APLIKACIJE OKIENKOWE

Wyobraz sobie, ze gdy w kazdy czwartek
zwyczajnie zawigzujesz sobie buty, one eksplodujg.
Cos takiego caty czas dzieje sie z komputerami

i jako$ nikt na to nie narzeka.
Jeff Raskin, wywiad dla ,Doctor Dobb’s Journal”

Pierwsze komputery osobiste powstaty juz catkiem dawno temu, bo przy koncu lat
siedemdziesigtych ubiegtego stulecia. Prawie od samego poczatku mogty tez wykonywac
catkiem wspotczesne operacje - z edycjq dokumentéow czy wykorzystaniem sieci wigcznie.
A jednak dopiero ostatnia dekada przyczynifta sie do niezmiernego upowszechnienia
pecetow, a umiejetnos¢ ich obstugi stata sie powszechna i konieczna. Przyczyn mozna
upatrywac sie w szybkim rozwoju Internetu, jednak trudno sobie wyobrazi¢ jego
ekspansje oraz rozpowszechnienie samych komputeréw, gdyby ich uzytkowanie nie byto
proste i intuicyjne. Bez tatwych metod komunikacji z programami poczatkujacy
uzytkownik bytby bowiem zawsze w trudnej sytuacii.

Po licznych ,bojach” stoczonych z konsolg mozemy z pewnoscig stwierdzi¢, ze interfejs
tekstowy niekiedy bywa wygodny. Faktycznie oferuje go kazdy system operacyjny, a za
jego pomocg czesto mozna szybciej i efektywniej wykonywac rutynowe zadania -
szczegolnie, kiedy mamy juz pewne doswiadczenie w obstudze danego systemu.

Nie da sie jednak ukry¢, ze catkowity nowicjusz, posadzony przez ekranem z migajacym
tajemniczo kursorem, moze poczuc sie, delikatnie méwiac, lekko zdezorientowany.
Naturalnie mogtby on zajrze¢ do stosownych dokumentacji czy tez innych zrédet
niezbednych wiadomosci, lecz procent uzytkownikow, ktérzy rzeczywiscie tak czynia,
oscyluje chyba gdzies w granicach bfedu statystycznego (jesli ktokolwiek przeprowadzat
kiedykolwiek takie badania) :D Czy to jest jednak tylko ich problem?...

Otoéz nie, a wiasciwie - juz nie. Oto bowiem w latach osiemdziesigtych wymyslono nowe
sposoby dialogu aplikacji z uzytkownikiem, z ktérych najlepszy (dla uzytkownika) okazat
sie interfejs graficzny. Prawdopodobnie zadecydowaty tu proste analogie w stosunku
do znanych urzadzen, ktére regulowato sie najczesciej przy pomocy réznych przyciskéw,
pokretet, suwakow czy wiacznikéw. Koncepcje te daty sie tatwo przenies¢ w $wiat
wirtualny i znacznie rozszerzy¢, dajac w efekcie obecny wyglad interfejsu uzytkownika w
wiekszosci popularnych programow.

Graficzny interfejs uzytkownika (ang. graphical user interface - w skrécie GUI) to
sposdb wymiany informacji miedzy programem a uzytkownikiem, oparty na wyswietlaniu
interaktywnej grafiki i reakcji na dziatania, jakie s podejmowane w stosunku do niej.

Istnieje wiele powodow, dla ktorych ten rodzaj interfejsu jest generalnie tatwiejszy w
obstudzie niz rozwigzania oparte na tekscie. Nietrudno znalez¢ te powody, gdy
porownamy jakas aplikacje konsolowg i program wykorzystujacy interfejs graficzny.
Warto jednak wymieni¢ te przyczyny - najlepiej w kolejnosci rosngcego znaczenia:
» program konsolowy jest czesto dla uzytkownika , czarng skrzynka” (zeby nie
powiedzie¢ - czarng magig ;D). O jego przeznaczeniu czy oferowanych przezen
funkcjach rzadko moze sie bowiem dowiedzie¢ z informacji prezentowanych mu na

326

ekranie. Sg one zwykle tylko wynikami pracy programu lub tez prosbami o
wprowadzenie potrzebnych danych.

Tymczasem w programach o interfejsie graficznym konieczne sg przynajmniej
szczatkowe opisy poszczegolnych opcji i funkcji, a to samo w sobie daje pewne
wskazdéwki co do prawidtowej obstugi programu.

Nic wiec dziwnego, ze wielu uzytkownikéw programdw uczy sie ich obstugi metoda prob i
btedow, czyli kolejnego wypréobowywania oferowanych przez nie opcji i obserwacji
efektéw tych dziatan.

> elementy interfejsow graficznych sg bardziej ,namacalne” niz tekstowe polecenia,
wpisywane z klawiatury. tatwiej domysli¢ sie, jak dziata przycisk, suwak czy pole
tekstowe - czego nie mozna powiedzie¢ o komendach konsolowych.
Mozna wiec stwierdzié, ze wystepuje tu podobny efekt jak w przypadku
programowania obiektowego. Cos, co mozemy zobaczy¢/wyobrazic¢ sobie, jest po
prostu tatwiejsze do przyswojenia niz abstrakcyjne koncepcije.

E Kalkulator

Screen 44. Nawet skomplikowany interfejs graficzny moze by¢ prostszy w obstudze niz aplikacja
konsolowa. Kalkulator mogtby oczywiscie z powodzeniem dziata¢ w trybie tekstowym i oferowac
duza funkcjonalnos$é, np. w postaci obliczania ztozonych wyrazen. Mozna ja jednak
zaimplementowacé takze w aplikacji z graficznym interfejsem, zas przyciski i inne elementy okna sa
z pewnoscia bardziej intuicyjne niz chocby lista dostepnych funkcji i operacji matematycznych.

» graficzne interfejsy uzytkownika dajq wiekszg swobode i kontrole nad przebiegiem
programu. O ile w aplikacjach konsolowych funkcjonowanie programu opiera sig
zazwyczaj na schemacie: pobierz dane 2 pracuj 2 pokaz wynik, o tyle interfejsy
graficzne w wiekszoséci przypadkdéw zostawiajg uzytkownikowi olbrzymie pole
manewru, jezeli chodzi o podejmowane czynnosci i ich kolejnos¢. Jest to
catkowicie inny model funkcjonowania programu.

GUI jest zatem nie tylko zmiang w powierzchownosci aplikacji, ale tez fundamentalng
réznicg, jezeli chodzi o jej dziatanie - zaréwno od strony uzytkownika, jak i programisty.
Tworzenie programow z interaktywnym interfejsem przebiega wiec inaczej niz kodowanie
aplikacji konsolowych, dziatajacych sekwencyjnie.

Ta druga czynnos¢ jest nam juz doskonale znana, teraz wiec przyszta pora na poznanie
metod tworzenia aplikacji dziatajacych w srodowiskach graficznych i wykorzystujacych
elementy GUI.

327

Posiadanie graficznego interfejsu nie oznacza aczkolwiek, ze dany program jest w petni
interaktywny. Wiele z aplikacji niewatpliwie graficznych, np. kreatory instalacji, s w
rzeczywistosci programami sekwencyjnymi. Jednoczes$nie mozliwe jest osiggniecie
interaktywnosci w srodowisku tekstowym, czego najlepszym przyktadem jest chyba
popularny w czasach DOSa menedzer plikéw Norton Commander.

Obecnie jednak aplikacje wyposaza sie w graficzny interfejs wtasnie po to, aby ich
obstuga byfa interaktywna i mozliwa na dowolne sposoby. Na tym opieraja sie dzisiejsze
systemy operacyjne.

Zajmiemy sie programowaniem aplikacji okienkowych przeznaczonych dla srodowiska
Windows. Pamietamy oczywiscie, ze naszym nadrzednym celem jest poznanie technik
programowania gier; znajomos¢ podstaw tworzenia programow GUI jest jednak
niezbedna, by mdc korzystac z biblioteki graficznej DirectX, ktora przeciez dziata w
graficznym $rodowisku Windows. Umiejetnos¢ postugiwania sie narzedziami, jakie ten
system oferuje, powinna tez zaprocentowac w blizszej lub dalszej przysztosci i z
pewnoscig okaze sie pomocna.

A zatem - zaczynajmy programowanie w Windows!

Wprowadzenie do programowania Windows

Pisanie programdw dziatajacych w podsystemie GUI w Windows rézni sie zasadniczo od
tworzenia aplikacji konsolowych. Wynika to nie tylko z nowych narzedzi
programistycznych, jakie nalezy do tego wykorzystaé, ale takze, czy moze przede
wszystkim, z innego modelu funkcjonowania programéw okienkowych. Wymaga to nieco
innego podejscia do kodowania, mysle jednak, ze jest ono nawet tatwiejsze i bardziej
sensowne niz dla konsoli.

Na poczatek naszej przygody z programowaniem Windows poznamy wiec 6w nowy model
dziatania aplikacji. P6zniej zobaczymy réwniez, jakie instrumenty wspomagajace
kodowanie oferuje ten system operacyjny.

Programowanie sterowane zdarzeniami

Elastycznos¢, jaka wykazujg programy z interfejsem graficznym, w zakresie kontroli ich
dziatania przez uzytkownika jest niezwykle duza. Mozna w zasadzie stwierdzi¢, ze dopiero
takie aplikacje stajq sie przydatnymi narzedziami, postusznymi swoim uzytkownikom. Nie
narzucajg zadnych $cistych wymogoéw co do sposobu obstugi, pozostawiajac duze pole
swobody i ergonomii.

Osiggniecie takich efektow przy pomocy znanych nam technik programowania bytoby
bardzo trudne, a na pewno naciggane - jezeli nie niemozliwe. Graficzny interfejs aplikacji
okienkowych wymaga bowiem zupetnie nowego sposobu kodowania: programowania
sterowanego zdarzeniami.

Modele dziatania programow

Aby doktadnie zrozumiec te idee i moéc niedlugo stosowac jg w praktyce, potrzebne sg
rzecz jasna stosowne wyjasnienia. Przede wszystkim chciatoby sie wiedzie¢, na czym
polegajg réznice w tym sposobie programowania, gdy przyréwnamy go do znanego
dotychczas sekwencyjnego uruchamiania kodu. Nie od rzeczy bytoby takze wskazanie
zalet nowego modelu dziatania aplikacji. To wfasnie uczynimy teraz.

Najpierw nalezatoby wiec sprecyzowad, co rozumiemy pod pojeciem modelu dziatania
programu, gdyz stosowaliSmy ten termin juz kilkakrotnie i najwyrazniej wydaje sie on tu
kluczowy. Mianowicie mozemy powiedzie¢ krotko:

328

Model funkcjonowania aplikacji (ang. application behavior model) to, najogdlniej
mowigc, pozycja, jaka zajmuje program w stosunku do uzytkownika oraz do systemu
operacyjnego. Okresla on sposob, w jaki kod programu steruje jego dziataniem, gtéwnie
wprowadzaniem danych wejsciowych i wyprowadzaniem wyjsciowych.

Wyjasnienie to moze wydawac sie dosy¢ mgliste, poniewaz pojecie modelu
funkcjonowania aplikacji jest jedng z najbardziej fundamentalnych spraw w
projektowaniu, kodowaniu, jak réwniez w uzytkowaniu wszystkich bez wyjatku
programoéw. Jednoczesnie trudno je rozpatrywac catkiem ogolnie, tak jak tutaj, i dlatego
zwykle sie tego nie robi; niemniej jednak jest to bardzo wazny aspekt programowania.

Najczesciej wszakze moéwi sie jedynie o odmianach modelu dziatania aplikacji, a zatem
takze i my je poznamy. Nie sg one zreszta catkiem dla nas obce, a nawet nowopoznane
koncepcje wydadzg sie, jak sadze, dosy¢ logiczne i rozsadne.

Przyjrzyjmy sie wiec poszczegélnym modelom.

Model sekwencyjny

Najstarszym i najwczes$niej przez nas spotkanym w nauce programowania modelem jest
model sekwencyjny. Byl to w poczatkach rozwoju komputeréw najbardziej oczywisty
sposob, w jaki mogly dziata¢ éwczesne programy.

Ogodlnym zatozeniem tego modelu jest ustawienie programu w pozycji dialogu z
uzytkownikiem. Taki dialog nie jest oczywiscie normalng konwersacjg, jako ze komputery
nigdy nie byty, nie sg i nie beda ani troche inteligentne. Dlatego tez przyjmuje ona forme
wywiadu, ktéremu poddawany jest uzytkownik.

Aplikacja zatem ,zadaje pytania” i oczekuje na nie odpowiedzi w postaci potrzebnych
sobie danych. Prezentuje tez wyniki swojej pracy do wgladu uzytkownika.

| re—

Systemn
aperacyjny

Uzytkownik

\

Schemat 36. Sekwencyjny model dziatania programu. Aplikacja zajmuje tu miejsce nadrzedne w
stosunku do uzytkownika (stad jej wielkos¢ na diagramie :D), a system operacyjny jest
posrednikiem w wymianie informacji (zaobrazowanej strzatkami).

Najwazniejsze, ze caty przebieg pracy programu jest kontrolowany przez programiste. To
on ustala, kiedy nalezy odczyta¢ dane z klawiatury, wyswietli¢ co$ na ekranie czy
wykonac inne akcje. Wszystko ma tu swdéj okreslony porzadek i kolejnos¢, na ktorg
uzytkownik nie ma wptywu. Wiasnie ze wzgledu na owg kolejnos¢ model ten
nazywamy sekwencyjnym.

Najlepszym przykfadem aplikacji, ktore dziatajg w ten sposdéb, bedg wszystkie napisane
dotychczas w tym kursie programy konsolowe; w ogdlnosci tyczy sie to w zasadzie
kazdego programu konsolowego. Sama natura tego $rodowiska wymusza pobieranie oraz
pokazywanie informacji w pewnej kolejnosci, niepozwalajacej uzytkownikowi na wiekszg
swobode.

329

Do tej grupy mozemy tez zaliczy¢ blizsze nam aplikacje, funkcjonujace jako kreatory
(ang. wizards), z kreatorami instalacji na czele. Posiadajg one wprawdzie interfejs
graficzny, ale sposdb i porzadek ich dziatania jest Scisle ustalony. Obrazujg to nawet
kolejne kroki - ekrany, ktore po kolei pokonuje uzytkownik, podajac dane i obserwujac
efekty swoich dziatan.

fi5! Instalacja - PenSoccer

Wybierz folder docelowy
Gdzie ma by zainstalowany program PenSoccer?

'\F'ru:ugram Flles"-.-'i‘-.vucadu SoftwaretPenSoccer

(= I
E} F'ru:ugram Files

socado Sofbware

E:] F'enS ocoem

-u.- o wmu:h:uws

Screen 45. Kreatory instalacji (ang. setup wizards) sa przyktadami programow dziatajacych
sekwencyjnie. Zawieraja wprawdzie elementy interfejsu graficznego wlasciwe innym aplikacjom,
ale ich dziatanie jest precyzyjnie ustalone i podzielone na kroki, ktére nalezy pokonywaé w
okreslonej kolejnosci.

Poza wspomnianymi kreatorami (ktdre zazwyczaj sq tylko czescig wiekszych aplikacji),
programy dziatajgce sekwencyjnie nie wystepujq zbyt licznie i nie majg powazniejszych
zastosowan. Ich niewrazliwo$¢ na intencje uzytkownika i zatwardziate trzymanie sie
ustalonych schematéw funkcjonowania sprawiajg, ze nie mozna przy ich pomocy
swobodnie wykonywac swoich zajec.

Model zdarzeniowy

Zupetnie inne podejscie jest prezentowane w modelu zdarzeniowym, zwanym tez
programowaniem sterowanym zdarzeniami (ang. event-driven programming).
Model ten opiera sie na catkiem odmiennych zasadach niz model sekwencyjny, oferujac
dzieki nim nieporéwnywalnie wiekszg elastycznos¢ dziatania.

Podstawowa wytyczng jest tu zmiana roli programu. Nie jest on juz ciagiem kolejno
podejmowanych krokow, ktére sktadajg sie na wykonywang przezen czynnosé, ale raczej
czym$ w rodzaju witryny sklepowej, z ktorej uzytkownik moze wybiera¢ pozadane w
danej chwili funkcje.

Dlatego tez dziatanie programu polega na odpowiedniej reakcji na wystepujace
zdarzenia (ang. events). Tymi zdarzeniami mogg byc¢ na przyktad wcisniecia klawiszy,
ruch myszy, zmiana rozmiaru okna, uzyskanie potaczenia sieciowego i jeszcze wiele
innych. Program moze by¢ informowany o tych zdarzeniach i reagowac na nie we
wiasciwy sobie sposéb.

330

Najwazniejszg cechg tego modelu programowania jest jednak samo wykrywanie
zdarzen. Oto6z lezy ono catkowicie poza obowigzkami programisty. Nie musi on juz
organizowac czekania na wcisniecie klawisza czy tez wystgpienie innego zdarzenia -
wyrecza go w tym system operacyjny. Programista powinien jedynie zapewni¢ kod
reakcji na te zdarzenia, ktore sq wazne dla pisanej przez niego aplikacji.

System
operacyjny

U 2ytkownik

Schemat 37. Zdarzeniowy model dziatania programu. Pozycja uzytkownika jest tu znacznie
wazniejsza niz w modelu sekwencyjnym, gdyz poprzez zdarzenia moze on w bardzo duzym stopniu
wptywaé na prace programu. Rola posredniczaca systemu operacyjnego jest tez bardziej
rozbudowana.

Wiekszos$¢ zdarzen bedzie pochodzi¢ od uzytkownika - szczegdlnie te zwigzane z
urzadzeniami wejscia, jak klawiaturg czy mysza. Aplikacja bedzie natomiast otrzymywac
informacje o nich przez caly swoj czas dziatania, nie zas tylko wtedy, gdy sama o to
poprosi. W reakcji na owe zdarzenia program powinien wykonywac odpowiednie dla
siebie czynnosci i zazwyczaj to wiasnie robi. Poniewaz wiec zdarzenia s wywotywane
przez uzytkownika, a aplikacja musi jedynie reagowac na nie, wiec sposob jej dziatania
jest wéwczas prawie catkiem dowolny. To uzytkownik decyduje, co program ma w danej
chwili robi¢ - a nie on sam.

W modelu zdarzeniowym dziatanie programu jest podporzadkowane przede wszystkim
woli uzytkownika.

I winamp XP [ODP.txt - Notatnik

" I B CEH - OUT OF THE SILEHT PLAHET
192 kbps , 44 kHz & £

Anak woals
Etgpi dosrt
Howania. I
moze hyd
kodersk:
aktualnym
jakie

playlist

13 nder
cuk
Than The Sun

E 6 6 6 ===
AL 93 18

Screen 46 i 47. Przyktady programoéw wykorzystujacych model zdarzeniowy. Ich uzytkownicy moga
je kontrolowa¢, wywotujac takie zdarzenia jak klikniecie przycisku lub wybor opcji z menu.

ochiektowe]j struktury programu -
ich zwiazkow. Najpierw pozhamy :
albho, jak kto woli, rdl, w ktar:

Z poczatku moze to wydawac sie niezwykle ograniczajace: aby program magt co$ zrobic,
musi poczeka¢ na wystgpienie jakiego$ zdarzenia. W istocie jednak wcale nie jest to
niedogodnoscig i mozna sie o tym przekonac¢, uswiadamiajac sobie dwa fakty.

Przede wszystkim kazdy program powinien by¢ ,$wiadomy” warunkéw zewnetrznych,
ktére mogg wptywac na jego dziatanie. W modelu zdarzeniowym to ,, uswiadamianie”
przebiega poprzez informacje o zachodzacych zdarzeniach; bez tego aplikacja i tak

331

musiataby w jaki$ sposéb dowiadywac sie o tych zdarzeniach, by moéc w ogdle poprawnie
fukcjonowacd.

Po drugie sytuacje, w ktorych nalezy robi¢ co$ niezaleznie od zachodzacych zdarzen,
nalezg do wzglednej rzadkosci. Jezeli nawet jest to konieczne, system operacyjny z
pewnoscig udostepnia sposoby, poprzez ktére mozna taki efekt osiggnac.

A zatem model zdarzeniowy jest najbardziej optymalnym wariantem dziatania programu,
z punktu widzenia zaréwno uzytkownika (petna swoboda w korzystaniu z aplikacji), jak i
programisty (zautomatyzowane wykrywanie zdarzen i koniecznos$¢ jedynie reakcji na
nie). Nic wiec dziwnego, ze obecnie niemal wszystkie porzadne programy funkcjonuja w
zgodzie z tym modelem. W kolejnych rozdziatach my takze nauczymy sie tworzenia
aplikacji dziatajacych w ten sposob.

Model czasu rzeczywistego

Dla niektérych programéw model zdarzeniowy jest jednak niewystarczajacy lub
nieodpowiedni. Ich natura zmusza bowiem do ciggtej pracy i wykonywania kodu
niezaleznie od zachodzacych zdarzen. O takim programach moéwimy, iz dziatajg w czasie
rzeczywistym (ang. real time).

W praktyce wiele programow wykonuje podczas swej pracy dodatkowe zadania w tle
(ang. background tasks), niezalezne od zachodzacych zdarzen. Przyktadowo, dobre
edytory tekstu czesto dokonujg sprawdzania poprawnosci jezykowej dokumentow
podczas ich edycji. Podobnie niektére systemy operacyjne przeprowadzajq
defragmentacje dyskéw w sposdb ciggty, przez caty czas swego dziatania.

O takich aplikacjach nie mozemy jednak powiedzie¢, ze wykorzystujg model czasu
rzeczywistego. Jakkolwiek réznica miedzy nim a modelem zdarzeniowym wydaje sie
ptynna, to za programy czasu rzeczywistego mozna uzna¢ wyltacznie te, dla ktérych
czynnosci wykonywane w sposéb ciaglty sa gtéwnym (a nie pobocznym) celem dziatania.

Program

1\ System
operacyjny

LItk

Schemat 38. Model dziatania programu czasu rzeczywistego. Programy tego rodzaju zwykle same
dbaja o pobieranie odpowiednich danych od systemu operacyjnego; moga sobie na to pozwoli¢,
gdyz nieprzerwanie wykonuja swoéj kod. Natomiast ich interakacja z uzytkownikiem jest zwykle

dos$¢ ograniczona.

Catkiem spora liczba aplikacji dziata w ten sposdb, tyle ze zazwyczaj trudno to zauwazyc.
Nalezg do nich bowiem wszelkie programy dziatajgce w tle: od sterownikéw urzadzen, po
liczniki czasu potaczen internetowych, firewalle, skanery antywirusowe, menedzery
pamieci operacyjnej lub aplikacje dokonujace jakich$ skomplikowanch obliczen
naukowych. Swojg prace muszg one wykonywac przez caty czas - niezaleznie od tego,
czy jest to monitoring zewnetrznych urzadzen, procesdow systemowych czy tez
pracochtonne algorytmy. Koncentrujg na tym prawie wszystkie swoje zasoby, cho¢ mogq
naturalnie zapewniac¢ jakas forme kontaktu z uzytkownikiem, podobnie jak programy
sterowane zdarzeniami.

Zwykle tez aplikacje czasu rzeczywistego tworzy sie podobnie jak programy w modelu
zdarzeniowym. Uzupetnia sie je tylko o pewne dodatkowe procedury, wykonywane przez

332

caty czas trwania programu lub tez wtedy, gdy nie sg odbierane zadne informacje o
zdarzeniach.

“~ SETI@Home Client

File Settings Help

The Search for
Extraterrestrial Intelligence at HOME

Data Analysis

CPU time: 10 hr 14 min 24.

Screen 48. Programy czasu rzeczywistego moga dziata¢ w tle i wykonywaé przez catly czas wiasciwe
sobie czynnosci. Klient SETI@home dokonuje na przykitad analizy informacji zbieranych przez
radioteleskopy w poszukiwaniu sygnatéw od inteligentnych cywilizacji pozaziemskich.

Drugq niezwykle wazng (szczegolnie dla nas) grupq aplikacji, ktére wykorzystuja ten
model funkcjonowania, sg gry. Przez caty swdj czas dziatania wykonujg one prace
okreslang w skrécie jako generowanie klatek, czyli obrazow, ktére sg wyswietlane
potem na ekranie komputera. Aby dawaty one ztudzenie ruchu, muszg zmienia¢ sie wiele
razy w ciggu sekundy, zatem na ich tworzenie powinien by¢ przeznaczony caty dostepny
grze czas i zasoby systemowe. Tak tez faktycznie sie dzieje, a generowanie klatek
przeprowadza sie nieustannie i bez przerwy.

Model czasu rzeczywistego jest wiec najbardziej nas, przysztych programistéw gier,
interesujgcym sposobem dziatania programoéw. Aby jednak tworzy¢ aplikacje oparte na
tym modelu, trzeba dobrze poznac¢ takze programowanie sterowane zdarzeniami, jako ze
jest ono z nim nierozerwalnie zwigzane. Umiejetno$¢ tworzenia aplikacji okienkowych w
Windows jest bowiem pierwszym i niezbednym wymaganiem, jakie jest stawiane przed
adeptami programowania gier, dziatajacych w tym systemie operacyjnym.

Dalej wiec poznamy blizej idee programowania sterowanego zdarzeniami i przyjrzymy
sie, jak jest ona realizowana w praktyce.

Zdarzenia i reakcje na nie

Aby program madgt wykonywac jakis kod w reakcji na pewne zdarzenie, musi sie o tym
zdarzeniu dowiedzie¢, zidentyfikowac jego rodzaj oraz ewentualne dodatkowe informacje,
zwigzane z nim. Bez tego nie ma mowy o programowaniu sterowanym zdarzeniami.

W systemach operacyjnych takich jak DOS czy UNIX rozwigzywano ten problem w dosé
pokretny sposdb. Otoz jezeli program nie miat dziata¢ sekwencyjnie, lecz reagowac na
niezalezne od niego zdarzenia, to musiat nieustannie prowadzi¢ monitorowanie ich
potencjalnych zrédet. Musiat wiec , nastuchiwaé” w oczekiwaniu na wcisniecia klawiszy,
klikniecia myszg czy inne wydarzenia i w przypadku ich wystgpienia podejmowac
odpowiednie akcje. Proces ten odbywat sie niezaleznie do systemu operacyjnego, ktory
~hie wtracat” sie w dziatanie programu.

W dzisiejszych systemach operacyjnych, ktére sg w catosci sterowane zdarzeniami, ich
wykrywanie odbywa sie juz automatycznie i poszczegdlne programy nie muszg o to dbac.

http://www.setiathome.pl/

333

Sq one aczkolwiek w odpowiedni sposdb powiadamiane, gdy zajdzie jakiegokolwiek
zdarzenie systemowe.

Jak to sie dzieje?... Intensywnie wykorzystywany jest tu mechanizm funkcji zwrotnych
(ang. callback functions). Funkcje takie sg pisane przez twoérce aplikacji, ale ich
wywotywaniem zajmuje sie system operacyjny; robi to, gdy wystapi jakie$ zdarzenie.
Przy uruchamianiu programu funkcje te musza wiec by¢ w jaki$ sposéb przekazane do
systemu, by ten mdgt je we wilasciwym momencie wywotywac. Przypomina to
zamawianie budzenia w hotelu na okreslong godzine: najpierw dzwonimy do recepcji, by
zamowic¢ ustuge, a potem mozemy juz spokojnie potozyc¢ sie do snu. O wyznaczonej
godzinie zadzwoni bowiem telefon, ktérego dzwiek z pewnoscig wybudzi nas z drzemki.
Podobnie kazdy program ,zamawia ustuge” powiadamiania o zdarzeniach w ,recepcji”
systemu operacyjnego. Przekazuje mu przy tym wskaznik do funkcji, ktéra ma byc
wywotana, gdy zajdzie jakie$s zdarzenie. Gdy istotnie tak sie stanie, system operacyjny
»~0ddzwoni” do programu, wywotujac podang funkcje. Aplikacja moze wtedy zareagowac
na dane zdarzenie.

Rola, jaka w tym procesie odgrywajg wskazniki do funkcji, jest bodaj ich najwazniejszym
| programistycznym zastosowaniem.

Funkcje, ktore sg wywotywane w nastepstwie zdarzen, nazywamy procedurami
zdarzeniowymi (ang. event procedures).

Rozrdznianie zdarzen

Informacja o zdarzeniu powinna oczywiscie zawiera¢ takze dane o jego rodzaju; nalezy
przeciez odrézni¢ zdarzenia pochodzace od klawiatury, myszy, okien, systemu plikow czy
jeszcze innych kategorii i obiektédw. Mozna to uczyni¢ kilkoma drogami, a wszystkie majq
swoje wady i zalety.

Pierwszy z nich zaktada obecnos¢ tylko jednej procedury zdarzeniowej, ktéra dostaje
informacje o wszystkich wystepujacych zdarzeniach. W takim wypadku konieczne sg
dodatkowe parametry funkcji, poprzez ktdére przekazywany bedzie rodzaj zdarzenia (np.
jako odpowiednia stata wyliczeniowa) oraz ewentualne dane z nim zwigzane. W tresci
takiej procedury wystapig zapewne odpowiednie instrukcje warunkowe, dzieki ktérym
podjete zostang akcje wtasciwe danym rodzajom zdarzen.

Inny wariant zakfada zgrupowanie podobnych zdarzen w taki sposéb, aby o ich
wystgpieniu byly informowane oddzielne procedury. Przy tym rozwigzaniu mozna miec
osobne funkcje reagujace na zdarzenia myszy, osobne dla obstugi klawiatury itp.

Trzeci sposdb wigze sie ze specjalnymi procedurami dla kazdego zdarzenia. Gdy go
wykorzystujemy, o kazdym rodzaju zdarzen (wcisniecie klawisza, klikniecie przyciskiem
myszy, zakonczenie programu itd.) dowiadujemy sie poprzez wywotanie unikalnej dla
niego procedury zdarzeniowej. Jednemu zdarzeniu odpowiada wiec jedna taka procedura.

Jezeli chodzi o wykorzystanie w praktyce, to stosuje sie zwykle pierwsza lub trzecig
mozliwos¢. Pojedyncza procedura zdarzeniowa wystepuje w programowaniu Windows
przy uzyciu jego API - poznamy jg jeszcze w tym rozdziale. Osobne procedury dla
kazdego mozliwego zdarzenia sg natomiast czeste w wizualnych $rodowiskach
programistycznych, takich jak C++ Builder czy Delphi.

Fundamenty Windows

Windows jest systemem operacyjnym znanym chyba wszystkim uzytkownikom
komputerdéw i nie tylko. Chociaz wiele os6b narzeka na niego z réznych powodoéw, nie
sposAb nie doceni¢ jego roli w rozwoju komputeréw. To w zasadzie dzieki Windows trafity
one pod strzechy.

334

Pierwsza wersja tego systemu (oznaczona numerem 1.0) zostata wydana niemal
dwadziescia lat temu - w listopadzie 1985 roku. Dzisiaj jest to juz wiec zamierzchta
prehistoria, a przez kolejne lata doczekali§my sie wielu nowych wydan tego systemu.
Od samego poczatku posiadat on jednak graficzny interfejs oparty na oknach oraz wiele
innych cech, ktore bedg kluczowe przy tworzeniu aplikacji pracujacych na nim.

=| Program Manager | *I <
File Options MWindow Help

= Main [=]=

=] (L) =i

File Manager Control Panel Print Manager Clipboard DS Prompt

e &

Windows Setup Read Me

Microsoft Windows
Yersion 3.00a
Copyright © 1985-1990 Microsoft Corp.

Real Mode
Free Memory
(] L]h] k)L
]]] (L] h]k]
| Accessories Games

Screen 49. Menedzer programow w Windows 3.0. Seria 3.x Windows byla, obok Windows 95, tga,
ktora przyniosta systemowi najwieksza czes¢ z obecnej popularnosci.
(screen pochodzi z serwisu Nathan’s Toasty Technology)

O doktadnej historii Windows mozesz przeczyta¢ w internetowym serwisie Microsoftu.

Tym fundamentom Windows poswiecimy teraz nieco uwagi.

Okna

W Windows najwazniejsze sg okna; sg na tyle wazne, ze system wziat od nich nawet
swojg nazwe. Chociaz wiec pomyst zamkniecig interfejsu uzytkownika w takie
prostokatne obszary ekranu pochodzi od MacOS'a, jego popularyzacje zawdzieczamy
przede wszystkim systemowi z Redmond. Dzisiaj okna wystepuja w kazdym graficznym
systemie operacyjnym, od Linuxéw po QNX.

Intuicyjnie za okno uwazamy kolorowy prostokat ,zawierajacy program”. Ma on
obramowanie, kilka przyciskéw, pasek tytutu oraz ewentualnie inne elementy. Dla
systemu pojecie to jest jednak szersze:

Okno (ang. window) to w systemie Windows dowolny element graficznego interfejsu
uzytkownika.

Oznacza ono, ze za swoiste okna sg uwazane takze przyciski, pola tekstowe, wyboru i
inne kontrolki. Takie podejscie moze sie wydawac dziwne, sztuczne i nielogiczne, jednak
ma uzasadnienie programistyczne, o ktérym rychto sie dowiemy,

http://www.toastytech.com/
http://www.microsoft.com/windows/WinHistoryIntro.mspx

335

Hierarchia okien

Jezeli za okno uznamy kazdy element GUI, wtedy dostrzezemy takze, ze tworzg one
hierarchie: pewne okno moze by¢ nadrzednym dla innego, podrzednego.

Na szczycie tej hierarchii widnieje pulpit - okno, ktére istnieje przez caty czas dziatania
systemu. Bezposrednio podlegte sg mu okna poszczegolnych aplikacji (lub inne okna
systemowe), zas dalej hierarchia moze siega¢ az do pojedynczych kontrolek (przyciskéw
itd.).

B Wiasciwascl: Ekran

r -

'wiatciwodc: Ekian

- Kompozyde| Pupt | .. |

Hnmmfdu]

Kompozycla to th | zestaw ...
»o KOMpoZycja:
E""|I(urnpuzycja emodyfikowana ;l
kno akiywne = _ i ' Zapis2 jako... I
W gy, ‘ - (WETT I
Tekst okna | ? :
: w-Prezykiad:
[(Obrazek podgladu) |
Pulpit]

|
|
|
|

1 oK I Anuluj I : Zastosy)

Screen 50 i Schemat 39. Przykladowa hierarchia okien

Dzieki takiemu porzadkowi Windows moze w prawidtowy sposob kontrolowa¢ zachowania
okien - poczawszy od ich wyswietlania, a konczac na przekazywaniu don komunikatéw (o
czym bedziemy méwili niedtugo).

Aplikacje i procesy

Zadne okno w systemie Windows nie istnieje jednak samo dla siebie. Zawsze musi by¢
ono zwigzane z jakims$ programem, a doktadniej z jego instancja.

Instancja programu (ang. application instance) nazywamy pojedynczy egzemplarz
uruchomionej aplikacji.

Uruchomienie programu z pliku wykonywalnego EXE pocigga wiec za sobg stworzenie
jego instancji. Do niej sq nastepnie ,doczepianie” kolejno tworzone przez aplikacje okna.
Gdy za$ dziatanie programu dobiegnie konca, sg one wszystkie niszczone.

O tworzeniu i niszczeniu okien powiemy sobie w nastepnym podrozdziale.

Oprocz tego uruchomiony program egzystuje w pamieci operacyjnej w postaci jednego
(najczesciej) lub kilku procesow (ang. processes). Cecha szczegdlng procesu w Windows
jest to, iz posiada on wylaczng i wlasna przestrzen adresowaq. Dostep do tej

336

przestrzeni jest zarezerowowany tylko i wytacznie dla niego - wszelkie inne préby
nieuprawnionego odczytu lub zapisu spowodujg wyjatek.

Warto tez przypomnie¢, ze Windows jako system 32-bitowy uzywa plaskiego modelu
adresowania pamieci. Kazdy proces moze wiec teoretycznie posiada¢ cztery gigabajty
pamieci operacyjnej do swej wytacznej dyspozycji. W praktyce zalezy to oczywiscie od
ilodci zamontowanej w komputerze pamieci fizycznej oraz wielkosci pliku wymiany.

Dynamicznie dotgczane biblioteki

Jedng z przyczyn sukcesu Windows jest fatwos$¢ obstugi programoéw pracujacych pod
kontrolg tego systemu. Kazda aplikacja wyglada tu podobnie, posiada zblizony interfejs
uzytkownika. Nauka korzystania z nowego programu nie oznacza wiec przymusu
poznawania nowych elementdw interfejsu, ktére w ogromnej wiekszosci sg takie same w
kazdym programie.

Pamietajmy jednak, ze kazdy interfejs uzytkownika wymaga odpowiedniego kodu,
zajmujacego sie jego wyswietlaniem, reakcjg na klikniecia i wcisniecia klawiszy oraz
innymi jeszcze aspektami funkcjonowania. GUI wystepujace w Windows nie jest tu
zadnym wyjatkiem, a skoro kazdy program okienkowy korzysta z tego interfejsu, musi
mie¢ dostep do wspomnianego kodu.

Nierozsadne bytoby jednak zaktadanie, ze kazda aplikacja posiada jego wiasng kopie.
Pomijajac juz marnotrawstwo miejsca na dysku i w pamieci, ktére by sie z tym wigzato,
trzeba zauwazy¢, ze tatwo mogtyby to prowadzi¢ do konfliktow w zakresie wersji
systemu. Najprawdopodobniej nalezatoby wtedy catkiem zapomnie¢ o kompatybilnosci
wstecz, a kazda aplikacja dziataby tylko na wtasciwej sobie wersji systemu operacyjnego.

Problemy te sq bardzo powazne i doczekaty sie rownie powaznego rozwigzania.
Lekarstwem na te bolgczki sg mianowicie dynamicznie dotaczane biblioteki.

Dynamicznie dotaczane biblioteki (ang. dynamically linked libraries, w skrécie DLL),
zwane tez bibliotekami DLL lub po prostu DLL'ami, sg skompilowanymi modutami,
zawierajacymi kod (funkcje, zmienne, klasy itd.), ktdry moze by¢ wykorzystywany przez
wiele programow jednoczesnie. Kod ten istnieje przy tym tylko w jednej kopii -
zaréwno na dysku, jak i w pamieci operacyjnej.

Biblioteki takie istniejg w postaci plikdw z rozszerzeniem .dll i sg zwykle umieszczone w
katalogu systemowym?®’, wzglednie w folderach wykorzystujacych je aplikacji.
Udostepniajg one (eksportuja) zbiory symboli, ktére moga by¢ uzyte (zaimportowane)
w programach pracujacych w Windows.

Z punktu widzenia programisty C++ korzystanie z kodu zawartego w bibliotekach DLL nie
rozni sie wiele od stosowania zasobow Biblioteki Standardowej lub tez funkcji w rodzaju
system (), getch () czy rand (). Rdznica polega na tym, ze biblioteki DLL nie sg
statycznie doftaczane do pliku wykonywalnego aplikacji, lecz linkowane dynamicznie
(stad ich nazwa) w czasie dziatania programu. W pliku EXE muszg sie jedynie znalez¢
informacje o nazwach wykorzystywanych bibliotek oraz o symbolach, ktdre sg z nich
importowane. Dane te sg automatycznie zapisywane przez kompilator jako tzw. tabele
importu.

Wyodrebnienie kluczowego kodu systemu Windows w postaci bibliotek DLL likwiduje
zatem wszystkie dolegliwosci zwigzane z jego wykorzystaniem w aplikacjach. Mechanizm
dynamicznych bibliotek pozwala ponadto na tworzenie innych, wtasnych skarbnic kodu,
ktére mogg by¢ wspétuzytkowane przez wiele programéw. W takiej postaci istnieje na

9 W Windows 9x jest to \WINDOWS\SYSTEM\, w Windows NT za$ \WINDOWS\SYSTEM32\.

337

przyktad platforma DirectX czy modut FMod, ktére bedziemy w przysztosci
wykorzystywac, piszac swoje gry.

Windows API

Kod, ktory bedziemy wykorzystywac w tworzeniu aplikacji okienkowych, nosi ogding
nazwe Windows API. API to skrot od Applications’ Programmed Interface, czyli
Jinterfejsu programowanego aplikacjami”.

Windows API (czasem zwane Win32API lub po prostu WinAPI) to zbior funkcji, typow
danych i innych zasobéw programistycznych, pozwalajacy tworzy¢ programy dziatajagce w
trybie graficznym pod kontrolg systemu Windows.

Nauka pisania programow okienkowych polega w duzej mierze na przyswojeniu sobie
umiejetnosci postugiwania sie tg bibliotekg. Temu wiasnie celowi beda podporzadkowane
najblizsze rozdziaty niniejszego kursu, tacznie z aktualnym.

Na poczatek aczkolwiek przyjrzymy sie WinAPI jako catosci i poznamy kilka przydatnych
zasad, wspomagajacych programowanie z uzyciem jego zasobow.

Biblioteki DLL

Windows API jest zawarte w bibliotekach DLL. Wraz z kolejnymi wersjami systemu
bibliotek tych przybywato - pojawity sie moduty odpowiedzialne za multimedia,
komunikacje sieciowg, Internet i jeszcze wiele innych.

Najwazniejsze trzy z nich byly jednak obecne od samego poczatku®® i to one tworzg
zasadniczg czesc¢ interfejsu programistycznego Windows. S3 to:
> kernel32.dll - w niej zawarte sg funkcje sterujace jadrem (ang. kernel) systemu,
zarzgdzajgce pamiecig, procesami, watkami i innymi niskopoziomowymi
sprawami, ktore sg kluczowe dla funkcjonowania systemu operacyjnego.
> user32.dll - odpowiada za graficzny interfejs uzytkownika, czyli za okna - ich
wyswietlanie i interaktywnosc.
> gdi32.dll - jest to elastyczna biblioteka graficzna, pozwalajgca rysowac
skomplikowane ksztatty, bitmapy oraz tekst na dowolnym rodzaju urzgdzen
wyjsciowych. Zapoznamy sie z nig w rozdziale 3, Windows GDI.

Kazda z tych bibliotek eksportuje setki funkcji. Bogactwo to moze przyprawi¢ o zawrot
gtowy, ale wkrétce przekonasz sie, ze korzystanie z niego jest catkiem proste. Poza tym,
jak wiadomo, od przybytku gtowa nie boli ;-)

Pliki nagtowkowe

Biblioteki DLL sg zasadniczo przeznaczone dla samych programdw; z nich czerpig one
kod potrzebnych funkcji Windows API. Dla nas, programistow, wazniejsze sg
mechanizmy, ktére pozwalajg uzyc¢ tychze funkcji w C++.

I tu spotyka nas mita niespodzianka: wykorzystanie WinAPI w aplikacjach pisanych w
C++ przebiega bowiem podobnie, jak stosowanie modutéw Biblioteki Standardowej.
Wymaga mianowicie dotgczenia odpowiedniego pliku nagtéwkowego.

Tym plikiem jest windows.h. Dotgczajac go, otrzymujemy dostep do wszystkich
podstawowych i czesci bardziej zaawansowanych funkcji Windows API. Warto przy tym
podkresli¢, ze nawet owe ,podstawowe” funkcje pozwalajg tworzy¢ rozbudowane i
skomplikowane aplikacje, a dla programistéw chcacych pisa¢ gtéwnie gry w DirectX bedg
ohe znacznie wiecej niz wystarczajace.

8 Chociaz nie zawsze byty 32-bitowe i ich nazwy nie konczyly sie na 32.

338

. Jeszcze przed dotaczeniem (za pomoca dyrektywy #include) nagtdwka windows.h

obrze jest zdefiniowaé (poprzez #define) makro WIN32 LEAN AND MEAN. Wytaczy to
iektére rzadziej uzywane fragmenty API, zmniejszajac rozmiar powstatych plikow 5
wykonywalnych i skracajac czas potrzebny na ich zbudowanie. Bede stosowat te sztuczke |
. we wszystkich programach przyktadowych, w ktérych bedzie to mozliwe.

windows.h wewnetrznie dotacza takze wiele innych plikéw nagtéwkowych, z ktérych
najwazniejszymi sq:
> windef.h, zawierajacy definicje typow (gtdwnie strukturalnych) uzywanych w
Windows API
> winbase.h, ktéry udostepnia funkcje jadra systemu (z biblioteki kernel32.dll)
> winuser.h, odpowiedzialny za interfejs uzytkownika (czyli biblioteke user32.dll)
» wingdi.h, udostepniajacy modut graficzny GDI (biblioteka gdi32.dlIl)

Oprécz tych nagtdéwkow istnieje takze cate mndéstwo rzadziej uzywanych,
odpowiadajacych na przyktad za programowanie sieciowe (winsock.h) czy tez obstuge
multimediow (winmm.h). Bedziesz je dotaczat, jezeli zechcesz skorzysta¢ z bardziej
zaawansowanych mozliwosci systemu Windows.

O funkcjach Windows API

Wiekszg czes¢ wymienionych plikow nagtdéwkowych stanowig prototypy funkcji,
uzywanych w programach okienkowych. Jest ich przynajmniej kilkaset, zgrupowanych w
kilkakanascie zespotéw zajmujgcych sie poszczegdlnymi aspektami systemu
operacyjnego.

Mnogos¢ tych fukcji nie powinna jednak przerazac. Znaczy ona przede wszystkich to, iz
Windows API jest niezwykle poteznym narzedziem, ktdre oferuje wiele przydatnych
mozliwosci. Tak naprawde bardzo niewiele jest czynnosci, ktérych wykonanie przy
pomocy tego ogromnego zbioru jest niemozliwe.

Naturalnie nie zawsze tak byto. W ciggu tych kilkunastu lat istnienia systemu Windows
jego API caty czas sie rozrastato i ulegato poszerzeniu o nowe intrumenty i funkcje. Z
czasem wprowadzono lepsze sposoby realizacji tych samych czynnosci; konsekwencjg
tego jest czesta obecnos$¢ dwoéch wersji funkcji realizujacych to samo zadanie.

Jedna z nich jest wariantem podstawowym (ang. basic), wykonujacym swojgq prace w
pewien okreslony, domysiny sposob. Funkcje takie mozna poznac po ich zwyczajnych
nazwach, jak na przyktad CreateWindow () (stworzenie okna), ReadFile () (odczytanie
danych z pliku), shellExecute () (uruchomienie/otwarcie jakiego$ obiektu), itp.
Ponadto istniejq tez bardziej zaawansowane, rozszerzone (ang. extended) wersje
niektorych funkcji. Pozna¢ je mozna po przyrostku Ex, a takze po tym, iz przyjmujg one
wiekszq ilo$¢ danych jako swoje parametry®®. Pozwalajg tym samym Scislej okresli¢
sposob wykonania danego zadania. Rozszerzonymi kuzynami poprzednio wymienionych
funkcji sq wiec CreatellindowEx (), ReadFileEx () Oraz ShellExecuteEx ().

Atoli nie wszystkie funkcje maja swe rozszerzone odpowiedniki - wrecz przeciwnie,
wiekszosc¢ z nich takowych nie posiada. Jezeli jednak wystepujg, wéwczas zalecane jest
uzywanie wiasnie ich. Sg to bowiem nowsze wersje funkcji, ktore moga wykonywac
zlecone sobie zadania nie tylko w bardziej elastyczny, ale tez w ogodlnie lepszy (czyli
wydajniejszy, bezpieczniejszy itp.) sposdb. Kiedy wiec stajemy przed podobnym
wyborem, pamietajmy, ze:

% Nie musi to od razu oznaczaé, ze przyjmuja one wieksza liczbe parametréw. Niektére (jak np.
ShellExecuteEx ()) zqdajg zamiast tego obszernej struktury, przekazanej jako parametr.

339

Uzycie rozszerzonych funkcji Windows API (z nazwami zakonczonymi na Ex) jest
pozadane wszedzie tam, gdzie mogg one zastgpi¢ swoje podstawowe wersje.

Podobne, cho¢ bardziej szczegdtowe zalecenia wystepujg tez w niemal kazdym opisie
rozszerzonej funkcji w MSDN. Dlatego tez w tym kursie powyzsza rada bedzie
skrupulatnie przestrzegana.

Jest jeszcze jedne przyrostek w nazwie funkcji, ktéry ma specjalne znaczenie - chodzi o
Indirect (‘posrednio’). Funkcje z tym zakoniczeniem rdznig sie od swych zwyktych
krewniakow tym, ze zamiast kilku(nastu) parametrow przyjmujg strukture, zawierajacq
pola dokfadnie odpowiadajace tymze parametrom.

Obiektowos¢ symulowana przy pomocy uchwytow

Mozliwe, ze dziwisz sie, dlaczego jest tu mowa tylko o funkcjach WinAPI, a ani stdwkiem
nie sg wspomniane klasy, z ktorych mogtaby sktadac sie ta biblioteka. Czyzby wiec nie
korzystata ona z dobrodziejstw programowania obiektowego?...

W duzej mierze jest to prawda. Wiekszos¢ sktadnikédw Windows API zostata napisana w
jezyku C, zatem nie moze wykorzystywac obiektowych mozliwosci jezyka C++. Nie
mozna jednakze powiedzie¢, iz jest to biblioteka strukturalna - jej twércow nie
zniechecita bowiem utomnosé jezyka programowania i zdofali z powodzeniem
zaimplementowac obiektowy projekt w zgota nieobiektowym $rodowisku.

Nie da sie ukry¢, ze bylo to niezbedne. Mndstwo koncepcji Windows (z oknami na czele)
daje sie bowiem sensownie przedstawic jedynie za pomocg technik zblizonych do OOP.

W jezyku C++ obiekty obstugujemy najczesciej poprzez wskazniki na nie. Gdy
wywotujemy ich metody, uzywamy sktadni w rodzaju:

obiekt->metoda (parametry);

Dla kompilatora jest to prawie zwyczajne wywotanie funkcji, tyle ze z dodatkowym
parametrem, ktéry wewnatrz owej funkcji (metody) jest potem reprezentowany poprzez
this. ,Prawdziwa” posta¢ powyzszej instrukcji mogtaby wiec wygladac tak:

metoda (obiekt, parametry);

Taka tez skfadnie majq wszystkie ,metodopodobne” funkcje Windows API, operujgce na
oknach, plikach, blokach pamieci, procesach czy innych obiektach systemowych.

Istnieje tu jednak pewna roznica. Otéz biblioteka WinAPI nie moze sobie pozwoli¢ na
udostepnianie programiscie wskaznikdw do swych wewnetrznych struktur danych;
mogtoby to skonczy¢ sie btedami o nieprzewidzianych konsekwencjach. Stosuje tu wiec
inng technike: obiekty sq uzyczane koderowi poprzez swoje uchwyty.

Uchwyt (ang. handle) to unikalny liczbowy identyfikator obiektu, za pomocg ktérego
mozna na tym obiekcie wykonywac operacje udostepniane przez funkcje biblioteczne.

Cata gama funkcji wykorzystuje uchwyty. Niektore z nich tworzg obiekty i zwracajg je w
wyniku - tak robi na przyktad CreateWindowEx (), tworzgca okno. Inne stuzg do
wykonywania okreslonych dziatan na obiektach, a kolejne odpowiadajg wreszcie za ich
niszczenie i sprzatanie po nich.

Jakkolwiek wiec uchwyty nie sq wskaznikami, widac spore podobienstwo miedzy
obydwiema konstrukcjami. Dotyczy ono takze koniecznosci zwalniania obiektow
reprezentowanych przez uchwyty, gdy juz nie bedg nam potrzebne. Nalezy uzywac do
tego odpowiednich funkcji, z ktérych wiekszo$¢ poznamy wkrotce.

340

Niezwolnienie obiektu poprzez jego uchwyt prowadzi do zjawiska wycieku zasobow
(ang. resource leak), ktére jest przynajmniej tak samo grozne jak wyciek pamieci w
przypadku wskaznikow.

Ostatnig cechg wspdlng z wskaznikami jest specjalne traktowanie wartosci NULL, czyli
zera. Jako uchwyt nie reprezentuje ona zadnego obiektu, zatem petni identyczna role,
jak pusty wskaznik.

Typy danych

W nagtéwkach Windows API widnieje, oprocz prototypéw funkcji, takze bardzo wiele
deklaracji nowych typdéw danych. Spora czesc¢ z nich to struktury, ktore w programowaniu
Windows sg uzywane bardzo czesto.

Wiekszos¢ jednak jest tylko aliasami na typy podstawowe, gtdwnie na liczbe catkowitg
bez znaku. Nadmiarowe nazwy dla takich typéw maja jednak swoje uzasadnienie:
pozwalajq tatwiej orientowac sie, jakie jest znaczenie danego typu oraz jaka doktadnie
role petni. Jest to szczegdlnie wazne, gdy nie mozna definiowac wiasnych klas.

Warto wiec przyjrzec sie, w jaki sposob tworzone sg nazwy typow w Windows. Zacznijmy
najpierw od najbardziej podstawowych, bedacych gtownie prostymi przezwiskami
znanych nam z C++ rodzajéw danych.

Ot6z w WinAPI posiadajg one swoje dodatkowe miana, ktére tym tylko roéznig sie od
oryginalnych, ze sg pisane w catosci wielkimi literami'®. Konwencja ta dotyczy zresztq
kazdego innego typu:

W Windows API typy danych majg nazwy skfadajace sie wytacznie z wielkich liter.

Mamy zatem typy CHAR, FLOAT, VOID Czy DOUBLE.
Dodatkowo dla wygody programisty zdefiniowano aliasy na liczby bez znaku:

nazwa | wtasciwy typ | opis
BYTE unsigned char bajt (8-bitowa liczba catkowita bez znaku)
UINT unsigned int | liczba catkowita bez znaku i okreslonego rozmiaru
DWORD | unsigned long dtuga (32-bitowa) liczba catkowita bez znaku

WORD | unsigned short krétka (16-bitowa) liczba catkowita bez znaku
Tabela 13. Typy liczb catkowitych bez znaku w Windows API

Istnieje rowniez pokazny zbidr typdéw wskaznikowych, ktére powstajgq poprzez dodanie
przedrostka P (lub L.P) do nazwy typu podstawowego. Jest wiec typ PINT, PDWORD, PBYTE i
jeszcze mnostwo innych.

Zaprezentowane tu nazwy typow sg takze stosowane w bibliotece DirectX, a zatem nie
rozstaniemy sie z nimi zbyt szybko i warto sie do nich przyzwyczaic¢ :) Obficie wystepujq
bowiem w dokumentacjach obu bibliotek, a takze w innych pomocniczych narzedziach
programistycznych dla Windows.

Niemal wszystkie pozostate typy, ktdérych nazwy biorg sie od znaczenia w programach, sg
aliasami na typ DWORD, czyli 32-bitowg liczbe catkowite bez znaku. Ws$rod nich poczesne
miejsce zajmujg wszlkiego typu uchwyty; kilka najwazniejszych, ktére spotkasz
najwczesniej i najczesciej, wymienia ponizsza tabelka:

100 pewnym wyjatkiem od tej reguty jest typ BooL, bedacy aliasem na int, a nie na bool. Powdd takiego
nazewnictwo stanowi chyba jedng z najbardziej tajemniczych zagadek Wszechswiata ;D

341

typ uchwyt do... uwagi
HANDLE — uniwersalny uchwyt do czegokolwiek
HWND okna jednoznacznie identyfikuje kazde okno w systemie
HINSTANCE | instancji programu | program otrzymuje go od systemu w funkcji WwinMain ()
HDC kontekstu mozna na nim wykonywac operacje graficzne z modutu
urzadzenia Windows GDI
HMENU menu reprezentuje pasek menu okna (jezeli jest)

Tabela 14. Podstawowe typy uchwytow w Windows API

Jak fatwo zauwazy¢, wszystkie typy uchwytdéw majg nazwy zaczynajgce sie na H.

Petng liste typdéw danych wystepujacych w WIinAPI wraz z opisami znajdziesz rzecz jasna
w MSDN.

Dokumentacja

Wzglednie dobra znajomos$¢ nazw typdw pojawiajacych sie w Windows API jest bardzo
przydatna, gdy chcemy korzysta¢ z dokumentacji tej biblioteki. Ta dokumentacja jest
bowiem najlepszym Zzrodtem wiedzy o WinAPI.

Z poczatku miata ona forme pojedynczej publikacji Win32 Programmers’ Reference
(zaréwno w postaci papierowej, jak i elektronicznej) i traktowata wytacznie o
podstawowych i sredniozaawansowanych aspektach programowania Windows. Dzisiaj
jako Platform SDK jest ona czescig MSDN.

To cenne zrédio informacji jest domysinie instalowane wraz z Visual Studio .NET, zatem z
pewnoscig posiadasz juz do niego dostep (bardzo mozliwe, ze korzystates z niego juz
wczesniej w tym kursie). Teraz bedzie ono dla ciebie szczegdlnie przydatne.
Najczestszym powodem, dla ktérego bedziesz don siegac, jest poznanie zasady dziatania
i uzycia konkretnej funkcji. Potrzebne opisy tatwo znalez¢ przy pomocy Indeksu; mozna
tez po prostu umiesci¢ kursor w oknie kodu na nazwie interesujacej funkcji i wcisnac¢ F1.

Dokumentacja poszczegdlnych funkcji ma tez te zalete, iz posiada jednolitg strukture w
kazdym przypadku.

Sleep | TE
E E Flatformn SDK: DLLS, Processes, and Threads =
Sleep

The Sleep function suspends the execution of the current thread for at |esst the
specified interval.

To enter an alertable wait state, use the SleepEy funchon,
woid Sleep(
ORD iillizs
¥i

Parameters

dwsiliseconds
[in] Minimurm tirme interval for which execution is to be suspended, in
millizecands.

& value of zero causes the thread to relinguish the remainder of its bme slice to
any other thread of egual prionty that 1s ready to run. If there are no other
threads of equal priority ready to run, the function returns immediately, and the
thread continues execution,

& value of INFINITE indicates that the suspension should not time out

Return Yalues

This function does not return a value,

Remarks

This function causes a thread to relinquish the remainder of its time slice and become
unrunmable for at least the specified number of miliseconds, after which the thread is
raady to run. In particular, if you specify zero milliseconds, the thread will relinguish _ﬂ
FY SRR ——— L P HARPA R a i -

il PSS NN D " T WA SO PN T Y IR - sy

Screen 51. Opis funkcji Sleep() w MSDN. Jest to chyba najprostsza funkcja Windows API; powoduje
ona wstrzymanie dzialania programu na podang liczbe milisekund.

342

Opis funkcji w MSDN sktada sie wiec kolejno z:
> krotkiego wprowadzenia, przedstawiajgcego ogdlnikowo sposéb dziatania funkcji
> prototypu, z ktérego mozna dowiedzie¢ o liczbie, nazwach oraz typach
parametréow funkcji oraz o typie zwracanej przezen wartosci
> doktadnego opisu znaczenia kazdego parametru, w kolejnosci ich wystepowania w
deklaracji

Na poczatku kazdego opisu w nawiasach kwadratowych widnieje zwykle oznaczenie jego
roli. in oznacza, ze dany parametr jest wejsciowg dang dla funkcji; out - Zze poprzez niego
zwracana jest jakas wartos$¢ wyjsciowo; retval (tylko razem z out) - ze owa wartos¢ jest
jednoczesnie tg, ktérg funkcjg zwraca w ,,normalny” sposéb.

> informacji o wartosci zwracanej przez funkcje. Jest tu podane, kiedy rezultat moze
by¢ uznany za poprawny, a kiedy powinien by¢ potraktowany jako btad.

» dodatkowych uwag (Remarks) co do dziatania oraz stosowania funkcji

> przyktadowego kodu, ilustrujgcego uzycie funkcji

> wymaganiach systemowych, ktére muszg by¢ spetnione, by mozna byto
skorzystac z funkcji. Jest tam takze informacja, w ktérej bibliotece funkcja jest
zawarta i w jakim pliku nagtdéwkowym widnieje jej deklaracja.

> odsytaczy do pokrewnych tematéw

Ten standard dokumentacji okazat sie na tyle dobry, ze jest wykorzystywany niezwykle
szeroko - takze w projektach niezwigzanych nijak z Windows API, Microsoftem, C++, ani
nawet z systemem Windows. Nic w tym dziwnego, gdyz z punktu widzenia programisty
jest on bardzo wygodnym rozwigzaniem. Przekonasz sie o tym sam, gdy sam zaczniesz
intensywnie wykorzystywa¢ MSDN w praktyce koderskiej.

Xk k

Ten podrozdziat byt do$¢ wyczerpujagcym wprowadzeniem w programowanie aplikacji
okienkowych w Windows. Postaratem sie wyjasni¢ w nim wszystkie wazniejsze aspekty
Windows i jego API, aby$ doktadnie wiedziat, w co sie pakujesz ;D

W nastepnym podrozdziale przejdziemy wreszcie do wiasciwego kodowania i napiszemy
swoje pierwsze prawdziwe aplikacje dla Windows.

Pierwsze kroki

Gdy znamy juz z grubsza cata programistyczng otoczke Windows, czas wreszcie
sprobowac tworzenia aplikacji dla tego systemu. W tym podrozdziale napiszemy dwa
takie programy: pierwszy pokaze jedynie prosty komunikat, ale za to w drugim
stworzymy swoje pierwsze petnowartosciowe okno!

Jak najszybciej rozpocznijmy zatem wiasciwe programowanie dla srodowiska Windows.

Najprostsza aplikacja

Od poczatku kursu napisates juz pewnie cate mndstwo programéw, wiec nieobca jest ci
czynnos¢ uruchomienia IDE i stworzenia nowego projektu. Tym razem jednak muszg w
niej zaj$¢ niewielkie zmiany.

Zmieni sie nam mianowicie rodzaj projektu, ktory mamy zamiar stworzy¢. Porzucamy
przeciez programy konsolowe, a chcemy kreowac aplikacje okienkowe, dziatajace w
trybie graficznym. W opcjach projektu, na zaktadce Application Settings, w pozycji
Application type wybieramy zatem wariant Windows application:

343

Win3d2 Application Wizard - Mzghox

Application Settings

Spesify the type of application you will build with this project and the optiars ar kbraries you
want supported.

Screen 52. Opcje projektu aplikacji okienkowej

Jako ze tradycyjnie zaznaczamy takze pole Empty project, po kliknieciu przycisku Finish
nie zobaczymy zadnych widocznych réznic w stosunku do projektow programoéw
konsolowych. Nasza nowa aplikacja okienkowa jest wiec na razie catkowicie pusta.
Kompilator wie aczkolwiek, ze ma tutaj do czynienia z programem funkcjonujagcym w
trybie GUI.

Zmiane podsystemu z GUI na konsole lub odwrotnie mozna przeprowadzi¢, wyswietlajac
wiasciwosci projektu (pozycja Properties z menu podrecznego w Solution Explorer),
przechodzac do sekcji Linker|System i wybierajac odpowiednig pozycje na licie w polu
SubSystem (Windows /SUBSYSTEM: WINDOWS dla programéw okienkowych lub Console
/SUBSYSTEM:CONSOLE dla aplikacji konsolowych).

Trzeba jednakze pamietac, ze oba rodzaje projektow wymagaja innych funkcji
startowych: dla konsoli jest to main (), a dla GUI winMain (). Brak wiasciwej funkcji
objawi sie natomiast btedem linkera.

Dodajmy teraz do projektu nowy modut main.cpp i wpiszmy do niego ten oto kod:
// MsgBox - okno komunikatu

#define WIN32 LEAN AND MEAN
#include <windows.h>

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpszCmdLine, int nCmdShow)
{
MessageBox (NULL, "Oto nasz pierwszy program w Windows!'",
"Komunikat", NULL);
return 0;

}

Nie jest on ani specjalnie dtugi, ani szczegdlnie zawity, gdyz jest to listing bodaj
najprostszej mozliwej aplikacji dla Windows. Wykonywane przezen za danie takze nie jest
bardzo ztozone - pokazuje ona bowiem ponizsze okno z komunikatem:

344

Komunikat x|

Oto nasz pienyszy program w s indowes!

Screen 53. Okno prezentujace pewien komunikat

Znika ono zaraz po kliknieciu przycisku OK, a to koriczy réwniez caty program. Nie
zmienia to jednak faktu, ze oto wyswietliliSmy na ekranie swoje pierwsze (na razie
skromne) okno, zegnajac sie jednoczesnie z czarno-biatg konsolg; nie byto tu po niej
najmniejszego Sladu. Mozemy zatem z absolutng pewnoscig stwierdzié, iz napisany przez
nas program jest rzeczywiscie aplikacjg okienkowa!

Pokrzepieni tg motywujgcg wiadomoscig mozemy teraz przystapi¢ do ogledzin kodu
naszego krétkiego programu.

Niezbedny nagtdwek
Listing rozpoczyna sie dwoma dyrektywami dla preprocesora:

#define WIN32 LEAN AND MEAN
#include <windows.h>

Z tej pary konieczna jest oczywiscie fraza #include. Powoduje ona dotaczenie do kodu
pliku nagtéwkowego windows.h, zawierajacego (bezposrednio lub posrednio) deklaracje
niemal wszystkich symboli sktadajgcych sie na Windows API.

Plik ten jest wiec dos¢ spory, a rzadko mamy okazje skorzystaé choéby z wiekszosci
okreslonych tam funkcji, typdw i statych. Niezaleznie od tego nazwy wszystkich tych
funkcji beda jednak wigczone do tabeli importu wynikowego pliku EXE, zajmujac w nim
nieco miejsca.

Zapobiegamy temu w pewnym stopniu, stosujac drugg dyrektywe. Jak widac¢ definiuje
ona makro WIN32 LEAN AND MEAN, nie wigzac z nim zadnej konkretnej wartosci.
Makro to ma aczkolwiek swojg role, ktérg dobrze oddaje jego nazwa - w swobodnym
ttumaczeniu: ,,Windows chudy i skapy”. Zdefiniowanie go powoduje mianowicie
wytaczenie kilku rzadko uzywanych mechanizméw WinAPI, przez co skompilowany
program staje sie mniejszy.

Dyrektywa #define dla tego makra musi sie koniecznie znalez¢ przed #include,
dotaczajacym windows.h. W tymze nagtéwku umieszczony jest bowiem szereg instrukcji
#if i #ifdef, ktdre uzalezniajq kompilacje pewnych jego fragmentéw od tego, czy
omawiane makro nie zostato wczesniej zdefiniowane. Powinno wiec ono by¢ okreslone
zanim jeszcze preprocesor zajmie sie przetwarzaniem nagtdwka windows.h - i tak tez
dzieje sie w naszym kodzie.

Musisz wiedzie¢, ze z tego uzyteczego makra mozesz korzysta¢ w zdecydowanej
wiekszosci zwyktych programoéw okienkowych, a takze w aplikacjach wykorzystujacych
biblioteki DirectX. Bedzie ono wystepowac rowniez w przyktadowych programach.

Funkcja winMain ()

Dalszg i zdecydowanie najwiekszg czes$¢ programu zajmuje funkcja WwinMain () ; jest to
jednoczesnie jedyna procedura w naszej aplikacji. Musi wiec petni¢ w niej role wyjatkowq
i tak jest w istocie: oto bowiem punkt startowy i koncowy dla programu. WinMain () jest
zatem windowsowym odpowiednikiem funkcji main().

345

tatwo tez zauwazy¢, ze postac tej funkcji jest znacznie bardziej skomplikowana niz
main (). Prototyp wyglada bowiem nastepujgco:

int WINAPI WinMain (HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpszCmdLine,
int nCmdShow) ;

Analizujac go od poczatku, widzimy, ze funkcja zwraca wartos¢ typu int. Ten sam typ
moze zwracac takze funkcja main () (chociaz nie musi'®?), a zwany jest kodem wyjscia.
Informuje on podmiot uruchamiajacy nasz program o skutkach jego wykonania. Przyjeta
sie tu konwencja, ze 0 oznacza wykonanie bez przeszkdd, natomiast inna wartosé jest
sygnatem jakiego$ btedu.

To doktadnie odwrotnie niz w przypadku funkcji Windows API, ktére bedziemy sami
wywotywacé (WinMain () wywotuje bowiem system operacyjny). Tam zerowy rezultat jest
sygnatem btedu - dzieki temu mozliwe jest wykorzystanie tej wartosci w charakterze
warunku instrukcji i f, zgadza to sie takze z zasadaq, iz pusty uchwyt (uchwyty sa czesto
zwracane przez funkcje WinAPI) ma numer 0.

Do pobierania kodu btedu stuzy zas oddzielna funkcja GetLastError (), o ktdérej powiemy
sobie w swoim czasie (ewentualnie sam sobie o niej poczytasz we wiasciwym zrédle :D).

Kolejng czesciq prototypu jest tajemnicza fraza WINAPI, o ktdrej pewnie nikt nie ma
pojecia, do czego stuzy ;) W rzeczywistosci jest to proste makro zdefiniowane jako:

#define WINAPI _ stdcall

Zastepuje ono stowo kluczowe stdcall, oznaczajgce konwencje wywotania funkcji
WinMain (). Sposob stdcall jest standardowg drogg do wywotania tej funkcji, a takze
wszystkich procedur catego Windows API (o czym wszak nie trzeba wiedzie¢, aby moc je
poprawnie stosowac). Makro WINAPI (czasem zastepowane przez APIENTRY) jest wiec
koniecznym i niezbednym skfadnikiem sygnatury winMain (), ktéorym aczkolwiek nie
potrzeba sie szczegdlnie przejmowac :)

Z pewnoscig najbardziej interesujace sg parametry funkcji winMain (), prezentujgce sie w
bardzo stusznej liczbie czterech sztuk. Nie wszystkie sg rownie istotne i przydatne, a
znaczenie kazdego opisuje ponizsza tabelka:

typ nazwa opis

hInstance to uchwyt instancji naszego programu. Jest
to wiec liczba jednoznacznie identyfikujgca uruchomiony
egzemplarz aplikacji. To ogromnie wazna i niezwykle
przydatna warto$¢, wymagana przy wywotaniach wielu
funkcji Windows API i tak fundamentalnych czynnosciach
jak np. tworzenie okna. Warto zatem zapisa¢ jg w miejscu,
z ktérego bedzie dostepna w catej aplikacji (chocby
wzmiennej globalnej lub statycznym polu klasy).

HINSTANCE hInstance

Parametr hPrevInstance jest juz wytacznie reliktem
HINSTANCE | hPrevInstance | przesziosci, pochodzgacym z czaséw 16-bitowego systemu
Windows. Wéwczas zawierat on uchwyt do ewentualnej

101 Méwiac écidle, to jednak musi :) Ogromna wiekszo$é kompilatoréw akceptuje oczywiécie funkcje main () ze
zwracanym typem void, ale Standard C++ gtosi, ze jedyng przenosng jej wersjq jest int main (int argc,
char* argv[]) ;. Poniewaz jednak nie zajmujemy sie juz konsola, mozemy nie rozstrzasac¢ dalej tego problemu
i skoncentrowac sie raczej na funkcji winMain ().

346

typ nazwa

opis

poprzedniej instancji uruchamianego programu. Obecnie
jest on zawsze uchwytem pustym, a wiec zawiera wartosc
NULL, czyli zero.

Gdy chcemy wykry¢ wielokrotne uruchamianie naszej
aplikacji, musimy zatem postuzy¢ sie innymi
mechanizmem. Najczesciej przeglada sie liste procesow
aktywnych w systemie lub tez szuka innego egzemplarza
gtdwnego okna aplikacji przy pomocy funkcji
FindWindow ().

[L]PSTR lpszCmdLine

Sg to argumenty wiersza polecen, podane mu podczas
jego uruchamiania. Ten sposdb podawania danych jest juz
Windows rzadko stosowany, gdyz wymaga albo
uruchomienia konsoli, albo utworzenia skrétu do
programu. Niemniej znajomos$¢ parametrow, z jakimi
wywotano program bywa przydatna; lpszCmdLine
przechowuje je jako tancuch znakow w stylu C, ktéry
mozna przypisa¢ do zmiennej typu std: :string i
operowac na nim wedle potrzeb.

Zauwazmy, ze jest to jeden cigg znakdw. Funkcja main ()
zwykta bowiem rozbija¢ go na pojedyncze parametry
oddzielone spacjg lub ujete w cudzystowy. Podobnego

rozbicia mozna zresztg w prosty sposéb dokonac
samodzielnie na tekscie podanym w lpszCmdLine.

int nCmdShow

Parametr ten okresla sposéb wyswietlenia gtéwnego
okna aplikacji. Jest on najczesciej ustawiany we
wiasciwosciach skrétu do programu i moze przyjmowac
wartos¢ rowng jednej z kilku statych, ktére poznamy w
nastepnym rozdziale. Parametrem nCmdShow mozna wiec
sugerowac sie przy wyswietlaniu okna programu, ale nie
jest to obowigzkowe (cho¢ wskazane).

Tabela 15. Parametry funkcji WinMain(Q)

Widac¢ z niej, ze z nie wszystkich parametréw bedziemy zawsze korzystac (z jednego
nawet nigdy). W takich wypadkach warto skorzystac¢ z mozliwosci, jakg oferuje C++, tzn.
pominiecia nazwy niewykorzystywanego parametru. Skrocimy w ten sposéb nagtéwek

funkcji winMain ().

Okno komunikatu i funkcja MessageBox ()

W bloku winMain (), @ wiec we wiasciwych instrukcjach sktadajacych sie na nasz
program, dokonujemy jedynego wywotania funkcji Windows API. Jest nig funkcja
MessageBox (), ktdrej nalezy bez watpienia przyjrzec sie blizej. Uczynmy to w tej chwili.

Prototyp

Nagtéwek tej funkcji jawi sie nastepujaco:

int MessageBox (HWND hWindow,
LPCTSTR lpText,
LPCTSTR lpCaption,
UINT uFlags);

347

Mozna zauwazy¢, ze przyjmuje ona cztery parametry, ktorych przeznaczenie zwyczajowo
zaprezentujemy w odpowiedniej tabelce:

typ nazwa opis

W parametrze tym podajemy uchwyt do okna nadrzednego
wzgledem okna komunikatu. Zwykle uzywa sie do tego
HWND hWindow aktywnego okna aplikacji, lecz mozna takze uzy¢ NULL (np.
wtedy, gdy nie stworzyliSmy jeszcze wiasnego okna) - wéwczas
komunikat nie podlega zadnemu oknu.

Tekst komunikatu, ktéry ma by¢ wyswietlony. Jest to staty

tancuch znakdw w stylu C, ktory moze by¢ podany dostownie

lub np. odczytany ze zmiennej typu std: :string przy pomocy
jej metody c str ().

LPCTSTR?? 1pText

Tutaj podajemy tytut okna, ktéorym bedzie opatrzony nasz
komunikat; jest to taki sam tancuch znakéw jak sam tekst
LPCTSTR | lpCaption wiadomosci. W tym parametrze mozna réwniez wstawic
wskaznik pusty (o wartosci NULL, czyli zero), a wtedy zostanie
uzyty domysiny (i najczesciej nieadekwatny) tytut "Error".

S3 to dodatkowe parametry okna komunikatu, ktére
okreslajg m.in. zestaw dostepnych przyciskow, wyréownanie
tekstu, ewentualng ikonke itd. Zostang one omdwione w dalszej
czesci paragrafu. Ten parametr moze takze przyja¢ wartosé
zerowg, a wowczas w oknie komunikatu pojawi sie jedynie
przycisk OK.

UINT uFlags

Tabela 16. Parametry funkcji MessageBox()

Wynika z niej, iz pierwszy i ostatni parametr niniejszej funkcji moze zosta¢ pominiety
poprzez wpisanie don zera (NULL). Wtedy tez pokazane okno jest najprostszym
mozliwym w Windows sposobem na przekazanie uzytkownikowi jakiej$ informacji.
Wiadomos¢ takg moze on jedynie zaakceptowac, wciskajac przycisk OK - tak tez dzieje
sie w naszej przyktadowej aplikacji MsgBox.

Na tym jednakze nie konczg sie mozliwosci funkcji MessageBox () . Reszta ukrywa sie
bowiem w jej czwartym parametrze - czas wiec przyjrzec sie niektérym z tych opcji.

Opcje okna komunikatu

Ostatni parametr funkcji MessageBox (), nazwany tutaj uFlags, odpowiada za kilka
aspektéw wygladu oraz zachowania pokazywanego okna komunikatu. Mozna w nim
mianowicie ustawic:

rodzaj przyciskéw, jakie pojawiag sie w oknie

domysliny przycisk (jezeli do wyboru jest kilka)

ikonke, jaka ma by¢ opatrzony komunikat

modalnos¢ okna komunikatu

sposob wyswietlania (wyréwnanie) tekstu zawiadomienia

parametry samego okna komunikatu

VVVYVY

Bogactwo opcji jest zatem spore i az dziw bierze, w jaki sposdb mogaq sie one ,zmiesci¢”
w jednej liczbie catkowitej bez znaku. Jest to jednak mozliwe, poniewaz kazdej z tych
opcji przypisano stata (ktérej nazwa rozpoczyna sie od MB) o odpowiedniej wartosci,

102 Typ LPCTSTR jest wskaznikiem do ciagu znakdw, czyli zasadniczo napisem w stylu C. Moze on by¢ jednak
zarowno tekstem zapisanym znakami ANSI (typu char), jak i znakami Unicode (typu wchar t). To, na ktéry typ
LPCTSTR jest aliasem, zostaje ustalone podczas kompilacji: gdy jest zdefiniowane makro UNICODE, wtedy staje
sie on typem const wchar t*, w przeciwnym wypadku - const char*.

348

majacej w zapisie binarnym tylko jedng jedynke na wiasciwym sobie miejscu. Dzieki
temu poszczegdlne opcje (tzw. flagi) mozna ,skfadac” w cato$¢, postugujac sie do tego
operatorem alternatywy bitowej |!°°. W identyczny sposéb jest to rozwigzane w innych
funkcjach Windows API (i nie tylko), w ktorych jest to konieczne.

Mechanizm ten nazywamy kombinacja flag bitowych, a jest on szerzej opisany w
Dodatku B, Reprezentacja danych w pamieci.

Przyktadowe uzycie tego rozwigzania wyglada chocby tak:

MessageBox (NULL, "To jest komunikat", "Okno komunikatu", MB OK |
MB ICONINFORMATION) ;

Uzyto w nim dwdch mozliwych flag opcji: jedna okresla zestaw dostepnych przyciskéw, a

druga ikonke widoczng w oknie komunikatu. Rzeczone okno wyglada zas mniej wiecej w
ten sposodb:

Okno komunik x|

\l) T o jest komurikat

Screen 54. Przyktadowe okno komunikatu z przyciskiem OK i ikonka informacyjna

Oddane do dyspozycji programisty flagi dzielg sie zas, jak to wykazaliSmy na poczatku,
na kilka grup.

Do (naj)czesciej uzywanych nalezg zapewne opcje okreslajace zestaw przyciskow,
ktére pojawig sie w wyswietlonym oknie komunikatu. Domyslnie zbiér ten sktada sie
wytacznie z przycisku OK, ale dopuszczalnych wariantéw jest nieco wiecej, co obrazuje
ponizsza tabelka:

flaga przyciski uwagi
Uzytkownik moze wytacznie przeczytac
MB_OK OK komunikat i zamkna¢ go, klikajagc w OK. Jest to

domysine ustawienie.

Daje prawo wyboru zaakceptowania lub

MB_OKCANCEL OK, Anuluj odrzucenia dziatan zaproponowanych przez
program.
. Zestaw wyswietlany zwykle wtedy, gdy jakas
Ponow operacja (np. odczyt z wymiennego dysku) nie
MB_ RETRYCANCEL probe, P ja \np. odczy yn 90 cys¥
- . powiodta sie, ale mozna sprobowac
Anuluj o .
przeprowadzic¢ jg ponownie.
Bardziej elastyczny wariant poprzedniego
Przerwij, rozwigzania, stosowany przy ztozonych
MB ABORTRETRYIGNORE Porllow proc;e§§ch, z ktorych pewne et_apy moga sig nie
- probe, powiesc. Pozwala on uzytkownikowi nie tylko na
Zignoruj ponowng prébe lub zakonczenie catego procesu,

lecz takze zignorowanie btedu.

103 popuszczalne jest takze uzycie operatora dodawania, czyli plusa - w przypadku poteg dwdjki, a takimi
wartosciami sg wiasnie flagi, bedzie on miat takie samo dziatanie jak alternatywa bitowa. Nie jest on jednak
zalecany, jako ze jego podstawowe przeznaczenie jest zupetnie inne.

349

flaga przyciski uwagi
Anuluj,
MB CANCELTRYCONTINUE Sprébuj Nowsza'l wgrsja poprzedniegc_) zestawu, za_lecana
- ponownie, do uzycia w systemach Windows z serii NT.
Kontynuuj
MB YESNO Tak, Nie Tak lub Nie - prosty wybdr :)

Oprocz wyboru Tak albo Nie mozna tez
wstrzymac sie od gtosu. Ten wariant jest
uzywany np. w pytaniu o zakonczenie
programu, w ktéorym pozostat niezapisany
dokument.

Tak, Nie,

MB YESNOCANCEL ;
- Anuluj

Flaga ta dodaje przycisk Pomoc do kazdego z
zestawoOw zaprezentowanych wczesniej.
Wcisniecie tego przycisku powoduje wystanie
zdarzenia wM_HELP do okna nadrzednego
wzgledem komunikatu (podanego w pierwszym
parametrze funkcji MessageBox ()). Trzeba wiec
podac¢ owe okno i zapewnic¢ obstuge rzeczonego
zdarzenia; o tym powiemy sobie za chwile.

MB_HELP Pomoc

Wybierajac jednaz tych flag okreslamy, ktory
przycisk (liczac od lewej) bedzie domysiny. Taki
MB DEFBUTTON2 przycisk jes,t zaznaczony charakterystyczng
MB DEFBUTTONS — czarng obwoddka, a wcisniecie Enter oznacza
MB DEFBUTTON4 wskazanie wiasnie jego. Jezeli nie wybierzemy

- zadnej z wymienionych opcji, przyciskiem
domys$inym zostanie pierwszy z nich.

MB DEFBUTTONL

Tabela 17. Flagi przyciskow funkcji MessageBox()

Sposrod powyzszych opcji nalezy wybrac zawsze tylko jedng, odpowiednig do naszych
potrzeb. Wyjatkiem sa tu jedynie MB HELP oraz flagi MB DEFBUTTONn, ktdre moga by¢
dotaczone do dowolnego innego zestawu przyciskéw.

Wykrywaniem, ktory przycisk zostat nacisniety, zajmiemy sie natomiast w nastepnym
akapicie.

Nastepna klasa opcji komunikatu nie petni juz tak kluczowej roli jak poprzednia,
dotyczaca przyciskow, lecz takze jest wazna. Pozwala bowiem na opatrzenie okna
komunikatu jedna z czterech ikonek, zwracajacych uwage uzytkownika na tres¢ i
znaczenie podanej mu wiadomosci. Mozliwe opcje przedstawiajq sie tu nastepujaco:

ikonka ikonka

flagi typ w Win 9x | w win NT uwagi

Ikonki tej uzywamy, gdy
chcemy przedstawic
uzytkownikowi jakas

MBMBI_CIOCNOINNAFSOT;MP;ITSIKON informacia @ i 1) zwyczajna informacje, np.
_ o pomysinym zakonczeniu

zleconego zadania. Prawie

zawsze idzie ona w parze
z flagq MB OK.

Tg ikonkg nalezy opatrzyc¢
pytania, na ktére

uzytkownik powinien

MB_ICONQUSETION pytanie @ Ej odpowiedzie¢ - z tym
zastrzezeniem, iz zadna z

odpowiedzi nie moze
skutkowac zniszczeniem

350

ikonka ikonka

flagi typ w Win 9x | w Win NT uwagi

jakich$ danych.

Tego symbolu uzywamy
zarowno w ostrzezeniach
przez jakimis

niezbezpiecznymi
MB ICONEXCLAMATION . dziataniami, jak i w
MBE ICONWARNING ostrzezenie & 3 pytaniach, z kto_rych
- pewne odpowiedzi mogq
prowadzi¢ do utraty
danych (np. w pytaniu Czy
zachowac aktualnie

otwarty plik?).
MB ICONERROR . Ten symbol stuzy do
= oznaczania wszelkich
MB_ICONHAND btad Q @ _ ‘
MB ICONSTOP komunikatéw o btedach

programu lub systemu.
Tabela 18. Flagi ikonek funkcji MessageBox()

Warto zaznaczy¢, ze przyjeto sie zawsze stosowac ktéras z powyzszych ikonek. Pole ich
zastosowan jest jednak na tyle szerokie, ze wybor odpowiedniej nie powinien w
konkretnym przypadku stanowi¢ ktopotu.

Kolejne flagi nie majq juz tak prostego wyjasnienia, wigzg sie bowiem z nowym pojeciem
modalnosci.

Modalnos$¢ (ang. modality) charakteryzuje te okna, ktorych wyswietlanie blokuje
dostep do jednego lub wiecej innych okien.

Okna modalne sg uzywane, by pobrac¢ od uzytkownika jakies$ informacje lub przedstawic
mu takowe. Dobrym przyktadem sg okienka dialogowe, wystepujace niemal w kazdej
aplikacji, a najprostszym - wtasnie okna komunikatu, tworzone przez MessageBox ().

W Windows wystepuje kilka rodzajow modalnosci, rozniacej sie zakresem blokady, jaka
zaktada ona na pozostate okna w systemie. Tym rodzajom odpowiadajg flagi funkcji
MessageBox () :

flaga modalnosé uwagi
Uzytkownik musi odpowiedzie¢ na komunikat, zanim
bedzie mégt uaktywnié jego okno nadrzedne (o
uchwycie podanym w parametrze hwindow funkcji
MB APPLMODAL aplikacyjna | MessageBox ()). Przy modalnosci aplikacyjnej komunikat
blokuje zatem jedno okno (lub zadne, jezeli w hiiindow
podamy NULL). Jest to domys$ine ustawienie, jezeli nie
podamy innego.

Zachowanie jest niemal identyczne, jak w przypadku
flagi MB APPLMODAL, z tq roznicq, ze gdy podamy NULL W
parametrze hwindow, to blokowane sq wszystkie okna
aktualnej aplikacji.

MB TASKMODAL procesowa

Jest to najsilniejszy typ modalnosci. Gdy go zostajemy,
komunikat bedzie widoczny na ekranie przez caty czas i
MB_SYSTEMMODAL | systemowa nie zas’r,oniq go inne okna; Uzytkownik m'usi wiec
zaregowac na niego, aby moéc kontynuowac normalng
prace. Z Tego wzgledu modalnos$¢ systemowa powinna
byc¢ stosowana z rozwaga, jedynie w przypadku btedow

351

flaga | modalnosé | uwagi

| zagrazajacych catemu systemowi (np. brakowi pamieci

czy miejsca na dysku).
Ostatnig grupe flag stanowig rézne inne przetgczniki, ktérych nie mozna potaczy¢ w
grupy podobne do poprzednich. Dotyczg one wszakze w wiekszosci zachowania samego
okna komunikatu. Oto i one:

Tabela 19. Flagi modalnosci funkcji MessageBox()

flaga opis
Zastosowanie tej flagi sprawia, ze okno komunikatu zawsze
MB_SETFOREGROUND ~wyskakuje” na pierwszy plan, przestaniajac chwilowo wszystkie

pozostate okno. Dzieje sie tak nawet wtedy, gdy macierzysta
aplikacja pozostaje zminimalizowana lub ukryta.

W tym ustawieniu okno nie tylko pojawia sie na pierwszym planie,

MB TOPMOST . . i) L ! .
— ale tez trwale na nim pozostaje - az do reakcji uzytkownika na nie.

MB_RIGHT Tekst komunikatu zostaje wyrownany do prawej strony.
Tabela 20. Pozostate flagi funkcji MessageBox()

Uff, to juz wszystko :) Wachlarz dostepnych opcji jest, jak wida¢, ogromny i z poczatku
trudno sie w nim odnalez¢. Nie musisz rzecz jasna zapamietywaé nazw i znaczenia
wszystkich flag, jako ze przyswoisz je sobie wowczas, gdy bedziesz czesto korzystat z
funkcji MessageBox (). A zapewniam cie, ze tak wtasnie bedzie.

Rezultat funkcji

Prezentujgc mozliwe flagi okreslajace zestawy przyciskéw widocznych w oknie
komunikatu, zauwazyliSmy, ze zdecydowana wiekszo$¢ umozliwia uzytkownikowi
podjecie jakiej$ decyzji. Odbywa sie ona poprzez klikniecie w jeden z dostepnych
przyciskow:

Wielce wazkie pytanie

1\

[tk] Ne | ania |

Screen 55, Okno komunikatu z kilkoma przyciskami do wyboru (flagi
MB_YESNOCANCEL | MB_I1CONWARNING)

Informacja o wybranym przycisku jest przeznaczona dla programu, a otrzymuje on ja
poprzez wynik funkcji MessageBox(). Jest to liczba typu int, ktéra przyjmuje wartos¢
jednej z nastepujacych statych:

stala przycisk
IDOK OK
IDCANCEL Anuluj
IDYES Tak
IDNO Nie
IDABORT Przerwij
IDRETRY Pondw prébe
IDIGNORE Zignoruj
IDTRYAGAIN | Sprébuj ponownie

352

stata | przycisk
IDCONTINUE | Kontynuuj

Tabela 21. Stale zwracane przez funkcje MessageBox()

Naturalnie, aby funkcja mogta zwréci¢ warto$¢ odpowiadajacag danemu przyciskowi, ten
musi zosta¢ umieszczony w oknie komunikatu przy pomocy jednej z flag opisanych
wczesdniej.

Oprécz powyzszych statych MessageBox () moze takze zwrdci¢ 0. Rezultat ten oznacza
wystgpienie btedu.

Sprawdzenia decyzji uzytkownika, objawiajacej sie wybraniem przycisku, a w
konsekwencji zwrdceniem wartosci przez funkcje MessageBox (), najlepiej dokonac przy
pomocy instrukcji switch. Jezeli chcemy przy okazji zabezpieczy¢ sie na ewentualnosé
zaistnienia btedu, mozemy z powodzeniem zastosowac podany nizej, przyktadowy kod:

if (UINT uDecyzja = MessageBox (NULL, "Czy wyraza Pan/Pani zgode na
przystapienie do dalszej nauki WinAPI?",
"Grosowanie", MB YESNO | MB ICONQUESTION))

switch (uDecyzja)
{
case IDYES:
// odpowiedz pozytywna
break;
case IDNO:
// odpowiedZ negatywna
break;
}
}

else

{
// uwaga, btad!
}

Najczesciej aczkolwiek stosuje sie zwykte porownanie wartosci zwroconej przez
MessageBox () z jaka$ statg (jedng z dwdch mozliwych), na przykfad 1DOK czy IDYES.

Jedyna taka funkcja...

Na tym zakonczymy opis funkcji MessageBox () - trzeba przyznac, opis dos¢ obszerny.
Zasadniczo jednak nie miatem zamiaru przepisywa¢ dokumentacji, a tak rozbudowane
objasnienie tej funkcji ma swoje uzasadnienie.

Po pierwsze jest to jedna z najbardziej intensywnie uzywanych funkcji Windows API,
wykorzystywana na wszystkie niemal sposoby, jakie oferuje. Doktadna znajomos¢ metod
jej wykorzystania jest zatem bardzo wazna.

Po wtoére, przy okazji omawiania tejze funkcji wyjasniliSmy sobie kilka waznych
mechanizmoéw stosowanych w catym Windows API. Sposrdd nich najwazniejszy jest
sposOb przekazywania opcji poprzez kombinacje flag bitowych.

Na tym jednak basta! Nie spotkasz juz wiecej w tym kursie tak rozbudowanych opisow
funkcji Windows API. Kolejne poznawane procedury bedg teraz opatrzane tylko krotkim
omédwieniem, a jedynie w przypadku wazniejszych funkcji przyjrzymy sie blizej réwniez
poszczegdlnym parametrom (ujmowanym w odpowiednig tabelke).

Nie znaczy to wszakze, iz pozostate funkcje WinAPI bedziesz mdgt znac tylko pobieznie.
Przeciwnie, nie powiniene$ zapominac, ze przez caty czas masz do dyspozycji obszerng
dokumentacje MSDN, z ktérej mozesz dowiedzie¢ sie wszystkiego na temat kazdego
elementu biblioteki Windows API. Jak najczesciej korzystaj wiec z tej skarbnicy wiedzy.

353

Mozesz w niej przeczyta¢ np. kompletny opis funkciji MessageBox (), uwzgledniajacy te
kilka szczegotow, ktore litoSciwie ci oszczedzitem ;D

Wtasne okno

Program z poprzedniego przykfadu, pokazujacy komunikat w matym okienku, jest z
pewnoscig prawidtowa aplikacjg dla Windows, ale raczej nie tym, o co nam chodzifo.
Myslac o programach Windows widzimy przede wszystkim duze okna zawierajgce
przyciski, menu, paski narzedzi, pola edycyjne i inne kontrolki. A zatem mimo tego, ze
nasze programy potrafig juz korzystaé z graficznego interfejsu uzytkownika, trudno jest
nam nazwac je prawdziwie okienkowymi.

I to wiasnie chcemy teraz zmieni¢. Nie napiszemy wprawdzie od razu jakiej$
funkcjonalnej aplikacji GUI, lecz sprobujemy przynajmniej stworzy¢ swoje wtasne okno -
takie, jakie majg wszystkie programy w Windows. Nie bedzie to juz tylko komunikat, na
ktéry uzytkownik moze co najwyzej popatrzec i odwota¢ go kliknieciem w przycisk, lecz
petnowartosciowe okno, zachowujace sie tak, jak zdecydowana wiekszos¢ okien w
systemie.

Moéwimy wiec o oknie niemodalnym (ang. non-modal), ktérego istnienie nie bedzie w
zaden sposéb kolidowato z innymi oknami czy aplikacjami obecnymi w systemie. Bedzie
to po prostu nasza wiasna , piaskownica” - na razie pusta, ale juz niedtugo, w kolejnych
rozdziatach, moze zapetni¢ sie réznymi ciekawymi rzeczami.

Tak wiec chcemy napisac program sktadajacy sie z jednego pustego okna. Oto jak moze
wygladac jego kod:

// Window - pierwsze wtasne okno

#include <string>
#define WIN32 LEAN AND MEAN
#include <windows.h>

// nazwa klasy okna
std::string g strKlasaOkna = "odOdogk Window";

LRESULT CALLBACK WindowEventProc (HWND hWindow, UINT uMsg,
WPARAM wParam, LPARAM lParam)
{
switch (uMsgqg)
{
case WM DESTROY:
// kohczymy program
PostQuitMessage (0);
return 0;

}

return DefWindowProc (hWindow, uMsg, wParam, lParam);

[/ —mmm e funkcja WinMain() --—-—-=--"="-"""--—--—--———————

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE, LPSTR, int nCmdShow)
{

354

/* rejestrujemy klase okna */
WNDCLASSEX KlasaOkna;

// wypelniamy strukture WNDCLASSEX

ZeroMemory (&KlasaOkna, sizeof (WNDCLASSEX)) ;
KlasaOkna.cbSize = sizeof (WNDCLASSEX) ;
KlasaOkna.hInstance = hInstance;
KlasaOkna.lpfnWndProc = WindowEventProc;
KlasaOkna.lpszClassName = g strKlasaOkna.c str();
KlasaOkna.hCursor = LoadCursor (NULL, IDC ARROW) ;
KlasaOkna.hIcon = LoadIcon (NULL, IDI APPLICATION) ;
KlasaOkna.hbrBackground = (HBRUSH) COLOR WINDOW;

// rejestrujemy klase okna
RegisterClassEx (&KlasaOkna);

/* tworzymy okno */

// tworzymy okno funkcja CreateWindowEx

HWND hOkno;

hOkno = CreateWindowEx (NULL, // rozszerzony styl
g _strKlasaOkna.c str(), // klasa okna
"Pierwsze okno", // tekst na p. tytulu
WS_OVERLAPPEDWINDOW, // styl okna
CW_USEDEFAULT, // wspbtrzedna X
CW_USEDEFAULT, // wspbtrzedna Y
CW_USEDEFAULT, // szerokosé
CW _USEDEFAULT, // wysokos$cé
NULL, // okno nadrzedne
NULL, // menu
hInstance, // instancijs aplikacji
NULL) ; // dodatkowe dane

// pokazujemy nasze okno
ShowWindow (hOkno, nCmdShow) ;

/* petla komunikatow */

MSG msgKomunikat;
while (GetMessage (&msgKomunikat, NULL, 0, 0))
{

TranslateMessage (&msgKomunikat) ;
DispatchMessage (&msgKomunikat) ;

}

// zwracamy kod wyjscia
return static cast<int>(msgKomunikat.wParam);

Taaak, na pewno nie jest to juz rownie proste, jak wyswietlenie tekstowego komunikatu.
Widzimy tu wiele nieznanych i zapewne tajemniczych fragmentéw. Badzmy jednak
spokojni, za chwile krok po kroku wyjasnimy sobie dokfadnie wszystko, co zostato tutaj
przedstawione.

Atoli teraz mozesz skompilowac¢ i uruchomi¢ powyzszy program, by zobaczy¢ go w akcji.
Ujrzysz wéwczas mniej wiecej cos takiego:

355

Il Pierwszze okno

Screen 56. Twoje pierwsze prawdziwe okno w systemie Windows

Mimo ze wiekszo$¢ powyzszego obrazka zionie pustkg, mozemy bez cienia watpliwosci
stwierdzi¢, ze oto wykreowaliSmy petnowartosciowe okno. Posiada ono bowiem wszystkie
cechy, jakich mozemy sie spodziewac po oknach w Windows: mozemy je przesuwac,
zmieniac jego rozmiar, minimalizowa¢, maksymalizowa¢, przetaczac sie z niego do innych
aplikacji czy wreszcie zamkna¢, kofnczac tym samym caty program. Jako ze okno to nie
posiada zadnej zawartosci, moze nam sie wyda¢ mato interesujace; zanim jednak
nauczymy sie wypetniac je ,trescigq”, musimy dogtebnie poznac¢ sam proces jego
tworzenia.

Utworzenie okna tego rodzaju, mogacego np. stanowi¢ gtéwng baze jakiej$ aplikacji,
przebiega w dwdch etapach. Najpierw musimy zarejestrowa¢ w Windows klase okna, a
nastepnie stworzyc¢ jej egzemplarz. Obie te czynnosci zostajg u nas przeprowadzone w
funkcji winMain () i obecnie przyjrzymy sie kazdej z nich.

Klasa okna

Kazde okno w systemie Windows nalezy do jakiej$ klasy. Klasa okna (ang. window
class) jest czyms rodzaju wzorca, na podstawie ktérego tworzone sg kolejne kopie okien.
Wszystkie te okna, nalezace do jednej klasy, majg z poczatku pewne cechy wspdlne oraz
pewne odrebne, charakterystyczne tylko dla nich.

Mechanizm ten mozna ewentualnie poréwnac do klad w programowaniu obiektowym, z tg
roznica, ze tam tyczyt sie kazdego mozliwego lub niemozliwego rodzaju obiektow. Klasy
okien dotycza natomiast tylko okien i nie sq az tak elastyczne.

Co dokfadnie okresla klasa okna?... Najwazniejsza jej wtasciwoscia jest nazwa - to
zrozumiate. W systemie Windows kazda klasa okna musi posiadac¢ swojg unikalng nazwe,
poprzez ktérg mozna jg identyfikowac. Podajemy to miano, gdy chcemy utworzy¢ okno
na podstawie klasy.

Druga bardzo wazng sprawg jest procedura zdarzeniowa, zajmujaca sie
przetwarzaniem zdarzen systemowych. Windows jest tak skonstruowany, ze owa
procedura jest zwigzana wihasnie z klasa okna'® - wynika stad, ze:

Wszystkie okna nalezace do jednej klasy reagujq na zdarzenia przy pomocy tej samej
procedury zdarzeniowej.

Pozostate cechy klasy to np. tlo, jakim jest wypetniane wnetrze okna (tzw. obszar
klienta), ikonka, ktéra pojawig sie w jego lewym goérnym rogu, wyglad kursora
przemieszczajacego sie nad oknem, a takze kilka innych opcji.

104 Mozliwa jest aczkolwiek zmiana tej procedury w juz istniejacym oknie danej klasy bez wptywu na inne takie
okna. Technika ta nazywa sie subclassing i zostanie omdwiona we wiasciwym czasie. Na razie przyjmij, ze
wszystkie okna jednej klasy majq te sama procedure zdarzeniowa.

356

Wszystkie potrzebne informacje o klasie okna umieszczamy w specjalnej strukturze, a
nastepnie przy pomocy odpowiedniej funkcji Windows API rejestrujemy klase w
systemie. Jezeli operacja ta zakonczy sie sukcesem, mozemy juz przystgpi¢ do
utworzenia wtasciwego okna (lub okien) na podstawie zarejestrowanej klasy.

O rejestracji klasy okna powiemy sobie za momencik; najpierw musimy jeszcze rzucic¢
okiem na najwazniejszg jej cze$¢, w duzym stopniu determinujgcqg zachowanie sie
programu dla Windows - na procedure zdarzeniowa.

Procedura zdarzeniowa

W naszym programie Window ta wazna funkcja nazywa si€ WindowEventProc. Od razu
trzeba jednak zaznaczy¢, ze nazwa procedury zdarzeniowej nie ma tak naprawde
zadnego znaczenia i moze by¢ obrana dowolnie - najlepiej z korzyscig dla programisty.
Najczestszymi nazwami sq aczkolwiek WindowProc, WndProc, EventProc CZy MsgProc,
jako ze dobrze ilustrujg one czynno$¢, ktorg ta procedura wykonuje.

A tg czynnosciag jest odbieranie i przetwarzanie komunikatow o zdarzeniach. Do
procedury zdarzeniowej trafiajg wiec informacje na temat wszelkich zainstniatych w
systemie zdarzen, ktére dotycza ,obstugiwanego” przez procedure okna. Zgodnie z
zasadami modelu zdarzeniowego, gdy wystgpi jakas potecjalnie interesujaca sytuacja
(np. klikniecie mysza, przycisniecie klawisza), system operacyjny operacyjny wywotuje
procedure zdarzeniowg i podaje jej przy tym wtasciwe dane o zaistniatym zdarzeniu. Rolg
programisty piszacego tresc tej procedury jest zas odebranie owych danych i postuzenie
sie nimi w nalezyty sposob we witasnej aplikacji.

Dowiedzmy sie zatem, jak mozemy odebrac te cenne informacje i co nalezy z nimi zrobic.
Przyjrzymy sie tedy prototypowi procedury zdarzeniowej okna:

LRESULT CALLBACK WindowEventProc (HWND hWindow,
UINT uMsg,
WPARAM wParam,
LPARAM lParam) ;

Niewykluczone iz domyslasz sie, ze stéwko CALLBACK petni tu podobng role, co WINAPI w
funkcji winMain (), W istocie, jest to makro zastepujace tg sama nawet fraze stdcall,
wskazujaca na konwencje wywotania. Nazwa CALLBACK stanowi dla nas wskazéwke, ze
mamy do czynienia z funkcja zwrotna, ktérej wywotywaniem zajmie sie dla nas ktos
inny (tu: system operacyjny Windows).

Procedura posiada cztery parametry, zadaniem ktérych jest dostarczanie informaciji o
zaistniatych zdarzeniach - przede wszystkim o ich rodzaju, a takze o ewentualnych
danych dodatkowych oraz o odbiorcy zdarzenia.

Informacje o zdarzeniu nazywamy w Windows komunikatem (ang. message).

Znaczenie poszczegdlnych parametréw procedury zdarzeniowej, stuzacych do
przekazania komunikatu, jest zas nastepujace:

typ nazwa opis

Przechowuje uchwyt okna, u ktérego wystapito zdarzenie. O ile
pamietamy, procedura zdarzeniowa jest $cisle zwigzana z klasg okna,
a z takiej klasy moze sie przeciez wywodzi¢ wiele okien. Ich
komunikaty trafig wiec do tej samej procedury, lecz dzieki
parametrowi hwindow mozna bedzie rozréznié ich poszczegdlnych
odbiorcéw, czyli pojedyncze okna.

HWND hWindow

UINT uMsg Jest to informacja o rodzaju zdarzenia. Wartos¢ tego parametru to

357

typ nazwa opis

jedna z kilkuset (!) zdefiniowanych w systemie statych, ktérych
nazwy rozpoczynaja sie od wM . Kazda z tych statych odpowiada
jakiemus zdarzeniu, mogacemu wystgpi¢ w systemie; parametr uMsg
stuzy wiec do ich rozrézniania i odpowiedniej reakcji na te, ktére
interesujg programiste. Z racji swej niebagatelnej roli jest tez sam
nazywany czasem komunikatem, podobnie jak wartosci, ktére moze
przyjmowac.

W tym parametrze, bedacym (jak wiekszo$¢ zmiennych w WinAPI)
32-bitowg liczbg catkowitg bez znaku, dostarczane sg szczegdtowe,
WPARAM | wParam pomocnhicze informacje o zdarzeniu. Ich znaczenie jest wiec
zalezne od wartosci uMsg i zawsze podawane przy opisach
komunikatéw w dokumentacji Windows API.

Ten parametr jest drugq czescig danych o zdarzeniu, aczkolwiek
LPARAM | 1lParam rzadziej uzywanag niz pierwsza. Podobnie jak wparam, jest to
czterobajtowa liczba naturalna.

Tabela 22. Parametry procedury zdarzeniowej okna

Zdecydowanie najbardziej znaczacy jest parametr uMsg - to na jego podstawie mozemy
odrézniac jedne zdarzenia od drugich i podejmowac dla nich osobne akcje. W tym celu
trzeba po prostu poréwnywac wartos¢ tego parametru ze statymi komunikatow, ktére nas
interesuja.

Najlepiej wystuzy¢ sie tutaj instrukcjq switch i tak tez robig programisci Windows. Tres¢
procedury zdarzeniowej jest zatem w przewazajacej czesci blokiem wyboru, podobnym
do naszego:

switch (uMsgqg)
{
case WM DESTROY:
// kohczymy program
PostQuitMessage (0);
return 0;

}

U nas zajmujemy sie aczkolwiek tylko jednym komunikatem, ktéremu odpowiada stata
WM DESTROY. Zdarzenie to zachodzi w momencie niszczenia okna przez system
operacyjny. To zniszczenie moze z kolei zosta¢ wywotane chociazby poprzez zamkniecie
okna, gdy uzytkownik klika w przycisk =l w prawym goérnym rogu.

Po zniszczeniu okna juz rzecz jasna nie ma, a zatem nie ma tez widocznych oznak ,zycia”
naszej aplikacji. PowinniSmy wéwczas jg zakonczy¢, co tez czynimy w odpowiedzi na
zdarzenie WM DESTROY. Wywotujemy mianowicie funkcje PostQuitMessage (), ktora
wysyta do programu komunikat wM QUIT. Jest to szczegdlny komunikat, gdyz nie trafia
on do zadnego okna aplikacji, lecz w chwili otrzymania powoduje natychmiastowe
zakonczenie programu. Jednoczesnie aplikacja zwraca kod wyjscia podany jako
parametr w PostQuitMessage ().

Zanim jednak wM QUIT dotrze do aplikacji, dalej trwa wykonywanie procedury
zdarzeniowej. Nie ma ona juz wszakze nic do roboty, a zatem powinniSmy jg z miejsca
zakonczy¢. Czynimy to, zwracajac przy okazji rezultat’® réwny 0, mdéwiacy o pomysinym
przetworzeniu komunikatu wM DESTROY.

Tak wiec nasza procedura WindowEventProc robi generalnie bardzo prostg rzecz: kiedy
wykryje zdarzenie niszczenia okna (komunikat wM DESTROY), powoduje wystanie

105 procedura zdarzeniowa zwraca warto$¢ typu LRESULT - tradycyjnie, jest to liczba 32-bitowa bez znaku.

358

specjalnego komunikatu wM QUIT do aplikacji. To za$ skutkuje zakonczeniem dziatania
programu wraz z zamknieciem jego okna przez uzytkownika.

Nasze okno reaguje wiec tylko na jeden komunikat, i to u kresu swego istnienia. Czy
odbiera jednak takze inne?... Intuicja podpowiada ci pewnie odpowiedz pozytywna:
mozesz przeciez do woli klika¢ myszg w wnetrze swego okna, przesuwac je, skalowac,
minimalizowad, itd. Wszystkie te dziatania, i jeszcze mnéstwo innych, powoduje
wysyfanie do okna komunikatéw o zdarzeniach, a jednak nie powodujg one zadnej
widocznej reakcji. Co sie zatem z nimi dzieje?...

No céz, nie rozptywaja sie w prozni. Windows oczekuje bowiem, iz kazde zdarzenie
zostanie obstuzone, poniewaz opiera sie na tym architektura tego systemu
operacyjnego. Wykazuje sie on jednak krztyng rozsadku i nie kaze nam pisa¢ kodu
obstugi kazdego z setek rodzajow komunikatow o zdarzeniach. Udostepnia on mianowicie
funkcje DefwindowProc (), do ktérej mozemy (i powinnismy!) skierowaé wszystkie
nieobstuzone komunikaty:

return DefWindowProc (hWindow, uMsg, wParam, lParam);

Funkcja ta zajmie sie sie nimi w domysIny sposéb i odda rezultat ich przetwarzania. My
zas zwrocimy go jako wynik swojej wiasnej procedury zdarzeniowej i dzieki temu
wszyscy beda zadowoleni :)

Tak oto przedstawia sie w skrocie zagadnienie procedury zdarzeniowej okna w systemie
Windows. Na koniec warto jeszcze przytoczy¢ jej sensowng skfadnie:

LRESULT CALLBACK nazwa procedury zdarzeniowej (HWND uchwyt okna,
UINT komunikat,
WPARAM wParam,
LPARAM lParam)

switch (komunikat)

{

case zdarzenie 1:
obstuga zdarzenia 1
return 0;

case zdarzenie 2:
obstuga zdarzenia 2
return 0;

case zdarzenie n:
obstuga zdarzenia n
return 0;

}

return DefWindowProc (uchwyt okna, komunikat, wParam, lParam);

}

Skfadni tej nie trzeba sie trzymaé co do joty, lecz jest ona dobrym punktem startowym.
Gdy nabierzesz juz wprawy w programowaniu Windows, bedziesz by¢ moze pisat bardziej
skomplikowany kod obstugi zdarzen, ktory nie zawsze zwracat bedzie rezultat pozytywny.
Musisz jednakze pamietac, iz:

Nieobstuzone komunikaty nalezy zawsze kierowac¢ do funkcji DefWindowProc(). Ich
pominiecie spowoduje bowiem niepozadane zachowanie okna.

359

Nie usuwaj wiec nigdy ostatniej linijki procedury zdarzeniowej, sytuujacej sie poza
blokiem switch. Stanowi ona nieodtgczng cze$¢ wymaganego kodu obstugi zdarzen.

Rejestracja klasy okna

Procedura zdarzeniowa to najwazniejszy, ale nie jedyny skfadnik klasy okna - oprécz
niego wystepuje jeszcze kilka innych. Wszystkie one sg polami specjalnej struktury
WNDCLASSEX; definicja tego typu wyglada za$ tak!®:

struct WNDCLASSEX

{
UINT cbSize;
HINSTANCE hInstance;

LPCTSTR lpszClassName;

WNDPROC lpfnWndProc;
UINT style;

HICON hIcon;

HICON hIconSm;
HCURSOR hCursor;

HBRUSH hbrBackground;
LPCTSTR lpszMenuName;

int cbClsExtra;
int cbWndExtra;
}i

Mamy w nim az tuzin réznych poél, zadeklarowanych ku radosci kazdego kodera ;D Ich
znaczenie przedstawia nam ponizsza tabelka:

typ nazwa

opis

UINT cbSize

W tym polu nalezy wpisa¢ rozmiar struktury
WNDCLASSEX. Wymaég ten moze sie wydawac dziwaczny,
niemniej jest prawdziwy i trzeba mu sie podporzadkowac.
A zatem pierwszym krokiem w pracy ze strukturg
WNDCLASSEX powinno by¢ ustawienie pola cbSize na
sizeof (WNDCLASSEX). Podobnie rzecz ma sie z innymi
strukturami w WinAPI, ktére posiadajq te pole.

Jezeli struktura w Windows API posiada pole cbSize,
nalezy koniecznie ustawi¢ je na warto$¢ rowng rozmiarowi
owej struktury, jeszcze zanim przekazemy ja jakiejkolwiek

funkcji WinAPI.

HINSTANCE hInstance

Tutaj podajemy uchwyt do instancji programu. Tak,
jest to ten sam uchwyt, jaki dostajemy w pierwszym
parametrze funkcji winMain (). Musimy zatem oddac

Windowsowi, co od Windowsa pochodzi ;)

LPCTSTR lpszClassName

To pole jest przeznaczone dla nazwy klasy okna. Nazwa
ta powinna by¢ unikalna w skali procesu, gdyz w
przeciwnym wypadku rejestracja okna nie powiedzie sie.
Dobrym pomystem jest wiec wpisywanie jakiejs kombinacji
nazwy pisanego programu i grupy koderskiej, ktorej jest
on dzietem.

Nazwe te dobrze jest tez zachowac¢ w odrebnej zmiennej
lub statej, bo bedzie nam potrzebna przy tworzeniu okna.

106 Naprawde wyglada ona inaczej, jako ze sktadnia struct { ... }; jest niepoprawana w C. Definicja podana

tutaj jest jednak w petni rGwnowazna,

jesli uzywamy jezyka C++ (a uzywamy :)). Dlatego tez kolejne definicje

struktur beda podane wiasnie w ten, C++’owy sposob.

360

opis

Oto najwazniejsze pole tej struktury: wskaznik na
procedure zdarzeniowa. Musi by¢ ona zadeklarowana
zgodnie z prototypem podanym w poprzednim akapicie,

jako funkcja globalna lub statyczna metoda klasy.
Jest to kombinacja flag bitowych okreslajacych pewne
szczegollne opcje klasy. Najczesciej zostawiamy to pole
wyzerowane lub ustawiamy je na

CS_HREDRAW | CS_ VREDRAW.

Czes$c¢ dostepnych flag zaprezentujemy w nastepnym
rozdziale.

Wszystkie sq wyliczone i opisane w MSDN.

W tym polu okreslamy ikone, jaka bedg opatrzone okna
przynalezne rejestrowanej klasie. Doktadniej moéwiac,
podajemy tu uchwyt do ikony o wymiarach co najmniej
32x32 pikseli. O tym, skad wzig¢ takg ikone, dowiesz sie
za moment.

To pole jest uchwytem do matej ikony okna,

pojawiajacej sie w jego lewym gdérnym rogu. Spokojnie

mozemy tu podac te samg warto$¢, co w hIcon (takze
NULL, wtedy zostanie uzyta wiasnie ikona z hIcon).

Kolejne pole z gatunku wystroju graficznego okna - tym
razem jest to uchwyt do kursora. Strzatka myszy
przyjmie jego wyglad, gdy bedzie przelatywac ponad
oknem nalezacym do definiowanej klasy. O uzyskiwaniu
uchwytu do kursora tez sobie zaraz powiemy.
Wartos$¢ NULL w tym polu oznacza natomiast catkowity
brak kursora myszy.

W tym miejscu podajemy uchwyt do pedzla,

wypetniajacego wnetrze okna. Pedzel (ang. brush) jest do
obiektem pochodzacym z Windows GDI; w skrocie mozna
go okresli¢ jako sposdb wypetniania jakiej$ powierzchni
kolorem oraz deseniem (kropkami, kreskami, itp.). Sposéb

ten zostanie zastosowany do catego wnetrza okna.
Najczesciej stosuje sie tu wartoS¢ COLOR _WINDOW

(zrzutowana na typ HBRUSH), gdyz wowczas okno ma
domysliny, jednolity kolor. Podanie NULL spowoduje zas

powstanie przezroczystego okna'®’.

Zasadniczo jest to nazwa zasobu paska menu, ktéry to
pasek ma posiada¢ kazde okno klasy. Wiem, ze w tej chwili
robisz wielkie oczy, zatem na razie uznaj, ze nalezy w polu
wpisywac NULL :) O zasobach powiemy sobie natomiast za
czas jaki$ (dtugi :D).

typ nazwa
WNDPROC lpfnWndProc
UINT style
HICON hIcon
HICON hIconSm
HCURSOR hCursor
HBRUSH hbrBackground
LPCTSTR lpszMenuName
int cbClsExtra
int cbWndExtra

Okresla ilos¢ dodatkowych bajtéw, jakie zostang

zaalokowane dla klasy. Prawie zawsze wpisuje sie tu zero.

Tabela 23. Pola struktury WNDCLASSEX

WM ERASEBKGND.

To z kolei ilo$¢ bajtéw alokowanych wraz z kazdym
tworzonym oknem klasy. Réwniez wpisuje sie tu czesto
zero.

197 Chyba ze bedzie ono poprawnie odrysowywato swojg zawartos¢ w reakcji na komunikat wvM_PAINT lub

361

Huh, to jest dopiero struktura, co sie zowie :) Jak wida¢ Windows zada nadzwyczaj duzo
informacji w trakcie rejestrowania klasy okna. Podajmy je wiec; oto, jak w naszym
programie przebiega wypetnianie struktury WNDCLASSEX:

// deklaracja 1 wyzerowanie struktury
WNDCLASSEX KlasaOkna;
ZeroMemory (&KlasaOkna, sizeof (WNDCLASSEX))

// zapisanie wartos$ci do pdl

KlasaOkna.cbSize = sizeof (WNDCLASSEX) ; // 1
KlasaOkna.hInstance = hInstance; // 2
KlasaOkna.lpfnWndProc = WindowEventProc; // 3
KlasaOkna.lpszClassName = g strKlasaOkna.c str(); // 4
KlasaOkna.hCursor = LoadCursor (NULL, IDC ARROW) ; // 5
KlasaOkna.hIcon = LoadIcon(NULL, IDI APPLICATION); // 6
KlasaOkna.hbrBackground = (HBRUSH) COLOR WINDOW; // 7

Rozpoczynamy od jej wyzerowania: funkcja ZeroMemory () wypetnia zerami podany jej
obszar pamieci o wyznaczonym rozmiarze - przekazujemy jej zatem wskaznik do naszej
struktury i jej wielkos¢ w bajtach.

Dalej zapisujemy owg wielko$¢ (1) w polu cbsize - jak wspomniatem w tabeli, jest to
konieczne i trzeba to uczyni¢. Podobne w polu hInstance umieszczamy (2) uchwyt do
instancji naszego programu.

W kolejnym przypisaniu (3) ustalamy procedure zdarzeniowq dla okien naszej klasy. W
tym celu w polu 1pfniindProc zapisujemy wskaznik do uprzednio napisanej funkcji
WindowEventProc () - jak wiemy, wystarczy tutaj napisa¢ po prostu nazwe funkcji bez
koncowych nawiaséw okragtych.

Wreszcie w polu 1pszClassName podajemy nazwe rejestrowanej klasy (4). ZapisaliSmy jq
w globalnej zmennej typu std: :string, lecz struktura zada tutaj napisu w stylu C i
dlatego postugujemy sie skrzetnie metodg c_str ().

Nastepne ustalenia sq juz bardziej skomplikowane. Oto wybieramy (5) obrazek, jaki
bedzie pojawiat sie nad naszym oknem, gdy przesunie sie tam kursor myszy.
Postugujemy sie do tego funkcjg Loadcursor () ; potrafi ona wczytac obrazek kursora i
zwroci¢ don uchwyt typu HCURSOR. Wczytujemy natomiast standardowg bitmape strzatki,
bedaca kursorem systemowym, oznaczonym przez IDC_ARROW. Jako ze nie postugujemy
sie tutaj wtasnym rysunkiem, lecz korzystamy z tych udostepnianych przez Windows, w
pierwszym parametrze funkcji wpisujemy NULL.

Bardzo podobnie przebiega ustawienie ikony okna (6). Tym razem postugujemy sie
funkcja LoadIcon (), dziatajacq jednak niemal identycznie: pierwszy parametr to znowu
NULL, gdyz postuzymy sie ikonami systemowymi. IDI APPLICATION wskazuje zas, ze
pragniemy wydoby¢ domysing ikone aplikacji Windows.

Naturalnie Windows posiada znacznie wiecej wbudowanych ikon i kursorow.
Odpowiadajace im state mozna znalez¢ w dokumentacji funkcji LoadTcon () i
IheRelCuraerE () o

Mozliwe jest rzecz jasna stosowanie wtasnych ikon i kursoréw w tworzonych oknach - w
tym celu trzeba postuzy¢ sie mechanizmem zasobdéw (ang. resources).

Ostatnie ustawienie (7) zwigzane jest ze sposobem graficznego wypetnienia wnetrza
okna. Jak to zostato nadmienione w opisie pola hbrBackground, stosujemy tutaj
standardowy kolor okna Windows, reprezentowany poprzez statq COLOR WINDOW
rzutowang na typ HBRUSH.

362

Na tym konczymy wypetnianie trescig struktury wNDCLASSEX, chociaz nie zajeliSmy
kazdym z jej dwunastu pdl. Pozostate otrzymaty wszelako zadowalajace nas wartosci w
wyniku poczatkowego wyzerowania catej struktury.

W nastepnym rozdziale przyjrzymy sie jednak doktadniej kazdemu polu tejze struktury
oraz wartosciom, jakie moze ono przyjmowac.

Gdy mamy juz gotowe wszystkie informacje o klasie okna, przychodzi czas na jej
zarejestrowanie. Jest to operacja nadzwyczaj prosta i ogranicza sie do wywotania jednej
funkcji:

RegisterClassEx (&KlasaOkna);

Funkcja RegisterClassEx () potrzebuje jedynie wskaznika na przygotowang strukture
WNDCLASSEX - i tq wtasnie dang przekazujemy jej. Po pomysinym wykonaniu funkcji
nasza klasa okna jest juz zarejestrowana i mozemy wreszcie przystgpi¢ do tworzenia
samego okna.

Utworzenie i pokazanie okna

Zeby bylo $mieszniej, stworzenie okna to takze kwestia tylko jednej funkcji - z ta rdznica,
ze jej wywotanie nie wyglada juz tak prosto:

HWND hOkno;

hOkno = CreateWindowEx (NULL, // rozszerzony styl
g strKlasaOkna.c_str(), // klasa okna
"Pierwsze okno", // tekst na p. tytulu
WS OVERLAPPEDWINDOW, // styl okna
CW_USEDEFAULT, // wspbirzedna X
CW_USEDEFAULT, // wspbitrzedna Y
CW_USEDEFAULT, // szerokosé
CW_USEDEFAULT, // wysokosé
NULL, // okno nadrzedne
NULL, // menu
hInstance, // instancja aplikacji
NULL) ; // dodatkowe dane

Oto bowiem mamy kolejny tuzin (!) ,absolutnie niezbednych” danych, przekazywanych
jako parametry funkcji CreatewindowEx (). Nie trzeba jednakze popada¢ w czarng
rozpacz - wszystko przeciez daje sie poznac i zrozumiec¢, a gdy juz co$ poznamy i
zrozumiemy, wowczas staje sie to bardzo tatwe :D

A zatem przyjrzyjmy sie tej pokaznej i waznej funkcji.

Stworzenie okna poprzez CreateWindowEx ()

Od razu rzucimy okiem na jej prototyp:

HWND CreateWindowEx (DWORD dwExStyle,
LPCTSTR 1lpClassName,
LPCTSTR lpWindowName,
DWORD dwStyle,
int x,
int vy,
int nWidth,
int nHeight,

HWND hWndParent,
HMENU hMenu,
HINSTANCE hInstance,
LPVOID lpParam) ;

363

Zanim zajmiemy sie poszczegdlnymi parametrami, popatrzmy na typ wartosci zwracanej
- jest to HWND, a wiec uchwyt do okna. Funkcja CreateWindowEx () tworzy zatem okno i
zwraca nam jego uchwyt; poprzez tenze uchwyt bedziemy mogli wykonywac na
stworzonym oknie wszelkiego rodzaju operacje. Jest to wiec kluczowa wartosé¢ w
programie i powinna by¢ zapisana w przeznaczonej ku temu zmiennej.

Podobnie jak wiele poprzednich i nastepnych funkcji, CreateWindowEx () moze tez
zwroéci¢ zero (NULL), jesli operacja tworzenia okna nie zakonczy sie sukcesem.

Azeby jednak skonczyta sie powodzeniem, musimy przekazac¢ systemowi operacyjnemu
odpowiednie dane na temat kreowanego okna. Dokonujemy tego, podajac wtasciwe
wartosci parametrow CreateWindowEx () :

typ

nazwa

opis

DWORD

dwExStyle

Parametr ten jest kombinacjg flag bitowych, stanowigcq
tzw. rozszerzony styl okna (ang. extended window style).
Ow styl okresla raczej zaawansowane aspekty okna i
dlatego zwykle wpisujemy wen NULL.

I w takim tez przypadku mozemy uzywac funkcji
CreateWindow (), ktora od omawianej rozni sie tylko tym, iz
w ogdlne nie posiada parametru dwExStyle. Ze wzgledu
jednak na ustalenie, mowigce, ze w miare mozliwosci
bedziemy korzystac tylko z funkcji z sufiksem Ex, do
tworzenia okna zawsze postugiwac sie bedziemy
wywotaniem CreateWindowEx () .

LPCTSTR

lpClassName

Tutaj nalezy poda¢ nazwe klasy, ktorej przynalezne bedzie
tworzone okno. Najczesciej jest to nasza wiasna klasa,
zarejestrowana chwile wczesniej; wartos¢ tego parametru
powinna by¢ zatem taka sama, jak pola 1pszClassName W
strukturze WNDCLASSEX.

LPCTSTR

lpWindowName

W tym parametrze wpisujemy tytut okna - jest to
jednoczesnie tekst pojawiajacy sie na jego pasku tytutu
(tym gérnym kolorowym :)).

DWORD

dwStyle

Jest to styl okna, w najwiekszym stopniu determinujacy
jego wyglad i zachowanie. Parametr ten jest kombinacja
flag bitowych, a o mozliwych statych, jakie mozemy tutaj
~wkombinowac”, powiemy sobie w nastepnym rozdziale.

Stata WS OVERLAPPEDWINDOW, ktorg uzyliSmy w programie
przyktadowym, powoduje stworzenie najzwyklejszego okna
z paskiem i przyciskami tytutu oraz skalowalnym
obramowaniem. Jest to jednoczesnie jeden z czesciej
stosowanych styli okna.

int

Wpisujemy tutaj wspétrzedna pozioma okna lub
CW_USEDEFAULT - wOwczas jego pozycja zostanie ustalona
domyslnie.

int

y to wspoétrzednia pionowa okna; jezeli w ktoryms z
parametréw x lub y podamy stata cw USEDEFAULT, wtedy
okno pojawi sie w domysinym, ustawionym przez system

miejscu.

int

nWidth

W tym parametrze podajemy szerokos¢ okna, ktorg przy
pomocy CW_USEDEFAULT takze moze by¢ wybrana
domysinie.

int

nHeight

Wysokos¢ okna, jakg umieszczamy tutaj, rowniez mozna
zostawi¢ do ustalenia dla systemu operacyjnego przy

364

typ

nazwa

opis

pomocy statej CWw USEDEFAULT.

HWND

hWndParent

Oto uchwyt do okna nadrzednego wzgledem tego
tworzonego przez nas. W przypadku gtownych okien
aplikacji (ang. top-level) podajemy tu NULL.

HMENU

hMenu

W tym parametrze ustalamy uchwyt do paska menu
okna - oczywiscie tylko wtedy, gdy ma ono takowy pasek
posiada¢, a my wiemy, jak go stworzy¢ (czego na razie nie

wiemy, ale sie w swoim czasie dowiemy :D). W przeciwnym
razie Windows zadowoli sie wartoscig NULL.

HINSTANCE

hInstance

Oto kolejne miejsce, w ktérym musimy podac swoéj uchwyt
do instancji programu. Przypominam, ze otrzymujemy go
explicité jako parametr funkcji winMain (), zatem nie
powinno by¢ z nim zadnego problemu.

LPVOID

lpParam

Na koniec mozemy poda¢ ewentualny dodatkowy
parametr, przekazywany do okna w chwili jego
stworzenia!®®. Zwykle nie ma takiej potrzeby, wiec
wpisujemy tu NULL.

Tabela 24. Parametry funkcji CreateWindowEx()

Nieco dtuzszego wyjasnienia wymagajq parametry x, y, nWidth i nHeight, zwigzane z
pozycjg i wymiarami okna na ekranie. Otdz sq one ustalane w pikselach, a wiec zalezne
od rozdzielczosci ekranu. Dodatkowo sposdb pozycjonowania okien (i wszystkich innych
obiektow) na ekranie rézni sie od analogicznych metod w geometrii analitycznej,

bowiem:

W uktadzie wspétrzednych ekranowych punkt (0, 0), czyli jego poczatek, znajduje
sie w lewym gérnym rogu ekranu. Poza tym o$ pionowa Y jest w tym uktadzie
zwrocona w dot.

Obrazuje to dobrze ponizszy rysunek:

ED.(\D} 0§ X (799, 0)

y ;

os Y .

nHeight

) nWidth . ;

{0, 599) :
(799,7599)

Rysunek 6. Ukiad wspoéirzednych ekranowych w rozdzielczosci 800x600

108 A $cidlej méwiac, wraz z komunikatem wM_CREATE. Funkcja Createwindow[Ex] () wysyta ten komunikat do
okna zaraz po jego stworzeniu i nie oddaje kontroli do programu zanim zdarzenie to nie zostanie przetworzone
w procedurze zdarzeniowej wykreowanego okna.

365

Widac¢ na nim takze, ze parametry x i v sq wspotrzednymi lewego gérnego rogu okna, a
nWidth i nHeight okreslajg rozmiar okna w poziomie pionie.

Te cztery parametry definiujg jednoczesnie pewien prostokat na ekranie. Innym
sposobem na okreslenia prostokata moze by¢ takze podanie pozycji jego znaczacych
wierzchotkow, tzn. lewego gornego oraz prawego dolnego. Taki sposob jest zastosowany
w strukturze RECT, ktorg poznamy z przysztym rozdziale.

Wyswietlenie okna na ekranie

Utworzenie okna przy pomocy funkcji CreateWindow[Ex] () nie oznacza wszelako, ze
zostanie ono automatycznie pokazane'®®, Nalezy bowiem zrobi¢ to samodzielnie, co w
naszym przypadku oznacza przywofanie jednej funkcji:

ShowWindow (hOkno, nCmdShow) ;

Nazywa sie ona ShowWindow () i posiada dwa parametry. Pierwszy to naturalnie uchwyt
okna, ktore chcemy pokazac - w tym przypadku jest to swiezo uzyskany identyfikator
rownie $wiezo stworzonego przez nas okna :) ZapisaliSmy go w zmiennej hokno.

Drugi parametr okresla spos6b pokazania rzeczonego okna; u nas tym charakterze
wystepuje warto$¢ ncmdshow, parametru funkcji winMain () . Decydujemy sie tym samym
na pokazanie gtéwnego (i jedynego) okna programu catkowicie zgodnie z wolg jego
uzytkownika. Jesli bowiem utworzy on skrot do aplikacji i okresli w nim poczatkowy stan
okna programu (normalny, zminimalizowany lub zmaksymalizowany), to tenze stan w
postaci odpowiedniej statej zostanie nam przekazany wtasnie poprzez nCmdShow.
MéwiliSmy zresztg o tym przy omawianiu funkcji winMain ().

State, jakie moze w ogdlnosci przyjmowac drugi parametr funkcji showWwindow (), sq zas
nastepujace:

stafa znaczenie
SW_SHOW pokazanie okna z zachowaniem jego pozycji i wymiaréw
SW_HIDE ukrycie okna
SW MAXIMIZE maksymalizacja okna (,na peiny ekran”)
SW_MINIMIZE minimalizacja okna (,,do ikony")
SW_RESTORE przywrécenie okna do normalnego stanu

Tabela 25. Wazniejsze sposoby pokazywania okna poprzez funkcje Showwindow()

Jezeli wiec chcemy zignorowac zapatrywania uzytkownika i wyswietla¢ okno zawsze jako
zmaksymalizowane, wéwczas powinnismy uzy¢ instrukcji:

ShowWindow (hOkno, SW MAXIMIZE) ;

Zalecane jest jednakze stosowanie parametru nCmdShow, przynajmniej w programach
uzytkowych.

Po zastosowaniu ShowWindow () czesto wywotywana jest takze funkcja UpdateWindow (),
ktéra powoduje odrysowanie zawartosci okna (poprzez wystanie don komunikatu

WM PAINT) - oczywiscie tylko wtedy, gdy faktycznie cos na nim rysujemy. Zajmiemy sie
tym w rozdziale o Windows GDI.

199 Chyba ze dotaczymy ws_vISIBLE do stylu okna (parametr dwStyle).

366

Petla komunikatow

Dotartszy do tego miejsca, mamy juz zarejestrowang klase okna, a samo okno jest
stworzone i widoczne na ekranie. Jego widokiem nie nacieszymy sie jednak dtugo, jezeli
w tym momencie zakonczymy pisanie funkcji winMain () - co najwyzej mignie nam ono
przez krétka chwile, by znikngé wraz z zakorniczeniem wykonywania tejze funkcji i, co za
tym idzie, catego programu.

Trzeba wiec powstrzymac funkcje winMain () przed natychmiastowym zakonczeniem, a
jednoczesnie zapewnic otrzymywanie komunikatéw o zdarzeniach przez nasze okno, aby
mogto ono poprawnie funkcjonowac. Oba te zadania spoczywajg na petli komunikatow.

Petla komunikatéw (ang. message loop) odpowiada za odbieranie od systemu
Windows komunikatdw o zdarzeniach i przesytanie ich do docelowych okien aplikacji.

Petla ta wykonuje sie przez caty czas trwania programu (chciatoby sie powiedzie¢, ze jest
nieskonczona, lecz nie catkiem tak jest) i wytrwale troszczy sie o jego wtasciwg interakcje
z otoczeniem.

Kod petli komunikatéw moze przedstawiac¢ sie nastepujaco:

MSG msgKomunikat;
while (GetMessage (&émsgKomunikat, NULL, 0, 0))
{

TranslateMessage (&msgKomunikat);
DispatchMessage (&msgKomunikat) ;

}

Jest to jej najprostszy wariant, ale dla naszych terazniejszych potrzeb catkowicie
wystarczajacy. Wyjasnijmy sobie jego dziatanie.

Otéz nasza petla komunikatéw dziata dopdty, dopoki program nie zamiaru zostac
zakonczony. Przez caty ten czas wykonuje przy tym bardzo pozyteczng prace: pobiera
nadchodzace informacje o zdarzeniach z kolejki komunikatow (ang. message queue)
Windows, a nastepnie wysyta je do wiasciwych im okien. Kolejka komunikatéw jest zas
wewnetrzng strukturg danych systemu operacyjnego, istniejaca dla kazdej uruchomionej
w nim aplikacji. Na jeden koniec tej kolejki trafiajg wszystkie komunikaty o zdarzeniach,
jakie pochodza ze wszystkich mozliwych Zzrédet w systemie; z drugiego jej konca program
pobiera te komunikaty i reaguje na nie zgodnie z intencjg programisty. W ten sposéb
nadchodzace zdarzenia sg przetwarzane w kolejnosci pojawiania sie, a zadne z nich nie
zostaje ,,zgubione”.

Nawet jesli program przez chwile zdaje sie nie odpowiadac¢, zajety swoimi czynnosciami,
kolejka komunikatéw nadal rejestruje zdarzenia, , nie zapominajac” o zadnym kliknieciu
czy przycisnieciu klawisza. Kiedy wiec aplikacja ,,odwiesi” sie, zareaguje na kazde z
owych zdarzen, aczkolwiek z pewnym opdznieniem. Wynika stad na przykiad, iz nie
musimy przerywac pisania tekstu w edytorze nawet jezeli przez jaki$ czas nie pojawia sie
on na ekranie.

Za pobieranie komunikatow od systemu odpowiedzialna jest funkcja GetMessage ().
Umieszcza ona uzyskany komunikat w strukturze specjalnego typu MsG, zawierajqcej
miedzy innymi cztery pola odpowiadajgce parametrom procedury zdarzeniowej. Adres tej
struktury (u nas nazywa sie ona msgKomunikat) podajemy w pierwszym parametrze
funkcji GetMessage () ; pozostate trzy sg parametry w wiekszosci przypadkéw wypetniane
zerami.

Wartos¢ zwrdcona przez GetMessage () jest takze bardzo wazna, skoro uzywamy jej jako
warunku petli while - petli komunikatow. Omawiana funkcja zwraca bowiem zero (co

367

przerywa petle), gdy odebranym komunikatem jest wvM QuIT. PoznaliSmy ten specjalny
komunikat, kiedy jeszcze pisaliSmy procedure zdarzeniowg okna, a teraz jego wyjatkowa
rola potwierdzifa sie, skoro:

Odebranie komunikatu WM_QUIT powoduje zakonczenie dziatania programu.

Gdy zatem wM _QUIT przerwie wykonywanie petli komunikatéw, funkcja winMain ()
osiggnie swojq ostatnig instrukcje, czyli:

return static_cast<int>(msgKomunikat.wParam);

Zwraca ona ten kod wyjscia, ktéry podalismy poddéwczas w funkcji PostQuitMessage ()
(czyli 0), jako rezultat dziatania winMain () - a wiec, co za tym idzie, wynik wykonywania
catej aplikacji. Jest on wiec zapisywany w parametrze wparam komunikatu wM QuIT, skad
go teraz wydobywamy; caty komunikat jest bowiem przechowany w strukturze
msgKomunikat, dokad trafit po ostatnim (terminalnym) wywotaniu funkcji GetMessage ().

W ten zatem sposéb konczy sie funkcjonowanie naszego programu, lecz my chcemy
jeszcze przegladnac zawartos¢ bloku petli komunikatow. Przedstawia sie on w nader
prostej formie przywotania dwoch funkcji:

TranslateMessage (&msgKomunikat);
DispatchMessage (&msgKomunikat) ;

Owe wywotania petnig role swoistego folkloru wsréd programistéw Windows, poniewaz
wszyscy oni doskonale wiedzg, ze sq to niezbednie konieczne instrukcje, ale niewielu ma
przy tym jakiekolwiek pojecie, co one wiasciwie robig ;)) Dzieje sie tak chyba dlatego, ze
nie nastreczajg one nigdy zadnych probleméw. Warto bytoby aczkolwiek znac ich
zadania.

Oto wiec TranslateMessage () dokonuje ,przettumaczenia” co niektdrych komunikatow,
zmieniajgac je w razie potrzeby w inne. Dotyczy to w szczegdlnosci zdarzen zwigzanych z
klawiaturg - przyktadowo, nastepujgce po sobie komunikaty o wcisnieciu (i
przytrzymaniu) oraz puszczeniu tego samego klawisza mogg (a nawet powinny) by¢
zinterpretowane jako pojedyncze wcisniecie tegoz klawisza. TranslateMessage () dba
wiec, aby faktycznie tak sie tutaj dziato!'°.

Z kolei DispatchMessage () ma bardziej klarowne zadanie do wykonania. Ta funkcja
wysyta bowiem podany komunikat do jego docelowego okna, ktéremu jest on
przeznaczony. Ni mniej, ni wiecej, jak tylko dokonuje tej nieodzownej czynnosci, nie
robigc nic oprécz niej (bo i czy to nie wystarczy?...). Ta funkcja jest zatem podstawg
dziatania catego windowsowego mechanizmu zdarzen, opartego na komunikatach.

Petla komunikatéw (zwana tez czasem, z racji wykonywanej pracy, pompa
komunikatow) jest wiec witalng czescig tego systemu. Przez nig przechodzg wszystkie
zdarzenia, kierowane do wtasciwych sobie okien, ktére dzieki temu mogg interaktywnie
wspotpracowac z uzytkownikiem, tworzac graficzny interfejs sterowany zdarzeniami.

Xk k%

Tq konkluzjg konczymy swoje pierwsze spotkanie z oknami w Windows. Zaznajomilismy
sie w nim najpierw z podstawowag funkcjg WwinMain () i wySwietlaniem komunikatu
poprzez MessageBox () . Dalej zaliczyliSmy blizszy kontakt z rozwigzaniem zdarzeniowego
modelu funkcjonowania aplikacji w Windows, a wiec z procedurg zdarzeniowq i petlg

110 W cytowanym przykfadzie znaczy to, ze kolejno nastepujace komunikaty WM KEYDOWN oraz WM_KEYUP zostang
uzupetnione o jeszcze jeden - WM _CHAR.

368

komunikatéow. Jednoczesnie tez stworzyliSmy i pokazaliSmy nasze pierwsze prawdziwe
okno.

Wszystko to mogto ci sie wyda¢, oglednie sie wyrazajac, troche tajemnicze. Rzeczywiscie,
trudno nie by¢ przyttoczonym dziesigtkami nazw, jakie musiatem zaserwowac w tym
podrozdziale, i nie zadawac¢ sobie rozpaczliwego pytania: ,Czy ja to musze znac na
pamiec?” Nalezatoby cos$ w tej kwestii powiedzied.

Ot6z zasadniczo mozesz odetchnac z ulgg, chociaz moze zaraz bedziesz chciat ztapaé
oddech z powrotem :) Przede wszystkim musisz jednak wiedzie¢, ze obecnie nawet
najwieksze biblioteki programistyczne nie sg straszne koderom, jezeli moga z nich
wygodnie korzysta¢. Wygodnie - to rédwniez znaczy w sposodb, ktory czesciowo odcigzatby
ich od koniecznosci pamietania wszystkich niuanséw. Nowoczesne srodowisko
programistyczne (na przyktad Visual Studio .NET) znakomicie utatwia bowiem
programowanie z uzyciem Windows API (i nie tylko), ciggle dajac piszacemu kod
niezwykle przydatne wskazowki. Dotyczg one w szczegdlnosci parametrow funkcji oraz
pol struktur: w odpowiednich momentach pojawiajg sie mianowicie wszelkiego rodzaju
~dymki” oraz listy, przypominajace programiscie protytypy funkcji, ktérych wtasnie
uzywa, i definicje struktur, ktorymi sie w danej chwili postuguje. Z tymi elementami
biblioteki nie powinno by¢ wszelako zadnych wiekszych probleméw.

Co do znajomosci nazw funkcji i typéw, to jak wszystko przychodzi ona z czasem i
doswiadczeniem. Na poczatku bedziesz moze tylko kopiowat, wklejat i przerabiat gotowe
kody, ale juz wkrétce nabierzesz wystarczajacej wprawy, by samodzielnie konstruowac
programy okienkowe - szczegoélnie, ze przeciez na tym jednym rozdziale nie koniczy sie
nasze spotkanie z nimi.

Podsumowanie

Tworzenie aplikacji okienkowych jest w Windows catkiem proste, prawda? ;) No, moze
niezupetnie. Wielu programistéw uwaza nawet, ze to bardzo, bardzo trudne zajecie, do
ktérego lepiej nie podchodzi¢ zbyt blisko. My jednak podeszliSmy do niego odwaznie i
chyba przekonalismy sie, ze nie taki Windows straszny, jak go co niektérzy maluja.

Nie obyto sie oczywiscie bez odpowiedniego, tagodnego wprowadzenia: najpierw
poznali§my wiec idee graficznego interfejsu uzytkownika, rozpowszechnionego we
wszystkich nowoczesnych systemach operacyjnych. Dalej powiedziliSmy sobie, czym
réznig sie programy pracujgce w konsoli od tych wykorzystujgcych GUI, jezeli chodzi o
ich sposéb dziatania - dowiedzieliSmy sie tutaj o trzech modelach funkcjonowania
aplikacji, ze szczegolnym uwzglednieniem modelu zdarzeniowego.

Nastepnie przygladalismy sie blizej samemu juz systemowi Windows oraz narzedziom,
dzieki ktérym mozemy tworzy¢ aplikacje dziatajgce w tym srodowisku - czyli Windows
API. UswiadomiliSmy sobie tutaj znaczenie bibliotek taczonych dynamicznie, plikdw
nagtéwkowych, zadeklarowanych w nich funkcji i typow danych oraz dokumentacji MSDN,
stanowigcej przewodnik po catym tym niezmierzonym bogactwie.

Wreszcie zabraliSmy sie do prawdziwego kodowania. NapisaliSmy wiec swojg pierwszg
aplikacje dla Windows, wyswietlajagcg okno komunikatu, i poznaliSmy przy okazji role
funkcji WinMain () | MessageBox ().

Potem zajelismy sie juz powazniejszym programem, tworzgcym prawdziwe, w petni
funkcjonalne okno systemu Windows. ZapoznaliSmy sie tutaj z komunikatami o
zdarzeniach i sposobem reagowania na nie przy pomocy procedury zdarzeniowej;
zajeliSmy sie rejestracjg najprostszej klasy okna; w koncu stworzyliSmy i wyswietliliSmy
samo okno na ekranie komputera. Wszystko to zrobiliSmy po to, by na koniec
zaobserwowac prace petli komunikatow, czynigcej nasz program catkowicie
interaktywnym.

369

W ten oto sposdb zakosztowaliSmy przedsmaku urokéw programowania dla Windows. W
nastepnych rozdziatach bedziemy poszerzaé¢ swoje wiadomosci i umiejetnosci w tym
zakresie, zyskujgc nowy programistyczny potencjat do dziatania.

Pytania i zadania

Zupetnie nowy rodzaj programéw, jakie zaczeliSmy tworzy¢, i zupetnie nowe $rodowisko,
w jakim one funkcjonuja, wymaga... zupetnie nowego zestawu pytan i ¢wiczen
kontrolnych :D Wykonaj je zatem skwapliwie.

Pytania

1. Czym charakteryzuje sie graficzny interfejs uzytkownika (GUI)? Oméw jego wady

i zalety w pordéwnaniu z interfejsem tekstowym i wydawaniem polecen w konsoli.

Uwzglednij sposob pacy poczatkujacego i zaawansowanego uzytkownika.

Wymien i scharakteryzuj trzy modele funkcjonowania programow.

W jaki sposdb systemy operacyjne praktycznie implementujg zdarzeniowy model

dziatania programow?

(Trudniejsze) Czym jest programowanie sterowane zdarzeniami?

Czym jest okno w systemie Windows?

Co nazywamy instancjg programu?

Jak system gospodaruje pamiecig operacyjng proceséw?

Jakie zalety majg dynamicznie dotaqczane biblioteki (DLL)?

Co to jest Windows API?

0. Jaki plik nagtdéwkowy nalezy dotgczy¢ do programu, aby méc korzysta¢ z symboli

Windows API?

11.Czym sa i jaka role w Windows API odgrywaja uchwyty?

12.Jak nazywa sie gtdwna funkcja programu okienkowego w Windows?

13. Do czego stuzy funkcja MessageBox () i jakie mozliwosci oferuje?

14. Jakie sg dwa etapy utworzenia gtdwnego okna aplikacji?

15. Jakie informacje musimy poda¢, rejestrujac klase okna?

16. Czym dla okna jest jego procedura zdarzeniowa?

17.(Bardzo trudne) Czy dwa okna nalezace do tej samej klasy mogg miec rézne
procedury zdarzeniowe?
Wskazdwka: poczytaj w MSDN o subclassingu i funkcji setwindowLongPtr ().

18. Czym jest komunikat Windows?

19.Jak funkcjonuje petla komunikatow i dlaczego jest tak wazna?

W N

HEOONOU R

Cwiczenia

1. Napisz okienkowg wersje programu Random z rozdziatu 1.4. Niech wyswietla ona w
oknie komunikatu losowgq liczbe z przedziatu <1; 6>.

2. Stworz program, ktéry poprosi uzytkownika (poprzez okno komunikatu) o
podjecie jakiej$ decyzji i zareaguje na nig w pewien sposob.

3. Napisz aplikacje, ktora po kliknieciu mysza w swoje okno (komunikat
WM LBUTTONDOWN) pokaze na ekranie informacje o tym.

4. (Trudne) Zmodyfikuj przyktad window tak, aby przy probie zamkniecia okna
programu uzytkownik otrzymywat pytanie, czy aby na pewno chce to zrobic.
Aplikacja powinna sie oczywiscie zakonczy¢ tylko wtedy, gdy odpowiedz na to
pytanie bedzie pozytywna.

Wskazdéwka: zajrzyj do MSDN po opis komunikatu wM CLOSE.

