ANATOMIA OKNA

Nauczycielem wszystkiego jest praktyka.
Juliusz Cezar

W systemie Windows skfadniki interfejsu uzytkownika nazywamy oknami. Nadmienitem w
poprzednim rozdziale, iz okresleniem tym obdarzamy zaréwno te prostokatne obszary
ekranu, ktére rowniez uzytkownicy nazywaja oknami, jak i umieszczone na nich kontrolki
w rodzaju przyciskow czy pdl tekstowych.

Obecnie jednak zajmiemy sie tylko oknami w rozumieniu potocznym - dogtebnie
poznamy proces ich tworzenia oraz istnienia i interaktywnosci.

Do nich tez i tylko do nich bedzie sie w tym rozdziale odnosi¢ sam termin ‘okno’.

Okna, o ktérych bedziemy mowili, sg czesto (szczegdlnie w wizualnych $srodowiskach
programowania) zwane formularzami, formatkami lub formami (ang. forms).

Zanim jeszcze przejdziemy do zaplanowych zagadniefl, musimy sprecyzowac sobie
kilka(nascie) poje¢ odnoszacych do okien w Windows. Mam przez to na mysli
poszczegolne elementy okna, przedstawione na ponizszym rysunku:

przycisk
minimalizacji przycisk

tut okna maksymalizacji
t pasek tytutu

ikona)
preycisk
zamknigcia

pasek menu

obszar klienta

rzeq okna

Rysunek 7. Elementy okna

372

Wiekszos$¢ z nich nie powinna by¢ ci obca, jako ze nieustannie stykasz sie z nimi,
uzytkujac komputer. Warto aczkolwiek wyjasni¢ sobie wszystkie:
> obszar klienta lub obszar kliencki (ang. client area) zajmuje prawie caty rysunek
i nie jest to przypadek: stanowi on bowiem jedyng obowigzkowg (!) cze$¢ okna.
Wszystkie pozostate elementy, zwane fgcznie obszarem pozaklienckim
(ang. non-client area), moga by¢ zmieniane za pos$rednictwem styli okna;
powiemy sobie o tym doktadnie w dalszym cigqgu rozdziatu.
Czym jest jednak obszar klienta? Otoz jest to wtasciwa ,tre$¢” okna: umieszczane
sq tutaj kontrolki potomne, tutaj przebiega tez rysowanie za posrednictwem
funkcji Windows GDI, ogolnie méwigc - jest to rejon okna, ktorego
zagospodarowanie lezy catkowicie w rekach programisty. System operacyjny
zasadniczo ,nie wtraca” sie wiec ani do wygladu obszaru klienta, ani do jego
zachowania sie w reakcji na zdarzenia
> pasek tytutu jest umiejscowiony na gorze okna. Zgodnie ze swojg nazwg ma on
przede wszystkim wyroézniac je sposrdéd innych okien w systemie. Posiada rowniez
dodatkowg funkcje, mianowicie pozwala na przesuwanie okna po ekranie poprzez
proste i intuicyjne przecigganie.
Pasek tytutu zawiera tez takie elementy jak:

v ikona - oprdcz efektu wizualnego ma ona takze bardziej praktyczny sens:
jednokrotne klikniecie wen przyciskiem myszy powoduje pokazanie menu
sterowania oknem, pozwalajgcego na zmiane jego rozmiardw i potozenia,
a takze na zamkniecie okna (co mozna tez zrobi¢ poprzez dwukrotne
klikniecie w ikone lub jednokrotne przyci$niecie prawego przycisku myszy
w dowolnym innym miejscu pasku tytutu)

v tytut okna zawiera zwykle nazwe aplikacji, jezeli jest to okno gtéwne
programu, lub inny znaczacy napis

v' przycisk minimalizacji redukuje okno do postaci przycisku na pasku
zadan. Niektore aplikacje zmieniajg aczkolwiek jego dziatanie i sprawiaja,
ze po kilknieciu w ten przycisk okno pojawia sie jako ikona na zasobniku
systemowym (ang. system tray), obok zegara. Dotyczy to najczesciej
programoéw przeznaczonych do pracy w tle

v' przycisk maksymalizacji rozszerza gabaryty okna tak, ze zajmuje ono
caty ekran. Ten przycisk moze by¢ jednak nieaktywny - jest tak szczegdlnie
wtedy, kiedy okno w ogdle nie pozwala na zmiane swych rozmiarow.
Warto tez przypomnie¢, ze dwukrotne klikniecie w pasek tytutu miedzy
ikong a trojka przyciskéw takze powoduje maksymalizacje okna

v' przycisk zamkniecia stuzy do zakonczenia pracy z oknem i zamkniecia
go, co w przypadku okna gtdwnego wigze sie z zamknieciem catej aplikacji.
Programy pracujqce w tle czesto zmieniajg znaczenie tego przycisku na
odestanie okna do zasobnika systemowego; wéwczas muszg jednak
zapewnic inny sposéb zakonczenia swej pracy

> pasek menu jest obecny najczesciej w gtownych oknach programoéw i zazwyczaj
zawiera wszystkie oferowane przez nie funkcje, pogrupowane w logiczne listy (to,
na ile s one logiczne, zalezy juz jednak od umiejetnosci projektanta aplikacji :))

> brzeg okna zamyka jego ramy ze wszystkich stron i w wiekszosci przypadkéw
pozwala tez na zmiane rozmiaréw okna poprzez przecigganie wybranej krawedzi.
Niekiedy jednak okno ma ustalone state rozmiary i wowczas brzeg okna jest jego
catkowicie statycznym elementem

W tym przegladzie sktadnikdw okna nalezatoby jeszcze zwrdci¢ uwage na to, ze w
funkcjonowanie prawie kazdego z nich, z wyjatkiem obszaru klienta, w jaki$ sposdb
ingeruje system operacyjny. W przykfadzie z poprzedniego rozdziatu nie musieliSmy
przeciez pisa¢ kodu odpowiedzialnego za zmiane wymiaréw okna, a mimo to taka zmiana
byta jak najbardziej mozliwa. Podobnie jest z przesuwaniem, maksymalizacjg czy
minimalizacjg - zadania te bierze na siebie sam system Windows, pozwalajac jednak
programiscie na wykonywanie przy ich okazji jakichs$ innych, wtasnych czynnosci.

373

Po tym krétkim zaprzyjaznieniu sie z oknem i jego elementami mozemy juz zajac sie
wiasciwymi zadaniami, zwigzanymi z tworzeniem okna, réoznorodnymi manipulacjami na
nim oraz reakcjg na najwazniejsze komunikaty o zdarzeniach. Temu wszystkiego bedzie
poswiecony niniejszy rozdziat.

Poczatki okna

Zdajemy sobie chyba sprawe, ze utworzenie wtasnego okna nie jest wcale tak ,proste”
jak wywotanie CreateWindowEx (). O nie, absolutnie nie jest tak rézowo :) Najpierw
nalezy przeciez zarejestrowac klase okna (co wigze sie z napisaniem jego procedury
zdarzeniowej), a dopiero potem mozemy mysle¢ o wykreowaniu tego wtasnego ,kawatka”
interfejsu uzytkownika, jakim jest niewatpliwie okno. Proces jego tworzenia skfada sie
wiec z dwoch etapdéw, ktorym musimy sie stanowczo lepiej przyjrzec.

Niemal wszystko o klasie okna

Jestem prawie pewien, ze zadajesz sobie to pytanie: Dlaczego musimy rejestrowac klase
okna? Czy nie lepiej bytoby, gdyby jego utworzenie sprowadzato sie tylko do wywotania
jednej funkcji, przyjmujacej moze wiecej parametrow albo jedng strukture? Tak bytoby
przeciez wygodniej, czyz nie?...

Rzeczywiscie, pytania te sq uzasadnione zwtaszcza teraz, gdy zajmujemy sie tylko
jednym gtéwnym oknem aplikacji. Jednakze zdajemy sobie chyba sprawe, ze nie
wszystkie programy tak robig. Ba, wiekszos¢ tworzy kilka kopii swoich okien - wezmy
choc¢by Eksplorator Windows czy niektore bardziej zaawansowane edytory tekstu. Nie
wspomne juz o tym, ze kontrolki takie jak przyciski czy pola tekstowe réowniez posiadajq
swe wiasne klasy (poznamy je wkroétce) i tym przypadku jest to ogromna korzysc dla
kazdej aplikacji, ktéra nie musi sie zajmowac kazdym szczegdtem GUI z osobna; zrzuca
ten obowigzek na system Windows wifasnie za pomocg wbudowanych klas okien.

A zatem klasy okien nie sg wcale stworzone ku pognebieniu programisty, lecz raczej dla
jego wygody. Niezaleznie od tego, jak jest naprawde, powinnismy doktadnie omowic
wszystkie cechy owych klas, przechowywane w strukturze wNDCLASSEX. I tym sie zaraz
zajmiemy; mam nadzieje, ze pamietasz, jakie pola zawiera ta struktura :) Ewentualnie
mozesz je sobie przypomnieé, zagladajac do poprzedniego rozdziatu.

Teraz jednak przejdzmy juz do rzeczy.

Dwa kluczowe pola

Sposrdéd wszystkich pol WNDCLASSEX bodaj najwazniejsze sq te dwa: 1pszClassName i
lpfnWndProc. Sqdzac po ich nazwach w notacji wegierskiej, oba sg wskaznikami - ale na
tym podobienstwa sie koncza.

Nazwa klasy okna

lpszClassName przechowuje nazwe klasy w postaci statego ftancucha znakéw typu C, a
wiec zmiennej typu const char* (albo const wchar t*), lub tez, bedac w zgodzie z
nazewnictwem nagtéwkow Windows, typu LpCTSTR. Nazwa ta powinna oddawac
charakter przyszitych okien klasy - szczegdlnie role, jakg beda petni¢ w programie. Dobrze
tez, aby nazwa ta byla mozliwie krotka.

Procedura zdarzeniowa

Drugim bardzo waznym polem struktury WNDCLASSEX jest 1pfniWndProc. Pole to ma
zawiera¢ wskaznik do procedury zdarzeniowej, jaka bedzie poczatkowo
odpowiedzialna za reakcje na zdarzenia powstajace w oknach klasy. Jest to wiec zwykly

374

wskaznik na funkcje w C++, ze wszystkimi tego konsekwencjami. Typ WNDPROC, jakim
legitymuje sie to pole, jest zas zdefiniowany jako:

typedef LRESULT (* CALLBACK WNDPROC) (HWND, UINT, WPARAM, LPARAM);

Funkcja, jaka przypiszemy do lpfnWndProc, musi sie zatem Scisle zgadzac¢ z prototypem
procedury zdarzeniowej, ktory podaliSmy sobie w zesztym rozdziale. Pod to wymaganie
podpadajg oczywiscie wiasciwie zdefiniowane funkcje globalne, ale dobrze jest tez
pamietad, iz procedurg zdarzeniowg moze by¢ rowniez statyczna metoda klasy.
Wiedza o tym staje sie bowiem uzyteczna w momencie, gdy chcemy napisacé obiektowg
otoczke na funkcje Windows API dotyczace okien.

Instancja aplikacji

Nie mniej istotny niz te dwa pola jest takze uchwyt hinstance. Identyfikuje on instancje
programu, ktéra zarejestrowata dang klase okna. Mozna spytaé: po co systemowi taka
informacja?

Oto6z przy jej pomocy moze on w odpowiednim czasie (po zakonczeniu programu)
wyrejestrowac naszg klase. Nie zmusza nas w ten sposdb do wywotywania funkcji
UnregisterClassEx (), ktora tym sie zajmuje. Mimo to niektorzy przywotujq ja tuz przed
zwrdéceniem wyniku przez winMain (), aby zachowac¢ pozory doskonatego porzadku ;D Nie
jest to jednak konieczne.

Styl klasy okna

Nastepne pole style okresla niektore dodatkowe ustawienia, ktére tacznie nazywamy
stylem klasy okna. To pole jest kombinacjg flag bitowych wybranych miedzy innymi
sposrod tych przedstawionych w tabeli:

flaga zZnaczenie

Ustawienie tej flagi powoduje, ze okno nalezace do klasy bedzie

otrzymywato komunikaty o dwukrotnych kliknieciach mysza,

CS_DBLCLKS zachodzacych w jego obrebie (zaréwno w obszarze klienta, jak i poza

nim). Bez tej flagi okno bedzie mogto reagowac tylko na pojedyncze
klikniecia przyciskdw myszy.

Flaga ta, dziatajaca poki co tylko w Windows XP, powoduje wigczenie
dla okien klasy wizualnego efektu polegajgqcego na rzucaniu
potprzezrzoczystego cienia - pod warunkiem, ze uzytkownik nie
wyltaczyt tego typu efektdw w Panelu Sterowania.

CS_DROPSHADOW

Przy tej fladze wtgczonej okna nalezgce do klasy majg nieaktywny
CS_NOCLOSE przycisk zamkniecia. Zwykle musza wiec udostepniac inne sposoby
zakonczenia pracy.

Flaga ta powoduje, ze kazde okno posiada swéj wiasny, staty
kontekst urzadzenia. Jest to przydatne przy rysowaniu na

CS_OWNDC powierzchni okna, do ktérego ten kontekst jest potrzebny; o rysowaniu
powiemy sobie co nieco w tym rozdziale, a wyczerpujaco w rozdziale o
Windows GDI.
CS CLASSDC Ta flaga, wykluczajaca poprzednia, sprawia, ze wszystkie klasy okna

dzielg wspolny kontekst urzadzenia.

Wiaczenie tej opcji wymusza odrysowywanie catej zawartosci okna po

CS_HREDRAW e -
- zmianie jego szerokosci.

Flaga podobna do poprzedniej, tyle ze powoduje odrysowywanie catego

CS VREDRAW . " .
- obszaru klienta po zmianie wysokosci okna.

Ta opcja sprawia, ze zachowywaniem wizualnej zawartosci okna
CS_SAVEBITS zajmuje sie sam system Windows. Ot6z dla kazdego okna utrzymuje on
dodatkowa bitmape, ktdérg wykorzystuje w momencie odtwarzania

375

flaga zZnaczenie

wygladu okna. Jego odrysowywaniem nie jest wiec wtedy obarczona
aplikacja, ale w zamian zostaje zajeta pewna czes¢ pamieci
operacyjnej, potrzebna dla przechowywania wspomnianej bitmapy. Z
tego wzgledu styl cs SAVEBITS dziata efektywnie tylko dla matych
okien.

Tabela 26. Flagi bitowe stylow klasy okna

Spora czes¢ styléw okna dotyczy kontroli jego wygladu na ekranie, czyli procesu, ktory
nazywamy tutaj odrysowywaniem. Polega on na wysytaniu do okna komunikatu

wM PAINT w chwili, gdy ma ono pokaza¢ konkretny fragment swego obszaru klienta.
Procedura zdarzeniowa moze wtedy obstuzy¢ ten komunikat i wykona¢ odpowiednie
czynnosci, zazwyczaj przy uzyciu interfejsu graficznego GDI. Rozwigzanie to sprawia, ze
system operacyjny nie musi skladowa¢ ,fotografii” biezacego stanu kazdego okna i
oszczedza w ten sposdb mnoéstwo pamieci RAM. Dotyczy to aczkolwiek tylko tych okien,
ktorych klasy nie zawierajg stylu cs SAVEBITS.

Co do samego odrysowywania, to na ten temat wypowiem sie szerzej przy okazji
prezentacji komunikatu wM PAINT.

Ikony i kursor

Pola hIcon, hIconSm i hCursor przechowujg uchwyty do trzech waznych dla okna
obrazkéw.

hIcon i hIconsm okreslajg odpowiednio: duzg i matg ikone okna. Ta druga jest zwykle
wys$wietlana w jego lewym gérnym rogu oraz na pasku zadan. Duza ikona pojawia sie
natomiast po wcisnieciu kombinacji klawiszy Alt+Tab, stuzgcej przetagczaniu sie miedzy
programami.

hIcon powinno zawiera¢ uchwyt do obrazka majgcego wymiary co najmniej 32x32
pikseli, za$ hIconsm musi wskazywac na ikone o rozmiarze przynajmniej 16x16 pikseli. W
rzeczywistosci obrazki te mogq by¢ wieksze, a wiec w praktyce obu polom przypisuje sie
czesto ten sam uchwyt do duzej ikony (32x32). Jest to jak najbardziej poprawne
rozwigzanie.

| Ten sam skutek daje tez wyzerowanie pola hIconSm.

Pole hcursor utrzymuje z kolei uchwyt do obrazka kursora myszy. Kiedy wskaznik
komputerowego gryzonia zatrzyma sie na oknie przynaleznym tworzonej klasie, woéwczas
kursor przyjmie wyglad podanego tutaj obrazka. Moze to by¢ wiasna bitmapa, ale
najczesciej stosuje sie standardowg strzatke lub jeden z pozostatych kursoréw
systemowych.

Wczytywanie obrazkdéw ikon oraz kursoréw nie jest wcale banalnym zadaniem i dlatego
warto przedyskutowac je dokfadnie, co tez uczynimy tutaj.

Krotkie wprowadzenie do zasobdow

Ikony oraz kursory sg dos¢ specyficznymi rodzajami obrazkéw, gdyz sa w zasadzie
niezbedne do dziatania aplikacji w Windows. Dlatego tez system operacyjny umozliwia
przechowywanie ich w samym pliku wykonywalnym EXE w postaci tzw. zasobéw
(ang. resources).

Zagadnienie zasobow (ktérymi mogg by¢ nie tylko bitmapy) jest na tyle interesujace, ze
poswiecimy mu jeden z przysztych rozdziatéw. Na razie jednak powinienes wiedzie¢ tylko,
ze kazdy zaséb programu jest identyfikowany poprzez unikalng liczbe catkowitg lub
tancuch znakdw; dla wygody liczbom nadaje sie w kodzie znaczace nazwy statych.

376

Identyfikatory zasobdw sg ustalane przez programiste piszacego tzw. skrypt zasobow
(ang. resource script), ktéry po kompilacji i linkowaniu staje sie czescig gotowego
programu, wraz z samymi zasobami. Program moze teraz, w trakcie swego dziatania,
siega¢ do zapisanych w swoim pliku EXE zasobdw i ,wyciggac” z nich chociazby obrazki
ikon czy kursoréw. Wykorzystuje je potem na przyktad przy rejestrowaniu klas okien.

Do wczytywania tych obrazkéow z zasobow stuzg spotkane juz wczesniej funkcje
LoadIcon () i LoadCursor (). Istniejg wszakze rowniez inne sposoby na uzyskiwanie
takich bitmap - o nich tez sobie powiemy.

Ikony mate i duze

Najprostszg drogq uzyskania uchwytu do ikony okna jest uzycie funkcji LoadIcon () :

HICON LoadIcon (HINSTANCE hInstance,
LPCTSTR lpIconName) ;

Zada ona dwdch parametréw, z ktérych pierwszy okredla uchwyt instancji naszego
programu; podajemy go, gdy chcemy wczytac¢ ikone z zasobdéw. Jesli natomiast
zadowalamy sie jedng ze standardowych ikon systemu Windows (a tak bedzie jeszcze
przez jakis czas), wpisujemy tutaj wartos¢ NULL.

Drugi parametr to identyfikator wczytywanego zasobu. Windows stosuje catkiem
pomystowy sposdb, ktéry pozwala przekazaé tutaj zaréwno liczbe, jak i napis w stylu C.
Dla nas jednak wazniejsze jest to, ze mozemy tu podac¢ takze jedng ze statych
odpowiadajacych standardowym ikonom systemowym:

state iko_na iko_na uwagi
w Win 9x w Win XP
domysina ikona aplikacji; tg ikong saq
IDI APPLICATION D opatrzone pliki EXE, ktore nie majg w
swoich zasobach zadnych innych ikon
IDI ASTERISK a
IDI_INFORMATION @ -__11)
IIDDII—EHE:;ODR @ sg to te same i_I_<ony, k_térg spotka_l_iémy
IDI_EXCLAMATION ' I'\ przy Ok;ZeJ; S:;Z‘géin('? funkgji
IDI_ WARNING . .
IDI_QUESTION @ \?,/J
w Windows XP logo systemu zostato
IDI_WINLOGO EH D zastagpione przez ta sama ikone, ktérej
' odpowiada stata IDI APPLICATION

Tabela 27. Standardowe ikony okien w Windows

Wybér nie jest zbyt duzy, ale dla potrzeb nauki Windows API okaze sie chyba
wystarczajacy :) Gdy zas nauczysz sie korzystac z zasobow (a moze i wczesniegj?...),
wowczas upiekszysz swoje okna dowolnymi ikonami.

Ksztatt kursora

Analogiczng do LoadIcon () funkcjg, wczytujacqg obrazek kursora, jest LoadCursor () :

HCURSOR LoadCursor (HINSTANCE hInstance,
LPCTSTR lpCursorName) ;

377

Takie samo znaczenie majg rowniez jej parametry. W przypadku pierwszego z nich
bedziemy jednak czesciej niz w LoadIcon () wpisywac NULL, azeby skorzysta¢ z jednego
ze standardowych kursorow:

obrazek .
stata nazwa kursora k uwagi
ursora
IDC_ARROW wybér normalny % standardow&/viln(iloonvczslny kursor
kursor ten pojawia sie, gdy
_ wykonywane jest jakies
IDC_WAIT zajety pracochtonne zadanie, ktdre nie
pozwala na normalng prace
aplikacji
ten kursor wskazuje na
wykonywanie jakiegos$ zadania,
IDC APPSTARTING , . . .
— praca w tle %E ktore nie zaktoca zbytnio

uzytkowania programu

IDC HELP

wybdr Pomocy

S

tym kursorem wskazujemy
element interfejsu uzytkownika,
na temat ktérego chcemy uzyskac
pomoc kontekstowg

IDC_CROSS

wybor precyzyjny

moze stuzy¢ jako celownik ;-)

IDC_NO

niedostepny

pojawia sie przy przecigganiu w
niedozwolone miejsce

IDC IBEAM

wybor tekstowy

wybor miejsca w polu tekstowym

IDC_HAND

wybér tacza

pokazuje sie, gdy przywiedziemy
mysz nad hipertgcze

IDC_UPARROW

wybér alternatywny

~ -0 T

IDC STIZEALL

przenies

&

ukazuje sie nie tylko przy
przenoszeniu, ale i przy zmianie
rozmiaréw we wszystkich czterech
kierunkach (np. w edytorach 3D)

Zmiana rozmiaru po

kursory te pojawiajq sie, kiedy

chcemy zmieni¢ rozmiar okna

IDC SIZENESW przekatnej e
slashowej

. zmia_na rozmiaru I
- pionowego

Zmiana rozmiaru po
IDC SIZENWSE przekatnej "
backslashowej
Zmiana rozmiaru
+—

IDC_SIZEWE

poziomego

Tabela 28. Standardowe kursory Windows (nazwy z Panelu Sterowania lub wtasne)

Prawie zawsze wybiera¢ bedziemy zwyktg strzatke, czyli wariant IDC_ARROW.

Lepszy model

Funkcje LoadIcon () i LoadCursor () mogg sie stusznie wydawac ograniczone.
Teoretycznie zostaty one nawet zastgpione przez inng funkcje, LoadImage () :

HANDLE LoadImage (HINSTANCE hInstance,
LPCTSTR lpszName,

UINT uType,

int cxDesired,

//
//
//
//

uchwyt instancji zasobdéw
nazwa zasobu lub pliku
typ obrazka

docelowa szerokosé

378

int cyDesired, // docelowa wysokos$é
UINT fuLoad) ; // flagi wczytywania

Juz na pierwszy rzut oka wydaje sie ona bardziej skomplikowana, a zatem musi oferowac
wieksze mozliwosci - i tak rzeczywiscie jest. Doktadne omodwienie tej funkcji nie jest nam
jednak teraz potrzebne, jako ze dokonamy go przy opisie Windows GDI. Skoncetrujemy
sie raczej na dwoch zagadnieniach: sposobie, w jaki LoadImage () zastepuje obie opisane
wczesniej funkcje oraz wczytywaniu obrazkdéw ikon i kursoréw z plikéw na dysku.

Dociekliwi mogg naturalnie zajrze¢ do MSDN po kompletny opis funkcji LoadImage ().

A wiec - zeby wczytac ikone i kursor dla klasy okna mozemy uzy¢ instrukcji podobnych
do tych:

KlasaOkna.hIcon = (HICON) LoadImage (NULL, IDI APPLICATION, IMAGE ICON,
O, O, 0);
KlasaOkna.hCursor = (HCURSOR) LoadImage (NULL, IDC CURSOR, IMAGE CURSOCR,
0, 0, 0);

Widzimy, ze pierwsze dwa parametry LoadImage () Sg identyczne jak w przypadku
LoadIcon () i LoadCursor (). Trzeci parametr okresla typ wczytywanego obrazka, a uzyte
W nim state IMAGE ICON i IMAGE CURSOR oznaczajg odpowiednio ikone i obrazek kursora
(jest jeszcze IMAGE BITMAP, wskazujaca na zwykig bitmape). Pozostate parametry sg zas
wyzerowane, zatem Windows przyjmie dla nich wartosci domysine.

Na koniec, po wywotaniu funkcji LoadImage (), musimy jeszcze zrzutowac wartos¢, ktorg
ona zwrdci. Jest to bowiem ogdlny uchwyt typu HANDLE, natomiast my potrzebujemy
bardziej szczegétowego rodzaju: uchwytu do ikony (HICON) oraz do kursora (HCURSOR).
Odpowiednie rzutowanie zatatwia wiec te drobng sprawe.

Nietrudno zmiarkowaé, ze uzycie LoadImage () jest nieco bardziej ktopotliwe niz dwdch
poznanych wczesniej funkcji. Mozemy przeto zrezygnowac z niego, gdy zalezy nam tylko
na wczytaniu ikony lub kursora z zasobdéw programu czy ze zbioréw systemowych. Jesli
jednak zamierzamy odczytac obrazek z pliku graficznego na dysku, wéwczas nie mamy
juz takiego wyboru; zobaczmy zatem, jak nalezy wtedy postgpic.

Oto instrukcja wczytujgca ikone okna z pliku dyskowego:

KlasaOkna.hIcon = (HICON) LoadImage (NULL, "C:\\Windows\\ikona.ico",
IMAGE ICON, 0, 0, LR LOADFROMFILE) ;

Nazwe tego pliku podajemy w drugim parametrze, a oprécz niej musimy jeszcze
poinformowac funkcje o tym, skad chcemy uzyskac ikone - robimy to poprzez flage
LR_LOADFROMFILE W ostatnim parametrze.

Tto okna

To co nazywamy potocznie ttem okna jest tak naprawde ttem jego obszaru klienta, albo
raczej sposobem jego wypetniania. W Windows GDI za graficzne wypetnianie jakiegos
ksztattu odpowiada obiekt zwany pedzlem (ang. brush). Moze on definiowac nie tylko
jednolity kolor, ale i dwubarwny desen czy nawet kafelkowanie bitmapg. Wszystkie te
sposoby wypetniania mozna zas stosowac do obszaru klienta okna: nalezy jedynie podac
uchwyt do odpowiedniego pedzla w parametrze hbrBackground struktury WNDCLASSEX.

Skad jednak wzigé potrzebny pedzel? Zasadniczo sg po temu trzy sposoby.

Pierwszym z nich jest postuzenie sie statg, za ktorg kryje sie jeden z koloréw
systemowych Windows. Kolory te ustala uzytkownik w Panelu Sterowania wedle wtasnych
upodoban, a sposrdod nich najbardziej interesujacy dla nas jest ten, ktéry zostat wybrany
dla wnetrza okien. Reprezentuje go stata COLOR_WINDOW; mozemy wigc uzyc jej tak:

379

KlasaOkna.hbrBackground = (HBRUSH) COLOR WINDOW;

Drugim nierzadko spotykanym sposobem jest wykorzystanie jednego z globalnych
obiektéw pedzli, ktére Windows utrzymuje dla wygody programisty. Uchwyt do ktéregos
z tych pedzli mozna uzyskaé za posrednictwem funkcji GetStockObject () :

KlasaOkna.hbrBackground = (HBRUSH) GetStockObject (WHITE BRUSH) ;

Powyzsza linijka sprawi, ze okno bedzie wypetnione jednolitym kolorem biatym -
wskazuje na to parametr wHITE BRUSH. Wszelako istniejg takze inne pedzle do wyboru
(wszystkie jednokolorowe) - przedstawia je ponizsza tabelka:

stata nazwa koloru | kolor
BLACK BRUSH czarny
DKGRAY BRUSH | ciemnoszary
GRAY BRUSH szary
LTGRAY BRUSH jasnoszary
WHITE BRUSH biaty

Tabela 29. Kolorowe pedzle dostepne poprzez funkcje GetStockObject()

Nareszcie, wiasciwy pedzel dla wypetnienia okna mozemy stworzy¢ sobie sami. Jest to
najbardziej elastyczne rozwigzanie, jako ze mamy przy nim dostep do wszystkich
mozliwosci pedzli, jakie oferuje Windows GDI - nie musimy chociazby ogranicza¢ sie do
jednolitego koloru pedzla. Spéjrzmy na przyktad na okno wypetnione wzorem obrazkow
$cisle przylegajacych do siebie:

Il Okno z teksturg

Screen 57. Okno wypeinione sasiadujacymi kopiami bitmapy

Efekt ten mozna osiggna¢ w catkiem prosty sposob. Nalezy w tym celu stworzy¢ po
prostu odpowiedni pedzel:

// PatternWindow - okno wypelnione kafelkami bitmapy
// (fragmenty funkcji WinMain())

HBITMAP hBRitmapa;
HBRUSH hPedzelOkna;

// tworzymy pedzel wypeinienia okna

hBitmapa = (HBITMAP) LoadImage (NULL, "pattern.bmp", IMAGE BITMAP,
0, 0, LR _LOADFROMFILE) ;

hPedzelOkna = CreatePatternBrush (hBitmapa) ;

380

Tworzymy go przy pomocy funkcji CreatePatternBrush (). Jest ona jedng z kilku funkcji
Windows GDI stuzgacych temu celowi, ktore omowimy doktadnie przy okazji rozdziatu
poswieconego tej bibliotece. Funkcja zada uchwytu do bitmapy, ktéra ma byc¢
,kafelkowana”; bitmape tg wczytujemy znang juz metodq poprzez funkcje LoadImage (),
podajac jej nazwe pliku graficznego (plik ten jest dotagczony do programu
przykfadowego).

Majac zas uchwyt do pedzla, przypisujemy go do sktadowej hbrBackground:

KlasaOkna.hbrBackground = hPedzelOkna;

Dalej mozemy juz zwyczajnie zarejestrowac klase okna i stworzy¢ samo okno. Po
zakonczeniu petli komunikatéw, tuz przed zwroceniem wyniku funkcji winMain (),
musimy jeszcze pamietac o usunieciu pedzla oraz skojarzonej z nim bitmapy:

DeleteObject (hPedzelOkna);
DeleteObject (hBitmapa);

Nie jest to trudne - wystarczy postuzyc¢ sie procedurg DeleteObject (), podajac jej oba
uchwyty.

Pozostate sktadowe

Pozostaty jeszcze trzy pola struktury WNDCLASSEX, a skoro zostawiliSmy je na koniec, to
pewnie nie sq zbyt wazne ;) Faktycznie, zwykle wpisuje sie w nich zera.

lpszMenuName jest identyfikatorem zasobu paska menu, ktére to menu bedzie posiadato
kazde okno danej klasy. Otoz tak sie skfada, ze menu jest jednym z rodzajéw zasobow
Windows, zapisywanym wraz z kodem aplikacji (ale poza nim) w pliku EXE. W polu
lpszMenuName podajemy wiec identyfikator tego zasobu; obowigzujg tu takie same
zasady, jak przy podawaniu podobnych identyfikatorow w funkcjach LoadImage (),
LoadIcon () €zy LoadCursor () - identyfikator moze wiec by¢ tancuchem znakoéw albo
liczba.

Najczesciej aczkolwiek wpisujemy tu NULL, nawet jesli docelowo okno ma posiadac jakis
pasek menu. Mozna go bowiem stworzy¢ innymi drogami.

Ostatnie dwa pola - cbClsExtra i coWndExtra - specyfikujg ilos¢ bajtéw dodatkowej
pamieci, jaka system Windows zaalokuje (odpowiednio) dla catej klasy i dla kazdego jej
okna. Niestety, trudno posadzic¢ te pola o wiekszg przydatnos¢, skoro maksymalna ilos¢
takiej pamieci to ,az” 40 bajtéw (!). W dodatku dostep do niej jest bardzo ktopotliwy,
gdyz musi sie odbywac wytgcznie poprzez funkcje setClassLong[Ptr] () i
SetWindowLong[Ptr] ().

Powody te wyjasniajg, dlaczego niemal zawsze w obu polach ustawia sie wartosc o.

Rejestracja klasy okna

Po wypetnieniu struktury WNDCLASSEX mozemy zarejestrowac klase okna, uzywajac do
tego funkcji RegisterClassEx () :

ATOM RegisterClassEx (CONST WNDCLASSEX* lpwcx) ;

Jak doskonale wiemy, przyjmuje ona jeden parametr - wskaznik na naszq strukture. W
zamian zwraca zas tzw. atom, ktory jest 16-bitowg liczbg identyfikujaca zarejestrowang
klase. Atom ten mozemy zachowac¢ w osobnej zmiennej i uzywaé w wywotaniach tych
funkcji, ktére zadajg nazwy klasy okna (jak np. CreateWindowEx ()). W zasadzie jednak
nie jest to zbyt powszechna praktyka.

381

Rezultatem zwracanym przez RegisterClassEx () mozna sie aczkolwiek zainteresowacd
takze z innego powodu. Stosuje sie bowiem do niego tradycyjna konwencja Windows API,
na mocy ktorej zero jest wynikiem sSwiadczacym o btedzie. Do celdéw diagnostycznych
mozemy wiec uzywac instrukcji if podobnej do tej:

if (!RegisterClassEx (&KlasaOkna))
{
MessageBox (NULL, "Biad podczas rejestracji klasy okna!'", "Biad",
MB OK | MB ICONERRCR) ;
return 1;

}

Wystgpienie btedu przy rejestracji okna wskazuje na niepoprawnosc jednej ze
sktadowych WNDCLASSEX - najczesciej chodzi tu zapewne o ktérys z uchwytéw.

Tworzenie okna wfasciwego

Gdy zarejestrujemy klase okna, mamy juz za sobg pierwszy krok jego kreacji. Teraz
mozemy juz wywotaé CreateWWindowEx () i podac jej ten tuzin wymaganych parametrow,
w zamian cieszy¢ sie stworzonym oknem i otrzymac¢ uchwyt do niego.

By tego dokonac trzeba oczywiscie wiedzie¢, jakie informacje podac funkcji w tych
kilkunastu parametrach. Spdjrzmy wiec na nie.

W tym momencie przydatoby sie, aby$ przypomniat sobie prototyp funkcji
CreateWindowEx () .

Nazwa klasy okna i uchwyt instancji programu

Ponownie jedng z najwazniejszych danych jest nazwa klasy okna; tym razem
potrzebuje jej system, by powigzac tworzone okna z zarejestrowang wczesniej klasa.
Nazwe tej klasy podajemy w drugim parametrze, 1pClassName. Warto juz teraz wiedzieé
(bedzie nam to potrzebne przy okazji kontrolek), ze nazwa ta nie musi odnosic¢ sie do
klasy zdefiniowanej przez nas samych, lecz takze do jednej z wbudowanych w system
globalnych klas okien (kontrolek).

Alternatywnie mozemy tez podac¢ w 1pClassName atom, ktéry zwrdcita w wyniku funkcja
RegisterClassEx ().

W parze z klasg okng idzie tez uchwyt do instancji programu, ktéry nalezy podac jako
jedenasty (przedostatni) parametr createWindowEx (). Nalezy go podac, poniewaz w
Windows klasy okna rejestrowane przez programiste sg zwigzane wtasnie z instancjami
programoéw; dzieki temu system unika ktopotéw ze zdublowanymi nazwami tych klas.

Tytut okna

Trzeci parametr, 1pWindowName, nazywany tytulem okna, jest tak naprawde tylko
tekstem, ktéry bedzie w tym oknie wyswietlony... albo i nie. W przypadku omawianych
przez nas okien pojawi sie on na pasku tytutu - pod warunkiem, ze okno bedzie takowy
pasek posiadac¢ (bo wcale nie musi!).

Jezeli zas chodzi na przyktad o kontrolki, to interpretacja napisu podanego w
1lpWindowName zalezy $cisle od ich rodzaju.

Tytut (tekst) istniejgcego okna mozna zmieniac¢ za pomoca funkcji setWindowText ().

382

Styl okna

Czwarty z kolei parametr - dwstyle - to styl okna. Ma on bodaj najwiekszy wptyw na
zewnetrzng aparycje okna, a czeSciowo takze i na jego zachowanie. Wartosc¢ ta jest przy
tym kombinacjg flag bitowych, a zatem umozliwia ustawienie wielu réznorodnych
aspektéw okna. Zostaty one zebrane w ponizszej tabeli:

_grupa flagi nazwa stylu uwagi
© WS CHILD Jedyng cechg wyrézniaj.ch okno
§ WS_CHILDWINDOW okno potomne _p_otor,npe oc_l zwyl_dego Jest_brak
o mozliwosci posiadania przez nie menu.
® WS_OVERLAPPED okno trwate Trwate okno to takie, ktére moze by¢
.g WS_TILED wyswietlane jako niemodalne.
e WS _POPUP okno , wyskakujace” Takie okno m_oze by¢ wyswietlane
tylko jako modalne.
Krawedz okna z takim stylem jest
narysowana cienka linig i nie reaguje
WS BORDER state obramowanie na przecigganie (nie mozna wiec
] zmieni¢ rozmiaru okna, ciggnac za
§ jego brzeg).
ﬁ Zmienne obramowanie okna jest
° WS THICKFRAME zmienne narysowane gruba linig i pozwala na
g’ WS_SIZEBOX obramowanie zZmianeg rozmiaru okna poprzez
8 przecigganie krawedzi.
= Ustala obramowanie typowe dla okien
W5 DLGRAME obramowanie okna dialogc_)wyc_h;,okno z tym stylem nie
- dialogowego moze miec paska tytutu (stylu
WS CAPTION).
WS CAPTION pasek tytutu Okno z tym stylem posiada widoczny
pasek tytutu.
Styl ten powoduje obecnosc¢ ikonki w
lewym goérnym rogu okna. Klikniecie
. na tg ikonke powoduje pokazanie
3 WS _SYSHMENU menu sterujgce menu sterujgcego.
3 By styl ten zadziatat, nalezy podac
2 takze flage ws CAPTION.
= . Tworzy okno z obecnym przyciskiem
§ WS MAXIMIZEBOX IfrzyC|§k . maksymalizacji.
Q - ma symahza;y Flaga ws SYSMENU jest rowniez
/przywracania -
wymagana.
Tworzy okno z obecnym przyciskiem
WS MINIMIZEBOX PFZVC‘.S" " minimaliza_cji. Lo
- minimalizacji Flaga ws_SYSMENU jest rowniez
wymagana.
B e Okno z tym stylem jest widoczne na
N . ekranie od razu po utworzeniu (nie
§§ "33, Ws_VISIBLE widoczne okno trzeba stosowac dlan funkgji

ShowWindow ()).

383

_grupa flagi nazwa stylu uwagi
WS MAXIMIZE okno Po utworzeniu okno jest widoczne i
- zmaksymalizowane zmaksymalizowane.
WS TCONIC okno Okno z tym stylem je§t z poczatku
WS MINIMIZE sminimalizowane zredukowane do przlyC|sku na pasku
- zadan.
Styl ten dezaktywuje okno - tak, ze
nie reaguje ono na dziatania
uzytkownika. Okno mozna uaktywnic¢ z
powrotem za pomoca funkcji
WS DISABLED nieaktywne okno EnableWindow ().
Styl ten stosuje sie raczej do
kontrolek, rzadko do ,,normalnych”
okien.
= 2w WS HSCROLL poziomy pasek Tworzy okno z poziomym paskiem
S 0E - przewijania przewijania.
g E:g WS VSCROLL pionowy pasek Tworzy okno z pionowym paskiem
- przewijania przewijania.

Tabela 30. Flagi bitowe stylu okna

Jak wida¢ na zatgczonym obrazku, mozliwych flag jest naprawde mndstwo. Dajg one
prawie nieograniczone mozliwosci w budowaniu wizerunku i funkcjonowania okna, gdyz
uwzgledniajg wszystkie jego cechy. Bez styli okno jest bowiem tylko ,gotym” obszarem
klienta, pozbawionym nawet obramowania, nie méwigc juz choéby o pasku tytutu.

Potega ta ma jednak swojg wade: stworzenie przy jej pomocy sensownego okna wymaga
podania przynajmniej kilku réznych styli, co prowadzi do rozbudowanych alternatyw
bitowych. Poza tym trzeba jeszcze pamieta¢ wtasciwe nazwy poszczegdlnych flag.

Na szczescie problemy te zostaty rozwigzane przez samych tworcow Windows API.
Wprowadzili oni mianowicie dodatkowe makra, kombinujace po kilka styli, i nadali im
krétsze nazwy. Makr tych mozemy wiec uzywac pojedynczo lub w potaczeniu z innymi
jeszcze stylami - zupetnie tak, jakby same byty flagami bitowymi.

Liste owych makr (nie jest ich zbyt duzo) przedstawia nam ta oto tabelka:

makra zigczone flagi uwagi
WS BORDER .
WS POPUPWINDOW WS POPUP Wraz z flng WS_CAPTION.makI’O to stanowi
WS SYSMENU odpowiedni styl dla okien modalnych.
WS_OVERLAPPED
WS CAPTION , - . .
WS_OVERLAPPEDWINDOW WS SYSMENU Wﬂ:'@? le(lia}suwych dCIIa okien gtownych
WS_TILEDWINDOW WS_THICKFRAME aplikacji, ktore moga dopuszczac zmiang

WS MINIMIZEBOX Swego rozmiaru.
WS MAXIMIZEBOX

Tabela 31. Predefiniowane makra stylu okna

Sg one zazwyczaj bardzo wygodne, poniewaz nawet jesli nie odpowiada nam ktoras z
flag, jakie zawierajg, mozemy jg wytaczy¢ np. w ten sposob:

WS OVERLAPPEDWINDOW & ~WS MAXIMIZEBOX // wytacza przycisk maksymalizacji

Oczywiscie nic nie stoi tez na przeszkodzie, bysmy sami definiowali sobie przydatne nam
makra, jak choéby takie:

384

// trwate okno o statym rozmiarze
#define WS FIXEDWINDOW (WS OVERLAPPED | WS CAPTION | WS BORDER
| WS _SYSMENU | WS MINIMIZEDBOX)

// trwale okno na pelnym ekranie
#define WS FULLSCREENWINDOW (WS OVERLAPPED | WS MAXIMIZE)

Wszystko zalezy bowiem od konkretnych potrzeb w pisanym programie.

Rozszerzony styl okna

Wraz z rozwojem systemu Windows pojawity sie nowe mozliwosci dostosowywania okien i
kontroli ich zachowania. Te nowe opcje, nazywane rozszerzonym stylem okna

(ang. extended window style), nie sg niezbedne w kazdej sytuacji. Spora cze$¢ z nich ma
zresztg dos¢ specyficzne zastosowanie; niemniej jednak istnieje kilka flag, ktére moga
by¢ niekiedy przydatne. Oto one:

flaga nazwa stylu opis

Flaga ta powoduje pojawienie sie na pasku tytutu
przycisku ze znakiem zapytania. Klikniecie w
niego uaktywnia tryb pomocy kontekstowej;

przycisk kiedy teraz uzytkownik kliknie gdzie$ we wnetrzu
WS_EX CONTEXTHELP pomocy okna, otrzyma ono specjalny komunikat wM HELP.
kontekstowej W reakcji na niego powinno zosta¢ pokazane

~Wyskakujgce” okno z objasnieniem.
Styl ten nie moze wystepowac razem z
WS MINIMIZEBOX lub WS MAXIMIZEBOX.

Tworzy okno ptywajacego paska narzedzi. Takie
okno ma wezszy pasek tytuty, a sam tytut jest na
nim pisany mniejszg czcionka. Poza tym takie
okno nie jest nigdy pokazywane na pasku zadan.

WS EX TOOLWINDOW okno . :
- narzedziowe Okno narzedziowe |
Screen 58. Okno z wiqczonym stylem WS_EX_TOOLWINDOW
Okno oznaczone tg flagg jest wyswietlane przed
zawsze na wszystkimi innymi oknami, nawet wtedy, gdy jest
i ono nieaktywne.
WS EX TOPMOST wierzchu Y
- - (ang. stay on
top) Ten styl moze by¢ dodawany i usuwany rowniez

poprzez funkcje setWindowPos ().

Tabela 32. Flagi bitowe rozszerzonego stylu okna

Kombinacje tych flag (ktérg jest najczesciej po prostu NULL) podajemy w pierwszym
parametrze funkcji CreateWindowEx (), dwExStyle.

Obecnosc¢ tego parametru jest zreszta jedyng réznicg miedzy CreateWindowEx () a
zwyklq CreateWindow ().

Pozycja na ekranie i wymiary okna

Cztery parametry funkcji CreateWindowEx (), poczgwszy od pigtego az do 6smego,
okreslajg rejon na ekranie monitora, ktéry bedzie (poczatkowo) zajmowato tworzone

385

okno. Definiuje go pozycja lewego gérnego rogu okna we wspotrzednych ekranu,
podawanych w parametrach x i y, oraz szerokos$c i wysokos¢ okna - parametry nwidth i
nHeight.

Wazka kwestia rozdzielczosci

Wszystkie te wielkosci podajemy w pikselach. Sprawia to, ze wizualny efekt, jaki wywiera
okno, jest w duzym stopniu zalezny od stosowanej u uzytkownika rozdzielczosci ekranu.
Teoretycznie mozemy jg programowo zmieniac, ale zachowanie takie jest wielce
niepozgdane w srodowisku, gdzie naraz dziata wiele aplikacji - jak w Windows.

W zasadzie jednak nie jest to az takim problemem, jako ze wymiary okna powinny by¢ w
wiekszosci przypadkdw state i niezalezne od rozdzielczosci. Pozostaje jedynie sprawa
umiejscowienia okna na ekranie - najczesciej chcemy bowiem, aby sytuowato sie ono
doktadnie posrodku pulpitu.

Aby to osiggna¢, musimy znac jego wymiary i postuzy¢ sie odpowiednimi wzorami:

X = (wekmnu - Wokna)/2

y = (hekranu - hokna)/2

w ktorych literki w i h oznaczajq odpowiednio szerokos¢ i wysokosc ekranu lub okna, zas
X iy - docelowe wspétrzedne okna na ekranie.

I tu mamy kolejny problem, cho¢ na szczescie jest on tatwo rozwigzywalny. Musimy
przeciez pobra¢ wymiary ekranu, czyli jego rozdzielczo$¢, by moc wstawié je do
powyzszych formut. Do tego celu nalezy postuzy¢ sie funkcjg GetSystemMetrics () :

int GetSystemMetrics (int nIndex) ;

Funkcja ta moze zwracac przerdzne systemowe wartosci, zwigzane gtéwnie z
wyswietlaniem. Rodzaj poszukiwanych danych podajemy w jej jedynym parametrze; nas
interesujg najbardziej wielkoSci SM_CXSCREEN oraz SM_CYSCREEN, oznaczajace szerokos¢ i
wysokos$c¢ ekranu pikselach. Jest to wiec doktadnie to, o co nam teraz chodzi :)

Stworzenie okna umiejscowionego na srodku ekranu moze zatem wygladac¢ w ten
sposodb:

// zaktadamy, ze w uWidth 1 uHeight mamy wymiary okna

HWND hOkno;

hOkno = CreateWindowEx (// (pomijamy nieistotne teraz parametry)
(GetSystemMetrics (SM_CXSCREEN) - uWidth) / 2,
(GetSystemMetrics (SM_CYSCREEN) - uHeight) / 2,
uWidth,
uHeight,
/7 (Fow)

);

Znajac rozdzielczos¢ ekranu mozemy tez uzalezni¢ od niej szerokos¢ i wysokosé okna.
Pamietajmy jednakze, iz moze to zburzy¢ nam tad ewentualnych kontrolek potomnych,
umiejscowionych na oknie.

Obszar klienta ma zawsze racje

W praktyce (szczegdlnie programisty gier!) nierzadko objawia sie jeszcze jeden problem
zwigzany z umiejscowieniem okna. Czasem bowiem posiadamy wymiary nie samego
okna, lecz tylko jego obszaru klienta. Dzieje sie tak na przyktad wtedy, gdy chcemy
petnoekranowej grze, dziatajacej w jakiejs statej rozdzielczosci, zapewni¢ mozliwosc

386

uruchamiania sie w takze trybie okienkowym. Wdéwczas wymiary obszaru klienta okna
gry muszg zgadzac sie z tg ustalong wczesniej ,rozdzielczoscig petnoekranowga”.

Jednak samo okno to przeciez nie tylko obszar klienta: trzeba do niego dodac
przynajmniej jaki$ brzeg oraz pasek tytutu. Prawidziwe wymiary okna, ktére powinnismy
podac do CreateWindowEx (), bedg wiec wieksze; rowniez pozycja okna musi zostaé
odpowiednio zmieniona. Jak podota¢ tym zadaniom?...

Otdz system Windows oferuje pewne rozwigzanie, ktorym jest funkcja
AdjustWindowRectEx () :

BOOL AdjustWindowRectEx (LPRECT lpRect,
DWORD dwStyle,
BOOL bMenu,
DWORD dwExStyle) ;

Wymaga ona podania kilku potrzebnych informacji, wérod ktérych sa:
> styl okna, ktory nalezy umiesci¢ w parametrze dwstyle (jest to ten sam styl,
ktéry zamierzamy za chwile poda¢ do createWindowEx () . Nalezy wiec zapisa¢ go
w jakies osobnej zmiennej i wykorzystac jq takze tutaj)
> wartos$¢ boolowska (true lub false) okreslajaca, czy okno posiada pasek menu
> rozszerzony styl okna (ktéry takze podamy zaraz dla CreateWindowEx ())

W zasadzie jednak najwazniejszy jest pierwszy parametr, w ktorym okreslamy
prostokat obszaru klienta okna. Jest to wskaznik do specjalnej struktury RECT:

struct RECT

{
LONG left;
LONG top;
LONG right;
LONG bottom
}:

Wyznacza ona prostokat na ekranie w nieco inny sposdb niz omawiane przez caty czas
cztery parametry funkcji CreateWindowEx (). O ile bowiem pola 1left oraz top
odpowiadajg wartosciom x i y - wspotrzednych lewego gérnego rogu prostokata, o tyle
right i bottom sg koordynatami prawego dolnego wierzchotka. Aby obliczy¢ te sktadowe,
musimy wiec dokona¢ odpowiedniego sumowania: x + nWidth oraz y + nHeight.

os X

. >

top

left bottom

prostokat

"
.}

* right

L4

Rysunek 8. Opis prostokata na ekranie za pomoca pé6l struktury RECT

387

Ostatecznie skorzystanie z funkcji AdjustWindowRectEx () powinno sie przedstawiac
mniej wiecej tak:

// zaktadamy, ze w zmiennych x, y, nClientWidth i nClientHeight mamy
// zapisanag pozycje (np. $rodek ekranu) oraz wymiary
// obszaru klienta okna

// wypelniamy strukture RECT

RECT rcOkno;

rcOkno.left = x;

rcOkno.top = y;

rcOkno.right = x + nClientWidth;
rcOkno.bottom = y + nClientHeight;

// ustalamy styl i rozszerzony styl okna
DWORD dwStyle = WS OVERLAPPEDWINDOW;
DWORD dwExStyle = NULL;

// wywotujemy funkcje AdjustWindowRectEx ()
AdjustWindowRectEx (&rcOkno, dwStyle, false, dwExStyle);

No dobrze, ale co ta funkcja wiasciwie robi?... Céz, to dobre pytanie :)
AdjustWindowRectEx () modyfikuje po prostu strukture podang jej w pierwszym
parametrze w taki sposdb, ze po wywotaniu opisuje ona juz nie obszar klienta okna, ale
cate okno - wraz z jego obszarem pozaklienckim. Podczas dokonywania tych modyfikacji
funkcja korzysta oczywiscie z podanych jej styli oraz obecnosci lub nieobecnosci paska
menu.

Zatrzymajmy sie na chwilg, gdyz w tym momencie w zmiennej rcOkno mamy zapisang
,Charakterystyke przestrzenng” (tak to nazwijmy...) catego naszego okna. Mozemy zatem
wywotac juz funkcje CreateWindowEx () i utworzy¢ je:

// tworzymy okno
HWND hOkno;
hOkno = CreateWindowEx (dwExStyle,
"Klasa okna",
"Okno",
dwStyle,
rcOkno.left,
rcOkno. top,
rcOkno.right - rcOkno.left,
rcOkno.bottom - rcOkno.top,
NULL,
NULL,
hInstance,
NULL) ;

Podczas podawania parametrow dokonujemy tez niezbednego przeliczenia ze sktadowych
RECT na wspotrzedne lewego gérnego wierzchotka oraz szerokos$c¢ i wysokos¢ okna.

Jako podsumowanie ukazanej techniki mozesz przeczytac opis funkcji
AdjustWindowRectEx () w MSDN.

Uchwyt do okna nadrzednego

Dziewigty parametr CreateWindowEx () jest uchwytem do okna nadrzednego
wzgledem tego okna, ktore wiasnie zamerzamy stworzy¢. Podajac tutaj wiasciwy uchwyt,
umozliwiamy systemowi budowe poprawnej hierarchii okien.

388

Gdy tworzymy okno nadrzedne (ang. top-level), czyli gtdwne okno aplikacji, wéwczas
jego bezposrednim i jedynym przodkiem jest tylko i wylgcznie pulpit. Mozemy wiec podac
W parametrze hiindParent warto$¢ uzyskang z funkcji GetDesktopWindow () - jest to
bowiem uchwyt do pulpitu wiasnie. Nie ma jednak takiej potrzeby: CreateWindowEx ()
dopuszcza podanie w tym parametrze uchwytu pustego, czyli NULL; efekt bedzie ten
sam, a my nie musimy sie zbyt wiele napisa¢ :D

W Windows 2000 oraz XP jako hwndParent mozemy podac takze specjalng statg

HWND MESSAGE. Spowoduje to utworzenie tzw. okna obstugi komunikatéw (ang. message-
only window), ktérego jedynym celem jest odbieranie i wysytanie komunikatéw. Takie
okno nie jest widoczne na ekranie, ale umozliwia aplikacji (zwykle ustudze systemowej)
normalng interakcje z systemem operacyjnym.

Poprawne dobranie okna nadrzednego jest szczegblnie wazne przy tworzeniu kontrolek,
czym sie zajmiemy w jednym z przysztych rozdziatdw.

Uchwyt do paska menu

Parametr hMenu funkcji CreateWindowEx () reprezentuje pasek menu, jaki bedzie
posiadato kreowane okno. Przywilej posiadania takiego paska majg jedynie okna trwate i
wyskakujace, ponadto muszg one miec takze pasek tytutu.

Jak pewnie doskonale wiemy, menu jest zestawem opcji utozonych w grupy, ktére dajq
dostep do wszystkich funkcji programu. Jest to wiec twér dos¢ skomplikowany, zajecie
sie ktébrym wymaga nieco wiecej wysitku niz tylko wywotania paru funkcji. Przekonamy
sie o tym w dalszej czesci kursu.

Dodatkowy parametr

Ostatni argument CreateWindowEx (), czyli lpParam, jest obecny tylko dla wygody
programisty. Mozemy w nim przekaza¢ wskaznik na dowolne dane, ktére okno ma
otrzymac zaraz po swoich narodzinach. Dostanie go wraz z komunikatem wM CREATE,
wysytanym jeszcze przed powrotem z funkcji CreateWindowEx ().

Wiecej informacji o tym parametrze mozesz znalez¢ przy opisie komunikatu WM CREATE w
niniejszym rozdziale.

Xk k

W ten sposob dotarliSmy do epilogu procesu tworzenia okna. Teraz powinienes juz na ten
temat prawie wszystko... albo przynajmniej pamietac¢, co gdzie zostato tutaj opisane ;D

W nastepnym podrozdziale zajmiemy sie operacjami, jakie mozna przeprowadzac na
utworzonym juz oknie.

Okna pod kontrola

Windows API oferuje cate mndéstwo narzedzi przeznaczonych do pracy z oknami.
Utworzenie wiasnego okna to bowiem tylko poczatek jego misji - dalej na wtasciwosci
stworzonego obiektu ma duzy wptyw zaréwno programista, jak i uzytkownik.

Dziatania na oknach

Z punktu widzenia programisty okna sg tworami niemal catkowicie elastycznymi. Zmieni¢
mozemy kazdy ich aspekt, postugujac sie do tego odpowiednimi funkcjami. Tym wilasnie
czes$ciom WInAPI przyjrzymy sie tutaj.

389

Pokazywanie i ukrywanie

Typowym dziataniem na oknie jest jego pokazanie (uczynienie go widocznym) i ukrycie
lub tez zamkniecie. Sprawdzmy, jak mozemy wykonac te dziatania.

Ukazanie i ukrycie okna

Dos¢ nieoczekiwanie, zarowno do pokazywania, jak i do ukrywania okna, stuzy ta sama
funkcja showWindow () :

BOOL ShowWindow (HWND hWnd, int nCmdShow) ;

Na pewno nie jest nam ona catkiem obca, jako ze dos¢ dokfadnie opisalismy jg w
poprzednim rozdziale - szczegdlnie state, jakie moze przyjaé¢ w drugim parametrze. Teraz
wiec przypomnimy tylko, ze:

> pokazanie okna z zachowaniem jego rozmiardw i pozycji wymaga wykorzystania
statej sw_sHow
maksymalizacja okna wymaga skorzystania z opcji SW MAXIMIZE
SW_MINIMIZE minimalizuje okno
SW_RESTORE przywraca okno zaréwno ze stanu maksy-, jak i minimalizacji
swW_HIDE ukrywa okno, i to tak skutecznie, ze nie bedzie nigdzie widoczne - nawet
na pasku zadan

YV V VYV

Ostroznie nalezy postepowac ze statg sw_HIDE, zwtaszcza jesli ukrycie okna ma by¢
spowodowane jakas akcjg uzytkownika. Ukryte okno jest bowiem dla niego catkowicie
niedostepne, zatem aby mdgt on zobaczy¢ je ponownie, program musi oferowac
mechanizm przywofania schowanego okna znajdujacy sie w catkiem innym oknie.

| Warto bytoby przyjrzec sie opisowi funkcji showWwindow () w MSDN.

Sprawdzanie widocznosci okna

Uzywajac funkcji showWindow () zmieniamy stan widocznosci (ang. visibility state albo
po prostu window state) okna. Pobranie tego stanu jest rowniez mozliwe; nie stuzy
jednak do tego pojedyncza funkcja (ktora mogtaby zwrdcic¢ jakas statg wyliczeniowa),
lecz w sumie az trzy odrebne wywotania:

BOOL IsWindowVisible (HWND hWnd) ;
BOOL IsIconic (HWND hWnd) ;
BOOL IsZoomed (HWND hWnd) ;

Ich postac jest identyczna: kazdej funkcji podajemy uchwyt do sprawdzanego okna, a w
zamian otrzymujemy wartos¢ boolowska, wskazujgcg na obecnos¢ lub nieobecnosé
danego stanu okna. I tak:

» IsWindowVisible () informuje nas o tym, czy okno jest widoczne, czy nie

» IsIconic() mowi, czy okno jest zminimalizowane

» IsZoomed () powiadamia o ewentualnej maksymalizacji okna

Taki sposob pobierania stanu okna moze nas aczkolwiek nie zadowalaé. Nikt nam
wowczas nie zabroni napisania sobie wtasnej funkcji, spetniajacej to zadanie:

enum WINDOWSTATE { WS HIDDEN, WS NORMAL, WS MAXIMIZED, WS MINIMIZED };

WINDOWSTATE GetWindowState (HWND hWnd)

{
// najplierw sprawdzamy, czy okno nie Jjest ukryte
if (!IsWindowVisible (hWnd)) return WS HIDDEN;

390

// dalej zajmujemy sie maksymalizacja 1 minimalizacja
if (IsIconic(hWnd)) return WS MINIMIZED;

else if (IsZoomed (hWnd)) return WS MAXIMIZED;

else return WS NORMAL;

Taka funkcja ma przynajmniej jedng drobng zalete: lepiej sprawdza sie w blokach switch
niz tréjka procedur Windows API.

Pozycja i rozmiar

Z wygladem okna na ekranie wigze sie nie tylko fakt jego widocznosci lub niewidocznosci,
lecz takze jego pozycja oraz rozmiar. Wszystkie te wielko$ci mozemy oczywiscie
zmienia¢ przy pomocy odpowiednich funkcji WinAPI.

Zanim je poznamy, nalezy jeszcze wspomniec o uktadzie odniesienia, jaki stosuje
Windows podczas pozycjonowania okien. Otdz poczatek uktadu wspétrzednych, wedle
ktérego nastepuje ustawienie potozenia okna, znajduje sie zawsze w lewym gérnym
rogu okna nadrzednego. Fakt ten nie ma specjalnego znaczenia dla gtdwnych okien
aplikacji, dla ktorych nadrzedny jest tylko pulpit, szczelnie zakrywajacy caty ekran;
kwestia ta nabierze jednak wymowy, gdy zaczniemy zajmowac sie oknami potomnymi
(kontrolkami).

Po wyjasnieniu tej drobnej sprawy przejdziemy juz do sposobdéw pobierania i ustawiania
potozenia oraz wielkosci okna.

Zmiana pozycji i rozmiaru

Gdy chcemy jednoczesnie zmieni¢ zaréwno umiejscowienie okna na ekranie, jak i jego
szerokos$c¢ i wysokosé, wtedy najrozsadniejszym wyborem jest funkcja o dosy¢ mylacej
nazwie MoveWindow () :

BOOL MoveWindow (HWND hWnd, // uchwyt modyfikowanego okna
int X, // nowa wspdirzedna pozioma
int Y, // nowa wspditrzedna pionowa
int nWidth, // nowa szerokos$é¢ okna
int nHeight, // nowa wysoko$é okna
BOOL bRepaint); // czy odrysowywaé¢ zawartosé okna?

Podajemy w niej zaréwno nowe wspétrzedne okna (o uchwycie wpisanym w pierwszym
parametrze), jak i jego nowe wymiary - szerokosc i wysokos¢. Cztery te wielkosci
zostang wiec bezwarunkowo zmienione.

Pigty parametr bRepaint okresla, czy po dokonaniu operacji na oknie ma ono zostac
odrysowane, a wigc otrzymac komunikat wM PAINT. Prawie zawsze chcemy, by tak sie
wiasnie stato, bo wtedy na pewno wszystkie okna na ekranie bedg wygladaty poprawnie.
W parametrze bRepaint podajemy wiec warto$¢ TRUE.

Nieco inaczej postepujemy, kiedy zalezy nam tylko zmianie na potozenia okna albo tylko
na zmianie jego rozmiaru. Wéwczas powinnismy bowiem skorzysta¢ z bardziej
elastycznej funkcji setWindowPos () :

BOOL SetWindowPos (HWND hWnd, // modyfikowane okna
HWND hWndInsertAfter, // przykrywajace okno
int X, // nowa wspdl. pozioma
int Y, // nowa wspdit. pionowa
int cx, // nowa szerokosé
int cy, // nowa wysokosé

UINT uFlags); // flagi

391

Wiasciwie to potrafi ona nie tylko przesuwac i skalowac okno, ale takze kontrolowac¢
przykrywanie go przez inne okna. Mowa tu o tzw. kolejnosci przestaniania lub
porzadku Z (ang. z-order). Mechanizm ten odpowiada za warstwowe utozenie okien w
interfejsie uzytkownika, w ktorym jedno okno moze catkowicie lub cze$ciowo zastaniac
inne. Nazwa ‘porzadek Z' bierze sie stad, iz zjawisko to sugeruje istnienie trzeciej,
wirtualnej pseudoosi wspoétrzednych Z:

pseudoos Z

Rysunek 9. Porzadek Z okien w systemie Windows

Oczywiscie ta 0$ tak naprawde nie istnieje, gdyz nie mozemy ustawi¢ okna na okreslong
wspotrzedng Z. Mozliwe jest jednak umiejscowienie go na niej w pozycji relatywnej do
innego okna. W parametrze hWwndInsertAfter funkcji SetiindowPos () mozemy
mianowicie podac uchwyt okna, ktére zostanie umieszczone bezposrednio przed tym
modyfikowanym (podanym w hwnd) w porzadku Z (bedzie je przestaniac).

Oprécz tego dopuszczalne jest rowniez podanie w tym parametrze jednej z kilku
specjalnych wartosci o nastepujacym znaczeniu:

stata opis

Umieszcza okno na spodzie kolejnosci przestaniania. Modyfikowane

HWND BOTTOM L - .
- okno bedzie wiec przykrywane przez wszystkie inne widoczne okna.

Okno zostaje umiejscowione na szczycie porzadku Z, przykrywajac

HWND TOP)
- wszystkie pozostate okno.

Umiejscawia okno na szczycie kolejnosci przestaniania, a ponadto

HWND_TOPMOST czyni je oknem typu ,zawsze na wierzchu” (ang. stay on top lub

topmost). Takie okno nie jest przestaniane przez zadne inne okna®!!.

Okno jest przesuwane za wszystkie okna typu ,zawsze na wierzchu”,
HWND NOTOPMOST lecz przed wszystkimi innymi oknami. Jezeli przemieszczane okno
samo byto oknem ,,zawsze na wierzchu”, traci ono te ceche.

Tabela 33. Stale dla parametru hWndInsertAfter funkcji SetWindowPos()

Pozostate cztery parametry funkcji setiWindowPos () sg analogiczne dla argumentéw
MoveWindow () i specyfikujg odpowiednio: nowe wspoétrzedne (X i Y) przesuwanego okna
oraz jego nowe wymiary (cx i cy). Na czym wiec polega réznica miedzy tg funkcjg a
poprzednig?

Jest ona znaczaca: SetWindowPos () pozwala na zdecydowanie, ktére z podanych jej
parametrow (x i Y, cx i cy oraz hiindInsertAfter) majg byc¢ faktycznie brane pod uwage
i zmieniane dla okna o uchwycie hWind. W przeciwienstwie do MoveWindow () nie jesteSmy
zmuszeni do zmiany zaréwno pozycji, jak i rozmiaru okna - przeciwnie, mozemy
samodzielnie zadecydowac o poczynionych modyfikacjach.

11 A doktadniej mdwiac: przez zadne okno, ktére samo nie jest typu ,zawsze na wierzchu”.

392

Dokonujemy tego, podajac odpowiednie flagi bitowe w ostatnim parametrze - uFlags.
Wypadkowa kombinacja moze sie tu sktada¢ z ponizszych wartosci:

flaga | opis
SWP_NOMOVE zapobiega przesuwaniu okna (ignoruje parametry x i v)
SWP_NOSIZE nie pozwala na zmiane rozmiaréw okna (ignoruje parametry cx i cy)
pozostawia aktualng pozycje okna w porzadku Z (ignoruje parametr

SWP NOZORDER
- hWindInsertAfter)

Tabela 34. Flagi bitowe funkcji SetWindowPos()

Tak wiec azeby dokonac jedynie przesuniecia okna po ekranie nalezy wywotaé
SetWindowPos () W sposob podobny tego:

SetWindowPos (hOkno, NULL, nX, nY, 0, 0, SWP_NOSIZE | SWP NOZORDER) ;
Z kolei instrukcja w rodzaju takiej:
SetWindowPos (hOkno, HWND TOP, 0, 0, 0, 0, SWP NOSIZE | SWP_NOMOVE) ;

spowoduje ,wyciggniecie” okna przed wszystkie inne w kolejnosci przestaniania, nie
powodujac jednak ani jego przemieszczania sie, ani skalowania.

Teraz nie od rzeczy bytoby zapoznanie sie z opisem funkcji Movenindow () i
SetWindowPos () W MSDN.

Istnieje rowniez funkcja setWindowPlacement (), ktéra pozwala na zmiane nie tylko
aktualnej pozycji okna, ale tez tej, ktérg przyjmuje ono po maksymalizacji czy
minimalizacji. Ponadto taczy ona w sobie takze mozliwos¢ zmiany stanu widocznosci
okna, niczym showWindow (). W sumie jest to wiec dos¢ ciekawa funkcja, ktérej opis
mozesz znalez¢ w MSDN.

Pobieranie umiejscowienia i wielkosci okna

Koordynaty przestrzenne okna mozemy w Windows nie tylko, rzecz jasna, ustawia¢, ale
takze pobierac je. Czynimy to przy pomocy funkcji GetWindowRect () :

BOOL GetWindowRect (HWND hWnd, LPRECT lpRect);

Zwraca nam ona okreslenie prostokatu mieszczacego okno; znajdziemy je w strukturze
typu RECT, do ktérej wskaznik musimy poda¢ w drugim parametrze funkcji.

Pamietajmy, ze wspotrzedne tego prostokata sg liczone wzgledem okna nadrzednego.

Jak sadze pamietamy doskonale (byto to przeciez catkiem niedawno :D), ze pola tej
struktury nazwane left i top sg wspotrzednymi lewego gornego wierzchotka prostokata,
zas right i bottom - prawego dolnego. Uzyskanie z tych danych szerokosci i wysokosci
okna wymaga zatem tylko dwdch prostych dziatan:

RECT rcOkno;
GetWindowRect (hOkno, &rcOkno);

unsigned uWidth = rcOkno.right - rcOkno.left;
unsigned uHeight = rcOkno.bottom - rcOkno.top;

393

Co ciekawe (i troche dziwne), Windows API nie udostepnia zadnej funkcji, ktora
umozliwiataby bardziej wybidrcze pobieranie danych o pozycji i rozmiarze okna. Zatem
albo dostaniemy wszystko, albo nic :)

Pasek tytutu

Zdecydowana i miazdzaca wiekszos¢ okien posiada swéj pasek tytutu. Na nim zas
widoczny jest tytut okna, opisujgcy zasadniczo jego zawartos¢. Jak kazdy element okna,
takze i on moze by¢ zmieniany przez programiste.

Ustawienie tytutu okna

Nie ma chyba nic prostszego od ustawiania tytutu okna. Przeznaczona do tego funkcja
SetWindowText () ma chyba najprostsza mozliwg i jednoczesnie najbardziej intuicyjng
postac:

BOOL SetWindowText (HWND hWnd, LPCTSTR lpString);

Wywnioskowanie sposobu uzycia tej funkcji z jej prototypu jest, jak sadze, oczywistym
zadaniem. Spéjrzmy aczkolwiek na odpowiedni kod:

#include <sstream>
#include <windows.h>

//

std::stringstream Strumien;
Strumien << rand();
SetWindowText (hOkno, Strumien.str().c str());

Pokazuje on, jak mozna ustawi¢ losowg liczbe jako tytut okna. Przykfad ten nie nalezy
by¢ moze do wielce przydatnych, niemniej dobrze ilustruje funkcje setWwindowText (). Nie
wymaga ona chyba wiecej komentarza, prawda? :)

Odczytywanie tytutu okna

Czynnos¢ odwrotna - pobieranie tytutu okna - moze nastrecza¢ pewnych probleméw. Nie
wynikaja one jednak z topornosci samego Windows API, lecz ich podtozem sa tancuchy
znakow w stylu C. Napis na pasku tytutu musi by¢ bowiem pobrany w tej wtasnie postaci.
Najprostsza (i wcale nie najlepszg) droga jest uzycie kodu zblizonego do ponizszego:

char szTytulOkna[256];
GetWindowText (hOkno, szTytulOkna, 256);

Zastosowano w nim funkcje GetWindowText () :

int GetWindowText (HWND hWnd,
LPTSTR lpString,
int nMaxCount) ;

Zapisuje ona tytut okna o uchwycie hwnd do tablicy znakéw ze wskaznika podanego w
1lpString. I pozornie wszystko byloby w porzadku, gdyby nie rozmiar owej tablicy:
musimy go ustali¢ z odpowiednig dozg rezerwy i podac¢ w trzecim parametrze
GetWindowText (). Takie sg niestety uroki napisow w stylu C.

WInAPI oferuje nam jednak pewng pomoc: przy pomocy GetWindowTextLength ()
mozemy mianowicie pobra¢ sama dtugosc¢ tytutu okna, czyli ilos¢ znakdw, jakie musi
pomiesci¢ docelowa tablica (bufor). Wielkosci tej potrafimy natomiast uzy¢ do
zaalokowania bufora o odpowiedniej pojemnosci.

394

Ostatecznie mozemy pokusic sie o napisanie znacznie wygodniejszej funkcji, pobierajacej
tytut okna i zwracajacej go jako tancuch std::string:

#include <string>
#include <windows.h>

std::string GetCaption (HWND hWnd)
{

char* lpszBuffer;

// pobieramy diugos$¢ napisu i alokujemy pamieé dla bufora
UINT ulLength = GetWindowTextLength (hWnd) ;
lpszBuffer = new char [ulLength];

// odczytujemy napis 1 zapisujemy go w zmiennej typu std::string
GetWindowText (hWnd, lpszBuffer, ulength);
std::string strCaption = lpszBuffer;

// zwalniamy bufor i zwracamy tekst
delete[] lpszBuffer;
return strCaption;

}

Jesli jednak bardziej zalezy nam na szybkosci niz efektywnosci pamieciowej programu, to
alokacje i zwalnianie bufora o zmiennej wielkosci mozemy zastgpic¢ poprzez duza (np.
1024 znaki), statyczng tablice znakow. Do niej bedziemy od razu zapisywac tytut okna, z
pominieciem pobierania jego dtugosci poprzez GetWindowTextLength ().

O wszystkich trzech funkcjach (setwWindowText (), GetWindowText () i
GetWindowTextLength ()) dobrze bytoby poczytac¢ cos wiecej w MSDN.

Inne informacje

Na deser zostawitem potezng funkcje pobierajqcg informacje o oknie - GetWindowInfo () :

BOOL GetWindowInfo (HWND hWnd, PWINDOWINFO pwi) ;

O jej mozliwosciach trudno wywnioskowac z prototypu, jako ze kryjg sie one w strukturze
WINDOWINFO, do ktérej wskaznik musimy podac¢ w drugim parametrze. Sama struktura
przedstawia sie zas$ nastepujaco:

struct WINDOWINFO

{
DWORD cbSize;
RECT rcWindow;
RECT rcClient;
DWORD dwStyle;
DWORD dwExStyle;
DWORD dwWindowStatus;
UINT cxWindowBorders;
UINT cyWindowBorders;
ATOM atomWindowType;
WORD wCreatorVersion;

}i

Zawiera ona cate mnostwo danych dotyczacych okna, ktdre mozemy bez problemu
pobra¢ przy pomocy wymienionej funkcji GetWindowInfo (). Oto krotkie omowienie
wszystkich sktadowych WINDOWINFO:

395

typ pola opis
Podobnie jak w WNDCLASSEX, pierwszy pole struktury
DWORD cbSize WINPOWINFO okresla jej rozmiar w _baJtach. Musimy ust?wm
je na sizeof (WINDOWINFO), zanim zechcemy wywotac
funkcje GetWindowInfo ().
RECT rcWir}dow Te dwa pola okreslajg prostokaty zawierajace (kolejno): cate
rcClient okno oraz jego obszar klienta.
duStyle Z tych pol r_noZemY (_)dczytac' styl oraz rozszerzony styl
DWORD AWExStyle okna, czyli wartosci, ktére zostaty ongis pr;ekazane do
CreateWindow[Ex] () podczas tworzenia okna.
Pole to okresla status okna, tzn. to, czy jest ono aktywne,
DWORD | dwWindowStatus czy tez nie. Wartosc statej ws ACTIVECAPTION w tym polu
oznacza pierwszg sytuacje, zero - druga.
yInr | cxWindowBorders Ta para pol zawiera szeroko$¢ oraz wysokosc¢ obrzeza
cyWindowBorders okna w pikselach.
W tym polu zapisany zostaje atom identyfikujacy klase
okna. Jak (mam nadzieje) pamietasz, atom ten zwraca
ATOM | atomWindowType funkcja RegisterClass[Ex] () po rejestracji klasy okna, a
wartos¢ ta moze zostac¢ uzyta w miejsce nazwy tejze klasy w
niektérych funkcjach, jak np. CreateWindow[Ex] ().
WORD | wCreatorVersion | Okresla windowsowa wersje aplikacji, ktéra stworzyta okna.

Tabela 35. Pola struktury WINDOWINFO

Z ciekawszych sktadowych mozna z pewnoscig wymieni¢ atomiWindowType, dajacq
informacje o klasie okna, oraz rcClient, okreslajaca jej obszar klienta.

Wymiary obszaru klienta okna mozna tez uzyskac poprzez funkcje GetClientRect ().

Uzyskiwanie uchwytéw do okien

Sposrod zaprezentowanych funkcji kazda, co do jednej, wymagata podania uchwytu do
okna. W sumie jest to naturalne, skoro funkcje te stuzg wtasnie do operacji na oknach.
Uchwyt taki trzeba jednak posiadac.

Zasadniczo nie jest to problemem, bo przeciez funkcja tworzaca okno,

CreateWindowEx (), zwraca nam taki uchwyt typu HWND. Mozemy jednak uzyskac uchwyty
okien na wiele innych sposobow; co wiecej, mozliwe jest nawet pobranie identyfikatora
od , nieswojego” okna! Spojrzmy zatem na funkcje, jakie Windows API oferuje nam w
tym zakresie.

Poruszanie sie po hierarchii okien

Przypomnijmy, ze kazde stworzone w systemie okno nalezy do jego hierarchii okien.
Wchodzi wiec ono w réznorodne relacje z innymi istniejgcymi oknami jako element swego
rodzaju drzewa.

I tak dla kazdego okna mozemy wyrdzni¢ nieraz catkiem liczng rodzinke, na ktorg
skfadajg sie:
> okno nadrzedne albo rodzic (ang. parent window), znajdujace sie o jeden
poziom wyzej w hierarchii. Dla gtdwnych okien aplikacji jest to puplit, one same

stanowig zas drugi poziom drzewa okien

okna rownorzedne albo rodzenstwo (ang. sibling windows), czyli takie okna,
ktére istniejg na tym samym poziomie hierarchii i maja wspdlnego rodzica

okna potomne albo dzieci (ang. child windows), znajdujace sie o jeden poziom
nizej w hierarchii okien, majace rozpatrywane okno za rodzica

>

>

396

Okno nadrzedne

Okno rownorzadne Okno réwnorzedne

Okno podrzedne Okno podrzedne

Schemat 40. Relacje miedzy oknami w hierarchii

Najczesciej hierarchia rozcigga sie na wiecej niz trzy poziomy. Wéwczas wszystkie okna
powyzej rozwazanego nazywamy jego przodkami (ang. ancestors), natomiast te ponizej
- potomkami (ang. descendants).

Skoro znamy juz nazewnictwo stosowane w hierarchii okien''?, mozemy nauczy¢ sie
uzyskiwac¢ uchwyty do pokrewnych okien przy pomocy odpowiednich funkcji WinAPI,

Stosunkowo najprosciej jest zdoby¢ uchwyt do okna nadrzednego, poniewaz kazde okno
ma tylko jednego rodzica. Zwraca go funkcja GetParent () :

HWND GetParent (HWND hWnd) ;

Jej uzycie ma sens dla kontrolek umieszczonych w oknie: wtedy bowiem podanie funkcji
uchwytu do kontrolki skutkuje zwrdceniem uchwytu do zawierajacego jg okna. W
przypadku jednak gdy funkcjg GetParent () potraktujemy gtéwne okno jakiejs$ aplikacji,
nie otrzymamy, jak by sie mogto wydawac, uchwytu okna pulpitu, lecz warto$¢ NULL.
Uchwyt pulpitu zdobedziemy natomiast poprzez GetDesktopWindow ().

Nieco trudniejsze jest pozyskanie okien rowno- oraz podrzednych - z tego wzgledu, iz
prawie zawsze istnieje wiele takich okien naraz. Windows API udostepnia nam wszakze
funkcje GetwWindow () :

HWND GetWindow (HWND hWnd, UINT uCmd) ;

Korzystajac z niej, mozemy porusza¢ sie po aktualnym poziomie hierarchii okien!!3
(oknach rownorzednych) lub tez zejs¢ nizej, do okien potomnych. Przegladanie okien na
danym poziomie odbywa sie natomiast wedtug ich porzadku Z, czyli kolejnosci
przestaniania na ekranie. Mozliwe jest wiec przejscie do okna lezgcego zaraz , pod
spodem” aktualnego oraz bezposrednio ,na nim” - pod warunkiem oczywiscie, jest ono
na tym samym poziomie hierarchii. GetWindow () daje ponadto mozliwos¢ skoku na
wierzch i na sam spdd porzadku Z.

Wyboru interesujgcego nas dziatania dokonujemy, wpisujac odpowiednig statg w drugim
parametrze funkcji:

112 jest ono zreszty stosowane nie tylko tam. Wiasciwie stosuje sie ono do kazdej struktury drzewiastej,
uzywanej w programowaniu, a takze np. do weztéw dokumentu XML.

13 Aktualny’ znaczy tutaj ‘ten, na ktérym znajduje sie okno o uchwycie podanym w pierwszym parametrze
GetWindow (), hWnd’. Sadze, ze nietrudno byto sie tego domyslic :)

397

stala okno opis

Powoduje zwrdcenie uchwytu do okna lezacego na
szczycie kolejnosci przestaniania, biorgc oczywiscie pod
uwage tylko okna na tym samym poziomie, co te o
uchwycie hind.

GW_HWNDFIRST | najwyzsze

Skutkiem uzycia tej statej jest otrzymanie okna
GW_HWNDPREV | poprzednie bezposrednio przestaniajacego okno hwnd i bedgcego
naturalnie na tym samym poziomie hierarchii.

Zwraca nastepne okno, lezace bezposrednio nizej w
GW_HWNDNEXT nastepne kolejnosci przestaniania, a na tym samym poziomie w
hierarchii co hwnd.

Pobiera uchwyt okna, ktore jest na spodzie porzadku Z i,

GW HWNDLAST najnizsze - .
— rzecz jasna, na tym samym poziomie hierarchii okien.

Stafa ta skutkuje zwroceniem uchwytu do okna
GW_CHILD potomne potomnego wzgledem hiind, lezagcego na szczycie
kolejnosci przestaniania.

Tabela 36. State pobierania uchwytéw do okien w funkcji GetWindow()

Istnieje oczywiscie mozliwos¢, ze zadne okno o zgdanych cechach nie zostanie znalezione
- wtedy funkcji GetWindow () zwraca po prostu NULL (zero).

No dobrze, teoria teorig, ale jak skorzystac z tej funkcji w praktyce, azeby np. wyliczy¢
wszystkie okna potomne wzgledem danego?... Otéz odpowiedni kod moze wygladac tak:

// wyliczamy wszystkie dzieci okna hwndOkno

// pobieramy pierwsze dziecko (lezace na szczycie porzadku Z)
HWND hwndDziecko = GetWindow (hwndOkno, GW_CHILD) ;

// uzyskujemy uchwyty do okien potomnych lezacych nizej w z-order
do
{

// tutaj co$ robimy z uchwytem zapisanym w hwndDziecko
} while (GetWindow (hwndDziecko, GW_ HWNDNEXT) /* != NULL */)

Mozemy tak wyliczy¢ chociazby wszystkie gtdwne okna aplikacji w systemie - wystarczy,
ze za hwndOkno podstawimy uchwyt pulpitu (przypominam, jest to wynik funkcji
GetDesktopWindow ()).

Zainteresowani, ktorzy z pewnoscig przeczytajg opis funkcji GetWindow () w MSDN,
powinni jeszcze zwrdéci¢ uwage na zagadnienie posiadania okien (ang. owned windows),
rowniez tam opisane.

Poszukiwanie dowolnego okna

Potencjalnie ciekawsze mozliwosci na polu wyszukiwania okien posiada funkcja
FindWindow () :

HWND FindWindow (LPCTSTR lpClassName,
LPCTSTR lpWindowName) ;

Potrafi ona znalez¢ dowolne okno w systemie, nalezace do podanej klasy i/lub majace
wskazany tekst na pasku tytutu. Przy jej pomocy mozemy wiec otworzy¢ sobie dostep do
okien innych aplikacji albo (co jest nawet bardziej interesujace) kluczowych okien
systemu Windows.

398

Wyszukiwanie, jakiego dokonuje ta funkcja, moze odbywac sie przy pomocy dwéch
kryteriow: klasy okna oraz jego tytutu. Nie musimy jednak korzystac¢ z obu metod; jesli
w ktéryms z parametréw wpiszemy NULL, wowczas odpowiadajgce mu kryterium nie
bedzie po prostu brane pod uwage.

Pierwszy parametr 1pClassName jest przeznaczony dla nazwy klasy, ktorej okna
poszukujemy. Dopuszczalne jest tu podanie tej nazwy jako napisu w stylu C, mozna tez
wpisac¢ atom odpowiedniej klasy. Wartos¢ zerowa spowoduje natomiast, ze wszystkie
klasy okien bedg pasowac do wyszukiwania.

Drugi argument 1pwindowName oczekuje na podanie tytutu okna - takze jako
tradycyjnego tancucha znakéw. I tak samo mozemy wpisac tu NULL, aby poming¢
dopasowywanie tytutéw okien.

Zwracang przez Findwindow () wartoscig jest uchwyt do okna gtdwnego (top-level),
pasujacego do zadanych zatozen. Mozliwe jest rzecz jasna, iz zadne takie okno nie
zostanie znalezione - wtedy otrzymujemy po prostu NULL.

FindWindow () przeszukuje tylko okna gléowne aplikacji, pomijajac okna potomne.

Po tym teoretycznym wprowadzeniu czas na jaki$ konkretny, interesujacy przykfad. Oto
program, ktéry potrafi ukrywaé i pokazywac systemowy pasek zadan - czyli okno, ktére z
catg pewnoscig nie nalezy do niego:

// TaskbarHider - program ukrywajacy pasek zadan

#include <string>
#define WIN32 LEAN AND MEAN
#include <windows.h>

// dane okna
std::string g strKlasaOkna = "odOdogk TaskbarHider Window";
HWND g hwndOkno = NULL;

// dane o pasku zadan
HWND g hwndPasekZadan = NULL;
bool g bWidocznyPasekZadan;

LRESULT CALLBACK WindowEventProc (HWND hWindow, UINT uMsg,
WPARAM wParam, LPARAM lParam)
{
switch (uMsgqg)
{
case WM DESTROY:
// odkrywamy pasek zadan
ShowWindow (g _hwndPasekZadan, SW_SHOW) ;

// kohczymy program
PostQuitMessage (0);
return 0;

case WM LBUTTONDOWN:
// zmieniamy stan widocznos$ci na przeciwny
g _bWidocznyPasekZadan = !g bWidocznyPasekZadan;

// pokazujemy/ukrywamy pasek zadan
ShowWindow (g _hwndPasekZadan,
g _bWidocznyPasekZadan ? SW_SHOW : SW HIDE) ;

399

// uaktywniamy wtasne okno i kazemy je odrysowac,
// by pokazala sie informacja

SetFocus (hWindow) ;

InvalidateRect (hWindow, NULL, true);

return 0;

case WM PAINT:

{

}

PAINTSTRUCT ps;
HDC hdcOkno;
RECT rcObszarKlienta;

// pobieramy obszar klienta naszego okna
GetClientRect (hWindow, &rcObszarKlienta):;

// formatujemy napis

std::string strNapis = "Pasek zadan jest ";
strNapis += (g bWidocznyPasekZadan ?
"WIDOCZNY" : "NIEWIDOCZNY");

// rysujemy napis informujacy

hdcOkno = BeginPaint (hWindow, &ps);

DrawText (hdcOkno, strNapis.c str(),
(int) strNapis.length(),
&rcObszarKlienta,

DT SINGLELINE | DT CENTER | DT VCENTER) ;

EndPaint (hWindow, &ps);

return 0;

return DefWindowProc (hWindow, uMsg, wParam, lParam);

———————————— funkcja WinMain() --—-—---——=————————————

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE, LPSTR, int nCmdShow)

{

/* rejestrujemy klase okna */

WNDCLASSEX KlasaOkna;

// wypelniamy strukture WNDCLASSEX

ZeroMemory
KlasaOkna.
KlasaOkna.
KlasaOkna.
KlasaOkna.
KlasaOkna.
KlasaOkna.
KlasaOkna.

(&KlasaOkna, sizeof (WNDCLASSEX)) ;
cbSize = sizeof (WNDCLASSEX) ;
hInstance = hInstance;
lpfnWndProc = WindowEventProc;
lpszClassName = g strKlasaOkna.c str();
hCursor = LoadCursor (NULL, IDC ARROW) ;
hIcon = LoadIcon (NULL, IDI_APPLICATION);
hbrBackground = (HBRUSH) GetStockObject (WHITE BRUSH) ;

// rejestrujemy klase okna
RegisterClassEx (&KlasaOkna) ;

/* tworzymy okno */

400

// tworzymy okno funkcja CreateWindowEx

g_hwndOkno = CreateWindowEx (WS EX TOOLWINDOW,
g _strKlasaOkna.c_str(),
"Ukrywacz paska zadan",
WS OVERLAPPED | WS BORDER
| WS CAPTION | WS SYSMENU,
CW_USEDEFAULT,
CW_USEDEFAULT,
250,
50,
NULL,
NULL,
hInstance,
NULL) ;

// pokazujemy nasze okno
ShowWindow (g _hwndOkno, nCmdShow) ;

/* uzyskujemy okno paska zadan */

// wywolujemy FindWindow (), by znaleZé uchwyt
g_hwndPasekZadan = FindWindow ("Shell TrayWnd", NULL) ;

// pobieramy stan widocznos$ci paska (zapewne jest widoczny,
// ale ostrozno$é nie zaszkodzi :D)
g _bWidocznyPasekZadan = (IsWindowVisible (g hwndPasekZadan) != FALSE);

/* petla komunikatow */

MSG msgKomunikat;
while (GetMessage (&msgKomunikat, NULL, 0, 0))
{

TranslateMessage (&msgKomunikat) ;
DispatchMessage (&msgKomunikat);

}

// zwracamy kod wyjscia
return static cast<int>(msgKomunikat.wParam);

}

Widocznos¢ paska zadan mozemy kontrolowad, klikajagc w okno tego programu. W nim
tez widzimy informacje o tym, czy éw pasek jest w danej chwili widoczny:

Ukmwacz paska zadan

Pasek zadan jest NIEWIDOCZNY

Screen 59. Program ukrywajacy pasek zadan

Jezeli zas chodzi o kod programu, to zawiera on sporo szczeg6tdw, ktdorymi nie musisz sie
obecnie zbytnio przejmowac, a dotyczacych gtdwnie rysowania w oknie. Sporo wyjasnien
mozesz znalez¢ w komentarzach, jeszcze wigcej - w opisie komunikatu WM PAINT w tym
rozdziale, a wszystko wytozymy sobie doktadnie przy opisie biblioteki Windows GDI.

Z catej aplikacji najbardziej moze nas interesowac linijka:

g_hwndPasekZadan = FindWindow ("Shell TrayWnd", NULL);

401

Pokazuje ona s$wietnie, jak uzywac funkcji Findwindow () . W tym przypadku korzystamy
z wyszukiwania wedtug nazwy klasy okna - "shell Trayiind" jest bowiem klasg
systemowego paska zadan. W wyniku wywotania funkcji otrzymujemy (jedyne) okno
nalezace do tejze klasy, czyli wtasnie pasek zadan. Teraz mozemy wiec zacza¢ swojg
zabawe z nim :)

A kiedy znudzi nam sie ukrywanie i odkrywanie paska, warto abysmy zajrzeli do MSDN
po opis funkcji FindWindow (), a takZze FindWindowEx ().

Xk k%

Zakonczony wiasnie podrozdziat stanowit przeglad najwazniejszych operacji, jakich
mozna dokonywac na oknach, oraz funkcji WinAPI, ktore do tego stuzg. Nie wyczerpujg
one naturalnie catego asortymentu dostepnych instrumentow, ale sa, jak sadze,
najbardziej uzytecznymi sposrdd nich. Nie oznacza to jednak, ze z pozostatymi funkcjami
obstugi okien réwniez nie wypadatoby sie zapozna¢; w miare swoich potrzeb powiniene$
wiec uczyni¢ to we wiasnym zakresie.

Teraz natomiast przejdziemy do idei, ktére nadajg oknom cechy interaktywnosci - a wiec
do komunikatéw o zdarzeniach. Przypomnimy sobie wiadomosci o petli komunikatéw oraz
przedstawimy najwazniejsze rodzaje zdarzen.

Komunikaty o zdarzeniach

System Windows powiada okna o zainstniatych zdarzeniach, postugujac sie
komunikatami (ang. messages). Komunikaty te sg odbieranie przez procedure
zdarzeniowg okna, ktdéra zajmuje sie ich przetwarzaniem. Praca ta jest zwykle widoczna
jako objawy dziatania programu: za takie przestanki uznajemy bowiem odpowiednie
reakcje na klikniecia w przyciski, przycisniecia klawiszy i tak dalej.

Komunikaty sterujg wiec funkcjonowaniem aplikacji i pozwalajg jej dziata¢ zgodnie z
oczekiwaniami programisty (czasami takze i uzytkownika :)) Realizacja tych oczekiwan
odbywa sie drogg poprawnej wspdtpracy z mechanizmem komunikatéw Windows.

Na ten mechanizm ten skfada sie petla (pompa) komunikatow (ang. message loop)
oraz procedury zdarzeniowe okien. Ta pierwsza zajmuje sie pobieraniem od systemu
informacji o zdarzeniach i kierowaniem ich we wtasciwe miejsce; procedury zdarzeniowe
sg natomiast takim wtasnie miejscem - w nich nastepuje odczytanie danych niesionych
przez komunikat oraz ustalona przez twérce aplikacji interpretacja zdarzenia.

Nalezyte wykorzystanie komunikatow wymaga stosownej wiedzy, przede wszystkim o ich
rodzajach i odpowiadajacych im zdarzeniach systemowych. Tym wiasnie zagadnieniem
zajmiemy sie w aktualnym podrozdziale, nie pomijajac jednakze pozostatych kwestii
zwigzanych z systemem monitorowania zdarzen w Windows.

Studium petli komunikatow

Jednym z praktycznych problemoéw zwigzanych ze zdarzeniowym modelem dziatania
programow jest jego nieprzystawanie do warunkdéw, nazwijmy to, sprzetowych.
Procesory komputerowe, czy nawet komputery w ogdle, sg bowiem z zasady
przystosowane do pracy sekwencyjnej, pasywnej - potrafig tylko wykonywac¢ podany im
kod maszynowy, nie dbajac zupetnie o warunki ,zewnetrzne”. Bez chocby najprostszego
systemu operacyjnego (np. BIOSu), ktéry podtrzymywatby komunikacje z
poszczegdlnymi podzespotami, mielibysmy do czynienia tylko ze zlepkiem krzemowych
obwodow, niepotrafigcym nawet zadbac o niezbedne zasilanie.

402

Procesor jest wiec tylko robotnikiem, wymagajacym ukierunkowania swojej pracy przez
odpowiedniego nadzorce. Zas im bardziej szef jest wykwalifikowany, tym lepszy moze
zrobi¢ uzytek z dziatan swego podwtadnego. Windows, wraz z wieloma innymi systemami
operacyjnymi, nalezy do profesjonalnych menedzerdéw, ktorzy tak gospodarujg czasem
procesora, by stwarzac¢ wrazenie interaktywnosci uktadu, ktéry z zatozenia interaktywny
nie jest.

Czyni to wszelako w dos¢ prosty i narzucajacy sie od razu sposéb. Otdz dzieli on zasoby
czasu procesora na bardzo krotkie (obecnie rzedu nanosekund) interwaty, w ktorych na
przemian pozwala wykonywac swoj kod poszczegdlnym programom, dziatajgcym
~jednoczesnie”. Tak szybkie przetaczanie jest dla uzytkownika oczywiscie niezauwazalne i
dlatego wywotuje odczucie, iz wszystkie czynnosci sqg wykonywane w tym samym czasie.
Réwnolegle system musi tez liczy¢ sie mozliwoscig zaistnienia niskopoziomowych
»~zdarzen sprzetowych” - przerwan (ang. interrupts), informujacych (miedzy innymi) o
pojawieniu sie nowych danych od urzadzen wejsciowych. Misjg systemu jest
przeistoczenie tych zdarzen we wiasciwe komunikaty i przestanie ich do docelowych
aplikacji. Wszystkie te zadania zadajg funkcjonowania w sposob ciagty - w petli.

Nie dziwi zatem, iz z programistycznego punktu widzenia model zdarzeniowy opiera sie
na petlach. Czes¢ z nich moze by¢ gteboko ukryta - tak jest zapewne z niskopoziomowym
kodem rejestrowania zdarzen w Windows. Istnieje jednak petla, ktéra bardzo interesuje
kazdego kodera; petla, ktéra pozwala programom sterowanym zdarzeniami dziata¢ w
sposOb ciggly; wreszcie petla, ktéra zajmuje sie obstugg tych zdarzen. W systemie
Windows jest to petla komunikatow.

Jako ze jest to niezbedny element kazdego programu okienkowego, spotkalismy sie z
nim juz wczesniej. Poniewaz jednak jest to cze$¢ modelu zdarzeniowego Windows, ktéra
wymaga gtebszego omowienia, zajmiemy sie nig blizej wiasnie teraz.

Traktat o wyzszosci PeekMessage ()
Standardowa, elementarna postac petli komunikatéw jawi sie nastepujaco:

MSG msgKomunikat;
while (GetMessage (&émsgKomunikat, NULL, 0, 0))
{
TranslateMessage (&msgKomunikat) ;
DispatchMessage (&msgKomunikat);

}

Tres¢ jej bloku jest tak minimalistyczna, jak tylko moze by¢. Méowitem bowiem w
poprzednim rozdziale, ze wywotania TranslateMessage () i DispatchMessage () S
absolutnie niezbedne do prawidtowej obstugi komunikatéw. Tq czescig petli nie bedziemy
sie zatem na razie zajmowac.

Znacznie wiecej uwagi poswiecimy natomiast funkcji GetMessage ().

Funkcja GetMessage ()

Blizszy wglad w kazdg nowopoznawang funkcje najlepiej zaczg¢ od spojrzenia na jej
prototyp. Deklaracja GetMessage () przedstawia sie wiec mniej wiecej tak:

BOOL GetMessage (LPMSG l1lpMsg,
HWND hWnd,
UINT wMsgFilterMin,
UINT wMsgFilterMax) ;

Cztery parametry tej funkcji wydajg sie az nadmiarem dobroci, lecz majg one wtasciwe
sobie znaczenie. Zdecydowanie nie zaszkodzi nam, jezeli je poznamy. Spdjrzmy przeto
na ponizszg tabelke:

403

typ nazwa opis

To jest wskaznik na strukture typu MsG. W tej strukturze
zostanie zapisany pobrany komunikat Windows, abysmy mogli

przekazac go funkcjom TranslateMessage () i
DispatchMessage ().

Podajemy tu uchwyt okna, ktérego docelowe komunikaty
HWND hwWnd chcemy pobiera¢. Najczesciej jednak chcemy zajac sie
wszystkimi komunikatami i wobec tego podajemy tutaj NULL.

LPMSG 1lpMsg

Jak pamietamy, state komunikatow sg liczbami, a wiec mogg
by¢ utozone wedtug ich wartosci. W tych dwdéch parametrach
mozemy za$ podac zakres liczb, ktdre nas interesuja,
uzyskujac w ten sposob odfiltrowanie tylko tych komunikatow,
ktére nas w danej chwili obchodza.

Zazwyczaj nie ma takiej potrzeby i dlatego podajemy tu dwa
razy wartos¢ zerowg. Wtedy GetMessage () otrzymuje

wMsgFilterMin wszystkie komunikaty o zdarzeniach.

INT .
v wMsgFilterMax

Jest tez kilka specjalnych statych, ktére podane razem
umozliwiajg wytowienie pewnego rodzaju zdarzen. Na przykiad
WM _KEYFIRST i WM_KEYLAST powoduje odbieranie tylko
komunikatéw od klawiatury.

Wiecej informacji na ten temat mozesz znalez¢ w opisie funkcii
GetMessage () W MSDN.

Tabela 37. Parametry funkcji GetMessage()

Jako typ zwracanej wartosci GetMessage () deklaruje BooL. Mimo to zwraca ona
teoretycznie az trzy mozliwe wartosci:
> niezerowg, gdy funkcja poprawnie odebrata komunikat rézny od wM QUIT
> zerowg, kiedy zostat poprawnie odebrany komunikat wM_QUIT
> -1 w przypadku btedu

Z tego powodu zaleca sie wiasciwie takg oto forme petli komunikatéw:

BOOL bWynik;
MSG msgKomunikat;

while ((bWynik = GetMessage (&msgKomunikat, NULL, 0, 0) != NULL)
{
if (bWynik == -1)
{
// obstuz bilad

}

else
{ TranslateMessage (&msgKomunikat) ;
DispatchMessage (&msgKomunikat) ;
}
}

Powyzsza posta¢ umozliwia poprawne zareagowanie na potencjalne btedy, czego nie
zapewnia krétszy wariant, jaki zaprezentowali$my wczesniej. Nie oznacza to jednak, iz
jest on gorszy. Wystgpienie btedu przy zaprezentowanym wywotywaniu GetMessage ()
bytoby bowiem sytuacjg nadzwyczaj krytyczng, ktérej zaistnienie jest w zasadzie czysto

404

teoretyczne''®. Nasza zwyczajna, szesciolinijkowa petla komunikatdéw jest wiec
catkowicie poprawna.

Niedostatki GetMessage ()

Jakkolwiek GetMessage () wydaje sie dobrze spetnia¢ swoje zadanie, nie jest od wolna od
mankamentéw - konkretnie dwdch.

Pierwszym jest jej specjalne zachowanie sie w przypadku odebrania komunikatu

WM QUIT, czyli zwrdcenie wtedy wartosci niezerowej; w innym razie funkcja zwraca zero.
Jest to zupetne pogwatcenie zasady obowigzujacej dla wiekszosci pozostatych funkcji
Windows API, na mocy ktorej zwrdcenie zera oznacza biad.

Co gorsza, fakt ten moze by¢ takze przyczyng ztej interpretacji prawidtiowo napisanego
kodu, np.:

while (GetMessage (&msgKomunikat, NULL, 0, 0)) {/* ... */ }

Majgc w pamieci poprzednig uwage mozna przypuszczac, ze powyzsza petla bedzie sie
wykonywata az do momentu wystgpienia btedu w wywotaniu GetMessage (). To
oczywiscie nieprawda, podobnie jak przypuszczanie, iz to nieodebranie zadnego
komunikatu jest warunkiem terminalnym petli (przypominam po raz kolejny, ze w tej
postaci jest nim odebranie zdarzenia wM_QUIT).

Niecodzienne zachowanie GetMessage () dla WM QUIT moze tez rodzi¢ inny problem.
Pojawia sie on wtedy, gdy chcemy uzalezni¢ przerwanie dziatania programu od
wystgpienia takze innego komunikatu. Takim komunikatem moze by¢ chociazby

WM _ENDSESSION, wysytany w momencie kofnczenia pracy catego systemu. Gdy chcemy
zapewnic obstuge tego komunikatu, musimy ucieka¢ sie do kodu podobnego do tego:

MSG msgKomunikat;
while (GetMessage (&émsgKomunikat, NULL, 0, 0))

{
if (msgKomunikat.message == WM ENDSESSION) return 0;
TranslateMessage (&msgKomunikat);
DispatchMessage (&msgKomunikat) ;

}

Niestety, patrzac na niego mozna bardzo fatwo ulec mylnej sugestii, ze za przerwanie
petli i programu odpowiada wytacznie komunikat wM ENDSESSION! Nietrudno bowiem
zapomnie¢ o ukrytym sprawdzaniu wystgpienia wM QuIT, dokonywanego w funkcji
GetMessage ().

Drugi ktopot jest teraz niezbyt dla nas zauwazalny, ale tak naprawde ma kolosalne
znaczenie. Ot6z wywotanie GetMessage () trwa dtugo - dokfadniej méwiac, trwa ono tak
dtugo, az w kolejce pojawi sie jakis komunikat do odebrania, jesli dotychczas nie byto
zadnego. Ten czas jest zwykle liczony w milisekundach i dla uzytkownika nie ma rzecz
jasna zadnego znaczenia, ale dla programu oznacza to miliony straconych cykli
procesora, ktére mogtby przeznaczy¢ na swe czynnosci.

Wiekszos¢ aplikacji nie potrzebuje aczkolwiek kazdego wolnego zasobu obliczeniowego,
lecz dla wielu sg one niezwykle pozadane. Do takich programéw nalezg gry, wykonujace
renderowanie kolejnych klatek miedzy komunikatami, a takze wszelkie dziatajace w tle
programy obliczeniowe typu klienty SETI@home czy distributed.net. Dla nich strata czasu
na jatowe wykonywanie sie GetMessage () jest nie do przyjecia.

114 Gdyby bowiem wystapita, to $miato moznaby watpié, czy po deklaracji w rodzaju int x = 3; zmienna x na
pewno zawiera wartos¢ 3 ;)

405

Dlatego w przypadku takich wtasnie aplikacji (ktore przeciez docelowo chcemy pisa¢ w
tym kursie) nalezy wynalez¢ inny sposéb na rozwigzanie problemu petli komunikatéw.

Nie znaczy to jednak, ze ten prosty wariany szesciolinijkowy, zaprezentowany na samym
poczatku kursu WiInAPI, jest zty. Faktycznie sprawdza sie on w zasadzie kazdym
programie uzytkowym i nalezy go stosowac¢ w takich aplikacjach.

Przedstawiamy PeekMessage ()

Domyslasz sie chyba, ze narzekania na GetMessage (), ktdrymi uraczytem cie w
poprzednim paragrafie, nie byty catkiem bezproduktywne. Lajana procedura posiada
bowiem bardziej elastycznego kuzyna w postaci funkcji peekMessage () :

BOOL PeekMessage (LPMSG lpMsg,
HWND hWnd,
UINT wMsgFilterMin,
UINT wMsgFilterMax,
UINT wRemoveMsq) ;

Prototyp pPeekMessage () wydaje sie bardzo podobny do deklaracji GetMessage (). Miedzy
obiema funkcjami wystepujg jednak dos¢ spore réznice:
» PeekMessage () posiada dodatkowy parametr wRemoveMsg. Okreslamy w nim, czy
pobierany komunikat ma by¢ nastepnie usuniety z kolejki:
v' podanie statej PM NOREMOVE spowoduje pozostawienie komunikatu w
kolejce (bedzie mozna pobra¢ go ponownie)
v wartos¢ pM_REMOVE skutkuje usunigciem zdarzenia z kolejki

W tym parametrze mozna réwniez podac kilka innych statych, umozliwiajacych wybor
rodzaju komunikatow do pobrania (niezaleznie od wartosci wMsgFilterMin i
wMsgFilterMax). O tych statych mozesz poczyta¢ w MSDN.

> w przeciwienstwie do GetMessage (), funkcja PeekMessage () nie czeka na
pojawienie sie nowego komunikatu w kolejce, jezeli ta jest pusta. W takiej
sytuacji zwraca po prostu odpowiednig informacje - a zatem...

> rezultatem funkcji peekMessage () jest tylko informacja o wykrytej obecnosci
(warto$é niezerowa) lub nieobecnoéci (zero) komunikatu w kolejce. Zadne inne
czynniki nie wptywajq na wynik funkcji - wobec tego...

» funkcja peekMessage () nie traktuje w sposdb specjalny ani wM _QUIT, ani zadnego
innego komunikatu

Petla komunikatow z PeekMessage ()

Znajac te nowe cechy, mozemy napisac petle komunikatéw z uzyciem funkcji
PeekMessage () .

MSG msgKomunikat;

for (;7)

{
if (PeekMessage (&msgKomunikat, NULL, O, 0, PM REMOVE))
{

if (msgKomunikat.message == WM QUIT) break; /]t

115 Zamiast poréwnania pola message mozna uzy¢ wywotania GetMessage (), jako ze funkcja ta dokonuje
sprawdzenia komunikatu wzgledem wM QuIT. Wéwczas jednak nalezatoby zmieni¢ ostatni argument
PeekMessage () Na PM_NOREMOVE. Powstata petla dziatataby identycznie do podanej tutaj, z tym ze ponowne
pobranie tego samego komunikatu (dokonane juz w PeekMessage (), @ przeprowadzane po raz kolejny w

9

406

TranslateMessage (&msgKomunikat) ;
DispatchMessage (&msgKomunikat);

Po takiej petli powinna jeszcze wystgpi¢ niezbedna instrukcja

return static cast<int>(msgKomunikat.wParam);, zZwracajaca poprawny kod wyjscia.
Nie bede jej powtarzat w kolejnych kodach, jako ze w zasadzie nie jest ona czescig petli
komunikatow.

Mimo pozornego skomplikowania petla ta jest tak naprawde tatwiejsza do rozwiktania.
Dzieje sie tak za sprawg jawnego przyréwnywania rodzaju komunikatu do wM QUIT.

Co niektdrzy mogaq jeszcze kreci¢ nosem na wystepujacq tutaj petle nieskofnczong
for (;;).Pozbycie sie jej nie sprawia jednak zadnego ktopotu, gdyz kryterium
przerwania iteracji moze by¢ z tatwoscig przeniesione do warunku petli while:

MSG msgKomunikat;

msgKomunikat.message = WM NULL; // e

while (msgKomunikat.message != WM QUIT)

{
if (PeekMessage (&msgKomunikat, NULL, O, 0, PM REMOVE))

{
TranslateMessage (&msgKomunikat) ;
DispatchMessage (&msgKomunikat);

}

Wymaga to jeszcze poczatkowego wyzerowania pola okreslajgcego rodzaj komunikatu w
strukturze MsG. Warto$¢ wM NULL oznacza taki wiasnie ,zerowy komunikat”. Dalej petla
przebiega w identyczny sposob, jak w poprzednim wydaniu.

Nie tracgc czasu

Przewaga peekMessage () nad GetMessage () Ujawnia sie najbardziej w momencie, gdy
chcemy wykonywac jakie$ dodatkowe dziatania miedzy przetwarzaniem kolejnych
komunikatéw. Podatem juz przyktady takich czynnosci, wsrod ktérych najwazniejsze
miejsce zajmuje generowanie grafiki w grach komputerowych oraz demach.

Osiggniecie tego celu nie jest trudne, jezeli pamietamy, o czym informuje nas wartos¢
zZwracana przez peekMessage () . Warunek:

if (PeekMessage (&msgKomunikat, NULL, O, 0, PM REMOVE))

jest wiec prawidziwy tylko wéwczas, gdy w kolejce komunikatéw oczekiwato nieobstuzone
jeszcze zdarzenie. W innym przypadku kod bloku if (czyli wywotania dwdch niezbednych
funkcji dla pobranego komunikatu) nie wykona sie wcale.

Ten ,inny przypadek” jest jednak witasnie tym, ktérego tak usilnie poszukujemy! Aby
zatem spowodowac wykonywanie jakiego$ kodu w czasie, gdy program nie musi

GetMessage ()) byloby operacjq nadmiarowg; utracilibysmy tez klarowno$¢ bezposredniego podania warunku
przerwania petli.

116 poczatkowe ustawienie pola message mozna zamieni¢ na wywotanie PeekMessage () identyczne jak wewnatrz
petli, jezeli obecnos¢ dwdéch takich samych instrukcji w bliskim sasiedzctwie jest dla nas do przyjecia.

407

zajmowac sie zadnym komunikatem, nalezy po prostu doda¢ odpowiednig fraze else do
omawianej instrukcji if:

MSG msgKomunikat;
msgKomunikat.message = WM NULL;

while (msgKomunikat.message != WM QUIT)

{
if (PeekMessage (&msgKomunikat, NULL, O, 0, PM REMOVE))

{
TranslateMessage (&msgKomunikat) ;
DispatchMessage (&msgKomunikat) ;

// tutaj mozemy wpisa¢ dodatkowy kod, wykonywany wtedy,
// kiedy aplikacja nie ma juz zadnych komunikatdéw do obsituzenia

}

Petla komunikatow w tej postaci jest juz catkowicie wystarczajaca dla prostych czy nawet
bardziej skomplikowanych gier - niezaleznie od tego, czy do wyswietlania grafiki uzywajq
one DirectX czy tez innych bibliotek. Mozna jg réwniez wykorzystac¢ dla wszelkiego
rodzaju programéw dziatajacych w tle.

Ogdlnie moéwiac, petla ta jest wiec wiasciwa dla wszystkich aplikacji dziatajgcych zgodnie
z modelem czasu rzeczywistego.

Powyzszg petle zdotamy jeszcze udoskonali¢, kiedy juz na powaznie zajmiemy sie
. programowaniem gier. Mozna bowiem poprawi¢ efektywnos¢ jej dziatania dla aplikacji
. petnoekranowych.

Struktura komunikatu

W kodzie petli komunikatéw wielokrotnie uzywaliSmy miedzy innymi struktury mMsc. W
niej tez zostawaty zapisywane dane o komunikatach odebranych przez
Get/PeekMessage () oraz przesytanych ostatecznie do okna. Czas teraz spojrzec z bliska
na budowe komunikatu.

Deklaracje typu strukturalnego MSG mozna przedstawi¢ w nastepujacy sposéb:

struct MSG

{
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

}i

Zawiera ona wyszczegolnienie szesciu pol, z ktoérych wszystkie zostaty opisane w
ponizszej tabelce:

typy | nazwy | opis

HWND hwnd

UINT | message | Te cztery pola sg identyczne z parametrami procedury zdarzeniowej,
WPARAM | wParam ktdéra ostatecznie otrzymuje komunikat.

LPARAM | 1lParam

408

typy | nazwy opis

Zapisywany jest tu czas wystapienia zdarzenia. Format tego czasu
jest przy tym dosc¢ niecodzienny, gdyz stanowi go liczba milisekund
(tysiecznych czesci sekundy), jakie uptynety od startu systemu.

DWORD time
Aktualny czas w tym samym formacie zwraca tez funkcja
GetTickCount (). Natkniemy sie na nig niejednokrotnie.
To pole przechowuje pozycje kursora myszy w chwili zaistnienia
zdarzenia. Typ POINT tego pola jest zdefiniowany jako bardzo prosta
struktura:
struct POINT
{
POINT pt LONG %3
LONG vy;

}i

Jak sie pewnie domyslasz, x okresla wspotrzedng pozioma, a v
koordynat pionowy kursora.

Tabela 38. Pola struktury MSG

Pola time i pt nie majq zbyt wielkiego znaczenia, jako ze nie trafiajg one ostatecznie do
procedury zdarzeniowej okna. Dlatego tez zajmiemy sie przede wszystkim czterema
pierwszymi polami, bedacymi jednoczesnie parametrami procedury.

Uchwyt do okna

Pod nazwag hwnd kryje sie uchwyt okna, ktérego dotyczy zdarzenie. Méwitem juz, ze
dzieki temu mozliwe jest napisanie jednej procedury zdarzeniowej do obstugi wielu okien.
Windows umozliwia bowiem istnienie wiecej niz jednego okna danej klasy, a poniewaz
klasa okna ma przypisang tylko jedng procedure zdarzeniowg, wiec musi by¢ ona
przygotowana do pracy z wieloma uchwytami do okien.

Trzeba tez zaznaczy¢, ze procedura zdarzeniowa danej klasy okna bedzie otrzymywata
wylacznie takie zdarzenia, ktérych macierzyste okna (o uchwytach podanych w polu
hwnd struktury MsG) bedq nalezaty do tejze klasy.

To zagmatwane (ale tylko pozornie ;D) stwierdzenie staje sie wazne, gdy zaczynamy
wyposazac okna w kontrolki potomne. Wowczas np. klikniecie w przycisk, chociaz jest
zdarzeniem samego przycisku, zostaje podane do procedury zdarzeniowej jako
pochodzace od okna nadrzednego wzgledem przycisku.

O kontrolkach bedziemy jeszcze obszernie mowi¢ w przysztych rozdziatach.

Stata komunikatu

Pole message zawiera statg okreslajacg rodzaj komunikatu - czyli po prostu rodzaj
zdarzenia. Pole to odpowiada drugiemu parametrowi procedury zdarzeniowej, zwanemu
zwykle uMsg.

W Windows kazdemu komunikatowi odpowiada wiasciwa stata zdefiniowana w pliku
nagtdéwkowym winuser.h. Takich statych jest bardzo duzo, co wiecej mozliwe jest takze
definiowanie wiasnych komunikatéw, przydatnych w okreslonych sytuacjach.

Sposrdéd mnogosci komunikatéw najwazniejsze s te, ktdérych nazwy rozpoczynajg od
WM . S to bowiem jedyne komunikaty odbierane przez procedury zdarzeniowe zwyktych
okien - takich, jakimi zajmujemy sie w tym rozdziale. Oprdcz nich istniejg rowniez
komunikaty przeznaczone do pracy z kontrolkami potomnymi (jak na przyktad BM
tyczace sie przyciskéw czy EM od pdl tekstowych). Tych aczkolwiek nie odbieramy w
procedurach zdarzeniowych, chyba ze stosujemy bardziej zaawansowane techniki

409

programowania Windows, zwane subclassingiem i superclassingiem. Zapewniam, ze nie
ominie cie poznanie ich ;)

Zdecydowanie najczesciej bedziemy jednak zajmowac sie ,,zwyktymi” komunikatami
okien, rozpoznawanymi po przedrostku WM . Poznanie najwazniejszych ich typow, tak
samo jak zaznajomienie sie z kluczowymi funkcjami Windows API, jest niezbedne do
opanowania sztuki programowania Windows.

Parametry komunikatu

Wartosci wParam oraz 1Param zawierajg dodatkowe dane o zainstniatym zdarzeniu. Ich
doktadne znaczenie zalezy od rodzaju komunikatu, jednak dzielg one wspdlny sposob
reprezentacji tych pomocniczych informacii.

Nazwy wParam i 1Param pochodzg jeszcze z czaséw 16-bitowych wersji Windows. Tam tez
parametr wParam byt typu woRrRD (16-bitdw), zas 1Param - LONG (32-bity). Stad wziety sie
te nazwy z przedrostkami, ktére zdotaty przetrwaé do dzis.

Oba pola (parametry) sg 32-bitowymi liczbami catkowitymi bez znaku, co w Windows
odpowiada typowi DworD (aczkolwiek formalne typy tych pdl to WPARAM i LPARAM). DWORD
oznacza natomiast tak zwane podwéjne stowo lub dwustowo (ang. double word); jest
to tradycyjna nazwa dla zespotu czterech bajtéw ztaczonych w jedng wartosc.

Miano to bierze sie stad, iz taki zespdt sktada sie z dwdch 16-bitowych (2 bajtowych)
liczb, zwanych stowami'!’ (ang. words). Wyrdzniamy przy tym tzw. starsze stowo
(ang. high-order word), stanowigce gorng potéwke wartosci typu DworD, oraz mtodsze
stowo (ang. low-order word) - dolng potowe.

Jakkolwiek brzmi to teraz dos¢ abstrakcyjnie, powinno sie wyjasni¢ po spojrzeniu na
ponizszy schemat:

1 x 4 baity . dwustowo
! ' !
2 x 2 bajty starsze stowo miodsze stowo
, starszy miodszy starszy miodszy

4> 1 bat bait bajt baijt bait
ol L] L Ll w
by 1 N n M M
bit 31 bit 23 bit 15 hit 7 bit O

Schemat 41. Podziat dwustowa na pojedyncze stowa i bajty. Na dole jest tez pokazana numeracja
bitow, poczynajac od najmniej znaczacego (ang. least significant bit - LSB, bit 0) do najbardziej
znaczacego (ang. most significant bit - MSB, tutaj bit 31).

Okreslenia ‘starszy’ i ‘mtodszy’, ‘géorny’ i ‘dolny’ oraz ‘(naj)bardziej’ i ‘(naj)mniej
znaczacy’ sg synonimami i dotyczg zaréwno stow, jak i bajtow oraz bitéw. To, ze dana

17 Istnieje jeszcze termin stowa maszynowego (ang. machine word), odnoszacy sie do ciggu bitéw o rozmiarze
rownym wielkos$ci rejestru procesora na danych komputerze. Zatem dla naszych pecetéw oznaczatoby ono 32
bity i dlatego czasami wiasnie takg sekwencje nazywa sie stowem. Dzieje sie tak jednak bardzo rzadko (gtéwnie
w publikacjach naukowych), a w ogromnej wiekszosci wszelkich dokumentacji programistycznych (na czele z
opisem WiInAPI i DirectX) termin ‘stowo’ odpowiada ciggowi doktadnie 16-bitéw, niezaleznemu od uzywanej
platformy sprzetowej.

410

czesc liczby jest starsza od innej oznacza, ze jej zmiana ma wiekszy wptyw na catg
wartosc.

Przyktadowo, jezeli mamy dwubajtowe stowo i dodamy 1 do jego dolnhego bajtu, to catg
liczbe zwiekszymy réwniez o jeden. Gdy jednak zinkrementujemy goérny bajt, wowczas
wartosc stowa zwiekszy sie az o 256.

Duza pomoca w zrozumieniu tego mechanizmu bedzie dla ciebie z pewnoscig Dodatek B,
| Reprezentacja danych w pamieci.

No dobrze, ale jak te szczegdty budowy dwustowa majg sie do komunikatéw Windows?...
Otdz sq one zwigzane bardzo $cisle. System operacyjny czesto bowiem wykorzystuje
zmienne wParam i 1Param nie jako liczby 32-bitowe, ale wiasnie jako zespoty stow czy
nawet bajtéw. Robi tak, gdyz nierzadko potrzebuje przekazac wiecej niz dwie wartosci
jako parametry zdarzenia; zapisuje je wiec w dwubajtowych potéwkach pdl wparam i
1Param. W ten sposob uzyskuje mozliwo$¢ przechowania czterech wartosci zamiast
dwoch (oczywiscie kosztem mniejszego zakresu liczb, ale zwykle nie jest to problemem).

Dla programisty piszacego kod obstugi komunikatow takie upakowanie wartosci nie jest
przy tym specjalnym problemem. Windows API udostepnia bowiem kilka uzytecznych
makr, potrafigcych wytuskac interesujgce nas fragmenty dwustéw. Nalezg do nich:

» HIWORD () i LOWORD (), pobierajagce odpowiednio: starsze oraz mtodsze stowo z
wartosci 32-bitowej. Wyrazenie HIWORD (wParam) zwroci wiec gérne 16-bitéw z
wartosci wParam, za$ LOWORD (1Param) mniej znaczacg potdwke parametru 1Param

> HIBYTE () i LOBYTE (), wyciggajace starszy oraz miodszy bajt z wartosci 16-
bitowej. Makra te sg przydatne, gdy w jednym z parametrow upakowano wiecej
niz dwie wartosci. I tak np. LOBYTE (HIWORD (wParam)) poda nam dolny bajt z
gornego stowa pola wParam (W sumie bedzie to wiec trzeci bajt, liczac od prawej),
zas poprzez HIBYTE (LOWORD (1Param)) mozemy uzyskac starszy bajt mtodszego
stowa 1Param (@ wiec drugi bajt od prawej)

Uwazajmy, gdyz mamy tu do czynienia z makrami, ktére nie dokonujq sprawdzenia
typow tak jak funkcje. Zwracajmy zatem uwage, by do HIWORD () oraz LOWORD ()
podawac tylko wartosci 32-bitowe, a do HIBYTE () i LOBYTE () - 16-bitowe.

Oprocz powyzszych makr WinAPI deklaruje tez kilka bardziej konkretnych,
przeznaczonych do wspotpracy ze specyficznymi komunikatami. Nalezy do nich na
przyktad GET X LPARAM (), stuzace do pobrania wspotrzednej poziomej kursora przy
obstudze komunikatéw myszy. O takich specjalnych makrach powiemy sobie, omawiajac
wiasciwe im zdarzenia.

Windows API ma tez makra dziatajace w odwrotny sposéb do powyzszych, tj. sktadajace
jedng wiekszg wartos¢ z dwoch potdwek. Do takich makr nalezy MAKEWORD (), tworzace
stowo z dwdch bajtéw, oraz MAKELONG (), taczace dwa stowa w jedno podwdjne stowo.
Liste wszystkich makr WinAPI mozesz naturalnie znalez¢ w MSDN.

Przy opisach omawianych komunikatdw bede rzecz jasna podawat, jak zapisane w wParam

i 1Param sg ich ewentualne parametry. Informacje te sg rowniez w klarowny sposéb
podane w MSDN.

Komunikaty o zdarzeniach okna

Na koniec tego podrozdziatu przyjrzymy sie jeszcze kilku najwazniejszym komunikatom,
zwigzanym ze zdarzeniami pochodzacymi od samych okien.

411

Tworzenie i niszczenie

Podczas tworzenia okna oraz w trakcie jego usuwania wysytanych jest kilka
komunikatow. Dzieki temu okno moze zareagowac¢ odpowiednio na te dwie kluczowe dla
niego akcje.

WM CREATE

Komunikat wM CREATE jest wysyfany do okna tuz po jego stworzeniu. Czyni to funkcja
CreateWindow[Ex] (), czekajac przy tym na obstuzenie przestanego zdarzenia. Nie
zakonczy ona zatem swojej pracy, zanim procedura zdarzeniowa nowostworzonego okna
nie zajmie sie komunikatem WM CREATE. Ma to swoje uzasadnienie, ktére podamy za
chwile.

Komunikat wM CREATE przynosi ze sobg tylko jeden dodatkowy parametr, odczytywany z
wartosci 1Param:

lpCreateStruct = reinterpret cast<LPCREATESTRUCT> (lParam) ;

Za nim kryje sie jednak catkiem spora struktura typu CREATESTRUCT, na ktorg ow
parametr wskazuje:

struct CREATESTRUCT
{
DWORD dwExStyle;
LPCTSTR lpszClass;
LPCTSTR lpszName;
LONG style;
int x;
int y;
int cx;
int cy;
HWND hwndParent;
HMENU hMenu;
HINSTANCE hInstance;
LPVOID lpCreateParams;
i

Nie zdziwitbym sie gdyby jej pola byty dla ciebie znajome. Sg to bowiem doktadne
odpowiedniki parametrow funkcji CreateWindowEx (), wywotywanej w celu utworzenia
okna. Jest wsrod nich takze pole 1pCreateParams, odpowiadajgce ostatniemu
parametrowi funkcji, przeznaczonemu do swobodnego uzytku programisty.

Gdy wtasnorecznie przetwarzamy komunikat wM CREATE, mozemy w procedurze
zdarzeniowej zwrocic rezultat tego dziatania. Zwykle jest to 0, ktére w przypadku
wszystkich komunikatéw informuje system o poprawnym wykonaniu.

Mozliwe jest jednak zwrdcenie -1. Wtedy Windows uznaje, ze program nie akceptuje
utworzonego okna i nakazuje jego zniszczenie. System postusznie spetnia to zadanie, a
wtedy funkcja Createwindow[Ex] () (oczekujgca na przetworzenie WM CREATE) zwWraca w
wyniku NULL. Tworzenie okna konczy sie wowczas niepowodzeniem, spowodowanym
wyraznym zyczeniem aplikacji.

Co robimy w reakcji na wM CREATE? Do najczestszych czynnosci nalezy z pewnosciq
utworzenie okien potomnych, chociazby kontrolek. W tym miejscu mozna tez stworzy¢
obiekty, zaalokowa¢ pamiec¢ oraz przygotowac zasoby, ktore beda oknu potrzebne do

pracy.

412

WM _CLOSE

Okno odnotowuje zdarzenie wM CLOSE, gdy uzytkownik zechce je zamknac. Jak wiemy,
moze to uczynic¢ poprzez pojedyncze klikniecie w przycisk = jub dwukrotne w ikone okna
w lewym gérnym rogu.

Tak naprawde jednak Windows nie wykonuje wtedy zadnej czynnosci, ktérg moznaby
nazwac ‘zamknieciem’ okna. Takie pojecie nie funkcjonuje w Windows API'!®; okno moze
by¢ co najwyzej zniszczone, co wigze sie ze zwolnieniem wszystkich zwigzanych z nim
zasobdéw systemowych, z uchwytem na czele. Odpowiada za to funkcja
DestroyWindow ().

Funkcja ta jest zresztg wywotywana w domysinej procedurze zdarzeniowej
DefWindowProc (), do ktérej trafiajg wszystkie nieobstuzone komunikaty okna. Tak wiec:

Jezeli nie napiszemy wtasnego kodu obstugi komunikatu wM CLOSE, to bedzie on
zawsze powodowat zniszczenie okna.

Niekiedy nam to odpowiada - wtedy po prostu nie zajmujemy sie tym komunikatem. Jesli
jednak chcemy podjac jakie$ inne akcje przy zamykaniu okna, wtedy nalezy napisa¢ kod
obstugi zdarzenia WM CLOSE.

Do najbardziej typowych zadan, jakie mozna w nim podja¢, zalicza sie zapytanie
uzytkownika o potwierdzenie checi zamkniecia okna. Dzieje sie tak szczegdlnie czesto w
przypadku gtéwnych okien aplikacji, ktérych zniszczenie pocigga za sobg zakonczenie
pracy catego programu. Wtedy tez kod obstugi wM CLOSE moze sie przedstawiac
nastepujgco:

case WM CLOSE:
{

// pytamy o potwierdzenie zakonczenia dziatania programu
if (MessageBox (hWnd, "Czy na pewno chcesz zakonczy¢é program?',
"Zakonczenie', MB YESNO | MB ICONQUESTION) == IDYES))
// niszczymy gidwne okno, co najpewniej zakonczy caly program
DestroyWindow (hWnd) ;

return 0;

}

Komunikat ten nie ma zadnych dodatkowych parametrow, wiec zmienne wParam i 1Param
sg niewykorzystane. Rowniez wartos¢, jaka zwrdcimy przy jego (ewentualnym)
przetwarzaniu nie ma znaczenia - tradycyjnie wiec moze by¢ to zero.

WM DESTROY

Funkcja DestroyWindow (), przywotywana (zazwyczaj) w reakcji na wM_CLOSE, powoduje
zniszczenie okna. W czasie tego procesu okno otrzymuje jeszcze jeden komunikat -
WM _DESTROY.

Zdarzenie to ma juz charakter czysto informycyjny, poniewaz na tym etapie nie ma juz
zadnych szans na ocalenie niszczonego okna. W tym momencie powinno ono tylko
zwolni¢ obiekty i zasoby, ktére stworzyto u swych narodzin - jakkolwiek wiekszos¢ z nich,
na czele z kontrolkami potomnymi, zostanie zniszczona automatycznie.

Gtéwne okna aplikacji, napotykajac WM DESTROY, czynig jeszcze jedng wazng czynnosc:
wywotujg funkcje PostQuitMessage () :

case WM DESTROY:

118 Czasem jest moze tylko utozsamiane z minimalizacja okna, jakkolwiek dziwnie by to brzmiato.

413

PostQuitMessage (0);
return 0;

Pamietamy, ze powoduje ona zakonczenie pracy programu poprzez wystanie komunikatu
WM QUIT.

WM DESTROY, podobnie jak wM CLOSE, nie niesie zadnych pomocniczych informacji, a jego
obstuga powinna zakonczy¢ sie zwrdceniem zera.

WM _QUIT

Ten komunikat jest pod kilkoma wzgledami wyjatkowy. Jego przetwarzaniem zajmuje sie
bowiem nie procedura zdarzeniowa okna, lecz petla komunikatow. Komunikat ten
powoduje zresztg przerwanie tej petli, a tym samym zakonczenie programu - jest wiec
ostatnim zdarzeniem odbieranym przez aplikacje.

WM _QUIT posiada jeden parametr, zapisywany w wParam:
nExitCode = static cast<int>(wParam);

Jest to kod wyjscia (ang. exit code) aplikacji, ktory informuje srodowisko zewnetrzne o
wyniku dziatania programu. Przypomne, ze wedle konwencji warto$¢ zerowa oznacza
poprawne wykonanie, a kazda inna - btad.

Kod wyjscia powinna zwrdci¢ funkcja winMain (), wobec tego jej koncédwka musi
wygladac tak:

MSG msgKomunikat;

// tutaj petla komunikatdéw zajmuje sie pompowaniem zdarzen we witasciwe
// im okna, dopdki Peek/GetMessage () nie odbierze WM QUIT i nie przerwie
// to petli; wtedy ten komunikat zostaje w strukturze msgKomunikat

// zwracamy kod wyjscia zawarty w wParam komunikatu WM QUIT
return static cast<int>(msgKomunikat.wParam);

A skad w ogoéle wM QUIT bierze ten kod?... Otdz jest to parametr funkcji
PostQuitMessage (), Wywotywanej w momencie niszczenia (WM DESTROY) gtdwnego okna
aplikacji.

Zmiana pozycji i rozmiaru okna

Przy okazji przesuwania i skalowania - niezaleznie od tego, czy jego przyczynq jest
uzytkownik, czy sam program - okno otrzymuje szereg komunikatéw. Dzielg sie one na
dwie grupy: jedne sq bowiem otrzymywane tuz przed zmiang pozycji lub rozmiaru (albo
w jej trakcie), a drugie juz po jej dokonaniu.

Przed faktem

Kiedy uzytkownik przesuwa okno, przeciggajac je za pasek tytutu, przedmiot tej zabawy
otrzymuje komunikat wM MOVING. Zdarzenie to przynosi ze sobg jeden parametr,
zapisany w 1Param:

prcWindow = reintepret cast<LPRECT> (lParam);

Jest nim wskaznik do struktury RECT, definiujgcej aktualng prostokatng obwiednie okna.
Zmieniajac jej pola, program moze wptywac na pozycje przesuwanego okna.

Jednym z celéw takiej zmiany moze by¢ , przyklejanie” okna do krawedzie jego okna
nadrzednego, na przyktad pulpitu. Tak zachowuje sie cho¢by okno odtwarzacza Winamp.

414

Jezeli przetwarzamy ten komunikat, powinnismy zwréci¢ do systemu wartos¢ TRUE.

Podobnym komunikatem jest wM SIzZING, wysyfany podczas zmiany rozmiaru okna
przecigganiem za jego krawedz. Przyjmuje on juz dwa parametry:

dwEdge = wParam;
prcWindow = reintepret cast<LPRECT>(lParam);

prcWindow znaczy tu to samo, co w WM MOVING, tj. okresla prostokat zamykajacy okno
(czyli jego pozycje i wymiary). Z dwEdge mozemy sie natomiast dowiedzie¢, ktorg czes¢
obrzeza okna uzytkownik przecigga. Parametr ten przyjmuje jedna z ustalonych statych:

stata obrzeze

WMSZ LEFT lewa krawedz
WMSZ TOP gorna krawedz
WMSZ RIGHT prawa krawedz
WMSZ BOTTOM dolna krawedz
WMSZ TOPLEFT lewy gérny rég
WMSZ TOPRIGHT | prawy gorny rog
WMSZ BOTTOMLEFT | lewy dolny rég
WMSZ BOTTOMRIGHT | prawy dolny rog

Tabela 39. Stale parametru dwEdge (wParam) komunikatu WM_SI1ZING

Gdy zajmujemy sie niniejszym komunikatem, powinnismy (podobnie jak w WM MOVING)
zwréci¢ wartos$¢ TRUE.

Ostatnim komunikatem z omawianego rodzaju WM WINDOWPOSCHANGING. Rézni sie on od
dwéch pozostatych przyczyng swojego wystgpienia. Otrzymanie tego komunikatu nie jest
bowiem skutkiem dziatan uzytkownika, lecz samego programu: okno dostaje go, gdy
jego pozycja i/lub rozmiar i/lub miejsce w porzadku Z majg za chwile zosta¢ za pomocg
funkcji w rodzaju SetWindowPos () €zy MoveWindow ().

Razem z tym komunikatem otrzymujemy tez pewne pomocne informacje:

pWindowPos = reinterpret cast<WINDOWPOS*> (lParam) ;

Sg one zawarte w strukturze wINDOWPOS, na ktdrg wskaznik dostajemy:

struct WINDOWPOS
{
HWND hwnd;
HWND hwndInsertAfter;
int x;
int y;
int cx;
int cy;
UINT flags;
i

Nietrudno chyba zauwazy¢, ze pola tej struktury odpowiadajq doktadnie parametrom
funkcji setwindowPos (). Jezeli wiec chcesz poznac ich znaczenie, zajrzyj do tabelki z
parametrami wspomnianej funkcji.

Kiedy zas uporasz sie z tym komunikatem, powiniene$ odda¢ do systemu samo zero :)

Na temat komunikat wM MOVING, WM SIZING oraz WM WINDOWPOSCHANGING szeroko
rozpisuje sie tez MSDN.

415

Po fakcie

Po zakonczonej operacji przesuwania i/lub skalowania okna otrzymuje ono kolejny
komunikat. Tego rodzaju zdarzenia takze wystepuje w liczbie trzech i tworzg pary z tymi
zaprezentowanymi w poprzednim paragrafie.

I tak wM_MOVE jest odpowiednikiem wM MOVING. Okno otrzymuje ten komunikat, gdy
uzytkownik zakonczy juz swoja zabawe z jego przesuwaniem. W zestawie okno dostaje
rowniez swe nowe wspotrzedne (wzgledem obszaru klienta okna nadrzednego):

nX = static_cast<short>(LOWORD (lParam)) ;
nY = static cast<short>(HIWORD (lParam)) ;

Jak wida¢, sg one zapisane w dwoch stowach parametru 1Param, a do ich wydobycia
mozemy postuzy¢ sie poznanymi makrami LOWORD () i HIWORD ().
Na koniec pracy z tym komunikatem powinnismy zwrdcic 0.

Z kolei zdarzenie wM SIZE jest zwigzane z wM_SIZING i otrzymywane, kiedy uzytkownik
przestanie ciggna¢ za krawedz lub dokonana maksymalizacji tudziez minimalizacji okna.
Docelowe okno otrzymuje przy okazji takze trzy dane:

dwResizingType = wParam;
wWidth = LOWORD (lParam) ;
wHeight = HIWORD (lParam) ;

dwResizingType okresla, nazwijmy to, typ skalowania. W zwigzku z tym przyjmuje ona
jedna z kilku wyliczeniowych statych, ktérych czesé¢ prezentuje ponizsza tabelka:

stata | znaczenie
SIZE_MAXIMIZED | okno zostato zmaksymalizowane
SIZE MINIMIZED minimalizacja okna
SIZE RESTORED zwykta zmiana rozmiaru

Tabela 40. Niektore stale parametru dwResizingType (wParam) komunikatu WM_SIZE

wWidth i wHeight to, jak nietrudno sie domysli¢, nowe wymiary okna. Zostaty one
zapisane w 16-bitowych potdowkach parametru 1param.
Po przetworzeniu komunikatu wM SIzE nalezy zwroci¢ do systemu wartos¢ zero.

Ostatnim komunikatem z tej grupy jest wM WINDOWPOSCHANGED. Mozna wydedukowag, ze
jest on wystany po zmianie pozycji okna dokonanej przy pomocy SetWindowPos () lub
innej funkcji tego rodzaju.

Ten komunikat przynosi doktadnie te same dane dodatkowe, co WM WINDOWPOSCHANING.
W parametrze 1param mozna wiec znalez¢ wskaznik na strukture wINDOWPOS,
reprezentujacq wykonang zmiane potozenia i/lub rozmiaru okna; wParam pozostaje
niewykorzystany.

Réwniez tak samo jak poprzednio, przetworzywszy ten komunikat nalezy oddac
systemowi liczbe zero.

O komunikatach wM MOVE, WM SIZE i WM WINDOWPOSCHANGED mozesz poczytac¢ doktadniej
w MSDN.

WM PAINT

Ostatni z omawianych tutaj komunikatow jest na tyle wazny, ze poswiecimy mu osobny
paragraf.

416

O odrysowywaniu

Porzadek Z, przesuwanie, skalowanie, minimalizacja i maksymalizacja sprawiajq, ze okna
w Windows sg czesto ukrywane lub przykrywane przez inne okna. Jednoczes$nie muszq
one zachowac swojg graficzng zawartosc - tak, by uzytkownik wiedziat, czego moze sie
po nich spodziewac.

Styszac pierwszy raz o tym problemie i widzac, jak system radzi sobie z nim w praktyce,
mozna fatwo uznaé, iz czyni to poprzez zapisywanie obrazu okna w postaci bitmapy. Z
tejze bitmapy Windows miatby w odpowiednim czasie wybiera¢ odpowiednie fragmenty i
wypetnia¢ nimi dopiero co odsfoniete potacie okna.

Jednak prawie nigdy system nie postepuje w ten sposob. Przechowywanie dodatkowej
kopii zawartosci kazdego okna pochfaniatoby bowiem mnéstwo cennej pamieci
operacyjnej, a jej przywracanie wymagatoby kopiowania duzych ilosci danych. Dlatego
tez system domysélnie stosuje zupetnie inny sposéb?®.

Mianowicie dla kazdego okna przechowuje on, zamiast pamieciozernej bitmapy,
informacje o tym, ktére fragmenty jego obszaru klienta sg poprawne (ang. valid), a
ktére niepoprawne (ang. invalid) - w sensie koniecznosci ich odrysowania. Tak wiec
rejony pierwszego rodzaju sg wyswietlane na ekranie we wiasciwy sposob i nie wymagaja
ponownego harysowania. Natomiast fragmenty niepoprawne zostaty dopiero co
odstoniete uzytkownikowi i muszg by¢ ponownie wyrysowane, aby okno wygladato
prawidtowo.

obszar poprawny

fokno |
abszar

1

| .

: . niepoprawny
]

i i

! i

Rysunek 10. Mechanizm odrysowywania zawartosci okien

Jak to sie dzieje? Otéz w momencie, gdy zostaje odstoniety nowy fragment okna,
wymagajacy ponownego narysowania (ang. update region), system Windows wysyta do
tego okna (miedzy innymi) komunikat wM PAINT. W reakcji na niego powinno zostac
wykonane zgdane odrysowanie.

Graficzna zawarto$¢ okna jest zawsze przywracana w ten wtasnie sposoéb.

119 Mozna aczkolwiek zmusié go do opisanego wyzej zachowania w stosunku do tych okien, ktérych klasy
zarejestrowano z podaniem stylu CS_SAVEBITS.

417

Reakcja na wM_PAINT

Pewnie zauwazytes$, ze nie we wszystkich dotychczasowych programach przyktadowych
zajmowaliSmy sie przetwarzaniem tego komunikatu. Mimo to kazde stworzone przez nas
okno prawidiowo odrysowywato swdj obszar klienta w razie potrzeby.

Dziato sie tak, poniewaz w domysinej reakcji na wM_PAINT system Windows wypetnia
niepoprawny obszar (doktadniej: prostokat) okna odpowiednim pedzlem. Tak jest, tym
samym pedzlem, ktory podalismy podczas rejestracji klasy okna. Dzieki temu nie zawsze
musimy zajmowac sie zdarzeniem WM _PAINT.

Trzeba to aczkolwiek robi¢, jezeli wypetnienie pedzlem nam nie wystarcza. Wéwczas
nalezy zareagowac na ten komunikat, na przyktad w ten sposéb:

case WM _PAINT:

{
// wypisanie tekstu

PAINTSTRUCT ps;
HDC hdcOkno;

// rozpoczecie rysowania (wypeinienie uaktualnianego obszaru pedzlem)
hdcOkno = BeginPaint (hWnd, &ps);

// wypisanie tekstu

std::string strTekst = "123 - proba tekstu";

TextOut (hdcOkno, ps.rcPaint.left, ps.rcPaint.top, strTekst.c str(),
strTekst.length());

// zakonhczenie rysowania
EndPaint (hWnd, é&ps);
return 0;

}

Moze sie wydawac to zaskakujace, ale komunikat wM PAINT nie przynosi zadnych
informacji w swoich parametrach wrParam i 1Param. Zamiast tego, o regionie okna, ktory
ma by¢ odéwiezony, nalezy dowiedzie¢ sie w inny sposob.

Robimy to, wywotujac funkcje BeginPaint (). Podajemy jej przy tym uchwyt do
odmalowywanego okna oraz wskaznik na specjalng strukture PAINTSTRUCT:

struct PAINTSTRUCT
{

HDC hdc;

BOOL fErase;

RECT rcPaint;

BOOL fRestore;

BOOL fIncUpdate;

BYTE rgbReserved[32];
}:

Zawiera ona wiadomosci o fragmencie okna, ktory powinien zosta¢ ponownie
narysowany. Poszczegdlne pola tej struktury omawia ponizsza tabela:

typy pola opis

Jest to uchwyt do konrekstu urzadzenia okna. Pamietamy
by¢ moze, ze jest to specjalny rodzaj uchwytu, stuzacy do
rysowania po jakiej$ powierzchni przy pomocy funkcji
Windows GDI. W tym przypadku owg powierzchnig jest obszar
klienta okna.

HDC hdc

418

typy pola opis

Wartosc¢ tego pola jest tez zwraca przez funkcje
BeginPaint ().

Jest to flaga boolowska okreslajaca, czy tto uaktualnianego
obszaru okna ma zosta¢ wymazane. Zazwyczaj odpowiada za
to funkcja BeginPaint (), wypetniajac wspomniany obszar
pedzlem okna. Jezeli jednak podczas rejestrowania klasy nie
ustawiliSmy zadnego takiego pedzla (pole hbrBackground
struktury WNDCLASSEX miato warto$¢ NULL), wéwczas musimy
sami sprawdzi¢ stan tego pola i w razie potrzeby wyczyscic¢
odrysowywany prostokat.

Poniewaz jednak w wiekszosci przypadkéw wybieramy dla
okna jakis pedzel, nie musimy sie tym polem przejmowac.

BOOL fErase

To chyba najwazniejsze pole: definiuje ono prostokat okna,
ktéry ma by¢ odrysowany. Podane tu wspotrzedne sg
relatywne do lewego gornego rogu obszaru klienta okna,
dlatego mogg by¢ uzyte w funkcjach rysujacych razem z
kontekstem hdc.

Uzywanie wspotrzednych tego prostokata jest oczywiscie
mozliwe, jednak w praktyce wygodniej jest za kazdym razem
odrysowac cate okno - szczegdlnie, jezeli wymyslanie jakich$
skomplikowanych algorytméw fragmentarycznego rysowania
miatoby nam zajg¢ zbyt duzo czasu.

RECT rcPaint

BOOL fRestore Te trzy pola sg zarezerwowane do wewnetrznego uzytku

BOOL fIncUpdate systemu Windows, zatem nie powinny nas one w ogdle
BYTE[32] | rgbReserved interesowac :)

Tabela 41. Pola struktury PAINTSTRUCT

Kontekst urzadzenia, zapisany w polu hdc oraz zwracany przez funkcje BeginPaint (),
mozemy wykorzysta¢ do rysowania po powierzchni obszaru klienta za pomocg
przerdoznych funkcji Windows GDI. Wiekszos$¢ z nich poznamy w osobnym rozdziale,
poswieconym w catosci tej bibliotece; na razie mieliSmy okazje spotkac sie dwoma,
stuzacymi do wypisywania tekstu. Byta to DrawText (), uzyta w przyktadowym programie
TaskbarHider, Oraz TextOut () :

std::string strTekst = "123 - proba tekstu";
TextOut (hdcOkno, ps.rcPaint.left, ps.rcPaint.top, strTekst.c str(),
strTekst.length());

Mysle, ze nawet nie majac prototypu ani opisu, potrafitbys domysli¢ sie jej dziatania oraz
znaczenia parametréow. Wyjasnimy je sobie dogtebnie, jak juz méwitem, w rozdziale o
Windows GDI. Na razie tatwo wywnioskowac, ze parametrami Textout () sg kolejno:

> uchwyt do kontekstu urzadzenia, reprezentujacy powierzchnie, na ktorej
bedziemy pisac
pozioma i pionowa wspotrzedna tekstu
sam tekst w postaci tancucha znakéw w stylu C
liczba znakow w wypisywanym tekscie

YV VYV V

Wywofanie Textout () jest jedyng czynnoscig stricte graficzng, jakg wykonujemy na
rysowanym rejonie okna. Po jej zakonczeniu finalizujemy zatem proces odswiezania za
pomocg funkcji EndPaint (). Przekazujemy jej te same dwa parametry, jakie podaliSmy
do BeginPaint ().

419

Kazde wywotanie BeginPaint () musi by¢ rekompensowane przez analogiczne
wykonanie Endpaint (). Poza tym obie funkcje powinny by¢ przywotywane wylacznie w
kodzie obstugi komunikatu wM PAINT.

Typowy, poprawny schemat obstugi wM PAINT wyglada wiec nastepujaco:

case WM _ PAINT:

{
PAINTSTRUCT ps;
HDC hdcOkno;

hdcOkno = BeginPaint (hWnd, &ps);
odrysowywanie wskazanego obszaru okna

EndPaint (hWnd, é&ps);
return 0;

}

Konczgce go zwrdcenie zera jest rowniez wymogiem systemowym.

Wymuszanie odrysowywania okna

O tym, kiedy dokonac¢ odrysowania zawartosci okna decyduje w duzej mierze sam
system operacyjny Windows. Nierzadko jednak konieczne jest reczne wywotanie tego
procesu; przykfad mozna obserwowaé w programie TaskbarHider, gdzie klikniecie
lewego przycisku myszy (zdarzenie wM_LBUTTONDOWN) musiato spowodowaé odswiezenie
okna.

Wydawatoby sie, ze nie ma w tym nic trudniejszego ponad wystanie komunikatu
WM_PAINT przy pomocy jednej z funkcji SendMessage () lub PostMessage (), stuzacych
przesytaniu komunikatéw:

SendMessage (hWnd, WM PAINT, NULL, NULL);

Windows API przewiduje nawet odrebng funkcje Updatewindow (), ktérej wywotanie jest
rownowazne instrukcji powyzej.

Takie dziatanie nie daje jednak pozadanych rezultatéw i daje sie to w prosty sposob
wyjasni¢. Okno otrzymuje oczywiscie komunikat wM PAINT, ale system Windows uznaje,
iz caty obszar klienta okna jest poprawny, wiec nie ma najmniejszej potrzeby jego
odrysowania. W takiej sytuacji funkcja BeginPaint () zawodzi, podobnie jak wszystkie
nastepne z obstugi WM PAINT, i nie obserwujemy zadnej zmiany zawartosci okna.
Wynika stad, ze nalezatoby w jaki$ sposob oszuka¢ system i przekonac go, ze oto caty
obszar klienta okna jest niepoprawny i pilnie wymaga odrysowania. Jest to jak
najbardziej mozliwe przy pomocy funkcji InvalidateRect ():

BOOL InvalidateRect (HWND hWnd,
CONST RECT* 1lpRect,
BOOL DbErase);

W zasadzie funkcja ta stuzy do oznaczenia pewnego okreslonego prostokata (podanego w
parametrze 1pRect) jako przeznaczonego do od$wiezenia. Mozliwe jest aczkolwiek
podanie jej catego obszaru klienta okna hwnd - wéwczas trzeba po prostu wpisa¢ NULL
jako drugi parametr funkcji. Trzeci parametr okresla natomiast konieczno$¢ zamazania
dostarczonego prostokata pedzlem tta; jezeli podamy w nim TRUE, wtedy prostokat éw

420

zostanie wyczyszczony przez funkcje BeginPaint () ; W przeciwnym wypadku pozostanie
on bez zmian.

Najczesciej zalezy nam wszelako na catkowitym wyczyszczeniu catego obszaru klienta
danego okna. Mozna to uczyni¢ prostym wywofaniem:

InvalidateRect (hWnd, NULL, TRUE);

Co wiecej, spowoduje ona takze natychmiastowe wystanie wM PAINT do rzeczonego okna,
zatem nie musimy sie juz tym ktopotac.

Do swojej wiadomosci warto wiec zapamietac, ze:

Ponowne narysowanie zawartosci catego obszaru klienta okna hwnd mozna wymusic¢
poprzez wywotanie InvalidateRect (hitnd, NULL, TRUE) ;.

Xk k

T uzyteczng uwagq konczymy podrozdziat poswiecony systemowi zdarzen w Windows.
PrzypatrzyliSmy sie w nim doktadnie petli komunikatéw oraz najwazniejszym rodzajom
zdarzen, jakie otrzymujg okna. Szczegdlnie duzo czasu poswieciliSmy na czynnosé
odrysowywania zawartosci okna, zwigzang z komunikatem wM_PAINT.

Wszystko to nie jest moze bardzo proste, ale mam nadzieje, ze zrozumiates z tego
przynajmniej ,wiekszg potowe” ;)

W tym momencie zakonczyliSmy tez przeglad podstawowych zagadnien zwigzanych z
oknami w systemie Windows.

Podsumowanie

Windows nieprzypadkowo znaczy ‘okna’. Jako elementy interfejsu uzytkownika sg one
bowiem nieodzownym skfadnikiem kazdego programu.

W konczacym sie rozdziale skoncentrowali$my sie jedynie na takich oknach, ktére sq
oknami takze w potocznym rozumieniu uzytkownika. Najpierw zajeliSmy sie wiec
dwuetapowym procesem ich tworzenia, obejmujacym rejestracje klasy okna i wywotanie
funkcji createWwindowEx (). Dalej pokazatem kilka typowych operacji, jakie mozna
wykonywac na juz istniejgcych oknach oraz sposobach na uzyskiwanie ich uchwytéw. Na
koniec zajrzeliSmy wgtab petli komunikatéw i poznali§my najwazniejsze zdarzenia
dotyczace samych okien.

Nastepny rozdziat bedzie z kolei poswiecony wspotpracy naszych aplikacji z dwoma
najwazniejszymi urzadzeniami wejsciowymi: klawiaturg i myszka. Wreszcie zatem pisane
przez nas programy nabiorg nieco wiekszej interaktywnosci.

Pytania i zadania

Zgodnie ze zwyczajem racze cie na koniec odpowiednim zestawem pytan i ¢wiczen do
samodzielnego wykonania.

Pytania

1. Z jakich elementéw sktada sie potocznie rozumiane okno w systemie Windows?
2. Co to jest obszar klienta okna?

3. W jakim celu wprowadzono w systemie Windows mechanizm klas okien?

4. Jakie informacje nalezy podac, rejestrujac klase okna?

421

5. W jaki sposéb mozemy wczytac ikone lub kursor z zewnetrznego pliku
graficznego?

6. Jak mozemy uzyska¢ uchwyt do pedzla wypetniajacego tto okna?

7. Jakie informacje podajemy przy tworzeniu okna nalezacego do zarejestrowanej
juz klasy?

8. Co okresla styl okna?

9. Jak mozna dopasowac rozmiary okna do znanych rozmiaréw jego obszaru klienta?

10. Przy pomocy jakich funkcji pokazujemy i ukrywamy okno?

11.Jak mozemy zmieni¢ pozycje i/lub rozmiary okna?

12.Czym jest porzadek Z, zwany tez kolejnoscig przestaniania?

13.Jak zbudowana jest hierarchia okien w systemie Windows? Przy pomocy jakich
funkcji mozemy sie po niej poruszac?

14. Podaj metode na uzyskanie uchwytu dowolnego okna znanej klasy.

15. Dlaczego funkcja PeekMessage () lepiej sprawdza sie w petli komunikatow niz
GetMessage () ?

16. W jaki sposéb mozemy zapewni¢ wykonywanie sie kodu w czasie pomiedzy
obstugg komunikatéw o zdarzeniach?

17. (Trudniejsze) Jakie komunikaty otrzymuje kolejno gtéwne okno aplikacji po
kliknieciu w przycisk X (przy zatozeniu, ze owo klikniecie spowoduje poprawne
zakonczenie programu)?

18.Jak wyglada prawidtowa obstuga komunikatu wM PAINT (jezeli jest konieczna)?

Cwiczenia

1. Wyprébuj dziatania styli okna, szczegdlnie tych dotyczacych paska tytutu.
2. (Trudne) Napisz program wyswietlajacy twoje imie na pulpicie.

