrektyw #include: max.hpp dołącza bowiem max.cpp, zaś max.cpp próbuje
dołączyć max.hpp. Trzeba rzecz jasna zadbać o to, by ta próba nie zakończyła się
powodzeniem, stosując jedno z zabezpieczeń przeciw wielokrotnemu dołączaniu. Tutaj
użyłem #pragma once, choć metoda z unikalnym makrem oraz #ifndef/#endif również
zdałaby egzamin.

I tak oto zakończyliśmy drugi podrozdział poświęcony opisowi szablonów w C++. W
zasadzie możesz uznać ten moment za koniec teorii tego skomplikowanego zagadnienia.
Chociaż więc zajmowaliśmy się już sprawami bardziej praktycznymi (jak choćby modelem
organizacji kodu), to dopiero w następnym podrozdziale poznasz prawdziwe
zastosowania szablonów. Zacznie się więc robić bardzo ciekawie, jako że dopiero w
konkretnych metodach na wykorzystanie szablonów widać prawdziwą potęgę tego
składnika C++. Pora zatem ją ujarzmić!

Szablony 561

Zastosowania szablonów
Jeszcze w początkach tego rozdziału powiedziałem, do czego służą szablony w języku
C++. Przypominam: stosujemy je głównie tam, gdzie chcemy uniezależnić kod programu
od konkretnego typu danych.

To ogólnikowe stwierdzenie jest z pewnością pomocne, ale mało konkretne. Na pewno
będziesz bardziej zadowolony, jeżeli ujrzysz jakieś precyzyjniej określone zastosowania
dla szablonów. I to jest właśnie treścią tego podrozdziału. Pomówimy sobie więc o
niektórych sytuacjach, gdy skorzystanie z szablonów ułatwia lub wręcz umożliwia
wykonanie ważnych programistycznych zadań.

Zastąpienie makrodefinicji
Gdyby to była bajka, to zaczęłoby się tak: dawno, dawno temu w królestwie Elastycznych
Programów niepodzielnie rządziła okrutna kasta Makrodefinicji. Dość często utrudniała
ona życie mieszkańcom, powodując większe lub mniejsze życiowe uciążliwości. Na
szczęście pewnego dnia na pomoc przybyli dzielni rycerze Szablonów, którzy obalili
tyranów i zapewnili królestwu szczęśliwe życie pod rządami nowych, łaskawych władców.
I wszyscy żyli długo i szczęśliwie.

To tyle, jeśli chodzi o otoczkę baśniową, bo teraz należałoby wrócić do rzeczywistego
zagadnienia. Jakiś czas temu mieliśmy okazję poznać dyrektywy preprocesora, zwracając
przy tym szczególną uwagę na makra. Makra imitujące funkcje były kiedyś jedynym
sposobem na tworzenie „kodu” niezwiązanego z żadnym typem danych. Teraz zaś mamy
już szablony. Czy są one lepsze?…

Szablon funkcji i makro
Aby się o tym przekonać, porównajmy funkcję max() - napisaną raz w postaci szablonu i
drugi raz w postaci makra:

// szablon funkcji max()
template <typename T> T max(T a, T b) { return (a > b ? a : b); }

// makro MAX()
#define MAX(a,b) ((a) > (b) ? (a) : (b))

Widać parę podobieństw, ale i mnóstwo różnic. Przede wszystkim interesuje nas to, w
jaki sposób makra i szablony osiągają niezależność od typu danych - parametrów. W
sumie wiemy to dobrze:

 w szablonach występują parametry będące typami (jak u nas T),
nieodpowiadające jednak żadnemu konkretnemu typowi danych. Poprzez
konkretyzację tworzone są potem specjalizowane egzemplarze funkcji, działające
dla ściśle określonych już rodzajów zmiennych

 makra w ogóle nie posługują się pojęciem ‘typ danych’. Ich istota polega na
zwykłej zamianie jednego tekstu („wywołania” makra) w inny tekst (rozwinięcie
makra). Dopiero to rozwinięcie jest przedmiotem zainteresowania kompilatora,
który wedle swoich reguł - jak choćby poprawnego użycia operatorów - uzna je za
poprawne bądź nie

Mamy więc dwa różne podejścia i zapewne już wiesz lub domyślasz się, że nie są one
równoważne ani nawet równie dobre. Należy więc odpowiedzieć na proste pytanie - co
jest lepsze?

Zaawansowane C++ 562

Pojedynek na szczycie
W tym celu spróbujmy użyć obu zaprezentowanych wyżej konstrukcji, poddając je
swoistym próbom:

// będziemy potrzebowali kilku zmiennych
int nA = 42; float fB = 12.0f;

// i startujemy...
std::cout << max(34, 56) << " | " << MAX(34, 56) << std::endl; // 1
std::cout << max(nA, fB) << " | " << MAX(nA, fB) << std::endl; // 2
std::cout << max(nA++, fB) << " | " << MAX(nA++, fB) << std::endl; // 3

Czy obie konstrukcje przejdą je z powodzeniem?… Cóż, odpowiedź jest niestety
przecząca. Tylko pierwsza linijka nie wymaga żadnych uwag ani analizy. W tym
przypadku nie ma po prostu żadnych wątpliwości: obie wartości do porównania są
jednoznacznymi stałymi tych samych typów. Wszystko więc pójdzie gładko.
Jednak dalej zaczynają się już kłopoty…

Starcie drugie: problem dopasowania tudzież wydajności
Popatrzmy więc, co się właściwie stanie w tym kodzie. Pomyślmy mianowicie, w jaki
sposób poradzi sobie z zadaniem szablon funkcji, a w jaki - makrodefinicja.

Jak zadziała szablon

Funkcjonowanie szablonów było przedmiotem sporej części aktualnego rozdziału, zatem
odpowiedź na pytanie powyżej nie powinna ci nastręczać trudności. Szablon max()
zadziała tak, jak się spodziewamy: jego użycie spowoduje konkretyzację dla właściwego
parametru, co w wyniku da normalną funkcję, wykorzystywaną przez program.

Wpierw jednak musi być znany parametr T szablonu - zostanie on oczywiście
wydedukowany z wywołania funkcji max(). Mamy w nim argumenty będące zmiennymi:
pierwsza jest typu int, zaś druga typu float. Parametr szablonu T jest natomiast tylko
jeden - cóż więc?… Naturalnie, kompilator wybierze tak, aby nie skrzywdzić żadnego z
argumentów funkcji, decydując się na typ float. Pomieści on bowiem zarówno liczbę
całkowitą, jak i rzeczywistą. Szablon max() zostanie więc skonkretyzowany do postaci:

float max<float>(float a, float b) { return (a > b ? a : b); }

I wszystko byłoby w porządku, gdyby nie jeden drobny niuans, w zasadzie
niedostrzegalny na pierwszy rzut oka. Jak to zwykle bywa w niejasnych sytuacjach,
chodzi o wydajność. Zwróćmy uwagę, że parametry funkcji max() są tu przekazywane
poprzez wartość. Potencjalnie więc może to prowadzić do dwóch niepotrzebnych
kopiowań, wykonywanych podczas wywoływania funkcji w skompilowanym programie.
Oczywiście, ma to znaczenie tylko dla dużych obiektów, lecz kto powiedział, że nie
moglibyśmy chcieć użyć tej funkcji na przykład do 1000-elementowej tablicy?…

Powiesz pewnie, że jest to na to rada. Wystarczy skorzystać z wynalazku C++ znanego
pod nazwą referencji. Przypomnijmy, że referencje, czyli „ukryte wskaźniki”, nie
powodują przekazania do funkcji samego obiektu, lecz tylko jego adresu. Ich zaletą jest
zaś to, że nie zmuszają do korzystania z kłopotliwej w gruncie rzeczy składni
wskaźników.
Pamiętając o tym, ochoczo przerabiamy nasz szablon na wersję korzystającą z referencji:

template <typename T> T max(const T& a, const T& b)
{
 return (a > b ? a : b);
}

Szablony 563

W ten sposób niechcący pozbawiliśmy kompilator ważnej możliwości: używania
niejawnych konwersji. W momencie, gdy chcemy przekazać do funkcji nie obiekt, a
referencję do niego, kompilator staje się po prostu ślepy na ten mechanizm języka.
Łatwo to zresztą wyjaśnić: istotą referencji jest odwoływanie się do istniejącego obiektu
bez kopiowania, zaś istniejący obiekt ma swój typ, którego zmienić nie można.

Więc co zrobić? Najlepiej po prostu… pogodzić się z tym „strasznym marnotrawstem”,
które i tak nie jest szczególnie wielkie, a przez dobry kompilator może być nawet z
niezłym skutkiem minimalizowane.
Naturalnie, można próbowac kombinować dalej - chociażby dodać drugi parametr
szablonu. Tyle że wtedy pozostanie nierozstrzygalny wybór, który z nich uczynić typem
wartości zwracanej. Naturalnie, można ten typ dodać jako kolejny, trzeci już parametr
szablonu i kazać go podawać wywołującemu. Wreszcie, można nawet użyć jednego z
kilku dość pokrętnych (koncepcyjnie i składniowo) sposobów na obejście problemu - ale
chyba nie zmartwisz się tym, że ci ich tutaj oszczędzę. Nadmierna komplikacja jest tu
bowiem wysoce niewskazana; zaangażowane środki będą zwyczajnie niewspółmierne do
zysków.

Jak zadziała makro

Przekonajmy się więc, co ma do powiedzenia makrodefinicja. Tutaj cała sprawa jest rzecz
jasna znacznie łatwiejsza: preprocesor rozwinie nam po prostu kod MAX(nA, fB) do
postaci następującego wyrażenia:

((nA) ? (nB) ? (nA) : (nB))

Nie ma tutaj absolutnie rzadnej różnicy z sytuacją, w której to wyrażenie zostałoby
wpisane bezpośrednio do kodu. Żadna funkcja nie jest generowana, żadne konwersje
argumentów nie są wykonywane, po prostu nie ma żadnego przeskoku z miejsca
„wywołania” makra w inne miejsce programu. Kompilator jest wręcz utrzymywany w
błogiej nieświadomości, gdyż dostaje wyklarowany już kod bez makr. Wszystkim zajmuje
się preprocesor i to on sprawia, że makro działa.

Wynik

Ostatecznie możemy uznać remis obu rozwiązań, aczkolwiek z lekkim wskazaniem na
makrodefinicje. Z wyjątkiem fanatyków wydajności nie ma jednak bodaj nikogo, kto
uważałby „nieefektywne” działanie szablonów za wielki błąd. A tym, którzy rzeczywiście
tak uważają, pozostaje chyba tylko przerzucenie się na język asemblera :)

Starcie trzecie: problem rozwinięcia albo poprawności
Próba trzecia jest w takim razie decydująca. Ponownie rozłożymy na czynniki pierwsze
sposób działania szablonu i makra.

Jak zadziała szablon

Działanie szablonu będzie tu łudząco podobne do poprzedniej próby. Znowu bowiem
argumenty funkcji max() musza być dopasowane do typu ogólniejszego - czyli do float.
Powstanie więc specjalizacja max<double>().

Funkcja ta będzie potem wywoływana z argumentami nA++ i fB. Wobec tego zwróci ona
większą spośród liczb: nA+1 i fB. Właściwie więc nie ma nad czym dłużej deliberować;
nasz szablon zachowa się zupełnie poprawnie, prawie jak zwyczajna funkcja. Naturalnie,
stosują się tutaj wszystkie uwagi z poprzedniego akapitu - nie ma sensu ponownie ich
przytaczać.
Ogółem test uważamy za zaliczony.

Zaawansowane C++ 564

Jak zadziała makro

A teraz czas na analizę makrodefinicji i jej użycia w formie MAX(nA++, fB). Pamiętając,
jak działa preprocesor, słusznie można wywnioskować, że zamieni on „wywołanie” makra
na takie oto wyrażenie:

((nA++) > (fB) ? (nA++) : (fB))

Wszystko jest zatem w porządku?… Nie całkiem. Wręcz przeciwnie. Mamy problem.
Poważny problem. A jego przyczyną jest obecność instrukcji nA++ dwukrotnie.
Fakt ten sprawi mianowicie, że zmienna nA zostanie dwa razy zwiększona o 1!
Ostatecznie warunek powyżej zwróci błędny wynik - różniący się od właściwego o ową
problematyczną jedynkę.

Jeśli pamiętasz dokładnie rozdział o preprocesorze, takie zachowanie nie powinno być dla
ciebie zaskoczeniem. Już wtedy zaprezentowałem przykład tego problemu i ostrzegłem
przed stosowaniem makrodefinicji w charakterze funkcji.

Wynik

Cóż można więcej powiedzieć? Błędny rezultat użycia makra sprawia, że makrodefinicje
nie tylko przegrywają, ale właściwie zostają zdyskwalifikowane jako narzedzia tworzenia
kodu niezależnego od typu. Bezapelacyjnie wygrywają szablony!

Konkluzje
Wniosek jest właściwie jeden:

Należy używać szablonów funkcji zamiast makr, które mają udawać funkcje.

Makrodefinicje w rodzaju MAX(), MIN() czy innych tego rodzaju nie mają już więc
właściwie racji bytu. Zastąpiły je całkowicie szablony funkcji, oferujące nie tylko te same
rezultaty (przy zastosowaniu inline - również wydajnościowe), ale też jedną konieczną
cechę, której makrom brak - poprawność.
Szablony są po prostu bardziej inteligentne, jako że odpowiada za nie przemyślnie
skonstruowany kompilator, a nie jego ułomny pomocnik - preprocesor. Jak się też miałeś
okazję przekonać w tym rozdziale, możliwości szablonów funkcji są nieporównywalnie
większe od tych dawanych przez makrodefinicje.

Nie znaczy to oczywiście, że makra zostały całkowicie zastąpione przez szablony. Nadal
bowiem znajdują one zastosowanie tam, gdzie chcemy dokonywać operacji na kodzie jak
na zwykłym tekście - a więc na przykład do wstawiania kilku często wystepujących
instrukcji, których nie możemy wyodrębnić w postaci funkcji. Niemniej należy podkreślać
(co robię po raz n-ty), że makra nie służą do imitacji funkcji, gdyż same funkcje (lub
ich szablony) doskonale radzą sobie ze wszystkimi zadaniami, jakie chcielibyśmy im
powierzyć. Naocznie to zresztą zobaczyliśmy.

Struktury danych
Szablony funkcji mają więc swoje ważne zastosowanie. Właściwie jednak to szablony klas
są użyteczne w znacznie większym stopniu. Wykorzystujemy je bowiem w celu
implementacji w programach tzw. struktur danych.

Szablony 565

Jak głosi stare programistyczne „równanie”, obok algorytmów to struktury danych są
głównymi składnikami programów131. Jak wskazuje nazwa tego pojęcia, służą one do
przemyślanej organizacji informacji przetwarzanych przez aplikację. Zazwyczaj też
struktury danych ściśle współpracują z algorytmami programu.
Z najprostszymi strukturami danych zapoznałeś się już całkiem dawno temu. Typowym
przykładem może być zwykła, jednowymiarowa tablica; inny to np. struktura języka C++
(definiowana poprzez struct), zwana czasem rekordem. To jednak tylko wierzchołek
góry lodowej. Wśród wielu struktur danych większość jest o wiele bardziej
wyspecjalizowana i funkcjonalna.

Cóż jednak ma to wspólnego z szablonami?… Otóż bardzo wiele. Dzięki mechanizmowi
parametryzowanych typów (czyli szablonów klas) implementacja przeróżnych struktur
danych w C++ jest prosta. Przynajmniej jest ona prosta w tym sensie, że nie nastręcza
kłopotów związanych z nieokreślonymi typami danych. Szablony załatwiają za nas tę
sprawę, dzięki czemu owe struktury mogą być uniwersalne.
Prawdopodobnie właśnie to zastosowanie było jednym z głównych powodów, dla którego
w ogóle wprowadzono do języka C++ narzędzia szablonów. Nam pozostaje się tylko z
tego cieszyć… no, możnaby jeszcze przyjrzeć się sprawie nieco bliżej :) Zróbmy więc to.

W tej sekcji porozmawiamy sobie zatem o tym, jak szablony pomogają w tworzeniu
struktur danych w programach. Naturalnie, temat ten jest niezwykle szeroki i dlatego nie
będziemy w niego wnikać dokładnie. Niemniej będzie to dobra rozgrzewka przez
poznawaniem Biblioteki Standardowej, która szeroko używa szablonów do implementacji
struktur danych.
Omówimy więc sobie dwie najprostsze kategorie takich struktur: krotki i kontenery
(pojemniki).

Krotki
Krotką (ang. tuple, nie mylić ze stokrotką ;)) nazywamy połączenie kilku wartości
różnych typów w jedną całość. C++, podobnie jak wiele innych języków
programowania umożliwia na zrealizowanie takiej koncepcji przy użyciu struktury,
zawierającej dwa, trzy, cztery lub większą liczbę pól dowolnych typów.

Tutaj jednak chcemy zobaczyć w akcji szablony, zatem stworzymy nieco bardziej
elastyczne rozwiązanie.

Przykład pary
Najprotszą krotką jest oczywiście… pojedyncza wartość :) Ponieważ jednak w jej
przypadku do szczęścia wystarcza normalna zmienna, zajmijmy się raczej zespołem
dwóch wartości. Zwiemy go parą (ang. pair) lub duetem (ang. duo).

Definicja szablonu

Mając w pamięci fakt, iż chcemy otrzymać parę dwóch wartości dwóch różnych typów,
wyprodukujemy zapewne szablon podobny do poniższego:

template <typename T1, typename T2> struct TPair
{
 T1 Pierwszy; // wartość pierwszego pola
 T2 Drugi; // wartość drugiego pola
};

131 To równanie to Algorytmy + struktury danych = programy, bedące jednocześnie tytułem słynnej książki
Niklausa Wirtha.

Zaawansowane C++ 566

Zastosowań takiej prostej struktury jest całe mnóstwo. Przy jej użyciu możemy na
przykład w łatwy sposób stosować technikę informowania o błędach przy pomocy
rezultatu funkcji. Oto przykład:

TPair<bool, T> Wynik = Funkcja(); // funkcja zwraca parę wartości
if (Wynik.Pierwszy)
{
 // wykonanie funkcji powiodło się; jej właściwy rezultat to
 // Wynik.Drugi
}

Wynik jako zespół dwóch wartości pozwala na oddzielenie właściwego rezultatu od
danych błędu. Jednocześnie nie zatracamy informacji o typie wartości zwracanej przez
funkcję - tutaj ukrywa się on za T i jest widoczny w prototypie funkcji.

Pomocna funkcja

Do wygodnego używania pary przydałby się sposób na jej łatwie utworzenie. Na razie
bowiem Funkcja() musiałaby wykonywać np. taki kod:

TPair<bool, int> Wynik; // obiekt wyniku
Wynik.Pierwszy = true; // informacja o ewentualnym błędzie
Wynik.Drugi = 42; // zasadniczy rezultat
return Wynik; // zwracamy to wszystko

Sytuację możemy poprawić, dodając konstruktor(y):

template <typename T1, typename T2> struct TPair
{
 T1 Pierwszy; // wartość pierwszego pola
 T2 Drugi; // wartość drugiego pola

 //---

 // konstruktory
 TPair() : Pierwszy(), Drugi() { }
 TPair(const T1& Wartosc1, const T2& Wartosc2)
 : Pierwszy(Wartosc1), Drugi(Wartosc2) { }
};

W zasadzie to są one niezbędne - inaczej nie możnaby tworzyć par z obiektów, których
klasy nie mają domyślnych konstruktorów. Tak czy owak, skracamy już zapis do
skromnego:

return TPair<bool, int>(true, 42);

Nadal jednak można trochę ponarzekać. Kompilator nie jest na przykład na tyle
inteligentny, aby wydedukować parametry szablonu TPair z argumentów konstruktora.
To jednak można łatwo uzyskać, jako że umiejętność takiej dedukcji jest nieodłączną
cechą szablonów funkcji. Możemy zatem stworzyć sobie pomocną funkcję Para(),
tworzącą duet:

template <typename T1, typename T2>
 inline TPair<T1, T2> Para(const T1& Wartosc1, const T2& Wartosc2)
 {
 return TPair<T1, T2>(Wartosc1, Wartosc2);
 }

To wreszcie pozwoli na stosowanie krótkiej i przemyślanej formy tworzenia pary:

Szablony 567

return Para(true, 42);

Przydomek inline zabezpiecza natomiast przed „niewybaczalnym” uszczerbkiem na
wydajności spowodowanym pośrednią drogą kreacji obiektu.

Dalsze usprawnienia

Możemy dalej usprawniać szablon TPair - tak, aby wygoda korzystania z niego nie
ustępowała niczym przyjemności użytkowania typów wbudowanych. Dodamy mu więc:

 operator przypisania
 konstruktor kopiujący

„Ale po co?”, możesz spytać. „Przecież w tym przypadku wersje tworzone przez
kompilator pasują jak ulał”. Owszem, masz rację. Można je jednak poprawić, definiując
obie metody jako szablony:

template <typename T1, typename T2> struct TPair
{
 T1 Pierwszy; // wartość pierwszego pola
 T2 Drugi; // wartość drugiego pola

 //---

 // konstruktory (zwykłe i kopiująco-konwertujący)
 TPair() : Pierwszy(), Drugi() { }
 TPair(const T1& Wartosc1, const T2& Wartosc2)
 : Pierwszy(Wartosc1), Drugi(Wartosc2) { }
 template <typename U1, typename U2> TPair(const TPair<U1, U2>& Para)
 : Pierwszy(Para.Pierwszy), Drugi(Para.Drugi) { }

 //---

 // operator przypisania
 template <typename U1, typename U2>
 operator=(const TPair<U1, U2>& Para)
 {
 Pierwszy = Para.Pierwszy;
 Drugi = Para.Drugi;
 return *this;
 }
};

W ten sposób pieczemy dwa befsztyki na jednym ogniu. Nasze metody pełnią bowiem nie
tylko „rolę kopiującą”, ale i „rolę konwertującą”. Pary stają się więc kompatybilne
względem niejawnym konwersji swoich składników; zatem np. para TPair<int, int>
będzie mogła być od teraz bez problemów przypisana do pary TPair<float, double>,
itd. Konieczne konwersje będą dokonywane podczas inicjalizacji (konstruktor) lub
przypisywania (operator =) pól.

Do pełni funkcjonalności brakuje jeszcze możliwości porównywania par. To zaś osiągamy,
definiując operatory == i !=. Także tutaj może zajść konieczność konfrontowania duetów
o różnych typach pól, zatem ponownie należy użyć szablonu:

// operator równości
template <typename T1, typename T2, typename U1, typename U2>
 inline bool operator==(const TPair<T1, T2>& Para1,
 const TPair<U1, U2>& Para2)
 {
 return (Para1.Pierwszy == Para2.Pierwszy
 && Para1.Drugi == Para2.Drugi);

Zaawansowane C++ 568

 }

// operator nierówności
template <typename T1, typename T2, typename U1, typename U2>
 inline bool operator!=(const TPair<T1, T2>& Para1,
 const TPair<U1, U2>& Para2)
 {
 return (Para1.Pierwszy != Para2.Pierwszy
 || Para1.Drugi != Para2.Drugi);
 }

Trochę makabrycznie na pierwszy rzut oka może wyglądać szablon z czterema
parametrami. Powód jego wystąpienia jest jednak banalny: potrzebujemy po prostu
parametryzacji typów dla obu porównywanych par. W sumie więc mogą wystąpić cztery
typy pól, co ładnie przedstawiają deklaracje parametrów funkcji.
O tym, czy typy te będą ze sobą współgrały, zdecydują już porównywania w ciele funkcji
operatorowych. Naturalnie, w przypadku braku identyczności lub niejawnych konwersji,
kompilacji problematycznego użycia operatora nie powiedzie się.

Stworzony szablon TPair wraz z „oprzyrządowaniem” w postaci pomocniczej funkcji i
przeciążonych operatorów jest bardzo podobny do klasy std::pair z Biblioteki
Standardowej.

Trójki i wyższe krotki
Przyglądając się uważniej szablonowi pary, nietrudno jest dostrzec miejsca, które należy
zmodyfikować, by otrzymać krotki wyższego rzędu - trójki, czwórki, piątki, itd. Pewnym
problemem jest stałe zwiększanie długości klauzul template <...> i nazw typów krotek,
ale to już jest niestety nieuknione. W praktyce więc rzadko używa się wielkich krotek -
powyżej trzech, czterech elementów - także z tego powodu, że nie ma dla nich zbyt wielu
sensownych zastosowań.

Dlatego też tutaj popatrzymy sobie tylko na analogiczny do TPair szablon trójki -
TTriplet:

template <typename T1, typename T2, typename T3> struct TTriplet
{
 T1 Pierwszy; // wartość pierwszego pola
 T2 Drugi; // wartość drugiego pola
 T3 Trzeci; // wartość trzeciego pola

 //---

 // konstruktory (zwykłe i kopiująco-konwertujący)
 TTriplet() : Pierwszy(), Drugi(), Trzeci() { }
 TTriplet(const T1& Wartosc1, const T2& Wartosc2, const T3& Wartosc3)
 : Pierwszy(Wartosc1), Drugi(Wartosc2), Trzeci(Wartosc3) { }
 template <typename U1, typename U2, typename U3>
 TTriplet(const TTriplet<U1, U2, U3>& Trojka)
 : Pierwszy(Trojka.Pierwszy),
 Drugi(Trojka.Drugi), Trzeci(Trojka.Trzeci) { }

 //---

 // operator przypisania
 template <typename U1, typename U2, typename U3>
 operator=(const TTriplet<U1, U2, U3>& Trojka)
 {
 Pierwszy = Trojka.Pierwszy;

Szablony 569

 Drugi = Trojka.Drugi;
 Trzeci = Trojka.Trzeci;

 return *this;
 }
};

// operator równości
template <typename T1, typename T2, typename T3,
 typename U1, typename U2, typename U3>
 inline bool operator==(const TTriplet<T1, T2, T3>& Trojka1,
 const TTriplet<U1, U2, U3>& Trojka2)
 {
 return (Trojka1.Pierwszy == Trojka2.Pierwszy
 && Trojka1.Drugi == Trojka2.Drugi
 && Trojka1.Trzeci == Trojka2.Trzeci);
 }

// operator nierówności
template <typename T1, typename T2, typename T3,
 typename U1, typename U2, typename U3>
 inline bool operator==(const TTriplet<T1, T2, T3>& Trojka1,
 const TTriplet<U1, U2, U3>& Trojka2)
 {
 return (Trojka1.Pierwszy != Trojka2.Pierwszy
 || Trojka1.Drugi != Trojka2.Drugi
 || Trojka1.Trzeci != Trojka2.Trzeci);
 }

// --

// wygodna funkcja tworząca trojkę
template <typename T1, typename T2, typename T3>
 inline TTriplet<T1, T2, T3> Trojka(const T1& Wartosc1,
 const T2& Wartosc2,
 const T3& Wartosc3)
 {
 return TTriplet<T1, T2, T3>(Wartosc1, Wartosc2, Wartosc3);
 }

Wygląda on lekko strasznie, ale też pokazuje wyraźnie, że szablony w C++ to naprawdę
potężne narzedzie. Pomyśl, czy w ogóle sensowne byłoby implementowanie krotek bez
nich?

Wyższe krotki wygodnie jest programować w sposób rekurencyjny, wykorzystując jedynie
szablon pary. Przy takim podejściu trójka np. typu TTriplet<int, float,
std::string> jest przechowywana jako typ TPair<int, TPair<float, std::string>
> - czyli parę, której elementem jest kolejna para. Analogicznie wygląda to dalej.
Takie podejście, w połączeniu z kilkoma innymi, maksymalnie wykręconymi technikami,
daje możliwość tworzenia krotek dowolnego rzędu. Takie rozwiązanie jest częścią znanej
biblioteki Boost.

Pojemniki
Nadeszła pora, by poznać główny powód wprowadzenia do C++ mechanizmu szablonów.
Są nim mianowicie klasy kontenerowe.

Zaawansowane C++ 570

Kontenery albo pojemniki (ang. containers) to specjalne struktury danych
przeznaczone do zarządzania kolekcjami obiektów tego samego typu w określony sposób.

Ponieważ definicja ta jest bardzo ogólna, mamy mnóstwo rodzajów kontenerów. Spora
ich część została zaimplementowana w Bibliotece Standardowej, a o wszystkich mówi
dowolna książka o algorytmach i strukturach danych.

Nie będziemy tutaj omawiać każdego rodzaju pojemnika, lecz skoncentrujemy się jedynie
na tym, w jaki sposób szablony pomagają im w prawidłowym funkcjonowaniu.
Zobaczymy więc najdonioślejsze zastosowanie szablonów w programowaniu.

Przykład klasy kontenera - stos
Zgodnie ze zwyczajem, kontenery poznamy na przykładzie jednego z prostszych
rodzajów. Będzie to stos.

Czym jest stos

Pojęcie stosu jest ci znane; podczas omawiania wskaźników na funkcje wyjaśniłem
bowiem, że jest to pomocny obszar pamięci, poprzez który odbywa się transfer
argumentów od wywołującego funkcję.

Stos (ang. stack) ma też inne znaczenie. Jest to rodzaj pojemnika przechowującego
dowolne elementy, charakteryzujący się tym, iż:

 obiekty są na stos jedynie odkładane (ang. push) i pobierane (ang. pop)
 w danej chwili ma się dostęp jedynie do ostatnio położonego, szczytowego

elementu
 obiekty są zdejmowane w odwrotnej kolejności niż były odkładane na stos

Widać więc analogię do stosu - obszaru pamięci. Tam obiektami odkładanymi były
parametry funkcji. Położone w jednej kolejności, musiały być następnie podejmowane w
porządku odwrotnym. Cały czas równie dobre jest porównanie do stosu książek: jeśli
położymy na biurku słownik ortograficzny, na nim książkę kucharską, a na samej górze
podręcznik fizyki, to aby poznać prawidłową pisownię słowa ‘gżegżółka’ będziemy musieli
wpierw zdjąć dwie książki leżące na słowniku. Przy czym najpierw pozbędziemy się
podręcznika, a potem książki z przepisami.

Definicja szablonu klasy

Na tej samej zasadzie działa stos - struktura danych. Jest to coś w rodzaju tablicy,
przechowującej obiekty dowolnego typu, będące odłożonymi na stos elementami. Nie
pozwala ona jednak na pobranie dowolnego elementu (o ustalonym indeksie), lecz
wymaga zdejmowania obiektów w kolejności odwrotnej do porządku ich odkładania.

Najlepszym sposobem na wprowadzenie stosu do programowania w C++ jest
zdefiniowanie odpowiedniego szablonu klasy. Dzięki temu wszystkie szczegóły
implementacji zostaną ukryte (zaleta OOPu), a nasz stos będzie potrafił operować
elementami dowolnych typów (zaleta szablonów).
Spójrzmy więc na propozycję takiego szablonu stosu:

template <typename T, unsigned N> class TStack
{
 private:
 // zawartość stosu
 T m_aStos[N];

 // aktualny rozmiar (liczba elementów) stosu
 unsigned m_uRozmiar;

 public:

Szablony 571

 // konstruktor
 TStack() : m_uRozmiar(0) { }

 //---

 // odłożenie elementu na stos
 void Push(const T& Element)
 {
 if (m_uRozmiar == N)
 throw "TStack::Push() - stos jest pełen";

 m_aStos[m_uRozmiar] = Element; // dodanie elementu
 ++m_uRozmiar; // zwiększ. licznika
 }

 // pobranie elementu ze szczytu stosu
 T Pop()
 {
 if (m_uRozmiar == 0)
 throw "TStack::Pop() - stos jest pusty";

 // zwrócenie elementu i zmniejszenie licznika
 return m_aStos[--m_uRozmiar];
 }
};

Jest to właściwie najprostsza możliwa wersja stosu. Dwa parametry szablonu określają w
niej typ przechowywanych elementów oraz maksymalną ich liczbę. Drugi oczywiście nie
jest konieczny - łatwo wyobrazić sobie (i napisać) stos, który używa dynamicznej tablicy i
dostosowuje się do liczby odłożonych elementów.
Co do metod, to ich garnitur jest również skromny. Metoda Push() powoduje odłożenie
na stos podanej wartoci, zaś Pop() - pobranie jej i zwrócenie w wyniku. To absolutne
minimum; często dodaje się do tego jeszcze funkcję Top() (‘szczyt’), która zwraca
element leżący na górze bez zdejmowania go ze stosu.

Klasę można też usprawniać dalej: dodając szablonowy kostruktor kopiujący i operator
przypisania, metody zwracające aktualny rozmiar stosu (liczbę odłożonych elementów) i
inne dodatki. Możnaby nawet zmienić wewnętrzny mechanizm funkcjonowania klasy i
zaprząc do pracy szablon TArray - dzięki temu maksymalny rozmiar stosu mógłby być
ustalany dynamicznie.
Zawsze jednak istota działania pojemnika będzie taka sama.

Korzystanie z szablonu

Spożytkowanie tak napisanego stosu nie jest trudne. Oto najbanalniejszy z banalnych
przykładów:

// deklaracja obiektu stosu, zawierającego maksymalnie 5 liczb typu int
TStack<int, 5> Stos;

// odłożenie paru liczb na stos
Stos.Push (12);
Stos.Push (23);
Stos.Push (34);

// podjęcie i wyświetlenie odłożonych liczb
for (unsigned i = 0; i < 3; ++i)
 std::cout << Stos.Pop() << std::endl;

W jego rezultacie zobaczylibyśmy wypisanie liczb:

Zaawansowane C++ 572

34
23
12

Widać zatem wyraźnie, że metoda Pop() powoduje zwrócenie elementów stosu w
kolejności przeciwnej do ich odkładania poprzez Push(). Na tym właśnie opiera się idea
stosu.

Stos ma w programowaniu rozliczne zastosowania: począwszy od rekurencyjnego
przeszukiwania hierarchicznych baz danych (jak chociażby katalogi na dysku twardym)
po rysowanie trójwymiarowych modeli w grach komputerowych. Obok zwykłej tablicy,
jest to chyba najczęściej wykorzystywany pojemnik.

Programowanie ogólne
Szablony, a szczególnie ich użycie do implementacji kontenerów, stały się podstawą idei
tak zwanego programowania ogólnego (ang. general programming). Trudno
precyzyjnie ją wyrazić i zdefiniować, ale można ją rozumieć jako poszukiwanie jak
najbardziej abstrakcyjnych i ogólnych rozwiązań w postaci algorytmów i struktur danych.
Rozwiązania powstałe w zgodzie z tą ideą są więc niesłychanie elastyczne.

Dobrym przykładem są właśnie kontenery. Istnieje wiele ich rodzajów, począwszy od
prostych tablic jednowymiarowych po złożone struktury, jak np. drzewa. Dla każdego
pojemnika logiczne jest jednak przeprowadzanie pewnych typowych operacji, jak na
przykład wyszukiwanie określonego elementu. Operacje te nazywami algorytmami.
Logiczne byłoby zaprogramowanie algorytmów jako metod klas kontenerowych.
Rozwiązanie to ma jednak wadę: ponieważ każdy pojemnik jest zorganizowany inaczej,
należałoby dla każdego z nich zapisać osobną wersję algorytmu. Problem ten rozwiązano
poprzez dodanie abstrakcyjnego pojęcia iteratora - obiektu, który służy do przeglądania
kontenera. Iterator ukrywa wszelkie szczegóły związane z konkretnym pojemnikiem,
przez co algorytm oparty na wykorzystaniu iteratorów może być napisany raz i
wykorzystywany wielokrotnie w odniesieniu do dowolnych kontenerów.

Ten zmyślny pomysł stał się podstawą stworzenia Standardowej Biblioteki Szablonów
(ang. Standard Template Library - STL). Jest to główna część Biblioteki Standardowej
języka C++ i zawiera wiele szablonów podstawowych struktur danych. Są one wsparte
algorytmami, iteratorami i innymi pomocniczymi pojęciami, dzięki którym STL jest nie
tylko bogata funkcjonalnie, ale i efektywna oraz elastyczna. To jedno z bardziej
użytecznych narzędzi języka C++ i jednocześnie najważniejsze zastosowanie szablonów.

Podsumowanie
Ten rozdział kończy kurs języka C++. Na ostatku zapoznałeś się z jego najbardziej
zaawansowanym mechanizmem - szablonami.

Wpierw więc zobaczyłeś sytuacje, w których ścisła kontrola typów w C++ jest powodem
problemów. Chwilę później otrzymałeś też do ręki lekarstwo, czyli właśnie szablony.
Przeszliśmy potem do dokładnego omówienia ich dwóch rodzajów: szablonów funkcji i
szablonów klas.
W sposób ogólniejszy zajęliśmy się nimi w następnym podrozdziale. Poznałeś zatem trzy
rodzaje parametrów szablonów, które dają im razem bardzo potężne właściwości. Zaraz
jednak uświadomiłem ci także problemy związane z szablonami: począwszy od
konieczności udzielania podpowiedzi dla kompilatora co do znaczenia niektórych nazw, a
kończąc na kwestii organizacji kodu szablonów w plikach źródłowych.

Szablony 573

W trzecim podrozdziale przyjrzeliśmy się natomiast najbardziej typowym zastosowaniom
szablonów - czyli dowiedzieliśmy się, jak zdobyta wiedza może się przydać w praktyce.

Tak kończy się opis języka C++ z punktu widzenia składni i semantyki. Jego częścią jest
jednak także Biblioteka Standardowa. Niejednokrotnie mieliśmy okazję korzystać z jej
drobnych części, lecz dopiero w następnym rozdziale rozpoczniemy jej systematyczne
omawianie.

Pytania i zadania
Teraz czeka cię jeszcze tylko odpowiedź na kilka sprawdzających wiedzę pytań i
wykonanie zadań. Powodzenia!

Pytania
1. Co to znaczy, że C++ jest językiem o ścisłej kontroli typów?
2. W jaki sposób można stworzyć „ogólne funkcje”, działające dla wielu typów

danych?
3. Jakie są sposoby na implementację ogólnych klas pojemnikowych bez użycia

szablonów?
4. Jak definiujemy szablon?
5. Jakie rodzaje szablonów są dostępne w C++?
6. Czym jest specjalizacja szablonu? Czym się różni specjalizacja częściowa od

pełnej?
7. Skąd kompilator bierze „wartości” (nazwy typów) dla parametrów szablonów

funkcji?
8. Które parametry szablonu funkcji mogą być wydedukowane z jej wywołania?
9. Co dzieje się, gdy używamy szablonu funkcji lub klasy? Jakie zadania spoczywają

wówczas na kompilatorze?
10. Jakie trzy rodzaje parametrów może posiadać szablon klasy?
11. Jaka jest rola słowa kluczowego typename? Gdzie i dlaczego jest ono konieczne?
12. Na czym polega model włączania?
13. Który sposób organizacji kodu szablonów najbardziej przypomina tradycyjną

metodę podziału kodu w C++?
14. Dlaczego nie należy używać makrodefinicji w celu imitowania szablonów funkcji?
15. Czym jest krotka?
16. Co rozumiemy pod pojęciem pojemnika lub kontenera?

Ćwiczenia
1. Napisz szablon funkcji Suma(), obliczający sumę wartości elementów podanej

tablicy TArray.
2. (Trudniejsze) Zdefiniuj szablon klas tablicy wskaźników o nazwie TPtrArray,

dziedziczący z TArray. Szablon ten powinien przyjmować jeden parametr, będący
typem, na który pokazują elementy tablicy.

3. (Bardzo trudne) Dodaj do specjalizacji TArray<TArray<TYP> > przeciążony
operator [], który będzie działał w ten sam sposób, jak dla zwykłych
wielowymiarowych tablic języka C++.
Wskazówka: operator ten będzie wobec tablicy używany dwukrotnie. Pomyśl więc,
jaką wartość (obiekt tymczasowy) powinno zwracać jego pierwsze użycie, aby
drugie zwróciło w wyniku żądany element tablicy.

4. (Trudniejsze) Opracuj i zaimplementuj algorytm dokonujący przedstawiania
liczby naturalnej w systemie rzymskim.
Wskazówka: wykorzystaj tablicę przeglądową par: litera rzymska plus
odpowiadająca jej liczba dziesiętna.

Zaawansowane C++ 574

5. Napisz szablon TQueue, podobny do TStack, lecz implementujący pojemnik zwany
kolejką. Kolejką działa w ten sposób, iż elementy są dodawane do jej pierwszego
końca, natomiast pobierane są z drugiego - tak samo, jak obsługiwane są osoby
stojące w kolejce w sklepie czy banku. Podobnie jak w przypadku stosu, możesz
określić jej maksymalny rozmiar jako parametr szablonu.

