
2
ANATOMIA OKNA

Nauczycielem wszystkiego jest praktyka.

Juliusz Cezar

W systemie Windows składniki interfejsu użytkownika nazywamy oknami. Nadmieniłem w
poprzednim rozdziale, iż określeniem tym obdarzamy zarówno te prostokątne obszary
ekranu, które również użytkownicy nazywają oknami, jak i umieszczone na nich kontrolki
w rodzaju przycisków czy pól tekstowych.
Obecnie jednak zajmiemy się tylko oknami w rozumieniu potocznym - dogłębnie
poznamy proces ich tworzenia oraz istnienia i interaktywności.

Do nich też i tylko do nich będzie się w tym rozdziale odnosić sam termin ‘okno’.

Okna, o których będziemy mówili, są często (szczególnie w wizualnych środowiskach
programowania) zwane formularzami, formatkami lub formami (ang. forms).

Zanim jeszcze przejdziemy do zaplanowych zagadnień, musimy sprecyzować sobie
kilka(naście) pojęć odnoszących do okien w Windows. Mam przez to na myśli
poszczególne elementy okna, przedstawione na poniższym rysunku:

Rysunek 7. Elementy okna

 372

Większość z nich nie powinna być ci obca, jako że nieustannie stykasz się z nimi,
użytkując komputer. Warto aczkolwiek wyjaśnić sobie wszystkie:

 obszar klienta lub obszar kliencki (ang. client area) zajmuje prawie cały rysunek
i nie jest to przypadek: stanowi on bowiem jedyną obowiązkową (!) część okna.
Wszystkie pozostałe elementy, zwane łącznie obszarem pozaklienckim
(ang. non-client area), mogą być zmieniane za pośrednictwem styli okna;
powiemy sobie o tym dokładnie w dalszym ciągu rozdziału.
Czym jest jednak obszar klienta? Otóż jest to właściwa „treść” okna: umieszczane
są tutaj kontrolki potomne, tutaj przebiega też rysowanie za pośrednictwem
funkcji Windows GDI, ogólnie mówiąc - jest to rejon okna, którego
zagospodarowanie leży całkowicie w rękach programisty. System operacyjny
zasadniczo „nie wtrąca” się więc ani do wyglądu obszaru klienta, ani do jego
zachowania się w reakcji na zdarzenia

 pasek tytułu jest umiejscowiony na górze okna. Zgodnie ze swoją nazwą ma on
przede wszystkim wyróżniać je spośród innych okien w systemie. Posiada również
dodatkową funkcję, mianowicie pozwala na przesuwanie okna po ekranie poprzez
proste i intuicyjne przeciąganie.
Pasek tytułu zawiera też takie elementy jak:

 ikona - oprócz efektu wizualnego ma ona także bardziej praktyczny sens:
jednokrotne kliknięcie weń przyciskiem myszy powoduje pokazanie menu
sterowania oknem, pozwalającego na zmianę jego rozmiarów i położenia,
a także na zamknięcie okna (co można też zrobić poprzez dwukrotne
kliknięcie w ikonę lub jednokrotne przyciśnięcie prawego przycisku myszy
w dowolnym innym miejscu pasku tytułu)

 tytuł okna zawiera zwykle nazwę aplikacji, jeżeli jest to okno główne
programu, lub inny znaczący napis

 przycisk minimalizacji redukuje okno do postaci przycisku na pasku
zadań. Niektóre aplikacje zmieniają aczkolwiek jego działanie i sprawiają,
że po kilknięciu w ten przycisk okno pojawia się jako ikona na zasobniku
systemowym (ang. system tray), obok zegara. Dotyczy to najczęściej
programów przeznaczonych do pracy w tle

 przycisk maksymalizacji rozszerza gabaryty okna tak, że zajmuje ono
cały ekran. Ten przycisk może być jednak nieaktywny - jest tak szczególnie
wtedy, kiedy okno w ogóle nie pozwala na zmianę swych rozmiarów.
Warto też przypomnieć, że dwukrotne kliknięcie w pasek tytułu między
ikoną a trójką przycisków także powoduje maksymalizację okna

 przycisk zamknięcia służy do zakończenia pracy z oknem i zamknięcia
go, co w przypadku okna głównego wiąże się z zamknięciem całej aplikacji.
Programy pracujące w tle często zmieniają znaczenie tego przycisku na
odesłanie okna do zasobnika systemowego; wówczas muszą jednak
zapewnić inny sposób zakończenia swej pracy

 pasek menu jest obecny najczęściej w głównych oknach programów i zazwyczaj
zawiera wszystkie oferowane przez nie funkcje, pogrupowane w logiczne listy (to,
na ile są one logiczne, zależy już jednak od umiejętności projektanta aplikacji :))

 brzeg okna zamyka jego ramy ze wszystkich stron i w większości przypadków
pozwala też na zmianę rozmiarów okna poprzez przeciąganie wybranej krawędzi.
Niekiedy jednak okno ma ustalone stałe rozmiary i wówczas brzeg okna jest jego
całkowicie statycznym elementem

W tym przeglądzie składników okna należałoby jeszcze zwrócić uwagę na to, że w
funkcjonowanie prawie każdego z nich, z wyjątkiem obszaru klienta, w jakiś sposób
ingeruje system operacyjny. W przykładzie z poprzedniego rozdziału nie musieliśmy
przecież pisać kodu odpowiedzialnego za zmianę wymiarów okna, a mimo to taka zmiana
była jak najbardziej możliwa. Podobnie jest z przesuwaniem, maksymalizacją czy
minimalizacją - zadania te bierze na siebie sam system Windows, pozwalając jednak
programiście na wykonywanie przy ich okazji jakichś innych, własnych czynności.

 373

Po tym krótkim zaprzyjaźnieniu się z oknem i jego elementami możemy już zająć się
właściwymi zadaniami, związanymi z tworzeniem okna, różnorodnymi manipulacjami na
nim oraz reakcją na najważniejsze komunikaty o zdarzeniach. Temu wszystkiego będzie
poświęcony niniejszy rozdział.

Początki okna
Zdajemy sobie chyba sprawę, że utworzenie własnego okna nie jest wcale tak „proste”
jak wywołanie CreateWindowEx(). O nie, absolutnie nie jest tak różowo :) Najpierw
należy przecież zarejestrować klasę okna (co wiążę się z napisaniem jego procedury
zdarzeniowej), a dopiero potem możemy myśleć o wykreowaniu tego własnego „kawałka”
interfejsu użytkownika, jakim jest niewątpliwie okno. Proces jego tworzenia składa się
więc z dwóch etapów, którym musimy się stanowczo lepiej przyjrzeć.

Niemal wszystko o klasie okna

Jestem prawie pewien, że zadajesz sobie to pytanie: Dlaczego musimy rejestrować klasę
okna? Czy nie lepiej byłoby, gdyby jego utworzenie sprowadzało się tylko do wywołania
jednej funkcji, przyjmującej może więcej parametrów albo jedną strukturę? Tak byłoby
przecież wygodniej, czyż nie?…
Rzeczywiście, pytania te są uzasadnione zwłaszcza teraz, gdy zajmujemy się tylko
jednym głównym oknem aplikacji. Jednakże zdajemy sobie chyba sprawę, że nie
wszystkie programy tak robią. Ba, większość tworzy kilka kopii swoich okien - weźmy
choćby Eksplorator Windows czy niektóre bardziej zaawansowane edytory tekstu. Nie
wspomnę już o tym, że kontrolki takie jak przyciski czy pola tekstowe również posiadają
swe własne klasy (poznamy je wkrótce) i tym przypadku jest to ogromna korzyść dla
każdej aplikacji, która nie musi się zajmować każdym szczegółem GUI z osobna; zrzuca
ten obowiązek na system Windows właśnie za pomocą wbudowanych klas okien.

A zatem klasy okien nie są wcale stworzone ku pognębieniu programisty, lecz raczej dla
jego wygody. Niezależnie od tego, jak jest naprawdę, powinniśmy dokładnie omówić
wszystkie cechy owych klas, przechowywane w strukturze WNDCLASSEX. I tym się zaraz
zajmiemy; mam nadzieję, że pamiętasz, jakie pola zawiera ta struktura :) Ewentualnie
możesz je sobie przypomnieć, zaglądając do poprzedniego rozdziału.
Teraz jednak przejdźmy już do rzeczy.

Dwa kluczowe pola

Spośród wszystkich pól WNDCLASSEX bodaj najważniejsze są te dwa: lpszClassName i
lpfnWndProc. Sądząc po ich nazwach w notacji węgierskiej, oba są wskaźnikami - ale na
tym podobieństwa się kończą.

Nazwa klasy okna

lpszClassName przechowuje nazwę klasy w postaci stałego łańcucha znaków typu C, a
więc zmiennej typu const char* (albo const wchar_t*), lub też, będąc w zgodzie z
nazewnictwem nagłówków Windows, typu LPCTSTR. Nazwa ta powinna oddawać
charakter przyszłych okien klasy - szczególnie role, jaką będą pełnić w programie. Dobrze
też, aby nazwa ta była możliwie krótka.

Procedura zdarzeniowa

Drugim bardzo ważnym polem struktury WNDCLASSEX jest lpfnWndProc. Pole to ma
zawierać wskaźnik do procedury zdarzeniowej, jaka będzie początkowo
odpowiedzialna za reakcję na zdarzenia powstające w oknach klasy. Jest to więc zwykły

 374

wskaźnik na funkcję w C++, ze wszystkimi tego konsekwencjami. Typ WNDPROC, jakim
legitymuje się to pole, jest zaś zdefiniowany jako:

typedef LRESULT (* CALLBACK WNDPROC)(HWND, UINT, WPARAM, LPARAM);

Funkcja, jaką przypiszemy do lpfnWndProc, musi się zatem ściśle zgadzać z prototypem
procedury zdarzeniowej, który podaliśmy sobie w zeszłym rozdziale. Pod to wymaganie
podpadają oczywiście właściwie zdefiniowane funkcje globalne, ale dobrze jest też
pamiętać, iż procedurą zdarzeniową może być również statyczna metoda klasy.
Wiedza o tym staje się bowiem użyteczna w momencie, gdy chcemy napisać obiektową
otoczkę na funkcje Windows API dotyczące okien.

Instancja aplikacji

Nie mniej istotny niż te dwa pola jest także uchwyt hInstance. Identyfikuje on instancję
programu, która zarejestrowała daną klasę okna. Można spytać: po co systemowi taka
informacja?

Otóż przy jej pomocy może on w odpowiednim czasie (po zakończeniu programu)
wyrejestrować naszą klasę. Nie zmusza nas w ten sposób do wywoływania funkcji
UnregisterClassEx(), która tym się zajmuje. Mimo to niektórzy przywołują ją tuż przed
zwróceniem wyniku przez WinMain(), aby zachować pozory doskonałego porządku ;D Nie
jest to jednak konieczne.

Styl klasy okna

Następne pole style określa niektóre dodatkowe ustawienia, które łącznie nazywamy
stylem klasy okna. To pole jest kombinacją flag bitowych wybranych między innymi
spośród tych przedstawionych w tabeli:

flaga znaczenie

CS_DBLCLKS

Ustawienie tej flagi powoduje, że okno należące do klasy będzie
otrzymywało komunikaty o dwukrotnych kliknięciach myszą,

zachodzących w jego obrębie (zarówno w obszarze klienta, jak i poza
nim). Bez tej flagi okno będzie mogło reagować tylko na pojedyncze

kliknięcia przycisków myszy.

CS_DROPSHADOW

Flaga ta, działająca póki co tylko w Windows XP, powoduje włączenie
dla okien klasy wizualnego efektu polegającego na rzucaniu

półprzezrzoczystego cienia - pod warunkiem, że użytkownik nie
wyłączył tego typu efektów w Panelu Sterowania.

CS_NOCLOSE
Przy tej fladze włączonej okna należące do klasy mają nieaktywny

przycisk zamknięcia. Zwykle muszą więc udostępniać inne sposoby
zakończenia pracy.

CS_OWNDC

Flaga ta powoduje, że każde okno posiada swój własny, stały
kontekst urządzenia. Jest to przydatne przy rysowaniu na

powierzchni okna, do którego ten kontekst jest potrzebny; o rysowaniu
powiemy sobie co nieco w tym rozdziale, a wyczerpująco w rozdziale o

Windows GDI.

CS_CLASSDC Ta flaga, wykluczająca poprzednią, sprawia, że wszystkie klasy okna
dzielą wspólny kontekst urządzenia.

CS_HREDRAW Włączenie tej opcji wymusza odrysowywanie całej zawartości okna po
zmianie jego szerokości.

CS_VREDRAW Flaga podobna do poprzedniej, tyle że powoduje odrysowywanie całego
obszaru klienta po zmianie wysokości okna.

CS_SAVEBITS
Ta opcja sprawia, że zachowywaniem wizualnej zawartości okna

zajmuje się sam system Windows. Otóż dla każdego okna utrzymuje on
dodatkową bitmapę, którą wykorzystuje w momencie odtwarzania

 375

flaga znaczenie
wyglądu okna. Jego odrysowywaniem nie jest więc wtedy obarczona

aplikacja, ale w zamian zostaje zajęta pewna część pamięci
operacyjnej, potrzebna dla przechowywania wspomnianej bitmapy. Z

tego względu styl CS_SAVEBITS działa efektywnie tylko dla małych
okien.

Tabela 26. Flagi bitowe stylów klasy okna

Spora część stylów okna dotyczy kontroli jego wyglądu na ekranie, czyli procesu, który
nazywamy tutaj odrysowywaniem. Polega on na wysyłaniu do okna komunikatu
WM_PAINT w chwili, gdy ma ono pokazać konkretny fragment swego obszaru klienta.
Procedura zdarzeniowa może wtedy obsłużyć ten komunikat i wykonać odpowiednie
czynności, zazwyczaj przy użyciu interfejsu graficznego GDI. Rozwiązanie to sprawia, że
system operacyjny nie musi składować „fotografii” bieżącego stanu każdego okna i
oszczędza w ten sposób mnóstwo pamięci RAM. Dotyczy to aczkolwiek tylko tych okien,
których klasy nie zawierają stylu CS_SAVEBITS.
Co do samego odrysowywania, to na ten temat wypowiem się szerzej przy okazji
prezentacji komunikatu WM_PAINT.

Ikony i kursor

Pola hIcon, hIconSm i hCursor przechowują uchwyty do trzech ważnych dla okna
obrazków.

hIcon i hIconSm określają odpowiednio: dużą i małą ikonę okna. Ta druga jest zwykle
wyświetlana w jego lewym górnym rogu oraz na pasku zadań. Duża ikona pojawia się
natomiast po wciśnięciu kombinacji klawiszy Alt+Tab, służącej przełączaniu się między
programami.
hIcon powinno zawierać uchwyt do obrazka mającego wymiary co najmniej 32×32
pikseli, zaś hIconSm musi wskazywać na ikonę o rozmiarze przynajmniej 16×16 pikseli. W
rzeczywistości obrazki te mogą być większe, a więc w praktyce obu polom przypisuje się
często ten sam uchwyt do dużej ikony (32×32). Jest to jak najbardziej poprawne
rozwiązanie.

Ten sam skutek daje też wyzerowanie pola hIconSm.

Pole hCursor utrzymuje z kolei uchwyt do obrazka kursora myszy. Kiedy wskaźnik
komputerowego gryzonia zatrzyma się na oknie przynależnym tworzonej klasie, wówczas
kursor przyjmie wygląd podanego tutaj obrazka. Może to być własna bitmapa, ale
najczęściej stosuje się standardową strzałkę lub jeden z pozostałych kursorów
systemowych.

Wczytywanie obrazków ikon oraz kursorów nie jest wcale banalnym zadaniem i dlatego
warto przedyskutować je dokładnie, co też uczynimy tutaj.

Krótkie wprowadzenie do zasobów

Ikony oraz kursory są dość specyficznymi rodzajami obrazków, gdyż są w zasadzie
niezbędne do działania aplikacji w Windows. Dlatego też system operacyjny umożliwia
przechowywanie ich w samym pliku wykonywalnym EXE w postaci tzw. zasobów
(ang. resources).

Zagadnienie zasobów (którymi mogą być nie tylko bitmapy) jest na tyle interesujące, że
poświęcimy mu jeden z przyszłych rozdziałów. Na razie jednak powinieneś wiedzieć tylko,
że każdy zasób programu jest identyfikowany poprzez unikalną liczbę całkowitą lub
łańcuch znaków; dla wygody liczbom nadaje się w kodzie znaczące nazwy stałych.

 376

Identyfikatory zasobów są ustalane przez programistę piszącego tzw. skrypt zasobów
(ang. resource script), który po kompilacji i linkowaniu staje się częścią gotowego
programu, wraz z samymi zasobami. Program może teraz, w trakcie swego działania,
sięgać do zapisanych w swoim pliku EXE zasobów i „wyciągać” z nich chociażby obrazki
ikon czy kursorów. Wykorzystuje je potem na przykład przy rejestrowaniu klas okien.

Do wczytywania tych obrazków z zasobów służą spotkane już wcześniej funkcje
LoadIcon() i LoadCursor(). Istnieją wszakże również inne sposoby na uzyskiwanie
takich bitmap - o nich też sobie powiemy.

Ikony małe i duże

Najprostszą drogą uzyskania uchwytu do ikony okna jest użycie funkcji LoadIcon():

HICON LoadIcon(HINSTANCE hInstance,
 LPCTSTR lpIconName);

Żąda ona dwóch parametrów, z których pierwszy określa uchwyt instancji naszego
programu; podajemy go, gdy chcemy wczytać ikonę z zasobów. Jeśli natomiast
zadowalamy się jedną ze standardowych ikon systemu Windows (a tak będzie jeszcze
przez jakiś czas), wpisujemy tutaj wartość NULL.
Drugi parametr to identyfikator wczytywanego zasobu. Windows stosuje całkiem
pomysłowy sposób, który pozwala przekazać tutaj zarówno liczbę, jak i napis w stylu C.
Dla nas jednak ważniejsze jest to, że możemy tu podać także jedną ze stałych
odpowiadających standardowym ikonom systemowym:

stałe
ikona

w Win 9x
ikona

w Win XP
uwagi

IDI_APPLICATION

domyślna ikona aplikacji; tą ikoną są
opatrzone pliki EXE, które nie mają w
swoich zasobach żadnych innych ikon

IDI_ASTERISK
IDI_INFORMATION

IDI_ERROR
IDI_HAND

IDI_EXCLAMATION
IDI_WARNING
IDI_QUESTION

są to te same ikony, które spotkaliśmy
przy okazji omawiania funkcji

MessageBox()

IDI_WINLOGO

w Windows XP logo systemu zostało
zastąpione przez tą samą ikonę, której

odpowiada stała IDI_APPLICATION

Tabela 27. Standardowe ikony okien w Windows

Wybór nie jest zbyt duży, ale dla potrzeb nauki Windows API okaże się chyba
wystarczający :) Gdy zaś nauczysz się korzystać z zasobów (a może i wcześniej?…),
wówczas upiększysz swoje okna dowolnymi ikonami.

Kształt kursora

Analogiczną do LoadIcon() funkcją, wczytującą obrazek kursora, jest LoadCursor():

HCURSOR LoadCursor(HINSTANCE hInstance,
 LPCTSTR lpCursorName);

 377

Takie samo znaczenie mają również jej parametry. W przypadku pierwszego z nich
będziemy jednak częściej niż w LoadIcon() wpisywać NULL, ażeby skorzystać z jednego
ze standardowych kursorów:

stała nazwa kursora
obrazek
kursora

uwagi

IDC_ARROW wybór normalny

standardowy i domyślny kursor
Windows

IDC_WAIT zajęty

kursor ten pojawia się, gdy
wykonywane jest jakieś

pracochłonne zadanie, które nie
pozwala na normalną pracę

aplikacji

IDC_APPSTARTING praca w tle

ten kursor wskazuje na
wykonywanie jakiegoś zadania,

które nie zakłóca zbytnio
użytkowania programu

IDC_HELP wybór Pomocy

tym kursorem wskazujemy
element interfejsu użytkownika,

na temat którego chcemy uzyskać
pomoc kontekstową

IDC_CROSS wybór precyzyjny może służyć jako celownik ;-)

IDC_NO niedostępny
pojawia się przy przeciąganiu w

niedozwolone miejsce
IDC_IBEAM wybór tekstowy wybór miejsca w polu tekstowym

IDC_HAND wybór łącza

pokazuje się, gdy przywiedziemy
mysz nad hiperłącze

IDC_UPARROW wybór alternatywny

IDC_SIZEALL przenieś

ukazuje się nie tylko przy
przenoszeniu, ale i przy zmianie

rozmiarów we wszystkich czterech
kierunkach (np. w edytorach 3D)

IDC_SIZENESW
zmiana rozmiaru po

przekątnej
slashowej

IDC_SIZENS zmiana rozmiaru
pionowego

IDC_SIZENWSE
zmiana rozmiaru po

przekątnej
backslashowej

IDC_SIZEWE zmiana rozmiaru
poziomego

kursory te pojawiają się, kiedy
chcemy zmienić rozmiar okna

Tabela 28. Standardowe kursory Windows (nazwy z Panelu Sterowania lub własne)

Prawie zawsze wybierać będziemy zwykłą strzałkę, czyli wariant IDC_ARROW.

Lepszy model

Funkcje LoadIcon() i LoadCursor() mogą się słusznie wydawać ograniczone.
Teoretycznie zostały one nawet zastąpione przez inną funkcję, LoadImage():

HANDLE LoadImage(HINSTANCE hInstance, // uchwyt instancji zasobów
 LPCTSTR lpszName, // nazwa zasobu lub pliku
 UINT uType, // typ obrazka
 int cxDesired, // docelowa szerokość

 378

 int cyDesired, // docelowa wysokość
 UINT fuLoad); // flagi wczytywania

Już na pierwszy rzut oka wydaje się ona bardziej skomplikowana, a zatem musi oferować
większe możliwości - i tak rzeczywiście jest. Dokładne omówienie tej funkcji nie jest nam
jednak teraz potrzebne, jako że dokonamy go przy opisie Windows GDI. Skoncetrujemy
się raczej na dwóch zagadnieniach: sposobie, w jaki LoadImage() zastępuje obie opisane
wcześniej funkcje oraz wczytywaniu obrazków ikon i kursorów z plików na dysku.

Dociekliwi mogą naturalnie zajrzeć do MSDN po kompletny opis funkcji LoadImage().

A więc - żeby wczytać ikonę i kursor dla klasy okna możemy użyć instrukcji podobnych
do tych:

KlasaOkna.hIcon = (HICON) LoadImage(NULL, IDI_APPLICATION, IMAGE_ICON,
 0, 0, 0);
KlasaOkna.hCursor = (HCURSOR) LoadImage(NULL, IDC_CURSOR, IMAGE_CURSOR,
 0, 0, 0);

Widzimy, że pierwsze dwa parametry LoadImage() są identyczne jak w przypadku
LoadIcon() i LoadCursor(). Trzeci parametr określa typ wczytywanego obrazka, a użyte
w nim stałe IMAGE_ICON i IMAGE_CURSOR oznaczają odpowiednio ikonę i obrazek kursora
(jest jeszcze IMAGE_BITMAP, wskazująca na zwykłą bitmapę). Pozostałe parametry są zaś
wyzerowane, zatem Windows przyjmie dla nich wartości domyślne.
Na koniec, po wywołaniu funkcji LoadImage(), musimy jeszcze zrzutować wartość, którą
ona zwróci. Jest to bowiem ogólny uchwyt typu HANDLE, natomiast my potrzebujemy
bardziej szczegółowego rodzaju: uchwytu do ikony (HICON) oraz do kursora (HCURSOR).
Odpowiednie rzutowanie załatwia więc tę drobną sprawę.

Nietrudno zmiarkować, że użycie LoadImage() jest nieco bardziej kłopotliwe niż dwóch
poznanych wcześniej funkcji. Możemy przeto zrezygnować z niego, gdy zależy nam tylko
na wczytaniu ikony lub kursora z zasobów programu czy ze zbiorów systemowych. Jeśli
jednak zamierzamy odczytać obrazek z pliku graficznego na dysku, wówczas nie mamy
już takiego wyboru; zobaczmy zatem, jak należy wtedy postąpić.
Oto instrukcja wczytująca ikonę okna z pliku dyskowego:

KlasaOkna.hIcon = (HICON) LoadImage(NULL, "C:\\Windows\\ikona.ico",
 IMAGE_ICON, 0, 0, LR_LOADFROMFILE);

Nazwę tego pliku podajemy w drugim parametrze, a oprócz niej musimy jeszcze
poinformować funkcję o tym, skąd chcemy uzyskać ikonę - robimy to poprzez flagę
LR_LOADFROMFILE w ostatnim parametrze.

Tło okna

To co nazywamy potocznie tłem okna jest tak naprawdę tłem jego obszaru klienta, albo
raczej sposobem jego wypełniania. W Windows GDI za graficzne wypełnianie jakiegoś
kształtu odpowiada obiekt zwany pędzlem (ang. brush). Może on definiować nie tylko
jednolity kolor, ale i dwubarwny deseń czy nawet kafelkowanie bitmapą. Wszystkie te
sposoby wypełniania można zaś stosować do obszaru klienta okna: należy jedynie podać
uchwyt do odpowiedniego pędzla w parametrze hbrBackground struktury WNDCLASSEX.

Skąd jednak wziąć potrzebny pędzel? Zasadniczo są po temu trzy sposoby.
Pierwszym z nich jest posłużenie się stałą, za którą kryje się jeden z kolorów
systemowych Windows. Kolory te ustala użytkownik w Panelu Sterowania wedle własnych
upodobań, a spośród nich najbardziej interesujący dla nas jest ten, który został wybrany
dla wnętrza okien. Reprezentuje go stała COLOR_WINDOW; możemy więc użyć jej tak:

 379

KlasaOkna.hbrBackground = (HBRUSH) COLOR_WINDOW;

Drugim nierzadko spotykanym sposobem jest wykorzystanie jednego z globalnych
obiektów pędzli, które Windows utrzymuje dla wygody programisty. Uchwyt do któregoś
z tych pędzli można uzyskać za pośrednictwem funkcji GetStockObject():

KlasaOkna.hbrBackground = (HBRUSH) GetStockObject(WHITE_BRUSH);

Powyższa linijka sprawi, że okno będzie wypełnione jednolitym kolorem białym -
wskazuje na to parametr WHITE_BRUSH. Wszelako istnieją także inne pędzle do wyboru
(wszystkie jednokolorowe) - przedstawia je poniższa tabelka:

stała nazwa koloru kolor
BLACK_BRUSH czarny
DKGRAY_BRUSH ciemnoszary
GRAY_BRUSH szary
LTGRAY_BRUSH jasnoszary
WHITE_BRUSH biały

Tabela 29. Kolorowe pędzle dostępne poprzez funkcję GetStockObject()

Nareszcie, właściwy pędzel dla wypełnienia okna możemy stworzyć sobie sami. Jest to
najbardziej elastyczne rozwiązanie, jako że mamy przy nim dostęp do wszystkich
możliwości pędzli, jakie oferuje Windows GDI - nie musimy chociażby ograniczać się do
jednolitego koloru pędzla. Spójrzmy na przykład na okno wypełnione wzorem obrazków
ściśle przylegających do siebie:

Screen 57. Okno wypełnione sąsiadującymi kopiami bitmapy

Efekt ten można osiągnąć w całkiem prosty sposób. Należy w tym celu stworzyć po
prostu odpowiedni pędzel:

// PatternWindow - okno wypełnione kafelkami bitmapy
// (fragmenty funkcji WinMain())

HBITMAP hBitmapa;
HBRUSH hPedzelOkna;

// tworzymy pędzel wypełnienia okna
hBitmapa = (HBITMAP) LoadImage(NULL, "pattern.bmp", IMAGE_BITMAP,
 0, 0, LR_LOADFROMFILE);
hPedzelOkna = CreatePatternBrush(hBitmapa);

 380

Tworzymy go przy pomocy funkcji CreatePatternBrush(). Jest ona jedną z kilku funkcji
Windows GDI służących temu celowi, które omówimy dokładnie przy okazji rozdziału
poświęconego tej bibliotece. Funkcja żąda uchwytu do bitmapy, która ma być
„kafelkowana”; bitmapę tą wczytujemy znaną już metodą poprzez funkcję LoadImage(),
podając jej nazwę pliku graficznego (plik ten jest dołączony do programu
przykładowego).
Mając zaś uchwyt do pędzla, przypisujemy go do składowej hbrBackground:

KlasaOkna.hbrBackground = hPedzelOkna;

Dalej możemy już zwyczajnie zarejestrować klasę okna i stworzyć samo okno. Po
zakończeniu pętli komunikatów, tuż przed zwróceniem wyniku funkcji WinMain(),
musimy jeszcze pamiętać o usunięciu pędzla oraz skojarzonej z nim bitmapy:

DeleteObject (hPedzelOkna);
DeleteObject (hBitmapa);

Nie jest to trudne - wystarczy posłużyć się procedurą DeleteObject(), podając jej oba
uchwyty.

Pozostałe składowe

Pozostały jeszcze trzy pola struktury WNDCLASSEX, a skoro zostawiliśmy je na koniec, to
pewnie nie są zbyt ważne ;) Faktycznie, zwykle wpisuje się w nich zera.

lpszMenuName jest identyfikatorem zasobu paska menu, które to menu będzie posiadało
każde okno danej klasy. Otóż tak się składa, że menu jest jednym z rodzajów zasobów
Windows, zapisywanym wraz z kodem aplikacji (ale poza nim) w pliku EXE. W polu
lpszMenuName podajemy więc identyfikator tego zasobu; obowiązują tu takie same
zasady, jak przy podawaniu podobnych identyfikatorów w funkcjach LoadImage(),
LoadIcon() czy LoadCursor() - identyfikator może więc być łańcuchem znaków albo
liczbą.
Najczęściej aczkolwiek wpisujemy tu NULL, nawet jeśli docelowo okno ma posiadać jakiś
pasek menu. Można go bowiem stworzyć innymi drogami.

Ostatnie dwa pola - cbClsExtra i cbWndExtra - specyfikują ilość bajtów dodatkowej
pamięci, jaką system Windows zaalokuje (odpowiednio) dla całej klasy i dla każdego jej
okna. Niestety, trudno posądzić te pola o większą przydatność, skoro maksymalna ilość
takiej pamięci to „aż” 40 bajtów (!). W dodatku dostęp do niej jest bardzo kłopotliwy,
gdyż musi się odbywać wyłącznie poprzez funkcje SetClassLong[Ptr]() i
SetWindowLong[Ptr]().
Powody te wyjaśniają, dlaczego niemal zawsze w obu polach ustawia się wartość 0.

Rejestracja klasy okna

Po wypełnieniu struktury WNDCLASSEX możemy zarejestrować klasę okna, używając do
tego funkcji RegisterClassEx():

ATOM RegisterClassEx(CONST WNDCLASSEX* lpwcx);

Jak doskonale wiemy, przyjmuje ona jeden parametr - wskaźnik na naszą strukturę. W
zamian zwraca zaś tzw. atom, który jest 16-bitową liczbą identyfikującą zarejestrowaną
klasę. Atom ten możemy zachować w osobnej zmiennej i używać w wywołaniach tych
funkcji, które żadają nazwy klasy okna (jak np. CreateWindowEx()). W zasadzie jednak
nie jest to zbyt powszechna praktyka.

 381

Rezultatem zwracanym przez RegisterClassEx() można się aczkolwiek zainteresować
także z innego powodu. Stosuje się bowiem do niego tradycyjna konwencja Windows API,
na mocy której zero jest wynikiem świadczącym o błędzie. Do celów diagnostycznych
możemy więc używać instrukcji if podobnej do tej:

if (!RegisterClassEx(&KlasaOkna))
{
 MessageBox (NULL, "Błąd podczas rejestracji klasy okna!", "Błąd",
 MB_OK | MB_ICONERROR);
 return 1;
}

Wystąpienie błędu przy rejestracji okna wskazuje na niepoprawność jednej ze
składowych WNDCLASSEX - najczęściej chodzi tu zapewne o któryś z uchwytów.

Tworzenie okna właściwego

Gdy zarejestrujemy klasę okna, mamy już za sobą pierwszy krok jego kreacji. Teraz
możemy już wywołać CreateWindowEx() i podać jej ten tuzin wymaganych parametrów,
w zamian cieszyć się stworzonym oknem i otrzymać uchwyt do niego.

By tego dokonać trzeba oczywiście wiedzieć, jakie informacje podać funkcji w tych
kilkunastu parametrach. Spójrzmy więc na nie.

W tym momencie przydałoby się, abyś przypomniał sobie prototyp funkcji
CreateWindowEx().

Nazwa klasy okna i uchwyt instancji programu

Ponownie jedną z najważniejszych danych jest nazwa klasy okna; tym razem
potrzebuje jej system, by powiązać tworzone okna z zarejestrowaną wcześniej klasą.
Nazwę tej klasy podajemy w drugim parametrze, lpClassName. Warto już teraz wiedzieć
(będzie nam to potrzebne przy okazji kontrolek), że nazwa ta nie musi odnosić się do
klasy zdefiniowanej przez nas samych, lecz także do jednej z wbudowanych w system
globalnych klas okien (kontrolek).
Alternatywnie możemy też podać w lpClassName atom, który zwróciła w wyniku funkcja
RegisterClassEx().

W parze z klasą okną idzie też uchwyt do instancji programu, który należy podać jako
jedenasty (przedostatni) parametr CreateWindowEx(). Należy go podać, ponieważ w
Windows klasy okna rejestrowane przez programistę są związane właśnie z instancjami
programów; dzięki temu system unika kłopotów ze zdublowanymi nazwami tych klas.

Tytuł okna

Trzeci parametr, lpWindowName, nazywany tytułem okna, jest tak naprawdę tylko
tekstem, który będzie w tym oknie wyświetlony… albo i nie. W przypadku omawianych
przez nas okien pojawi się on na pasku tytułu - pod warunkiem, że okno będzie takowy
pasek posiadać (bo wcale nie musi!).
Jeżeli zaś chodzi na przykład o kontrolki, to interpretacja napisu podanego w
lpWindowName zależy ściśle od ich rodzaju.

Tytuł (tekst) istniejącego okna można zmieniać za pomocą funkcji SetWindowText().

 382

Styl okna

Czwarty z kolei parametr - dwStyle - to styl okna. Ma on bodaj największy wpływ na
zewnętrzną aparycję okna, a częściowo także i na jego zachowanie. Wartość ta jest przy
tym kombinacją flag bitowych, a zatem umożliwia ustawienie wielu różnorodnych
aspektów okna. Zostały one zebrane w poniższej tabeli:

grupa flagi nazwa stylu uwagi

WS_CHILD
WS_CHILDWINDOW okno potomne

Jedyną cechą wyróżniającą okno
potomne od zwykłego jest brak

możliwości posiadania przez nie menu.
WS_OVERLAPPED

WS_TILED okno trwałe
Trwałe okno to takie, które może być

wyświetlane jako niemodalne.

ro
d

za
j

o
k
n

a

WS_POPUP okno „wyskakujące”
Takie okno może być wyświetlane

tylko jako modalne.

WS_BORDER stałe obramowanie

Krawędź okna z takim stylem jest
narysowana cienką linią i nie reaguje

na przeciąganie (nie można więc
zmienić rozmiaru okna, ciągnąc za

jego brzeg).

WS_THICKFRAME
WS_SIZEBOX

zmienne
obramowanie

Zmienne obramowanie okna jest
narysowane grubą linią i pozwala na

zmianę rozmiaru okna poprzez
przeciąganie krawędzi.

k
ra

w
ę
d
ź

o
k
n

a

WS_DLGRAME obramowanie okna
dialogowego

Ustala obramowanie typowe dla okien
dialogowych; okno z tym stylem nie

może mieć paska tytułu (stylu
WS_CAPTION).

WS_CAPTION pasek tytułu
Okno z tym stylem posiada widoczny

pasek tytułu.

WS_SYSMENU menu sterujące

Styl ten powoduje obecność ikonki w
lewym górnym rogu okna. Kliknięcie

na tą ikonkę powoduje pokazanie
menu sterującego.

By styl ten zadziałał, należy podać
także flagę WS_CAPTION.

WS_MAXIMIZEBOX
przycisk

maksymalizacji
/przywracania

Tworzy okno z obecnym przyciskiem
maksymalizacji.

Flaga WS_SYSMENU jest również
wymagana.

p
a
se

k
 t

y
tu
łu

WS_MINIMIZEBOX przycisk
minimalizacji

Tworzy okno z obecnym przyciskiem
minimalizacji.

Flaga WS_SYSMENU jest również
wymagana.

p
o

cz
ą
t

k
o

w
y

st
a
n

o

k
n

a

WS_VISIBLE widoczne okno

Okno z tym stylem jest widoczne na
ekranie od razu po utworzeniu (nie

trzeba stosować dlań funkcji
ShowWindow()).

 383

grupa flagi nazwa stylu uwagi

WS_MAXIMIZE okno
zmaksymalizowane

Po utworzeniu okno jest widoczne i
zmaksymalizowane.

WS_ICONIC
WS_MINIMIZE

okno
zminimalizowane

Okno z tym stylem jest z początku
zredukowane do przycisku na pasku

zadań.

WS_DISABLED nieaktywne okno

Styl ten dezaktywuje okno - tak, że
nie reaguje ono na działania

użytkownika. Okno można uaktywnić z
powrotem za pomocą funkcji

EnableWindow().

Styl ten stosuje się raczej do
kontrolek, rzadko do „normalnych”

okien.

WS_HSCROLL poziomy pasek
przewijania

Tworzy okno z poziomym paskiem
przewijania.

p
a
sk

i
p

rz
e
w

ij
a
n

ia

WS_VSCROLL pionowy pasek
przewijania

Tworzy okno z pionowym paskiem
przewijania.

Tabela 30. Flagi bitowe stylu okna

Jak widać na załączonym obrazku, możliwych flag jest naprawdę mnóstwo. Dają one
prawie nieograniczone możliwości w budowaniu wizerunku i funkcjonowania okna, gdyż
uwzględniają wszystkie jego cechy. Bez styli okno jest bowiem tylko „gołym” obszarem
klienta, pozbawionym nawet obramowania, nie mówiąc już choćby o pasku tytułu.

Potęga ta ma jednak swoją wadę: stworzenie przy jej pomocy sensownego okna wymaga
podania przynajmniej kilku różnych styli, co prowadzi do rozbudowanych alternatyw
bitowych. Poza tym trzeba jeszcze pamiętać właściwe nazwy poszczególnych flag.
Na szczęście problemy te zostały rozwiązane przez samych twórców Windows API.
Wprowadzili oni mianowicie dodatkowe makra, kombinujące po kilka styli, i nadali im
krótsze nazwy. Makr tych możemy więc używać pojedynczo lub w połączeniu z innymi
jeszcze stylami - zupełnie tak, jakby same były flagami bitowymi.
Listę owych makr (nie jest ich zbyt dużo) przedstawia nam ta oto tabelka:

makra złączone flagi uwagi

WS_POPUPWINDOW
WS_BORDER
WS_POPUP
WS_SYSMENU

Wraz z flagą WS_CAPTION makro to stanowi
odpowiedni styl dla okien modalnych.

WS_OVERLAPPEDWINDOW
WS_TILEDWINDOW

WS_OVERLAPPED
WS_CAPTION
WS_SYSMENU

WS_THICKFRAME
WS_MINIMIZEBOX
WS_MAXIMIZEBOX

Wariant właściwych dla okien głównych
aplikacji, które mogą dopuszczać zmianę

swego rozmiaru.

Tabela 31. Predefiniowane makra stylu okna

Są one zazwyczaj bardzo wygodne, ponieważ nawet jeśli nie odpowiada nam któraś z
flag, jakie zawierają, możemy ją wyłączyć np. w ten sposób:

WS_OVERLAPPEDWINDOW & ~WS_MAXIMIZEBOX // wyłącza przycisk maksymalizacji

Oczywiście nic nie stoi też na przeszkodzie, byśmy sami definiowali sobie przydatne nam
makra, jak choćby takie:

 384

// trwałe okno o stałym rozmiarze
#define WS_FIXEDWINDOW (WS_OVERLAPPED | WS_CAPTION | WS_BORDER
 | WS_SYSMENU | WS_MINIMIZEDBOX)

// trwałe okno na pełnym ekranie
#define WS_FULLSCREENWINDOW (WS_OVERLAPPED | WS_MAXIMIZE)

Wszystko zależy bowiem od konkretnych potrzeb w pisanym programie.

Rozszerzony styl okna

Wraz z rozwojem systemu Windows pojawiły się nowe możliwości dostosowywania okien i
kontroli ich zachowania. Te nowe opcje, nazywane rozszerzonym stylem okna
(ang. extended window style), nie są niezbędne w każdej sytuacji. Spora część z nich ma
zresztą dość specyficzne zastosowanie; niemniej jednak istnieje kilka flag, które mogą
być niekiedy przydatne. Oto one:

flaga nazwa stylu opis

WS_EX_CONTEXTHELP
przycisk
pomocy

kontekstowej

Flaga ta powoduje pojawienie się na pasku tytułu
przycisku ze znakiem zapytania. Kliknięcie w
niego uaktywnia tryb pomocy kontekstowej;

kiedy teraz użytkownik kliknie gdzieś we wnętrzu
okna, otrzyma ono specjalny komunikat WM_HELP.

W reakcji na niego powinno zostać pokazane
„wyskakujące” okno z objaśnieniem.

Styl ten nie może występować razem z
WS_MINIMIZEBOX lub WS_MAXIMIZEBOX.

WS_EX_TOOLWINDOW okno
narzędziowe

Tworzy okno pływającego paska narzędzi. Takie
okno ma węższy pasek tytuły, a sam tytuł jest na

nim pisany mniejszą czcionką. Poza tym takie
okno nie jest nigdy pokazywane na pasku zadań.

Screen 58. Okno z włączonym stylem WS_EX_TOOLWINDOW

WS_EX_TOPMOST

zawsze na
wierzchu

(ang. stay on
top)

Okno oznaczone tą flagą jest wyświetlane przed
wszystkimi innymi oknami, nawet wtedy, gdy jest

ono nieaktywne.

Ten styl może być dodawany i usuwany również
poprzez funkcję SetWindowPos().

Tabela 32. Flagi bitowe rozszerzonego stylu okna

Kombinację tych flag (którą jest najczęściej po prostu NULL) podajemy w pierwszym
parametrze funkcji CreateWindowEx(), dwExStyle.

Obecność tego parametru jest zresztą jedyną różnicą między CreateWindowEx() a
zwykłą CreateWindow().

Pozycja na ekranie i wymiary okna

Cztery parametry funkcji CreateWindowEx(), począwszy od piątego aż do ósmego,
określają rejon na ekranie monitora, który będzie (początkowo) zajmowało tworzone

 385

okno. Definiuje go pozycja lewego górnego rogu okna we współrzędnych ekranu,
podawanych w parametrach x i y, oraz szerokość i wysokość okna - parametry nWidth i
nHeight.

Ważka kwestia rozdzielczości

Wszystkie te wielkości podajemy w pikselach. Sprawia to, że wizualny efekt, jaki wywiera
okno, jest w dużym stopniu zależny od stosowanej u użytkownika rozdzielczości ekranu.
Teoretycznie możemy ją programowo zmieniać, ale zachowanie takie jest wielce
niepożądane w środowisku, gdzie naraz działa wiele aplikacji - jak w Windows.

W zasadzie jednak nie jest to aż takim problemem, jako że wymiary okna powinny być w
większości przypadków stałe i niezależne od rozdzielczości. Pozostaje jedynie sprawa
umiejscowienia okna na ekranie - najczęściej chcemy bowiem, aby sytuowało się ono
dokładnie pośrodku pulpitu.
Aby to osiągnąć, musimy znać jego wymiary i posłużyć się odpowiednimi wzorami:

()
()

2

2
ekranu okna

ekranu okna

x w w

y h h

= −

= −

w których literki w i h oznaczają odpowiednio szerokość i wysokość ekranu lub okna, zaś
x i y - docelowe współrzędne okna na ekranie.

I tu mamy kolejny problem, choć na szczęście jest on łatwo rozwiązywalny. Musimy
przecież pobrać wymiary ekranu, czyli jego rozdzielczość, by móc wstawić je do
powyższych formuł. Do tego celu należy posłużyć się funkcją GetSystemMetrics():

int GetSystemMetrics(int nIndex);

Funkcja ta może zwracać przeróżne systemowe wartości, związane głównie z
wyświetlaniem. Rodzaj poszukiwanych danych podajemy w jej jedynym parametrze; nas
interesują najbardziej wielkości SM_CXSCREEN oraz SM_CYSCREEN, oznaczające szerokość i
wysokość ekranu pikselach. Jest to więc dokładnie to, o co nam teraz chodzi :)

Stworzenie okna umiejscowionego na środku ekranu może zatem wyglądać w ten
sposób:

// zakładamy, że w uWidth i uHeight mamy wymiary okna

HWND hOkno;
hOkno = CreateWindowEx(// (pomijamy nieistotne teraz parametry)
 (GetSystemMetrics(SM_CXSCREEN) - uWidth) / 2,
 (GetSystemMetrics(SM_CYSCREEN) - uHeight) / 2,
 uWidth,
 uHeight,
 // (j.w)
);

Znając rozdzielczość ekranu możemy też uzależnić od niej szerokość i wysokość okna.
Pamiętajmy jednakże, iż może to zburzyć nam ład ewentualnych kontrolek potomnych,
umiejscowionych na oknie.

Obszar klienta ma zawsze rację

W praktyce (szczególnie programisty gier!) nierzadko objawia się jeszcze jeden problem
związany z umiejscowieniem okna. Czasem bowiem posiadamy wymiary nie samego
okna, lecz tylko jego obszaru klienta. Dzieje się tak na przykład wtedy, gdy chcemy
pełnoekranowej grze, działającej w jakiejś stałej rozdzielczości, zapewnić możliwość

 386

uruchamiania się w także trybie okienkowym. Wówczas wymiary obszaru klienta okna
gry muszą zgadzać się z tą ustaloną wcześniej „rozdzielczością pełnoekranową”.
Jednak samo okno to przecież nie tylko obszar klienta: trzeba do niego dodać
przynajmniej jakiś brzeg oraz pasek tytułu. Prawidziwe wymiary okna, które powinniśmy
podać do CreateWindowEx(), będą więc większe; również pozycja okna musi zostać
odpowiednio zmieniona. Jak podołać tym zadaniom?…

Otóż system Windows oferuje pewne rozwiązanie, którym jest funkcja
AdjustWindowRectEx():

BOOL AdjustWindowRectEx(LPRECT lpRect,
 DWORD dwStyle,
 BOOL bMenu,
 DWORD dwExStyle);

Wymaga ona podania kilku potrzebnych informacji, wśród których są:

 styl okna, który należy umieścić w parametrze dwStyle (jest to ten sam styl,
który zamierzamy za chwilę podać do CreateWindowEx(). Należy więc zapisać go
w jakieś osobnej zmiennej i wykorzystać ją także tutaj)

 wartość boolowska (true lub false) określająca, czy okno posiada pasek menu
 rozszerzony styl okna (który także podamy zaraz dla CreateWindowEx())

W zasadzie jednak najważniejszy jest pierwszy parametr, w którym określamy
prostokąt obszaru klienta okna. Jest to wskaźnik do specjalnej struktury RECT:

struct RECT
{
 LONG left;
 LONG top;
 LONG right;
 LONG bottom
};

Wyznacza ona prostokąt na ekranie w nieco inny sposób niż omawiane przez cały czas
cztery parametry funkcji CreateWindowEx(). O ile bowiem pola left oraz top
odpowiadają wartościom x i y - współrzędnych lewego górnego rogu prostokąta, o tyle
right i bottom są koordynatami prawego dolnego wierzchołka. Aby obliczyć te składowe,
musimy więc dokonać odpowiedniego sumowania: x + nWidth oraz y + nHeight.

Rysunek 8. Opis prostokąta na ekranie za pomocą pól struktury RECT

 387

Ostatecznie skorzystanie z funkcji AdjustWindowRectEx() powinno się przedstawiać
mniej więcej tak:

// zakładamy, że w zmiennych x, y, nClientWidth i nClientHeight mamy
// zapisaną pozycję (np. środek ekranu) oraz wymiary
// obszaru klienta okna

// wypełniamy strukturę RECT
RECT rcOkno;
rcOkno.left = x;
rcOkno.top = y;
rcOkno.right = x + nClientWidth;
rcOkno.bottom = y + nClientHeight;

// ustalamy styl i rozszerzony styl okna
DWORD dwStyle = WS_OVERLAPPEDWINDOW;
DWORD dwExStyle = NULL;

// wywołujemy funkcję AdjustWindowRectEx()
AdjustWindowRectEx (&rcOkno, dwStyle, false, dwExStyle);

No dobrze, ale co ta funkcja właściwie robi?… Cóż, to dobre pytanie :)
AdjustWindowRectEx() modyfikuje po prostu strukturę podaną jej w pierwszym
parametrze w taki sposób, że po wywołaniu opisuje ona już nie obszar klienta okna, ale
całe okno - wraz z jego obszarem pozaklienckim. Podczas dokonywania tych modyfikacji
funkcja korzysta oczywiście z podanych jej styli oraz obecności lub nieobecności paska
menu.

Zatrzymajmy się na chwilę, gdyż w tym momencie w zmiennej rcOkno mamy zapisaną
„charakterystykę przestrzenną” (tak to nazwijmy…) całego naszego okna. Możemy zatem
wywołać już funkcję CreateWindowEx() i utworzyć je:

// tworzymy okno
HWND hOkno;
hOkno = CreateWindowEx(dwExStyle,
 "Klasa_okna",
 "Okno",
 dwStyle,
 rcOkno.left,
 rcOkno.top,
 rcOkno.right - rcOkno.left,
 rcOkno.bottom - rcOkno.top,
 NULL,
 NULL,
 hInstance,
 NULL);

Podczas podawania parametrów dokonujemy też niezbędnego przeliczenia ze składowych
RECT na współrzędne lewego górnego wierzchołka oraz szerokość i wysokość okna.

Jako podsumowanie ukazanej techniki możesz przeczytać opis funkcji
AdjustWindowRectEx() w MSDN.

Uchwyt do okna nadrzędnego

Dziewiąty parametr CreateWindowEx() jest uchwytem do okna nadrzędnego
względem tego okna, które właśnie zamerzamy stworzyć. Podając tutaj właściwy uchwyt,
umożliwiamy systemowi budowę poprawnej hierarchii okien.

 388

Gdy tworzymy okno nadrzędne (ang. top-level), czyli główne okno aplikacji, wówczas
jego bezpośrednim i jedynym przodkiem jest tylko i wyłącznie pulpit. Możemy więc podać
w parametrze hWndParent wartość uzyskaną z funkcji GetDesktopWindow() - jest to
bowiem uchwyt do pulpitu właśnie. Nie ma jednak takiej potrzeby: CreateWindowEx()
dopuszcza podanie w tym parametrze uchwytu pustego, czyli NULL; efekt będzie ten
sam, a my nie musimy się zbyt wiele napisać :D

W Windows 2000 oraz XP jako hWndParent możemy podać także specjalną stałą
HWND_MESSAGE. Spowoduje to utworzenie tzw. okna obsługi komunikatów (ang. message-
only window), którego jedynym celem jest odbieranie i wysyłanie komunikatów. Takie
okno nie jest widoczne na ekranie, ale umożliwia aplikacji (zwykle usłudze systemowej)
normalną interakcję z systemem operacyjnym.

Poprawne dobranie okna nadrzędnego jest szczególnie ważne przy tworzeniu kontrolek,
czym się zajmiemy w jednym z przyszłych rozdziałów.

Uchwyt do paska menu

Parametr hMenu funkcji CreateWindowEx() reprezentuje pasek menu, jaki będzie
posiadało kreowane okno. Przywilej posiadania takiego paska mają jedynie okna trwałe i
wyskakujące, ponadto muszą one mieć także pasek tytułu.

Jak pewnie doskonale wiemy, menu jest zestawem opcji ułożonych w grupy, które dają
dostęp do wszystkich funkcji programu. Jest to więc twór dość skomplikowany, zajęcie
się którym wymaga nieco więcej wysiłku niż tylko wywołania paru funkcji. Przekonamy
się o tym w dalszej części kursu.

Dodatkowy parametr

Ostatni argument CreateWindowEx(), czyli lpParam, jest obecny tylko dla wygody
programisty. Możemy w nim przekazać wskaźnik na dowolne dane, które okno ma
otrzymać zaraz po swoich narodzinach. Dostanie go wraz z komunikatem WM_CREATE,
wysyłanym jeszcze przed powrotem z funkcji CreateWindowEx().
Więcej informacji o tym parametrze możesz znaleźć przy opisie komunikatu WM_CREATE w
niniejszym rozdziale.

W ten sposób dotarliśmy do epilogu procesu tworzenia okna. Teraz powinieneś już na ten
temat prawie wszystko… albo przynajmniej pamiętać, co gdzie zostało tutaj opisane ;D

W następnym podrozdziale zajmiemy się operacjami, jakie można przeprowadzać na
utworzonym już oknie.

Okna pod kontrolą
Windows API oferuje całe mnóstwo narzędzi przeznaczonych do pracy z oknami.
Utworzenie własnego okna to bowiem tylko początek jego misji - dalej na właściwości
stworzonego obiektu ma duży wpływ zarówno programista, jak i użytkownik.

Działania na oknach

Z punktu widzenia programisty okna są tworami niemal całkowicie elastycznymi. Zmienić
możemy każdy ich aspekt, posługując się do tego odpowiednimi funkcjami. Tym właśnie
częściom WinAPI przyjrzymy się tutaj.

 389

Pokazywanie i ukrywanie

Typowym działaniem na oknie jest jego pokazanie (uczynienie go widocznym) i ukrycie
lub też zamknięcie. Sprawdźmy, jak możemy wykonać te działania.

Ukazanie i ukrycie okna

Dość nieoczekiwanie, zarówno do pokazywania, jak i do ukrywania okna, służy ta sama
funkcja ShowWindow():

BOOL ShowWindow(HWND hWnd, int nCmdShow);

Na pewno nie jest nam ona całkiem obca, jako że dość dokładnie opisaliśmy ją w
poprzednim rozdziale - szczególnie stałe, jakie może przyjąć w drugim parametrze. Teraz
więc przypomnimy tylko, że:

 pokazanie okna z zachowaniem jego rozmiarów i pozycji wymaga wykorzystania
stałej SW_SHOW

 maksymalizacja okna wymaga skorzystania z opcji SW_MAXIMIZE
 SW_MINIMIZE minimalizuje okno
 SW_RESTORE przywraca okno zarówno ze stanu maksy-, jak i minimalizacji
 SW_HIDE ukrywa okno, i to tak skutecznie, że nie będzie nigdzie widoczne - nawet

na pasku zadań

Ostrożnie należy postępować ze stałą SW_HIDE, zwłaszcza jeśli ukrycie okna ma być
spowodowane jakąś akcją użytkownika. Ukryte okno jest bowiem dla niego całkowicie
niedostępne, zatem aby mógł on zobaczyć je ponownie, program musi oferować
mechanizm przywołania schowanego okna znajdujący się w całkiem innym oknie.

Warto byłoby przyjrzeć się opisowi funkcji ShowWindow() w MSDN.

Sprawdzanie widoczności okna

Używając funkcji ShowWindow() zmieniamy stan widoczności (ang. visibility state albo
po prostu window state) okna. Pobranie tego stanu jest również możliwe; nie służy
jednak do tego pojedyncza funkcja (która mogłaby zwrócić jakąś stałą wyliczeniową),
lecz w sumie aż trzy odrębne wywołania:

BOOL IsWindowVisible(HWND hWnd);
BOOL IsIconic(HWND hWnd);
BOOL IsZoomed(HWND hWnd);

Ich postać jest identyczna: każdej funkcji podajemy uchwyt do sprawdzanego okna, a w
zamian otrzymujemy wartość boolowską, wskazującą na obecność lub nieobecność
danego stanu okna. I tak:

 IsWindowVisible() informuje nas o tym, czy okno jest widoczne, czy nie
 IsIconic() mówi, czy okno jest zminimalizowane
 IsZoomed() powiadamia o ewentualnej maksymalizacji okna

Taki sposób pobierania stanu okna może nas aczkolwiek nie zadowalać. Nikt nam
wówczas nie zabroni napisania sobie własnej funkcji, spełniającej to zadanie:

enum WINDOWSTATE { WS_HIDDEN, WS_NORMAL, WS_MAXIMIZED, WS_MINIMIZED };

WINDOWSTATE GetWindowState(HWND hWnd)
{
 // najpierw sprawdzamy, czy okno nie jest ukryte
 if (!IsWindowVisible(hWnd)) return WS_HIDDEN;

 390

 // dalej zajmujemy się maksymalizacją i minimalizacją
 if (IsIconic(hWnd)) return WS_MINIMIZED;
 else if (IsZoomed(hWnd)) return WS_MAXIMIZED;
 else return WS_NORMAL;
}

Taka funkcja ma przynajmniej jedną drobną zaletę: lepiej sprawdza się w blokach switch
niż trójka procedur Windows API.

Pozycja i rozmiar

Z wyglądem okna na ekranie wiąże się nie tylko fakt jego widoczności lub niewidoczności,
lecz także jego pozycja oraz rozmiar. Wszystkie te wielkości możemy oczywiście
zmieniać przy pomocy odpowiednich funkcji WinAPI.

Zanim je poznamy, należy jeszcze wspomnieć o układzie odniesienia, jaki stosuje
Windows podczas pozycjonowania okien. Otóż początek układu współrzędnych, wedle
którego następuje ustawienie położenia okna, znajduje się zawsze w lewym górnym
rogu okna nadrzędnego. Fakt ten nie ma specjalnego znaczenia dla głównych okien
aplikacji, dla których nadrzędny jest tylko pulpit, szczelnie zakrywający cały ekran;
kwestia ta nabierze jednak wymowy, gdy zaczniemy zajmować się oknami potomnymi
(kontrolkami).

Po wyjaśnieniu tej drobnej sprawy przejdziemy już do sposobów pobierania i ustawiania
położenia oraz wielkości okna.

Zmiana pozycji i rozmiaru

Gdy chcemy jednocześnie zmienić zarówno umiejscowienie okna na ekranie, jak i jego
szerokość i wysokość, wtedy najrozsądniejszym wyborem jest funkcja o dosyć mylącej
nazwie MoveWindow():

BOOL MoveWindow(HWND hWnd, // uchwyt modyfikowanego okna
 int X, // nowa współrzędna pozioma
 int Y, // nowa współrzedna pionowa
 int nWidth, // nowa szerokość okna
 int nHeight, // nowa wysokość okna
 BOOL bRepaint); // czy odrysowywać zawartość okna?

Podajemy w niej zarówno nowe współrzędne okna (o uchwycie wpisanym w pierwszym
parametrze), jak i jego nowe wymiary - szerokość i wysokość. Cztery te wielkości
zostaną więc bezwarunkowo zmienione.
Piąty parametr bRepaint określa, czy po dokonaniu operacji na oknie ma ono zostać
odrysowane, a więc otrzymać komunikat WM_PAINT. Prawie zawsze chcemy, by tak się
właśnie stało, bo wtedy na pewno wszystkie okna na ekranie będą wyglądały poprawnie.
W parametrze bRepaint podajemy więc wartość TRUE.

Nieco inaczej postępujemy, kiedy zależy nam tylko zmianie na położenia okna albo tylko
na zmianie jego rozmiaru. Wówczas powinniśmy bowiem skorzystać z bardziej
elastycznej funkcji SetWindowPos():

BOOL SetWindowPos(HWND hWnd, // modyfikowane okna
 HWND hWndInsertAfter, // przykrywające okno
 int X, // nowa współ. pozioma
 int Y, // nowa współ. pionowa
 int cx, // nowa szerokość
 int cy, // nowa wysokość
 UINT uFlags); // flagi

 391

Właściwie to potrafi ona nie tylko przesuwać i skalować okno, ale także kontrolować
przykrywanie go przez inne okna. Mowa tu o tzw. kolejności przesłaniania lub
porządku Z (ang. z-order). Mechanizm ten odpowiada za warstwowe ułożenie okien w
interfejsie użytkownika, w którym jedno okno może całkowicie lub częściowo zasłaniać
inne. Nazwa ‘porządek Z’ bierze się stąd, iż zjawisko to sugeruje istnienie trzeciej,
wirtualnej pseudoosi współrzędnych Z:

Rysunek 9. Porządek Z okien w systemie Windows

Oczywiście ta oś tak naprawdę nie istnieje, gdyż nie możemy ustawić okna na określoną
współrzedną Z. Możliwe jest jednak umiejscowienie go na niej w pozycji relatywnej do
innego okna. W parametrze hWndInsertAfter funkcji SetWindowPos() możemy
mianowicie podać uchwyt okna, które zostanie umieszczone bezpośrednio przed tym
modyfikowanym (podanym w hWnd) w porządku Z (będzie je przesłaniać).
Oprócz tego dopuszczalne jest również podanie w tym parametrze jednej z kilku
specjalnych wartości o następującym znaczeniu:

stała opis

HWND_BOTTOM Umieszcza okno na spodzie kolejności przesłaniania. Modyfikowane
okno będzie więc przykrywane przez wszystkie inne widoczne okna.

HWND_TOP Okno zostaje umiejscowione na szczycie porządku Z, przykrywając
wszystkie pozostałe okno.

HWND_TOPMOST
Umiejscawia okno na szczycie kolejności przesłaniania, a ponadto
czyni je oknem typu „zawsze na wierzchu” (ang. stay on top lub

topmost). Takie okno nie jest przesłaniane przez żadne inne okna111.

HWND_NOTOPMOST
Okno jest przesuwane za wszystkie okna typu „zawsze na wierzchu”,

lecz przed wszystkimi innymi oknami. Jeżeli przemieszczane okno
samo było oknem „zawsze na wierzchu”, traci ono tę cechę.

Tabela 33. Stałe dla parametru hWndInsertAfter funkcji SetWindowPos()

Pozostałe cztery parametry funkcji SetWindowPos() są analogiczne dla argumentów
MoveWindow() i specyfikują odpowiednio: nowe współrzędne (X i Y) przesuwanego okna
oraz jego nowe wymiary (cx i cy). Na czym więc polega różnica między tą funkcją a
poprzednią?
Jest ona znacząca: SetWindowPos() pozwala na zdecydowanie, które z podanych jej
parametrów (X i Y, cx i cy oraz hWndInsertAfter) mają być faktycznie brane pod uwagę
i zmieniane dla okna o uchwycie hWnd. W przeciwieństwie do MoveWindow() nie jesteśmy
zmuszeni do zmiany zarówno pozycji, jak i rozmiaru okna - przeciwnie, możemy
samodzielnie zadecydować o poczynionych modyfikacjach.

111 A dokładniej mówiąc: przez żadne okno, które samo nie jest typu „zawsze na wierzchu”.

 392

Dokonujemy tego, podając odpowiednie flagi bitowe w ostatnim parametrze - uFlags.
Wypadkowa kombinacja może się tu składać z poniższych wartości:

flaga opis
SWP_NOMOVE zapobiega przesuwaniu okna (ignoruje parametry X i Y)
SWP_NOSIZE nie pozwala na zmianę rozmiarów okna (ignoruje parametry cx i cy)

SWP_NOZORDER pozostawia aktualną pozycję okna w porządku Z (ignoruje parametr
hWndInsertAfter)

Tabela 34. Flagi bitowe funkcji SetWindowPos()

Tak więc ażeby dokonać jedynie przesunięcia okna po ekranie należy wywołać
SetWindowPos() w sposób podobny tego:

SetWindowPos (hOkno, NULL, nX, nY, 0, 0, SWP_NOSIZE | SWP_NOZORDER);

Z kolei instrukcja w rodzaju takiej:

SetWindowPos (hOkno, HWND_TOP, 0, 0, 0, 0, SWP_NOSIZE | SWP_NOMOVE);

spowoduje „wyciągnięcie” okna przed wszystkie inne w kolejności przesłaniania, nie
powodując jednak ani jego przemieszczania się, ani skalowania.

Teraz nie od rzeczy byłoby zapoznanie się z opisem funkcji MoveWindow() i
SetWindowPos() w MSDN.

Istnieje również funkcja SetWindowPlacement(), która pozwala na zmianę nie tylko
aktualnej pozycji okna, ale też tej, którą przyjmuje ono po maksymalizacji czy
minimalizacji. Ponadto łączy ona w sobie także możliwość zmiany stanu widoczności
okna, niczym ShowWindow(). W sumie jest to więc dość ciekawa funkcja, której opis
możesz znaleźć w MSDN.

Pobieranie umiejscowienia i wielkości okna

Koordynaty przestrzenne okna możemy w Windows nie tylko, rzecz jasna, ustawiać, ale
także pobierać je. Czynimy to przy pomocy funkcji GetWindowRect():

BOOL GetWindowRect(HWND hWnd, LPRECT lpRect);

Zwraca nam ona określenie prostokątu mieszczącego okno; znajdziemy je w strukturze
typu RECT, do której wskaźnik musimy podać w drugim parametrze funkcji.

Pamiętajmy, że współrzędne tego prostokąta są liczone względem okna nadrzędnego.

Jak sądzę pamiętamy doskonale (było to przecież całkiem niedawno :D), że pola tej
struktury nazwane left i top są współrzędnymi lewego górnego wierzchołka prostokąta,
zaś right i bottom - prawego dolnego. Uzyskanie z tych danych szerokości i wysokości
okna wymaga zatem tylko dwóch prostych działań:

RECT rcOkno;
GetWindowRect (hOkno, &rcOkno);

unsigned uWidth = rcOkno.right - rcOkno.left;
unsigned uHeight = rcOkno.bottom - rcOkno.top;

 393

Co ciekawe (i trochę dziwne), Windows API nie udostępnia żadnej funkcji, która
umożliwiałaby bardziej wybiórcze pobieranie danych o pozycji i rozmiarze okna. Zatem
albo dostaniemy wszystko, albo nic :)

Pasek tytułu

Zdecydowana i miażdżąca większość okien posiada swój pasek tytułu. Na nim zaś
widoczny jest tytuł okna, opisujący zasadniczo jego zawartość. Jak każdy element okna,
także i on może być zmieniany przez programistę.

Ustawienie tytułu okna

Nie ma chyba nic prostszego od ustawiania tytułu okna. Przeznaczona do tego funkcja
SetWindowText() ma chyba najprostszą możliwą i jednocześnie najbardziej intuicyjną
postać:

BOOL SetWindowText(HWND hWnd, LPCTSTR lpString);

Wywnioskowanie sposobu użycia tej funkcji z jej prototypu jest, jak sądzę, oczywistym
zadaniem. Spójrzmy aczkolwiek na odpowiedni kod:

#include <sstream>
#include <windows.h>

// ...

std::stringstream Strumien;
Strumien << rand();
SetWindowText (hOkno, Strumien.str().c_str());

Pokazuje on, jak można ustawić losową liczbę jako tytuł okna. Przykład ten nie należy
być może do wielce przydatnych, niemniej dobrze ilustruję funkcję SetWindowText(). Nie
wymaga ona chyba więcej komentarza, prawda? :)

Odczytywanie tytułu okna

Czynność odwrotna - pobieranie tytułu okna - może nastręczać pewnych problemów. Nie
wynikają one jednak z toporności samego Windows API, lecz ich podłożem są łańcuchy
znaków w stylu C. Napis na pasku tytułu musi być bowiem pobrany w tej właśnie postaci.
Najprostszą (i wcale nie najlepszą) drogą jest użycie kodu zbliżonego do poniższego:

char szTytulOkna[256];
GetWindowText (hOkno, szTytulOkna, 256);

Zastosowano w nim funkcję GetWindowText():

int GetWindowText(HWND hWnd,
 LPTSTR lpString,
 int nMaxCount);

Zapisuje ona tytuł okna o uchwycie hWnd do tablicy znaków ze wskaźnika podanego w
lpString. I pozornie wszystko byłoby w porządku, gdyby nie rozmiar owej tablicy:
musimy go ustalić z odpowiednią dozą rezerwy i podać w trzecim parametrze
GetWindowText(). Takie są niestety uroki napisów w stylu C.

WinAPI oferuje nam jednak pewną pomoc: przy pomocy GetWindowTextLength()
możemy mianowicie pobrać samą długość tytułu okna, czyli ilość znaków, jakie musi
pomieścić docelowa tablica (bufor). Wielkości tej potrafimy natomiast użyć do
zaalokowania bufora o odpowiedniej pojemności.

 394

Ostatecznie możemy pokusić się o napisanie znacznie wygodniejszej funkcji, pobierającej
tytuł okna i zwracającej go jako łańcuch std::string:

#include <string>
#include <windows.h>

std::string GetCaption(HWND hWnd)
{
 char* lpszBuffer;

 // pobieramy długość napisu i alokujemy pamięć dla bufora
 UINT uLength = GetWindowTextLength(hWnd);
 lpszBuffer = new char [uLength];

 // odczytujemy napis i zapisujemy go w zmiennej typu std::string
 GetWindowText (hWnd, lpszBuffer, uLength);
 std::string strCaption = lpszBuffer;

 // zwalniamy bufor i zwracamy tekst
 delete[] lpszBuffer;
 return strCaption;
}

Jeśli jednak bardziej zależy nam na szybkości niż efektywności pamięciowej programu, to
alokację i zwalnianie bufora o zmiennej wielkości możemy zastąpić poprzez dużą (np.
1024 znaki), statyczną tablicę znaków. Do niej będziemy od razu zapisywać tytuł okna, z
pominięciem pobierania jego długości poprzez GetWindowTextLength().

O wszystkich trzech funkcjach (SetWindowText(), GetWindowText() i
GetWindowTextLength()) dobrze byłoby poczytać coś więcej w MSDN.

Inne informacje

Na deser zostawiłem potężną funkcję pobierającą informacje o oknie - GetWindowInfo():

BOOL GetWindowInfo(HWND hWnd, PWINDOWINFO pwi);

O jej możliwościach trudno wywnioskować z prototypu, jako że kryją się one w strukturze
WINDOWINFO, do której wskaźnik musimy podać w drugim parametrze. Sama struktura
przedstawia się zaś następująco:

struct WINDOWINFO
{
 DWORD cbSize;
 RECT rcWindow;
 RECT rcClient;
 DWORD dwStyle;
 DWORD dwExStyle;
 DWORD dwWindowStatus;
 UINT cxWindowBorders;
 UINT cyWindowBorders;
 ATOM atomWindowType;
 WORD wCreatorVersion;
};

Zawiera ona całe mnóstwo danych dotyczących okna, które możemy bez problemu
pobrać przy pomocy wymienionej funkcji GetWindowInfo(). Oto krótkie omówienie
wszystkich składowych WINDOWINFO:

 395

typ pola opis

DWORD cbSize

Podobnie jak w WNDCLASSEX, pierwszy pole struktury
WINDOWINFO określa jej rozmiar w bajtach. Musimy ustawić

je na sizeof(WINDOWINFO), zanim zechcemy wywołać
funkcję GetWindowInfo().

RECT rcWindow
rcClient

Te dwa pola określają prostokąty zawierające (kolejno): całe
okno oraz jego obszar klienta.

DWORD dwStyle
dwExStyle

Z tych pól możemy odczytać styl oraz rozszerzony styl
okna, czyli wartości, które zostały ongiś przekazane do

CreateWindow[Ex]() podczas tworzenia okna.

DWORD dwWindowStatus
Pole to określa status okna, tzn. to, czy jest ono aktywne,
czy też nie. Wartość stałej WS_ACTIVECAPTION w tym polu

oznacza pierwszą sytuację, zero - drugą.

UINT cxWindowBorders
cyWindowBorders

Ta para pól zawiera szerokość oraz wysokość obrzeża
okna w pikselach.

ATOM atomWindowType

W tym polu zapisany zostaje atom identyfikujący klasę
okna. Jak (mam nadzieję) pamiętasz, atom ten zwraca

funkcja RegisterClass[Ex]() po rejestracji klasy okna, a
wartość ta może zostać użyta w miejsce nazwy tejże klasy w

niektórych funkcjach, jak np. CreateWindow[Ex]().
WORD wCreatorVersion Określa windowsową wersję aplikacji, która stworzyła okna.

Tabela 35. Pola struktury WINDOWINFO

Z ciekawszych składowych można z pewnością wymienić atomWindowType, dającą
informację o klasie okna, oraz rcClient, określającą jej obszar klienta.

Wymiary obszaru klienta okna można też uzyskać poprzez funkcję GetClientRect().

Uzyskiwanie uchwytów do okien

Spośród zaprezentowanych funkcji każda, co do jednej, wymagała podania uchwytu do
okna. W sumie jest to naturalne, skoro funkcje te służą właśnie do operacji na oknach.
Uchwyt taki trzeba jednak posiadać.
Zasadniczo nie jest to problemem, bo przecież funkcja tworząca okno,
CreateWindowEx(), zwraca nam taki uchwyt typu HWND. Możemy jednak uzyskać uchwyty
okien na wiele innych sposobów; co więcej, możliwe jest nawet pobranie identyfikatora
od „nieswojego” okna! Spójrzmy zatem na funkcje, jakie Windows API oferuje nam w
tym zakresie.

Poruszanie się po hierarchii okien

Przypomnijmy, że każde stworzone w systemie okno należy do jego hierarchii okien.
Wchodzi więc ono w różnorodne relacje z innymi istniejącymi oknami jako element swego
rodzaju drzewa.

I tak dla każdego okna możemy wyróżnić nieraz całkiem liczną rodzinkę, na którą
składają się:

 okno nadrzędne albo rodzic (ang. parent window), znajdujące się o jeden
poziom wyżej w hierarchii. Dla głównych okien aplikacji jest to puplit, one same
stanowią zaś drugi poziom drzewa okien

 okna równorzędne albo rodzeństwo (ang. sibling windows), czyli takie okna,
które istnieją na tym samym poziomie hierarchii i mają wspólnego rodzica

 okna potomne albo dzieci (ang. child windows), znajdujące się o jeden poziom
niżej w hierarchii okien, mające rozpatrywane okno za rodzica

 396

Schemat 40. Relacje między oknami w hierarchii

Najczęściej hierarchia rozciąga się na więcej niż trzy poziomy. Wówczas wszystkie okna
powyżej rozważanego nazywamy jego przodkami (ang. ancestors), natomiast te poniżej
- potomkami (ang. descendants).
Skoro znamy już nazewnictwo stosowane w hierarchii okien112, możemy nauczyć się
uzyskiwać uchwyty do pokrewnych okien przy pomocy odpowiednich funkcji WinAPI.

Stosunkowo najprościej jest zdobyć uchwyt do okna nadrzędnego, ponieważ każde okno
ma tylko jednego rodzica. Zwraca go funkcja GetParent():

HWND GetParent(HWND hWnd);

Jej użycie ma sens dla kontrolek umieszczonych w oknie: wtedy bowiem podanie funkcji
uchwytu do kontrolki skutkuje zwróceniem uchwytu do zawierającego ją okna. W
przypadku jednak gdy funkcją GetParent() potraktujemy główne okno jakiejś aplikacji,
nie otrzymamy, jak by się mogło wydawać, uchwytu okna pulpitu, lecz wartość NULL.
Uchwyt pulpitu zdobędziemy natomiast poprzez GetDesktopWindow().

Nieco trudniejsze jest pozyskanie okien równo- oraz podrzędnych - z tego względu, iż
prawie zawsze istnieje wiele takich okien naraz. Windows API udostępnia nam wszakże
funkcję GetWindow():

HWND GetWindow(HWND hWnd, UINT uCmd);

Korzystając z niej, możemy poruszać się po aktualnym poziomie hierarchii okien113
(oknach równorzędnych) lub też zejść niżej, do okien potomnych. Przeglądanie okien na
danym poziomie odbywa się natomiast według ich porządku Z, czyli kolejności
przesłaniania na ekranie. Możliwe jest więc przejście do okna leżącego zaraz „pod
spodem” aktualnego oraz bezpośrednio „na nim” - pod warunkiem oczywiście, jest ono
na tym samym poziomie hierarchii. GetWindow() daje ponadto możliwość skoku na
wierzch i na sam spód porządku Z.
Wyboru interesującego nas działania dokonujemy, wpisując odpowiednią stałą w drugim
parametrze funkcji:

112 Jest ono zresztą stosowane nie tylko tam. Właściwie stosuje się ono do każdej struktury drzewiastej,
używanej w programowaniu, a także np. do węzłów dokumentu XML.
113 ‘Aktualny’ znaczy tutaj ‘ten, na którym znajduje się okno o uchwycie podanym w pierwszym parametrze
GetWindow(), hWnd’. Sądzę, że nietrudno było się tego domyślić :)

 397

stała okno opis

GW_HWNDFIRST najwyższe

Powoduje zwrócenie uchwytu do okna leżącego na
szczycie kolejności przesłaniania, biorąc oczywiście pod

uwagę tylko okna na tym samym poziomie, co te o
uchwycie hWnd.

GW_HWNDPREV poprzednie
Skutkiem użycia tej stałej jest otrzymanie okna

bezpośrednio przesłaniającego okno hWnd i będącego
naturalnie na tym samym poziomie hierarchii.

GW_HWNDNEXT następne
Zwraca następne okno, leżące bezpośrednio niżej w
kolejności przesłaniania, a na tym samym poziomie w

hierarchii co hWnd.

GW_HWNDLAST najniższe
Pobiera uchwyt okna, które jest na spodzie porządku Z i,

rzecz jasna, na tym samym poziomie hierarchii okien.

GW_CHILD potomne
Stała ta skutkuje zwróceniem uchwytu do okna

potomnego względem hWnd, leżącego na szczycie
kolejności przesłaniania.

Tabela 36. Stałe pobierania uchwytów do okien w funkcji GetWindow()

Istnieje oczywiście możliwość, że żadne okno o żądanych cechach nie zostanie znalezione
- wtedy funkcji GetWindow() zwraca po prostu NULL (zero).

No dobrze, teoria teorią, ale jak skorzystać z tej funkcji w praktyce, ażeby np. wyliczyć
wszystkie okna potomne względem danego?… Otóż odpowiedni kod może wyglądać tak:

// wyliczamy wszystkie dzieci okna hwndOkno

// pobieramy pierwsze dziecko (leżące na szczycie porządku Z)
HWND hwndDziecko = GetWindow(hwndOkno, GW_CHILD);

// uzyskujemy uchwyty do okien potomnych leżących niżej w z-order
do
{
 // tutaj coś robimy z uchwytem zapisanym w hwndDziecko
} while (GetWindow(hwndDziecko, GW_HWNDNEXT) /* != NULL */)

Możemy tak wyliczyć chociażby wszystkie główne okna aplikacji w systemie - wystarczy,
że za hwndOkno podstawimy uchwyt pulpitu (przypominam, jest to wynik funkcji
GetDesktopWindow()).

Zainteresowani, którzy z pewnością przeczytają opis funkcji GetWindow() w MSDN,
powinni jeszcze zwrócić uwagę na zagadnienie posiadania okien (ang. owned windows),
również tam opisane.

Poszukiwanie dowolnego okna

Potencjalnie ciekawsze możliwości na polu wyszukiwania okien posiada funkcja
FindWindow():

HWND FindWindow(LPCTSTR lpClassName,
 LPCTSTR lpWindowName);

Potrafi ona znaleźć dowolne okno w systemie, należące do podanej klasy i/lub mające
wskazany tekst na pasku tytułu. Przy jej pomocy możemy więc otworzyć sobie dostęp do
okien innych aplikacji albo (co jest nawet bardziej interesujące) kluczowych okien
systemu Windows.

 398

Wyszukiwanie, jakiego dokonuje ta funkcja, może odbywać się przy pomocy dwóch
kryteriów: klasy okna oraz jego tytułu. Nie musimy jednak korzystać z obu metod; jeśli
w którymś z parametrów wpiszemy NULL, wówczas odpowiadające mu kryterium nie
będzie po prostu brane pod uwagę.
Pierwszy parametr lpClassName jest przeznaczony dla nazwy klasy, której okna
poszukujemy. Dopuszczalne jest tu podanie tej nazwy jako napisu w stylu C, można też
wpisać atom odpowiedniej klasy. Wartość zerowa spowoduje natomiast, że wszystkie
klasy okien będą pasować do wyszukiwania.
Drugi argument lpWindowName oczekuje na podanie tytułu okna - także jako
tradycyjnego łańcucha znaków. I tak samo możemy wpisać tu NULL, aby pominąć
dopasowywanie tytułów okien.
Zwracaną przez FindWindow() wartością jest uchwyt do okna głównego (top-level),
pasującego do zadanych założeń. Możliwe jest rzecz jasna, iż żadne takie okno nie
zostanie znalezione - wtedy otrzymujemy po prostu NULL.

FindWindow() przeszukuje tylko okna glówne aplikacji, pomijając okna potomne.

Po tym teoretycznym wprowadzeniu czas na jakiś konkretny, interesujący przykład. Oto
program, który potrafi ukrywać i pokazywać systemowy pasek zadań - czyli okno, które z
całą pewnością nie należy do niego:

// TaskbarHider - program ukrywający pasek zadań

#include <string>
#define WIN32_LEAN_AND_MEAN
#include <windows.h>

// dane okna
std::string g_strKlasaOkna = "od0dogk_TaskbarHider_Window";
HWND g_hwndOkno = NULL;

// dane o pasku zadań
HWND g_hwndPasekZadan = NULL;
bool g_bWidocznyPasekZadan;

// ------------------- procedura zdarzeniowa okna ------------------------

LRESULT CALLBACK WindowEventProc(HWND hWindow, UINT uMsg,
 WPARAM wParam, LPARAM lParam)
{
 switch (uMsg)
 {
 case WM_DESTROY:
 // odkrywamy pasek zadań
 ShowWindow (g_hwndPasekZadan, SW_SHOW);

 // kończymy program
 PostQuitMessage (0);
 return 0;

 case WM_LBUTTONDOWN:
 // zmieniamy stan widoczności na przeciwny
 g_bWidocznyPasekZadan = !g_bWidocznyPasekZadan;

 // pokazujemy/ukrywamy pasek zadań
 ShowWindow (g_hwndPasekZadan,
 g_bWidocznyPasekZadan ? SW_SHOW : SW_HIDE);

 399

 // uaktywniamy własne okno i każemy je odrysować,
 // by pokazała się informacja
 SetFocus (hWindow);
 InvalidateRect (hWindow, NULL, true);

 return 0;

 case WM_PAINT:
 {
 PAINTSTRUCT ps;
 HDC hdcOkno;
 RECT rcObszarKlienta;

 // pobieramy obszar klienta naszego okna
 GetClientRect (hWindow, &rcObszarKlienta);

 // formatujemy napis
 std::string strNapis = "Pasek zadań jest ";
 strNapis += (g_bWidocznyPasekZadan ?
 "WIDOCZNY" : "NIEWIDOCZNY");

 // rysujemy napis informujący
 hdcOkno = BeginPaint(hWindow, &ps);
 DrawText (hdcOkno, strNapis.c_str(),
 (int) strNapis.length(),
 &rcObszarKlienta,
 DT_SINGLELINE | DT_CENTER | DT_VCENTER);
 EndPaint (hWindow, &ps);

 return 0;
 }
 }

 return DefWindowProc(hWindow, uMsg, wParam, lParam);
}

// ------------------------funkcja WinMain() ----------------------------

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE, LPSTR, int nCmdShow)
{
 /* rejestrujemy klasę okna */

 WNDCLASSEX KlasaOkna;

 // wypełniamy strukturę WNDCLASSEX
 ZeroMemory (&KlasaOkna, sizeof(WNDCLASSEX));
 KlasaOkna.cbSize = sizeof(WNDCLASSEX);
 KlasaOkna.hInstance = hInstance;
 KlasaOkna.lpfnWndProc = WindowEventProc;
 KlasaOkna.lpszClassName = g_strKlasaOkna.c_str();
 KlasaOkna.hCursor = LoadCursor(NULL, IDC_ARROW);
 KlasaOkna.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 KlasaOkna.hbrBackground = (HBRUSH) GetStockObject(WHITE_BRUSH);

 // rejestrujemy klasę okna
 RegisterClassEx (&KlasaOkna);

 /* tworzymy okno */

 400

 // tworzymy okno funkcją CreateWindowEx
 g_hwndOkno = CreateWindowEx(WS_EX_TOOLWINDOW,
 g_strKlasaOkna.c_str(),
 "Ukrywacz paska zadań",
 WS_OVERLAPPED | WS_BORDER
 | WS_CAPTION | WS_SYSMENU,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 250,
 50,
 NULL,
 NULL,
 hInstance,
 NULL);

 // pokazujemy nasze okno
 ShowWindow (g_hwndOkno, nCmdShow);

 /* uzyskujemy okno paska zadań */

 // wywołujemy FindWindow(), by znaleźć uchwyt
 g_hwndPasekZadan = FindWindow("Shell_TrayWnd", NULL);

 // pobieramy stan widoczności paska (zapewne jest widoczny,
 // ale ostrożność nie zaszkodzi :D)
 g_bWidocznyPasekZadan = (IsWindowVisible(g_hwndPasekZadan) != FALSE);

 /* pętla komunikatów */

 MSG msgKomunikat;
 while (GetMessage(&msgKomunikat, NULL, 0, 0))
 {
 TranslateMessage (&msgKomunikat);
 DispatchMessage (&msgKomunikat);
 }

 // zwracamy kod wyjścia
 return static_cast<int>(msgKomunikat.wParam);
}

Widoczność paska zadań możemy kontrolować, klikając w okno tego programu. W nim
też widzimy informację o tym, czy ów pasek jest w danej chwili widoczny:

Screen 59. Program ukrywający pasek zadań

Jeżeli zaś chodzi o kod programu, to zawiera on sporo szczegółów, którymi nie musisz się
obecnie zbytnio przejmować, a dotyczących głównie rysowania w oknie. Sporo wyjaśnień
możesz znaleźć w komentarzach, jeszcze więcej - w opisie komunikatu WM_PAINT w tym
rozdziale, a wszystko wyłożymy sobie dokładnie przy opisie biblioteki Windows GDI.

Z całej aplikacji najbardziej może nas interesować linijka:

g_hwndPasekZadan = FindWindow("Shell_TrayWnd", NULL);

 401

Pokazuje ona świetnie, jak używać funkcji FindWindow(). W tym przypadku korzystamy
z wyszukiwania według nazwy klasy okna - "Shell_TrayWnd" jest bowiem klasą
systemowego paska zadań. W wyniku wywołania funkcji otrzymujemy (jedyne) okno
należące do tejże klasy, czyli właśnie pasek zadań. Teraz możemy więc zacząć swoją
zabawę z nim :)

A kiedy znudzi nam się ukrywanie i odkrywanie paska, warto abyśmy zajrzeli do MSDN
po opis funkcji FindWindow(), a także FindWindowEx().

Zakończony właśnie podrozdział stanowił przegląd najważniejszych operacji, jakich
można dokonywać na oknach, oraz funkcji WinAPI, które do tego służą. Nie wyczerpują
one naturalnie całego asortymentu dostępnych instrumentów, ale są, jak sądzę,
najbardziej użytecznymi spośród nich. Nie oznacza to jednak, że z pozostałymi funkcjami
obsługi okien również nie wypadałoby się zapoznać; w miarę swoich potrzeb powinieneś
więc uczynić to we własnym zakresie.

Teraz natomiast przejdziemy do idei, które nadają oknom cechy interaktywności - a więc
do komunikatów o zdarzeniach. Przypomnimy sobie wiadomości o pętli komunikatów oraz
przedstawimy najważniejsze rodzaje zdarzeń.

Komunikaty o zdarzeniach
System Windows powiada okna o zainstniałych zdarzeniach, posługując się
komunikatami (ang. messages). Komunikaty te są odbieranie przez procedurę
zdarzeniową okna, która zajmuje się ich przetwarzaniem. Praca ta jest zwykle widoczna
jako objawy działania programu: za takie przesłanki uznajemy bowiem odpowiednie
reakcje na kliknięcia w przyciski, przyciśnięcia klawiszy i tak dalej.

Komunikaty sterują więc funkcjonowaniem aplikacji i pozwalają jej działać zgodnie z
oczekiwaniami programisty (czasami także i użytkownika :)) Realizacja tych oczekiwań
odbywa się drogą poprawnej współpracy z mechanizmem komunikatów Windows.
Na ten mechanizm ten składa się pętla (pompa) komunikatów (ang. message loop)
oraz procedury zdarzeniowe okien. Ta pierwsza zajmuje się pobieraniem od systemu
informacji o zdarzeniach i kierowaniem ich we właściwe miejsce; procedury zdarzeniowe
są natomiast takim właśnie miejscem - w nich następuje odczytanie danych niesionych
przez komunikat oraz ustalona przez twórcę aplikacji interpretacja zdarzenia.

Należyte wykorzystanie komunikatów wymaga stosownej wiedzy, przede wszystkim o ich
rodzajach i odpowiadających im zdarzeniach systemowych. Tym właśnie zagadnieniem
zajmiemy się w aktualnym podrozdziale, nie pomijając jednakże pozostałych kwestii
związanych z systemem monitorowania zdarzeń w Windows.

Studium pętli komunikatów

Jednym z praktycznych problemów związanych ze zdarzeniowym modelem działania
programów jest jego nieprzystawanie do warunków, nazwijmy to, sprzętowych.
Procesory komputerowe, czy nawet komputery w ogóle, są bowiem z zasady
przystosowane do pracy sekwencyjnej, pasywnej - potrafią tylko wykonywać podany im
kod maszynowy, nie dbając zupełnie o warunki „zewnętrzne”. Bez choćby najprostszego
systemu operacyjnego (np. BIOSu), który podtrzymywałby komunikację z
poszczególnymi podzespołami, mielibyśmy do czynienia tylko ze zlepkiem krzemowych
obwodów, niepotrafiącym nawet zadbać o niezbędne zasilanie.

 402

Procesor jest więc tylko robotnikiem, wymagającym ukierunkowania swojej pracy przez
odpowiedniego nadzorcę. Zaś im bardziej szef jest wykwalifikowany, tym lepszy może
zrobić użytek z działań swego podwładnego. Windows, wraz z wieloma innymi systemami
operacyjnymi, należy do profesjonalnych menedżerów, którzy tak gospodarują czasem
procesora, by stwarzać wrażenie interaktywności układu, który z założenia interaktywny
nie jest.

Czyni to wszelako w dość prosty i narzucający się od razu sposób. Otóż dzieli on zasoby
czasu procesora na bardzo krótkie (obecnie rzędu nanosekund) interwały, w których na
przemian pozwala wykonywać swój kod poszczególnym programom, działającym
„jednocześnie”. Tak szybkie przełączanie jest dla użytkownika oczywiście niezauważalne i
dlatego wywołuje odczucie, iż wszystkie czynności są wykonywane w tym samym czasie.
Równolegle system musi też liczyć się możliwością zaistnienia niskopoziomowych
„zdarzeń sprzętowych” - przerwań (ang. interrupts), informujących (między innymi) o
pojawieniu się nowych danych od urzadzeń wejściowych. Misją systemu jest
przeistoczenie tych zdarzeń we właściwe komunikaty i przesłanie ich do docelowych
aplikacji. Wszystkie te zadania żadają funkcjonowania w sposób ciągły - w pętli.

Nie dziwi zatem, iż z programistycznego punktu widzenia model zdarzeniowy opiera się
na pętlach. Część z nich może być głęboko ukryta - tak jest zapewne z niskopoziomowym
kodem rejestrowania zdarzeń w Windows. Istnieje jednak pętla, która bardzo interesuje
każdego kodera; pętla, która pozwala programom sterowanym zdarzeniami działać w
sposób ciągły; wreszcie pętla, która zajmuje się obsługą tych zdarzeń. W systemie
Windows jest to pętla komunikatów.
Jako że jest to niezbędny element każdego programu okienkowego, spotkaliśmy się z
nim już wcześniej. Ponieważ jednak jest to część modelu zdarzeniowego Windows, która
wymaga głębszego omówienia, zajmiemy się nią bliżej właśnie teraz.

Traktat o wyższości PeekMessage()

Standardowa, elementarna postać pętli komunikatów jawi się następująco:

MSG msgKomunikat;
while (GetMessage(&msgKomunikat, NULL, 0, 0))
{
 TranslateMessage (&msgKomunikat);
 DispatchMessage (&msgKomunikat);
}

Treść jej bloku jest tak minimalistyczna, jak tylko może być. Mówiłem bowiem w
poprzednim rozdziale, że wywołania TranslateMessage() i DispatchMessage() są
absolutnie niezbędne do prawidłowej obsługi komunikatów. Tą częścią pętli nie będziemy
się zatem na razie zajmować.
Znacznie więcej uwagi poświęcimy natomiast funkcji GetMessage().

Funkcja GetMessage()

Bliższy wgląd w każdą nowopoznawaną funkcję najlepiej zacząć od spojrzenia na jej
prototyp. Deklaracja GetMessage() przedstawia się więc mniej więcej tak:

BOOL GetMessage(LPMSG lpMsg,
 HWND hWnd,
 UINT wMsgFilterMin,
 UINT wMsgFilterMax);

Cztery parametry tej funkcji wydają się aż nadmiarem dobroci, lecz mają one właściwe
sobie znaczenie. Zdecydowanie nie zaszkodzi nam, jeżeli je poznamy. Spójrzmy przeto
na poniższą tabelkę:

 403

typ nazwa opis

LPMSG lpMsg

To jest wskaźnik na strukturę typu MSG. W tej strukturze
zostanie zapisany pobrany komunikat Windows, abyśmy mogli

przekazać go funkcjom TranslateMessage() i
DispatchMessage().

HWND hWnd
Podajemy tu uchwyt okna, którego docelowe komunikaty

chcemy pobierać. Najczęściej jednak chcemy zająć się
wszystkimi komunikatami i wobec tego podajemy tutaj NULL.

UINT wMsgFilterMin
wMsgFilterMax

Jak pamiętamy, stałe komunikatów są liczbami, a więc mogą
być ułożone według ich wartości. W tych dwóch parametrach

możemy zaś podać zakres liczb, które nas interesują,
uzyskując w ten sposób odfiltrowanie tylko tych komunikatów,

które nas w danej chwili obchodzą.
Zazwyczaj nie ma takiej potrzeby i dlatego podajemy tu dwa

razy wartość zerową. Wtedy GetMessage() otrzymuje
wszystkie komunikaty o zdarzeniach.

Jest też kilka specjalnych stałych, które podane razem

umożliwiają wyłowienie pewnego rodzaju zdarzeń. Na przykład
WM_KEYFIRST i WM_KEYLAST powoduje odbieranie tylko

komunikatów od klawiatury.
Więcej informacji na ten temat możesz znaleźć w opisie funkcji

GetMessage() w MSDN.

Tabela 37. Parametry funkcji GetMessage()

Jako typ zwracanej wartości GetMessage() deklaruje BOOL. Mimo to zwraca ona
teoretycznie aż trzy możliwe wartości:

 niezerową, gdy funkcja poprawnie odebrała komunikat różny od WM_QUIT
 zerową, kiedy został poprawnie odebrany komunikat WM_QUIT
 -1 w przypadku błędu

Z tego powodu zaleca się właściwie taką oto formę pętli komunikatów:

BOOL bWynik;
MSG msgKomunikat;

while ((bWynik = GetMessage(&msgKomunikat, NULL, 0, 0) != NULL)
{
 if (bWynik == -1)
 {
 // obsłuż błąd
 }
 else
 { TranslateMessage (&msgKomunikat);
 DispatchMessage (&msgKomunikat);
 }
}

Powyższa postać umożliwia poprawne zareagowanie na potencjalne błędy, czego nie
zapewnia krótszy wariant, jaki zaprezentowaliśmy wcześniej. Nie oznacza to jednak, iż
jest on gorszy. Wystąpienie błędu przy zaprezentowanym wywoływaniu GetMessage()
byłoby bowiem sytuacją nadzwyczaj krytyczną, której zaistnienie jest w zasadzie czysto

 404

teoretyczne114. Nasza zwyczajna, sześciolinijkowa pętla komunikatów jest więc
całkowicie poprawna.

Niedostatki GetMessage()

Jakkolwiek GetMessage() wydaje się dobrze spełniać swoje zadanie, nie jest od wolna od
mankamentów - konkretnie dwóch.

Pierwszym jest jej specjalne zachowanie się w przypadku odebrania komunikatu
WM_QUIT, czyli zwrócenie wtedy wartości niezerowej; w innym razie funkcja zwraca zero.
Jest to zupełne pogwałcenie zasady obowiązującej dla większości pozostałych funkcji
Windows API, na mocy której zwrócenie zera oznacza błąd.
Co gorsza, fakt ten może być także przyczyną złej interpretacji prawidłowo napisanego
kodu, np.:

while (GetMessage(&msgKomunikat, NULL, 0, 0)) { /* ... */ }

Mając w pamięci poprzednią uwagę można przypuszczać, że powyższa pętla będzie się
wykonywała aż do momentu wystąpienia błedu w wywołaniu GetMessage(). To
oczywiście nieprawda, podobnie jak przypuszczanie, iż to nieodebranie żadnego
komunikatu jest warunkiem terminalnym pętli (przypominam po raz kolejny, że w tej
postaci jest nim odebranie zdarzenia WM_QUIT).
Niecodzienne zachowanie GetMessage() dla WM_QUIT może też rodzić inny problem.
Pojawia się on wtedy, gdy chcemy uzależnić przerwanie działania programu od
wystąpienia także innego komunikatu. Takim komunikatem może być chociażby
WM_ENDSESSION, wysyłany w momencie kończenia pracy całego systemu. Gdy chcemy
zapewnić obsługę tego komunikatu, musimy uciekać się do kodu podobnego do tego:

MSG msgKomunikat;
while (GetMessage(&msgKomunikat, NULL, 0, 0))
{
 if (msgKomunikat.message == WM_ENDSESSION) return 0;
 TranslateMessage (&msgKomunikat);
 DispatchMessage (&msgKomunikat);
}

Niestety, patrząc na niego można bardzo łatwo ulec mylnej sugestii, że za przerwanie
pętli i programu odpowiada wyłącznie komunikat WM_ENDSESSION! Nietrudno bowiem
zapomnieć o ukrytym sprawdzaniu wystąpienia WM_QUIT, dokonywanego w funkcji
GetMessage().

Drugi kłopot jest teraz niezbyt dla nas zauważalny, ale tak naprawdę ma kolosalne
znaczenie. Otóż wywołanie GetMessage() trwa długo - dokładniej mówiąc, trwa ono tak
długo, aż w kolejce pojawi się jakiś komunikat do odebrania, jeśli dotychczas nie było
żadnego. Ten czas jest zwykle liczony w milisekundach i dla użytkownika nie ma rzecz
jasna żadnego znaczenia, ale dla programu oznacza to miliony straconych cykli
procesora, które mógłby przeznaczyć na swe czynności.
Większość aplikacji nie potrzebuje aczkolwiek każdego wolnego zasobu obliczeniowego,
lecz dla wielu są one niezwykle pożądane. Do takich programów należą gry, wykonujące
renderowanie kolejnych klatek między komunikatami, a także wszelkie działające w tle
programy obliczeniowe typu klienty SETI@home czy distributed.net. Dla nich strata czasu
na jałowe wykonywanie się GetMessage() jest nie do przyjęcia.

114 Gdyby bowiem wystąpiła, to śmiało możnaby wątpić, czy po deklaracji w rodzaju int x = 3; zmienna x na
pewno zawiera wartość 3 ;)

 405

Dlatego w przypadku takich właśnie aplikacji (które przecież docelowo chcemy pisać w
tym kursie) należy wynaleźć inny sposób na rozwiązanie problemu pętli komunikatów.

Nie znaczy to jednak, że ten prosty wariany sześciolinijkowy, zaprezentowany na samym
początku kursu WinAPI, jest zły. Faktycznie sprawdza się on w zasadzie każdym
programie użytkowym i należy go stosować w takich aplikacjach.

Przedstawiamy PeekMessage()

Domyślasz się chyba, że narzekania na GetMessage(), którymi uraczyłem cię w
poprzednim paragrafie, nie były całkiem bezproduktywne. Łajana procedura posiada
bowiem bardziej elastycznego kuzyna w postaci funkcji PeekMessage():

BOOL PeekMessage(LPMSG lpMsg,
 HWND hWnd,
 UINT wMsgFilterMin,
 UINT wMsgFilterMax,
 UINT wRemoveMsg);

Prototyp PeekMessage() wydaje się bardzo podobny do deklaracji GetMessage(). Między
obiema funkcjami występują jednak dość spore różnice:

 PeekMessage() posiada dodatkowy parametr wRemoveMsg. Określamy w nim, czy
pobierany komunikat ma być następnie usunięty z kolejki:

 podanie stałej PM_NOREMOVE spowoduje pozostawienie komunikatu w
kolejce (będzie można pobrać go ponownie)

 wartość PM_REMOVE skutkuje usunięciem zdarzenia z kolejki

W tym parametrze można również podać kilka innych stałych, umożliwiających wybór
rodzaju komunikatów do pobrania (niezależnie od wartości wMsgFilterMin i
wMsgFilterMax). O tych stałych możesz poczytać w MSDN.

 w przeciwieństwie do GetMessage(), funkcja PeekMessage() nie czeka na
pojawienie się nowego komunikatu w kolejce, jeżeli ta jest pusta. W takiej
sytuacji zwraca po prostu odpowiednią informację - a zatem…

 rezultatem funkcji PeekMessage() jest tylko informacja o wykrytej obecności
(wartość niezerowa) lub nieobecności (zero) komunikatu w kolejce. Żadne inne
czynniki nie wpływają na wynik funkcji - wobec tego…

 funkcja PeekMessage() nie traktuje w sposób specjalny ani WM_QUIT, ani żadnego
innego komunikatu

Pętla komunikatów z PeekMessage()

Znając te nowe cechy, możemy napisać pętlę komunikatów z użyciem funkcji
PeekMessage():

MSG msgKomunikat;
for (;;)
{
 if (PeekMessage(&msgKomunikat, NULL, 0, 0, PM_REMOVE))
 {
 if (msgKomunikat.message == WM_QUIT) break; // 115

115 Zamiast porównania pola message można użyć wywołania GetMessage(), jako że funkcja ta dokonuje
sprawdzenia komunikatu względem WM_QUIT. Wówczas jednak należałoby zmienić ostatni argument
PeekMessage() na PM_NOREMOVE. Powstała pętla działałaby identycznie do podanej tutaj, z tym że ponowne
pobranie tego samego komunikatu (dokonane już w PeekMessage(), a przeprowadzane po raz kolejny w

 406

 TranslateMessage (&msgKomunikat);
 DispatchMessage (&msgKomunikat);
 }
}

Po takiej pętli powinna jeszcze wystąpić niezbędna instrukcja
return static_cast<int>(msgKomunikat.wParam);, zwracająca poprawny kod wyjścia.
Nie będę jej powtarzał w kolejnych kodach, jako że w zasadzie nie jest ona częścią pętli
komunikatów.

Mimo pozornego skomplikowania pętla ta jest tak naprawdę łatwiejsza do rozwikłania.
Dzieje się tak za sprawą jawnego przyrównywania rodzaju komunikatu do WM_QUIT.

Co niektórzy mogą jeszcze kręcić nosem na występującą tutaj pętlę nieskończoną
for (;;). Pozbycie się jej nie sprawia jednak żadnego kłopotu, gdyż kryterium
przerwania iteracji może być z łatwością przeniesione do warunku pętli while:

MSG msgKomunikat;
msgKomunikat.message = WM_NULL; // 116

while (msgKomunikat.message != WM_QUIT)
{
 if (PeekMessage(&msgKomunikat, NULL, 0, 0, PM_REMOVE))
 {
 TranslateMessage (&msgKomunikat);
 DispatchMessage (&msgKomunikat);
 }
}

Wymaga to jeszcze początkowego wyzerowania pola określającego rodzaj komunikatu w
strukturze MSG. Wartość WM_NULL oznacza taki właśnie „zerowy komunikat”. Dalej pętla
przebiega w identyczny sposób, jak w poprzednim wydaniu.

Nie tracąc czasu

Przewaga PeekMessage() nad GetMessage() ujawnia się najbardziej w momencie, gdy
chcemy wykonywać jakieś dodatkowe działania między przetwarzaniem kolejnych
komunikatów. Podałem już przykłady takich czynności, wśród których najważniejsze
miejsce zajmuje generowanie grafiki w grach komputerowych oraz demach.

Osiągnięcie tego celu nie jest trudne, jeżeli pamiętamy, o czym informuje nas wartość
zwracana przez PeekMessage(). Warunek:

if (PeekMessage(&msgKomunikat, NULL, 0, 0, PM_REMOVE))

jest więc prawidziwy tylko wówczas, gdy w kolejce komunikatów oczekiwało nieobsłużone
jeszcze zdarzenie. W innym przypadku kod bloku if (czyli wywołania dwóch niezbędnych
funkcji dla pobranego komunikatu) nie wykona się wcale.

Ten „inny przypadek” jest jednak właśnie tym, którego tak usilnie poszukujemy! Aby
zatem spowodować wykonywanie jakiegoś kodu w czasie, gdy program nie musi

GetMessage()) byłoby operacją nadmiarową; utracilibyśmy też klarowność bezpośredniego podania warunku
przerwania pętli.
116 Początkowe ustawienie pola message można zamienić na wywołanie PeekMessage() identyczne jak wewnątrz
pętli, jeżeli obecność dwóch takich samych instrukcji w bliskim sąsiedzctwie jest dla nas do przyjęcia.

 407

zajmować się żadnym komunikatem, należy po prostu dodać odpowiednią frazę else do
omawianej instrukcji if:

MSG msgKomunikat;
msgKomunikat.message = WM_NULL;

while (msgKomunikat.message != WM_QUIT)
{
 if (PeekMessage(&msgKomunikat, NULL, 0, 0, PM_REMOVE))
 {
 TranslateMessage (&msgKomunikat);
 DispatchMessage (&msgKomunikat);
 }
 else
 {
 // tutaj możemy wpisać dodatkowy kod, wykonywany wtedy,
 // kiedy aplikacja nie ma już żadnych komunikatów do obsłużenia
 }
}

Pętla komunikatów w tej postaci jest już całkowicie wystarczająca dla prostych czy nawet
bardziej skomplikowanych gier - niezależnie od tego, czy do wyświetlania grafiki używają
one DirectX czy też innych bibliotek. Można ją również wykorzystać dla wszelkiego
rodzaju programów działających w tle.
Ogólnie mówiąc, pętla ta jest więc właściwa dla wszystkich aplikacji działających zgodnie
z modelem czasu rzeczywistego.

Powyższą pętlę zdołamy jeszcze udoskonalić, kiedy już na poważnie zajmiemy się
programowaniem gier. Można bowiem poprawić efektywność jej działania dla aplikacji
pełnoekranowych.

Struktura komunikatu

W kodzie pętli komunikatów wielokrotnie używaliśmy między innymi struktury MSG. W
niej też zostawały zapisywane dane o komunikatach odebranych przez
Get/PeekMessage() oraz przesyłanych ostatecznie do okna. Czas teraz spojrzeć z bliska
na budowę komunikatu.

Deklarację typu strukturalnego MSG można przedstawić w następujący sposób:

struct MSG
{
 HWND hwnd;
 UINT message;
 WPARAM wParam;
 LPARAM lParam;
 DWORD time;
 POINT pt;
};

Zawiera ona wyszczególnienie sześciu pól, z których wszystkie zostały opisane w
poniższej tabelce:

typy nazwy opis
HWND
UINT
WPARAM
LPARAM

hwnd
message
wParam
lParam

Te cztery pola są identyczne z parametrami procedury zdarzeniowej,
która ostatecznie otrzymuje komunikat.

 408

typy nazwy opis

DWORD time

Zapisywany jest tu czas wystąpienia zdarzenia. Format tego czasu
jest przy tym dość niecodzienny, gdyż stanowi go liczba milisekund

(tysięcznych części sekundy), jakie upłynęły od startu systemu.

Aktualny czas w tym samym formacie zwraca też funkcja
GetTickCount(). Natkniemy się na nią niejednokrotnie.

POINT pt

To pole przechowuje pozycję kursora myszy w chwili zaistnienia
zdarzenia. Typ POINT tego pola jest zdefiniowany jako bardzo prosta

struktura:

struct POINT
{
 LONG x;
 LONG y;
};

Jak się pewnie domyślasz, x określa współrzędną poziomą, a y

koordynat pionowy kursora.

Tabela 38. Pola struktury MSG

Pola time i pt nie mają zbyt wielkiego znaczenia, jako że nie trafiają one ostatecznie do
procedury zdarzeniowej okna. Dlatego też zajmiemy się przede wszystkim czterema
pierwszymi polami, będącymi jednocześnie parametrami procedury.

Uchwyt do okna

Pod nazwą hwnd kryje się uchwyt okna, którego dotyczy zdarzenie. Mówiłem już, że
dzięki temu możliwe jest napisanie jednej procedury zdarzeniowej do obsługi wielu okien.
Windows umożliwia bowiem istnienie więcej niż jednego okna danej klasy, a ponieważ
klasa okna ma przypisaną tylko jedną procedurę zdarzeniową, więc musi być ona
przygotowana do pracy z wieloma uchwytami do okien.

Trzeba też zaznaczyć, że procedura zdarzeniowa danej klasy okna będzie otrzymywała
wyłącznie takie zdarzenia, których macierzyste okna (o uchwytach podanych w polu
hwnd struktury MSG) będą należały do tejże klasy.
To zagmatwane (ale tylko pozornie ;D) stwierdzenie staje się ważne, gdy zaczynamy
wyposażać okna w kontrolki potomne. Wówczas np. kliknięcie w przycisk, chociaż jest
zdarzeniem samego przycisku, zostaje podane do procedury zdarzeniowej jako
pochodzące od okna nadrzędnego względem przycisku.
O kontrolkach będziemy jeszcze obszernie mówić w przyszłych rozdziałach.

Stała komunikatu

Pole message zawiera stałą określającą rodzaj komunikatu - czyli po prostu rodzaj
zdarzenia. Pole to odpowiada drugiemu parametrowi procedury zdarzeniowej, zwanemu
zwykle uMsg.

W Windows każdemu komunikatowi odpowiada właściwa stała zdefiniowana w pliku
nagłówkowym winuser.h. Takich stałych jest bardzo dużo, co więcej możliwe jest także
definiowanie własnych komunikatów, przydatnych w określonych sytuacjach.
Spośród mnogości komunikatów najważniejsze są te, których nazwy rozpoczynają od
WM_. Są to bowiem jedyne komunikaty odbierane przez procedury zdarzeniowe zwykłych
okien - takich, jakimi zajmujemy się w tym rozdziale. Oprócz nich istnieją również
komunikaty przeznaczone do pracy z kontrolkami potomnymi (jak na przykład BM_
tyczące się przycisków czy EM_ od pól tekstowych). Tych aczkolwiek nie odbieramy w
procedurach zdarzeniowych, chyba że stosujemy bardziej zaawansowane techniki

 409

programowania Windows, zwane subclassingiem i superclassingiem. Zapewniam, że nie
ominie cię poznanie ich ;)

Zdecydowanie najcześciej będziemy jednak zajmować się „zwykłymi” komunikatami
okien, rozpoznawanymi po przedrostku WM_. Poznanie najważniejszych ich typów, tak
samo jak zaznajomienie się z kluczowymi funkcjami Windows API, jest niezbędne do
opanowania sztuki programowania Windows.

Parametry komunikatu

Wartości wParam oraz lParam zawierają dodatkowe dane o zainstniałym zdarzeniu. Ich
dokładne znaczenie zależy od rodzaju komunikatu, jednak dzielą one wspólny sposób
reprezentacji tych pomocniczych informacji.

Nazwy wParam i lParam pochodzą jeszcze z czasów 16-bitowych wersji Windows. Tam też
parametr wParam był typu WORD (16-bitów), zaś lParam - LONG (32-bity). Stąd wzięły się
te nazwy z przedrostkami, które zdołały przetrwać do dziś.

Oba pola (parametry) są 32-bitowymi liczbami całkowitymi bez znaku, co w Windows
odpowiada typowi DWORD (aczkolwiek formalne typy tych pól to WPARAM i LPARAM). DWORD
oznacza natomiast tak zwane podwójne słowo lub dwusłowo (ang. double word); jest
to tradycyjna nazwa dla zespołu czterech bajtów złączonych w jedną wartość.
Miano to bierze się stąd, iż taki zespół składa się z dwóch 16-bitowych (2 bajtowych)
liczb, zwanych słowami117 (ang. words). Wyróżniamy przy tym tzw. starsze słowo
(ang. high-order word), stanowiące górną połówkę wartości typu DWORD, oraz młodsze
słowo (ang. low-order word) - dolną połowę.
Jakkolwiek brzmi to teraz dość abstrakcyjnie, powinno się wyjaśnić po spojrzeniu na
poniższy schemat:

Schemat 41. Podział dwusłowa na pojedyncze słowa i bajty. Na dole jest też pokazana numeracja
bitów, poczynając od najmniej znaczącego (ang. least significant bit - LSB, bit 0) do najbardziej

znaczącego (ang. most significant bit - MSB, tutaj bit 31).

Określenia ‘starszy’ i ‘młodszy’, ‘górny’ i ‘dolny’ oraz ‘(naj)bardziej’ i ‘(naj)mniej
znaczący’ są synonimami i dotyczą zarówno słów, jak i bajtów oraz bitów. To, że dana

117 Istnieje jeszcze termin słowa maszynowego (ang. machine word), odnoszący się do ciągu bitów o rozmiarze
równym wielkości rejestru procesora na danych komputerze. Zatem dla naszych pecetów oznaczałoby ono 32
bity i dlatego czasami właśnie taką sekwencję nazywa się słowem. Dzieje się tak jednak bardzo rzadko (głównie
w publikacjach naukowych), a w ogromnej większości wszelkich dokumentacji programistycznych (na czele z
opisem WinAPI i DirectX) termin ‘słowo’ odpowiada ciągowi dokładnie 16-bitów, niezależnemu od używanej
platformy sprzetowej.

 410

część liczby jest starsza od innej oznacza, że jej zmiana ma większy wpływ na całą
wartość.
Przykładowo, jeżeli mamy dwubajtowe słowo i dodamy 1 do jego dolnego bajtu, to całą
liczbę zwiększymy również o jeden. Gdy jednak zinkrementujemy górny bajt, wówczas
wartość słowa zwiększy się aż o 256.

Dużą pomocą w zrozumieniu tego mechanizmu będzie dla ciebie z pewnością Dodatek B,
Reprezentacja danych w pamięci.

No dobrze, ale jak te szczegóły budowy dwusłowa mają się do komunikatów Windows?…
Otóż są one związane bardzo ściśle. System operacyjny często bowiem wykorzystuje
zmienne wParam i lParam nie jako liczby 32-bitowe, ale właśnie jako zespoły słów czy
nawet bajtów. Robi tak, gdyż nierzadko potrzebuje przekazać więcej niż dwie wartości
jako parametry zdarzenia; zapisuje je więc w dwubajtowych połówkach pól wParam i
lParam. W ten sposób uzyskuje możliwość przechowania czterech wartości zamiast
dwóch (oczywiście kosztem mniejszego zakresu liczb, ale zwykle nie jest to problemem).

Dla programisty piszącego kod obsługi komunikatów takie upakowanie wartości nie jest
przy tym specjalnym problemem. Windows API udostępnia bowiem kilka użytecznych
makr, potrafiących wyłuskać interesujące nas fragmenty dwusłów. Należą do nich:

 HIWORD() i LOWORD(), pobierające odpowiednio: starsze oraz młodsze słowo z
wartości 32-bitowej. Wyrażenie HIWORD(wParam) zwróci więc górne 16-bitów z
wartości wParam, zaś LOWORD(lParam) mniej znaczącą połówkę parametru lParam

 HIBYTE() i LOBYTE(), wyciągające starszy oraz młodszy bajt z wartości 16-
bitowej. Makra te są przydatne, gdy w jednym z parametrów upakowano więcej
niż dwie wartości. I tak np. LOBYTE(HIWORD(wParam)) poda nam dolny bajt z
górnego słowa pola wParam (w sumie będzie to więc trzeci bajt, licząc od prawej),
zaś poprzez HIBYTE(LOWORD(lParam)) możemy uzyskać starszy bajt młodszego
słowa lParam (a więc drugi bajt od prawej)

Uważajmy, gdyż mamy tu do czynienia z makrami, które nie dokonują sprawdzenia
typów tak jak funkcje. Zwracajmy zatem uwagę, by do HIWORD() oraz LOWORD()
podawać tylko wartości 32-bitowe, a do HIBYTE() i LOBYTE() - 16-bitowe.

Oprócz powyższych makr WinAPI deklaruje też kilka bardziej konkretnych,
przeznaczonych do współpracy ze specyficznymi komunikatami. Należy do nich na
przykład GET_X_LPARAM(), służące do pobrania współrzędnej poziomej kursora przy
obsłudze komunikatów myszy. O takich specjalnych makrach powiemy sobie, omawiając
właściwe im zdarzenia.

Windows API ma też makra działające w odwrotny sposób do powyższych, tj. składające
jedną większą wartość z dwóch połówek. Do takich makr należy MAKEWORD(), tworzące
słowo z dwóch bajtów, oraz MAKELONG(), łączące dwa słowa w jedno podwójne słowo.
Listę wszystkich makr WinAPI możesz naturalnie znaleźć w MSDN.

Przy opisach omawianych komunikatów będę rzecz jasna podawał, jak zapisane w wParam
i lParam są ich ewentualne parametry. Informacje te są również w klarowny sposób
podane w MSDN.

Komunikaty o zdarzeniach okna

Na koniec tego podrozdziału przyjrzymy się jeszcze kilku najważniejszym komunikatom,
związanym ze zdarzeniami pochodzącymi od samych okien.

 411

Tworzenie i niszczenie

Podczas tworzenia okna oraz w trakcie jego usuwania wysyłanych jest kilka
komunikatów. Dzięki temu okno może zareagować odpowiednio na te dwie kluczowe dla
niego akcje.

WM_CREATE

Komunikat WM_CREATE jest wysyłany do okna tuż po jego stworzeniu. Czyni to funkcja
CreateWindow[Ex](), czekając przy tym na obsłużenie przesłanego zdarzenia. Nie
zakończy ona zatem swojej pracy, zanim procedura zdarzeniowa nowostworzonego okna
nie zajmie się komunikatem WM_CREATE. Ma to swoje uzasadnienie, które podamy za
chwilę.

Komunikat WM_CREATE przynosi ze sobą tylko jeden dodatkowy parametr, odczytywany z
wartości lParam:

lpCreateStruct = reinterpret_cast<LPCREATESTRUCT>(lParam);

Za nim kryje się jednak całkiem spora struktura typu CREATESTRUCT, na którą ów
parametr wskazuje:

struct CREATESTRUCT
{
 DWORD dwExStyle;
 LPCTSTR lpszClass;
 LPCTSTR lpszName;
 LONG style;
 int x;
 int y;
 int cx;
 int cy;
 HWND hwndParent;
 HMENU hMenu;
 HINSTANCE hInstance;
 LPVOID lpCreateParams;
};

Nie zdziwiłbym się gdyby jej pola były dla ciebie znajome. Są to bowiem dokładne
odpowiedniki parametrów funkcji CreateWindowEx(), wywoływanej w celu utworzenia
okna. Jest wśród nich także pole lpCreateParams, odpowiadające ostatniemu
parametrowi funkcji, przeznaczonemu do swobodnego użytku programisty.

Gdy własnoręcznie przetwarzamy komunikat WM_CREATE, możemy w procedurze
zdarzeniowej zwrócić rezultat tego działania. Zwykle jest to 0, które w przypadku
wszystkich komunikatów informuje system o poprawnym wykonaniu.
Możliwe jest jednak zwrócenie -1. Wtedy Windows uznaje, że program nie akceptuje
utworzonego okna i nakazuje jego zniszczenie. System posłusznie spełnia to żądanie, a
wtedy funkcja CreateWindow[Ex]() (oczekująca na przetworzenie WM_CREATE) zwraca w
wyniku NULL. Tworzenie okna kończy się wówczas niepowodzeniem, spowodowanym
wyraźnym życzeniem aplikacji.

Co robimy w reakcji na WM_CREATE? Do najczęstszych czynności należy z pewnością
utworzenie okien potomnych, chociażby kontrolek. W tym miejscu można też stworzyć
obiekty, zaalokować pamięć oraz przygotować zasoby, które będą oknu potrzebne do
pracy.

 412

WM_CLOSE

Okno odnotowuje zdarzenie WM_CLOSE, gdy użytkownik zechce je zamknąć. Jak wiemy,
może to uczynić poprzez pojedyncze kliknięcie w przycisk lub dwukrotne w ikonę okna
w lewym górnym rogu.

Tak naprawdę jednak Windows nie wykonuje wtedy żadnej czynności, którą możnaby
nazwać ‘zamknięciem’ okna. Takie pojęcie nie funkcjonuje w Windows API118; okno może
być co najwyżej zniszczone, co wiąże się ze zwolnieniem wszystkich związanych z nim
zasobów systemowych, z uchwytem na czele. Odpowiada za to funkcja
DestroyWindow().
Funkcja ta jest zresztą wywoływana w domyślnej procedurze zdarzeniowej
DefWindowProc(), do której trafiają wszystkie nieobsłużone komunikaty okna. Tak więc:

Jeżeli nie napiszemy własnego kodu obsługi komunikatu WM_CLOSE, to będzie on
zawsze powodował zniszczenie okna.

Niekiedy nam to odpowiada - wtedy po prostu nie zajmujemy się tym komunikatem. Jeśli
jednak chcemy podjąć jakieś inne akcje przy zamykaniu okna, wtedy należy napisać kod
obsługi zdarzenia WM_CLOSE.
Do najbardziej typowych zadań, jakie można w nim podjąć, zalicza się zapytanie
użytkownika o potwierdzenie chęci zamknięcia okna. Dzieje się tak szczególnie często w
przypadku głównych okien aplikacji, których zniszczenie pociąga za sobą zakończenie
pracy całego programu. Wtedy też kod obsługi WM_CLOSE może się przedstawiać
następująco:

case WM_CLOSE:
{
 // pytamy o potwierdzenie zakończenia działania programu
 if (MessageBox(hWnd, "Czy na pewno chcesz zakończyć program?",
 "Zakończenie", MB_YESNO | MB_ICONQUESTION) == IDYES))
 // niszczymy główne okno, co najpewniej zakończy cały program
 DestroyWindow (hWnd);

 return 0;
}

Komunikat ten nie ma żadnych dodatkowych parametrów, więc zmienne wParam i lParam
są niewykorzystane. Również wartość, jaką zwrócimy przy jego (ewentualnym)
przetwarzaniu nie ma znaczenia - tradycyjnie więc może być to zero.

WM_DESTROY

Funkcja DestroyWindow(), przywoływana (zazwyczaj) w reakcji na WM_CLOSE, powoduje
zniszczenie okna. W czasie tego procesu okno otrzymuje jeszcze jeden komunikat -
WM_DESTROY.

Zdarzenie to ma już charakter czysto informycyjny, ponieważ na tym etapie nie ma już
żadnych szans na ocalenie niszczonego okna. W tym momencie powinno ono tylko
zwolnić obiekty i zasoby, które stworzyło u swych narodzin - jakkolwiek większość z nich,
na czele z kontrolkami potomnymi, zostanie zniszczona automatycznie.
Główne okna aplikacji, napotykając WM_DESTROY, czynią jeszcze jedną ważną czynność:
wywołują funkcję PostQuitMessage():

case WM_DESTROY:

118 Czasem jest może tylko utożsamiane z minimalizacją okna, jakkolwiek dziwnie by to brzmiało.

 413

 PostQuitMessage (0);
 return 0;

Pamiętamy, że powoduje ona zakończenie pracy programu poprzez wysłanie komunikatu
WM_QUIT.

WM_DESTROY, podobnie jak WM_CLOSE, nie niesie żadnych pomocniczych informacji, a jego
obsługa powinna zakończyć się zwróceniem zera.

WM_QUIT

Ten komunikat jest pod kilkoma względami wyjątkowy. Jego przetwarzaniem zajmuje się
bowiem nie procedura zdarzeniowa okna, lecz pętla komunikatów. Komunikat ten
powoduje zresztą przerwanie tej pętli, a tym samym zakończenie programu - jest więc
ostatnim zdarzeniem odbieranym przez aplikację.

WM_QUIT posiada jeden parametr, zapisywany w wParam:

nExitCode = static_cast<int>(wParam);

Jest to kod wyjścia (ang. exit code) aplikacji, który informuje środowisko zewnętrzne o
wyniku działania programu. Przypomnę, że wedle konwencji wartość zerowa oznacza
poprawne wykonanie, a każda inna - błąd.
Kod wyjścia powinna zwrócić funkcja WinMain(), wobec tego jej końcówka musi
wyglądać tak:

MSG msgKomunikat;

// tutaj pętla komunikatów zajmuje się pompowaniem zdarzeń we właściwe
// im okna, dopóki Peek/GetMessage() nie odbierze WM_QUIT i nie przerwie
// to pętli; wtedy ten komunikat zostaje w strukturze msgKomunikat

// zwracamy kod wyjścia zawarty w wParam komunikatu WM_QUIT
return static_cast<int>(msgKomunikat.wParam);

A skąd w ogóle WM_QUIT bierze ten kod?… Otóż jest to parametr funkcji
PostQuitMessage(), wywoływanej w momencie niszczenia (WM_DESTROY) głównego okna
aplikacji.

Zmiana pozycji i rozmiaru okna

Przy okazji przesuwania i skalowania - niezależnie od tego, czy jego przyczyną jest
użytkownik, czy sam program - okno otrzymuje szereg komunikatów. Dzielą się one na
dwie grupy: jedne są bowiem otrzymywane tuż przed zmianą pozycji lub rozmiaru (albo
w jej trakcie), a drugie już po jej dokonaniu.

Przed faktem

Kiedy użytkownik przesuwa okno, przeciągając je za pasek tytułu, przedmiot tej zabawy
otrzymuje komunikat WM_MOVING. Zdarzenie to przynosi ze sobą jeden parametr,
zapisany w lParam:

prcWindow = reintepret_cast<LPRECT>(lParam);

Jest nim wskaźnik do struktury RECT, definiującej aktualną prostokątną obwiednię okna.
Zmieniając jej pola, program może wpływać na pozycję przesuwanego okna.

Jednym z celów takiej zmiany może być „przyklejanie” okna do krawędzie jego okna
nadrzędnego, na przykład pulpitu. Tak zachowuje się choćby okno odtwarzacza Winamp.

 414

Jeżeli przetwarzamy ten komunikat, powinniśmy zwrócić do systemu wartość TRUE.

Podobnym komunikatem jest WM_SIZING, wysyłany podczas zmiany rozmiaru okna
przeciąganiem za jego krawędź. Przyjmuje on już dwa parametry:

dwEdge = wParam;
prcWindow = reintepret_cast<LPRECT>(lParam);

prcWindow znaczy tu to samo, co w WM_MOVING, tj. określa prostokąt zamykający okno
(czyli jego pozycję i wymiary). Z dwEdge możemy się natomiast dowiedzieć, którą część
obrzeża okna użytkownik przeciąga. Parametr ten przyjmuje jedną z ustalonych stałych:

stała obrzeże
WMSZ_LEFT lewa krawędź
WMSZ_TOP górna krawędź
WMSZ_RIGHT prawa krawędź
WMSZ_BOTTOM dolna krawędź
WMSZ_TOPLEFT lewy górny róg
WMSZ_TOPRIGHT prawy górny róg
WMSZ_BOTTOMLEFT lewy dolny róg
WMSZ_BOTTOMRIGHT prawy dolny róg

Tabela 39. Stałe parametru dwEdge (wParam) komunikatu WM_SIZING

Gdy zajmujemy się niniejszym komunikatem, powinniśmy (podobnie jak w WM_MOVING)
zwrócić wartość TRUE.

Ostatnim komunikatem z omawianego rodzaju WM_WINDOWPOSCHANGING. Różni się on od
dwóch pozostałych przyczyną swojego wystąpienia. Otrzymanie tego komunikatu nie jest
bowiem skutkiem działań użytkownika, lecz samego programu: okno dostaje go, gdy
jego pozycja i/lub rozmiar i/lub miejsce w porządku Z mają za chwilę zostać za pomocą
funkcji w rodzaju SetWindowPos() czy MoveWindow().
Razem z tym komunikatem otrzymujemy też pewne pomocne informacje:

pWindowPos = reinterpret_cast<WINDOWPOS*>(lParam);

Są one zawarte w strukturze WINDOWPOS, na którą wskaźnik dostajemy:

struct WINDOWPOS
{
 HWND hwnd;
 HWND hwndInsertAfter;
 int x;
 int y;
 int cx;
 int cy;
 UINT flags;
};

Nietrudno chyba zauważyć, że pola tej struktury odpowiadają dokładnie parametrom
funkcji SetWindowPos(). Jeżeli więc chcesz poznać ich znaczenie, zajrzyj do tabelki z
parametrami wspomnianej funkcji.
Kiedy zaś uporasz się z tym komunikatem, powinieneś oddać do systemu samo zero :)

Na temat komunikat WM_MOVING, WM_SIZING oraz WM_WINDOWPOSCHANGING szeroko
rozpisuje się też MSDN.

 415

Po fakcie

Po zakończonej operacji przesuwania i/lub skalowania okna otrzymuje ono kolejny
komunikat. Tego rodzaju zdarzenia także występuje w liczbie trzech i tworzą pary z tymi
zaprezentowanymi w poprzednim paragrafie.

I tak WM_MOVE jest odpowiednikiem WM_MOVING. Okno otrzymuje ten komunikat, gdy
użytkownik zakończy już swoją zabawę z jego przesuwaniem. W zestawie okno dostaje
również swe nowe współrzędne (względem obszaru klienta okna nadrzędnego):

nX = static_cast<short>(LOWORD(lParam));
nY = static_cast<short>(HIWORD(lParam));

Jak widać, są one zapisane w dwóch słowach parametru lParam, a do ich wydobycia
możemy posłużyć się poznanymi makrami LOWORD() i HIWORD().
Na koniec pracy z tym komunikatem powinniśmy zwrócić 0.

Z kolei zdarzenie WM_SIZE jest związane z WM_SIZING i otrzymywane, kiedy użytkownik
przestanie ciągnąć za krawędź lub dokonana maksymalizacji tudzież minimalizacji okna.
Docelowe okno otrzymuje przy okazji także trzy dane:

dwResizingType = wParam;
wWidth = LOWORD(lParam);
wHeight = HIWORD(lParam);

dwResizingType określa, nazwijmy to, typ skalowania. W związku z tym przyjmuje ona
jedną z kilku wyliczeniowych stałych, których część prezentuje poniższa tabelka:

stała znaczenie
SIZE_MAXIMIZED okno zostało zmaksymalizowane
SIZE_MINIMIZED minimalizacja okna
SIZE_RESTORED zwykła zmiana rozmiaru

Tabela 40. Niektóre stałe parametru dwResizingType (wParam) komunikatu WM_SIZE

wWidth i wHeight to, jak nietrudno się domyślić, nowe wymiary okna. Zostały one
zapisane w 16-bitowych połówkach parametru lParam.
Po przetworzeniu komunikatu WM_SIZE należy zwrócić do systemu wartość zero.

Ostatnim komunikatem z tej grupy jest WM_WINDOWPOSCHANGED. Można wydedukować, że
jest on wysłany po zmianie pozycji okna dokonanej przy pomocy SetWindowPos() lub
innej funkcji tego rodzaju.
Ten komunikat przynosi dokładnie te same dane dodatkowe, co WM_WINDOWPOSCHANING.
W parametrze lParam można więc znaleźć wskaźnik na strukturę WINDOWPOS,
reprezentującą wykonaną zmianę położenia i/lub rozmiaru okna; wParam pozostaje
niewykorzystany.
Również tak samo jak poprzednio, przetworzywszy ten komunikat należy oddać
systemowi liczbę zero.

O komunikatach WM_MOVE, WM_SIZE i WM_WINDOWPOSCHANGED możesz poczytać dokładniej
w MSDN.

WM_PAINT

Ostatni z omawianych tutaj komunikatów jest na tyle ważny, że poświęcimy mu osobny
paragraf.

 416

O odrysowywaniu

Porządek Z, przesuwanie, skalowanie, minimalizacja i maksymalizacja sprawiają, że okna
w Windows są często ukrywane lub przykrywane przez inne okna. Jednocześnie muszą
one zachować swoją graficzną zawartość - tak, by użytkownik wiedział, czego może się
po nich spodziewać.

Słysząc pierwszy raz o tym problemie i widząc, jak system radzi sobie z nim w praktyce,
można łatwo uznać, iż czyni to poprzez zapisywanie obrazu okna w postaci bitmapy. Z
tejże bitmapy Windows miałby w odpowiednim czasie wybierać odpowiednie fragmenty i
wypełniać nimi dopiero co odsłonięte połacie okna.
Jednak prawie nigdy system nie postępuje w ten sposób. Przechowywanie dodatkowej
kopii zawartości każdego okna pochłaniałoby bowiem mnóstwo cennej pamięci
operacyjnej, a jej przywracanie wymagałoby kopiowania dużych ilości danych. Dlatego
też system domyślnie stosuje zupełnie inny sposób119.

Mianowicie dla każdego okna przechowuje on, zamiast pamięciożernej bitmapy,
informacje o tym, które fragmenty jego obszaru klienta są poprawne (ang. valid), a
które niepoprawne (ang. invalid) - w sensie konieczności ich odrysowania. Tak więc
rejony pierwszego rodzaju są wyświetlane na ekranie we właściwy sposób i nie wymagają
ponownego narysowania. Natomiast fragmenty niepoprawne zostały dopiero co
odsłonięte użytkownikowi i muszą być ponownie wyrysowane, aby okno wyglądało
prawidłowo.

Rysunek 10. Mechanizm odrysowywania zawartości okien

Jak to się dzieje? Otóż w momencie, gdy zostaje odsłonięty nowy fragment okna,
wymagający ponownego narysowania (ang. update region), system Windows wysyła do
tego okna (między innymi) komunikat WM_PAINT. W reakcji na niego powinno zostać
wykonane żądane odrysowanie.
Graficzna zawartość okna jest zawsze przywracana w ten właśnie sposób.

119 Można aczkolwiek zmusić go do opisanego wyżej zachowania w stosunku do tych okien, których klasy
zarejestrowano z podaniem stylu CS_SAVEBITS.

 417

Reakcja na WM_PAINT

Pewnie zauważyłeś, że nie we wszystkich dotychczasowych programach przykładowych
zajmowaliśmy się przetwarzaniem tego komunikatu. Mimo to każde stworzone przez nas
okno prawidłowo odrysowywało swój obszar klienta w razie potrzeby.
Działo się tak, ponieważ w domyślnej reakcji na WM_PAINT system Windows wypełnia
niepoprawny obszar (dokładniej: prostokąt) okna odpowiednim pędzlem. Tak jest, tym
samym pędzlem, który podaliśmy podczas rejestracji klasy okna. Dzięki temu nie zawsze
musimy zajmować się zdarzeniem WM_PAINT.

Trzeba to aczkolwiek robić, jeżeli wypełnienie pędzlem nam nie wystarcza. Wówczas
należy zareagować na ten komunikat, na przykład w ten sposób:

case WM_PAINT:
{
 // wypisanie tekstu

 PAINTSTRUCT ps;
 HDC hdcOkno;

 // rozpoczęcię rysowania (wypełnienie uaktualnianego obszaru pędzlem)
 hdcOkno = BeginPaint(hWnd, &ps);

 // wypisanie tekstu
 std::string strTekst = "123 - próba tekstu";
 TextOut (hdcOkno, ps.rcPaint.left, ps.rcPaint.top, strTekst.c_str(),
 strTekst.length());

 // zakończenie rysowania
 EndPaint (hWnd, &ps);
 return 0;
}

Może się wydawać to zaskakujące, ale komunikat WM_PAINT nie przynosi żadnych
informacji w swoich parametrach wParam i lParam. Zamiast tego, o regionie okna, który
ma być odświeżony, należy dowiedzieć się w inny sposób.
Robimy to, wywołując funkcję BeginPaint(). Podajemy jej przy tym uchwyt do
odmalowywanego okna oraz wskaźnik na specjalną strukturę PAINTSTRUCT:

struct PAINTSTRUCT
{
 HDC hdc;
 BOOL fErase;
 RECT rcPaint;
 BOOL fRestore;
 BOOL fIncUpdate;
 BYTE rgbReserved[32];
};

Zawiera ona wiadomości o fragmencie okna, który powinien zostać ponownie
narysowany. Poszczególne pola tej struktury omawia poniższa tabela:

typy pola opis

HDC hdc

Jest to uchwyt do konrekstu urządzenia okna. Pamiętamy
być może, że jest to specjalny rodzaj uchwytu, służący do

rysowania po jakiejś powierzchni przy pomocy funkcji
Windows GDI. W tym przypadku ową powierzchnią jest obszar

klienta okna.

 418

typy pola opis
Wartość tego pola jest też zwraca przez funkcję

BeginPaint().

BOOL fErase

Jest to flaga boolowska określająca, czy tło uaktualnianego
obszaru okna ma zostać wymazane. Zazwyczaj odpowiada za

to funkcja BeginPaint(), wypełniając wspomniany obszar
pędzlem okna. Jeżeli jednak podczas rejestrowania klasy nie
ustawiliśmy żadnego takiego pędzla (pole hbrBackground

struktury WNDCLASSEX miało wartość NULL), wówczas musimy
sami sprawdzić stan tego pola i w razie potrzeby wyczyścić

odrysowywany prostokąt.
Ponieważ jednak w większości przypadków wybieramy dla
okna jakiś pędzel, nie musimy się tym polem przejmować.

RECT rcPaint

To chyba najważniejsze pole: definiuje ono prostokąt okna,
który ma być odrysowany. Podane tu współrzędne są

relatywne do lewego górnego rogu obszaru klienta okna,
dlatego mogą być użyte w funkcjach rysujących razem z

kontekstem hdc.
Używanie współrzędnych tego prostokąta jest oczywiście

możliwe, jednak w praktyce wygodniej jest za każdym razem
odrysować całe okno - szczególnie, jeżeli wymyślanie jakichś
skomplikowanych algorytmów fragmentarycznego rysowania

miałoby nam zająć zbyt dużo czasu.
BOOL
BOOL

BYTE[32]

fRestore
fIncUpdate
rgbReserved

Te trzy pola są zarezerwowane do wewnętrznego użytku
systemu Windows, zatem nie powinny nas one w ogóle

interesować :)

Tabela 41. Pola struktury PAINTSTRUCT

Kontekst urządzenia, zapisany w polu hdc oraz zwracany przez funkcję BeginPaint(),
możemy wykorzystać do rysowania po powierzchni obszaru klienta za pomocą
przeróżnych funkcji Windows GDI. Większość z nich poznamy w osobnym rozdziale,
poświęconym w całości tej bibliotece; na razie mieliśmy okazję spotkać się dwoma,
służącymi do wypisywania tekstu. Była to DrawText(), użyta w przykładowym programie
TaskbarHider, oraz TextOut():

std::string strTekst = "123 - próba tekstu";
TextOut (hdcOkno, ps.rcPaint.left, ps.rcPaint.top, strTekst.c_str(),
 strTekst.length());

Myślę, że nawet nie mając prototypu ani opisu, potrafiłbyś domyślić się jej działania oraz
znaczenia parametrów. Wyjaśnimy je sobie dogłębnie, jak już mówiłem, w rozdziale o
Windows GDI. Na razie łatwo wywnioskować, że parametrami TextOut() są kolejno:

 uchwyt do kontekstu urządzenia, reprezentujący powierzchnię, na której
będziemy pisać

 pozioma i pionowa współrzędna tekstu
 sam tekst w postaci łańcucha znaków w stylu C
 liczba znaków w wypisywanym tekście

Wywołanie TextOut() jest jedyną czynnością stricte graficzną, jaką wykonujemy na
rysowanym rejonie okna. Po jej zakończeniu finalizujemy zatem proces odświeżania za
pomocą funkcji EndPaint(). Przekazujemy jej te same dwa parametry, jakie podaliśmy
do BeginPaint().

 419

Każde wywołanie BeginPaint() musi być rekompensowane przez analogiczne
wykonanie EndPaint(). Poza tym obie funkcję powinny być przywoływane wyłącznie w
kodzie obsługi komunikatu WM_PAINT.

Typowy, poprawny schemat obsługi WM_PAINT wygląda więc następująco:

case WM_PAINT:
{
 PAINTSTRUCT ps;
 HDC hdcOkno;

 hdcOkno = BeginPaint(hWnd, &ps);

 odrysowywanie_wskazanego_obszaru_okna

 EndPaint (hWnd, &ps);
 return 0;
}

Kończące go zwrócenie zera jest również wymogiem systemowym.

Wymuszanie odrysowywania okna

O tym, kiedy dokonać odrysowania zawartości okna decyduje w dużej mierze sam
system operacyjny Windows. Nierzadko jednak konieczne jest ręczne wywołanie tego
procesu; przykład można obserwować w programie TaskbarHider, gdzie kliknięcie
lewego przycisku myszy (zdarzenie WM_LBUTTONDOWN) musiało spowodować odświeżenie
okna.

Wydawałoby się, że nie ma w tym nic trudniejszego ponad wysłanie komunikatu
WM_PAINT przy pomocy jednej z funkcji SendMessage() lub PostMessage(), służących
przesyłaniu komunikatów:

SendMessage (hWnd, WM_PAINT, NULL, NULL);

Windows API przewiduje nawet odrębną funkcję UpdateWindow(), której wywołanie jest
równoważne instrukcji powyżej.

Takie działanie nie daje jednak pożądanych rezultatów i daje się to w prosty sposób
wyjaśnić. Okno otrzymuje oczywiście komunikat WM_PAINT, ale system Windows uznaje,
iż cały obszar klienta okna jest poprawny, więc nie ma najmniejszej potrzeby jego
odrysowania. W takiej sytuacji funkcja BeginPaint() zawodzi, podobnie jak wszystkie
następne z obsługi WM_PAINT, i nie obserwujemy żadnej zmiany zawartości okna.
Wynika stąd, że należałoby w jakiś sposób oszukać system i przekonać go, że oto cały
obszar klienta okna jest niepoprawny i pilnie wymaga odrysowania. Jest to jak
najbardziej możliwe przy pomocy funkcji InvalidateRect():

BOOL InvalidateRect(HWND hWnd,
 CONST RECT* lpRect,
 BOOL bErase);

W zasadzie funkcja ta służy do oznaczenia pewnego określonego prostokąta (podanego w
parametrze lpRect) jako przeznaczonego do odświeżenia. Możliwe jest aczkolwiek
podanie jej całego obszaru klienta okna hWnd - wówczas trzeba po prostu wpisać NULL
jako drugi parametr funkcji. Trzeci parametr określa natomiast konieczność zamazania
dostarczonego prostokąta pędzlem tła; jeżeli podamy w nim TRUE, wtedy prostokąt ów

 420

zostanie wyczyszczony przez funkcję BeginPaint(); w przeciwnym wypadku pozostanie
on bez zmian.
Najczęściej zależy nam wszelako na całkowitym wyczyszczeniu całego obszaru klienta
danego okna. Można to uczynić prostym wywołaniem:

InvalidateRect (hWnd, NULL, TRUE);

Co więcej, spowoduje ona także natychmiastowe wysłanie WM_PAINT do rzeczonego okna,
zatem nie musimy się już tym kłopotać.

Do swojej wiadomości warto więc zapamiętać, że:

Ponowne narysowanie zawartości całego obszaru klienta okna hWnd można wymusić
poprzez wywołanie InvalidateRect(hWnd, NULL, TRUE);.

Tą użyteczną uwagą kończymy podrozdział poświęcony systemowi zdarzeń w Windows.
Przypatrzyliśmy się w nim dokładnie pętli komunikatów oraz najważniejszym rodzajom
zdarzeń, jakie otrzymują okna. Szczególnie dużo czasu poświęciliśmy na czynność
odrysowywania zawartości okna, związaną z komunikatem WM_PAINT.
Wszystko to nie jest może bardzo proste, ale mam nadzieję, że zrozumiałeś z tego
przynajmniej „większą połowę” ;)

W tym momencie zakończyliśmy też przegląd podstawowych zagadnień związanych z
oknami w systemie Windows.

Podsumowanie
Windows nieprzypadkowo znaczy ‘okna’. Jako elementy interfejsu użytkownika są one
bowiem nieodzownym składnikiem każdego programu.

W kończącym się rozdziale skoncentrowaliśmy się jedynie na takich oknach, które są
oknami także w potocznym rozumieniu użytkownika. Najpierw zajęliśmy się więc
dwuetapowym procesem ich tworzenia, obejmującym rejestrację klasy okna i wywołanie
funkcji CreateWindowEx(). Dalej pokazałem kilka typowych operacji, jakie można
wykonywać na już istniejących oknach oraz sposobach na uzyskiwanie ich uchwytów. Na
koniec zajrzeliśmy wgłąb pętli komunikatów i poznaliśmy najważniejsze zdarzenia
dotyczące samych okien.

Następny rozdział będzie z kolei poświęcony współpracy naszych aplikacji z dwoma
najważniejszymi urządzeniami wejściowymi: klawiaturą i myszką. Wreszcie zatem pisane
przez nas programy nabiorą nieco większej interaktywności.

Pytania i zadania

Zgodnie ze zwyczajem raczę cię na koniec odpowiednim zestawem pytań i ćwiczeń do
samodzielnego wykonania.

Pytania

1. Z jakich elementów składa się potocznie rozumiane okno w systemie Windows?
2. Co to jest obszar klienta okna?
3. W jakim celu wprowadzono w systemie Windows mechanizm klas okien?
4. Jakie informacje należy podać, rejestrując klasę okna?

 421

5. W jaki sposób możemy wczytać ikonę lub kursor z zewnętrznego pliku
graficznego?

6. Jak możemy uzyskać uchwyt do pędzla wypełniającego tło okna?
7. Jakie informacje podajemy przy tworzeniu okna należącego do zarejestrowanej

już klasy?
8. Co określa styl okna?
9. Jak można dopasować rozmiary okna do znanych rozmiarów jego obszaru klienta?
10. Przy pomocy jakich funkcji pokazujemy i ukrywamy okno?
11. Jak możemy zmienić pozycję i/lub rozmiary okna?
12. Czym jest porządek Z, zwany też kolejnością przesłaniania?
13. Jak zbudowana jest hierarchia okien w systemie Windows? Przy pomocy jakich

funkcji możemy się po niej poruszać?
14. Podaj metodę na uzyskanie uchwytu dowolnego okna znanej klasy.
15. Dlaczego funkcja PeekMessage() lepiej sprawdza się w pętli komunikatów niż

GetMessage()?
16. W jaki sposób możemy zapewnić wykonywanie się kodu w czasie pomiędzy

obsługą komunikatów o zdarzeniach?
17. (Trudniejsze) Jakie komunikaty otrzymuje kolejno główne okno aplikacji po

kliknięciu w przycisk (przy założeniu, że owo kliknięcie spowoduje poprawne
zakończenie programu)?

18. Jak wygląda prawidłowa obsługa komunikatu WM_PAINT (jeżeli jest konieczna)?

Ćwiczenia

1. Wypróbuj działania styli okna, szczególnie tych dotyczących paska tytułu.
2. (Trudne) Napisz program wyświetlający twoje imię na pulpicie.

