SZABLONY

Gdy cos sie nie udaje, mowimy,
ze to byt tylko eksperyment.

Robert Penn Warren

Nieuchronnie, wielkimi krokami, zblizamy sie do korica kursu C++. Przed tobg jeszcze
tylko jedno, ostatnie i arcywazne zagadnienie: tytutowe szablony.

Ten element jezyka, jak chyba zaden inny, wzbudza wsréd wielu programistéw roézne
niezdrowe emocje i kontrowersje; poréwnac je mozna tylko z reakcjami na preprocesor.
Nie sg to aczkolwiek reakcje skrajnie negatywne: przeciwnie, szablony powszechnie
uwaza sie za jeden z najwiekszych atutéw jezyka C++.

Problemem jest jednak to, iz obecne ich mozliwosci (mimo ze juz teraz ogromne) sg
niezadowalajgce dla biegtych programistéw. Dlatego tez wtasnie szablony sg tg czescig
C++, ktéra najszybciej podlega ewolucji. Trzeba jednak uswiadomié sobie, ze od
odgornie narzuconego pomystu Komitetu Standaryzacyjnego do implementacji stosownej
funkcji w kompilatorach wiedzie bardzo daleka droga. Skutek jest taki, ze na palcach
jednej reki mozna policzy¢ kompilatory, ktére w petni odpowiadajg tym zaleceniom i
oferuje szablony catkowicie zgodne ze standardem. Jest to zadziwiajace, zwazywszy ze
sama idea szablonow liczy juz sobie kilkanascie (!) lat.

Mam jednak takze pocieszajacg wiadomosc¢. Otéz mozna kreci¢ nosem i narzekac, ze
kompilator, ktéorego uzywamy, nie jest w petni ,na czasie”, lecz dla wiekszosci
programistow nie bedzie to miato wielkiego znaczenia. Oczywiscie, najlepiej jest uzywac
zawsze najnowszych wersji narzedzi programistycznych; nie oznacza to wszakze, ze
starsze ich wersje nie nadajg sie do niczego.

Skoro juz o tym mowie, to przydatoby sie wspomnieé, jak wyglada obstuga szablonéw w
naszym ulubionym kompilatorze, czyli Visual C++. I tu czeka nas raczej mita
niespodzianka. Przede wszystkim warto wiedzie¢, ze jego aktualna wersja, zawarta w
pakiecie Microsoft Visual Studio .NET 2003, jest absolutnie zgodna z aktualnym
standardem jezyka C++ - naturalnie, takze pod wzgledem obstugi szablonow. Jezeli
natomiast chodzi o starszg wersje Visual Studio .NET (nazywang teraz czesto .NET 2001),
to tutaj sprawa takze przedstawia sie nie najgorzej. W codziennym, ani nawet nieco
bardziej egzotycznym programowaniu nie odczujemy bowiem zadnego niedostatku w
obstudze szablondéw przez ten kompilator.

Niestety, podobnie dobrych wiadomosci nie mam dla uzytkownikéw Visual C++ 6. To
leciwe juz srodowisko moze szybko okaza¢ sie niewystarczajgce. Warto wiec zaopatrzy¢
W jego nowszg wersje.

W kazdym jednak przypadku, niezaleznie od posiadanego kompilatora, znajomos¢
szablonow jest niezbedna. Wpisaly sie one w praktyke programistyczng na tyle silnie, ze
obecnie mato ktéry program moze sie bez nich obej$¢. Poza tym przekonasz sie wkrotce
na wiasnej skérze, ze stosowanie szablondéw zdecydowanie utatwia typowe czynnosci
koderskie i sprawia, ze tworzony kod staje sie znacznie bardziej uniwersalny i elastyczny.
Najlepszym przyktadem tego jest Biblioteka Standardowa jezyka C++, z ktorej
fragmentow miates juz okazje korzystac.

Zabierzmy sie zatem do poznawania szablonéw - na pewno tego nie pozatujesz :D

506 Zaawansowane C++

Podstawy

Na poczatek przedstawie ci, czym w ogodle sg szablony i pokaze kilka przyktadow na ich
zastosowanie. Bardziej zaawansowanymi zagadnieniami zajmiemy sie bowiem w
nastepnym podrozdziale. Na razie czas na krotkie wprowadzenie.

Idea szablonow

Mdgtbym teraz podwing¢ rekami, poprosi¢ cie o uwage i kawatek po kawatku wyjasniac,
czym sg te cate szablony. Na to rowniez przyjdzie pora, ale najpierw lepiej chyba odkry¢,
do czego mogq nam sie te dziwne twory przydac. Dzieki temu moze tatwiej przyjdzie ci
ich zrozumienie, a potem znajdowanie dlan zastosowan i wreszcie... polubienie ich! Tak,
szablony naprawde mozna polubi¢ - za robote, ktérej nam oszczedzajq; nam: ciezko
przeciez pracujgcym programistom ;-)

Zobacz zatem, jakie fundamentalne problemy pomoga ci niedtugo rozwigzywac te
nieocenione konstrukcje...

Scistoéé C++ powodem bélu glowy

Pewnie styszates$ juz wczesniej, ze C++ jest jezykiem o Scistej kontroli typéw. Znaczy to,
Ze typy danych petnig w nim duze znaczenie i Zze zawsze istnieje wyrazne rozgraniczenie
pomiedzy nimi.

Jednoczesnie wiele mechanizméw tego jezyka stuzy, paradoksalnie, wtasnie zatarciu
granic pomiedzy typami danych. Wystarczy przypomnie¢ chociazby niejawne konwersje,
ktére pozwalajg dokonywac ,,w locie” zamiany z jednego typu na drugi, w sposdb
niezauwazalny. Ponadto klasy w C++ sg skonstruowane tak, aby w razie potrzeby mogty
niemal doskonale imitowac typy wbudowane.

Mimo to, Scisty podziat informacji na liczby, napisy, struktury itd. moze by¢ czesto sporg
przeszkoda...

Dwa typowe problemy

Ktopoty zaczynajq sie, gdy chcemy napisac kod, ktéry powinien dziata¢ w odniesieniu do
kilku mozliwych typow danych. Z grubsza mozna tu rozdzieli¢ dwie sytuacje: gdy
probujmy napisac¢ uniwersalng funkcje i gdy podobng prébe czynimy przy definiowaniu
klasy.

Problem 1: te same funkcje dla réznych typow

Tradycyjnym, wrecz klasycznym przyktadem tego pierwszego problemu jest funkcja
wyznaczajaca wieksza liczbe sposréd dwdch podanych. Prawdopodobnie z takiej funkcji
bedziesz czesto skorzystat, wiec kiedy$ mozesz jg zdefiniowaé np. jako:

int max (int nLiczbal, int nLiczba2)

{

return (nLiczbal > nLiczba2 ? nLiczbal : nLiczba?2);

}

Taka funkcja dziata dobrze dla liczb catkowitych, ale juz catkiem nie radzi sobie z liczbami
typu float czy double, bo zaréwno wynik, jak i parametry sg zaokraglane do jednosci.
Dla zdefiniowanych przez nas typow danych jest za$ zupetnie nieprzydatna, co chyba
zresztg catkowicie zrozumiate.

Naturalnie, mozemy sobie dodac inne, przecigzone wersje funkcji - jak chociazby taka:

double max (double fLiczbal, double fLiczba2)
{

Szablony 507

return (fLiczbal > fLiczba2 ? fLiczbal : fLiczba2);
}

Takich wersji musiatoby by¢ jednak bardzo wiele: za kazdym kolejnym typem, dla
ktérego chcielibysmy stosowac max (), musiataby i$¢ odrebna funkcja. Ich definiowanie
bytoby ucigzliwe i nudne, a podczas wykonywania tej nuzgcej czynnosci trudno bytoby nie
zwatpic, czy jest to aby na pewno stuszne rozwigzanie...

Problem 2: klasy operujgce na dowolnych typach danych

Innym problemem sg klasy, ktore z jakich$ wzgledéw muszg by¢ elastyczne i operowac
na danych dowolnego typu. Koronnym przykfadem sa pojemniki, jak np. tablice
dynamiczne, podobne do naszej klasy CIntArray. Jak wiemy, ma ona sporg wade: przy
jej pomocy nie mozna bowiem zarzadzad tablicg elementéw innego typu niz int. Chcac
to osiggna¢, nalezatoby napisa¢ nowa klase - zapewne bardzo podobng do wspomnianej.
Te same prace trzebaby wykona¢ dla kazdego nastepnego typu elementdw...

To na pewno nie jest dobre wyjscie!

Mozliwe rozwigzania
~Ale jakie mamy wyjscie?”, spytasz pewnie. Céz, mozna sobie jako$ radzic...
Wykorzystanie preprocesora

0Ogdlng funkcje max () (i podobne) mozemy zasymulowac przy uzyciu parametryzowanych
makr:

#define MAX (a,Db) ((a) > (b) 2 (a) : (b))

Sadze jednak, ze pamietasz wady takich makrodefinicji. Nawiasy wokét a i b likwidujq
wprawdzie problem pierwszenstwa operatorow, ale nie zabezpiecza przed podwdjnym
obliczaniem wyrazen. Wiesz przeciez, ze preprocesor dziata na kodzie tak jak na tekscie,
zatem np. wyrazenie w rodzaju:

MAX (10, rand())

nie zwroci nam wecale liczby pseudolosowej rownej co najmniej 10. Zostanie ono bowiem
rozwiniete do:

((10) > (rand()) 2 10 : (rand()))

Funkcja rand () bedzie wiec obliczana dwukrotnie, z kazdym razem dajac oczywiscie inny
wynik - bo takie jest jej przeznaczenie. Makro MAX () nie bedzie wiec zawsze dziatato
poprawnie.

Uzywanie ogdlnych typow

Jeszcze mniej oczywisty jest sposdb na zaimplementowanie ogolnej klasy, np. tablicy
przechowujacej dowolny typ elementéw. Tutaj aczkolwiek takze istnieje pewne
rozwigzanie: mozna uzy¢ ogolnego wskaznika, tworzgc tablice elementéw typu void*:

class CPtrArray
{
private:
// tablica i jej rozmiar
void** m ppvTablica;
unsigned m_uRozmiar;

// itd. (metody 1 przeciazone operatory)

508 Zaawansowane C++

}i

Bedziemy musieli sie jednak zmagac z niedogodnosciami wskaznikdw void* - przede
wszystkim z utratg informacji o rzeczywistym typie danych:

CPtrArray Tablica (5);

// alokacja pamieci dla elementu (!)

Tablica[2] = new int;
// przypisanie - nieszczegdlnie 1adne...
* (static cast<int*>(Tablica[2])) = 10;

Kazdorazowe rzutowanie na wilasciwy typ elementdéw (tutaj int) na pewno nie bedzie
nalezato do przyjenosci. Poza tym trzeba bedzie pamieta¢ o zwolnieniu pamieci
zaalokowanej dla poszczegodlnych elementédw. W przypadku matych obiektéw, jak liczby,
nie ma to zadnego sensu...

Zatem nie! To na pewno nie jest zadowalajace wyjscie!

Szablony jako rozwigzanie

W porzadku, dosy¢ tych bezowocnych poszukiwan. Mysle, ze domyslasz sie, iz to
szablony sg tym rozwigzaniem, ktérego poszukujemy. Zatem nie tracgc wiecej czasu,
znajdzmy je wreszcie :)

Kod niezalezny od typu

Wrocmy wpierw do prob napisania funkcji max () . Patrzac na jej dwie wersje, dla typow
int i double, mozemy tatwo zauwazy¢, ze réznig sie one bardzo niewiele. Wiasciwie to
mozna stwierdzi¢, ze po prostu drugi z wariantdw ma wpisane double tam, gdzie w
pierwszym widnieje typ int.

Gdybysmy wiec chcieli napisac¢ ogoélny wzorzec dla funkcji max (), wygladatby on tak:

typ max (typ Parametrl, typ Parametr?2)
{

return (Parametr > Parametr2?2 ? Parametrl : Parametr?2);

}

No dobrze, mozemy sobie pisac takie wzorce, ale co nam z tego? Nie znamy przeciez
zadnego sposobu, aby przekazac¢ go kompilatorowi do wykorzystania... Czy na pewno?...

Kompilator to potrafi

Alez nie! Mozemy ten wzorzec - ten szablon (ang. template) - wpisa¢ do kodu, tworzac
0go6lng funkcje max (). Trzeba to jedynie zrobi¢ w odpowiedni sposob - tak, aby
kompilator wiedziat, z czym ma do czynienia. Zobaczmy wiec, jak mozna tego dokonad.

Sktadnia szablonu

A zatem: chcac zdefiniowac¢ wzorzec funkcji max (), musimy napisa¢ go w ten oto sposéb
sposob:

template <typename TYP> TYP max (TYP Parametrl, TYP Parametr?2)
{

return (Parametr > Parametr2?2 ? Parametrl : Parametr?2);

}

Szablony 509

Dopdki nie wyjasnimy sobie doktadnie kwestii umieszczania szablondéw w plikach
zrédtowych, zapamietaj, aby wpisywac je w catosci w plikach nagtéwkowych.

W ten sposob tworzymy szablon funkcji (ang. function template) Zobaczmy, co sie na
niego skfada.

Zauwazytes$ zapewne najpierw zupetnie nowg czes$¢ nagtdwka funkciji:
template <typename TYP>

Jest ona obowigzkowa dla kazdego rodzaju szablondw, nie tylko funkcji. Stowo kluczowe
template (‘szablon’) méwi bowiem kompilatorowi, ze nie ma tu do czynienia ze zwyktym
kodem, lecz wtasnie z szablonem.

Dalej nastepuje, ujeta w nawiasy ostre, lista parametréw szablonu. W tym przypadku
mamy tylko jeden taki parametr: stowo typename (‘nazwa typu’) informuje, ze jest nim
typ. Okazuje sie bowiem, ze parametrami szablonu moga by¢ takze ,normalne” wartosci,
podobne do argumentéw funkcji - nimi tez sie zajmiemy, ale pozniej. Na razie mamy tu
jeden parametr szablonu bedacy typem o jakze opisowej nazwie TYP.

Potem przychodzi juz normalna definicja funkcji - z jedng drobng réznica. Jak widac,
uzywamy w niej nazwy TYP zamiast wtasciwego typu danych (czyli int, double, itd.).
Stosujemy go jednak w tych samych miejscach, czyli jako typ wartosci zwracanej oraz
typ obu przyjmowanych parametréw funkcji.

Tres¢ szablonu odpowiada wiec wzorcowi z poprzedniego akapitu. Réznica jest jednak
taka, ze o ile tamten ,kod” byt niezrozumiaty dla kompilatora, o tyle ten szablon jest jak
najbardziej poprawny i, co najwazniejsze, dziata zgodnie z oczekiwaniami. Nasza funkcja
max () potrafi juz bowiem operowac na dowolnym typie argumentow:

int nMax = max (-1, 2); // TYP = int
unsigned uMax = max (10u, 65u); // TYP = unsigned
float fMax = max(-12.4, 67); // TYP = double (!)

Najciekawsze jest to, iz to funkcja na podstawie swych argumentéw ,sama zgaduje”, jaki
typ danych ma by¢ wstawiony w miejsce symbolicznej nazwy TYP. To wiasnie jedna z
zalet szablonéw funkcji: uzywamy ich zwykle tak samo, jak normalnych funkcji, a
jednoczesnie zyskujemy zadziwiajacg uniwersalnosé.

Popatrzmy jeszcze na ogolng sktadnie szablonu w C++:

template <parametry_szablonu> kod

Jak wspomniatem, stéwko template jest tu obowigzkowe, bo dzieki nim niemu kompilator
wie, ze ma do czynienia z szablonem. parametry_szablonu to najczesciej symboliczne
oznaczenia nieznanych z gory typow danych; oznaczenia te sg wykorzystywane w
nastepujacym dalej kodzie.

Na temat obu tych kluczowych czesci szablonu powiemy sobie jeszcze mnéstwo rzeczy.

Co moze by¢ szablonem

Wpierw ustalmy, do jakiego rodzaju kodu w C++ mozemy ,doczepic¢” fraze
template<...>, czyniac jq szablonem. Generalnie mamy dwa rodzaje szablonow:
> szablony funkcji - sg to wiec taki funkcje, ktére mogg dziata¢ w odniesieniu do
dowolnego typu danych. Zazwyczaj kompilator potrafi bezbtednie ustali¢, jaki typ
jest wiasciwy w konkretnym wywotaniu (por. przyktad zastosowania szablonu
max () z poprzedniego punktu)

510 Zaawansowane C++

» szablony klas - czyli klasy, potrafigce operowac na danych dowolnego typu. W tym
przypadku musimy zwykle podac ten wiasciwy typ; zobaczymy to wszystko nieco
dalej

Wkrotce aczkolwiek okazato sie, ze bardzo pozadane sg takze inne rodzaje szablonéw -
gtéwnie po to, aby utatwic¢ prace z szablonami klas. My jednak zajmiemy sie zwiaszcza

tymi dwoma rodzajami szablonéw. Wpierw wiec poznasz nieco blizej szablony funkcji, a
potem zobaczysz takze szablony klas.

Szablony funkcji

Szablon funkcji mozemy wyobrazi¢ sobie jako:
> 0golny algorytm, ktéry dziata poprawnie dla danych réznego typu
> zespot funkcji, zawierajacg odrebne wersje funkcji dla poszczegdlnych typdow

Oba te podejscia sg catkiem stuszne, aczkolwiek jedno z nich bardziej odpowiada
rzeczywistosci. Otoz:

Szablon funkcji reprezentuje zestaw (rodzine) funkcji, dziatajacych dla dowolnej liczby
typow danych.

Zasada stojaca za szablonami jest taka, ze kompilator sam dokonuje po prostu tego, co
mogtby zrobi¢ programista, nudzac sie przy tym niezmiernie. Na podstawie szablonu
funkcji generowane sg wiec jej konkretne egzemplarze (specjalizacje, bedace
przecigzonymi funkcjami), operujace juz na rzeczywistych typach danych. Potem sg one
wywotywane w trakcie dziatania programu.

Proces ten nazywamy konkretyzacja (ang. instantiation) i zachodzi on dla wszelkiego
rodzaju szablondéw. Zanim aczkolwiek moze do niego dojs$¢, szablno trzeba zdefiniowac.
Zobaczmy wiec, jak definiuje sie szablony funkcji.

Definiowanie szablonu funkcji

Definicja szblonu funkcji nie rézni sie zbytnio od zwyktej definicji funkcji. Ot, po prostu
jeden typ (lub wiecej) nie sq w niej podane explicité, lecz wnioskowane z wywotania
funkcji szablonowej. Niemniej, temu wszystkiemu trzeba sie przyjrze¢ blizej.

Podstawowa definicja szablonu funkcji

Oto jeden z prostszych chyba przyktaddéw szablonu funkcji - wartos¢ bezwzgledna:

template <typename TYP> TYP Abs (TYP Liczba)
{

return (Liczba >= 0 ? Liczba : -Liczba);

}

Posiada takiego szablonu ma te niezaprzeczalng zalete, ze bez dodatkowego wysitku
mozemy postugiwac sie ta funkcjg dla liczb dowolnego typu: int, float, double, itd. Co
najwazniejsze, w wyniku otrzymamy wartos¢ tego samego typu, co podany parametr,
zatem nie musimy postugiwac sie rzutowaniem - co bytoby konieczne w przypadku
zdefiniowania zwyktej funkcji dla najbardziej ,,pojemnego” typu double.

Dlaczego tak jest? Oczywiscie dlatego, iz symboliczne oznaczenie TYP (czyli parametr
szablonu) wystepuje zaréwno jako typ wartosci zwracanej, jak i typ parametru funkcji.
W konkretnych egzemplarzach funkcji w obu miejscach wystapi wiec ten sam typ, np.
int.

Szablony 511

Stosowalnos$¢ definicji

Mozna zapytac: ,,Czy powyzszy szablon moze dziata¢ tylko dla wbudowanych typéw
liczbowych? Czy poradzitby sobie np. z wyznaczeniem wartosci bezwzglednej z liczby
wymiernej, czyli obiektu zdefiniowanej ongi$ klasy cCRational?...”

Aby zdecydowac o tym i o podobnych sprawach, musimy odpowiedzie¢ na inne pytanie:

Czy to, co robimy w tresci szablonu funkcji, da sie wykona¢ po podstawieniu zadanego typu w miejsce
parametru szablonu?

U nas wiec typ danych, wystepujacy na razie pod oznaczeniem TYP, musi udostepniac:
> operator porownania >=, pozwalajacy na konfrontacje obiektu z zerem
» operator negacji -, stuzacy tutaj do uzyskania liczby przeciwnej do danej
» publiczny konstruktor kopiujacy, umozliwiajacy zwrot wyniku funkcji

Pod wszystkie te wymagania podpadaja rzecz jasna wbudowane typy liczbowe. Jesli zas
wyposazylibysmy klase CRational we dwa wspomniane operatory, to takze jej obiekty
mogtyby by¢ argumentami funkcji 2bs () ! Wynika stad, ze:

Szablon funkcji moze byc¢ stosowany dla tych typow danych, dla ktérych poprawne
sa wszystkie operacje, dokonywane na obiektach tychze typow w tresci szablonu.

tatwo mozna wiec stwierdzi¢, ze np. dla typu std::string ten szablon bytby
niedozwolony. Klasa std: : string nie udostepnia bowiem operatora negacji, ani tez nie
pozwala na porownywanie swych obiektéw z liczbami catkowitymi.

Parametr szablonu uzyty w ciele funkcji

Trudno zauwazyc to na pierwszy rzut oka, ale przedstawiony wyzej szablon ma jeden
dos¢ powazny zgrzyt. Mianowicie, wymusza on na podanym mu typie danych, aby
pozwalat na poréwnywanie go z typem int. Do takiego typu nalezy bowiem newralgiczne
0.

Nie jest to zbyt dobre i lepiej, zeby funkcja nie korzystata z takiego rozwigzania.
Interpretacja zera w réznych typach liczbowych moze by¢ bowiem catkiem odmienna od
zaktadanej przez nas.

Lepiej wiec, zeby punkt zerowy mogt by¢ ustalony przez domysiny konstruktor.
Wowczas szablon bedzie wygladat tak - zmiana jest niewielka:

template <typename TYP> TYP Abs (TYP Liczba)
{

return (Liczba >= TYP() ? Liczba : -Liczba);

}

Teraz bedzie on jednak dziatat poprawnie dla kazdego sensownego typu danych
liczbowych.

~Chwileczke”, rzekniesz. ,,A co z typami podstawowymi? Przeciez one nie majq
konstruktorow!” Faktycznie, stuszna uwaga. Takg uwage poczynit pewnie swego czasu
ktorys$ z twoércow C++, gdyz zaowacowata ona wprowadzeniem do jezyka tzw.
inicjalizacji zerowej. Jest to bardzo prosta rzecz: otdz typy wbudowane (jak int czy
bool) zostaty wyposazone w swego rodzaju ,konstruktory”. Nie sq to prawdziwe funkcje
sktadowe, jak w przypadku klas, lecz po prostu mozliwos¢ uzycia tej samej sktadni
jawnego wywotania domysinego konstruktora. Wyglada ona tak:

typ ()

512 Zaawansowane C++

i dla klas nie jest, jak sadze, zadng niespodzianka. To samo jednak mozemy uczynic
takze w stosunku do podstawowych typéw danych. W C++ sg wiec catkowicie poprawne
wyrazenia typu int (), float (), bool () €zy unsigned (). Co wazniejsze w wyniku dajg
one zero odpowiedniego typu - czyli dziatajg tak, jakby$Smy napisali (odpowiednio): 0,
0.0f, false i Ou.

Inicjalizacja zerowa gwarantuje wiec wspétprace naszego szablonu z typami
podstawowymi, poniewaz wyrazenie TYP () da w kazdym przypadku potrzebny nam tutaj
~Obiekt zerowy”. Niewazne, czy bedzie chodzito o typ podstawowy C++, czy tez klase
zdefiniowang przez programiste.

Parametr szablonu i parametr funkcji

Moéwigc o szablonach funkcji, mozna sie nieco zagubi¢ w znaczeniu stowa ‘parametr’.
Mamy mianowicie az dwa rodzaje parametrow:
» parametry funkcji - czyli te znane nam juz od dawna, bo wystepuje one w kazdej
niemal funkcji. Kazdy taki parametr ma swéj typ i nazwe
> parametry szablonu poznaliSmy w tym rozdziale. W przypadku szablonéw funkcji
mogaq to by¢ wytacznie nazwy typdéw. Parametry szablonu stosujemy wiec w
nagtéwku i w ciele funkcji tak, jak gdyby byty to nazwy typdw, np. float czy
VECTOR2D

To naturalne, ze oba te rodzaje parametréw sg ze sobgq Scisle zwigzane. Popatrzmy
chocby na nagtéwek funkcji max () :

template <typename TYP> TYP max (TYP Parametrl, TYP Parametr2)

Parametry tej funkcji to parametrl i Parametr2. Obydwa nalezg one do typu
oznaczonego po prostu jako Typ. Ow TYP mdgiby by¢ klasa, aliasem zdefiniowanym
poprzez typedef, wyliczeniem enum, itd. Tutaj jednak TYp jest parametrem szablonu:
deklarujemy go w nawiasach ostrych po stowie template przy pomocy typename.

Fakt, ze Typ parametréow funkcji jest parametrem szablonu ma dalekosiezne i
dobroczynne konsekwencje. Powoduje to mianowicie, iz moze on by¢ wydedukowany z
argumentow wywotania funkcji:

// (bylo juz do$¢ przykltaddw wywolywania max (), wiec jeden wystarczy :D)
std::cout << max (42, 69);

Nie musimy w powyzszej linijce wyraznie okreslaé, ze szablon max () ma by¢ tu uzyty do
wygenerowania funkcji pracujacej na argumentach typu int. Ten typ zostanie po prostu
~Wziety” z argumentow wywotania (ktore sg typu int wilasnie). To jedna z wielkich zalet
szablondéw funkcji.

Mozliwe jest aczkolwiek jawne okreslenie typu, czyli parametru szablonu. O tym powiemy
sobie w nastepnym paragrafie. |

Kilka parametrow szablonu

Dotad widzieliSmy jednoparametrowe szablony funkcji, ale nie jest to kres mozliwosci
szablonow. Tak naprawde bowiem mogg mie¢ one dowolng liczbe parametréow. Oto na
przyktad inny wariant funkcji max () :

template <typename TYPl, typename TYP2>
TYP1l max (TYP1 Parametrl, TYP2 Parametr?2)
{

return (Parametr > Parametr?2 ? Parametrl : Parametr?2);

}

Szablony 513

Podobnie jak parametry funkcji, parametry szablonu zawarte w nawiasach ostrych takze
o oddzielamy przecinkami. Moze ich by¢ dowolna ilos¢; tutaj mamy dwa parametry
szablonu, ktore bezposrednio przedktadajq sie na dwa parametry funkcji. Nowa wersja
funkcji max () potrafi wiec poréwnywac wartosci réznych typow - o ile oczywiscie istnieje
odpowiedni operator >.

Oto przyktad wykorzystania tego szablonu:

int nMax = max(-18, 42u); // TYP1 = int, TYP2 = unsigned
float fMax = max(9.5f, 34); // TYP1 = float, TYP2 = int
fMax = max(6.78, 80); // TYP1 double, TYP2 = int

W ostatnim wywotaniu wartoscig zwrdcong przez max () bedzie 80.0 typu double. J€j
przypisanie do mniej pojemnego typu float spowoduje zapewne ostrzezenie
kompilatora.

Jak wida¢, argumenty funkcji nie muszg by¢ tu konwertowane do wspdlnego typu, jak to
sie dziato przy jednoparametrowym szablonie. W sumie jednak miedzy oboma
szablonami nie ma wielkiej réznicy funkcjonalnej; podatem tu jedynie przyktad na to, ze
szablon funkcji moze mie¢ wiecej parametréw niz jeden.

Z powyzszym szablonem jest jednak pewien dosc istotny ktopot. Chodzi mianowicie o typ
wartosci zwracanej. Wpisatem w nim wprawdzie TyP1, ale to nie ma zadnego
uzasadnienia, gdyz réwnie dobry (a raczej niedobry) byty TYp2,

Problemem jest to, iz na etapie kompilacji nie wiemy rzecz jasna, jakie wartosci zostang
przekazane do funkcji. Nie wiemy wobec tego, jaki powinien by¢ typ wartosci zwracanej.
W takiej sytuacji nalezatoby uzy¢ typu ogdlniejszego, bardziej pojemnego: dla int i
float bytby to zatem float, i tak dalej (przypomnij sobie z poprzedniego rozdziatu,
kiedy jakis typ jest ogdlniejszy od drugiego). Niestety, poniewaz z samego zatozenia
szablonow funkcji nie wiemy, dla jakich faktycznych typow bedzie on uzyty, nie mozemy
nijak okresli¢, ktéry z tej dwojki bedzie pojemniejszy. W zasadzie wiec nie wiemy, jaki
powinien by¢ typ wartosci zwracanej!

Rozsgdne rozwigzanie tego problemu nie lezy niestety w zakresie mozliwosci
programisty. Potrzebny jest tutaj jaki$ nowy mechanizm jezyka; zwykle mowi sie w tym
kontekscie o operatorze typeof (‘typ czegos’). Miatby on zwracaé nazwe typu z podanego
mu (statego) wyrazenia. Nazwa ta mogtaby by¢ potem uzyta tak, jak kazda inna nazwa
typu - a wiec na przyktad w charakterze rodzaju wartosci zwracanej przez funkcje.
Obecnie istniejg kompilatory, ktore oferujg operator typeof, ale oficjalny standard C++
poki co nic o nim nie moéwi.

Specjalizacja szablonu funkcji

Podstawowy szablon funkcji definiuje nam ogolng rodzine funkcji, ktoérej cztonkowie
(specjalizacje) dla kazdego typu (parametru szablonu) zachowujg sie tak samo. Nasza
funkcja max () bedzie wiec zwracaty wiekszg liczbe niezaleznie od tego, czy typem jest
liczby bedzie double czy int.

Powiesz: ,I bardzo dobrze! O to nam przeciez chodzi.” No tak, ale jest pewien szkoput.
Dla pewnych typow danych algorytm wyznaczania wiekszej warto$ci moze by¢
nieodpowiedni. Uogdlniajac sprawe, mozna zkonkludowaé, ze niekiedy potrzebna nam
jest specjalna wersja szablonu funkcji, ktéra dla jakiegos konkretnego typu (parametru
szablonu) bedzie sie zachowywata inaczej niz dla reszty.

Wtedy wiasnie musimy sami zdefiniowa¢ owg konkretng specjalizacje szablonu
funkcji. Tym zajmiemy sie w niniejszym paragrafie.

514 Zaawansowane C++

Wyjgtkowy przypadek

Twoja nauka C++ opiera sie miedzy innymi na serii narzuconych przypuszczen, zatem
teraz przypusémy, ze chcemy rozszerzy¢ nieco funkcjonalnos$¢ szablonu funkcji max () .
Zalézmy mianowicie, ze chcemy uczyni¢ jg wiadng do wspodtpracy nie tylko z liczbami, ale
tez z takg oto klasg wektora:

#include <cmath>

struct VECTOR2
{

// wspbdirzedne tegoz wektora
double x, vy;

// metoda liczaca dilugos$é wektora
double Dlugosc () const { return sqgrt(x * x + vy * vy); }

// (reszta jest Srednio potrzebna, zatem pomijamy)

b

Naturalnie, moznaby wyposazy¢ ja w odpowiedni operator> (). My jednak chcemy
zdefiniowac¢ specjalizowang wersje szablonu funkcji max () . Czynimy to w taki oto sposdb:

template<> VECTOR2 max (VECTOR2 vWektorl, VECTOR2 vWektor2)
{

// pordwujemy diugosci wektordw; w przypadku roédwnosci zwracamy 1-szy
return (vWektorl.Dlugosc() >= vWektor2.Dlugosc() ?
viWektorl : vWektor2);

}

Wiasciwie to mozna powiedzie¢, ze funkcja ta nie rézni sie prawie niczym od normalnej
funkcji max () (nieszablonowej). Dlatego tez wazne jest opatrzenie jej frazg template<>
(z pustymi nawiasami ostrymi), bo dzieki temu kompilator moze uzna¢ nasza definicje za
specjalizacje szablonu funkcji max().

Co do nagtdéwka funkciji, to jest to ten sam nagléwek, co w oryginalnym szablonie - z tg,
tylko rdznica, ze TYP zostato zamienione na nazwe rzeczywistego typu, czyli VECTOR2. Ze
wzgledu na tg jednoznacznosc¢ specjalizacja nie wymaga zadnych dalszych zabiegéw. W
sumie jednak mozna (i zaleca sie) bezposrednie podanie typu, dla ktérego specjalizujemy
szablon:

template<> VECTORZ max<VECTOR2> (VECTOR2 vWektorl, VECTOR2Z vWektor2)

Dziwng fraze max<VECTOR2> mozna tu z powodzeniem traktowac¢ jako nazwe funkcji -
specjalizacji szablonu max () dla typu vECTOR2. W takiej zresztg roli poznamy podobne
konstrukcje, gdy zajmiemy sie doktadniej uzyciem funkcji szablonowych.

Ciekawostka: specjalizacja czesciowa szablonu funkcji

Jak kazda Ciekawostka, takze i ta nie jest przeznaczona dla poczatkujacych, a juz na
| pewno nie podczas pierwszego kontaktu z tekstem.

Poprzednio specjalizowalismy funkcje dla scisle okreslonego typu danych. Teoretycznie
moznaby jednak zrobi¢ cos$ innego: napisa¢ specjalng jej wersje dla pewnego rodzaju
typow.

».No, teraz to juz przesadzasz!”, mozesz tak odpowiedzie¢. To jednak moze miec sens;
wyobrazmy sobie, ze przy pomocy max () sprobujemy poréwnac¢ dwa wskazniki. Co

Szablony 515

otrzymamy w wyniku takiego poréwnania?... Naturalnie, dostaniemy ten wskaznik,
ktérego adres jest mniejszy.

Zapytam wprost: i co nam z tego? Lepiej chyba bytoby, aby poréwnanie dokonywane
byto raczej na obiektach, do ktérych te wskazniki sie odnoszg. Wtedy mielibySmy
bardziej sensowny wynik i np. z dwoch wskaznikéw typu int* dostalibysmy ten, ktéry
odnosi sie do wiekszej liczby.

Takie dziatanie szablonu funkcji max () w odniesieniu do wskaznikdéw - przy zachowaniu
jego normalnego dziatania dla pozostatych typéw danych - nie jest mozliwe do
osiggniecia przy pomocy zwyktej specjalizacji, zaprezentowanej w poprzednim punkcie.
Trzebaby bowiem zdefiniowac osobne wersje dla wszystkich typow wskaznikéw (int*,
CRational*, float*, ...), jakich chcielibysmy uzywac. Catkowicie przekresla to sens
szablonow, ktére przeciez opierajg sie wtasnie na tym, ze to sam kompilator generuje ich
wyspecjalizowane wersje w zaleznosci od potrzeb.

Tutaj trzeba by uzy¢ mechanizmu specjalizacji czesciowej, znanego bardziej z
szablonow klas. Oznacza on ni mniej, ni wiecej, jak tylko zdefiniowanie innej wersji
szablonu dla catej grupy typow (parametrow szablonu). W tym przypadku ta grupg sq
typy wskaznikowe, a szablon funkcji max () wygladatby dla nich tak:

template <typename TYP>
TYP* max<TYP*>(TYP* pWskaznikl, TYP* pWskaznik?2)

{
return (*pWskaznikl > *pWskaznik2 ? pWskaznikl : pWskaznik?2);

}

Nazwa specjalizowanej funkcji, czyli max<TypP*>, gdzie TYP jest parametrem szablonu,
wskazuje jednoznacznie, iz chodzi nam o wersje funkcji przeznaczong dla wskaznikéw.
Naturalnie, typ wartosci zwracanej i parametrow funkcji musi by¢ réwniez taki sam.

Kiedy zostanie uzyty ten bardziej wyspecjalizowany szablon?... Otéz wtedy, gdy jako
parametry funkcji max () zostang przekazane jakies wskazniki, np.:

int nLiczbal = 10, nLiczba2 = 98;
int* pnLiczbal = &nlLiczbal;
int* pnLiczba?2 &nLiczba?2;

std::cout << * (max(pnLiczbal, pnLiczbaZ2?)); // szablon max<TYP*> (),
// gdzie TYP = int

W tym wiec przypadku wyswietlang liczba bedzie zawsze 98, bo liczy¢ sie bedg tutaj
faktyczne wartosci, a nie rozmieszczenie zmiennych w pamieci (a wiec nie adresy, na
ktére pokazujg wskazniki).

Czesciowe specjalizacje szablonéw funkcji nie wygladajg moze na zbytnio |
skomplikowane. Moze cie jednak zaskoczyc¢ to, iz to jeden z najbardziej zaawansowanych |
aspektéw szablondw - tak bardzo, ze pdki co Standard C++ o nim nie wspomina (!), a |
tylko nieliczne kompilatory obstugujg go. Poki co jest to wiec bardzo rzadko uzywana
technika i dlatego na razie nalezy ja traktowac jako ciekawostke.

Wywotywanie funkcji szablonowej

Skoro juz mniej wiecej wiemy, jak mozna definiowac szablony funkcji, nauczmy sie teraz
z nich korzysta¢. Zwazywszy, ze juz to robiliSmy, nie powinno to sprawia¢ zadnych
trudnosci.

Zastanowmy sie jednak, co dzieje sie w momencie wywotania funkcji szablonowej. Oto
przykfad takiego wywotania:

516 Zaawansowane C++

max (12, 56)

max () jest tu szablonem funkcji, ktérego parametr (typ) jest stosowany w charakterze
typu obu parametréow funkcji, jak rowniez zwracanej przez nig wartos¢. Nie podajemy
jednak tego typu dostownie; to wtasnie wielka zaleta szablondw funkcji, gdyz wtasciwy
typ - parametr szablonu, tutaj int - moze by¢ wydedukowany z jej wywotania. O tym,
jak to sie dzieje, méwi nastepny akapit.

Aby jednak zrozumiec istote szablondéw funkcji, musimy cho¢ z grubsza wiedzie¢, jak
kompilator traktuje takie wywotania jak powyzsze. Generalnie nie jest trudne. Jak
wspomniatem wczesniej, szablony w C++ sg implementowane w ten sposob, iz podczas
kompilacji tworzony jest ich wiasciwy (,,nieszablonowy”) kod dla kazdego typu, dla
ktérego uzywamy danego szablonu. Proces ten nazywamy konkretyzacja

(ang. instantiation) a poszczegdlne egzemplarze szablonéw - specjalizacjami

(ang. specialization albo instance).

Tak wiec kompilator musi sobie wytworzy¢ odpowiednie specjalizacje, ktére bedq
wykorzystywane w miejscach uzycia szablonu. W przyktadzie powyzej szablon funkcji
max () postuzy do wygenerowania jej konkretnej wersji: funkcji max () dla parametru
szablonu rownego int. Dopiero ta konkretna wersja - specjalizacja - bedzie
skompilowana w normalny sposob, do normalnego kodu maszynowego. W ten sposdb
zarowno funkcje, jak tez klasy szablonowe zachowujg niemal wszystkie cechy zwyktych
funkcji i klas.

To, jak szablon funkcji zostanie skonkretyzowany w danym przypadku, zalezy wytacznie
od sposobu jego uzycia w kodzie. Przyjrzyjmy sie wiec sposobom na wywotywanie funkcji
szablonowych.

Jawne okreslenie typu

Zwykle uzywajac szablonéw funkcji pozwalamy kompilatorowi na samodzielne
wydedukowanie typu, dla ktérego ma on by¢ skonkretyzowany. Zdarza sie jednak, ze
chcemy go sami wyraznie okresli¢. To réwniez jest mozliwe.

Wywotywanie konkretnej wersji funkcji szablonowej

Mozemy wiec zazyczy¢ sobie, aby funkcja max () dziatata w danym przypadku,
powiedzmy, na liczbach typu unsigned - mimo ze typem jej argumentéw bedzie int:

unsigned uMax = max<unsigned> (45, 3); // 45 i 3 to liczby typu int

Skfadnia max<unsigned> pozwala nam poda¢ zadany typ. Scislej méwiac, w nawiasach
ostrych podajemy parametry szablonu (w odrdéznieniu od parametrow funkcji,
podanych jak zwykle w nawiasach okragtych). Tutaj jest to jeden parametr, bedacy
typem; nadajemy mu ,warto$¢” unsigned, czyli typu liczb bez znaku.

Takie wywoftanie powoduje, ze nie jest juz przeprowadza zadna dedukacja typu
argumentow funkcji. Kompilator nie zwaza juz na nie, lecz oczekuje, ze bedg one
zgadzaty sie z typem pdoanym jawnie - parametrem szablonu. W tym wiec przypadku
liczby muszg pasowac do typu unsigned i oczywiscie pasujg do niego (sg dodatnie), cho¢
ich wiasciwy typ to int. Nie gra on jednak zadnej roli, gdyz sami odgdrnie narzuciliSmy
tutaj parametr szablonu.

Uzycie wskaznika na funkcje szablonowg

max<unsigned> wystepuje tutaj w miejscu, gdzie zwykle pojawia sie nazwa funkcji w
przypadku normalnych procedur. To nie przypadek: mozemy te fraze traktowac wtasnie
jako nazwe funkcji - konkretnej juz funkcji, a nie jej szablonu.

Szablony 517

Nie jest to zadne pustostowie, bowiem ma to konkretne konsekwencje. Nazwa
max<unsigned> dziata mianowicie tak samo, jak kazda inna nazwa funkcji. W
szczegoblnosci, mozemy jej uzy¢ do pobrania adresu funkcji szablonowej:

unsigned (*pfnUIntMax) (unsigned, unsigned) = max<unsigned>;

Zauwaz réznice: nie mozemy pobra¢ adresu szablonu (czyli max), bo ten nie istnieje w
pamieci podczas dziatania programu. Jest on tylko instrukcjg dla kompilatora (podobnie
jak makra sg instrukcjami dla preprocesora), méwiacga mu, jak ma wygenerowac
prawdziwe, specjalizowane funkcje. max<unsigned> jest takg wtasnie wyspecjalizowang
funkcjq i ona juz istnieje w pamieci, bowiem jest kompilowana do kodu maszynowego
tak, jak normalna funkcja. Mozemy zatem pobra¢ jej adres.

Dedukcja typu na podstawie argumentdw funkcji

Jawne podawanie parametrow szablonu funkcji jest generalnie nieczesto stosowane.
Zdecydowanie najwiekszg zaletg tych szablondw jest to, iz potrafiag same wykry¢ typ
argumentow funkcji i na tej podstawie dopasowac odpowiedni parametr szablonu.
Spoéjrzmy, jak to sie odbywa.

Jak to dziata

A zatem, skad kompilator wie, dla jakich parametrow ma skonkretyzowac szablon
funkcji?... Innymi stowy, skad bierze on witasciwy typ dla funkcji szablonowej? Céz, nie
jest to bardzo skomplikowane:

Parametry szablonu funkcji s dedukowane w oparciu o parametry jej wywotlania
oraz niejawne konwersje.

Przesledzmy to na przyktadzie wywotania szablonu funkcji:

template <typename TYP> TYP max (TYP Parametrl, TYP Parametr2);

w kilku formach:

max (67, 76) // 1
max (5.6, 6.5f) // 2
max(8.7f, 9.0f) // 3
max ("Hello", std::string("world")) // 4

Pierwszy przykitad jest jak sadze prosty. Obie liczby sg tu typu int, zatem uzytg tu
funkcjg max<int>. Nie ma zadnych watpliwosci.

Dalej jest ciekawiej. Parametry drugiego wywotania funkcji sq typu double i float.
Mamy jednak jeden parametr szablonu (TYP), ktéry musi przyjac tq sama ,wartosc¢” w
wywotaniu funkcji. Co zatem zrobi kompilator? Wykorzysta on to, ze miedzy float i
double istnieje niejawna konwersja i wybierze typ double jako ogdlniejszy. Uzytym
wariantem bedzie wiec max<double>.

Kolejny przyktad... to nic nowego :) Oba argumenty sg tu typu float (skutek przyrostka
£), zatem wykorzystang funkcjg bedzie max<float>.

Ostatnia, czwarta linijka jest zdecydowanie najciekawsza. Napisy "Hello" i "world"
maja z pewnoscig ten sam typ - const char[]. Niemniej, drugi parametr jest typu
std::string, bowiem jawnie tworzymy obiekt tej klasy przy uzyciu konstruktora. Wobec
takiego obrotu sprawy kompilator musi pogodzi¢ go z const char[]. Robi to, poniewaz

518 Zaawansowane C++

istnieje niejawna konwersja tancucha typu C na std: :string. Szablon funkcji zostanie
wiec skonkretyzowany do max<std: :string>'?*

Ogolny wniosek z tych przyktadow jest taki, ze jesli jeden parametr szablonu musi by¢
dopasowany na podstawie kilku réoznych typéw parametréw funkcji, to kompilator
probuje zastosowac niejawne konwersje celem sprowadzenia ich do jakiegos jednego
typu ogdlnego. Dopiero jezeli ta proba sie nie powiedzie, sygnalizowany jest biad.

W zasadzie to trzeba powiedzie¢: ,jezeli ta prdba sie nie powiedzie i nie ma zadnych
innych mozliwych dopasowan”. Mozliwe bowiem, ze istniejg inne szablony, ktérych
parametry pozwalajg na problematyczne dopasowanie. Przyktadowo, wywotanie max (18,
"tekst") nie mogtoby by¢ dopasowane do jednoparametrowego szablonu max (), ale bez
problemu przypasowane zostatoby do szablonu dwuparametrowego max (), podanego
jakis czas temu (i ponizej). Ten dopuszczatby przeciez rézne typy argumentow.

Reguta mowiaca, iz pierwsze niepowodzenie dopasowywania parametrow szablonu nie
jest btedem, funkcjonuje pod skrotem SFINAE (ang. Substitution Failure Is Not An Error -
porazka podstawiania nie jest btedem).

Dedukcja przy wykorzystaniu kilku parametrow szablonu

Proces dedukcji zaczyna nabiera¢ rumieficéw, gdy mamy do czynienia z szablonem o
wiekszej liczbie parametrow niz jeden. Przypomnijmy sobie szablon funkcji max () z
dwoma parametrami (deklaracje tylko, bo definicja jest chyba oczywista):

template <typename TYPl, typename TYP2>
TYP1 max (TYP1 Parametrl, TYP2 Parametr2);

Tutaj wszystko jest nawet znacznie prostsze niz poprzednio. Dzieki temu, ze kazdy
parametr funkcji ma swoj wiasny typ (parametr szablonu), kompilator ma ufatwione
zadanie. Nie musi juz bra¢ pod uwage zadnych niejawnych konwersji.

Z powyzszym szablonem zwigzanym jest jednak pewien problem. Nie bardzo wiadomo,
jaki ma byc¢ typ zwracany tej funkcji. Moze to by¢ zaréwno TYP1, jak i TYP2 - zalezy po
prostu, ktora z wartosci zwyciezy w tescie porownawczym. Tego jego nie sposob ustali¢
w czasie kompilacji; mozna jednak dodac¢ typ oddawany do parametrow szablonu:

template <typename TYPl, typename TYP2, typename ZWROT>
ZWROT max (TYP1 Parametrl, TYP2 Parametr2);

Préba wywotania tej funkcji w zwykitej formie zakonczy sie jednak btedem - a to dlatego,
ze ten nowy, trzeci parametr nie moze zosta¢ wydedukowany przez kompilator! Méwitem
przeciez, ze dedukcja dokonywana jest wylacznie na podstawie parametrow funkcji.
Wartos$¢ zwracana sie zatem nie liczy.

~Hmm, to nie jest az taki problem”, odpowiesz moze. ,Ten jeden parametr moge przeciez
podac¢; wpisze tam po prostu typ ogdlniejszy sposréd dwoch poprzedzajacych”. Tak sie
jednak nie da! Nie mozemy podac¢ do szablonu ostatniego parametru, gdyz wpierw
musielibysmy poda¢ dwa poprzedzajace go:

max<int, float, float>(17, 67f);

To chyba zadna niespodzianka: analogicznie jest z parametrami funkcji. W ten sposdéb
tracimy jednak wszystkie wspaniatosci automatycznej dedukcji parametréw szablonu.

124 poréwnywanie dwdch napiséw moze sie wydawac dziwne, ale jest ono poprawne. Klasa std: :string
posiada operator >, dokonujacy pordwnania tekstow pod wzgledem ich dtugosci oraz przechowywanych wen
znakow (ich kolejnosci alfabetycznej).

Szablony 519

Istnieje aczkolwiek sposdb na to. Nalezy przesung¢ parametr zWwROT na poczatek listy
parametrow szablonu:

template <typename ZWROT, typename TYP1l, typename TYP2>
ZWROT max (TYP1 Parametrl, TYP2 Parametr2);

Teraz pozostate dwa typy moga by¢ odgadniete z parametréw funkcji. Tego szablonu
max () bedziemy wiec mogli uzywac, podajac tylko typ wartosci zwracanej:

max<float> (17, 67f);

Wynika stad prosty wniosek:

Dedukcja parametréw szablonu nastepuje od konca (od prawej strony). Te parametry,
ktére mogg byc¢ wziete z wywotania funkcji, powinny zatem znajdowac sie na koncu listy.

Szablony klas

Szablony funkcji moga przedstawiac sie wcale zachecajaco, jednak o wiele wiekszg zaletg
C++ sg szablony klas. Ponownie, mozemy je traktowac jako:
> swego rodzaju ogdlne klasy (zwane czasem metaklasami), definiujace zachowanie
sie obiektow w odniesieniu do dowolnych typow danych
> zespot klas, delegujacych odrebne klasy do obstugi réznych typow

Po raz kolejny tez to drugie podejscie jest bardziej poprawne.

Szablon klasy reprezentuje zestaw (rodzine) klas, mogacych wspétpracowac z réznymi
typami danych.

Koniecznos¢ istnienia szablonéw klas bezposrednio wynika z faktu, ze C++ jest jezykiem
zorientowanym obiektowo. Do potrzeb programowania strukturalnego z pewnoscig
wystarczytyby szablony funkcji; kiedy jednak chcemy w petni korzystac¢ z dobrodziejstw
OOPu i cieszyc¢ sie elastycznoscig szablondw, naturalnym jest uzycie szablondéw klas.

Z bardziej praktycznego punktu widzenia szablony klas sq znacznie przydatniejsze i
czesciej stosowane niz szablony funkcji. Typowym ich zastosowaniem sg klasy
pojemnikowe, czyli znane i lubiane struktury danych - a one obok algorytmédw, sg wedtug
klasykéw informatyki podstawowymi sktadnikami programoéw. Niemniej przez lata
istnienia szablony klas dorobity sie takze wielu catkiem niespodziewanych zastosowan.

Szablony klas intensywnie wykorzystuje Biblioteka Standardowa jezyka C++, a takze
niezwykle popularna biblioteka Boost.

Niezaleznie od tego, czy twoj kontakt z tymi rodzajami szablonéw bedzie sie ograniczat
wytacznie do pojemnikédw w rodzaju wektoréw lub kolejek, czy tez wymyslisz dla nich
znacznie wiecej zastosowan, powiniene$ dobrze poznac ten element jezyka C++. I te
temu witasnie stuzy niniejsza sekcja.

Definicja szablonu klas

Whpierw wiec zajmiemy sie definiowaniem szablonu klasy. Popatrzmy sobie najpierw na
prosty przyktad szablonu, bedacy rozszerzeniem klasy CintArray, przewijajacej sie przez
kilka poprzednich rozdziatow. Dalej zajmiemy sie tez bardziej zaawansowanymi
aspektami definicji szablondw klas.

520 Zaawansowane C++

Prosty przyktad tablicy

W rozdziale o wskaznikach pokazatem ci prostg klase dynamicznej tablicy int-éw -
CIntArray. Wtedy interesowata nas dynamiczna alokacja pamieci, wiec nie przeszkadzat
nam fakt nieporecznosci tejze klasy. Miata ona bowiem dwa mankamenty: nie pozwalata
na uzycie nawiasow kwadratowych [] celem dostepu do elementéw tablicy, no i potrafita
przechowywaé wytacznie liczby typu int.

Obiecatem jednoczes$nie, ze w swoim czasie pozbedziemy sie obu tych niedogodnosci.
Miates$ sie juz okazje przekonaé, ze nie rzucam stéw na wiatr, bowiem nauczyliSmy juz
naszg klase poprawnie reagowac na operator []. Zapewne domyslasz sie, Ze teraz
usuniemy drugi z mankamentow i wyposazymy jg w mozliwos¢ przechowywania
elementow dowolnego typu. Jak nietrudno zgadna¢, bedzie to wymagato uczynienia jej
szablonem klasy.

Zanim przystapimy do dzieta, spdjrzmy na aktualng wersje naszej klasy:

class CIntArray
{
// domy$lny rozmiar tablicy
static const unsigned DOMYSLNY ROZMIAR = 5;

private:
// wskaznik na wtasciwa tablice oraz jej rozmiar
int* m pnTablica;
unsigned m uRozmiar;

public:
// konstruktory
explicit CIntArray(unsigned uRozmiar = DOMYSLNY ROZMIAR)
m uRozmiar (uRozmiar) ;
m _pnTablica(new int [m uRozmiar]) {}
CIntArray(const CIntArrayé&);

// destruktor
~CIntArray () { delete[] m pnTablica; }

// pobieranie 1 ustawianie elementdw tablicy
int Pobierz (unsigned uIndeks) const
{ if (uIndeks < m uRozmiar) return m pnTablica[ulIndeks];
else return 0; }
bool Ustaw (unsigned uIndeks, int nWartosc)
{ if (uIndeks >= m uRozmiar) return false;

m pnTablica[ulIndeks] = uWartosc;
return true; }
// inne
unsigned Rozmiar () const { return m uRozmiar; }
e e Eininiebebebe bt

// operator indeksowania
int& operator[] (unsigned ulIndeks)
{ return m pnTablical[uIndeks]; }

// operator przypisania (diuzszy, wiec nie w definicji)
CIntArray& operator=(const CIntArrayé&);

Szablony 521

Przerébmy jg zatem na szablon.

Definiujemy szablon

Jak wiec zdefiniowac szablon klasy w C++? Patrzac na ogolng sktadnie szablonu mozna
by nawet domysli¢ sie tego, lecz spéjrzmy na ponizszy - pusty na razie - przykfad:

template <typename TYP> class TArray

{
//
i

Jest to szkielet definicji szablonu klasy Tarray, czyli tablicy dynamicznej na elementy
dowolnego typu!?*. Wida¢ tu znane juz czesci: przede wszystkim, fraza template
<typename TYP> identyfikuje konstrukcje jako szablon i deklaruje parametry tegoz
szablonu. Tutaj mamy jeden parametr - bedzie nim rzecz jasna typ elementow tablicy.

Dalej mamy wifasciwie zwyktg definicje klasy i w zasadzie jedyng dobrze widoczng réznicg
jest to, ze wewnatrz niej mozemy uzy¢ nazwy TYP - parametru szablonu. U nas bedzie
on pefnic¢ identyczng role jak int w CIntArray, zatem petna wersja szablonu TArray
bedzie wygladata nastepujgco:

template <typename TYP> class TArray
{
// domyé$lny rozmiar tablicy
static const unsigned DOMYSLNY ROZMIAR = 5;

private:
// wskaznik na wtasciwa tablice oraz jej rozmiar
TYP* m pTablica;
unsigned m_uRozmiar;

public:
// konstruktory
explicit TArray (unsigned uRozmiar = DOMYSLNY ROZMIAR)
m_uRozmiar (uRozmiar),
m pTablica(new TYP [m uRozmiar]) { }
TArray (const TArrayé&);

// destruktor
~TArray () { delete[] m pTablica; }

// pobieranie i ustawianie elementdw tablicy
TYP Pobierz (unsigned ulndeks) const
{ if (uIndeks < m uRozmiar) return m pTablica[ulndeks];
else return TYP(); }
bool Ustaw (unsigned uIndeks, TYP Wartosc)
{ if (uIndeks >= m uRozmiar) return false;

m _pTablica[ulIndeks] = Wartosc;

return true; }
// inne
unsigned Rozmiar () const { return m uRozmiar; }
e

125 Litera T w nazwie TArray to skrdt od template, czyli ‘szablon’.

522 Zaawansowane C++

// operator indeksowania
TYP& operator([] (unsigned ulIndeks)
{ return m pTablical[ulndeks]; }

// operator przypisania (diuzszy, wiec nie w definicji)
TArray& operator=(const TArrayé&);
}i

Mozesz by¢ nawet zaskoczony, Ze bylo to takie proste. Faktycznie, uczynienie klasy
CIntArray Szablonem ograniczato sie do zastgpienia nazwy int, uzytej jako typ
elementow tablicy, nazwg parametru szablonu - TYP. Pamietaj jednak, ze nigdy nie
powinno sie bezmysinie dokonywac takiego zastepowania; int mégt by¢ przeciez choc¢by
typem licznika petli for (for (int i = ...)) i w takiej sytuacji zastgpienie go przez
parametr szablonu nie miatoby zadnego sensu. Nie zapominaj wiec, ze jak zwykle
podczas programowania nalezy mysle¢ nad tym, co robimy.

Naturalnie, gdy juz opanujesz szablony klas (co, jak sadze, stanie sie niedtugo),
dojdziesz do wniosku, ze wygodniej jest od razu definiowia¢ wiasciwy szablon niz
wychodzi¢ od ,specjalizowanej” klasy i czyni¢ jg ogolna.

Implementacja metod poza definicjgq

Szablon jest juz prawie gotowy. Musimy jeszcze dodaé do niego implementacje dwdch
metod: konstruktora kopiujacego i operatora przypisania - ze wzgledu na ich dlugos¢
lepiej bedzie, jesli znajda sie poza definicjq. W przypadku zwyktych klas byto to jak
najbardziej mozliwe... a jak jest dla szablonéw?

Zapewne nie jest niespodziankg to, iz rdwniez tutaj jest to dopuszczalne. Warto jednak
uswiadomic¢ sobie, ze metody szablonow klas s szablonami metod. Oznacza to ni
mniej, ni wiecej, ale to, iz powinnismy je traktowac¢ podobnie, jak szablony funkcji. Wigze
sie z tym gtdwnie inna sktadnia.

Popatrz wiec na przykfad - oto szablonowa wersja konstruktora kopiujacego:

template <typename TYP> TArray<TYP>::TArray (const TArray& aTablica)

{
// alokujemy pamiec
m uRozmiar = aTablica.m uRozmiar;
m pTablica = new TYP [m uRozmiar];

// kopiujemy pamieé¢ ze stare] tablicy do nowej
memcpy (m pTablica, aTablica.m pTablica, m uRozmiar * sizeof (TYP));

}

I znowu mozemy miec déja vu: kod zaczynamy ponownie sekwencjg template <...>.
tatwo to jednak uzasadni¢: mamy tu bowiem do czynienia z szablonem, w ktérym
uzywamy przeciez jego parametru Typ. Koniecznie wiec musimy uzyc wspomnianej
sekwencji po to, aby:
» kompilator wiedziat, ze ma do czynienia z szablonem, a nie zwyktym kodem
» mozliwe byto uzycie nazw parametréow szablonu (tutaj mamy jeden - TYP) w jego
wnetrzu

Kazdy ,kawatek szablonu” trzeba zatem zacza¢ od owego template <...>, aby te dwa
warunki byty spetnione. Jest to moze i ucigzliwe, lecz niestety konieczne.

Idzmy dalej - zostajac jednak nadal w pierwszym wierszu kodu. Jest on nader
interesujacy z tego wzgledu, ze az trzykrotnie wystepuje w nim nazwa naszego szablonu,
TArray - na dodatek ma ona tutaj trzy rézne znaczenia. Przenalizujmy je:

Szablony 523

> w pierwszym przypadku jest to wyraz TArray<TyYP>. Jak pamietamy z szablonéw
funkcji, takie konstrukcje oznaczajg zazwyczaj konkretne egzemplarze szablonu -
specjalizacje. W tym jednak wypadku podajemy tu parametr TyYP, a nie jakis
szczegolny typ danych. W sumie caty ten zwrot petni funkcje nazwy typu klasy;
potraktuj to po prostu jako obowigzkowg czes¢ nagtowka, wystepujaca zawsze
przed operatorem :: w implementacji metod. Podobnie byto np. z cIntArray, gdy
chodzito o zwykte metody zwyktych klas. Zapamietaj zatem, ze:

Sekwencja nazwa_szablonu<typ> petni role nazwy typu klasy tam, gdzie jest to
konieczne.

» drugi raz uzywamy TArray W charakterze nazwy metody - konstruktora. Moze to
nie by¢ nieco mylace, bo przeciez piszac konstruktory normalnych klas po obu
stronach operatora zasiegu podawalismy te samg nazwe. Musisz wiec zapamietac,
ze:

Konstruktory i destruktory w szablonach klas maja nazwy odpowiadajace nazwom
ich macierzystych szablonéw i niczemu wiecej, tzn. nie zawieraja parametréw w
nawiasach ostrych.

> trzeci raz TArray jest uzyta jako cze$¢ typu parametru konstruktora kopiujacego -
const TArrays&. By¢ moze zabty$niesz tu kompetencjq i krzykniesz, ze to
niepoprawne i ze jesli chodzi nam o nazwe typu klasy szablonowej, to powinnismy
wstawi¢ TArray<TYP>, bo samo TaArray to tylko nazwa szablonu. Odpowiem
jednak, ze posuniecie to jest rownie poprawne; mamy tu do czynienia z tak
zwang nazwg wtrgconq. Polega to na tym, iz:

Sama nazwa szablonu moze by¢ stosowana wewnatrz niego w tych miejscach, gdzie
wymagany jest typ klasy szablonowej. Mozemy wiec postuzy¢ sie nig do skréotowego
deklarowania poél, zmiennych czy parametréw funkcji bez potrzeby pisania nawiasow
ostrych i nazw parametrow szablonu.

Wobec nagtéwka tak ciezkiego kalibru reszta tej funkcji nie przedstawia sie chyba bardzo
skomplikowanie? :) W rzeczywistosci to niemal doktadna kopia tresci oryginalnego
konstruktora kopiujgcego - z tym, ze typ int elementdow CIntArray zastepuje tutaj
nieznany z gory TYP - parametr szablonu.

W podobny sposdb nalezatoby jeszcze zaimplementowac operator przypisania. Sadze, ze
nie sprawitoby ci problemu samodzielne wykonanie tego zadania.

Korzystanie z tablicy

Gdy mamy juz definiowany szablon klasy, chcieliby$my zapewne skorzystac z niego.
Sprobujmy wiec stworzy¢ sobie obiekt tablicy; poniewaz przez caty zajmowaliSmy sie
tablicg int-0w, to teraz niech bedzie to tablica napisow:

TArray<std::string> aNapisy(3);

Jak doskonale wiemy, to co widnieje po lewej stronie jest typem deklarowanej zmiennej.
W tym przypadku jest to wiec TArray<std: :string> - specjalizowana wersja naszego
szablonu klas. Uzywamy w niej skfadni, do ktérej, jak sadze, zaczynasz sie juz
przyzwyczajac. Po nazwie szablonu (TArray) wpisujemy wiec pare nawiaséw ostrych, a w
niej ,wartos¢” parametru szablonu (typ std::string). U nas parametr ten okresla
jednoczesnie typ elementéw tablicy - powyzsza linijka tworzy wiec tréjelementowg
tablice tancuchdéw znakow.

Catkiem podobnie wyglada tworzenie tablicy ze zmiennych innych typow, np.:

524 Zaawansowane C++

TArray<float> aLiczbyRzeczywiste (7); // T-el. tablica z liczbami float
TArray<bool> aFlagi (8) // zestaw osmiu flag bool-owskich
TArray<CFoo*> aFoo; // tablica wskaznikdéw na obiekty

Zwroc¢my uwage, ze parametr(y) szablonu - tutaj: typ elementéw tablicy - musimy
podaé zawsze. Nie ma mozliwosci wydedukowania go, bo i skad? Nie jest to przeciez
funkcja, ktorej przekazujemy parametry, lecz obiekt klasy, ktéry tworzymy.

Postepowanie z takg tablicg nie rézni sie niczym od postugiwania sie klasg cIntArray, a
wiec posrednio - rowniez zwyktymi tablicami w C++. W szablonach C++ obowigzujg po
prostu te same mechanizmy, co w zwyktych klasach: dziatajg przecigzone operatory,
niejawne konwersje i reszta tych nietuzinkowych mozliwosci OOPu. Korzystanie z
szablondw klas jest wiec nie tylko efektywne i elastycznie, ale i intuicyjne:

// wypelnienie tablicy

aNapisy[0] = "raz";
aNapisy[1l] = "dwa'";
aNapisy[2] = "trzy";

// pokazanie zawartos$ci tablicy
for (unsigned i = 0; i < aNapisy.Rozmiar(); ++1i)
std::cout << aNapisy[i] << std::endl;

Przyznasz chyba teraz, ze szablony klas przedstawiajq sie wyjatkowo zachecajqco?...
Dowiedzmy sie zatem wicej o tych konstrukcjach.

Dziedziczenie i szablony klas

Nowy wspaniaty wynalazek jezyka C++ - szablony - moze wspodtpracowac ze starym
wspaniatym wynalazkiem jezyka C++ - dziedziczeniem. A tam, gdzie spotykajq sie dwa
wspaniate wynalazki, musi by¢ doprawdy cudownie :) Zajmijmy sie wiec dziedziczeniem
pofaczonym z szablonami klas.

Dziedziczenie klas szablonowych

Szablony klas (jak TArray) s podstawami do generowania specjalizowanych klas
szablonowych (jak np. TArray<int>). Ten specjalizowane klasy zasadniczo niczym nie
roznig sie od innych uprzednio zdefiniowanych klas. Mogg wiec na przyktad by¢ klasami
bazowymi dla nowych typdw.

Czas na ilustracje zagadnienia w postaci przyktadowego kodu. Oto klasa wektora liczb:

class CVector : public TArray<double>

{
public:
// operator mnozenia skalarnego
double operator* (const CVector&);

}s

Dziedziczy ona z TArray<double>, czyli zwykiej tablicy liczb. Dodaje ona jednak
dodatkowag metode - przecigzony operator mnozenia *, obliczajacy iloczyn skalarny:

double CVector::operator* (const CVector& aWektor)

{
// jezeli rozmiary wektordw nie sa rdéwne, rzucamy wyjatek
if (Rozmiar () != aWektor.Rozmiar())
throw CError(FILE , LINE , "Blad iloczynu skalarnego");

// liczymy iloczyn

Szablony 525

double fWynik =
for (unsigned i
fWynik +=

i < Rozmiar (); ++1i)

0.0;
(*this) [1] * aWektor[i];

0
0
t

*

// zwracamy wynik
return fWynik;

}

W samym akcie dziedziczenia, jak i w implementacji klasy pochodnej, nie ma zadnych
niespodzianek. Uzywamy po prostu TArray<double> tak, jak kazdej innej nazwy klasy i
mozemy korzystac z jej publicznych i chronionych skfadnikdéw. Nalezy oczywiscie
pamietaé, ze w tej klasie typ double wystepuje tam, gdzie w szablonie TArray pojawia
sie parametr szablonu - TYP. Dotyczy to chociazby rezultatu operatora [], ktory jest
wiasnie liczbg typu double:

fWynik += (*this) [1i] * aWektor[i];

Mysle aczkolwiek, ze fakt ten jest intuicyjny i dziedziczenie specjalizowanych klas
szablonowych nie bedzie ci sprawia¢ kfopotu.

Dziedziczenie szablonow klas

Szablony i dziedziczenie umozliwiajg rowniez tworzenie nowych szablondw klas na
podstawie juz istniejgcych, innych szablonéw. Na czym polega réznica?... Otéz na tym, ze
w ten sposdb tworzymy nowy szablon klas, a nie pojedyncza, zwykfq klase - jak to sie
dziato poprzednio. Wtedy definiowaliSmy normalng klase przy pomocy innej, niemalze
normalnej klasy - roznica byta tylko w tym, Zze ta klasa bazowg byfa specjalizacja
szablonu (TArray<double>). Teraz natomiast bedziemy konstruowali szablon klas
pochodnych przy uzyciu szablonu klas bazowych. Caty czas bedziemy wiec poruszac
sie w obrebie czysto szablonowego kodu z nasza ulubiong frazg template <...> ;)

Oto nasz nowy szablon - tablica, ktéra potrafi dynamicznie zmienia¢ swdj rozmiar w
czasie swego istnienia:

template <typename TYP> class TDynamicArray : public TArray<TYP>

{
public:
// funkcja dokonujaca ponownego wymiarowania tablicy
bool ZmienRozmiar (unsigned) ;

}i

Poniewaz jest to szablon, wiec rozpoczynamy go od zwyczajowego poczatku i listy
parametrow. Nadal bedzie to jeden TYP elementdw tablicy, ale nic nie statoby na
przeszkodzie, aby lista parametréw szablonu zostata w jaki$ sposéb zmodyfikowana.
W dalszej kolejnosci widzimy znajomy poczatek definicji klasy. Jako klase bazowg
wstawiamy tu TArray<TYP>. Przypomina to poprzedni punkt, ale pamietajmy, ze teraz
korzystamy z parametru szablonu (TYP) zamiast z konkretnego typu (double). Nazwa
klasy bazowej jest wiec tak samo ,zszablonowana” jak cata reszta definicji
TDynamicArray.

Pozostaje jeszcze kwestia implementacji metody ZmienRozmiar (). Nie powinna by¢ ona
niespodzienka, bowiem wiesz juz, jak kodowa¢ metody szablonéw klas poza blokiem ich
definicji. Tres¢ funkcji jest natomiast niemal wierng kopig tej z rozdziatu o wskaznikach:

template <typename TYP>
bool TDynamicArray<TYP>::ZmienRozmiar (unsigned uNowyRozmiar)

{

// sprawdzamy, czy nowy rozmiar jest wiekszy od starego

526 Zaawansowane C++

if (! (uNowyRozmiar > m uRozmiar)) return false;

// alokujemy nowa tablice
TYP* pNowaTablica = new TYP [uNowyRozmiar];

// kopiujemy don stara tablice 1 zwalniamy ja
memcpy (pnNowaTablica, m pTablica, m uRozmiar * sizeof (TYP));
delete[] m pTablica;

// "podczepiamy" nowa tablice do klasy 1 zapamietujemy jej rozmiar
m pTablica = pNowaTablica;
m uRozmiar = uNowyRozmiar;

// zwracamy pozytywny rezultat
return true;

}

Widzimy wiec, ze dziedziczenie szablonu klasy nie jest wcale trudne. W jego wyniku
powstaje po prostu nowy szablon klas.

Deklaracje w szablonach klas

Pola i metody to najwazniejsze sktadniki definicji klas - takze tych szablonowych. Jezeli
jednak chodzi o szablony, to znacznie czesciej mozemy tam spotkac réwniez inne
deklaracje. Trzeba sie im przyjrzeé, co teraz uczynimy.

Ten paragraf mozesz poming¢ przy pierwszym podejsciu do lektury, jesli wyda ci sie zbyt
| trudny, i przej$¢ dalej.

Aliasy typedef

Cechg wyrdézniajacg szablony jest to, iz operujg one na typach danych w podobny
sposodb, jak inny kod na samych danych. Naturalnie, wszystkie te operacje sg
przeprowadzane w czasie kompilacji programu, a ich wiekszg czescig jest konkretyzacja -
tworzenie specjalizowanych wersji funkcji i klas na podstawie ich szablonow.

Proces ten sprawia jednoczesnie, ze niektore przewidywalne i, zdawatoby sie, znajome
konstrukcje jezykowe nabierajg nowych cech. Nalezy do nich chocby instrukcja typedef;
w oryginale stuzy ona wytgcznie do tworzenia alternatywnych nazw dla typéw np. tak:

typedef void* PTR;

Nie jest to zadna rewolucja w programowaniu, co zresztg podkreslatem, prezentujac te
instrukcje. Ciekawie zaczyna sie robic¢ dopiero wtedy, jesli uswiadomimy sobie, ze
aliasowanym typem moze by¢... parametr szablonu! Ale skad on pochodzi?

Oczywiscie - z szablonu klasy. Jezeli bowiem umiescimy typedef wewnatrz definicji
takiego szablonu, to mozemy w niej wykorzysta¢ parametryzowany typ. Oto najprostszy
przyktad:

template <typename TYP> class TArray

{
public:
// alias na parametr szablonu
typedef TYP ELEMENT;

// (reszta niewazna)

}i

Szablony 527

Instrukcja typedef pozwala nam wprowadzenie czego$ w rodzaju ,sktadowej klasy
reprezentujacej typ”. Naturalnie, jest to tylko skladowa w sensie przeno$nym, niemniej
nazwa ELEMENT zachowuje sie wewnatrz klasy i poza nig jako petnoprawny typ danych -
rownowazny parametrowi szablonu, TYP.

Przydatnosc takiego aliasu moze sie aczkolwiek wydawac watpliwa, bo przeciez fatwiej i
krocej jest pisa¢ nazwe typu float Niz TArray<float>::ELEMENT. typedef wewnatrz
szablonu klasy (lub nawet ogdlnie - w odniesieniu do szablonéw) ma jednak znacznie
sensowniejsze zastosowania, gdy wspotpracuje ze soba wiele takich szablondw.
Koronnym przykfadem jest Biblioteka Standardowa C++, gdzie w ten sposdb catkiem
mozna zyskac dostep m.in. do tzw. iteratoréow, wspomagajacym prace ze strukturami
danych.

Deklaracje przyjazni

Czesciej spotykanym elementem w zwyktych klasach sg deklaracje przyjazni. Naturalnie,
w szablonach klas nie moglo ich zabrakna¢. Mozemy tutaj réwniez deklarowac przyjaznie
z funkcjami i klasami.

Dodatkowo mozliwe jest (obstugujg to nowsze kompilatory) uczynienie deklaracji
przyjazni szablonowa. Oto przykfad:

template <typename T> class TBar {/* ... %/ };

template <typename T> class TFoo

{
// deklaracja przyjazni z szablonem klasy TBar
template <typename U> friend class TBar<U>;

}i

Taka deklaracja sprawia, ze wszystkie specjalizacje szablonu TBar bedg zaprzyjaznione
ze wszystkimi specjalizacjami szablonu TFoo. TFoo<int> bedzie wiec miata dostep do
niepublicznych sktadowych TBar<double>, TBar<unsigned>, TBar<std::string> i
wszystkich innych specjalizacji szablonu TBar.

Zauwazmy, ze nie jest to rownowaznaczne z zastosowaniem deklaracji:

friend class TBar<T>;

Ona spowoduje tylko, ze zaprzyjaznione zostang te egzemplarze szablondw TBar i TFoo,
ktére konkretyzowano z tym samym parametrem T. TBar<float> bedzie wiec
zaprzyjazniony z TFoo<float>, ale np. z TFoo<short> czy z jakakolwiek inng
specjalizacjg TFoo.

Szablony funkcji sktadowych

Istnieje bardzo ciekawa mozliwo$¢t?®: metody klas moga by¢ szablonami. Naturalnie,
mozesz pomyslec, ze to zadna nowos¢, bo przeciez w przypadku szablondw klas
wszystkie ich metody sg swego rodzaju szablonami funkcji. Chodzi jednak o co$ innego,
co najlepiej zobaczymy na przykifadzie.

Nasz szablon TArray dziata catkiem znosnie i umozliwia podstawowg funkcjonalnosé w
zakresie tablic. Ma jednak pewng wade; spdjrzmy na ponizszy kod:

TArray<float> aFloatyl (10), aFloaty2;
TArray<int> alnty(7);

126 Dostepna aczkolwiek tylko w niektérych kompilatorach (np. w Visual C++ .NET 2003), podobnie jak
szablony deklaracji przyjazni.

528 Zaawansowane C++

//
aFloatyl = aFloaty2; // OK, przypisujemy tablice tego samego typu
aFloaty2 = alnty; // BREAD! TArray<int> niezgodne z TArray<float>

Drugie przypisanie tablicy int-éw do tablicy float-0w nie jest dopuszczalne. To
niedobrze, poniewaz, logicznie rzecz ujmujac, powinno to byc¢ jak najbardziej mozliwe.
Kopiowanie mogtoby sie przeciez odby¢ poprzez przepisanie poszczegdlnych liczb -
elementow tablicy atnty. Konwersja z int do float jest bowiem jak catkowicie
poprawna i nie powoduje zadnych szkodliwych efektow.

Kompilator jednak tego nie wie, gdyz w szablonie Tarray zdefiniowaliSmy operator
przypisania wytacznie dla tablic tego samego typu. Musielibysmy wiec dodac kolejng
jego wersje - tym razem uniwersalng, szablonowa. Dzieki temu w razie potrzeby mozna
by jej uzy¢ w takich wtasnie przypisaniach. Jak to zrobi¢? Spéjrzmy:

template <typename T> class TArray
{
public:
// szablonowy operator przypisania
template <typename U>
TArray<T>& operator=(const TArray<uU>&);

// (reszta niewazna)

i

Mamy wiec tutaj znowu zagniezdzong deklaracje szablonu. Druga fraza template <...>
jest nam potrzebna, aby uniezalezni¢ od typu operator przypisania - uniezaleznic¢ nie
tylko w sensie ogdélnym (jak to ma miejsce w catym szablonie Tarray), ale tez w
znaczeniu mozliwej ,,innosci” parametru tego szablonu (U) od parametru T macierzystego
szablonu TArray. Zatem przyktadowo: jezeli zastosujemy przypisanie tablicy
TArray<int> do TArray<float>, to T przyjmie ,wartos¢” float, za$ U - int.

Wszystko jasne? To teraz czas na smakowity deser. Powyzszy szablon metody trzeba
jeszcze zaimplementowac. No i jak to zrobié?... Cdz, nic prostszego. Napiszmy wiec te
funkcje.

Zaczynamy oczywiscie od template <...>:

template <typename T>

W ten sposob niejako otwieramy pierwszy z szablondéw - czyli TArray. Ale to jeszcze nie
wszystko: mamy przeciez w nim kolejny szablon - operator przypisania. Co z tym
poczac?... Alez tak, potrzebujemy drugiej frazy template <...>:

template <typename T> // od szablonu klasy TArray
template <typename U> // od szablonu operatora przypisania

Slicznie to wyglada, no ale to jeszcze nie wszystko. Dalej jednak jest juz, jak sadze,
prosto. Piszemy bowiem zwykly nagtdowek metody, positkujac sie prototypem z definicji
funkcji. A zatem:

template <typename T>
template <typename U>
TArray<T>& TArray<T>::operator=(const TArray<U>& aTablica)
{
//
}

Szablony 529

Stosuje tu takie dziwne formatowanie kodu, aby unaoczni¢ ci jego najwazniejsze
- elementy. W normalnej praktyce mozesz rzecz jasna skondensowac go bardziej, piszac
. np. obie klauzule template <...>w jednym wierszu i nie wcinajac kodu metody.

Wreszcie, czas na ciato funkcji - to chyba najprostsza czes$¢. Robimy podobnie, jak w
normalnym operatorze przypisania: najpierw niszczymy witasng tablice obiektu, tworzymy
nowag dla przypisywanej tablicy i kopiujemy jej tresc:

template <typename T>
template <typename U>
TArray<T>& TArray<T>::operator=(const TArray<U>& aTablica)

{
// niszczymy witasna tablice
delete[] m pTablica;

// tworzymy nowa, o odpowiednim rozmiarze
m uRozmiar = aTablica.Rozmiar();
m pTablica = new T [m uRozmiar];

// przepisujemy zawarto$é tablicy przy pomocy petli
for (unsigned i = 0; i < m uRozmiar; ++i)
m pTablica = aTablicalil];

// zwracamy referencje do wtasnego obiektu
return *this;

}

Niespodzianek raczej brak - moze z wyjatkiem petli uzytej do kopiowania zawartosci. Nie
postugujemy sie tutaj memcpy () z prostgo powodu: chcemy, aby przy przepisywaniu
elementdéw zadziataty niejawne konwersje. Dokonujg sie one oczywiscie w linijce:

m pTablica = aTablicalil];

To wtasnie ona sprawi, ze w razie niedozwolonego przypisywania tablic (np.
TArray<std::string> do TArray<double>) kompilacja nie powiedzie. Natomiast we
wszystkich innych przypadkach, jesli istniejg niejawne konwersje miedzy elementami
tablicy, wszystko bedzie w porzadku.

| Do petnego szczescia nalezatoby jeszcze w podobny sposéb zdefiniowac konstruktor
| konwertujacy (albo kopiujacy - zalezy jak na to patrzec), bedacy réwniez szablonem
| metody. To oczywiécie zadanie dla ciebie :)

Korzystanie z klas szablonowych

Zdefiniowanie szablonu klasy to naturalnie dopiero potowa sukcesu. Pieczotowicie
stworzony szablon chcemy przeciez wykorzysta¢ w praktyce. Porozmawiajmy wiec, jak to
zrobic.

Tworzenie obiektow

Najbardziej oczywistym sposobem korzystania z szablonu klasy jest tworzenie obiektéw
bazujacych na specjalizacji tegoz szablonu.

Stwarzamy obiekt klasy szablonowej

W kreowaniu obiektow klas szablonowych nie ma niczego nadzwyczajnego; robilismy to
juz kilkakrotnie. Zobaczmy na najprostszy przyktad - utworzenia tablicy elementéw typu
long:

530 Zaawansowane C++

TArray<long> alongi;

long jest tu parametrem szablonu TArray. Jednoczes$nie caty wyraz TArray<long> jest
typem zmiennej aLongi. Analogia ze zwyktych typédw danych dziata wiec tak samo dla
klas szablonowych.

Docierajac do tego miejsca pewnie przypomniate$ juz sobie o wskazniku std::auto ptr
z poprzedniego rozdziatu. Patrzac na instrukcje jego tworzenia nietrudno wyciggnac

- wniosek: auto ptr jest réwniez szablonem klasy. Parametrem tego szablonu jest zas$

- typ, na ktéry wskaznik pokazuje.

Przy okazji tego banalnego punktu zwrdce jeszcze uwage na pewien ,fakt skladniowy”.
Przypusc¢my wiec, ze zapragniemy stworzy¢ przy uzyciu naszego szablonu tablice
dwuwymiarowg. Pamietajac o tym, ze w C++ tablice wielowymiarowe sg obstugiwane
jako tablice tablic, wyprodukujemy zapewne co$ w tym rodzaju:

TArray<TArray<int>> alInty2D; // no i co tu jest zle?...

Koncepcyjnie wszystko jest tutaj w porzadku: TArray<int> jest po prostu parametrem
szablonu, czyli okresla tym elementéw tablicy - mamy wiec tablice tablic elementéw typu
int. Nieoczekiwanie jednak kompilator wykazuje sie tu kompletng ignoracja i zupetnym
brakiem ogtady: problematyczne stajq sie bowiem dwa zamykajgace nawiasy ostre,
umieszczone obok siebie. Sq one interpretowane jako... uwaga... operator przesuniecia
bitowego w prawo! Wiem, ze to brzmi idiotycznie, bo przeciez w tym kontekscie
operator ten jest zupetnie niemozliwy do zastosowania. Musze wiec przeprosic cie za
wiekszos$¢ nierozgarnietych kompilatoréw, ktore w tym kontekscie interpretujg sekwencje
>> jako operator bitowy!?’,

No dobrze, ale co z tym fantem zrobi¢?... Ot6z rozwigzanie jest nadzwyczaj proste: trzeba
oddzieli¢ oba znaki, aby nie mogto juz dochodzi¢ do nieporozumien na linii kompilator-
programista:

TArray<TArray<int> > alnty2D; // 1 teraz Jjest OK

Moze wyglada to nieadnie, ale poki co nalezy tak wtasnie pisa¢. Zapamietaj wiec, ze:

W miejsach, gdy w kodzie uzywajacym szablonow majg wystapi¢ obok siebie dwa
ostre nawiasy zamykajace (>>), nalezy wstawi¢ miedzy nimi spacje (> >), by nie
pozwoli¢ na ich interpretacje jako operatora przesuniecia.

O tym i o podobnych lapsusach jezykowych napomkne wiecej w stosownym czasie.

Co sie dzieje, gdy tworzymy obiekt szablonu klasy

Aby ten paragraf nie byt jedynie prezentacjq rzeczy oczywistych (tworzenie obiektéw klas
szablowych) i denerwujacych (vide kwestia nawiaséw ostrych), powiedzmy sobie jeszcze
o jednej sprawie. Co w zasadzie dzieje sie, gdy w kodzie napotka kompilator na
instrukcje tworzacq obiekt klasy szablonowej?...

Oczywiscie, ogdlna odpowiedz brzmi ,generuje odpowiedni kod maszynowy”. Warto
jednak zagtebic sie nieco w szczegdty, bo dzieki temu spotka nas pewna mita
niespodzianka...

A zatem - co sie dzieje? Przede wszystkim musimy sobie uswiadomic¢ fakt, ze takie
,Nazwy” jak TArray<int>, TDynamicArray<double> i inne nazwy szablondéw klas z

127 To whasciwie problem nie tylko kompilator, ale samego Standardu C++, ktéry pozwala im na takie beztroskie
zachowanie. Pozostaje mie¢ nadzieje, ze to sie zmieni...

Szablony 531

podanymi parametrami nie reprezentuja klas istniejacych w kodzie programu. Sg
one tylko instrukcjami dla kompilatora, méwigcymi mu, by wykonat dwie czynnosci:
» odnalazt wskazany szablon klas (TArray, TDynamicArray ...) i sprawdzit, czy
podane mu parametry sq poprawne
> wykonat jego konkretyzacje, czyli wygenerowat odpowiednie klasy szablonowe

Wiasciwe klasy sg wiec tworzone dopiero w czasie kompilacji - dziata to na nieco
podobnej zasadzie, jak rozwijanie makr preprocesora, cho¢ jest oczywiscie znacznie
bardziej zaawansowane. Najwazniejsze dla nas, programistow nie sg jednak szczegoty
tego procesu, lecz jedna cecha kompilatora - bardzo dla nas korzystna.

A chodzi o to, ze kompilator jest... leniwy (ang. /azy)! Jego lenistwo polega na tym, ze
wykonuje on wyfacznie tyle pracy, ile jest konieczne do poprawnej kompilacji - i nic
ponadto. W przypadku szablonow klas znaczy to po prostu tyle, ze:

Konkretyzacji podlegaja tylko te sktadowe klasy, ktore sg faktycznie uzywane.

ten bardzo przyjemny dla nas fakt najlepiej zrozumieé, jezeli przez chwile wczujemy sie
w role leniwego kompilatora. Przypusémy, ze widzi on takg deklaracje:

TArray<CFoo> aFoos;

Naturalnie, odszukuje on szablon TArray; przypusémy, ze stwierdza przy tym, iz dla typu
CFoo nie byt on jeszcze konkretyzowany. Innymi stowy, nie posiada definicji klasy
szablonowej dla tablicy elementdw typu CFoo. Musi wiec jg stworzy¢. Coz wiec robi? Otoz

w pocie czofa generuje on dla siebie kod w mniej wiecej takiej postaci®?®:

class TArray<CFoo>

{
static const unsigned DOMYSLNY_ROZMIAR = 5;
private:
CFoo* m_pTablica;
unsigned m_uRozmiar;
public:
explicit TArray(unsigned uRozmiar = DOMYSLNY_ROZMIAR)
: m_uRozmiar(uRozmiar), m_pTablica(new CFoo [m_uRozmiar]) {}
o

~Chwila! A gdzie sg wszystkie pozostate metody?!” Mozesz sie zaniepokoi¢, ale poczekaj
chwile... Powiedzmy, ze oto dalej spotykamy instrukcje:

aFoos[0] = CFoo("Foooo!");

Co wtedy? Wracamy mianowicie do wygenerowanej przed chwilg definicji, a kompilator jq
modyfikuje i teraz wyglada ona tak:

class TArray<CFoo>

{
static const unsigned DOMYSLNY_ROZMIAR = 5;

private:
CFoo* m_pTablica;
unsigned m_uRozmiar;

128 pomniemane produkty pracy kompilatora zapisuje bez charakterystycznego formatowania.

532 Zaawansowane C++

public:
explicit TArray(unsigned uRozmiar = DOMYSLNY_ROZMIAR)
: m_uRozmiar(uRozmiar), m_pTablica(new CFoo [m_uRozmiar]) {}

CFoo& operator[](unsigned ulndeks) { return m_pTablica[ulndeks]; }
o

Wreszcie kompilator stwierdza, ze wyszedt poza zasieg zmiennej aFoos. Co wtedy dzieje
sie z naszg klasg? Spéjrzmy na nig:

class TArray<CFoo>

{
static const unsigned DOMYSLNY_ROZMIAR = 5;
private:
CFoo* m_pTablica;
unsigned m_uRozmiar;
public:
explicit TArray(unsigned uRozmiar = DOMYSLNY_ROZMIAR)
: m_uRozmiar(uRozmiar), m_pTablica(new CFoo [m_uRozmiar]) {}
~TArray() { delete m_pTablica; }
CFoo& operator[](unsigned ulndeks) { return m_pTablica[ulndeks]; }
b

Czy juz rozumiesz? Przypuszczam, ze tak. Zaakcentujmy jednak to wazne stwierdzenie:

Kompilator konkretyzuje wylacznie te metody klasy szablonowej, ktére sgq
uzywane.

Korzys¢ z tego faktu jest chyba oczywista: generowanie tylko potrzebnego kodu sprawia,
ze w ostatecznym rozrachunku jest go mniej. Programy sg wiec mniejsze, a przez to
takze szybciej dziatajq. I to wszystko dzieki lenistwu kompilatora! Czy wiec nadal mozna
podziela¢ poglad, ze ta cecha charakteru jest tylko przywarg? :)

Funkcje operujgce na obiektach klas szablonowych

Szablony funkcji sg czesto przystosowane do manipulowanai obiektami klas
szablonowych - w zblizony sposdb, w jaki czynig to zwykte funkcje z normalnymi klasami.
Popatrzmy na ten oto przyktad funkcji szukaj () :

template <typename TYP> int Szukaj (const TArray<TYP>& aTablica,
TYP Szukany)
{
// przelatujemy po tablicy i pordéwnujemy elementy
for (unsigned 1 = 0; 1 < aTablica.Rozmiar(); ++1)
if (aTablica[i] == Szukany)
return i;

// jes$li nic nie znajdziemy, zwracamy -1
return -1;

}

Sama jej tres¢ do szczegolnie odkrywczych nie nalezy, a przeznaczenie jest, zdaje sie,
oczywiste. Spdjrzmy raczej na nagtéwek, bo to on sprawia, ze méwimy o tym szablonie
w kategoriach wspotpracy z szablonem klas Tarray. Oto bowiem parametr szablonu Typ

Szablony 533

uzywany jest jako parametr od TArray (miedzy innymi). Dzieki temu mamy wiec ogdlng
funkcje do pracy z dowolnym rodzajem tablicy.

Taka wspotpraca pomiedzy szablonami klas i szablonami funkcji jest naturalna.
Gdziekolwiek bowiem umiescimy fraze template <...>, powoduje ona uniezaleznienie
kodu od konkretnego typu danych. A jesli chcemy ta niezalezno$¢ zachowad, to
nieuknione jest tworzenie kolejnych szablonéw. W ten sposob skonstruowanych jest
mnostwo bibliotek jezyka C++, z Bibliotekgq Standardowa na czele.

Specjalizacje szablondw klas

Teraz porozmawiamy sobie o definiowaniu specjalnych wersji szablonow klas dla
okreslonych parametréw (typow). Mechanizm ten dziata do$¢ podobnie jak w przypadku
szablonow funkcji, wiec nie powinno by¢ z tym zbyt wielu problemoéw.

Specjalizowanie szablonu klasy

Specjalizacja szablonu klasy oznacza ni mniej wiecej, jak tylko zdefiniowanie pewnej
szczegodlnej wersji tegoz szablonu dla pewnego wyjatkowego typu (parametru szablonu).
Dodatkowo, istnieje mozliwos$¢ specjlizacji pojedynczej metody; zajmiemy sie pokrétce
oboma przypadkami.

Wtasna klasa specjalizowana

Jako przyktad na wiasng, kompletna specjalizacje szablonu klasy postuzymy sie
oczywiscie naszym szablonem tablicy jednowymiarowej - TArray. Dziata on catkiem
dobrze w ogdlnej wersji, lecz przeciez chcemy zdefiniowac jego specjalizacje. W tym
przypadku moze to by¢ sensowne w odniesieniu do typu char. Tablica elementéw tego
typu jest bowiem niczym innym, jak tylko tancuchem znakdéw. Niestety, w obecnej formie
klasa Tarray<char> nie moze byc¢ jako traktowana napis (obiekt std: :string), bo dla
kompilatora nie ma teraz zadnej praktycznej réznicy miedzy wszystkimi typami tablic
TArray.

Aby to zmienié¢, musimy rzecz jasna wprowadzi¢ swojg wtasng specjalizacje Tarray dla
parametru char. Klasa ta bedzie réznita sie od wersji ogélnej tym, iz wewnatrznym
mechanizmem przechowywania tablicy bedzie nie tablica dynamiczna typu char* (w
ogolnosci: TYp~*), lecz napis w postaci obiektu std: :string. Pozwoli to na dodanie
operatora konwersji, aczkolwiek zmieni nieco kilka innych metod klasy. Spéjrzmy wiec na
te specjalizacje:

#include <string>

template<> class TArray<char>

{
static const unsigned DOMYSLNY ROZMIAR = 5;

private:
// rzeczona tablica w postaci napisu std::string
std::string m strTablica;

public:
// konstruktor
explicit TArray (unsigned uRozmiar = DOMYSLNY ROZMIAR)
: m_strTablica (uRozmiar, '\O0') { }
// (destruktor niepotrzebny)

// (pomijam metody Pobierz () 1 Ustaw())

534 Zaawansowane C++

unsigned Rozmiar () const
{ return static cast<unsigned>(m strTablica.length()); }
bool ZmienRozmiar (unsigned) ;

// operator indeksowania
charé& operator[] (unsigned ulIndeks) { return m strTablicali]; }

// operator rzutowania na typ std::string
operator std::string() const { return m strTablica; }

b

Co6z mozna o niej powiedzie¢?... Naturalnie, rozpoczynamy jg, jak kazda specjalizacje
szablonu, od frazy template<>. Nastepnie musimy jawnie podac¢ parametry szablonu
(char), czyli nazwe klasy szablonowej (TArray<char>). Wymag ten istnieje, bo definicja
tej klasy moze by¢ zupetnie ré6zna od definicji oryginalnego szablonu!

Popatrzmy choc¢by na naszag specjalizacje. Nie uzywamy juz w niej tablicy dynamicznej
inicjowanej podczas wywotania konstruktora. Zamiast tego mamy obiekt klasy
std::string, ktoremu w czasie tworzenia tablicy kazemy przechowywac podanag liczbe
znakow. Fakt, ze sami nie alokujemy pamieci sprawia tez, ze i sami nie musimy jej
zwalniaé: napis m_strTablica usunie si¢ sam - zatem destruktor jest juz niepotrzebny.
Poza tym nie ma raczej wielu niespodzianek. Do najciekawszych nalezy pewnie operator
konwersji na typ std: :string - dzieki niemu tablica TArray<char> moze by¢ uzywana
tam, gdzie konieczny jest ftancuch znakéw C++. Dodanie tej niejawnej konwersji byto
gtdwnym powodem tworzenia wtasnej specjalizacji; jak wida¢, zatozony cel zostat
osiggniety fatwo i szybko.

Pozostaje jeszcze do zrobienia implementacja metody zmienRozmiar (), ktdrg umiescimy
poza blokiem klasy. Kod wyglada¢ moze tak:

bool TArray<char>::ZmienRozmiar (unsigned uNowyRozmiar)
{
try
{
// metoda resize() klasy std::string zmienia dlugos$é napisu
m strTablica.resize (uNowyRozmiar, '\0'");

}
catch (std::length erroré&)

{
// w razie niepowodzenia zmiany rozmiaru zwracamy false
return false;

}

// gdy wszystko sie uda, zwracamy true
return true;

}

Od razu zwréémy uwage na brak klauzuli template<>. Nie ma jej, bowiem tutaj nie
mamy do czynienia ze specjalizacjg szablonu ZmienRozmiar (). Metoda ta jest po prostu
zwykla funkcjq klasy TArray<char> - podobnie byto zresztg w oryginalnym szablonie
TArray. Implementujemy jgq wiec jako normalng metode. Nie ma tu zatem znaczenia
fakt, ze metoda ta jest czescig specjalizacji szablonu klasy. Najlepiej jest po prostu
zapamietac, ze dany szablon specjalizujemy raz i to wystarczy; gdybysmy takze tutaj
sprobowali dodac template<>, to przeciez bytoby tak, jakby$my ponownie chcieli

Szablony 535

sprecyzowac fragment czegos$ (metode), co juz zostato precyzyjnie okreslone jako catos¢
(klasa).

Co do tresci metody, to uzywamy tutaj funkcji std: :string: :resize () do zmiany
rozmiaru napisyu. Funkcja ta moze rzuci¢ wyjatek w przypadku niepowodzenia. My ten
wyjatek ,przerabiamy” na rezultat funkcji: false, jesli wystapi, i true, gdy wszystko sie
uda.

Specjalizacja metody klasy

Przygladajac sie uwaznie specjalizacji Tarray dla typu char mozna odnie$¢ wrazenie, ze
przynajmniej czesciowo zostat on stworzony poprzez skopiowanie sktadowych z definicji
samego szablonu TArray. Przyktadowo, funkcja dla operatora [] jest praktycznie
identyczna z ta zamieszczong w 0gdélnym szablonie (kwestia nazwy m strTablica czy

m pTablica jest przeciez czysto symboliczna).

To moze nam sie nieszczegdlnie podobad, ale jest do przyjecia. Gorzej, jesli w klasie
specjalizowanej chcemy napisac¢ nieco inng wersje tylko jednej metody z pierwotnego
szablonu. Czy wéwczas jesteSmy skazani na specjalizowanie catej klasy oraz niewygodne
kopiowanie i bezsensowne zmiany prawie catego jej kodu?...

Odpowiedz brzmi na szczescie ,Nie!” Nieche¢ do jednej metody szablonu klasy nie
oznacza, ze musimy obrazac sie na 6w szablon jako catos¢. Mozliwe jest
specjalizowanie metod dla szablonéw klas; wyjasnijmy to na przyktadzie.

Przypusémy mianowicie, ze zachciato nam sie, aby tablica Tarray zachowywata sie w
specjalny sposéb w odniesieniu do elementéw bedacych wskaznikami typu int*. Otdz
pragniemy, aby przy niszczeniu tablicy zwalniana byta takze pamie¢, do ktorej odnosza,
sie te wskazniki (elementy tablicy). Nie rozwodzmy sie nad tym, na ile jest to dorzeczne
programistycznie, lecz zastandwmy sie raczej, jak to wykonac. Chwila zastanowienia i
rozwigzanie staje sie jasne: potrzebujemy troche zmienionej wersji destruktora. Powinien
on jeszcze przed usunieciem samej tablicy zadba¢ o zwolnienie pamieci przynaleznej
zawartym wen wskaznikom. Zmiana mata, lecz wazna.

Musimy wiec zdefiniowa¢ nowg wersje destruktora dla klasy Tarray<int*>. Nie jest to
specjalnie trudne:

template<> TArray<int*>::~TArray ()
{
// przelatujemy po elementach tablicy (wskaznikach) i kazdemu
// aplikujemy operator delete
for (unsigned i = 0; i < Rozmiar(); ++1)
delete m pTablicali];

// potem jak zwykle usuwamy tez samag tablice
delete[] m pTablica;
}

Jak to zwykle w specjalizacjach, zaczynamy od template<>. Dalej widzimy natomiast
normalng w zasadzie definicje destruktora. To, iz jest ona specjalizacjg metody dla
TArray Z parametrem int* rozpoznajemy rzecz jasna po nagtdwku - a doktadniej, po
nazwie klasy: TArray<int*>.

Reszta nie jest chyba zaskoczeniem. W destruktorze TArray<int*> wpierw wiec
przechodzimy po catej tablicy, stosujgc operator delete dla kazdego jej elementu
(wskaznika). W ten sposob zwalniamy bloki pamieci (zmienne dynamiczne), na ktére
pokazujg wskazniki. Z kolei po skonczonej robocie pozbywamy sie takze samej tablicy -
doktadnie tak, jak to czyniliSmy w szablonie TArray.

536 Zaawansowane C++

Czesciowa specjalizacja szablonu klasy

Petna specjalizacja szablonu oznacza zdefiniowanie klasy dla konkretnego, precyzyjnie
okreslonego zestawy argumentéw. W naszym przypadku bylo to dostowne podanie typ
elementow tablict Tarray, np. char.

Czasem jednak taka precyzja nie jest pozadana. Niekiedy zdarza sie, ze wygodniej
byloby wprowadzi¢ bardziej szczegétowg wersje szablonu, ktéra nie operowataby przy
tym konkretnymi typami. Wtedy witasnie wykorzystujemy specjalizacje czesciowa
(ang. partial specialization). Zobaczymy to tradycyjnie na odpowiednim przyktadzie.

Problem natury tablicowej

A zatem... Nasz szablon tablicy Tarray sprawdza sie catkiem dobrze. Dotyczy to
szczegolnie prostych zastosowan, do ktérych zostat pierwotnie pomyslany - jak na
przyktad jednowymiarowa tablica liczb czy lista napiséw. Idac dalej, fatwo mozna sobie
jednak wyobrazi¢ bardziej zaawansowane wykorzystanie tego szablonu - w tym takze
jako dwuwymiarowej tablicy tablic, np.:

TArray<TArray<int> > alnty2D;

Naturalnie chcieliby$my, aby taka funkcjonalnosc byta nam dana niejako ,z urzedu”, z
samej tylko definicji Tarray. Zdawatoby sie zreszta, ze wszystko jest tutaj w porzadku i
ze faktycznie mozemy sie postugiwac¢ zmienng aInty2D jak tablicg o dwoch wymiarach.
Niestety, nie jest tak rozowo; mamy tu przynajmniej dwa problemy.

Po pierwsze: w jaki sposéb mielibysmy ustali¢ rozmiar(y) takiej tablicy?... Typ zmiennej
aInty2D jest tu wprawdzie ,podwojny”, ale przy jej tworzeniu nadal uzywany jest
normalny konstruktor Tarray, ktory jest jednoparametrowy. Mozemy wiec podac
wytacznie jeden wymiar tablicy, zas$ drugi zawsze musiatby by¢ rowny wartosci
domysinej!

Oprocz tego oczywistego btedu (catkowicie wykluczajacego uzycie tablicy) mamy jeszcze
jeden mankament. Mianowicie, zawartosc¢ tablicy nie jest rozmieszczona w pamieci w
postaci jednego bloku, jak to czyni kompilator w wypadku statycznych tablic. Zamiast
tego kazdy jej wiersz (podtablica) jest umieszczony w innym miejscu, co przy wiekszej
ich liczbie, rozmiarach i czestym dostepie bedzie ujemnie odbijato sie na efektywnosci
kodu.

Rozwigzanie: przypadek szczegdlniejszy, ale nie za bardzo

Co mozna na to poradzi¢? Rozwigzaniem jest specjalne potraktowanie klasy
TArray<TArray<typ_elementu> > i zdefiniowanie jej odmiennej postaci - nieco innej niz
wyjsciowy szablon Tarray. Przedtem jednak zwréémy uwage, iz nie mozemy tutaj
zastosowac catkowitej specjalizacji tegoz szablonu, bowiem typ_elementu nadal jest tu
parametrem o dowolnej ,wartosci” (typie).

Jak sie pewnie domyslasz, trzeba tu zastosowac specjalizacje cze$ciowg. Bedzie ona
traktowata zagniezdzone szablony Tarray w specjalny sposob, zachowujac jednak
mozliwo$¢ dowolnego ustalania typu elementdw tablicy. Popatrzmy wiec na definicje tej
specjalizacji:

template <typename TYP> class TArray<TArray<TYP> >

{
static const unsigned DOMYSLNY ROZMIAR = 5;

private:
// wskaznik na tablice
TYP* m pTablica;

// wymiary tablicy
unsigned m_uRozmiarX;

Szablony 537

unsigned m uRozmiarY;

public:
// konstruktor i destruktor
explicit TArray(unsigned uRozmiarX = DOMYSLNY ROZMIAR,
unsigned uRozmiarY = DOMYSLNYiROZMIAR)
m uRozmiarX (uRozmiarX), m uRozmiar (uRozmiarY),
m pTablica(new TYP [uRozmiarX * uRozmiarY]) { 1}
~TArray () { delete[] m pTablica; }

// metody zwracajace wymiary tablicy
unsigned RozmiarX () const { return m uRozmiarX; }
unsigned RozmiarY () const { return m uRozmiarY; }

// operator () do wybierania elementdéw tablicy
TYP& operator () (unsigned uX, unsigned uY)
{ return m pTablica[uY * m uRozmiarX + uX]; }

// (pomijam konstruktor kopiujacy 1 operator przypisania}

}i

Tak naprawde to w opisywanej sytuacji specjalizacja czesciowa niekoniecznie moze by¢
uznawana za najlepsze rozwigzanie. Dosc¢ logiczne jest bowiem zdefiniowanie sobie
zupetnie nowego szablonu, np. TArray2D i wykorzystywanie go zamiast misternej
konstrukcji TArray<TArray<...> >. Poniewaz jednak masz tutaj przede wszystkim
poznac¢ zagadnienie specjalizacji czeSciowej, wytacz na chwile swdj nazbyt czuty
wykrywacz nacigganych rozwigzan i w spokoju kontynuuj lekture :D

Rozpoczyna sie ona od sekwencji template <typename TYP> (@ nie template<>), CO
moze budzi¢ zaskoczenie. W rzeczywistosci jest to logiczne i niezbedne: to prawda, ze
mamy do czynienia ze specjalizacjg szablonu, jednak jest to specjalizacja czesciowa,
zatem nie okreslamy explicité wszystkich jego parametréw. Nadal wiec postugujemy sie
faktycznym szablonem - choéby w tym sensie, ze typ elementdow tablicy pozostaje
nieznany z gory i musi podlegac¢ parametryzacji jako TYP. Klauzula template <typename
TYP> jest zatem niezbedna - podobnie zresztg jak we wszystkich przypadkach, gdy
tworzymy kod niezalezny od konkretnego typu danych.

Tutaj klauzula ta wyglada tak samo, jak w oryginalnym szablnoie TArray. Warto jednak
wiedzie¢, ze nie musi wcale tak by¢. Przyktadowo, jesli specjalizowaliby$my szablon o
dwoch parametrach, wéwczas fraza template <...> moglaby zawierac tylko jeden
parametr. Drugi musiatby by¢ wtedy narzucony odgérnie w specjalizacji.

Kompilator wie jednak, ze nie jest to taki zwyczajny szablon podstawowy. Dalej bowiem
okreslamy dokfadnie, o jakie przypadki uzycia TArray nam chodzi. Sg to wiec te
sytuacje, gdy klasa parametryzowana nazwg TYP (TArray<TYP>) sama staje sie
parametrem szablonu TArray, tworzac swego rodzaju zagniezdzenie (tablice tablic) -
TArray<TArray<TYP> >. O tym $wiadczy pierwsza linijka naszej definicji, czyli:

template <typename TYP> class TArray<TArray<TYP> >

Sam blok klasy wynika bezposrednio z tego, ze programujemy tablice dwuwymiarowg
zamiast jednowymiarowej. Mamy wiec dwa pola okreslajace jej rozmiar - liczbe wierszy i
ilos$¢ kolumn. Wymiary te podajemy w nowym, dwuparametrowym konstruktorze:

538 Zaawansowane C++

explicit TArray(unsigned uRozmiarX = DOMYSLNY ROZMIAR,
unsigned uRozmiarY = DOMYSLNY ROZMIAR)
: m uRozmiarX (uRozmiarX), m uRozmiar (uRozmiarY),
m pTablica(new TYP [uRozmiarX * uRozmiarY]) {1}

Ten zas dokonuje alokacji pojedynczego bloku pamieci na catg tablice - a o to nam
przeciez chodzito. Wielko$¢ tego bloku jest rzecz jasna na tyle duza, aby pomiescié
wszystkie elementy - réwna sie ona iloczynowi wymiardéw tablicy (bo np. tablica 4x7 ma
w sumie 28 elementodw, itp.).

Niestety, fakt iz jest to tablica dwuwymiarowa, uniemozliwia przecigzenie w prosty
sposdb operatora [] celem uzyskania dostepu do poszczegdlnych elementdéw tablicy.
Zamiast tego stosujemy wiec inny rodzaj nawiasow - okragte. Te bowiem pozwalajg na
podanie dowolnej liczby argumentéw (indekséw); my potrzebujemy naturalnie dwoch:

TYP& operator () (unsigned uX, unsigned uY)
{ return m pTablica[uY * m uRozmiarX + uX]; }

Uzywamy ich potem, aby zwroci¢ element o zadanych indeksach. Wewnetrzna

m pTablica jest aczkolwiek ciggta i jednowymiarowa (bo ma zajmowac pojedynczy blok
pamieci), dlatego konieczne jest przeliczenie indekséw. Zajmuje sie tym formutka uy *
m uRozmiar + uX, sprawiajac jednoczesnie, ze elementy tablicy sq uktadane w pamigci
wierszami. ,Przypadkowo” zgadza sie to ze sposobem, jaki stosuje kompilator jezyka
C++.

Na koniec popatrzmy jeszcze na sposob uzycia tej (cze$ciowo) specjalizowanej wersji
szablonu TArray. Oto przyktad kodu, ktory z niej korzysta:

TArray<TArray<double> > aMacierz4x4 (4, 4);

// dostep do elementdw tablicy

for (unsigned i1 = 0; i < aMacierz4x4.RozmiarX(); ++i)
for (unsigned j = 0; j < aMacierz4x4.RozmiarY(); ++3j)
aMacierz4x4 (i, J) =i + 7;

Tak wiec dzieki specjalizacji czesciowej klasa TArray<TArray<double> > iinne tego
rodzaju mogg dziata¢ poprawnie, co nie bylo mozliwe, gdy obecna byta jedynie
podstawowa wersja szablonu TArray.

Domysine parametry szablonu klasy

Szablon klasy ma swoja liste parametréow, z ktérych kazdy moze miec¢ swojq ,wartosc”
domysing. Dziata to w analogiczny sposéb, jak argumenty domysine wywotan funkcji.
Popatrzmy wiec na te technike.

Typowy typ

Zanim jednak popatrzymy na sama technike, popatrzmy na taki oto szablon:

// para
template <typename TYPl, typename TYP2> struct TPair
{

// elementy pary

TYP1 Pierwszy;

TYP2 Drugi;

// konstruktor

Szablony 539

TPair (const TYPl& el, const TYP2& e2) : Pierwszy(el), Drugi(e2) { }
}i

Reprezentuje on pare wartosci réznych typow. Taka struktura moze sie wydawac lekko
dziwaczna, ale zapewniam, ze znajduje ona swoje zastosowania w réznych
nieprzewidzianych momentach :) Zresztg nie o zastosowania tutaj chodzi, lecz o
parametey szablonu.

A mamy tutaj dwa takie parametry: typy obu obiektow. Uzycie naszej klasy wygladac
wiec moze chociazby tak:

TPair<int, int> Dzielnik (42, 84);
TPair<std::string, int> Slownie ("dwanascie", 12);
TPair<float, int> Polowa (2.5f, 5);

Przypusc¢my teraz, ze w naszym programie czesto zdarza sie nam, iz jeden z obiektéw w
parze nalezy do jakiego$ znanego z goéry typu. W kodzie powyzej na przyktad kazda z
tych par ma jeden element typu int.

Chcac zaoszczedzi¢ sobie koniecznosci pisania tego podczas deklarowania zmiennych,
mozemy uczynic¢ int argumentem domysinym:

template <typename TYP1l, typename TYP2 = int> struct TPair

{
//
i

Piszgc w ten sposob sprawiamy, ze w razie niepodania ,wartosci” dla drugiego parametru
szablonu, ma on oznaczac typ int:

TPair<CFoo> Wielkosc (CFoo (), sizeof (CFoo)); // TPair<CFoo, int>
TPair<double> Pierwiastek(sqgrt(2), 2); // TPair<double, int>
TPair<int> DwaRaz (12, 6); // TPair<int, int>

Okreslajac parametr domysiny pamietajmy jednak, ze:

Parametr szablonu moze mie¢ wartos¢é domysina tylko wtedy, gdy znajduje sie na
koncu listy lub gdy wszystkie parametry za nim tez majgq wartos¢ domysina.

Niepoprawny jest zatem szablon:

template <typename TYP1l = int, typename TYP2> struct TPair; // ZLE!

Nic aczkolwiek nie stoi na przeszkodzie, aby poda¢ wartosci domysine dla wszystkich
parametrow:

template <typename TYP1l = std::string, typename TYP2 = int>
struct TPair; // OK

Uzywajac takiego szablonu, nie musimy juz podawa¢ zadnych typow, aczkolwiek nalezy
zachowac nawiasy katowe:

TPair<> Opcja("Ilosc¢ plikow"™, 200); // TPair<std::string, int>

Obecnie domysine argumenty mozna podawacé wytacznie dla szablondw klas. Jest to
jednak pozostato$¢ po wczesnych wersjach C++, niemajaca zadnego uzasadnienia, wiec
jest catkiem prawdopodobne, Zze ograniczenie to zostanie wkrétce usuniete ze Standardu.
Co wiecej, sporo kompilatoréw juz teraz pozwala na podawanie domysinych argumentéw
szablonow funkcji.

540 Zaawansowane C++

Skorzystanie z poprzedniego parametru

Dobierajac parametr domysiny szablonu, mozemy tez skorzystac¢ z poprzedniego. Oto
przykfad dla naszej pary:

template <typename TYPl, typename TYP2 = TYPl> struct TPair;

Przy takim postawieniu sprawy i podaniu jednego parametru szablonu bedziemy mieli
pary identycznych obiektow:

TPair<int> DwaDo (8, 256);
TPair<std::string> Tlumaczenie ("tablica", "array");
TPair<double> DwieWazneStale (3.14, 2.71);

Mozna jeszcze zauwazyc, ze identyczny efekt osiggnelibySmy przy pomocy czesciowej
specjalizacji szablonu TPair dla tych samych argumentéw:

template <typename TYP> struct TPair<TYP, TYP>

{
// elementy pary
TYP Pierwszy;
TYP Drugi;

// konstruktor
TPair (const TYP& el, const TYP& e2) : Pierwszy(el), Drugi(e2) { }
}i

Domysline argumenty majq jednak te oczywistg zalete, ze nie zmuszajg do praktycznego
dublowania definicji klasy (tak jak powyzej). W tym konkretnym przypadku sgq one
znacznie lepszym wyborem. Jezeli jednak postac szablonu dla pewnej klasy parametréw
ma sie znaczgco rézni¢, wéwczas dostownie napisana specjalizacja jest najczesciej
konieczna.

Xk k

Na tym konczymy prezentacje szablonéw funkcji oraz klas. To aczkolwiek nie jest jeszcze
koniec naszych zmagan z szablonami w ogdle. Jest bowiem jeszcze kilka rzeczy
ogdlniejszych, o ktérych nalezy koniecznie wspomnieé. Przejdzmy wiec do kolejnego
podrozdziatu na temat szablonéw.

Wiecej informacji

Po zasadniczym wprowadzeniu w tematyke szablonéw zajmiemy sie nieco szczegdtowiej
kilkoma ich aspektami. Najpierw wiec przestudiujemy parametry szablonoéw, potem zas
zwrdcimy uwage na pewne problemy, jakie moga wynikng¢ podczas stosowania tego
elementu jezyka. Najwiecej uwagi poswiecimy tutaj sprawie organizacji kodu szablonow
w plikach nagtowkowych i modutach, gdyz jest to jedna z kluczowych kwestii.

Zatem poznajmy szablony troche blizej.

Parametry szablonow

Dowiedziate$ sie na samym poczatku, ze kazdy szablon rozpoczyna sie od obowigzkowej
frazy w postaci:

Szablony 541

[export] template <parametry>

O nieobowigzkowym stowie kluczowym export powiemy w nastepnej sekcji, w paragrafie
omawiajagcym tzw. model separacji. ‘

Nazywamy jq klauzula parametryzacji (ang. parametrization clause). Petni ona w
kodzie dwojakg funkcje:
> informuje ona kompilator, ze nastepujacy dalej kod jest szablonem. Dzieki temu
kompilator wie, ze nie powinien dlan przeprowadzaé¢ normalnej kompilacji, lecz
potraktowac¢ w sposdb specjalny - czyli poddaé konkretyzacji
> klauzula zawiera tez deklaracje parametréw szablonu, ktére s w nim uzywane

Wiasnie tymi deklaracjami oraz rodzajami i uzyciem parametréw szablonu zajmiemy sie
obecnie. Na poczatek warto wiec wiedzieé, ze parametry szablondéw dzielimy na trzy
rodzaje:
» parametry bedace typami
» parametry bedace statymi znanymi w czasie kompilacji (tzw. parametry
pozatypowe)
> szablony parametrow

Dotychczas w naszych szablonach niepodzielnie krélowaty parametry bedace typami.
Nadal bowiem sg to najczesciej wykorzystywane parametry szablonéw; dotgd mowi sie
nawet, ze szablony i kod niezalezny od typu danych to jedno i to samo.

My jednak nie mozemy pozwoli¢ sobie na ignoracje w zakresie ich parametréow. Dlatego
tez teraz oméwimy doktadnie wszystkie rodzaje parametrow szablondw.

Typy

Parametry szablondw bedace typami stanowig najwiekszg site szablonéw, przyczyne ich
powstania, niespotykanej popularnosci i przydatnosci. Nic wiec dziwnego, ze pierwsze
poznane przez nas przyktady szablondw korzystaty wtasnie z parametryzowania typow.
Nabrate$ wiec catkiem sporej wprawy w ich stosowaniu, a teraz poznasz kryjaca sie za
tym fasade teorii ;)

Przypominamy banalny przyktad

W tym celu przywotajmy pierwszy przyktad szablonu, z jakim mieliSmy do czynienia, czyli
szablon funkcji max () :

template <typename T> T max(T a, T b)
{

return (a > b ? a : b);

}

Ma on jeden parametr, bedacy typem; parametr ten nosi nazwe T. Jest to zwyczajowa
juz nazwa dla takich parametréow szablonu, ktérg mozna spotkac niezwykle czesto.
Zgodnie z tg konwencjg, nazwe T nadaje sie parametrowi bedgcemu typem, jesli jest on
jednoczesnie jedynym parametrem szablonu i w zwigzku z tym petni jakas szczegdlng
role. Moze to by¢ np. typ elementéw tablicy czy, tak jak tutaj, typ parametréow funkcji i
zwracanej przez nig wartosci.

Nazwa T jest tu wiec symbolem zastepczym dla wtasciwego typu poréwnywanych
wartosci. Jezeli pojecie to sprawia ci trudnos¢, wyobraz sobie, ze dziata ono podobnie jak
alias typedef. Mozna wiec przyjac, ze kompilator, stosujac funkcje w konkretnym
przypadku, definiuje T jako alias na wtasciwy typ. Przykfadowo, specjalizacje max<int>
mozna traktowac jako kod:

542 Zaawansowane C++

typedef int T;
T max (T a, T b) { return (a > b ? a : b); }

Naturalnie, w rzeczywistosci generowana jest po prostu funkcja:
int max<int>(int a, int b);

Niemniej powyzszy sposdb moze ci z poczatku poméc, jesli dotad nie rozumiates idei
parametru szablonu bedacego typem.

class zamiast typename

Parametr szablonu bedacy typem oznaczalismy dotad za pomocg stowa kluczowego
typename. Okazuje sie, ze mozna to takze robi¢ poprzez stowko class:

template <class T> T max(T a, T b);

Nie oznacza to bynajmniej, ze podany parametr szablonu moze by¢ wytgcznie klasg
zdefiniowang przez uzytkownika'?®. Przeciwnie, otdz:

Slowa class i typename W sg synonimami w deklaracjach parametrow szablonu
bedacych typami.

Po co zatem istniejg dwa takie stowa?... Jest to spowodowane tym, iz pierwotnie jedynym
sposobem na deklarowanie parametrow szablonu bylo class. typename wprowadzono do
jezyka pdzniej, i to w catkiem innym przeznaczeniu (o ktéorym tez sobie powiemy). Przy
okazji aczkolwiek pozwolono na uzycie tego nowego slowa w deklaracjach parametréw
szablonow, jako ze znacznie lepiej pasuje tutaj niz class. Dlatego tez mamy ostatecznie
dwa sposoby na zrobienie tego samego.

Mozna z tego wyciagna¢ pewng korzysc¢. Wprawdzie dla kompilatora nie ma znaczenia,
czy do deklaracji parametréw uzywamy class Czy typename, lecz nasz wybdor moze miec
przeciez znaczenie dla nas. Logiczne jest mianowicie uzywanie class wytgcznie tam,
gdzie faktycznie spodziewamy sie, ze przekazanym typem bedzie klasa (bo np.
wywotujemy jej metody). W pozostatych przypadkach, gdy typ moze by¢ absolutunie
dowolny (jak choéby w uprzednich szablonach max () czy TArray), rozsadne jest
stosowanie typename.

Naturalnie, to tylko sugestia, bo jak méwitem juz, kompilatorowi jest w tej kwestii
wszystko jedno.

State

Cenng wtasciwoscig szablondw jest mozliwos¢ uzycia w nich innego rodzaju parametrow
niz tylko typy. Sq to tak zwane parametry pozatypowe (ang. non-type parameters), a
doktadniej méwiac: state.

Uzycie parametrow pozatypowych

Ich wykorzystanie najlepiej bedzie zobaczy¢ na paru rozsadnych przykfadach.

129 Czyli typem zdefiniowanym poprzez struct, union lub class.

Szablony 543

Przyktad szablonu klasy

W poprzednim paragrafie zdefiniowaliSmy sobie szablon klasy Tarray. Stuzyt on jako
jednowymiarowa tablica dynamiczna, ktérej rozmiar podawali$my przy tworzeniu i
ewentualnie zmienialiSmy w trakcie korzystania z obiektu.

Mozna sobie jeszcze wyobrazi¢ podobny szablon dla tablicy statycznej, ktorej rozmiar jest
znany podczas kompilacji. Oto propozycja szablonu TstaticArray:

template <typename T, unsigned N> class TStaticArray
{

private:
// tablica
T m _aTablical[N];

public:
// rozmiar tablicy Jjako stata
static const unsigned ROZMIAR = Nj;

// operator indeksowania
T& operator[] (unsigned ulndeks)
{ return m aTablica[ulndeks]; }

// (itp.)
}i

Jak stusznie zauwazyte$, szablon ten zawiera dwa parametry. Pierwszy z nich to typ
elementow tablicy, deklarowany w znany sposdb poprzez typename. Natomiast drugi
parametr jest wtasnie przedmiotem naszego zainteresowania. Stosujemy w nim typ
unsigned, wobec czego bedzie on statg tego wtasnie typu.

Popatrzmy najlepiej na sposob uzycia tego szablonu:

TStaticArray<int, 10> alOIntow; // 1l0-elementowa tablica typu int
TStaticArray<float, 20> a20Floatow; // 20 liczb typu float
TStaticArray<
TStaticArray<double, 5>,
8> a8x5Double; // tablica 8x5 liczb typu double

Podobnie jak w przypadku parametréow bedacych typami mozesz sobie wyobrazi¢, ze
kompilator konkretyzuje szablon, definiujgc wartos¢ N jako statg. Klasa
TStaticArray<float, 10> odpowiada wiec mniej wiecej zapisowi w takiej postaci:

typedef float T;
const unsigned N = 10;

class TStaticArray

{
private:
T m _aTablical[N];

//
}i

Wynika z niego przede wszystkim to, iz:

Parametry pozatypowe szablonéw sg traktowane wewnatrz nich jako state.

544 Zaawansowane C++

Oznacza to przede wszystkim, ze muszg by¢ one ,wywotywane” z wartoscami, ktére sq
obliczalne podczas kompilacji. Wszystkie pokazane powyzej konkretyzacje sq wiec
poprawne, bo 10, 20, 5 i 8 sq rzecz jasna statymi dostownymi, a wiec znanymi w czasie
kompilacji. Nie bytoby natomiast dozwolone uzycie szablonu jako TStaticArray<typ,
zmienna>, gdzie zmienna niezadeklarowana zostata z przydomkiem const.

Przyktad szablonu funkcji

Gdy mamy juz zdefiniowany nowy szablon tablicy, mozemy sprébowac stworzy¢ dla
niego odpowiadajaca wersje funkcji szukaj (). Naturalnie, bedzie to réwniez szablon:

template <typename T, unsigned N>
int Szukaj (const TStaticArray<T, N>& aTablica, T Szukany)
{
// przeglad tablicy
for (unsigned i = 0; 1 < N; ++1)
if (aTablica[i] == Szukany)
return 1i;

// -1, gdy nie znaleziono
return -1;

}

Wida¢ tutaj, ze parametr pozatypowy moze by¢ z rdwnym powodzeniem uzyty zaréwno
w nagtéwku funkcji (typ const TStaticArray<T, N>&), jak i w jej wnetrzu (warunek
zakonczenia petli for).

Dwie wartosci, dwa rézne typy

Wyobrazmy sobie, ze mamy dwie tablice tego samego typu, ale o réznych rozmiarach:

TStaticArray<int, 20> a20Intow;
TStaticArray<int, 10> alOIntow;

Sprobujmy teraz przypisac te mniejszg do wiekszej, w ten oto sposdb:
a20Intow = alOIntow; // hmm. ..

Teoretycznie powinno by¢ to jak najbardziej mozliwe. Pierwszym 10 elementow tablicy
a20Intow mogtoby by¢ przeciez zastgpione zawartoscig zmiennej al0Intow. Nie ma
zatem przeciwwskazan.

Niestety, kompilator odrzuci taki kod, moéwigc, iz nie znalazt Zzadnego pasujacego
operatora przypisania ani niejawnej konwersji. I bedzie to szczera prawda! Musimy
bowiem pamieta¢, ze:

Szablony klas konkretyzowane innym zestawem parametrow sg zupetnie
odmiennymi typami.

Nic wiec dziwnego, ze TStaticArray<int, 10> i TStaticArray<int, 20> sg traktowane
jako odrebne klasy, niezwigzane ze sobg (obie te nazwy, wraz z zawartoscig nawiasow
katowych, sg bowiem nazwami typow, o czym przypominam po raz ktorys). W takim
wypadku domysinie generowany operator przypisania zawodzi. Warto wiec pamietac o
powyzszej zasadzie.

No ale skoro mamy juz taki problem, to przydatoby sie go rozwigza¢. Odpowiednim
wyjsciem jest wiasny operator przypisania zdefiniowany jako szablon sktadowej:

template <typename T, unsigned N> class TStaticArray
{

Szablony 545

//

public:
// operator przypisania Jjedne]j tablicy do drugiej
template <typename T2, unsigned N2>
TStaticArrayé&
operator=(const TStaticArray<T2, N2>& aTablica)
{

// kontrola przypisania zwrotnego
if (&aTablica != this)
{

// sprawdzenie rozmiardw
if (N2 > N)
throw "Za duza tablica'";

// przepisanie tablicy
for (unsigned i = 0; 1 < N2; ++i)
(*this) [1] = aTablicali];
}

return *this;

b

Moze i wyglada on nieco makabrycznie, ale w gruncie rzeczy dziata na identycznej
zasadzie jak kazdy rozsadny operator przypisania. Zauwazmy, ze parametryzacji podlega
w nim nie tylko rozmiar zrédtéwej tablicy (n2), ale tez typ jej elementéw (T2). To, czy
przypisanie faktycznie jest mozliwe, zalezy od tego, czy powiedzie sie kompilacja
instrukcji:

(*this) [1] = aTablicali];
A tak bedzie oczywiscie tylko wtedy, gdy istnieje niejawna konwersja z typu T2 do T.

Ograniczenia dla parametrow pozatypowych

Pozatypowe parametry szablondw w przeciwienstwie do parametrow funkcji nie mogg byc¢
~Wywotywane” z dowolnymi wartosciami. Typami tychze parametréw moga by¢ bowiem
tylko:

> typy liczbowe, czyli int i jego pochodne (signed lub unsigned)
typy wyliczeniowe (definiowane poprzed enum)
wskazniki do obiektéw i funkcji globalnych
wskazniki do sktadowych klas

YV V

Lista ta jest dos¢ krétka i moze sie wydawac nazbyt restrykcyjna. Tak jednak nie jest.
Gtéwnie ze wzgledu na sposdb dziatania szablonéw ich parametry pozatypowe sg
ograniczone tylko do takich rodzajow.

Przyjrzyjmy sie jeszcze kilku szczegélnym przypadkom tych ograniczen.

Wskazniki jako parametry szablonu

Nie ma zadnych przeciwskazan, aby deklarowac szablony z parametrami bedgcymi
typami wskaznikowymi. Wyglada to na przyktad tak:

template <int* P> class TClass
{

//
}i

546 Zaawansowane C++

Gorzej wyglada sprawa z uzyciem takiego szablonu. Otdéz nie mozemy przekaza¢ mu
wskaznika ani na obiekt chwilowy, ani na obiekt lokalny, ani nawet na obiekt o zasiegu
modutowym. Nie jest wiec poprawny np. taki kod:

int nZmienna;
TClass<&nZmienna> Obiekt; // ZLE! Wskaznik na obiekt lokalny

Wyjasnienie jest tu proste. Wszystkie takie obiekty majg po prostu zbyt maty zakres,
ktéry nie pokrywa sie z widocznoscig konkretyzacji szablonu. Aby tak bylo, obiekt, na
ktéry wskaznik podajemy, musiatby by¢ globalny (faczony zewnetrznie):

extern int g nZmienna = 42;
//
TClass<&g Zmienna> Cos; // OK

Z identycznych powoddw nie mozna do szablonéw przekazywacd faricuchéw znakow:

template <const char[] S> class TStringer (/% ... %/ };
TStringer<"Hmm..."> Napisowiec; // NIE!

tancuch "Hmm. . . " jest tu bowiem obiektem chwilowym, zatem szybko przestatby istniec.
Typ TStringer<"Hmm. .."> musiatby natomiast egzystowac i by¢ potencjalnie dostepnym
w catym programie. To oczywiscie wzajemnie sie wyklucza.

Inne restrykcje

Oprécz powyzszych obostrzen sg jeszcze dwa inne.

Po pierwsze, w charakterze parametréow szablonu nie mozna uzywac obiektow
wilasnych klas. Ponizsze szablony sgq wiec niepoprawne:

template <CFoo F> class TMetaFoo /7 ... %/ };
template <std::string S> class TStringTemplate {/* ... %/ };

Poza tym, w charakterze parametréw pozatypowych teoretrycznie niedozwolone sg
wartosci zmiennoprzecinkowe:

template <float F> class TCalc /% ... %/ };

Mowie ‘teoretycznie’, gdyz wiele kompilatoréw pozwala na ich uzycie. Nie ma bowiem ku
temu zadnych technicznych przeciwwskazan (w odréznieniu od pozostatych ograniczen
parametrow pozatypowych). Niemniej, w Standardzie C++ nadal zakorzenione jest to
przestarzate ustalenie. Zapewne jednak tylko kwestig czasu jest jego usuniecie.

Szablony parametrow

Ostatnim rodzajem parametréw sg tzw. szablony parametrow szablonéw

(ang. template templates’ parameters). Pod tg dziwnie brzmigcq nazwa kryje sie
mozliwos¢ przekazania jako parametru nie konkretnego typu, ale uprzednio
zdefiniowanego szablonu. Poniewaz zapewnie nie brzmi to zbyt jasno, najrozsadniej
bedzie dojs¢ do sedna sprawy przy pomocy odpowiedniego przyktadu.

Idac za potrzebg

A wiec... Swego czasu stworzyliSmy sobie szablon ogolnej klasy Tarray. Okazuje sie
jednak, ze niekiedy moze by¢ on niewystarczajacy. Chociaz dobrze nadaje sie do samej
czynnosci przechowywania wartosci, nie pomysleliSmy o zadnych mechanizmach
operowania na tychze wartosciach.

Szablony 547

Z drugiej strony, nie ma sensu zmiany dobrze dziatajgcego kodu w co$, co nie zawsze
bedzie nam przyadtne. Takie czynnosci jak dodawnie, odejmowanie czy mnozenie tablic
majgq bowiem sens tylko w przypadku wektoréw liczb. Lepiej wiec zdefiniowa¢ sobie nowy
szablon do takich celdow:

template <typename T> class TNumericArray

{
private:
// wewnetrzna tablica
TArray<T> m aTablica;

public:
//

// jakie$ operatory...
// (np. indeksowania)

TNumericArray operator+ (const TNumericArrayé& aTablica)

{
TNumericArray Wynik (*this);

for (unsigned i = 0; i < Wynik.Rozmiar(); ++1)
Wynik[i] += aTablicali];

return Wynik;

}

// (itp.)
i

W sumie nic specjalnego nie mozemy powiedzie¢ o tym szablonie klasy TNumericArray.
Jak sie pewnie domyslasz, to sie za chwile zmieni :)

Dodatkowy parametr: typ wewnetrznej tablicy

Moze sie okaza¢, ze w naszym programie zmuszeni jesteSmy do operowania zaréwno
wielkimi tablicami, jak i mniejszymi. W wypadku tych drugim wewnetrzny szablon TArray
stuzacy do ich przechowywania pewnie zda egzamin, ale gdy liczba elementéw rosnie,
mogg by¢ konieczne bardziej wyrafinowane techniki zarzadzania pamiecia.

Aby sprostac¢ temu wymaganiu, rozsadnie bytoby umozliwi¢ wybdr typu wewnetrznej
tablicy dla szablonu TNumericArray:

template <typename T, typename TAB = TArray<T> >
class TNumericArray

{

private:
TAB m_aTablica;

//
}i

Domyslnie bytby to nadal szablon Tarray, niemniej przy takim szablonie TNumericArray
moznaby w miare tatwo deklarowac zaréwno duze, jak i mate tablice:

TNumericArray<int> aMalaTablica (50);
TNumericArray<float, TOptimizedArray<float> > aDuzaTablica (1000) ;
TNumericArray<double, TSuperFastArray<double> > aGigaTablica (250000) ;

548 Zaawansowane C++

W tym przykfadzie zaktadamy oczywiscie, ze TOptimizedArray i TSuperFastArray S
jakimi$ uprzednio zdefiniowanymi szablonami tablic efektywniejszych od Tarray. W
uzasadnionych przypadkach duzej liczby elementéw ich uzycie jest wiec pewnie
pozadane, co tez czynimy.

Drobna niedogodnos¢

Powyzsze rozwigzanie ma jednak pewien drobny mankament skfadniowy. Nietrudno
mianowicie zauwazy¢, ze dwa razy piszemy w nim typ elementdéw tablic - float i double.
Pierwszy raz jest on podawany szablonowi TNumericArray, a drugi raz - szablonowi
wewnetrznej tablicy.

W sumie powoduje to zbytnig rozwlekto$¢ nazwy catego typu TNumericArray<...>, a na
dodatek ujawnia ostawiony problem nawiaséw ostrych. Wydaje sie przy tym, ze
informacje o typie podajemy o jeden raz za duzo; w korfcu zamiast deklaracji:

TNumericArray<float, TOptimizedArray<float> > aDuzaTablica (1000) ;
TNumericArray<double, TSuperFastArray<double> > aGigaTablica (250000) ;

rownie dobrze mogtoby sie sprawdzac co$ w tym rodzaju:

TNumericArray<float, TOptimizedArray> aDuzaTablica (1000) ;
TNumericArray<double, TSuperFastArray> aGigaTablica (250000) ;

Problem jednak w tym, ze parametry szablonu TNumericArray - TOptimizedArray i
TSuperFastArray hie sg zwyktymi typami danych (klasami), wiec nie pasujg do
deklaracji typename TAB. One same sg szablonami klas, zdefiniowanymi zapewne kodem
podobnym do tego:

template <typename T> class TOptimizedArray {/* ... %/ };
template <typename T> class TSuperFastArray /% ... %/ };

Mozna wiec powiedzie¢, ze wystepuje to swoista ,niezgodnos¢ typdw” miedzy pojeciami
‘typ’ i ‘szablon klasy’. Czy zatem nasz pomyst skrocenia sobie zapisu trzeba odrzucic?...

Deklarowanie szablonowych parametrow szablonow

Bynajmniej. Miedzy innymi na takie okazje catkiem niedawno jezyk C++ wyposazono w
mozliwo$¢ deklarowania szczegdlnego rodzaju parametréw szablonu. Te specjalne
parametry charakteryzujg sie tym, ze sg nazwami zastepczymi dla szablonow klas.
Jako takie wymagajg wiec podania nie konkretnego typu danych, lecz jego uogdlnienia -
szablonu klasy.

Dobra, nieszablonowg analogig dla tej niecodziennej konstrukcji jest sytuacja, gdy
funkcja przyjmuje jako parametr inng funkcje poprzez wskaznik. W mniej wiecej zblizony
koncepcyjnie sposéb dziatajg szablonowe parametry szablonéw.

Oto jak deklaruje sie i uzywa tych specjalnych parametréw:

template <typename T, template <typename> class TAB = TArray>
class TNumericArray
{
private:
TAB<T> m aTablica;

//

Szablony 549

Postugujemy sie tu dwa razy stowem kluczowym template. Pierwsze uzycie jest juz
powszechnie znane; drugie wystepuje w lisScie parametrow szablonu TNumericArray i 0
nie nam teraz chodzi. Przy jego pomocy deklarujemy bowiem szablon parametru.
Sktadnia:

template <typename> class TAB

oznacza tutaj, ze do parametru TAB pasujg wszystkie szablony klas (template <...>
class), ktédre majq doktadnie jeden parametr bedacy typem (typename!®®). W przypadku
niepodania zadnego szablonu, zostanie wykorzystany domysiny - Tarray.

Teraz, gdy nazwa TAB jest juz nie klasg, lecz jej szablonem, uzywamy jej tak jak
szablonu. Deklaracja pola wewnetrznej tablicy wyglada wiec nastepujaco:

TAB<T> m aTablica;

Jako parametr dla TAB podajemy T, czyli pierwszy parametr naszego szablonu
TNumericArray. W sumie jednak moznaby uzy¢ dowolnego typu (takze podanego
dostownie, np. int), bo TAB zachowuje sie tutaj tak samo, jak petnoprawny szablon
klasy.

Naturalnie, teraz poprawne stajq sie propozycje deklaracji zmiennych z poprzedniego
akapitu:

TNumericArray<float, TOptimizedArray> abDuzaTablica (1000);
TNumericArray<double, TSuperFastArray> aGigaTablica (250000) ;

Na ile przydatne sg szablony parametrow szablondw (zwane tez czasem
metaszablonami - ang. metatemplates) musisz sie wiasciwie przekonac¢ sam. Jest to
jedna z tych cech jezyka, dla ktérych trudno od razu znalez¢ jakie$ oszatamiajace
zastosowanie, ale jednoczesnie moze okazac sie przydatna w pewnych szczegdlnych
sytuacjach.

Problemy z szablonami

Szablony sg rzeczywiscie jednym z najwiekszych osiggnie¢ jezyka C++. Jednak, jak to
jest z wiekszoscig zaawansowanych technik, ich stosowanie moze za soba pociggac
pewne problemy. Nie, nie chodzi mi tu wcale o to, ze szablony sg trudne do nauczenia,
cho¢ pewnie masz takie nieodparte wrazenie ;) Chciatbym raczej porozmawiac o kilku
putapkach czyhajacych na programiste (szczegodlnie poczatkujacego), ktory zechce
uzywac szablonow. Dzieki temu by¢ moze tatwiej unikniesz mniej lub bardziej powaznych
problemoéw z tymi konstrukcjami jezykowymi.

Zobaczmy wiec, co moze stang¢ nam na drodze...

Utatwienia dla kompilatora

Sledzac opis czynnosci, jakie wykonuje kompilator w zwiazku z szablonami, mozna
zauwazy¢, ze zmuszony jest do iScie ekwilibrystycznych wygibaséw. To zrozumiate, jesli
przypomnimy sobie, ze kontrola typow jest w C++ jednym z filarow programowania, za$
szablony czesciowo stuzg wiasnie do jej obejscia.

130 Nie podajemy nazwy parametru szablonu TAB, bo nie ma takiej potrzeby. Nazwa ta nie jest nam po prostu
do niczego potrzebna.

550 Zaawansowane C++

Na kompilatorze spoczywa mnéstwo trudnych zdan, jesli chodzi o kod wykorzystujacy
szablony. Dlatego tez niekiedy potrzebuje on wsparcia ze strony programisty, ktore
utatwitoby mu intepretacje kodu Zrédiowego. O takich wiasnie , utatwieniach dla
kompilatora” traktuje niniejszy paragraf.

Nawiasy ostre

Niejednego nowicjusza w uzywaniu szablondw zjadt smok o nazwie , problem nawiasoéw
ostrych”. Nietrudno przeciez wyprodukowac taki kod, wierzac w jego poprawnosc:

typedef TArray<TArray<double>> MATRIX; // oj¢!

Ta wiara zostaje jednak dosc szybko podkopana. Coraz czesciej wprawdzie zdarza sie, ze
kompilator poprawnie rozpoznaje znaki >> jako zamykajace nawiasy ostre. Niemniej,
nadal moze to jeszcze powodowac bfad lub co najmniej ostrzezenie.

Poprawna wersja kodu, dziatajaca w kazdej sytuacji, to oczywiscie:
typedef TArray<TArray<double> > MATRIX; // OK

Dodatkowa spacja wyglada tu rzecz jasna bardzo nietadnie, ale pdki co jest konieczna.
Wcale niewykluczone jednak, ze za jaki$ czas takze pierwsza wersja instrukcji t ypedef
bedzie musiata by¢ uznana za poprawna.

Nieoczywisty przyktad

Mozna stusznie sadzi¢, ze w powyzszym przyktadzie rozpoznanie sekwencji >> jako pary
nawiaséw zamykajacych (a nie operatora przesuniecia w prawo) nie jest zadaniem ponad
sity kompilatora. Pamietajmy aczkolwiek, ze nie zawsze jest to takie oczywiste.

Spojrzmy chocby na takg deklaracje:
TStaticArray<int, 16>>2> alnty; // chyba prosimy sie o klopoty...

Dla czytajacego (i piszacego) kod cztowieka jest catkiem wyrazne widoczne, ze drugim
parametrem szablonu TStaticArray jest tu 16>>2 (czyli 64). Kompilator uczulony na
problem nawiasow ostrych zinterpretuje aczkolwiek ponizszg linijke jako:

TStaticArray<int, 16> >2> alnty; // ojej!

W sumie wiec nie bardzo wiadomo, co jest lepsze. Witasciwie jednak wyrazenia podobne
do powyzszego sg raczej rzadkie i prawde mdwigc nie powinny by¢ w ogdle stosowane.
Gdyby zachodzita taka konieczno$¢, najlepiej postuzy¢ sie pomocniczymi nawiasami
okragtymi:

TStaticArray<int, (16>>2)> alnty; // OK

Whniosek z tego jest jeden: kiedy chodzi o nawiasy ostre i szablony, lepiej by¢
wyrozumiatym dla kompilatora i w odpowiednich miejscach pomdc mu w zrozumieniu, o
co nam tak naprawde chodzi.

Ciekawostka: dlaczego tak sie dzieje

By¢ moze zastanawiasz sie, dlaczego kompilator ma w ogdle problemy z poprawnym
rozpoznawianiem uzycia nawiasoéw ostrych. Przeciez nic podobnego nie dotyczy ani
nawiaséw okragtych (wyrazenia, wywotania funkcji, itd.), ani nawiaséw kwadratowych
(indeksowanie tablicy), ani nawet nawiaséw klamrowych (bloki kodu). Skad wiec
problemy wynikajg problemy objawiajgce sie w szablonach?...

Szablony 551

Przyczyna jest po czesci sposob, w jaki kompilatory C++ dokonujg analizy kodu.
Doktadne omowienie tego procesu jest skomplikowane i niepotrzebne, wiec je sobie
darujemy. Interesujacg nas czynnosciag jest aczkolwiek jeden z pierwszych etapdw
przetwarzania - tak zwana tokenizacja (ang. tokenization).

Tokenizacja polega na tym, iz kompilator, analizujac kod znak po znaku, wyrdznia w nim
elementy leksykalne jezyka - tokeny. Do tokendéw nalezg gtdwnie identyfikatory (nazwy
zmiennych, funkcji, typéw, itp.) oraz operatory. Kompilator wpierw dokonuje ich analizy
(parsowania) i tworzy liste takich tokenow.

Sek polega na tym, ze C++ jest jezykiem kontekstowym (ang. context-sensitive
language). Oznacza to, ze identyczne sekwencje znakdw mogg w nim znaczy¢ zupetnie
co innego w zaleznosci od kontekstu. Przykfadowo, fraza a*b moze by¢ zaréwno
mnozeniem zmiennej a przez zmienng b, jak tez deklaracjg wskaznika na typ a o nazwie
b. Wszystko zalezy od znaczenia nazw a i b.

W przypadku operatorow mamy natomiast jeszcze jedng zasade, zwang zasada
maksymalnego dopasowania (ang. maximum match rule). Méwi ona, ze nalezy
zawsze prébowac ujac jak najwiecej znakéow w jeden token.

Te dwie cechy C++ (kontekstowos$¢ i maksymalne dopasowanie) dajg w efekcie
zaprezentowane wczesniej problemy z nawiasami ostrymi. Problem jest bowiem w tym, iz
zaleznie od kontekstu i sasiedztwa znaki < i > mogg by¢ interpretowane jako:

> operatory wiekszosci i mniejszosci

> operatory przesuniecia bitowego

» nawiasy ostre

Nie ma to wiekszego znaczenia, jesli nie wystepujg one w bliskim sasiedztwie. W
przeciwnym razie zaczynajg sie powazne kiopoty - jak choéby tutaj:

TSomething<32>>4 > FOO> CosTam; // no iz?...

Najlogiczniej wiec bytoby unika¢ takich ryzykownych konstrukcji lub opatrywac je
dodatkowymi znakami (spacjami, nawiasami okragtymi), ktore umozliwig kompilatorowi
jednoznaczng interpretacje.

Nazwy zalezne

Problem nawiaséw ostrych jest w zasadzie kwestig wylacznie sktadniowg, spowodowang
faktem wyboru takiego a nie innego rodzaju nawiaséw do wspotpracy z szablonami.
Jednak jesli nawet sprawy te zostatyby kiedys$ rozwigzane (co jest mato prawdopodobne,
zwazywszy, ze pigtego rodzaju nawiaséw jeszcze nie wymyslono :D), to i tak kod
szablonoéw w pewnych sytuacjach bedzie kiopotliwy dla kompilatora.

O co doktadnie chodzi?... Otdz trzeba wiedzie¢, ze szablony sg tak naprawde kompilowane
dwukrotnie (albo raczej w dwdch etapach):
> najpierw sg one analizowane pod katem ewentualnych btedéw sktadniowych i
jezykowych w swej ,czystej” (nieskonkretyzowanej) postaci. Na tym etapie
kompilator nie ma informacji np. o typach danych, do ktérych odnosza
symboliczne oznaczenia parametréw szablondéw (T, TYP, itd.)
> poOzniej produkty konkretyzacji sg sprawdzane pod katem swej poprawnosci w
catkiem normalny juz sposéb, zblizony do analizy zwyktego kodu C++

Nie bytoby w tym nic niepokojacego gdyby nie fakt, ze w pewnych sytuacjach kompilator
moze nie by¢ wystarczajgco kompetentny, by wykonac¢ faze pierwszg. Moze sie bowiem
okazaé, ze do jej przeprowadzania wymagane sg informacje, ktére mozna uzyskaé
dopiero po konketyzacji, czyli w fazie drugiej.

552 Zaawansowane C++

Pewnie w tej chwili nie bardzo mozesz sobie wyobrazi¢, o jakie informacje moze tutaj
chodzi¢. Powiem wiec, ze sprawa dotyczy gtdownie wilasciwej interpretacji tzw. nazw
zaleznych.

Nazwa zalezna (ang. dependent name) to kazda nazwa uzyta wewnatrz szablonu,
powiazana w jakis sposdb z jego parametrami.

Fakt, ze nazwy takie sq powigzane z parametrami szablonu, sprawia, ze ich znaczenie
moze by¢ rézne w zaleznosci od parametréw tego szablonu. Te wszystkie engimatyczne
stwierdzenia stang sie bardziej jasne, gdy przyjrzymy sie konkretnym przyktadom
problemoéw i sposobom na ich rozwigzanie.

Stowo kluczowe typename

Czas wiec na kawatek szablonu :) Popatrzmy na takg problematyczng funkcje, ktdra ma
za zadanie wybrac¢ najwiekszy sposrod elementéw tablicy:

template <class TAB> TAB::ELEMENT Najwiekszy(const TAB& aTablica)
{

// zmienna na przechowanie wyniku
TAB: :ELEMENT Wynik = aTablical[0];

// petla szukajaca

for (unsigned i = 1; i < aTablica.Rozmiar(); ++i)
if (aTablica[i] > Wynik)
Wynik = aTablicalil;

// zwrdbcenie wyniku
return Wynik;

}

Mozna sie zdziwi¢, czemu parametrem szablonu jest tu typ tablicy (czyli np.
TArray<int>), a nie typ jej elementéw (int). Dzieki temu funkcja jest jednak bardziej
uniwersalna i niekoniecznie musiy wspétpracowac wytacznie z tablicami Tarray.
Przeciwnie, moze dziata¢ dla kazdej klasy tablic (a wiec np. dla TOptimizedArray i
TSuperFastArray z paragrafiu o metaszablonach), ktéra ma:

> operator indeksowania

» metode Rozmiar ()

> alias ELEMENT na typ elementow tablicy

Niestety, ten ostatni punkt jest wtagnie problemem. Sciélej méwiac, to fraza

TAB: :ELEMENT stanowi klopot - ELEMENT jest tu bowiem nazwa zalezng. My jestesmy tu
Swiecie przekonani, ze reprezentuje ona typ (int dla TArray<int> itd.), jednak
kompilator nie moze bra¢ takich informacji znikad. On faktycznie musi to wiedzieé, aby
maogt uzna¢ m.in. deklaracje:

TAB: :ELEMENT Wynik;

za poprawng. A skad ma sie tego dowiedzieé?... Nie ma ku temu zadnej mozliwosci na
etapie analizy samego szablonu. Dopiero konkretyzacja, gdy TAB jest zastepowane
prawdziwym typem danych, daje mu taka mozliwos¢. Tyle ze aby w ogdle mogto dojs¢ do
konkretyzacji, szablon musi najpierw przejs¢ test poprawnosci. Mowigc wprost: aby
skontrolowac¢ bezbtednos$¢ szablonu kompilator musi najpierw... skontrolowac bezbtednos¢
szablonu :D Dochodzimy zatem do btednego kota.

A wyjscie z niego jest jedno. Musimy w jaki$ sposéb da¢ do zrozumienia kompilatorowi,
Ze TAB: :ELEMENT jest typem, a nie statycznym polem - bo taka jest wtasnie druga

Szablony 553

mozliwa interpretacja tej konstrukcji. Czynimy to poprzedzajac problematyczna fraze
stowkiem typename:

typename TAB::ELEMENT Wynik;

Deklaracja nieco nam sie rozwlekta, ale w przy korzystaniu z szablondéw jest to juz chyba
regufq :) W kazdym razie teraz nie bedzie juz problemdéw ze zmienng wynik; do petnej
satysfakcji nalezy jeszcze podobny zabieg zastosowac wobec typu zwracanego przez
funkcje:

template <class TAB>
typename TAB::ELEMENT Najwiekszy(const TAB& aTablica)

Podobnie nalezy postgpi¢ z kazdym wystgpieniem TAB: :ELEMENT W tym szablonie.
Powiem nawet wiecej, formutujac ogding zasade:

Nalezy poprzedzaé stowem typename kazdg nazwe zaleznaq, ktéra ma byc¢
interpretowana jako typ danych.

Stosujac sie do niej, nie bedziemy wprawia¢ w kompilatora w zaktopotanie i oszczedzimy
sobie dziwnie wygladajacych komunikatéw o btedach.

Ciekawostka: konstrukcje - :-template, .template i ->template

Podobny, cho¢ znacznie raczej ujawniajacy sie problem dotyczy szablonéw
zagniezdzonych. Oto nieszczegodlnie sensowny przykfad takiej sytuacji:

template <typename T> class TFoo
{
public:
// zagniezdzony szablon klasy
template <typename U> class TBar
{
public:
// zagniezdzony szablon statycznej metody
template <typename V> static void Baz();

}i
Pytanie brzmi: jak wywota¢ metode Baz () ? No céz, wygladac to moze tak:

template <typename T> void Funkcja ()

{
// wywolanie jako statycznej metody bez obiektu
TFoo<T>::template TBar<T>::Baz();

// utworzenie lokalnego obiektu i wywolanie metody
typename TFoo<T>::template TBar<T> Bar;
Bar.template Baz<T>();

// utworzenie dynamicznego obiektu i wywolanie metody
typename TFoo<T>::template TBar<T>* pBar;

pBar = new typename TFoo<T>::template TBar<T>;
pBar->template Baz<T>();

delete pBar;

554 Zaawansowane C++

Wiem, ze wyglada to jak skryzowanie trolla z goblinem, ale méwimy teraz o naprawde
specyficznym szczegoliku, ktdérego uzycie jest bardzo rzadkie. Powyzszy kod wyglatby
pewnie przejrzysciej, gdyby usuna¢ z niego wyrazy typename i template:

// UWAGA: ten kod NIE JEST poprawny!

// wywolanie jako statycznej metody bez obiektu
TFoo<T>: :TBar<T>::Baz () ;

// utworzenie lokalnego obiektu i wywolanie metody
TFoo<T>::TBar<T> Bar;
Bar.Baz<T> () ;

// utworzenie dynamicznego obiektu i wywolanie metody
TFoo<T>: :TBar<T>* pBar;

pBar = new TFoo<T>::TBar<T>;

pBar->Baz<T> () ;

delete pBar;

Tym samym jednak pozbawiamy kompilator informacji potrzebnych do skompilowania
szablonu. Role typename znamy, wiec zajmijmy sie dodatkowymi uzyciami template.

Otdz tutaj template (a wiasciwie ::template, .template i —>template) stuzy do
poinformowania, ze nastepujaca dalej nazwa zalezna jest szablonem. Patrzac na
definicje TFoo wiemy to oczywiscie, jednak kompilator nie dowie sie tego az do chwili
konkretyzacji. Dla niego nazwy TBar i Baz mogg byc¢ réwnie dobrze sktadowymi
statycznymi, za$ nastepujace dalej znaki < i > - operatorami relacji. Musimy wiec
wyprowadzi¢ go btedu.

Stosuj kontrukcje : :template, .template i ->template zamiast samych operatorow
::, . i -—> w tych miejscach, gdzie podana dalej nazwa zalezna jest szablonem.

Stosowalnos¢ tych konstrukcji jest wiec ograniczona i zaweza sie do przypadkéw
zagniezdzonych szablondw. W codziennej i nawet troche bardziej niecodziennej praktyce
programistycznej mozna sie bez nich obejs$¢, aczkolwiek warto o nich wiedzie¢, by moc je
zastosowac w tych nielicznych sytuacjach ujawniajacej sie niewiedzy kompilatora.

Organizacja kodu szablonow

Wykorzystanie szablondw moze nastreczac¢ problemow natury logistycznej. Nie chodzi o
samg czynnos¢ ich implementacji czy pézniejszego wykorzystania, ale o, zdawatoby sie:
prozaiczng, sprawe nastepujaca: jak rozmiesci¢ kod szablonéw w plikach z kodem
programu?...

Sprawa nie jest wcale taka prosta, bo kod korzystajacy z szablondw rdézni sie znacznie
pod tym wzgledem od zwyktego, ,,nieszablonowego” kodu. W sumie mozna powiedzie¢,
ze szablony sg czyms$ miedzy normalnymi instrukcjami jezyka, a dyrektywami
preprocesora.

Ten fakt wptywa istotnie na sposdb ich organizacji w programie. Obecnie znanych jest
kilka mozliwych drog prowadzacych do celu; nazywamy je modelami. W tym paragrafie
popatrzymy sobie zatem na wszystkie trzy modele porzadkowania kodu szablondw.

Model wigczania

Najwczesniejszym i do dzi$ najpopularniejszym sposobem zarzadzania szablonami jest
model wiaczania (ang. inclusion model). Jest on jednoczesnie catkiem prosty w
stosowaniu i czesto wystarczajqcy. Przyjrzyjmy mu sie.

Szablony 555

Zwykty kod

Wpierw jednak przypomnimy sobie, jak nalezy radzi¢ sobie z kodem C++ bez szablondw.
Otéz, jak wiemy, wyrdzniamy w nim pliki nagtéwkowe oraz moduty kodu. I tak:
> pliki nagtéwkowe sgq opatrzone rozszerzeniami .h, .hh, .hpp, lub .hxx i zawierajq
deklaracje wspotuzytkowanych czesci kodu. Nalezg do nich:
v' prototypy funkcji
v' deklaracje zapowiadajace zmiennych globalnych (opatrzone stowem
extern)
v definicje wtasnych typéw danych i aliasow, wprowadzane stowami typedef,
enum, struct, union i class
v'implementacje funkcji inline
> moduly kodu sg z kolei wyrozniane rozszerzeniami .c, .cc, .cpp lub .cxx i
przechowujg definicje (tudziez implementacje) zadeklarowanych w nagtéwkach
elementoéw programu. Sa to wiec:
v' instrukcje funkcji globalnych oraz metod klas
v deklaracje zmiennych globalnych (bez extern) i statycznych pol klas

Ten system, spiety dyrektywami #include, dziata wy$mienicie, oddzielajac to, co jest
wazne do stosowania kodu od technicznych szczegoétdéw jego implementacji. Co sie jednak
dzieje, gdy na scene wkraczajg szablony?...

Préobujemy zastosowacé szablony

Sprébujmy wiec podobng metode zastosowaé wobec szablonu funkcji max(). Najpierw
umiescmy jej prototyp (deklaracje) w pliku nagtdwkowym:

// max.hpp

// prototyp szablonu max ()
template <typename T> T max (T, T);

Nastepnie tresc funkcji podamy w module kodu max.cpp:
// max.cpp
#include "max.hpp"
// implementacja szablonu max ()

template <typename T> T max(T a, T b)
{

return (a > b ? a : b);

}

Wreszcie, wykorzystamy nasza funkcje w programie, wypisujgc na przyktad na ekranie
wiekszg z podanych liczb:

// TemplatesTryout - préba zastosowania szablonu funkcji
// main.cpp

#include <iostream>

#include <conio.h>

#include "max.hpp"

int main ()

{

std::cout << "Podaj dwie liczby:" << std::endl;

double fLiczbal, fLiczba2;

556 Zaawansowane C++

std::cin >> flLiczbal;
std::cin >> flLiczba2;

std::cout << "Wieksza jest liczba " << max(fLiczbal, fLiczba2);
getch();
}

Pieczotowicie wykonujac te proste w gruncie rzeczy czynnosci, mamy prawo czuc sie
zaskoczeni efektami. Proba wygenerowania gotowego programu skonczy sie bowiem
komunikatem linkera zblizonym do ponizszego:

error LNK2019: unresolved external symbol "double __cdecl max(double,double)" (?max@@YANNN@2Z)
referenced in function _main

Wynika z niego klarownie, ze funkcja max () w wersji skonkretyzowanej dla double... nie
istnieje! Jak to wyjasnié?

Wyttumaczenie jest w miare proste. Zwrd¢ uwage, ze dotgczenie pliku max.hpp wtacza
do main.cpp jedynie deklaracje szablonu, a nie jego definicje. Nie majac definicji
kompilator nie moze natomiast skonkretyzowac szablonu dla parametru double. Wobec
tego czyni on zatozenie, ze funkcja max<double> () zostata wygenerowana gdzie indziej.
Nie ma w tym nic zdroznego - ten sam mechanizm dziata przeciez dla zwyktych funkcji,
ktére sq deklarowane (prototypowane) w pliku nagtéwkowym, a implementowane w
innym module. Niestety, w tym przypadku jest to zatozenie btedne: konkretyzacja nie
zostanie bowiem przeprowadzona z powodu wspomnianego braku informacji (definicji
szablonu).

Ostatecznie wiec powstaje zewnetrzne dowigzanie do specjalizacji szablonu max () dla
parametru double - specjalizacji, ktéra nie istnieje! Ten fakt nie umknie juz uwadze
linkera, czego skutkiem jest zaprezentowany wyzej btad i porazka konsolidacji.

Rozwigzanie - istota modelu wtgczania

Sytuacja patowa? Bynajmniej. Istnieje oczywiscie rozwigzanie tego problemu: trzeba po
prostu zapewni¢ widocznos$¢ definicji szablonu max () (czyli zawartosci max.cpp) w
miejscu jego uzycia (czyli main.cpp). Mozna to uczyni¢ poprzez:
> dofaczenie zawartosci max.cpp do max.hpp (dodanie #include "max.cpp" nNa
koncu max.hpp)
> dotgczenie max.cpp w module main.cpp zamiast dotgqczania max.hpp
> przeniesienie zawartosci modutu max.cpp (czyli definicje szablonu max ()) do pliku
nagtéwkowego max.hpp

Wszystkie te sposoby sg wariantami modelu wiaczania, o ktorym méwimy w tym
paragrafie. Zastosowanie ktoregokolwiek spowoduje pozadany efekt, czyli poprawng
kompilacje kodu. W praktyce jednak najczesciej stosuje sie sposdb trzeci, czyli
umieszczanie calego kodu szablonow w pliku nagtiowkowym.

Mimo takiego postepowania funkcje szablonowe nie beda rozwijane w miejscu
| wywotania. Aby szablon funkcji byt funkcja inline, nalezy jawnie poprzedzi¢ ja
przydomkiem inline po klauzuli template <...>.

Model wigczania dziata catkiem dobrze zaréwno dla matych, jak i nieco wiekszych
$rednich projektow. Jest z nim jednak zwigzany pewien mankament: w oczywisty sposdb
powoduje on rozrost plikdw nagtdwkowych. Sprawia to, ze koszt ich dotgczania staje sie
coraz wiekszy, co w konsekwencji wydtuza czas kompilacji projektéw. Staje sie to
aczkolwiek zauwazalne i znaczace dopiero w naprawde duzych programach (rzedu
kilkunastu-kilkudziesieciu tysiecy linii).

Szablony 557

W sumie mozna wiec powiedzie¢, ze model wiaczania jest zadowolajgcym sposobem
zarzadzania kodem szablondw. Nie jest to jednak wystarczajacy argument za tym, aby
nie przyjrzec sie takze innym modelom :)

Konkretyzacja jawna

W btednym przyktadzie programu z szablonem max () problem polegat na tym, ze
kompilator nie miat okazji do wtasciwego skonkretyzowania szablonu. Model wtgczania
umozliwiat mu to w sposéb automatyczny.

Istnieje aczkolwiek inna metoda na rozwigzanie tego problemu. Mozemy mianowicie
zastosowac¢ model konkretyzacji jawnej (ang. explicit instantiation) i przeja¢ kontrole
nad procesem rozwijania szablonow. Zobaczmy zatem, jak mozna to zrobic.

Instrukcje jawnej konkretyzacji

Wyjasnitem, ze powodem komunikatu linkera i nieudanej konsolidacji przyktadu z
poprzedniego akapitu jest nieobecnos¢ funkcji max<double> () w zadnym ze
skompilowanych modutéw. Mozemy to zmieni¢, sami wprowadzajac rzeczong funkcje -
czyli jawnie ja skonkretyzowac. Czynimy w nastepujacy sposéb:

// max_inst.cpp
#include "max.cpp"

// Jawna konkretyzacjia szablonu max () dla parametru double
template double max<double>(double, double);

Mamy tutaj dyrektywe konkretyzacji jawnej (ang. explicit instantiation directive). Jak
wida¢, sktada sie ona z samego stowa template (bez nawiaséw ostrych) oraz petnej
deklaracji specjalizacji szablonu (czyli max<double> ()). Tutaj akurat mamy funkcje, ale
podobnie konkretyzacja jawna wyglada klas. W kazdym przypadku konieczna jest
definicja konkretyzowanego szablonu - stad dotgqczenie do naszego nowego modutu
pliku max.cpp.

Nalezy zwrdci¢ uwage, aby kazda specjalizacja szablonu byta wprowadzana jawnie tylko
jeden raz. W przeciwnym razie zwrdéci na to uwage linker.

Wady i zalety konkretyzacji jawnej

Zastosowanie takiego wybiegu spowoduje teraz poprawng kompilacje i linkowanie
programu. Mozemy sie wiec przekona¢, ze konkretyzacja jawna faktycznie dziata.

Nie ma jednak rézy bez kolcow. Ten sposob zarzadzania specjalizacjami szablonu ma
oczywistg wade - jedng, ale za to bardzo dotkliwg. Wymaga on od programisty sledzenia
kodu, ktéry wykorzystuje szablony, celem rozpoznawania wymaganych specjalizacji oraz
ich jawnego deklarowania. Zwykle robi sie to w osobnym module (u nas max_inst.cpp),
aby nie zasmieca¢ wtasciwego kodu programu.

Nie da sie ukry¢, ze niweluje to jedng z bezdyskusyjnych zalet szablonow, czyli
mozliwos¢ zrzucenia na barki kompilatora kwestii wygenerowania wtasciwego ich kodu.
Jest to szczegodlnie niezadowalajgce w przypadku szablonow funkcji, gdzie przy kazdym
ich wywotaniu musimy zastanowi¢ sie, jaka wersja szablonu zostanie w tym konkretnym
wypadku uzyta. Faktycznie wiec trudno nawet czerpac korzysci z automatycznej dedukgji
parametrow szablonu na podstawie parametréw funkcji - a to jest przeciez jedno z
gtéwnych dobrodziejstw szablondw.

Konkretyzacja jawna ma aczkolwiek takze kilka zalet, do ktorych naleza:
> mozliwos¢ sprawowania kontroli nad procesem rozwijania szablonéw
> zapobieganie nadmiernego rozdeciu plikow nagtéwkowych, a wiec potencjalne
skrécenie czasu kompilacji

558 Zaawansowane C++

> umozliwie doktadnego okreslenia miejsca (modutu kodu), w ktérym egzemplarz
szablonu (specjalizacja) zostanie utworzony

W wiekszosci przypadkéw te argumenty nie sg jednak wystarczajgce, aby mogty
przewazyc¢ na rzecz wykorzystania modelu konkretyzacji jawnej w praktyce. Podobnie
bowiem jak w przypadku modelu wiaczania, rozrost programu powoduje takze
wydtuzenie czasu przeznaczonego na konkretyzacje. Réznica tkwi jednakze w tym, ze w
tym pierwszym modelu catg pracg zajmuje sie kompilator, ktéry i tak nie ma nic
ciekawszego do roboty, natomiast konkretyzacja jawna zrzuca ten obowigzek na barki
wiecznie zapracowanedgo programisty.

W sumie wiec ten model organizacji szablonow trudno uznac¢ za praktyczny i wygodny.
By¢ moze sprawdzitby sie niezle w matych programach, ale tam mozna sobie przeciez
tym bardziej pozwoli¢ na znacznie wygodniejszy model wiaczania.

Model separacji

Lekarstwem na bolaczki modelu wigczania ma by¢ mechanizm eksportowania
szablonow. Technika ta, nazywana réwniez modelem separacji, jest czescig samego
jezyka C++ i teoretycznie jest to wiasnie ten sposdb zarzadzania kodem szablondw,
ktéry ma by¢ preferowany. Przynajmniej tako rzecze Standard C++.

Tym niemniej juz od razu powiadomie, ze w miare poprawna obstuga tego modelu jest
dostepna dopiero w Visual Studio .NET 2003.

Wypadatoby zatem poznac blizej to natywne rozwigzanie samego jezyka.

Szablony eksportowane

Idea tego modelu jest generalnie bardzo prosta:

» zachowany zostaje naturalny porzadek oddzielania deklaracji/definicji od
implementacji. W pliku nagtdéwkowym umieszczamy wiec wytacznie deklaracje
(prototypy) szablonéw funkcji oraz definicje szablonow klas. Postepujemy zatem
tak, jak prébowaliSmy czyni¢ na samym poczatku - dopdki linker nie sprowadzit
nas na ziemie

> zmiana polega jedynie na tym, ze deklaracje szablonu w pliku nagtowkowym
opatrujemy stowem kluczowym export

Stosujac te dwie wskazéwki do naszego btednego przyktadu TemplatesTryout,
nalezatoby jedynie zmodyfikowac plik max.hpp. Zmiana ta jest zresztg niemal
kosmetyczna:

// max.hpp

// prototyp szablonu max () Jjako szablon eksportowany
export template <typename T> T max (T, T);

Jak sie wydaje, dodanie stowa export przed deklaracje szablonu zatatwia sprawe.

W rzeczywistosci stowo to powinno sie znalez¢ przed kazdym uzyciem klauzuli template
<...>. export ma jednak te przyjemna wtasciwos¢, ze po jednokrotnym jego
zastosowaniu w obrebie danego pliku z kodem wszystkie dalsze szablony otrzymujg
ten przydomek niejawnie. A dzieki temu, ze w pliku max.cpp znajduje sie odpowiednia
dyrektywa #include:

// max.cpp

#include "max.hpp"

Szablony 559

// (dalej implementacja szablonu max())

rowniez kod szablonu funkcji max () dostaje modyfikator export w prezencie od pliku
nagtéwkowego max.hpp. Jesli wiec zdecydujemy sie pisa¢ kod szablondéw w identyczny
sposdb, jak zwykty kod C++, to nasza troska o wiasciwg kompilacje szablonéw powinna
ograniczac¢ sie do dodawania stowa kluczowego export przed deklaracjami template
<...> w plikach nagtdwkowych.

Przynajmniej teoretycznie tak wtasnie powinno by¢...

Nie ma rézy bez kolcéw

Model separacji moze ci sie teraz wydawac rodzajem biatej magii, likwidujacej wszystkie
mankamenty organizacji kodu szablondw. Trzeba sobie jednak zdawac sprawe, ze nie
jest on pozbawiony wad. Czas wiec zdja¢ z twarzy ten szczesliwy usmieszek i przyjrzec
sie rzeczywistosci.

A rzeczywisto$¢ skrzeczy. Przede wszystkim nalezy wiedzie¢, ze mimo kilkuletniej juz
obecnosci w Standardzie C++ i w Swiadomosci sporej czesci programistéw (przynajmniej
tych co bardziej zainteresowanych rozwojem jezyka), szablony eksportowane sg w petni
obstugiwane przez nieliczne kompilatory. Dopiero ich najnowsze wersje (jak na przykiad
Visual Studio .NET 2003) radza sobie ze stowem kluczowym export.

Ze wzgledu na tak nikte doswiadczenia praktyczne trudno tez przewidzie¢ potencjalne
problemy, jakie mogg (cho¢ oczywiscie nie muszg) przydarzy¢ sie podczas korzystania z
modelu separacji. Te rzadkie kompilatory radzace sobie z tym modelem mogq bowiem
dziata¢ swietnie przy matych czy nawet $rednich projektach, ale nie jest wcale
powiedziane, czy przy wiekszych programach nie ujawnig sie w nich jakie$ ktopoty.
Wiadomo wszakze, ze najlepszym probierzem jakosci wszelkich produktéw - takze
mozliwosci kompilatoréw - jest ich intensywne wykorzystywanie przez rzesze
uzytkownikow. W tym zas przypadku nie jest to jeszcze powszechng praktyka
(przynajmniej nie tak bardzo, jak inne elementy C++), cho¢ nalezy rzecz jasna
oczekiwacd, ze sytuacji bedzie sie z czasem poprawiac.

Druga sprawa zwigzana jest z samym dziataniem stowa kluczowego export. W
przyblizeniu mozna je scharakteryzowac jako ukrycie funkcjonalnosci nieeleganckiego
modelu wigczenia - oczywiscie wraz z pewnymi usprawnieniami. Oznacza to wiec, ze nie
dokonujg sie tu zadne cuda: pozorne zerwanie zwigzku miedzy definicjg a konkretyzacjq
szablonu musi i tak by¢ odtworzone przez kompilator. To sprawia, ze jakoby niezalezne
od siebie moduty kodu stajg sie zwigzane wilasnie ze wzgledu na obecnos¢ w nich
implementacji szablonéw. W ostatecznosci koszt czasowy kompilacji programu wcale nie
musi by¢ wiele mniejszy od tego, jaki jest doswiadczany w modelu wigczania.

Wszystko to nie znaczy jednak, ze nie nalezy spogladac¢ na model separacji przychylnym
okiem. Czas dziata bowiem na jego korzysé. Gdy obstuga szablonéw eksportowanych
stanie sie powszechna, postepowac bedzie takze jej usprawnienie pod wzgledem
niezawodnosci i efektywnosci. Wcale niewykluczone, ze na tym polu zostawi za jakis$ czas
daleko w tyle model wigczania.

A juz teraz model separacji oferuje nam zalete niespotykang w innych rozwigzaniach
problemu szablonow: elegancje, podobng do tej znanej ze zwyktego, nieszablonowego
kodu. Dalej bedzie zapewne juz tylko lepiej.

Wspdtpraca modelu wtgczania i separacji

Ucieszy¢ moze takze fakt, ze stosunkowo tatwo zorganizowac kod szablondéw w taki
sposdb, aby ,przetaczanie” miedzy modelem witaczania i separacji nie zajmowato wiecej
niz kilka sekund (nie liczac rekompilacji). Dosy¢ dobrze do tego celu nadajg sie
dyrektywy preprocesora.

560 Zaawansowane C++

Pomyst jest prosty. Nalezy tak zmodyfikowac plik nagtéwkowy z deklaracjg szablonu (u
nas max.hpp), by w razie potrzeby ,zawierat” on réwniez jego definicje - czyli wigczat jg
z modutu kodu (max.cpp). Oto propozycja takiej modyfikacji:

// max.hpp

// zabezpieczenie przed wielokrotnym dolaczaniem - wazne!
#pragma once

// w zaleznoé$ci od tego, czy zdefiniowano makro USE_EXPORT,
// wprowadzamy do programu sitowo kluczowe export
#ifdef USE EXPORT
#define EXPORT export
ffelse
#define EXPORT
fendif

// deklaracja szablonu
EXPORT template <typename T> T max(T, T);

// jezeli nie uzywamy modelu separacji, to potrzebujemy takze
// definicji szablonu. Wtaczamy ja wiec
#ifndef USE EXPORT
#include "max.cpp"
fendif

Decyzja co do uzywanego modelu ograniczac sie tu bedzie do zdefiniowania lub
niezdefiniowania makra USE_EXPORT przed dotaczeniem pliku max.hpp:

// uzywanie modelu separacji; bez #define bedzie to model wiaczania
#define USE_ EXPORT
#include "max.hpp"

Trzeba jeszcze pamietac, aby w tym pliku nagtdéwkowym przynajmniej pierwszg
deklaracje szablonu (a najlepiej wszystkie) opatrzy¢ nazwg makra EXPORT. W zaleznosci
od wybranego modelu bedzie ono bowiem rozwiniete do stowa export lub do pustego
ciqgu, co w wyniku da nam zastosowanie wybranego modelu.

Opisana ,sztuczka” opiera sie, w przypadku uzycia modelu wtaczania, o sprzezenie
zwrotne dyrektyw #include: max.hpp dofacza bowiem max.cpp, zas max.cpp probuje
dotaczy¢ max.hpp. Trzeba rzecz jasna zadbac o to, by ta proba nie zakonczyta sie
powodzeniem, stosujac jedno z zabezpieczen przeciw wielokrotnemu dotaczaniu. Tutaj
uzytem #pragma once, cho¢ metoda z unikalnym makrem oraz #ifndef/#endif réwniez
zdataby egzamin.

Xk k

I tak oto zakonczyliSmy drugi podrozdziat poswiecony opisowi szablonéw w C++. W
zasadzie mozesz uznac¢ ten moment za koniec teorii tego skomplikowanego zagadnienia.
Chociaz wiec zajmowaliSmy sie juz sprawami bardziej praktycznymi (jak cho¢by modelem
organizacji kodu), to dopiero w nastepnym podrozdziale poznasz prawdziwe
zastosowania szablondw. Zacznie sie wiec robi¢ bardzo ciekawie, jako Ze dopiero w
konkretnych metodach na wykorzystanie szablonéw wida¢ prawdziwg potege tego
sktadnika C++. Pora zatem jg ujarzmic!

Szablony 561

Zastosowania szablonow

Jeszcze w poczatkach tego rozdziatu powiedziatem, do czego stuza szablony w jezyku
C++. Przypominam: stosujemy je gtdwnie tam, gdzie chcemy uniezaleznié¢ kod programu
od konkretnego typu danych.

To ogdlnikowe stwierdzenie jest z pewnoscig pomocne, ale mato konkretne. Na pewno
bedziesz bardziej zadowolony, jezeli ujrzysz jakies precyzyjniej okreslone zastosowania
dla szablondw. I to jest wiasnie trescig tego podrozdziatu. Pomdéwimy sobie wiec o
niektérych sytuacjach, gdy skorzystanie z szablonéw ufatwia lub wrecz umozliwia
wykonanie waznych programistycznych zadan.

Zastgpienie makrodefinicji

Gdyby to byta bajka, to zaczetoby sie tak: dawno, dawno temu w krélestwie Elastycznych
Programow niepodzielnie rzadzita okrutna kasta Makrodefinicji. Do$¢ czesto utrudniata
ona zycie mieszkancom, powodujac wieksze lub mniejsze zyciowe ucigzliwosci. Na
szczescie pewnego dnia na pomoc przybyli dzielni rycerze Szablondw, ktorzy obalili
tyranow i zapewnili krélestwu szczesliwe zycie pod rzadami nowych, faskawych wiadcow.
I wszyscy zyli dlugo i szczesliwie.

To tyle, jesli chodzi o otoczke basniowa, bo teraz nalezatoby wrdéci¢ do rzeczywistego
zagadnienia. Jaki$ czas temu mieliSmy okazje poznac dyrektywy preprocesora, zwracajac
przy tym szczegdlng uwage na makra. Makra imitujace funkcje byly kiedys jedynym
sposobem na tworzenie ,kodu” niezwigzanego z zadnym typem danych. Teraz za$ mamy
juz szablony. Czy sq one lepsze?...

Szablon funkcji i makro

Aby sie o tym przekonac¢, porownajmy funkcje max () - napisang raz w postaci szablonu i
drugi raz w postaci makra:

// szablon funkcji max ()
template <typename T> T max(T a, T b) { return (a > b ? a : b); }

// makro MAX ()
#define MAX (a,Db) ((a) > (b) 2?2 (a) : (b))

Widac¢ pare podobienistw, ale i mndstwo rdznic. Przede wszystkim interesuje nas to, w
jaki sposéb makra i szablony osiggajg niezaleznos¢ od typu danych - parametrow. W
sumie wiemy to dobrze:

» w szablonach wystepujg parametry bedace typami (jak u nas T),
nieodpowiadajace jednak zadnemu konkretnemu typowi danych. Poprzez
konkretyzacje tworzone sg potem specjalizowane egzemplarze funkcji, dziatajace
dla Scisle okreslonych juz rodzajow zmiennych

> makra w ogdle nie postugujq sie pojeciem ‘typ danych’. Ich istota polega na
zwyklej zamianie jednego tekstu (,wywotania” makra) w inny tekst (rozwiniecie
makra). Dopiero to rozwinigcie jest przedmiotem zainteresowania kompilatora,
ktéry wedle swoich regut - jak cho¢by poprawnego uzycia operatoréw - uzna je za
poprawne badz nie

Mamy wiec dwa rozne podejscia i zapewne juz wiesz lub domyslasz sie, ze nie sq one
rownowazne ani nawet rownie dobre. Nalezy wiec odpowiedzie¢ na proste pytanie - co
jest lepsze?

562 Zaawansowane C++

Pojedynek na szczycie

W tym celu sprébujmy uzy¢ obu zaprezentowanych wyzej konstrukcji, poddajac je
swoistym probom:

// bedziemy potrzebowali kilku zmiennych
int nA = 42; float fB = 12.0f;

// 1 startujemy...

std::cout << max (34, 56) << " | " << MAX (34, 56) << std::endl; // 1
std::cout << max(nA, fB) << " | " << MAX(nA, fB) << std::endl; // 2
std::cout << max (nA++, fB) << " | " << MAX(nA++, fB) << std::endl; // 3

Czy obie konstrukcje przejda je z powodzeniem?... C6z, odpowiedz jest niestety
przeczaca. Tylko pierwsza linijka nie wymaga zadnych uwag ani analizy. W tym
przypadku nie ma po prostu zadnych watpliwosci: obie wartosci do poréwnania sg
jednoznacznymi statymi tych samych typow. Wszystko wiec pdjdzie gtadko.
Jednak dalej zaczynajq sie juz kiopoty...

Starcie drugie: problem dopasowania tudziez wydajnosci

Popatrzmy wiec, co sie wtasciwie stanie w tym kodzie. PomysSImy mianowicie, w jaki
sposOb poradzi sobie z zadaniem szablon funkcji, a w jaki - makrodefinicja.

Jak zadziata szablon

Funkcjonowanie szablonéw byto przedmiotem sporej czesci aktualnego rozdziatu, zatem
odpowiedz na pytanie powyzej nie powinna ci nastrecza¢ trudnosci. Szablon max ()
zadziata tak, jak sie spodziewamy: jego uzycie spowoduje konkretyzacje dla wtasciwego
parametru, co w wyniku da normalng funkcje, wykorzystywang przez program.

Wpierw jednak musi by¢ znany parametr T szablonu - zostanie on oczywiscie
wydedukowany z wywotania funkcji max () . Mamy w nim argumenty bedace zmiennymi:
pierwsza jest typu int, za$ druga typu float. Parametr szablonu T jest natomiast tylko
jeden - c6z wiec?... Naturalnie, kompilator wybierze tak, aby nie skrzywdzi¢ zadnego z
argumentow funkcji, decydujac sie na typ float. Pomiesci on bowiem zaréwno liczbe
catkowita, jak i rzeczywista. Szablon max () zostanie wiec skonkretyzowany do postaci:

float max<float>(float a, float b) {return(@a>b?a:b);}

I wszystko bytoby w porzadku, gdyby nie jeden drobny niuans, w zasadzie
niedostrzegalny na pierwszy rzut oka. Jak to zwykle bywa w niejasnych sytuacjach,
chodzi o wydajnosé. Zwréocmy uwage, ze parametry funkcji max () sg tu przekazywane
poprzez wartos¢. Potencjalnie wiec moze to prowadzi¢ do dwdch niepotrzebnych
kopiowan, wykonywanych podczas wywotywania funkcji w skompilowanym programie.
Oczywiscie, ma to znaczenie tylko dla duzych obiektéw, lecz kto powiedziat, ze nie
moglibysmy chcie¢ uzy¢ tej funkcji na przyktad do 1000-elementowej tablicy?...

Powiesz pewnie, Ze jest to na to rada. Wystarczy skorzysta¢ z wynalazku C++ znanego
pod nazwg referencji. Przypomnijmy, ze referencje, czyli ,ukryte wskazniki”, nie
powodujg przekazania do funkcji samego obiektu, lecz tylko jego adresu. Ich zaletg jest
zas to, ze nie zmuszajq do korzystania z klopotliwej w gruncie rzeczy skfadni
wskaznikow.

Pamietajac o tym, ochoczo przerabiamy nasz szablon na wersje korzystajacq z referencji:

template <typename T> T max (const T& a, const T& b)

{

return (a > b ? a : b);

}

Szablony 563

W ten sposob niechcgcy pozbawilismy kompilator waznej mozliwosci: uzywania
niejawnych konwersji. W momencie, gdy chcemy przekazac¢ do funkcji nie obiekt, a
referencje do niego, kompilator staje sie po prostu slepy na ten mechanizm jezyka.
Latwo to zresztg wyjasnié: istotg referencji jest odwotywanie sie do istniejgcego obiektu
bez kopiowania, zas istniejacy obiekt ma swoj typ, ktdrego zmieni¢ nie mozna.

Wiec co zrobi¢? Najlepiej po prostu... pogodzi¢ sie z tym ,strasznym marnotrawstem”,
ktore i tak nie jest szczegdlnie wielkie, a przez dobry kompilator moze by¢ nawet z
nieztym skutkiem minimalizowane.

Naturalnie, mozna probowac kombinowac dalej - chociazby dodac¢ drugi parametr
szablonu. Tyle ze wtedy pozostanie nierozstrzygalny wybdr, ktory z nich uczynic¢ typem
wartosci zwracanej. Naturalnie, mozna ten typ dodac jako kolejny, trzeci juz parametr
szablonu i kaza¢ go podawac¢ wywotujgcemu. Wreszcie, mozna nawet uzy¢ jednego z
kilku do$¢ pokretnych (koncepcyjnie i skladniowo) sposobéw na obejscie problemu - ale
chyba nie zmartwisz sie tym, ze ci ich tutaj oszczedze. Nadmierna komplikacja jest tu
bowiem wysoce niewskazana; zaangazowane $rodki bedg zwyczajnie niewspotmierne do
zyskow.

Jak zadziata makro

Przekonajmy sie wiec, co ma do powiedzenia makrodefinicja. Tutaj cata sprawa jest rzecz
jasna znacznie fatwiejsza: preprocesor rozwinie nam po prostu kod MAX (nA, £B) do
postaci nastepujgcego wyrazenia:

((nA) 2 (nB) ? (nA) : (nB))

Nie ma tutaj absolutnie rzadnej réznicy z sytuacja, w ktorej to wyrazenie zostatoby
wpisane bezposrednio do kodu. Zadna funkcja nie jest generowana, zadne konwersje
argumentow nie sg wykonywane, po prostu nie ma zadnego przeskoku z miejsca
L~wWywotania” makra w inne miejsce programu. Kompilator jest wrecz utrzymywany w
btogiej nieSwiadomosci, gdyz dostaje wyklarowany juz kod bez makr. Wszystkim zajmuje
sie preprocesor i to on sprawia, ze makro dziata.

Wynik

Ostatecznie mozemy uznac remis obu rozwigzan, aczkolwiek z lekkim wskazaniem na
makrodefinicje. Z wyjatkiem fanatykéw wydajnosci nie ma jednak bodaj nikogo, kto
uwazatby ,nieefektywne” dziatanie szablondéw za wielki btad. A tym, ktérzy rzeczywiscie
tak uwazaja, pozostaje chyba tylko przerzucenie sie na jezyk asemblera :)

Starcie trzecie: problem rozwiniecia albo poprawnosci

Préba trzecia jest w takim razie decydujgca. Ponownie roztozymy na czynniki pierwsze
sposOb dziatania szablonu i makra.

Jak zadziata szablon

Dziatanie szablonu bedzie tu tudzgco podobne do poprzedniej préby. Znowu bowiem
argumenty funkcji max () musza by¢ dopasowane do typu ogdlniejszego - czyli do float.
Powstanie wiec specjalizacja max<double> ().

Funkcja ta bedzie potem wywotywana z argumentami na++ i £B. Wobec tego zwrdci ona
wiekszg sposrdd liczb: na+1 i £B. Wtasciwie wiec nie ma nad czym dtuzej deliberowac;
nasz szablon zachowa sie zupetnie poprawnie, prawie jak zwyczajna funkcja. Naturalnie,
stosujq sie tutaj wszystkie uwagi z poprzedniego akapitu - nie ma sensu ponownie ich
przytaczac.

Ogotem test uwazamy za zaliczony.

564 Zaawansowane C++

Jak zadziata makro

A teraz czas na analize makrodefinicji i jej uzycia w formie MAX (nA++, £B). Pamietajac,
jak dziata preprocesor, stusznie mozna wywnioskowac, ze zamieni on ,wywotanie” makra
na takie oto wyrazenie:

((nA++) > (fB) ? (nA++) : (fB))

Wszystko jest zatem w porzadku?... Nie catkiem. Wrecz przeciwnie. Mamy problem.
Powazny problem. A jego przyczyng jest obecnos¢ instrukcji na++ dwukrotnie.

Fakt ten sprawi mianowicie, ze zmienna nA zostanie dwa razy zwiekszona o 1!
Ostatecznie warunek powyzej zwréci btedny wynik - roznigcy sie od wtasciwego o owg
problematyczng jedynke.

Jesli pamietasz doktadnie rozdziat o preprocesorze, takie zachowanie nie powinno by¢ dla
ciebie zaskoczeniem. Juz wtedy zaprezentowatem przyktad tego problemu i ostrzegtem
przed stosowaniem makrodefinicji w charakterze funkcji.

Wynik

Co6z mozna wiecej powiedzie¢? Btedny rezultat uzycia makra sprawia, ze makrodefinicje
nie tylko przegrywaja, ale wiasciwie zostajg zdyskwalifikowane jako narzedzia tworzenia
kodu niezaleznego od typu. Bezapelacyjnie wygrywajg szablony!

Konkluzje

Whniosek jest wiasciwie jeden:

Nalezy uzywac¢ szablonow funkcji zamiast makr, ktére majq udawac funkcje.

Makrodefinicje w rodzaju MAX (), MIN () czy innych tego rodzaju nie majg juz wiec
wiasciwie racji bytu. Zastgpity je catkowicie szablony funkcji, oferujgce nie tylko te same
rezultaty (przy zastosowaniu inline - rowniez wydajnosciowe), ale tez jedng konieczng
ceche, ktérej makrom brak - poprawnos¢.

Szablony sg po prostu bardziej inteligentne, jako ze odpowiada za nie przemys$inie
skonstruowany kompilator, a nie jego utomny pomocnik - preprocesor. Jak sie tez miates
okazje przekonaé¢ w tym rozdziale, mozliwosci szablondéw funkcji sg nieporéwnywalnie
wieksze od tych dawanych przez makrodefinicje.

Nie znaczy to oczywiscie, ze makra zostaty catkowicie zastgpione przez szablony. Nadal
bowiem znajdujg one zastosowanie tam, gdzie chcemy dokonywac operacji na kodzie jak
na zwyktym tekscie - a wiec na przyktad do wstawiania kilku czesto wystepujacych
instrukcji, ktorych nie mozemy wyodrebni¢ w postaci funkcji. Niemniej nalezy podkreslaé
(co robie po raz n-ty), ze makra nie stuza do imitacji funkcji, gdyz same funkcje (lub
ich szablony) doskonale radzg sobie ze wszystkimi zadaniami, jakie chcieliby$my im
powierzy¢. Naocznie to zresztg zobaczyliSmy.

Struktury danych

Szablony funkcji majg wiec swoje wazne zastosowanie. Wtasciwie jednak to szablony klas
sq uzyteczne w znacznie wiekszym stopniu. Wykorzystujemy je bowiem w celu
implementacji w programach tzw. struktur danych.

Szablony 565

Jak gtosi stare programistyczne ,rownanie”, obok algorytmow to struktury danych sg
gtéwnymi sktadnikami programéw?®®!. Jak wskazuje nazwa tego pojecia, stuza one do
przemyslanej organizacji informacji przetwarzanych przez aplikacje. Zazwyczaj tez
struktury danych Scisle wspédtpracuja z algorytmami programu.

Z najprostszymi strukturami danych zapoznates sie juz catkiem dawno temu. Typowym
przyktadem moze by¢ zwykta, jednowymiarowa tablica; inny to np. struktura jezyka C++
(definiowana poprzez struct), zwana czasem rekordem. To jednak tylko wierzchotek
gory lodowej. Wérdd wielu struktur danych wiekszosc¢ jest o wiele bardziej
wyspecjalizowana i funkcjonalna.

Coz jednak ma to wspdlnego z szablonami?... Otoz bardzo wiele. Dzieki mechanizmowi
parametryzowanych typéw (czyli szablonéw klas) implementacja przeréznych struktur
danych w C++ jest prosta. Przynajmniej jest ona prosta w tym sensie, ze nie nastrecza
ktopotéw zwigzanych z nieokreslonymi typami danych. Szablony zatatwiajg za nas te
sprawe, dzieki czemu owe struktury mogg by¢ uniwersalne.

Prawdopodobnie wtasnie to zastosowanie byto jednym z gtéwnych powodow, dla ktérego
w ogodle wprowadzono do jezyka C++ narzedzia szablondw. Nam pozostaje sie tylko z
tego cieszy¢... no, moznaby jeszcze przyjrzec sie sprawie nieco blizej :) Zrobmy wiec to.

W tej sekcji porozmawiamy sobie zatem o tym, jak szablony pomogajgq w tworzeniu
struktur danych w programach. Naturalnie, temat ten jest niezwykle szeroki i dlatego nie
bedziemy w niego wnika¢ doktadnie. Niemniej bedzie to dobra rozgrzewka przez
poznawaniem Biblioteki Standardowej, ktora szeroko uzywa szablonéw do implementacji
struktur danych.

Omoéwimy wiec sobie dwie najprostsze kategorie takich struktur: krotki i kontenery
(pojemniki).

Krotki

Krotka (ang. tuple, nie myli¢ ze stokrotka ;)) nazywamy potaczenie kilku wartosci
réoznych typow w jedna cato$é. C++, podobnie jak wiele innych jezykow
programowania umozliwia na zrealizowanie takiej koncepcji przy uzyciu struktury,
zawierajacej dwa, trzy, cztery lub wiekszg liczbe po6l dowolnych typdw.

Tutaj jednak chcemy zobaczy¢ w akcji szablony, zatem stworzymy nieco bardziej
elastyczne rozwigzanie.

Przyktad pary

Najprotszg krotkg jest oczywiscie... pojedyncza wartos¢ :) Poniewaz jednak w jej
przypadku do szczescia wystarcza normalna zmienna, zajmijmy sie raczej zespotem
dwoch wartosci. Zwiemy go para (ang. pair) lub duetem (ang. duo).

Definicja szablonu

Majac w pamieci fakt, iz chcemy otrzymac pare dwdch wartosci dwoch réznych typow,
wyprodukujemy zapewne szablon podobny do ponizszego:

template <typename T1, typename T2> struct TPair
{
Tl Pierwszy; // wartos$é¢ pierwszego pola
T2 Drugi; // warto$é drugiego pola
bi

131 To réwnanie to Algorytmy + struktury danych = programy, bedace jednoczeénie tytutem stynnej ksigzki
Niklausa Wirtha.

566 Zaawansowane C++

Zastosowan takiej prostej struktury jest cate mndstwo. Przy jej uzyciu mozemy na
przyktad w fatwy sposob stosowad technike informowania o btedach przy pomocy
rezultatu funkcji. Oto przykiad:

TPair<bool, T> Wynik = Funkcjal(); // funkcja zwraca pare wartosci
if (Wynik.Pierwszy)
{
// wykonanie funkcji powiodlo sie; jej witasciwy rezultat to
// Wynik.Drugi
}

Wynik jako zespdt dwoch wartosci pozwala na oddzielenie wiasciwego rezultatu od
danych btedu. Jednoczesnie nie zatracamy informacji o typie wartosci zwracanej przez
funkcje - tutaj ukrywa sie on za T i jest widoczny w prototypie funkcji.

Pomocna funkcja

Do wygodnego uzywania pary przydatby sie sposéb na jej tatwie utworzenie. Na razie
bowiem Funkcja () musiataby wykonywac np. taki kod:

TPair<bool, int> Wynik; // obiekt wyniku

Wynik.Pierwszy = true; // informacja o ewentualnym biledzie
Wynik.Drugi = 42; // zasadniczy rezultat

return Wynik; // zwracamy to wszystko

Sytuacje mozemy poprawic¢, dodajac konstruktor(y):

template <typename T1, typename T2> struct TPair
{

Tl Pierwszy; // warto$é¢ pierwszego pola
T2 Drugi; // wartos$é drugiego pola
/) e
// konstruktory
TPair () : Pierwszy (), Drugi() {1}
TPair (const Tl& Wartoscl, const T2& Wartosc?2)
Pierwszy (Wartoscl), Drugi (Wartosc?2) { }

b

W zasadzie to sg one niezbedne - inaczej nie moznaby tworzy¢ par z obiektow, ktorych
klasy nie majg domysinych konstruktorow. Tak czy owak, skracamy juz zapis do
skromnego:

return TPair<bool, int>(true, 42);

Nadal jednak mozna troche ponarzekaé¢. Kompilator nie jest na przykfad na tyle
inteligentny, aby wydedukowac¢ parametry szablonu TrPair z argumentow konstruktora.
To jednak mozna tatwo uzyskac, jako ze umiejetnos¢ takiej dedukcji jest nieodtaczna
cechg szablonéw funkcji. Mozemy zatem stworzy¢ sobie pomocng funkcje rPara (),
tworzaca duet:

template <typename T1l, typename T2>
inline TPair<Tl, T2> Para(const Tl& Wartoscl, const T2& Wartosc?)

{

return TPair<Tl, T2>(Wartoscl, Wartosc2);

}

To wreszcie pozwoli na stosowanie krotkiej i przemyslanej formy tworzenia pary:

Szablony 567

return Para (true, 42);

Przydomek inline zabezpiecza natomiast przed ,niewybaczalnym” uszczerbkiem na
wydajnosci spowodowanym posrednig drogg kreacji obiektu.

Dalsze usprawnienia

Mozemy dalej usprawnia¢ szablon Trair - tak, aby wygoda korzystania z niego nie
ustepowata niczym przyjemnosci uzytkowania typow wbudowanych. Dodamy mu wiec:
» operator przypisania
» konstruktor kopiujacy

~Ale po co?”, mozesz spytac. ,Przeciez w tym przypadku wersje tworzone przez
kompilator pasujg jak ulat”. Owszem, masz racje. Mozna je jednak poprawic¢, definiujac
obie metody jako szablony:

template <typename T1, typename T2> struct TPair
{

Tl Pierwszy; // warto$é¢ pierwszego pola
T2 Drugi; // wartos$é drugiego pola
/) o
// konstruktory (zwykle i kopiujaco-konwertujacy)
TPair () : Pierwszy (), Drugi() {1}
TPair (const Tl& Wartoscl, const T2& Wartosc?2)
Pierwszy (Wartoscl), Drugi (Wartosc?2) {1}
template <typename Ul, typename U2> TPair (const TPair<Ul, U2>& Para)
Pierwszy (Para.Pierwszy), Drugi (Para.Drugi) { }
st

// operator przypisania
template <typename Ul, typename U2>
operator=(const TPair<Ul, U2>& Para)

{
Pierwszy = Para.Pierwszy;
Drugi = Para.Drugi;
return *this;

}i

W ten sposdb pieczemy dwa befsztyki na jednym ogniu. Nasze metody petnig bowiem nie
tylko ,role kopiujacq”, ale i ,role konwertujgcq”. Pary stajq sie wiec kompatybilne
wzgledem niejawnym konwersji swoich sktadnikéw; zatem np. para TPair<int, int>
bedzie mogta by¢ od teraz bez problemoéw przypisana do pary TPair<float, double>,
itd. Konieczne konwersje bedgq dokonywane podczas inicjalizacji (konstruktor) lub
przypisywania (operator =) pél.

Do petni funkcjonalnosci brakuje jeszcze mozliwosci porownywania par. To zas osiggamy,
definiujac operatory == i !=, Takze tutaj moze zajs¢ koniecznos¢ konfrontowania duetéw
o roznych typach poél, zatem ponownie nalezy uzy¢ szablonu:

// operator réwnosci
template <typename T1l, typename T2, typename Ul, typename U2>
inline bool operator==(const TPair<Tl, T2>& Paral,
const TPair<Ul, U2>& Para2)
{
return (Paral.Pierwszy == Para2.Pierwszy
&& Paral.Drugi == Para2.Drugi);

568 Zaawansowane C++

}

// operator nierdwnosci
template <typename T1, typename T2, typename Ul, typename U2>
inline bool operator!=(const TPair<Tl, T2>& Paral,
const TPair<Ul, U2>& Para?2)
{

return (Paral.Pierwszy != Para2.Pierwszy
| | Paral.Drugi != Para2.Drugi);

}

Troche makabrycznie na pierwszy rzut oka moze wygladac¢ szablon z czterema
parametrami. Powdd jego wystgpienia jest jednak banalny: potrzebujemy po prostu
parametryzacji typéw dla obu poréwnywanych par. W sumie wiec mogg wystgpi¢ cztery
typy pol, co tadnie przedstawiajg deklaracje parametréw funkcji.

O tym, czy typy te bedq ze sobg wspédigraty, zdecyduja juz poréwnywania w ciele funkcji
operatorowych. Naturalnie, w przypadku braku identycznosci lub niejawnych konwersii,
kompilacji problematycznego uzycia operatora nie powiedzie sie.

Stworzony szablon Trpair wraz z ,oprzyrzadowaniem” w postaci pomocniczej funkcji i
przecigzonych operatoréw jest bardzo podobny do klasy std: :pair z Biblioteki
Standardowej.

Trojki i wyzsze krotki

Przygladajac sie uwazniej szablonowi pary, nietrudno jest dostrzec miejsca, ktére nalezy
zmodyfikowac, by otrzymac krotki wyzszego rzedu - trdjki, czworki, piatki, itd. Pewnym
problemem jest state zwiekszanie dtugosci klauzul template <...>inazw typow krotek,
ale to juz jest niestety nieuknione. W praktyce wiec rzadko uzywa sie wielkich krotek -
powyzej trzech, czterech elementéw - takze z tego powodu, ze nie ma dla nich zbyt wielu
sensownych zastosowan.

Dlatego tez tutaj popatrzymy sobie tylko na analogiczny do Trair szablon tréjki -
TTriplet:

template <typename T1l, typename T2, typename T3> struct TTriplet
{

Tl Pierwszy; // warto$é pierwszego pola

T2 Drugi; // wartos$¢ drugiego pola

T3 Trzeci; // wartos$é trzeciego pola

/) e

// konstruktory (zwykle i kopiujaco-konwertujacy)
TTriplet () : Pierwszy (), Drugi(), Trzeci() {
TTriplet (const Tl& Wartoscl, const T2& Wartosc2, const T3& Wartosc3
Pierwszy (Wartoscl), Drugi(Wartosc2), Trzeci (Wartosc3) {
template <typename Ul, typename U2, typename U3>
TTriplet (const TTriplet<Ul, U2, U3>& Trojka)
Pierwszy (Trojka.Pierwszy),
Drugi (Trojka.Drugi), Trzeci(Trojka.Trzeci) { }

— —

// operator przypisania

template <typename Ul, typename U2, typename U3>
operator=(const TTriplet<Ul, U2, U3>& Trojka)
{

Pierwszy = Trojka.Pierwszy;

Szablony 569

Drugi = Trojka.Drugi;
Trzeci = Trojka.Trzeci;

return *this;

}s

// operator réwnosci
template <typename T1, typename T2, typename T3,
typename Ul, typename U2, typename U3>
inline bool operator==(const TTriplet<Tl, T2, T3>& Trojkal,
const TTriplet<Ul, U2, U3>& TrojkaZ2)

{

return (Trojkal.Pierwszy == Trojka2.Pierwszy
&& Trojkal.Drugi == Trojka2.Drugi
&& Trojkal.Trzeci == Trojka2.Trzeci);

}

// operator nierdwnosci
template <typename T1l, typename T2, typename T3,
typename Ul, typename U2, typename U3>
inline bool operator==(const TTriplet<Tl, T2, T3>& Trojkal,
const TTriplet<Ul, U2, U3>& Trojka2)

{

return (Trojkal.Pierwszy != Trojka2.Pierwszy
| | Trojkal.Drugi != Trojka2.Drugi
| | Trojkal.Trzeci != Trojka2.Trzeci);

// wygodna funkcja tworzaca trojke
template <typename T1, typename T2, typename T3>
inline TTriplet<T1l, T2, T3> Trojka(const Tl& Wartoscl,
const T2& Wartosc2,
const T3& Wartosc3)

return TTriplet<Tl, T2, T3> (Wartoscl, Wartosc2, Wartosc3);

Wyglada on lekko strasznie, ale tez pokazuje wyraznie, ze szablony w C++ to naprawde
potezne narzedzie. Pomysl, czy w ogdle sensowne bytoby implementowanie krotek bez
nich?

Wyzsze krotki wygodnie jest programowac w sposob rekurencyjny, wykorzystujac jedynie
szablon pary. Przy takim podejsciu tréjka np. typu TTriplet<int, float,

std::string> jest przechowywana jako typ TPair<int, TPair<float, std::string>

> - czyli pare, ktérej elementem jest kolejna para. Analogicznie wyglada to dalej.

Takie podejscie, w potaczeniu z kilkoma innymi, maksymalnie wykreconymi technikami,
daje mozliwosc¢ tworzenia krotek dowolnego rzedu. Takie rozwigzanie jest czescig znanej
biblioteki Boost.

Pojemniki

Nadeszta pora, by pozna¢ gtéwny powod wprowadzenia do C++ mechanizmu szablonéw.
Sa nim mianowicie klasy kontenerowe.

570 Zaawansowane C++

Kontenery albo pojemniki (ang. containers) to specjalne struktury danych
przeznaczone do zarzadzania kolekcjami obiektéw tego samego typu w okreslony sposdb.

Poniewaz definicja ta jest bardzo ogdélna, mamy mndéstwo rodzajéw konteneréw. Spora
ich cze$¢ zostata zaimplementowana w Bibliotece Standardowej, a o wszystkich mowi
dowolna ksigzka o algorytmach i strukturach danych.

Nie bedziemy tutaj omawia¢ kazdego rodzaju pojemnika, lecz skoncentrujemy sie jedynie
na tym, w jaki sposéb szablony pomagajg im w prawidlowym funkcjonowaniu.
Zobaczymy wiec najdonio$lejsze zastosowanie szablonéw w programowaniu.

Przyktad klasy kontenera - stos

Zgodnie ze zwyczajem, kontenery poznamy na przykfadzie jednego z prostszych
rodzajéw. Bedzie to stos.

Czym jest stos

Pojecie stosu jest ci znane; podczas omawiania wskaznikow na funkcje wyjasnitem
bowiem, ze jest to pomocny obszar pamieci, poprzez ktéry odbywa sie transfer
argumentow od wywotujgcego funkcje.

Stos (ang. stack) ma tez inne znaczenie. Jest to rodzaj pojemnika przechowujacego
dowolne elementy, charakteryzujacy sie tym, iz:
> obiekty sq na stos jedynie odkladane (ang. push) i pobierane (ang. pop)
» w danej chwili ma sie dostep jedynie do ostatnio potozonego, szczytowego
elementu
> obiekty sg zdejmowane w odwrotnej kolejnosci niz byty odktadane na stos

Wida¢ wiec analogie do stosu - obszaru pamieci. Tam obiektami odktadanymi byty
parametry funkcji. Potozone w jednej kolejnosci, musiaty by¢ nastepnie podejmowane w
porzadku odwrotnym. Caty czas réwnie dobre jest porownanie do stosu ksigzek: jesli
potozymy na biurku stownik ortograficzny, na nim ksigzke kucharska, a na samej gérze
podrecznik fizyki, to aby poznac¢ prawidtowg pisownie stowa ‘gzegzdtka’ bedziemy musieli
wpierw zdjac¢ dwie ksigzki lezace na stowniku. Przy czym najpierw pozbedziemy sie
podrecznika, a potem ksigzki z przepisami.

Definicja szablonu klasy

Na tej samej zasadzie dziata stos - struktura danych. Jest to co$ w rodzaju tablicy,
przechowujacej obiekty dowolnego typu, bedace odtozonymi na stos elementami. Nie
pozwala ona jednak na pobranie dowolnego elementu (o ustalonym indeksie), lecz
wymaga zdejmowania obiektow w kolejnosci odwrotnej do porzadku ich odktadania.

Najlepszym sposobem na wprowadzenie stosu do programowania w C++ jest
zdefiniowanie odpowiedniego szablonu klasy. Dzieki temu wszystkie szczegoty
implementacji zostang ukryte (zaleta OOPu), a nasz stos bedzie potrafit operowac
elementami dowolnych typéw (zaleta szablonéw).

Spdjrzmy wiec na propozycje takiego szablonu stosu:

template <typename T, unsigned N> class TStack
{
private:
// zawartos$é stosu
T m aStos([N];

// aktualny rozmiar (liczba elementdw) stosu
unsigned m uRozmiar;

public:

Szablony 571

// konstruktor
TStack () : m uRozmiar (0) {3

// odlozenie elementu na stos
void Push (const T& Element)

{

if (m_uRozmiar == N)

throw "TStack::Push() - stos jest peten'";
m_aStos[m uRozmiar] = Element; // dodanie elementu
++m_uRozmiar; // zwieksz. licznika

}

// pobranie elementu ze szczytu stosu
T Pop ()
{

if (m_uRozmiar == 0)
throw "TStack::Pop() - stos jest pusty";

// zwrbcenie elementu i zmniejszenie licznika
return m _aStos[--m uRozmiar];

i

Jest to wiasciwie najprostsza mozliwa wersja stosu. Dwa parametry szablonu okreslajg w
niej typ przechowywanych elementéw oraz maksymalng ich liczbe. Drugi oczywiscie nie
jest konieczny - fatwo wyobrazi¢ sobie (i napisac¢) stos, ktéry uzywa dynamicznej tablicy i
dostosowuje sie do liczby odtozonych elementow.

Co do metod, to ich garnitur jest réwniez skromny. Metoda Push () powoduje odtozenie
na stos podanej wartoci, zas Pop () - pobranie jej i zwrocenie w wyniku. To absolutne
minimum; czesto dodaje sie do tego jeszcze funkcje Top () (‘szczyt’), ktéra zwraca
element lezacy na gorze bez zdejmowania go ze stosu.

Klase mozna tez usprawnia¢ dalej: dodajac szablonowy kostruktor kopiujacy i operator
przypisania, metody zwracajace aktualny rozmiar stosu (liczbe odtozonych elementdéw) i
inne dodatki. Moznaby nawet zmieni¢ wewnetrzny mechanizm funkcjonowania klasy i
zaprzac do pracy szablon Tarray - dzieki temu maksymalny rozmiar stosu mdgtby by¢
ustalany dynamicznie.

Zawsze jednak istota dziatania pojemnika bedzie taka sama.

Korzystanie z szablonu

Spozytkowanie tak napisanego stosu nie jest trudne. Oto najbanalniejszy z banalnych
przyktadéw:

// deklaracja obiektu stosu, zawierajacego maksymalnie 5 liczb typu int
TStack<int, 5> Stos;

// odtozenie paru liczb na stos
Stos.Push (12);
Stos.Push (23);
Stos.Push (34);

// podjecie i wyéwietlenie odtozonych liczb

for (unsigned 1 = 0; i < 3; ++1)
std::cout << Stos.Pop() << std::endl;

W jego rezultacie zobaczyliby$my wypisanie liczb:

572 Zaawansowane C++

34
23
12

Widac¢ zatem wyraznie, ze metoda Pop () powoduje zwrdcenie elementédw stosu w
kolejnosci przeciwnej do ich odkfadania poprzez push (). Na tym wtasnie opiera sie idea
stosu.

Stos ma w programowaniu rozliczne zastosowania: poczgwszy od rekurencyjnego
przeszukiwania hierarchicznych baz danych (jak chociazby katalogi na dysku twardym)
po rysowanie tréjwymiarowych modeli w grach komputerowych. Obok zwykiej tablicy,
jest to chyba najczesciej wykorzystywany pojemnik.

Programowanie ogdlne

Szablony, a szczegdlnie ich uzycie do implementacji kontenerdw, staty sie podstawg idei
tak zwanego programowania ogélnego (ang. general programming). Trudno
precyzyjnie jg wyrazi¢ i zdefiniowac, ale mozna jg rozumiec¢ jako poszukiwanie jak
najbardziej abstrakcyjnych i ogdlnych rozwigzan w postaci algorytmow i struktur danych.
Rozwigzania powstate w zgodzie z tg ideq sq wiec niestychanie elastyczne.

Dobrym przyktadem sg wtasnie kontenery. Istnieje wiele ich rodzajow, poczawszy od
prostych tablic jednowymiarowych po ztozone struktury, jak np. drzewa. Dla kazdego
pojemnika logiczne jest jednak przeprowadzanie pewnych typowych operaciji, jak na
przyktad wyszukiwanie okreslonego elementu. Operacje te nazywami algorytmami.
Logiczne bytoby zaprogramowanie algorytmdw jako metod klas kontenerowych.
Rozwigzanie to ma jednak wade: poniewaz kazdy pojemnik jest zorganizowany inaczej,
nalezatoby dla kazdego z nich zapisa¢ osobng wersje algorytmu. Problem ten rozwigzano
poprzez dodanie abstrakcyjnego pojecia iteratora - obiektu, ktory stuzy do przegladania
kontenera. Iterator ukrywa wszelkie szczegbty zwigzane z konkretnym pojemnikiem,
przez co algorytm oparty na wykorzystaniu iteratorow moze by¢ napisany raz i
wykorzystywany wielokrotnie w odniesieniu do dowolnych konteneréw.

Ten zmysiny pomyst stat sie podstawg stworzenia Standardowej Biblioteki Szablonéw
(ang. Standard Template Library - STL). Jest to gtdwna czesc¢ Biblioteki Standardowej
jezyka C++ i zawiera wiele szablonéw podstawowych struktur danych. Sg one wsparte
algorytmami, iteratorami i innymi pomocniczymi pojeciami, dzieki ktéorym STL jest nie
tylko bogata funkcjonalnie, ale i efektywna oraz elastyczna. To jedno z bardziej
uzytecznych narzedzi jezyka C++ i jednoczesnie najwazniejsze zastosowanie szablondw.

Podsumowanie

Ten rozdziat konczy kurs jezyka C++. Na ostatku zapoznates sie z jego najbardziej
zaawansowanym mechanizmem - szablonami.

Wpierw wiec zobaczytes$ sytuacje, w ktorych Scista kontrola typéw w C++ jest powodem
problemoéw. Chwile pdzniej otrzymates tez do reki lekarstwo, czyli wtasnie szablony.
PrzeszliSmy potem do doktadnego omowienia ich dwdch rodzajéw: szablonéw funkcji i
szablonoéw klas.

W sposdb ogodlniejszy zajeliSmy sie nimi w nastepnym podrozdziale. Poznates$ zatem trzy
rodzaje parametrow szablondéw, ktére dajg im razem bardzo potezne wtasciwosci. Zaraz
jednak uswiadomitem ci takze problemy zwigzane z szablonami: poczawszy od
koniecznosci udzielania podpowiedzi dla kompilatora co do znaczenia niektorych nazw, a
konczac na kwestii organizacji kodu szablonéw w plikach Zzrédtowych.

Szablony 573

W trzecim podrozdziale przyjrzeliSmy sie natomiast najbardziej typowym zastosowaniom
szablonow - czyli dowiedzielismy sie, jak zdobyta wiedza moze sie przyda¢ w praktyce.

Tak konczy sie opis jezyka C++ z punktu widzenia sktadni i semantyki. Jego czescig jest
jednak takze Biblioteka Standardowa. Niejednokrotnie mielismy okazje korzystac z jej
drobnych czesci, lecz dopiero w nastepnym rozdziale rozpoczniemy jej systematyczne
omawianie.

Pytania i zadania

Teraz czeka cie jeszcze tylko odpowiedz na kilka sprawdzajacych wiedze pytan i
wykonanie zadan. Powodzenia!

Pytania

1. Co to znaczy, ze C++ jest jezykiem o Scistej kontroli typow?
2. W jaki spos6b mozna stworzy¢ , 0gdlne funkcje”, dziatajace dla wielu typéw

danych?

3. Jakie sg sposoby na implementacje ogolnych klas pojemnikowych bez uzycia
szablonow?

4. Jak definiujemy szablon?

5. Jakie rodzaje szablonéw sg dostepne w C++7?

6. Czym jest specjalizacja szablonu? Czym sie rozni specjalizacja czeSciowa od
petnej?

7. Skad kompilator bierze ,wartosci” (nazwy typow) dla parametrow szablonéw
funkcji?

8. Ktére parametry szablonu funkcji moga by¢ wydedukowane z jej wywofania?

9. Co dzieje sie, gdy uzywamy szablonu funkcji lub klasy? Jakie zadania spoczywajq
wowczas na kompilatorze?

10. Jakie trzy rodzaje parametrow moze posiadac szablon klasy?

11.Jaka jest rola stowa kluczowego typename? Gdzie i dlaczego jest ono konieczne?

12.Na czym polega model wigczania?

13. Ktéry sposdb organizacji kodu szablonow najbardziej przypomina tradycyjng
metode podziatu kodu w C++7?

14.Dlaczego nie nalezy uzywac¢ makrodefinicji w celu imitowania szablondw funkcji?

15. Czym jest krotka?

16. Co rozumiemy pod pojeciem pojemnika lub kontenera?

Cwiczenia

1. Napisz szablon funkcji suma (), obliczajacy sume wartosci elementéw podanej
tablicy Tarray.

2. (Trudniejsze) Zdefiniuj szablon klas tablicy wskaznikéw o nazwie TPtrArray,
dziedziczacy z TArray. Szablon ten powinien przyjmowac jeden parametr, bedacy
typem, na ktory pokazujg elementy tablicy.

3. (Bardzo trudne) Dodaj do specjalizacji TArray<TArray<TYP> > przecigzony
operator [], ktory bedzie dziatat w ten sam sposéb, jak dla zwyktych
wielowymiarowych tablic jezyka C++.

Wskazdwka: operator ten bedzie wobec tablicy uzywany dwukrotnie. Pomys$| wiec,
jakq wartos¢ (obiekt tymczasowy) powinno zwracac jego pierwsze uzycie, aby
drugie zwrécito w wyniku zadany element tablicy.

4. (Trudniejsze) Opracuj i zaimplementuj algorytm dokonujacy przedstawiania
liczby naturalnej w systemie rzymskim.

Wskazdwka: wykorzystaj tablice przegladowg par: litera rzymska plus
odpowiadajaca jej liczba dziesietna.

574 Zaawansowane C++

5. Napisz szablon TQueue, podobny do Tstack, lecz implementujacy pojemnik zwany
kolejka. Kolejka dziata w ten sposob, iz elementy sg dodawane do jej pierwszego
konca, natomiast pobierane sg z drugiego - tak samo, jak obstugiwane sg osoby
stojace w kolejce w sklepie czy banku. Podobnie jak w przypadku stosu, mozesz
okresli¢ jej maksymalny rozmiar jako parametr szablonu.

