MYSZ I KLAWIATURA

Wiele rzeczy wymyslono po to,
aby nie trzeba byto duzo myslec.
Regedit

Tytutlowe dwa urzadzenia wejsciowe (ang. input devices) sg najintensywniej
wykorzystywanymi srodkami do komunikacji uzytkownika z komputerem. Historycznie
starsza jest klawiatura, jednak obecnie oba te sprzety wzajemnie sie uzupetniaja, a
obstuga wiekszosci dobrych programéw moze byc realizowana przy pomocy kazdego z
nich.

Powstato naturalnie mndstwo innych urzadzen wejsciowych, do ktorych nalezg choc¢by
joysticki czy tablety graficzne. Coraz wiecej méwi sie tez o sterowaniu aplikacjami za
pomocg komend gtosowych. Wydaje sie jednak, ze nawet jesli ten nowe interfejsy
komunikacyjne zostang w przysztosci udoskonalone, to tradycyjne klawiatury i myszki
(albo ich zastepniki, np. trackballe) nigdy nie odejdg catkiem do lamusa. Praca z nimi jest
po prostu szybka i wygodna, a nadto dyskretna - i chyba nie zmienig tego zadne
nadchodzace nowniki. Klawiatury zyskajg oczywiscie wiecej klawiszy, myszki - wiecej
przyciskéw i rolek, ale zasadnicze przeznaczenie i wykorzystanie obu tych urzadzen
bedzie przez caty czas takie same.

Skoro wiec sg one dzisiaj podstawowg metodg porozumienia sie uzytkownika z
komputerem, nowoczesny system operacyjny w rodzaju Windows musi zapewniac
wiasciwg obstuge klawiatury i myszy. I rzeczywiscie, srodowisko aplikacji rodem z
Microsoftu daje bodaj wszystko, co jest potrzebne, by programista mdgt zaoferowac
uzytkownikom swych produktéw petng wspodtprace z mozliwosciami tych dwdéch
kluczowych urzadzen. Ta kooperacja jest realizowana w ramach Windows API, ktérego
cze$¢ za to odpowiedzialng poznamy blizej w tym oto rozdziale.

Obstuga myszy

Mysz jest urzadzeniem wskazujacym (ang. pointing device), ktérego przeznaczeniem
jest wspotpraca z graficznym interfejsem uzytkownika. Nie ma ono wiekszego
zastosowania w konsoli tekstowej, gdzie prym caty czas wiedzie (i musi wies¢) klasyczna
klawiatura.

Kazda osoba postugujaca sie komputerem wie oczywiscie, w jaki sposdb dziata myszka.
Nie wszyscy jednak wiedzg, ze nie jest ona jedynym mozliwym urzadzeniem, za pomocq
ktérego mozna sterowac kursorem na ekranie. Do innych nalezy chociazby trackball; jego
obstuga polega na umiejetnym poruszaniu kulka, ktorej obroty powodujg ruch kursora na
ekranie. Urzadzenie to ma sporg zalete w postaci braku koniecznosci posiadania
specjalnej podktadki i dlatego jest szczegdlnie czesto wykorzystywane w komputerach
przenosnych.

Stowo ‘trackball” weszto juz na dobre do stownika komputerowego i nikt juz nawet nie
probuje go ttumaczyc. Ale jeszcze kilka lat mozna byto okazjonalnie spotkac¢ wyjatkowo
idiotyczne okreslenie dla tego urzadzenia: otéz nazywano je kotem, chcac je rzekomo

424

odréznic¢ od standardowej myszki. Wyjasnienie to jest raczej dziwne, bo chociaz
komputerowa mysz moze faktycznie budzi¢ skojarzenia z pospolitym gryzoniem, to
przeciez trackball nie rozni sie od niej prawie wcale. Stusznie wiec zdaje sie, Zze obecnos¢
jednego komputerowego zwierzecia w zupetnosci nam wystarczy.

Fotografia 3 i 4. Komputerowe urzadzenia wskazujace: myszka oraz trackball
(fotografie pochodza z serwisu internetowego firmy Logitech)

Jako przyjazny system operacyjny Windows zawiera naturalnie odpowiednig obstuge
urzadzen wskazujgcych - niezaleznie od tego, czym one sg. W WInAPI przyjeto sie
aczkolwiek nazywac je wszystkie myszami, poniewaz tak jest po prostu wygodniej. My
rowniez bedziemy tak wobec tego czyni¢.

W tym podrozdziale zajmiemy sie wiec tg czescig Windows API, ktéra umozliwia
programom okienkowym wykorzystanie obecnosci myszy. Poznamy wpierw wszystkie
najwazniejsze komunikaty o zdarzeniach myszy oraz reguty ich otrzymywania przez
okna. Pdzniej nauczymy sie odczytywac stan myszy bezposrednio, a nawet symulowac
jego zmiane. Na sam koniec zostawimy sobie odczytywanie réznorakich parametréw
myszy.

Zdarzenia myszy

System Windows postuguje sie tacznie kilkudziesiecioma (!) komunikatami o zdarzeniach
pochodzacych od myszy. Sposrod tej mnogosci najwazniejszych jest dla nas kilkanascie,
informujacych przede wszystkim o wcisnieciu lub puszczeniu ktéregos z przyciskéw
myszy, ruchu kursora lub tez zmianie pozycji rolki (jezeli jest obecna). Tymi wtasnie
komunikatami zajmiemy sie w tej sekcji.

One wszystkie posiadajg przynajmniej jedng przyjemng ceche, zwigzang ze swymi
parametrami wParam i 1Param. Otdz znaczenie tych parametréw jest dla wymienionych
zdarzen zawsze takie samo: zmienne te zawierajg mianowicie aktualng pozycje kursora
myszy oraz informacje o tym, czy pewne klawisze sg w danej chwili wcisniete.
Pierwsza z tych danych zawarta jest w 1Param. Pozioma i pionowa wspétrzedna kursora
jest w niej zapisana w dolnym i gérnym stowie tej 32-bitowej wartosci. Aby je uzyskac,
mozemy zatem postuzy¢ sie poznanymi makrami LOWORD () oraz HIWORD (). Windows API
deklaruje tez dwa bardziej wyspecjalizowane makra:

nX = GET X LPARAM (lParam) ;
nY = GET Y LPARAM(lParam);

Jak wskazujg ich nazwy, stuzg one wiasnie do pobrania pozycji kursora z parametru
1param. Aby z nich skorzystaé, trzeba jeszcze dotaczy¢ nagtowek windowsx.h:

#include <windowsx.h>

http://www.logitech.com/

425

Istnieje réwniez makro MAKEPOINTS (), ktore zmienia 1Param w strukture POINTS - bardzo
podobng do poznanej wczesniej POINT, ale z polami typu SHORT (16-bitowymi).

Z kolei wparam zawiera nieco inng informacje!?°. Jest to bowiem kombinacja bitowa
pewnych flag, ktore okreslajg stan kilku waznych klawiszy na klawiaturze oraz przyciskow
myszy. Mozna tam znalez¢ wartosci statych wymienionych w tabeli:

stafa klawisz
MK _CONTROL Ctrl
MK SHIFT Shift
MK LBUTTON lewy przycisk myszy
MK_MBUTTON | $rodkowy przycisk myszy
MK_RBUTTON | prawy przycisk myszy

Tabela 42. Stale parametru wParam komunikatéw myszy, okreslajace wcisniete przy ich okazji
klawisze

Jako ze sg to flagi bitowe, wpParam moze miec ustawiong wiecej niz jedng taka statg
naraz. Sprawdzenia, czy jakas flaga jest tu zawarta, nalezy dokonywa¢ za pomoca,
odpowiedniej operacji bitowej:

if ((wParam & stata) /* != 0 */)
{

// stafa jest ustawiona

}

Przyktadowo, aby dowiedzie¢ sie, czy w momencie zajscia zdarzenia myszy wcisniety byt
klawisz Shift, trzeba postuzy¢ sie warunkiem:

if (wParam & MK SHIFT)

Wiecej informacji o flagach bitowych mozesz znalez¢ w Dodatku B, Reprezentacja danych
| w pamieci. |

To wszystko, jezeli chodzi o parametry komunikatow myszy. Teraz wypadatoby przyjrzeé
sie blizej kazdemu z tych waznych zdarzen.

Klikniecia przyciskdw

Ewolucja komputerowych myszek, jaka nastepowata przez ostatnie dekady, polegata w
duzej mierze na dodawania kolejnych przyciskéw. Pierwsze urzadzenia tego typu
posiadaty tylko jeden taki przycisk, pdzniej standardem staty sie dwa. Dzisiaj minimalna
liczba przyciskéw, potrzebna dla wygodnej pracy z kazdg aplikacja, to trzy; jednak wiele
myszek posiada teraz nawet szerszy ich asortyment, z ktérych wszystkie sg czesto
konfigurowalne.

Liczbe dostepnych przyciskow myszy mozna pobrac¢ za pomocg wywotania
GetSystemMetrics (SM_CMOUSEBUTTONS) .

Wszystkie wersje Windows szeroko uzywane w chwili obecnej zapewniajgq standardowg
obstuge dla trzech przyciskéw myszy:

120 W przypadku komunikatu WM MOUSEWHEEL informacja ta zajmuje tylko mtodsze stowo z wParam
(LOWORD (wParam)), gdyz starsze jest przeznaczone na dane o pozycji rolki. Podobnie jest tez z trzema
komunikatami wM xBUTTON* w Windows 2000/XP.

426

> lewego, uzywanego zdecydowanie najczesciej. Klikniecia tym przyciskiem sg
standardowg metodg wyboru elementéw interfejsu uzytkownika, jak na przykfad
przyciskéw czy opcji menu

> prawego, stuzgcego gtéwnie do pokazywania menu podrecznego (ang. context
menu) oraz specjalnych typow przeciggania (ang. dragging) obiektéw

> S$rodkowego, ktorego dziatania jest zwykle zalezne od aplikacji. Dla przyktadu, w
programie 3ds max stuzy on miedzy innymi do przewijania diugich paskéw
narzedzi; fani gry Saper zapewne znajq zastosowanie tego przycisku w ich
ulubionej grze

Myszy dwuprzyciskowe symulujg srodkowy przycisk za pomoca jednoczesnego wcisniecia
swego lewego i prawego przycisku.

Kazdy z tych trzech przyciskdw myszy moze z kolei generowac trojke zwigzanych ze sobg
zdarzen:

> wcisniecie przycisku (ang. button down)

» zwolnienie przycisku (ang. button up)

> dwukrotne klikniecie (ang. double click)

Zauwazmy, ze Windows nie generuje oddzielnego komunikatu dla pojedynczego
klikniecia danym przyciskiem myszy. Takie klikniecie jest bowiem interpretowane jako
dwa zdarzenia: wcisniecia i zwolnienia przycisku, nastepujace po sobie.

Nazwy komunikatow

Trzy przyciski i trzy mozliwe do wystgpienia akcje... Nie trzeba by¢ specem od
matematyki, by wywnioskowag, ze tacznie daje to nam 9 komunikatéw o zdarzeniach
myszy. Kazdemu z nich odpowiada oczywiscie pewna stata, ktdrej nazwe mozna fatwo
zbudowac wedle nastepujacego schematu:

WM przyciskBUTTONakcja

Etykiety przycisk i akcja powinny by¢ w nim zastgpione fragmentami nazw,
odnoszacymi sie do jednego z przyciskow oraz do rodzaju wystepowanego zdarzenia.
Mozliwe warianty w obu tych kwestiach przedstawiajg dwie ponizsze tabelki:

przycisk | przycisk myszy akcja | zdarzenie przycisku
L lewy DOWN wcisniecie przycisku
M Srodkowy UP zwolnienie przycisku
R prawy DBLCLK | dwukrotne kliknigcie

Tabela 43 i 44. Fragmenty nazw komunikatéw o zdarzeniach myszy

Budujac z tych informacji wszystkie mozliwe nazwy komunikatéw, otrzymamy dziewie¢
odpowiadajacych im statych:

zdarzenie > v . . 3 " . o
- wecisniecie przycisku | zwolnienie przycisku | dwukrotne klikniecie
przycisk ¥
lewy WM LBUTTONDOWN WM LBUTTONUP WM LBUTTONDBLCLK
srodkowy WM MBUTTONDOWN WM MBUTTONUP WM MBUTTONDBLCLK
prawy WM RBUTTONDOWN WM RBUTTONUP WM RBUTTONDBLCK

Tabela 45. Nazwy komunikatéw o zdarzeniach myszy

Windows 2000 i XP posiada tez wbudowang obstuge ewentualnych dwoch dodatkowych
przyciskow myszy, oznaczanych jako X1 i X2. Zwigzana jest z nimi aczkolwiek tylko
tréjka stosownych komunikatéw (zamiast szesciu); obydwa przyciski sg bowiem

427

rozrdéznianie przez warto$¢ gornego stowa wParam.
Wszystkie informacje na temat mozesz naturalnie znalezé w MSDN przy opisach
komunikatow wM XBUTTONDOWN, WM XBUTTONUP i WM XBUTTONDBLCLK.

Poznamy obecnie nieco blizej wszystkie wymienione tu komunikaty.

Pojedyncze klikniecia

Jak juz nadmienitem, Windows nie wyrdznia zadnego komunikatu do informowania o
pojedynczych kliknieciach przycisku myszy. Wysyfa za to powiadomienia o wci$nieciu
oraz puszczeniu kazdego z przyciskow.

Szczegolnie komunikaty o przyci$nieciach sg dla nas interesujgce. To wiasnie ich uzywa
sie, by reagowac na klikniecia w obszarze klienta okna.

Wsrdd tych zdarzen zdecydowanie najczesciej jest z kolei wykorzystywane zawiadomienie
WM LBUTTONDOWN. Jest to bowiem prosta droga reagowania na klikniecia myszy dotyczace
okna. Na ten komunikat odpowiadaliSmy chociazby w przyktadowym programie
TaskbarHider z poprzedniego rozdziatu. Naci$niecie lewego przycisku myszy powodowato
tam pokazywanie lub ukrywanie systemowego paska zadan.

Moéwigc na temat komunikatow o wcisnieciu lub zwolnieniu przyciskow myszy trzeba
jeszcze zwroci¢ uwage na pewien trudno uchwytny fakt. Otéz wystapienie

WM ?BUTTONDOWN wcale nie musi pociqgac¢ za sobg p6zniejszego pojawienia sig

WM _?BUTTONUP. Jezeli bowiem uzytkownik, wcisngwszy przycisk, przeniesie kursor poza
obszar klienta okna programu, wowczas komunikat o puszczeniu przycisku nie trafi do
tego okna.

Niekiedy bywa to zachowaniem niepozgadanym, ale na szczescie Windows oferuje
mozliwos¢ jego zmiany. Poznamy jg w jednym z nastepnych paragrafow.

Dwukrotne klikniecia

Zdarzenie podwadjnego klikniecia wystepuje wtedy, gdy nastapi dwukrotne, szybkie
wcisniecie i zwolnienie jednego z przyciskdw myszy (nie tylko lewego). Musi to nastgpic
w odpowiednio krétkim czasie oraz przy stosunkowo niewielkiej lub zadnej zmianie
pozycji kursora.

Wiele modeli myszek umozliwia tez przypisanie akcji dwukrotnego klikniecia lewym
przyciskiem do jednego z dodatkowych przyciskow myszy. Windows traktuje takie

emulowane klikniecia identycznie jak normalne, jednak z wiadomych wzgledéw nie
stosujq sie do nich wymienione wyzej ograniczenia.

Restrykcyjnos¢ tych ograniczen mozna oczywiscie regulowac i dopasowac do swoich
potrzeb. Maksymalny interwat czasu jest ustawiany w Panelu Sterowania, zas tolerowane
przesuniecie myszy przy pomocy narzedza Tweak UL

Oba te parametry systemowe mozna tez zmieni¢ programowo poprzez Windows API -
tego réwniez nauczymy sie w tym podrozdziale.

Wré¢my jednak do samych komunikatéow o dwukrotnych kliknieciach. Od razu trzeba
powiedzie¢ na ich temat dwie wazne kwestie.

Po pierwsze, zadnemu oknu nie jest bezwarunkowo dane odbieranie tych komunikatéw.
By¢ moze (mam nadzieje :D) pamietasz, ze w gre wchodzg tu style klasy okna.
Uscislajac to stwierdzenie, trzeba powiedzie¢, iz:

Tylko okna, ktdrych klasy zawierajg styl CS_DBLCKLS, odbierajg komunikaty o
dwukrotnych kliknieciach przyciskami myszy.

428

Tak wiec azeby reagowac na te zdarzenia, nalezy wpierw ustawi¢ odpowiedni styl klasy
okna - na przyktad w ten sposéb:

KlasaOkna.style = CS HREDRAW | CS VREDRAW | CS DBLCLKS;

Jezeli bowiem nie zrobimy tego, nasze okno nie otrzyma zadnego z komunikatow
WM _?BUTTONDBLCLK.

Druga kwestia dotyczy rzeczywistej sekwencji komunikatéw, jakie dostaje okno w
przypadku wystapienia dwukrotnego klikniecia. Nie jest tak, ze WM ?BUTTONDBLCLK
zastepuje informacje o pojedynczych kliknieciach, ktore sktadajg sie w sumie na to
podwdjne. Prawdziwa kolejnos¢ komunikatéow wyglada bowiem tak:

// nieustawiony styl CS DBLCLKS // ustawiony styl CS DBLCLKS

WM _?BUTTONDOWN WM _?BUTTONDOWN

WM ?BUTTONUP WM ?BUTTONUP

WM ?BUTTONDOWN WM ?BUTTONDBLCLK // to ten! :)
WM ?BUTTONUP WM ?BUTTONUP

Wida¢, ze wM_?BUTTONDBLCLK zastepuje drugi z komunikatéw wM ?BUTTONDOWN. Pierwsza
notyfikacja o wcisnieciu przycisku myszy trafia jednak do okna i jest przetwarzana tak,
jak zwykte pojedyncze klikniecie. Dopiero potem do okna dociera réwniez

WM ?BUTTONDBLCLK, interpretowane jako podwdjne nacisnigcie przycisku.

Z tego powodu wazne jest, aby kod obstugi dwukrotnego klikniecia nie byt catkiem inny
od reakcji na pojedyncze wcisniecie przycisku myszy. Powinien raczej uzupetnia¢ jg;
dobrym przykfadem jest tu Eksplorator Windows. W programie tym pojedyncze klikniecie
na ikone pliku powoduje jego zaznaczenie, za$ podwdjne poleca otwarcie pliku w
domyslinej aplikacji. Akcja otwarcia jest wiec uzupetnieniem akcji zaznaczenia.

Komunikaty spoza obszaru klienta

Dziewigtka opisanych tu komunikatéw oraz wM MOUSEMOVE, ktdéry zostanie omdwione za
chwile, powiadamia okno o zdarzeniach myszy, zachodzacych wewnatrz jego obszaru
klienta. Takie zdarzenia mogg jednakze zachodzi¢ takze poza nim; Windows informuje o
nich poprzez dziesie¢ odmiennych komunikatéw!?!,

Odpowiadajg one dokfadnie kazdemu ze zdarzen klienckich i majg nawet podobne nazwy.
Dodany jest w nich jedynie przedrostek NC, przez co ich state to na przyktad

WM NCLBUTTONDOWN Czy WM NCMOUSEMOVE.

Poniewaz komunikaty te dotyczg zdarzen wystepujgacych w pozaklienckim obszarze okna,
zwykle nie potrzeby pisania kodu reakcji na nie. DomysIna procedura zdarzeniowa radzi
sobie z nimi w standardowy dla Windows sposdb, dbajac np. o to, aby klikniecie w
przycisk X powodowato zamkniecie okna, a przecigganie za pasek tytutu skutkowato
jego przesuwaniem. Wtracanie sie w ten naturalny ukfad prowadzi najczesciej do
dezorientacji uzytkownika programu i dlatego nie jest szczegdlnie wskazane.

Jeden z pozaklienckich komunikatéw myszy nie ma swego odpowiednika w zdarzeniach
obszaru klienta. Tym komunikatem jest wM NCHITTEST.

Zdarzenie to jest interesujgce rowniez z innego powodu. Otéz mozna je uwazac za
przyczynek wszystkich pozostatych zdarzeh myszy. Windows poprzedza nim kazdy
komunikat o zmianie stanu komputerowego gryzonia, wysytajac do okna razem z nim
takze aktualng pozycje kursora. Procedura zdarzeniowa okna analizuje te dane i na ich
podstawie stwierdza, ktdrego miejsca okna dotyczy dane zdarzenie myszy. W ten sposéb

21 |Lub raczej poprzez trzynascie komunikatéw, jezeli uwzglednié takze powiadomienia o stanie dodatkowych
prxyciskdw myszy (WM [NC]XBUTTON*).

429

rozrdzniana jest potrzeba wystania komunikatu klienckiego lub pozaklienckiego, za$
system Windows wie, czy kliknieto np. w pasek tytutu czy tez wcisnieto przycisk bedac
juz w obszarze klienta okna.

Zadanie rozrdzniania tych wszystkich mozliwosci przypada najczesciej domysinej
procedurze zdarzeniowej DefWindowProc (), jako ze zazwyczaj nie zajmujemy sie
komunikatem wM NCHITTEST. Obstuzenie go moze jednak pozwoli¢ na swego rodzaju
oszukanie systemu - tak, by ,myslat” on, ze zainstniate zdarzenie (np. klikniecie) dotyczy
innego fragmentu okna niz w rzeczywistosci.

Typowym zastosowaniem tej techniki jest umozliwienie przesuwania okna poprzez
przecigganie za jego obszar klienta (a nie tylko za pasek tytutu). Prezentuje to
przyktadowy program ClientMove.

Jezeli jednak chcesz napisac kod obstugi tych zdarzen i jednoczesnie nie przeszkadzad
systemowi w normalnej reakcji na nie, mozesz samodzielnie wywotywa¢ domysing
procedure DefWindowProc (). Przyktadowa reakcja na wM NCLBUTTONDOWN MoOze wiec
wygladac tak:

case WM NCLBUTTONDOWN:

{
// twdj kod

return DefWindowProc (hWnd, uMsg, wParam, lParam);

}

Powiniene$ tez pamietaé, ze w przypadku komunikatéw spoza obszaru klienta
wspéitrzedne kursora podane w 1Param sg liczone wzgledem ekranu, a nie obszaru
klienta okna.

Ruch myszy

Nastepnym z komunikatow myszy, ktéremu poswiecimy swojg uwage, jest
WM MOUSEMOVE.

System Windows wysyta go do okna, gdy kursor przelatuje nad jego obszarem klienta -
takze wtedy, kiedy samo okno jest nieaktywne. Otrzymanie tego zdarzenia wskazuje, ze
pozycja strzatki myszy ulegta jakiej$ zmianie. Okno jest informowane o kazdej takiej
zmianie - nawet, jesli bylo to tylko przesuniecie kursora o jeden jedyny piksel.

WM _MOUSEMOVE powiadamia bowiem o ruchu myszy; na to tez wskazuje nazwa tego
komunikatu.

Przy jego przetwarzaniu, bardziej niz w pozostatych zdarzeniach myszy, przydajq sie
dostarczane wraz z nim dane dodatkowe. Szczegdlnie interesujgca jest zmienna 1Param,
zawierajgca nowa pozycje kursora, liczong wzgledem lewego gérnego rogu obszaru
klienta okna. Mozemy wyswietli¢ te wspodtrzedne chociazby na pasku tytutu:

Eé@m;lglzl

Screen 60. Wspotrzedne kursora na pasku tytutu okna

// CursorPos - pokazywanie pozycji kursora w oknie

// (fragment procedury zdarzeniowe)
case WM MOUSEMOVE:
{

430

// pobieramy wspdirzedne kursora i1 zapisujemy Jje jako napis
std::stringstream Strumien;
Strumien << " (" << GET X LPARAM(lParam) << "; " <<

GET Y LPARAM(lParam) << ")";

// ustawiamy tytul okna na éw napis
SetWindowText (hWnd, Strumien.str().c str());
return 0;

}

Oprocz wspétrzednych w 1param, komunikat wM MOUSEMOVE dostarcza tez w wparam tych
samych informacji o wcisnietych klawiszach, ktére omawiali$my na samym poczatku
poznawania zdarzeh myszy.

Po obstuzeniu zdarzenia wM MOUSEMOVE zwracamy do systemu tradycyjna wartosc zero.

Pozaklienckim odpowiednikiem przedstawionego komunikatu jest oczywiscie

WM NCMOUSEMOVE. Okno otrzymuje go, kiedy kursor myszy porusza sie ponad paskiem
tytutu albo brzegiem okna. Do tego zdarzenia stosujg sie wszystkie uwagi o
pozaklienckich komunikatach myszy, wymienione w poprzednim paragrafie.
Szczegdtowe wiadomosci mozna jak zwykle znalez¢ w MSDN.

Rolka

Od kilku lat wszystkie modele komputerowych myszek sq wyposazane w pewien
dodatkowy instrument, uzupetniajacy dziatanie przyciskow. Jest to tak zwana rolka
myszy (ang. mouse wheel), stuzaca gtdwnie do przewijania dokumentdéw i stron
internetowych. Znajduje sie ona zwykle w miejscu $rodkowego przycisku myszy,
zachowujac jednak jego petnig funkcjonalnosé (mozna nig klika¢ tak, jak przyciskiem).
Ponadto mozliwe jest tez obracanie rolkg w przéd i w tyt - powoduje to najczesciej
przewiniecie oglagdanego tekstu w gére lub w dot.

Przydatnosc¢ i wygoda rolki jest bardzo duza, zwlaszcza podczas przegladania serwisow
WWW: nie trzeba wowczas kierowac kursora, zajetego kilkaniem w hipertacza, do paskéw
przewijania, aby przej$¢ w inne miejsce na stronie. Podobnie w edytorach tekstu rolka
utatwia i usprawnia prace.

Komunikat rolki i jego adresaci

Windows zapewnia wspotprace z rolka myszy poprzez komunikat wM MOUSEWHEEL. Jak
nietrudno sie domyslié, jest on wysytany wtedy, gdy uzytkownik zmieni pozycje
gryzoniowego pokretta. Kto jednak otrzyma ten komunikat?...

Sprawa nie jest tak prosta jak w przypadku innych zdarzen myszy. Krecenie rolkg nie
jest bowiem zdarzeniem podobnym chocby do wcisniecia przycisku. W tamtym przypadku
komunikat dostawato zawsze to okno, ktére znajdowato sie ,pod kursorem”.
Jednoczesnie, na co nie zwrdciliSmy dotad uwagi, stawato sie ono oknem aktywnym.
Uaktywnienie okna objawia sie zmiang koloru jego paska tytutu, z szarego na
(domyslinie) niebieski. Innym objawem, mniej dostrzegalnym dla normalnych okien (ale
widocznym doskonale dla pdl tekstowych), jest tez przejecie wejscia od klawiatury - czyli
uzyskanie fokusu (ang. focus). Obecnie nie interesujemy sie rzecz jasna obstugiwaniem
klawiatury, jednak pojecie fokusu ma znaczenie takze dla myszki i jej rolki, poniewaz:

Komunikat rolki wM_MOUSEWHEEL otrzymuje tylko to okno, ktérego w danej chwili
posiada fokus.

Wiedzac o tym, fatwo wyjasni¢, dlaczego mozemy przewija¢ dokumenty i strony WWW za
pomocg rolki takze wtedy, gdy ,,wyjedziemy” kursorem poza okna ich programoéw. Jesli
jednak klikniemy nastepnie ktoryms z przyciskdw myszy, okno straci fokus, a my

431

mozliwos¢ przewijania jego zawartosci za pomoca rolki. Mozemy jg oczywiscie przywrocic
poprzez ponowne uaktywnienie okna (np. kliknieciem).

Obstuga rolki

Niektore kontrolki potomne, jak listy zwykte i rozwijalne oraz przewijane pola tekstowe,
majq standardowo zapewniong odpowiednig reakcje na komunikat wM MOUSEWHEEL.
Warto jednak wiedzie¢, jak mozemy sami na niego reagowac.

Zacznijmy od parametréw tego komunikatu. W duzym stopniu sg one zbiezne z
parametrami zdarzen przyciskdw oraz wM_ MOUSEMOVE. Istniejg aczkolwiek pewne drobne
roznice.
Atoli skoncetrujmy sie wpierw na podobnienstwach. Przede wszystkim 1Param zawiera
doskonale znany nam zestaw dwdch wartosci, okreslajacych pozycje kursora myszki.
Mozemy je uzyskac za pomocg makr GET X LPARAM() i GET Y LPARAM() (dotaczywszy
wczesniej nagtowek windowsx.h).
Odmiennie nalezy traktowa¢ wartos$¢ wparam - zawiera ona tutaj dwie dane:
> dolne stowo to kombinacja bitowa flag, okreslajacych klawisze wcisniete w chwili
zajscia zdarzenia. Zostata ona przedstawiona na poczatku tej sekcji, wraz z wielce
przydatng tabelkg odpowiednich statych :) Parametr ten mozemy uzyskac przy
pomocy makra GET KEYSTATE WPARAM ()
> goérne stowo specyfikuje dystans, o jaki obrdcita sie rolka. Pobieramy go poprzez
makro GET WHEEL DELTA WPARAM ()

Zauwazmy, ze nie ma czego$ takiego jak ,aktualna pozycja rolki”, podobna do biezgcej
pozycji kursora myszki. Obrot rolki nie jest bowiem ograniczony zadng skalg i moze
dokonywac sie w obu kierunkach bez zadnych ograniczen.

GET WHEEL DELTA WPARAM (wParam) jest wiec miarg obrotu, jakiego dokonat palec
uzytkownika, poruszajacy rolkg. Wyraza sie on liczba catkowita ze znakiem: dodatnie
wartosci oznaczajg obrét naprzdéd (w kierunku ,od uzytkownika”), powodujacy zazwyczaj
przewijanie ekranu do gory; wartosci ujemne odpowiadajg obrotowi w tyt (,,do
uzytkownika”) i przewijaniu tekstow w dot.

Sama wartosc¢ jest natomiast wielokrotnoscig statej wHEEL DELTA, ustawionej na 120.
Liczba ta odpowiada jednej elementarnej akcji (krokowi), jakg ma powodowac obrot rolki
- przyktadowo, moze to by¢ przewiniecie tekstu o okreslong liczbe linii (zwykle trzy??).
WHEEL DELTA nie jest rowne jednosci, aby stanowic furtke dla mozliwych przysztych
urzadzen, wyposazonych w bardziej doktadne rolki. Wtedy warto$¢ zapisana w géornym
stowiem wParam nie bedzie musiata by¢ koniecznie catkowitg wielokrotnoscig delty, lecz
mogta wynosi¢, powiedzmy, 40. Taka liczba powinna wiec spowodowac¢ wykonanie
Ljednej trzeciej akcji” przewidzianej na catg delte - w opisywanym przypadku bedzie to
przewiniecie tekstu o jedna linijke.

Juz teraz pojawiajg sie myszki, umozliwiajgce w miare ptynne przewijanie, zatem nalezy
by¢ przygotowanym na odbieranie zdarzen obrotu rolki o mniej niz jedng delte. W
idealnym przypadku powinny one skutkowaé podjeciem witasciwego, ,utamkowego”
dziatania. Jezeli jednak nie jest to mozliwe, wtedy najlepiej dodawaé przychodzace dane
o obrocie i wykonywac akcje dopiero wtedy, gdy tak powstata suma osiggnie wartos¢ co
najmniej WHEEL DELTA:

122 1104¢ przewijanych za jednym razem linii jest ustawieniem systemowym i nalezy je pobiera¢ za pomocy
wywofania SystemParametersInfo (SPI_GETWHEELSCROLLLINES, 0, &nPrzewijaneLinie, 0);, gdzie
nPrzewijaneLinie jest zmienng typu catkowitego. Aby za$ obliczy¢ liczbe wierszy przewijanym w reakcji na
WM _MOUSEWHEEL, trzeba przemnozy¢ pobrang wielkos$¢ przez liczbe wielokrotnosci WHEEL DELTA W parametrze
zdarzenia, tj.: float fLinie = (float) GET WHEEL DELTA WPARAM (wParam) / WHEEL DELTA *
nPrzewijanieLinie;.

432

// zmienna globalna przechowujaca obrdét rolki
int g nCalkowityObrot = 0;

// (procedura zdarzeniowa)
case WM MOUSEWHEEL:
{

// dodajemy otrzymana wartosé obrotu
g_nCalkowityObrot += GET WHEEL DELTA WPARAM (wParam) ;

// sprawdzamy, czy jest on bezwglednie wiekszy niz WHEEL DELTA
if (abs(g nCalkowityObrot) >= WHEEL DELTA)
{

// dla pewnos$ci obliczamy ilo$¢ krokdw -
// - wielokrotno$ci WHEEL DELTA
int nKroki = g nCalkowityObrot / WHEEL DELTA;

// podejmujemy odpowiednie akcje...

// odejmujemy wykorzystane obroty od licznika
// (ustawiajac go na reszte z dzielenia przez WHEEL DELTA)
ginCalkowityObrot &= WHEEL DELTA;

}

// tradycyjnie zwracamy zero
return 0;

}

Mozna sie spodziewad, ze wraz z upowszechnieniem myszek z ptynnie obracajgcymi sie
rolkami coraz wiecej programow bedzie oferowato ciagte, a nie tylko skwantowane
przewijanie dokumentdéw.

tapanie myszy

Tyle okien, a tylko jedna myszka... - tak mogtby jeknagc¢ spersonifikowany system
Windows, gdy umiat méwié. Programy komputerowe jako twory martwe nie wyrazajg
jednak swoich opinii i dlatego Windows musi potulnie i sprawnie radzi¢ sobie z
problemem wspétdzielenia jednego urzadzenia miedzy wiele aplikacji.

Wtadza nad myszkq

Caty mechanizm odbierania zdarzen od myszki opiera sie na prostej zasadzie. Méwi ona,
ze dany komunikat (np. o kliknieciu) zostanie wystany zawsze do tego okna, nad ktorym
aktualnie przebywa kursor myszki. W ten sposoéb rézne okna w systemie dostajq
informacje tylko o tych zdarzeniach, ktore bezposrednio ich dotycza.

Istniejg jednak sytuacje, w ktérych jedno okno powinno otrzymywacé wszystkie
komunikaty o zdarzeniach myszki. W takim przypadku powinno ono przejg¢ od systemu
wiladze nad myszka.

Okno posiadajace wtadze nad myszkq (ang. mouse capture) otrzymuje informacje o
wszystkich zdarzeniach, pochodzacych od urzadzenia wskazujgcego.

W normalnej sytuacji myszka jest ,wolna” - zadne okno nie posiada nad nig wtadzy. Gdy
chcemy to zmieni¢, musimy postuzy¢ sie odpowiednimi funkcjami Windows API.

Przyktad przechwycenia myszki

Zobaczmy to na klasycznym juz przyktadzie okienkowego szkicownika (ang. scribble).
Jest to prosty program, pozwalajacy rysowac szlaczki i inne zawijasy w swoim oknie:

433

_/\I—

Screen 61. Okno komputerowego szkicownika

Linie kreslimy w nim poprzez klikniecie lewym przyciskiem myszy, przytrzymanie go i
poruszanie kursorem. Taki programik pomaga poczatkujacym uzytkownikom komputera
nabra¢ wprawy w przecigganiu. My oczywiscie nie potrzebujemy zadnych ¢éwiczen tego
typu i dlatego spojrzymy raczej na kod tej przyktadowej aplikacji:

// Scribble - okienkowy szkicownik

#include <string>

#define WIN32 LEAN AND MEAN
#include <windows.h>
#include <windowsx.h>

// nazwa klasy okna
std::string g strKlasaOkna = "odOdogk Window'";

// dane okna
HDC g _hdcOkno; // uchwyt kontekstu urzadzenia okna

LRESULT CALLBACK WindowEventProc (HWND hWnd, UINT uMsg,
WPARAM wParam, LPARAM lParam)
{
switch (uMsgqg)
{
case WM LBUTTONDOWN:
// przejmujemy myszke
SetCapture (hWnd);

// przesuwamy pidro (stuzace do rysowania po oknie)
// w punkt klikniecia
MoveToEx (g _hdcOkno,
GET X LPARAM(lParam), GET Y LPARAM (lParam),
NULL) ;

// zwracamy zero
return 0;

case WM MOUSEMOVE:
// jezeli nasze okno posiada myszke
if (GetCapture () == hWnd)
// rysujemy linie od poprzedniego do aktualnego
// miejsca kursora myszki
LineTo (g_hdcOkno,
GET X LPARAM(lParam), GET_ Y LPARAM(lParam)) ;

// zwracamy zero
return 0;

case WM _LBUTTONUP:
// oddajemy wladze nad myszka do systemu

434

ReleaseCapture () ;
return 0;

case WM DESTROY:
// kohczymy program
PostQuitMessage (0);
return 0;

}

return DefWindowProc (hWnd, uMsg, wParam, lParam);

/) —mmm e funkcja WinMain() ----—-=-—=-"—""-—--————————————
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE, LPSTR, int nCmdShow)
{
/* rejestrujemy klase okna */
WNDCLASSEX KlasaOkna;
// wypeilniamy strukture WNDCLASSEX
// (pomijamy z tego wiekszos$é pdl)
KlasaOkna.hbrBackground = (HBRUSH) GetStockObject (WHITE BRUSH) ;
KlasaOkna.style = CS_OWNDC; // witasny kontekst urzadzenia okna

// rejestrujemy klase okna
RegisterClassEx (&KlasaOkna);
/* tworzymy okno */

// tworzymy okno funkcja CreateWindowEx
// (znana czynnos$é, wiec pomijamy (uchwyt trafia do hOkno))

// pobieramy uchwyt do kontekstu urzadzenia obszaru klienta okna
g_hdcOkno = GetDC (hOkno) ;

// pokazujemy nasze okno

ShowWindow (hOkno, nCmdShow) ;

/* petla komunikatdéw */

// (w zwyczajowe]j formie, darujemy Jja sobie)

// zwracamy kod wyjscia
return static cast<int>(msgKomunikat.wParam);

Ogdlna zasada dziatania tej aplikacji jest prosta. W momencie wcisniecia lewego
przycisku myszy (WM LBUTTONDOWN) przejmuje ona wtadze nad myszka, ustawiajac jq dla
swego okna:

SetCapture (hWnd) :

Odtad bedzie ono otrzymywato informacje o wszystkich zdarzeniach myszki. Zanim
jednak zajmiemy sie nimi, musimy zapamietac pozycje kursora w chwili klikniecia - tak,
aby moéc potem rysowac s$lad jego ruchu. Wyrecza nas w tym sam Windows:

435

MoveToEx (g _hdcOkno, GET X LPARAM (lParam), GET Y LPARAM(lParam), NULL);

Funkcja MoveToEx () przesuwa tzw. pidro, zwigzane z kontekstem urzadzenia naszego
okna (g hdcoOkno) w miejsce o wspoitrzednych klikniecia. Koordynaty te pobieramy
naturalnie za pomocg makr GET _X/Y LPARAM(). Kazda linia, jaka teraz narysujemy w
oknie, bedzie sie zaczynata we wskazanym przed chwilg punkcie.

A kiedyz to rysujemy linie w naszym oknie? Otéz robimy to w reakcji na zdarzenie
WM MOUSEMOVE:

case WM _MOUSEMOVE:
if (GetCapture () == hWnd)
LineTo (g_hdcOkno, GET X LPARAM(lParam), GET Y LPARAM(lParam));

return 0;

Wczesniej sprawdzamy jeszcze, czy gtéowne (i notabene jedyne) okno programu posiada
istotnie wtadze nad myszka. Dokonujemy tego przy pomocy funkcji GetCapture () ; jezeli
zwracany przezen uchwyt jest zgodny z uchwytem docelowego okna zdarzenia

WM MOUSEMOVE, wtedy czujemy sie zobowigzani do narysowania linii znaczacej droge
kursora.

Zamiast GetcCapture () moglibysmy wykorzysta¢ tez zmienng logiczng, okreslajaca czy
okno programu przechwycito myszke. UstawialibySmy jg na true w reakcji na

WM LBUTTONDOWN i na false w WM LBUTTONUP, a tutaj dokonywalibySmy sprawdzenia jej
wartosci. Wykorzystatem jednak GetcCapture (), aby pokazac¢ wszystkie funkcje zwigzane |

. z zagadnieniem wfadzy nad myszka.

Linie te rysujemy poprzez LineTo (), podajac tej funkcji docelowe wspotrzedne drugiego
konca odcinka. Oprocz kreslenia rzeczonej linii, funkcja ta dokonuje tez przesuniecia
piéra w owe miejsce, tak wiec nastepne rysowane odcinki bedg sie taczyty z poprzednimi.
Tym sposobem powstanie ciggty $lad drogi kursora myszki, a o to nam przeciez chodzi.

O funkcjach MoveToEx () oraz LineTo () pomdéwimy sobie dokfadnie przy omawianiu
geometrycznej czesci biblioteki Windows GDI w nastepnym rozdziale.

Wreszcie dochodzimy do komunikatu wM LBUTTONUP, 0znaczajacego zwolnienie lewego
przycisku myszki. W odpowiedzi na niego wykonujemy tylko jedng czynnos$¢: oddajemy
witadze nad myszkg z powrotem do systemu, wywotujac funkcje ReleaseCapture (). Od
tej pory notyfikacje o zdarzeniach myszy beda, jak zwykle, trafia¢ do okna mieszczacego
sie pod kursorem myszy, a nie do naszego programu.

Nasuwa sie jeszcze pytanie: Co wiasciwie czyni ta kombinacja funkcja setCapture () i
ReleaseCapture () ? Czy nie mozna byloby obejs¢ sie bez nigj?...

Teoretycznie jest to mozliwe!??, jednak niesie pewnie nieprzyjemne konsekwencje
praktyczne. Wyobrazmy sobie, ze uzytkownik wciska lewy przycisk myszki, a nastepnie
przecigga kursor poza obreb okna i zwalnia przycisk. Kiedy teraz powrdci z powrotem w
obszar okna programu, kursor bedzie kreslit sobg linie - mimo ze przeciez przycisk
myszki nie jest wcisniety!

Dzieje sie tak dlatego, ze po przeciggnieciu kursora poza okno, komunikat wM LBUTTONUP
nie dociera juz do naszego programu. Ten ,mysli” wiec, ze lewy przycisk jest nadal

123 0 jle dodamy jeszcze wspomniang kilka akapitdw wyzej zmienng logiczna, ktdra bedzie okredlata, czy nalezy
rysowac $lad kursora.

436

wcisniety, a zatem rysuje linie w $lad za strzatka. Dzieki przechwytywaniu wiadzy nad
myszkg zapobiegamy podobnej sytuacji.

Zastosowania

Przejmowanie wiadzy nad myszka ma sporo zastosowan przede wszystkich w réznych
programach graficznych, choéby tak prostych jak zaprezentowany przyktad. Nie dotyczy
to tylko swobodnego rysowania, ale tez wyznacza linii prostych, krzywych Beziera; nawet
aplikacje do tréjwymiarowego modelowania korzystajg z tej techniki. Innym
zastosowaniem jest tez implementowanie specyficznego rodzaju przeciggania jakichs
elementow.

Kontrolowanie wejscia od myszy

Przyjmowanie komunikatéw o zdarzeniach to nie jedyna forma kooperacji z myszka,
dostepna w Windows. W tej sekcji poznamy wiekszos$¢ pozostatych, ktére dajg peten
obraz mozliwosci WinAPI w zakresie obstugi urzadzen wskazujacych.

Pozycja kursora

Myszke na ekranie monitora reprezentuje kursor, majacy zwykle postac strzatki. Znajduje
sie on w okreslonej pozycji, wyrazonej we wspdtrzednych ekranowych. Pozycje te
otrzymujemy ze wszystkimi komunikatami o zdarzeniach myszy'?*. Mozemy tez na nig
wptywac w inny sposdb niz tylko poprzez bezposrednie poruszanie gryzoniem.

Spéjrzmy wiec, jak to sie odbywa.

Pobieranie i ustawianie pozycji kursora

Aktualne wspdirzedne kursora, oprocz tego ze dostajemy w 1Param kazdego zdarzenia
myszy, mozemy pobrac za pomocg funkcji GetCursorPos () :

BOOL GetCursorPos (LPPOINT lpPoint);

Podajemy jej wskaznik do prostej struktury typu POINT, posiadajgcej dwa pola x i y. Z
nich tez odczytujemy zadang pozycje strzatki.
Jedyna réznicg w stosunku do danych otrzymywanych przy okazji zdarzen jest to, iz:

GetCursorPos () zwraca ekranowe wspotrzedne kursora.

Jak zas$ pamietamy, 1Param komunikatéw myszy zawiera pozycje kursora relatywng do
lewego goérnego rogu obszaru klienta okna.

A co z ustawianiem pozycji kursora? Stuzy do tego funkcja SetCursorPos () :
BOOL SetCursorPos (int X, int Y);

tatwo mozna sie domysli¢, ze podajemy jej nowe wspotrzedne dla kursora myszy w obu
parametrach. Sg to rowniez koordynaty ekranowe, zatem wywofanie w postaci:

SetCursorPos (0, 0);

Przesunie strzatke do lewego gdérnego skraju ekranu (pulpitu) - co byto do okazania ;)

124 przy czym jest to pozycja liczona wzgledem obszaru klienta okna-adresata komunikatu.

437

(Bez)wzgledne wspdtrzedne

Dwie metody liczenia wspdirzednych kursora (i nie tylko kursora) mogg by¢ troche
ktopotliwe - szczegdlnie, jezeli nie bytoby prostego sposobu konwersji miedzy nimi. Taki
sposdb jednak istnieje i stanowig go niniejsze dwie funkcje:

BOOL ClientToScreen (HWND hWnd, LPPOINT lpPoint);
BOOL ScreenToClient (HWND hWnd, LPPOINT lpPoint);

Ich przeznaczenie dobrze obrazujg nazwy. ClientToScreen () zamienia wspotrzedne
liczone wzgledem obszaru klienta okna na koordynaty ekranowe. Nalezy podac jej
uchwyt okna (hwnd) oraz rzeczone wspotrzedne w postaci adresu struktury POINT.
Stamtad tez odczytamy nowe wspotrzedne (ekranowe) po wykonaniu funkcji.

Odwrotnie dziata screenToClient (). Tutaj podajemy jej liczby odnoszace sie do ekranu,
a w zamian dostajemy koordynaty tyczace sie obszaru klienta okna o uchwycie hwnd.

Ogodlnie wiec zapamietajmy, ze:

ClientToScreen () dokonuje konwersji typu obszar klienta - ekran.
ScreenToClient () zamienia wspotrzedne wedle schematu ekran = obszar klienta.

Te dwie funkcje przydajq sie w wielu typowych i nietypowych sytuacjach
programistycznych.

Ograniczanie swobody w poruszaniu kursorem

Inicjalnie kursor posiada nieograniczong swobode w poruszaniu sie po catym ekranie.
Jezeli z jakich$ wzgleddéw nie odpowiada to nam, mozemy ograniczy¢ do wybranego
prostokata rejon ekranu, ktéry bedzie dla myszy dostepny. Czynimy to za pomoca funkcji
ClipCursor():

BOOL ClipCursor (const RECT* lpRect);

Jako parametru zada ona wskaznika do struktury RECT, opisujacej tenze prostokat,
ograniczajacy kursor. Skad go wezmiemy - to juz nasza sprawa: moze by¢ to np.
prostokat okna naszego programu:

RECT rcOkno;
GetWindowRect (hWnd, &rcOkno);
ClipCursor (&rcOkno);

Uruchamiajac powyzszy kod sprawimy, iz uzytkownik nie bedzie w stanie ,,wyjechac”
kursorem poza obreb okna aplikacji. Takie zachowanie ogranicza wiec wygode
korzystania z aplikacji i systemu operacyjnego, zatem powinno by¢ stosowane jedynie w
uzasadnionych przypadkach. Zawsze tez nalezy pamieta¢ o uwolnieniu kursora, gdy
bedzie to juz mozliwe:

ClipCursor (NULL) ;

Przekazanie NULL do funkcji cClipCursor () spowoduje rozciggniecie rejonu dostepnego
dla myszy na caty ekran. Bedzie to wiec powrot do stanu poczatkowego.

Sprawdzanie przyciskow myszy

O wcisnieciu i zwolnieniu przyciskow myszy informujg nas zdarzenia WM ?BUTTONDOWN/UP.
O aktualnym stanie tychze przyciskow mozemy tez dowiedziec¢ sie podczas przetwarzania

438

ktéregokolwiek z klienckim komunikatéw myszy - wystarczy odczytaé warto$¢ wparam'®®

tego komunikatu i poréwnac ja z odpowiednig flagg bitowa (jedna ze statych Mk).

Jako elastyczny system operacyjny Windows oferuje jednak takze inne sposoby na
pozyskanie biezacej kondyncji przyciskow myszy - czyli informacji o ich wcisnieciu. Stuzg
do tego na przykiad funkcje GetKeyState () i GetAsyncKeyState().

Kody wirtualne przyciskow myszy

Nazwy tych dwodch funkcji sugeruja, ze ich zasadniczym przeznaczeniem jest kontrola
stanu klawiszy na klawiaturze. To faktycznie prawda, jednak w Windows API pod
pojeciem ‘klawisz’ (ang. key) kryja sie takze przyciski wtasciwe innym urzadzeniom
wejsciowym - na przyktad myszce. tacznie nazywa sie je klawiszami wirtualnymi
(ang. virtual-keys).

Takie podejscie moze sie wydawac dziwne, ale w praktyce jest bardzo wygodne.
Kazdemu , klawiszowi” (cokolwiek to stowo chwilowo znaczy...) przyporzadkowany jest
pewien kod (ang. virtual-key code), ktéry go jednoznacznie identyfikuje za pomocg statej
0 nazwie zaczynajacej sie przedrostkiem vk . Nas oczywiscie interesujg teraz tylko te
kody, za ktérymi kryjq sie przyciski myszy. Przedstawia je ponizsza tabelka:

stata wartosé¢ przycisk
VK_LBUTTON | 0x0001 lewy
VK_RBUTTON | 0x0002 prawy
VK_MBUTTON | 0x0004 Srodkowy
VK_XBUTTON1 | 0x0005 | pierwszy dodatkowy (X1)
VK _XBUTTON2 | 0x0006 drugi dodatkowy (X2)

Tabela 46. Kody wirtualne przyciskow myszy
(dwa ostatnie przyciski sa dostepne tylko w Windows 2000/XP lub nowszych)

Zerknijmy teraz na funkcje Get[Async]KeyState () i zobaczmy, jak mogg nam one
pomoc w pozyskiwaniu stanu przyciskédw myszy.

Kontrola stanu przyciskdw myszy

Omawiane dwie funkcje sg na tyle do siebie podobne, ze mozemy je rozpatrywacd tgcznie
- rowniez pod wzgledem prototypow:

SHORT Get[Async]KeyState (int nKey) ;

Widzimy, ze funkcje te zadajg jednego parametru. Jest nim kod wirtualnego klawisza,
ktéry ma by¢ sprawdzany; u nas bedzie to rzecz jasna jedna z pieciu statych witasciwych
przyciskom myszy.

Co zas otrzymujemy w zamian? Otdz dostajemy warto$¢ 16-bitowg, ktora tacznie niesie
w sobie az dwie dane. Poznamy je obie przy omawianiu obstugi klawiatury, a teraz
skoncetrujemy sie na wazniejszej z nich, zawartej w starszym bajcie stowa zwracanego
przez Get[Async]KeyState ().

Jak nietrudno zgadngé¢, mam tu na mysli pozadang przez caty czas informacje o tym, czy
dany przycisk myszy jest w aktualnej chwili wcisniety, czy tez nie. Sprawdzi¢ mozna to w
prosty sposéb: nalezy ustali¢, czy starszy bajt wyniku jest liczbg r6zna od zera. Jesli
tak, znaczy to, iz kontrolowany przycisk jest w danym momencie wcisniety.

Aby wiec skontrolowa¢ stan lewego przycisku myszy, mozna uzy¢ wywotania podobnego
do ponizszego:

125 W przypadku wM_MOUSEWHEEL jest to dolne stowo wParam, uzyskiwane poprzez GET KEYSTATE WPARAM () .

439

if (HIBYTE (Get[Async]KeyState (VK _LBUTTON)) /* != 0 */)
{
// lewy przycisk myszy jest aktualnie wcisniety

}
Sprawa wyglada identycznie dla czterech pozostatych przyciskéw.

Ro6znica mata, lecz wazna

Wypadatoby teraz rozrézni¢ wreszcie funkcje GetKeyState () i GetAsyncKeyState ().
Petnego rozgraniczenia tych dwoch procedur dokonamy wtedy, gdy poznamy je
catkowicie - stanie sie to przy okazji poznawania zagadnien zwigzanych z klawiaturg z
WinAPI. Obecnie skupimy sie na jednym niuansie, dotyczgacym przyciskdw myszy.

Chodzi o to, iz Windows oferuje pewne przydatne udogodnienie dla oséb leworecznych.
Uzytkownicy postugujacy sie odmienng konczyna niz pozostali chcg bowiem trzymac
mysz raczej po lewej stronie biurka, w lewej dtoni. Woéwczas pod palcem wskazujacym
znajdzie sie nie lewy, lecz prawy przycisk myszy; analogicznie palec serdeczny spocznie
na lewym przycisku myszy, ktéry dla uzytkownika-mankuta wydaje sie prawym.

Nie jest to przy tym problemem, poniewaz Windows daje mozliwo$¢ dostosowania sie do
tej sytuacji. Polega ona na zamianie zwyczajowego znaczenia lewego i prawego przycisku
na wzajemnie odwrotne. Opcja taka moze by¢ ustawiona na przyktad w systemowym
Panelu Sterowania.

Jak to jednak czesto bywa, utatwienia dla uzytkownika sg utrudnieniami dla programisty.
Fakt, ze lewy przycisk myszy moze w pewnych sytuacjach odpowiadac¢ prawemu i
odwrotne, wprowadza troche zamieszania. Ale przeciez nie z takimi rzeczami radziliSmy
sobie wczesnie, prawda? :)

Na poczatek dodajmy do naszego stownika dwa przydatne okreslenia: fizycznych i
logicznych przyciskow myszy.

Fizyczne przyciski myszy (ang. physical mouse buttons) to przyciski umieszczone na
urzadzeniu wskazujacym (zwykle myszy).

Logiczne przyciski myszy (ang. /ogical mouse buttons) to systemowa interpretacja
fizycznych przyciskow myszy.

Przyciski fizyczne sg dostownie namacalne - mozemy ich dotkna¢ i je wciskac. Poza tym
powinnismy zwroci¢ uwage na pozornie oczywisty fakt: fizyczne przyciski zawsze
~pozostajg sobg” - lewy przycisk jest zawsze lewym, a prawy prawym.

Inaczej jest w przypadku przyciskow logicznych. W wiekszosci przypadkéw bedag one
odpowiadaty swym fizycznym braciom... z wyjatkiem jednego wyjatku :) Domys$lasz sie,
ze tg nietypowgq sytuacjqg jest wiaczona opcja zamiany przyciskow. Wtedy tez przyciski
myszy sg interpretowane ,na opak”:

przyciski fizyczne preyveiski logicene
Lot — |
damysinie
(praworeczni) - —

Zamienione — —
przyciski >—<:—
{leworeczni) o o

Schemat 42. Mapowanie fizycznych przyciskOw myszy na logiczne

440

No dobrze, ale jak ta sytuacja ma sie do odbierania przez system Windows zdarzen od
myszy oraz do bezposredniego pobierania jej stanu?... Ot6z prawie zawsze liczg sie tu
wytacznie logiczne przyciski myszy.

Niemal wszystkie elementy Windows API przeznaczone do pracy z przyciskami myszy
operujq na logicznych przyciskach.

Nieprzypadkowo zaznaczytem to drobne stowko - ‘niemal’. Istnieje bowiem jedna funkcja,
ktéra odczytuje stan wytacznie fizycznych przyciskdw myszy - jest nig
GetAsyncKeyState ().

GetKeyState () pobiera stan logicznych przyciskdw myszy.
GetAsyncKeyState () pobiera stan fizycznych przyciskéw myszy.

I to jest wtasnie ta roznica, na ktorg chciatem zwrdéci¢ uwage. Wynika z niej, ze dwa
ponizsze wywotania mogg w istocie sprawdzac fizycznie odmienne przyciski:

GetKeyState (VK _LBUTTON)
GetAsyncKeyState (VK_LBUTTON)

Zalezy to od ustawienia systemowego, wprowadzanego w Panelu Sterowania.
Programowo mozemy je odczyta¢ poprzez GetSystemMetrics (SM_SWAPBUTTON) :

// sprawdzenie stanu lewego przycisku 1 opcji zamiany przyciskdw...
if (HIBYTE (GetAsyncKeyState (VK LBUTTON))

&& GetSystemMetrics (SM_SWAPBUTTON))
{

// fizycznie wcisnieto lewy przycisk, ale ze wzgledu na ustawionag
// nalezy go zinterpretowa¢ Jjako prawy

}

Powyzszy kod odpowiada z grubsza (bo nie do konca, o czym powiemy pdzniej) prostszej
instrukcji z uzyciem GetKeyState () :

if (HIBYTE (GetKeyState (VK _LBUTTON)))
{
// wcisnieto logicznie lewy przycisk

}

Jest ona takze bardziej przejrzysta, lecz aby jg wtasciwie stosowac, trzeba dowiedziec sie
nieco wiecej o kwestiach réznigcych funkcje GetkKeyState () | GetAsyncKeyState () W
odniesieniu do wszystkich klawiszy wirtualnych. Uczynimy to w podrozdziale na temat
klawiatury w Windows.

O pobieraniu ustawien myszy, takich jak przytoczona tu zamiana przyciskéw, powiemy
sobie natomiast w jednym z najblizszych paragraféw.

Symulowanie zdarzernn myszy

Normalnie zadaniem programu okienkowego jest reakcja na czynnosci wykonywane
przez uzytkownika. Wigze sie to z odbieraniem i obstugg komunikatéw systemowych.
Komunikaty te generuje posrednio osoba korzystajgca z aplikacji; czyni to za pomocg
urzadzen wejsciowych.

Takze sam program moze postawic sie w tej roli i symulowaé wystepowanie
odpowiednich zdarzen. Najprostszym sposobem zdawatoby sie bezposrednie wysytfanie
komunikatéw o zdarzeniach poprzez funkcje sendMessage () lub PostMessage ().

441

Jednakze tg drogg bedziemy emulowac jedynie skutek, a nie przyczyne wystepowania
pewnych zdarzen. Jest to tylko udawanie systemowej interpretacji danych od
urzadzen, nie zas danych jako takich. Nie bez znaczenia jest tez fakt, ze z wysytanym
komunikatem faczy sie wiele pobocznych aspektow, ktérymi zwykle sie nie zajmujemy,
lecz ktére mogaq okazac sie wazne (np. kwestia watkow). Wreszcie, komunikaty muszg
by¢ skierowane do konkretnego okna, majgcego je otrzymacd, a przeciez wiemy, ze
Windows zwykt sam o tym decydowac (przyktadem jest klikniecie myszka: w zaleznosci
od pozycji kursora komunikat o tym zdarzeniu mogg dostac zupetnie rézne okna).

Samodzielne produkowanie zdarzen nie jest wiec dobrym rozwigzaniem. Bytoby lepiej,
gdyby to system oferowat jakis wtasny sposéb ,udawania” sygnatow od myszki czy
klawiatury. I tak sie przypadkowo sktada, iz podobny mechanizm faktycznie istnieje :D
Poznamy go teraz, zajmujqc sie programowym symulowaniem myszki.

Funkcja SendInput ()

W starszych wersjach Windows do generowania zdarzen myszy stuzyta funkcja
mouse event (). Poczawszy od Windows 98 zalecane jest jednak uzycie innej funkcjit?® -
SendInput () :

UINT SendInput (UINT nInputs,
LPINPUT pInputs,
int cbSize);

Nie wyglada ona na zbyt ztozong, przyjrzyjmy sie wiec jej parametrom:

typy | parametry opis

Te dwa argumenty okreslajg tablice struktur typu INPUT, ktora
zostanie przekazana do funkcji. nInputs zawiera liczbe
elementow tej tablicy, za$ pInputs - wskaznik do niej. Kazdy
element jest natomiast oddzielng strukturg, opisujacqg jedno
symulowane zdarzenie myszy lub klawiatury.

UINT nInputs
LPINPUT plInputs

Musimy podac tutaj rozmiar typu INPUT w bajtach, czyli po

int cbSize)
prostu sizeof (INPUT).

Tabela 47. Parametry funkcji SendInput()

Wida¢, ze funkcja ta potrafi wygenerowac naraz wiecej niz jedno zdarzenie od urzadzenia
wejsciowego, poniewaz pobiera ona tablice struktur INPUT. Nastepnie przetwarza jq
element po element, zwracajac w wyniku liczbe poprawnie zasymulowanych zdarzen.

Struktura INPUT

Punkt ciezkosci zagadnienia przesuwa sie nam z funkcji SendInput () na strukture INPUT.
Spojrzmy zatem na definicje tego typu:

struct INPUT

{
DWORD type;

union

{
MOUSEINPUT mi;
KEYBDINPUT ki;
HARDWAREINPUT hi;

126 Funkcja ta zastepuje réwniez keybd_event (), stuzacq do symulowania klawiatury. Jak to robi - o tym
napisze w nastepnym podrozdziale.

442

}i
)i

R&zni sie on zdecydowanie od wiekszosci typow strukturalnych, z jakimi mieliSmy dotad
do czynienia. Wzgledna nowoscig jest bowiem anonimowa unia (ang. anonymous
union), zamykajaca trzy pola struktury. Jezeli pamietamy, jak funkcjonujq unie, to
wiemy, iz taka deklaracja powoduje nastepujacy efekt: tylko jedno z pol - mi, ki lub hi
- moze by¢ wykorzystane do zapisywania sensownych informacji. Jest to najlogiczniejsza
realizacja zatozenia, aby jedna struktura INPUT opisywata tylko jedno zdarzenie - myszki,
klawiatury czy tez specjalnego ,rodzaju sprzetowego”.

Niemniej jednak system operacyjny (zredukowany chwilowo do funkcji SendInput ())
musi wiedzie¢, jakiego typu symulowane zdarzenie chcemy wygenerowac. Informujemy o
tym w jedynym ,pozaunijnym” polu struktury INPUT - type. W tym celu moze ono
przyjmowac jedng z nastepujacych wartosci, odpowiadajgcych poszczegdlnym polom
unii:

stata | znaczenie | pole unii
INPUT MOUSE symulowane wejscie od myszy mi
INPUT_KEYBOARD symulowane zdarzenie klawiatury ki
INPUT_HARDWARE | symulacja innego urzadzenia (tylko Windows 9x/Me) hi

Tabela 48. State pola type struktury INPUT

Trzecia z nich jest juz mocno przestarzata i dlatego nie nalezy jej uzywac. Druga nie
interesuje nas w tej chwili, gdyz obecnie nie zajmujemy sie klawiaturg. Wybieramy zatem
bramke numer 1 - INPUT MOUSE :)

Struktura MOUSEINPUT

Jako ze chcemy symulowaé akcje myszy, powinnismy uzyc¢ pola mi (oraz wartosci
INPUT MOUSE W polu type). Pole mi jest, jak moznaby przypuszczac, rowniez struktura.
Tym razem typem tej struktury jest MOUSEINPUT, a opisuje ona wszystkie szczegoty
naszego wymuszonego zdarzenia myszy:

struct MOUSEINPUT
{

LONG dx;

LONG dy;

DWORD mouseData;

DWORD dwFlags;

DWORD time;

ULONG_PTR dwExtralInfo;
i

Catkiem ich sporo, wiec nie od rzeczy bedzie ujecie opisdw powyzszych pdl w zgrabnej
tabelce:

typ pola opis

Wpisujemy tutaj wspoétrzedne opisujace ruch kursora myszy
(jezeli mamy zamiar nim poruszac). Wspéitrzedne te mogq
by¢ podane w liczbach bezwzglednych - sg wowczas
liczone w odniesieniu do lewego gérnego rogu ekranu; sg to

dx wiec koordynaty ekranowe. Alternatywnie mozliwe jest

dy podanie wspétrzednych wzglednych, bedacych raczej
okresleniem przesuniecia kursora; system operacyjny doda
je wtedy do aktualnej pozycji strzatki, otrzymujac w ten
sposob jej nowe potozenie.

LONG

443

opis

O tym, jakiego rodzaju wspotrzedne podajemy w polach dx i
dy informuje obecnos¢ lub brak flagi MOUSEEVENTF ABSOLUTE
w polu dwFlags.

W tym polu podajemy dodatkowe dane na temat zdarzenia
myszy. Moga one przyjac jedng z dwdch postaci, zaleznie od
rodzaju zdarzenia:

» w przypadku symulowanej zmiany potozenia rolki
myszy pole mouseData zawiera wartosc jej obrotu,
czyli delte. Jest to taka sama wartos¢, jaka
otrzymujemy w gornym stowie parametru wParam przy
przetwarzaniu komunikatu wM MOUSEWHEEL
» gdy mamy na celu emulowanie wcisniecia jednego z
dwodch dodatkowych przypciskdw myszy -
oznaczonych X1 i X2, a nazywanych wspodlnie
przyciskami X - pole mouseData powinno zawierac
wskazanie jednego z tych przyciskéw:
v/ stata XxBUTTON1 wskazuje na przycisk X1
v/ stafla XxBUTTON2 odpowiada przyciskowi X2

Tutaj dostarczamy kombinacje flag bitowych,
okreslajacych m.in. rodzaj zdarzenia myszy (przesuniecie,
klikniecie, itd.), jakie chcemy zasymulowac¢. Dopuszczalnych
flag jest catkiem sporo, wiec ujmie je za chwile kolejna
tabelka :D

Pole time okresla moment zaistnienia zdarzenia. Ma on
by¢ wyrazony w spotkanej juz przez nas formie liczby
milisekund od startu systemu. Czas w takiej postaci mozna
uzyskac poprzez GetTickCount () i umiesci¢ w tym polu;
mozna tez zostawi¢ w nim zero, wtedy system sam zapisze
tutaj chwile generacji zdarzenia.

typ pola
DWORD mouseData
DWORD dwFlags
DWORD time
ULONG_PTR | dwExtraInfo

To pole moze przechowywac jakie$ pomocnicze dane dla
odbiorcy zdarzenia. Zwykle nie ma potrzeby przekazywania
zadnych takich danych, zatem wpisujemy tu najczesciej zero.

Owe dodatkowe dane mozna uzyskac podczas przetwarzania
komuniaktow o zdarzeniach - wystarczy wywofa¢ funkcje

GetMessageExtralInfo().

Tabela 49. Pola struktury MOUSEINPUT

O rodzaju symulowanego zdarzenia, oraz o kilku innych kwestiach, informujemy funkcje

SendInput () za posrednictwem pola dwFlags. Jest to kombinacja jednej lub kilku flag
bitowych sposrdd ponizszych:

flaga

znaczenie

MOUSEEVENTEF MOVE
MOUSEEVENTF LEFTDOWN
MOUSEEVENTF LEFTUP
MOUSEEVENTF MIDDLEDOWN
MOUSEEVENTF MIDDLEUP
MOUSEEVENTF RIGHTDOWN
MOUSEEVENTF RIGHTUP
MOUSEEVENTE XDOWN
MOUSEEVENTFE XUP
MOUSEEVENTF WHEEL

ruch myszg
wcisniecie lewego przycisku myszy
zwolnienie lewego przycisku myszy
wcisniecie srodkowego przycisku myszy
zwolnienie $rodkowego przycisku myszy
wcisniecie prawego przycisku myszy
zwolnienie prawego przycisku myszy
wcisniecie jednego z dodatkowych przyciskow myszy
zwolnienie jednego z dodatkowych przyciskéw myszy
obroét rolkg myszy

444

flaga zZnaczenie

Obecnos¢ tej flagi sprawia, ze pola dx oraz dy bedg
traktowane jako docelowe, bezwzgledne wspoéirzedne
ekranowe kursora. Funkcja SendInput () ustawi wiec
strzatke myszy w pozycji wyznaczonej przez te pola
Jezeli zas flaga nie bdzie obecna w polu dwFlags, wtedy dx i
dy zostang potraktowane jako okreslenie przesuniecia
kursora, czyli dystansu poziomowego i pionowego, ktory
zostanie dodany do aktualnego potozenia kursora po to, aby

MOUSEEVENTF ABSOLUTE .
- otrzymac nowe.

Rzeczywiste przesuniecie kursora moze sie nieco rézni¢ od
wartosci podanych w dx i dy, gdyz system operacyjny
bierze jeszcze pod uwage kilka innych czynnikéw, jak np.
aktualng predkos$¢ ruchu myszki.

Jesli interesujg cie szczegodty, zajrzyj do opisu struktury
MOUSEINPUT w MSDN.

Flaga ta dziata tylko w potgczeniu z
MOUSEEVENTF ABSOLUTE. Jej ustawienie powoduje, ze
absolutne koordynaty kursora podane w dx i dy sg
traktowane w odniesieniu do catego pulpitu, a nie do ekranu
biezacego monitora. Ma to znaczenie wytacznie w
systemach wielomonitorowych.

MOUSEEVENTF VIRTUALDESK

Tabela 50. Flagi bitowe pola dwFlags struktury MOUSE INPUT

Ze wzgledu na fakt, iz dwrlags jest kombinacjg bitowg, mozliwe jest ustawienie wiecej
niz jednej flagi naraz. Tym samym mozna zasymulowac kilka zdarzen myszy za pomocg
jednej struktury [Mouse]INPUT. Niedozwolone jest jedynie potaczenie

MOUSEEVENTF XDOWN/UP z MOUSEEVENTF WHEEL; powody s czysto techniczne: oba
zdarzenia korzystajg bowiem z pola mouseData, ale kazde na swdj wiasny sposéb i nie
potrafig sie tym polem podzielic.

Stosowalnos¢ praktyczna

Uff, sporo tej teorii, w dodatku nie jest ona wcale taka prosta. Najlepiej wiec zajg¢ sie
konkretnymi przypadkami: wtedy wszystko stanie sie jasne, a przy okazji zdobedziesz
praktyczne umiejetnosci generowania zdarzen myszy.

A zatem spdjrzmy na sposoby sztucznego wywotywania kazdego z mozliwych zdarzen
myszy.

Stosunkowo najprosciej wytworzy¢ ,oszukane” przycisniecia lub zwolnienia trzech
przyciskdw myszy. Ignorujemy wdwczas prawie wszystkie pola struktury MOUSEINPUT -
wszystkie z wyjatkiem dwFlags, w ktédrym ustawiamy tylko jedng jedyna flage: ktoras z
MOUSEEVENTF _*UP/DOWN.

Zobaczmy przyktadowy kod, generujacy programowo wcisniecie lewego przycisku myszy:

// struktura INPUT, przechowujaca nasze zdarzenie
INPUT Klik;
ZeroMemory (&Klik, sizeof (INPUT)); // zerujemy ja

// ustawiamy odpowiednie parametry
Klik.type = INPUT MOUSE; // informujemy o tym, ze zajmujemy sie mysza
Klik.mi.dwFlags = MOUSEEVENTF LEFTDOWN; // lewy przycisk "w doéi"

445

SendInput (1, &Klik, sizeof (INPUT)) ; // generujemy zdarzenie'?’

Nieco bardziej skomplikowane jest zasymulowanie klikniecia jednym z dwéch
dodatkowych przyciskéw - wymaga to wykorzystania jeszcze pola mouseData:

Klik.mi.mouseData = XBUTTONL1; // przycisk X1
Klik.mi.dwFlags = MOUSEEVENTF XDOWN; // dodatkowy przycisk "w dot"
SendInput (1, &Klik, sizeof (INPUT)); // i jazda :D

Analogicznie jak w dwdéch powyzszych kodach mozemy réowniez emulowaé zwolnienie
wcisnietych przyciskow, zamieniajac flagi *DowN na *UP.

Nastepnym interesujacym wydarzeniem jest ruch myszy. Jak mozna wnioskowac z opisu
struktury MOUSEINPUT, moze on odbywac sie na dwa sposoby. Pierwszym jest
natychmiastowa teleportacja kursora w okreslony rejon ekranu:

INPUT Ruch;
ZeroMemory (&Ruch, sizeof (INPUT));

// ustawiamy kursor w $rodku ekranu
Ruch.type = INPUT MOUSE;

Ruch.mi.dx = GetSystemMetrics (SM CXSCREEN) / 2; // wspbdl. pozioma
Ruch.mi.dy = GetSystemMetrics (SM CYSCREEN) / 2; // wspbdl. pionowa
Ruch.mi.dwFlags = MOUSEEVENTF MOVE | MOUSEEVENTF ABSOLUTE; // flagi

SendInput (1, &Ruch, sizeof (INPUT));

Mozna zapytac, czym rdzni sie powyzszy kod od wywotania SetCursorPos () (pomijajac
wiekszg jego dtugosc)?... Odmiennosc tych dwoch drég osiggniecia celu jest zadna - obie
powodujg doktadnie to samo. Zdaje sie, ze mozliwos¢ bezwglednej zmiany pofozenia
kursora za pomocg SendInput () zostata raczej gwoli kompletnosci w symulowaniu myszy
- $wiadczy o tym chocby fakt, iz dziatanie to wymaga podania dodatkowej flagi. Jedynie
dotaczenie MOUSEEVENTF VIRTUALDESK Sprawia wyrazng roznice, ktora jednak jest
widoczna tylko w systemach z kilkoma monitorami®?8.

Inaczej jest w przypadku relatywnego przesuwania kursora, gdy SendInput () jest
catkowicie niezastagpiona (chyba ze przez przestarzatg mouse event ()).

Przesuniecie kursora moze tez odbywac sie w odniesieniu do jego biezacej pozycji. Jak

juz kilkakrotnie wspominatem, wartosci pél MOUSEINPUT: :dx i MOUSEINPUT: :dy zostang
wtedy zwyczajnie dodane do aktualnych wspétrzednych myszy.

Takie dziatanie jest w zasadzie domysine, gdyz nie wymaga podania zadnej dodatkowej
flagi (naturalnie poza niezbedng MOUSEEVENTF MOVE, okreslajacg rodzaj symulowanego

zdarzenia myszy):

Ruch.mi.dwFlags = MOUSEEVENTF MOVE; // bez MOUSEEVENTF ABSOLUTE

Poniewaz uzycie sendInput () jest jedynym sposobem na relatywne przesuniecie
kursora, za$ przemieszczenie bezwgledne ma swdj odpowiednik w funkcji
SetCursorPos (), flaga MOUSEEVENTF ABSOLUTE jest uzywana raczej rzadko.
SetCursorPos () jest zwyczajnie prostszg drogq osiggniecia tego samego celu, czyli
ustawienia kursora w scisle okreslonym miejscu ekranu.

127 Korzystamy tu z operatora pobrania adresu, poniewaz mamy pojedyncza zmienna (strukture), a nie tablice.
Klik moznaby aczkolwiek zadeklarowac jako INPUT K1lik[1];, lecz wtedy musielibySmy odwotywac sie do jego
pdl poprzez poprzez K1ik[0] .. Poza tym tablica sktadajgca sie z jednego elementu to raczej dziwny twér,
nieprawdaz? :) (podobne uwagi mogq dotyczyc¢ takze kazdego z nastepnych kodow w tym akapicie)

128 setcursorPos () potrafi przesuwaé kursor tylko w obrebie aktualnego monitora, za$ SendInput () ze
wspomniang flagq moze dziata¢ na catym pulpicie, rozciggnietym nawet na kilka monitoréw.

446

Ostatnig akcjg zwigzang z myszg jest obrot jej rolki. Emulowanie tego zjawiska nie nalezy
do trudnych zadan: wiemy, ze warto$¢ zadanego obrotu, wyrazong jako
(pod)wielokrotnos¢ WHEEL DELTA, nalezy wpisa¢ w polu MOUSEINPUT: :mouseData. Oprocz
tego nalezy jeszcze podac¢ odpowiednig flage; w catosci wyglada to mniej wiecej tak:

INPUT Obrot;
ZeroMemory (&0Obrot, sizeof (INPUT));

// obrédt rolki o jeden krok w przdd ("od uzytkownika™)
Obrot.type = INPUT MOUSE;

Obrot.mi.mouseData = WHEEL DELTA; // wartos$é obrotu rolki
Obrot.mi.dwFlags = MOUSEEVENTF WHEEL; // akcja == obroét rolka
SendInput (1, &Obrot, sizeof (INPUT)); // dziatamy

Pamietajmy, ze symulowanie obrotu rolkg myszy jest mozliwe, tylko wtedy, gdy
zainstalowana w komputerze mysz faktycznie takq rolke posiada. O sprawdzaniu tej i
innych cech myszy powiemy sobie w nastepnej sekgcji.

Mozliwosci i ustawienia myszy

Jeszcze nie tak dawno temu niezwykle popularne wsrod uzytkownikéw komputeréw byty
myszy zaledwie dwuprzyciskowe. Szybko dorobity sie jednak kolejnego przycisku, a
nawet wiekszej ich liczby; potem zyskaty tez obrotowe rolki, czasem nawet w liczbie
wiekszej niz jedna. Dzisiaj na komputerowym rynku i podktadkach uzytkownikéw istnieje
cate mnoéstwo modeli urzadzen wskazujacych, réznigcych sie swoimi mozliwosciami.

Co wiecej, na potencjat tych urzadzen mozna w duzym stopniu wptywac programowo, za
posrednictwem roznorodnych opcji, jakie oferuje Windows. Bedac catkiem elastycznym
systemem operacyjnym, pozwala on na dostrojenie bardzo wielu ustawien z rejonu
myszy i okolic.

Opcje te sq ustawiane przede wszystkim przez uzytkownika w Panelu Sterowania. Nie
znaczy to jednak, ze aplikacje dziatajace pdo kontrola systemu nie maja do nich dostepu.
Przeciwnie, mogg one nie tylko odczytywac stan tychze opcji, ale tez samodzielnie je
zmienia¢. W tym celu twdrcy programoéw muszg oczywiscie skorzystac¢ z odpowiednich
funkcji Windows API - tych, ktére teraz poznamy.

Sa nimi gtéwnie dwa wywotania: znane ci juz skadinad GetSystemMetrics () oraz nowe
SystemParametersInfo ().
Przypomnijmy prototyp pierwszej z tych funkcji:

int GetSystemMetrics (int nIndex);

By¢ moze pamietasz, ze w jej parametrze podajemy jedna ze statych sm_*
(oznaczajacych globalne ustawienia systemowe), a w zamian otrzymujemy wartosé
przyporzadkowanej jej opcji. Jesli nie, to wiasnie sobie o tym przypomniates :D
Druga z waznych dla nas funkcji to SystemParametersInfo():

BOOL SystemParametersInfo (UINT uiAction,
UINT uiParam,
PVOID pvParam,
UINT fWinIni);

Ma ona nieco wiecej parametréw, gdyz stuzy nie tylko do pobierania, ale tez do zmiany
opcji systemowych. Niniejsza tabelka opisuje te parametry:

typy | parametry | opis

UINT | uiAction | Tu podajemy statg identyfikujaca opcje, ktdrej ustawienie chcemy

447

typy | parametry opis

pozyskac lub zmodyfikowac. Kazdej takiej opcji odpowiada stata o

nazwie z przedrostkiem spI , a ich liczba oscyluje wokot setki. Nie

bedziemy oczywiscie omawiac ich wszystkich; w tym podrozdziale
zajmiemy sie tylko tymi, ktére dotycza myszy.

UINT uiParam Sa to dwa parametry specyficznego przeznaczenia, ktérych
PVOID pvParam uzycie zalezy od wartosci uiAction.

Ten parametr okresla sposob powiadomienia dziatajacych
UINT fWinIni programéw o zainstniatej zmianie ustawienia systemowego. Zwykle

nie przejmujemy sie tym parametrem i wpisujemy don zero.

Tabela 51. Parametry funkcji SystemParametersinfo()

Warto zajrze¢ do opisu SystemParametersInfo () w MSDN. Jest w nim zawarta m.in.
petna lista wartosci, jakie moze przyjmowac parametr uiAction.

W dalszej czesci tej sekcji zajmiemy sie niektérymi z wyliczeniowych statych, jakie mozna
przekazac do funkcji GetSystemMetrics () i SystemParametersInfo (), a takze poznamy
kilka innych, bardziej specyficznych funkcji. Rzecz jasna, wszystkie te elementy Windows
API beda dotyczyly wylgcznie ustawien myszy.

Rekonesans mozliwosci myszy

Najsampierw chcieliby$my wiedzie¢, z jak poteznym urzadzeniem mamy do czynienia.
Innymi stowy, zrobimy teraz szybki wglad w arsenat funkcji, w ktére zostata wyposazona
mysz.

Czy jest na poktadzie...?

Mato kto zdaje sobie sprawe, ze myszka nie jest niezbednym elementem zestawu
komputerowego, pracujgcego pod kontrolg systemu Windows. Nasz okienkowy OS radzi
sobie catkiem dobrze, majac do dyspozycji wytgcznie klawiature. Tego samego nie mozna
zwykle powiedzie¢ o uzytkowniku pozbawionym myszy, co jednak nie znaczy, ze takich
uzytkownikéw juz nie ma. Zobaczmy zatem, jak sprawdzi¢ obecnos¢ myszy w
komputerze.

Na szczescie jest to bardzo proste i ogranicza sie do wywotania funkcji
GetSystemMetrics () Zparmﬂehen1SM_MOUSEPRESENT:

BOOL bMyszkaObecna = GetSystemMetrics (SM MOUSEPRESENT) ;

W wyniku otrzymujemy warto$¢ TRUE lub FALSE 0 oczywistym znaczeniu; mozemy jgq
wykorzystac chociazby tak:

if (!bMyszkaObecna)
{
MessageBox (NULL, "Ten program nie moze dziatac¢ bez myszki!™,
"Brak myszy'", MB OK | MB ICONSTOP)
PostQuitMessage (0);
}

Niemniej pamietajmy, ze pomimo powszechnosci wystepowania myszek w komputerach
uzytkownikdw, dobry program powinien zapewniac¢ rowniez wygodne wsparcie dla
klawiatury.

448

Liczba przyciskow

Poszczegdlne modele myszek réznig sie miedzy innymi liczbg dostepnych przyciskéw.
Dzisiejsze minimum zaktada przynajmniej trzy przyciski: lewy, srodkowy i prawy, ale
rzeczywista ich ilos¢ moze by¢ wieksza lub mniejsza.

Liczbe przyciskdw myszy tez pobieramy za pomocg GetSystemMetrics (), lecz tym
razem parametrem jest sM_CMOUSEBUTTONS:

UINT uPrzyciskiMyszy = GetSystemMetrics (SM CMOUSEBUTTONS) ;

W wyniku otrzymujemy naturalnie liczbe catkowitg, okreslajaca ilos¢ dostepnych
przyciskdw myszy - lub zero, jesli mysz nie jest obecna w systemie.

Wykrywanie rolki

Prawie niezbednym elementem myszy stata sie rolka, stuzgca do przewijania dtugich
dokumentéw, a okazjonalnie petnigca honory srodkowego przycisku.

Posiadanie przez myszke rolki mozemy ustali¢ za pomoca... funkcji GetSystemMetrics ()
oczywiscie :) Tym razem jej parametrem musi by¢ SM MOUSEWHEELPRESENT:

BOOL bRolkaObecna = GetSystemMetrics (SM_MOUSEWHEELPRESENT) ;

Trzeba tu przypomnieé, ze brak lub obecnos¢ kétka myszy determinuje nie tylko
oczywiste tego nastepstwa, ale tez mozliwo$¢ programowej symulacji obrotu rolki
poprzez funkcje SendInput () €zy mouse event (). Nie mozna bowiem udawac dziatania
czegos, czego tak naprawde nie ma.

Ustawienia podwdjnego klikniecia

Mechanizm podwdjnego klikniecia wprowadzono do Windows gtéwnie po to, aby skréci¢
czas wykonywania najczestszych operacji. Przyktadem niech bedzie zarzadzanie plikami
w Eksploratorze Windows: pojedyncze klikniecie powoduje zaznaczenie pliku, co pozwala
na wykonanie na jego rzecz pewnych polecen, dostepnych na pasku menu programu.
Bardzo czesto takim poleceniem bedzie otwarcie pliku, wiec wymyslono dla niego
tatwiejszy sposéb wywotywania - podwdjne klikniecie. Nie wymaga ona diugiej wedrowki
kursorem do paska menu, a jedynie dwdéch szybkich wcisniec lewego przycisku.

Chociaz podwdéjne klikniecie jest z pewnoscig wygodne, poczatkujacym uzytkownikom,
nieobytym z mysza, moze ono sprawia¢ problemy. Dlatego tez system Windows
umozliwia dostrojenie parametrow dwukrotnego klikniecia tak, aby odpowiadaty ony
indywidualnym preferencjom.

W tym paragrafie zobaczymy, w jaki sposob nasze programy mogg pobierac i ustawiac
opcje podwdjnego klikniecia.

Interwat czasu pomiedzy kliknieciami

Aby system modgt zinterpretowac wcisniecia przycisku myszy jako dwukrotne klikniecie,
muszg one zaistnie¢ odpowiednio szybko. Jezeli drugie klikniecie bedzie spdznione,
wowczas Windows zarejestruje dwa pojedyncze przycisniecia, a nie jedno podwodjne.
Wazne jest wiec wiasciwe dopasowanie ustawienia systemowego, regulujacego
maksymalny interwat czasu pomiedzy dwoma kliknieciami, ktére bedg
rejestrowane jako jedno podwdjne.

Rzeczona opcja znajduje sie w aplecie Wtasciwosci: Mysz Panelu Sterowania:

449

Screen 62. Ustawianie szybkos$ci dwukrotnego klikniecia
(podziekowania dla gemGrega za wykonanie tego screena)

Naturalnie, mozliwa jest takze jej programowa kontrola za pomocg funkcji Windows API.
Zauwaz, ze cho¢ uzytkownik moze mowic¢ o szybkosci dwukrotnego klikniecia, to my,
programisci, bedziemy zajmowali sie czasem pomiedzy oboma kliknieciami. Nietrudno
domysili¢ sie, ze obie te wielkosci sg do siebie odwrotnie proporcjonalne, tj. wieksza
szybko$¢ oznacza mniejszy interwat czasu.

Zobaczmy teraz, jak mozna pobrac i ustawic te wielko$¢ systemowa.

A wiec: w celu pobrania aktualnego interwatu czasu dwukrotnego klikniecia (ang. double-
click time) nalezy postuzy¢ sie specjalng funkcjg GetDoubleClickTime () :

UINT uCzasDwukliku = GetDoubleClickTime () ;

Wywotanie jej jest banalnie proste, bo nie potrzebuje zadnych dodatkowych parametrow.
W wyniku dostajemy zadany interwat czasu w milisekundach (tysiecznych czesciach
sekundy).

Ustawienie czasu dwukrotnego klikniecia jest natomiast mozliwe az na dwa sposoby:
» poprzez wywotanie specjalnej funkcji SetDoubleClickTime (). Podajemy jej nowy
interwat czasu, oczywiscie w milisekundach:

SetDoubleClickTime (250);

» za pomocg funkcji SystemParametersInfo (); nalezy wtedy w jej pierwszym
parametrze podac statq SPT SETDOUBLECLICKTIME, za$ w drugim nowg wartosc
ustawienia (trzeci i czwarty parametr wypetniamy zerami):

SystemParametersInfo (SPI_SETDOUBLECLICKTIME, 250, NULL, 0);

Z uwagi na fakt, ze pierwsza metoda jest znacznie tatwiejsza, nie obraze sig,
jezeli catkiem zapomnisz o drugiej :)

Powiedzmy jeszcze, ze w obu przypadkach mozemy jako interwat podac zero... Nie, nie
spowoduje to wylaczenia dwukrotnego klikniecia. W takiej sytuacji Windows przyjmie po
prostu wartos¢ domysing dla tego ustawienia, czyli 500 milisekund (pét sekundy).

Dopuszczalne przesuniecie kursora

Zmieszczenie sie w waskim przedziale czasu nie jest jedynym wymogiem, jakie stawia
system wobec dwukrotnego klikniecia. Drugim (i na szczescie ostatnim) jest
nieruchomos¢ myszy podczas dokonywania operacji.

Nie znaczy to aczkolwiek, ze kursor miedzy jednym a drugim przycisnieciem nie moze sie
przesung¢ nawet o piksel. Toleracja w tym wzgledzie jest nieco wieksza, a co wiecej -
mozna jg rowniez ustawic.

Uzytkownik moze tego dokonac przy pomocy narzedzia Tweak UI, ustalajgc warto$¢ na
zaktadce Mouse:

450

Screen 63. Dostrajanie tolerancji przesuniecia myszy podczas dwukrotnego klikniecia (opcja
Double-click; druga z opcji, Drag, okresla najmniejsze przemieszczenie, ktore inicjuje operacje
przeciagania - o tej wartosci nie bedziemy tutaj mowic)

(program Tweak UI mozesz sciagnac ze strony Microsoftu)

Podobnie jak to byto w przypadku szybkosci dwukrotnego klikniecia, dla programistow
obowigzuje nieco inna miara opisywanej opcji. Tweak UI stosuje odlegto$¢ pomiedzy
miejscami kolejnych kliknie¢, zas Windows API postuguje sie okalajacym je
prostokatem. System wymaga, aby oba klikniecia zawieraty sie w tym prostokacie (o
domysinych wymiarach kilku pikseli), gdyz w przeciwnym razie nie zostang potraktowane
jako dwukrotne:

X
i
R
I
v : I interprefowane jako
X " | !ﬁ dwukrotne kliknigcie
|
R
¥
I ! X
] A
: B interpretowane jako
v : dwa pojedyncze
X: SM_CXDOUBLECLE : | Ll
¥: 5M_CYDOUBLECLE -
pierwszy klik drugi klik

Schemat 43. Prostokat dwukrotnego klikniecia

Na tym schemacie nieprzypadkowo opatrzytem wymiary prostokata (x i y) nazwami
SM_CXDOUBLECLK i SM_CYDOUBLECLK. Sq to bowiem nazwy statych, jakie nalezy przekazac
do funkcji GetSystemMetrics () celem pobrania wymiaréw prostokata dwukrotnego
klikniecia:

SIZE cProstokatDwukliku;
cProstokatDwukliku.cx = GetSystemMetrics (SM CXDOUBLECLK) ;
cProstokatDwukliku.cy = GetSystemMetrics (SM CYDOUBLECLK) ;

SIZE to predefiniowany typ strukturalny z WinAPI, ktéry zawiera dwa pola typu LONG - cx
i cy, przeznaczone do przechowywania wymiaréw (szerokosci i wysokosci) wszelkiego
rodzaju obiektéw.

Mozliwe jest tez ustawienie tych wartosci przy pomocy funkcji SystemParametersInfo ()
oraz statych SPI SETDOUBLECLKWIDTH/HEIGHT:

SystemParametersInfo (SPI_SETDOUBLECLKWIDTH, 1, NULL, O0);
SystemParametersInfo (SPI_SETDOUBLECLKHEIGHT, 1, NULL, 0);

http://download.microsoft.com/download/f/c/a/fca6767b-9ed9-45a6-b352-839afb2a2679/TweakUiPowertoySetup.exe
http://www.microsoft.com/windowsxp/pro/downloads/powertoys.asp

451

Wykonanie powyzszego kodu ustawi prostokat dwukliku na rozmiar 1x1 piksela, zatem
Windows nie bedzie teraz tolerowat zadnego przesuniecia myszy w czasie dwukrotnego
klikniecia.

Utatwienia dostepu

Teraz poznamy takie opcje myszy, ktére utatwiajg korzystanie z komputera takze
osobom z uposledzong sprawnoscig ruchowg i niepetnosprawnym. Co ciekawe, niektére z
tych opcji sq na tyle przydatne, ze bywaja pomocne réwniez dla w petni sprawnych
uzytkownikow.

Zamiana przyciskow myszy

Leworeczni uzytkownicy Windows chcieliby trzymac¢ mysz w w lewej rece, po lewej
stronie monitora. Aby w takim ustawieniu swobodnie z niej korzystac, nalezy zamienié
miejscami (ang. button swap) funkcjonalnos¢ lewego i prawego przycisku myszy. Mozna
to uczyni¢ w Panelu Sterowania.

Program dziatajacy w Windows moze pobrac¢ stan ten opcji za pomoca funkcji
GetSystemMetrics () Zparmﬂehen1SM_SWAPBUTTON:

BOOL bZamienionePryciski = GetSystemMetrics (SM SWAPBUTTON) ;

Pamietamy, ze ustawienie tej opcji ma znaczenie w momencie, gdy sprawdzamy
wcisnigcie lewego (VK LBUTTON) lub prawego (VK RBUTTON) przycisku myszy za pomocg
funkcji GetasyncKeyState (). Nalezy wtedy uwzgledni¢ ttumaczenie fizycznych
przyciskdw myszy na logiczne, jak to bylo méwione w odpowiednim paragrafie
poprzedniej sekcji.

Zmiana opisywanej opcji jest natomiast mozliwa dwiema drogami:
» poprzez dedykowang funkcje swapMouseButton (). Nalezy jej podac¢ wartosé
logiczng, okreslajacqg wiaczenie (TRUE) lub wylaczenie (FALSE) opcji:

SwapMouseButton (FALSE) ; // domy$lne znaczenie przyciskow

Funkcja ta zwraca w wyniku poprzednie ustawienie
> przy pomocy wywotania SystemParametersInfo () ze stalg
SPI SETMOUSEBUTTONSWAP Oraz z nowym stanem opcji w parametrze uiParam:

SystemParameters (SPI_SETMOUSEBUTTONSWAP, FALSE, NULL, 0);

Podobnie jak w przypadku czasu dwukrotnego klikniecia, specjalnie wydelegowana
funkcja jest znacznie protsza w uzyciu niz uniwersalne SystemParametersInfo ().

Uwazajmy, gdyz tak poczyniona zmiana jest znaczaca i dotyczy natychmiast catego
systemu, zatem nalezy jg stosowac tylko w uzasadnionych okolicznosciach.

Slad kursora

Na niektérych monitorach (szczegdlnie starszych ciektokrystalicznych, w laptopach) obraz
jest na tyle niewyrazny, ze dostrzezenie ruchu jest czesto trudne. Rowniez wady wzroku
(spowodowane np. dtugim siedzeniem przed komputerem :D) moggq to utrudniac. W
takiej sytuacji mozna wigczy¢ ciekawg nomen omen opcje sladu kursora (ang. cursor
trails), podazajgcego za ruchomg strzatkg myszy.

452

Screen 64. Wilaczenia sladu kursora dokonujemy we wlasciwosciach myszy w Panelu Sterowania,
tam tez ustalamy jego diugos$é. Nawet jesli nie masz kiopotow ze sledzeniem kursora, ta opcja moze
by¢ interesujacym fajerwerkiem graficznym

Pewnie cie nieco zmartwie, ale do programowej kontroli tego ustawienia stuzy wytqcznie
funkcja systemParametersInfo (). By pobrac stan opcji nalezy wywotac te funkcje ze
statqg SPI GETMOUSETRAILS:

int nSladKursora;
SystemParametersInfo (SPI_GETMOUSETRAILS, 0, &nSladKursora, O0);

Wynik odczytujemy ze zmiennej liczbowej, do ktorej wskaznik przekazujemy w trzecim
parametrze. Jesli ma ona warto$c¢ wiekszg od 1, wtedy opcja jest wigczona; jednoczesnie
otrzymana wartos$¢ wskazuje na diugos¢ sladu, jaki zostawia kursor (innymi stowy, ile
razy jest on powielany).

Modyfikacja $sladu wymaga wywotania naszej wielce szacownej funkcji z parametrem
SPI_SETMOUSETRAILS. Nowgq diugos¢ sladu podajemy z kolei w drugim parametrze, np.:

SystemParametersInfo (SPI_SETMOUSETRAILS, 4, NULL, 0);

W powyzszy sposdb ustawiamy $lad kursora $redniej dtugosci (strzatka bedzie
replikowana 4 razy).

Sonar

Inng metoda poprawy widocznosci kursora jest sonar (ang. mouse sonar). Nie ma on
niestety nic wspélnego z todziami podwodnymi i petnymi skarbéw okretami na dnie
morza. Mechanizm sonaru w systemie Windows polega na wizualnym wyrdznieniu
kursora myszy koncentrycznymi kregami. Sq one pokazywane, gdy uzytkownik wcisnie
klawisz Ctrl. Sonar utatwia wiec lokalizowanie kursora na ekranie zasmieconym oknami,
przy wysokiej rozdzielczosci lub zepsutym wzroku.

Sonar jest dostepny tylko Windows Me i XP.

Sprawdzenia, czy sonar jest wiaczony, dokonujemy poprzez SystemParametersInfo () ze
statg SPI_GETMOUSESONAR:

BOOL bSonar;
SystemParametersInfo (SPI_GETMOUSESONAR, 0, &bSonar, 0);

Wynik kontroli laduje oczywiscie w zmiennej BooLowskiej, ktorej adres podajemy w
trzecim parametrze.

W(y)taczenia sonaru dokonujemy takze za pomoca doskonale juz znanej funkcji o dtugiej
nazwie, a takze jej parametru SPI SETMOUSESONAR!:

SystemParametersInfo (SPI_ SETMOUSESONAR, TRUE, NULL, 0);// wtacz. sonaru

Informacje o nowym stanie opcji sonaru wysytamy z drugim argumentem funkcji.

453

KlawiszeMyszy

Bardzo ciekawg opcja z zakresu utatwien Windows sg KlawiszeMyszy (ang. MouseKeys).
Pozwala ona na przesuwanie kursora myszy za pomocg klawiszy strzatek klawiatury
numerycznej (8, 4, 6 i 2) oraz Shift i Ctrl. Te dwa ostatnie oferujg mozliwos¢ zwolnienia
lub przyspieszenia ruchu kursora.

Osobiscie sadze, ze ciezko zaliczy¢ te mozliwos¢ do kategorii utatwien, bo opanowanie
mechaniki kursora tag metoda wydaje sie o wiele trudniejsze i mniej efektywnie niz
poruszanie. KlawiszeMyszy majg jednak pewng niezaprzeczalng zalete, ktéra moze by¢
bardzo przydatna podczas tworzenia grafiki czy konstruowania interfejsu uzytkownika.
Mam tu na mysli mozliwo$¢ precyzyjnego poruszania ,myszg” - z dokfadnoscig do
jednego piksela. Bardzo utatwia do rozmieszczanie elementéw grafiki czy UI.

Programowa kontrola tego ustawienia, posiadajacego sporo podopcji, jest dos¢
obszernym zagadnieniem, na ktéry chyba nie ma tu juz miejsca. Jezeli cie to interesuje,
poczytaj w MSDN opis struktury MOUSEKEYS oraz informacje o parametrach

SPI GET/SETMOUSEKEYS funkcji SystemParametersInfo().

BlokadaKlikniecia

Jezeli masz ktopoty z przecigganiem kursora myszy przy wcisnietym przycisku, mozesz
wiaczyc¢ opcje Windows znang jako ClickLock. Thumaczy¢ jg mozna jako
‘BlokadaKlikniecia’. Dziata ona w prosty sposdb: jesli uzytkownik wcisnie logicznie lewy
przycisk myszy i przytrzyma go przez okreslony czas (ktéry mozna regulowac), system
uzna, Ze rozpoczyna sie operacja przeciggania. Mozna teraz juz zwolnié przycisk myszy, a
Windows nadal bedzie traktowat go jako wcisniety. Poruszajgc myszg w zwykty
sposdb (przy fizycznie zwolnionym przycisku), mozna teraz dokonywac przeciggania bez
koniecznosci przytrzymywania przycisku palcem, jak to byto dotychczas. Kiedy zas
uznamy, ze chcemy zakonczy¢ przecigganie, kilkamy po prostu jeszcze raz, aby upuscic¢
podniesiony obiekt (np. plik).

BlokadaKlikniecia dziata tylko w Windows Me i XP.

Niniejsza opcja jest takze domeng funkcji SystemParametersInfo (). By dowiedziec sie,
czy jest aktualnie wiaczona, nalezy zastosowac parametr SPI GETMOUSECLICKLOCK:

BOOL bBlokadaKlikniecia;
SystemParametersInfo (SPI_GETMOUSECLICKLOCK, 0, &bBlokadaKlikniecia, 0);

Ze zmiennej typu BooOL, ktorej adres nalezy podaé¢ w pokazany wyzej sposdéb, odczytamy
stan opcji. Jak mozna sie domysli¢, TRUE oznacza wigczone, a FALSE - wylgczone
ustawienie.

Jego zmiana to z kolei wywotanie z uzyciem SPI SETMOUSECLICKLOCK:

// wtaczenie BlokadyKlikniecia
SystemParametersInfo (SPI_SETMOUSECLICKLOCK, TRUE, NULL, O0);

Nowy status opcji podajemy w drugim parametrze, uiParam.

Kiedy juz wtgczymy Blokade, mozemy tez regulowac czas (w milisekundach), po ktérym
przycisk myszy zostanie zablokowany. Do jego pobrania stuzy
SPI_GETMOUSECLICKLOCKTIME:

unsigned uCzasBlokadyKlikniecia;
SystemParametersInfo (SPI_GETMOUSECLICKLOCKTIME, O,
&uCzasBlokadyKlikniecia, 0);

454

Ponownie otrzymujemy pozadang warto$¢ w zmiennej, do ktdrej wskaznik podajemy. To
sie juz robi catkiem proste, prawda? ;)

Ustawienie nowego interwatu czas oznacza koniecznos$¢ uzycia statej

SPI SETMOUSECLICKLOCKTIME - 0O tak:

SystemParametersInfo (SPI_SETMOUSECLICKLOCKTIME, 500, NULL, O0);

Nowy czas podajemy w drugim parametrze. Powinien on by¢ nie mniejszy niz kilkaset
milisekund, gdyz w przeciwnym razie moze by¢ zbyt krétki na wykonanie zwyktego
klikniecia (bez przeciggania).

Xk %k

Na tym konczy sie nasza opowies¢ o myszy. Byty to dtuga historia, a mimo nie dotarliSmy
do jej definitywnego epilogu. Oprdcz kilku nieomowionych ustawien systemowych (o
ktérych poczytasz sobie w MSDN), nie zajeliSmy sie jeszcze zagadnieniem wlasnego
ksztattu kursora myszy - stanie sie to w rozdziale o zasobach Windows.

Wykorzystanie klawiatury

Czy mozna sobie wyobrazi¢ komputer bez klawiatury? ,Oczywiscie” — odpowiesz pewnie
— ,Wezmy choc¢by HALa z Odysei kosmicznej 2001!" Faktycznie, masz racje: komputery
sterowane gtosem (moze nie tak inteligentne jak HAL) istniejg juz dzisiaj i ta forma
komunikacji z maszyng na pewno bedzie sie rozwija¢. Jednak klawiatury nie znikng
nigdy, a powodem tego jest zwykta potrzeba poufnosci i prywatnosci - nie chcielibysmy
przeciez, aby wszyscy dookota styszeli, jakie informacje wprowadzamy do komputera.
Posrednictwo klawiatury stwarza wiec pewng ochrone danych - o ile nikt nie zaglada nam
przez ramie :)

Podobnie jak myszki i wszystkie urzadzenia peryferyjne, klawiatury przez lata byty
udoskonalane. Ich przodkami sg zapewne maszyny do pisania, jednak od poczatku
istnienia komputerow osobistych ich klawiatury nie ograniczaty sie tylko do liter i cyfr.
Szybko pojawity sie dodatkowe klawisze strzatek, klawisze funkcyjne, a ostatnio nawet
specjalne klawisze ufatwiajgce serfowanie po Internecie.

Wyglad i ksztatt klawiatur takze ulegat przeobrazeniom. Ostatnimi czasy popularne sg
tzw. klawiatury ergonomiczne, ktorych czes¢ alfanumeryczna jest rozdzielona na dwoje, a
klawisz spacji odpowiednio wygiety. W komputerach zadomowity sie tez klawiatury
bezprzewodowe, tworzgc czesto zestawy z myszkami.

Fotografia 5 i 6. Przykladowe modele dzisiejszych klawiatur
(fotografie pochodza z serwisu internetowego firmy Logitech)

Ten podrozdziat stanowi przeglad mozliwosci Windows API w zakresie wspétpracy z
klawiaturg. Poznamy w nim zdarzenia, jakie sg generowane w reakcji na wcisniecia
klawiszy, sposoby na pobieranie stanu klawiatury oraz symulowania jego zmiany.
Popatrzymy tez na ustawienia systemowe, zwigzane z tym urzadzeniem.

http://www.logitech.com/

455

Zdarzenia klawiatury

Najwazniejsze sg oczywiscie komunikaty o zdarzeniach. Reakcja na nie bedzie lwig
czescig obstugi klawiatury w naszych programach okienkowych. Zajmijmy sie zatem ich
powstawaniem i rodzajami.

Potok klawiszy

Zanim fakt fizycznego wcisniecia lub zwolnienia klawisza dotrze do okna w postaci
odpowiedniego komunikatu, przechodzi on dosy¢ dtugg droge. Nazywam jg potokiem
klawiszy (ang. keys pipeline) lub modelem wejscia od klawiatury (ang. keyboard input
model). Obrazuje on, w jaki sposdb system Windows zamienia sygnaty pochodzgce od
urzadzenia na komunikaty trafiajace do okien.

Potok klawiszy mozna przedstawi¢ obrazowo na schemacie:

kod
kod 1 wirtialnago
skanowanis _h klawisza 1
: [
B — T ' —..-
oo rodzaj akejl f"
klawiatura sterownik Windows

komunikat

komunikat Q komunikat(y)
kolejka petla okno
komunikatow komunikatow

Schemat 44. Potok klawiszy w Windows

Opiszmy kazdy z przedstawionych tu etapdow, jakie pokonuje informacja o zdarzeniu
klawiatury.

Ttumaczenie kodow

Gdy uzytkownik wciska lub zwalnia klawisz, wiadomos$¢ o tym przedostaje sie do systemu
poprzez przerwanie klawiatury. Powiadomienie zawiera tzw. kod skanowania (ang. scan
code) lub kod OEM (ang. OEM code) - po prostu pewna liczbe. Jest ona specyficzna dla
kazdego klawisza, a dodatkowo rozni sie w przypadku jego wcisniecia i zwolnienia.

Kody OEM sg ponadto charakterystyczne dla urzadzenia i zalezne od niego. Znaczy to, ze
rozne modele klawiatur moga generowac rézne kody skanowania. Programujac w
niskopoziomowym asemblerze, nalezatoby uwzgledniaé wszystkie mozliwe kody
interesujacych nas klawiszy. Poniewaz jednak pracujemy w bardziej przyjaznym
$rodowisku Windows, ominie nas ta watpliwa przyjemnosc.

Kod skanowania zostaje bowiem przettumaczony na inny, uniwersalny dla kazdej
mozliwej klawiatury. Takiego ttumaczenia dokonuje sterownik urzadzenia (ang. device
driver) - w tym przypadku chodzi oczywiscie o sterownik klawiatury, dostarczany wraz ze
sprzetem lub systemem Windows.

456

Kody wirtualnych klawiszy

Produktem tlumaczenia jest kod wirtualnego klawisza (ang. virtual-key code), zwany
dla wygody kodem wirtualnym. Jest to 16-bitowy, jednoznaczny identyfikator kazdego
obstugiwanego przez Windows klawisza na dowolnej klawiaturze. Jak wiemy, swoje kody
majq takze przyciski myszy.

Wiekszosci wirtualnych kodow przyporzadkowane sg odpowiednie state o nazwach
zaczynajacych sie od przedrostka vk . Ponizsza tabelka przedstawia czesc
najpopularniejszych klawiszy (z wytaczeniem przyciskdw myszy, ktérych kody byty
podane wczesniej):

stata kod klawisz stafa kod klawisz
VK_BACK 0x0008 | Backspace VK_NEXT 0x0022 Page Down
VK_TAB 0x0009 Tab VK_END 0x0023 End
VK _RETURN 0x000D Enter VK _HOME 0x0024 Home
VK_SHIFT | 0x0010 Shift VK_LEFT | 0x0025| Strzatka w lewo
VK_CONTROL | 0x0011 Ctrl VK _UP 00026 | Strzatka w gore
VK_MENU 0x0012 Alt VK_RIGHT | 0x0027 | Strzatka w prawo
VK _ESCAPE | 0x001B Esc VK_DOWN | 0x0028 Strzatka w dot
VK _SPACE 0x0020 Spacja VK INSERT | 0x002D Insert
VK_PRIOR 0x0021 Page Up VK_DELETE | 0x002E Delete

Tabela 52. Niektore kody wirtualnych klawiszy

Petng liste mozesz znalez¢ w Tablicach C oraz w MSDN.

Zapakowanie w komunikat

Drugim produktem tlumaczenia, dokonywania przez sterownik klawiatury, jest
wydzielona informacja o rodzaju zainstniatego zdarzenia (akcji). Na jej podstawie
Windows wybiera komunikat, jaki wygeneruje. A mozliwosci sg generalnie dwie:
> wcisniecie klawisza (ang. key down)
» zwolnienie klawisza (ang. key up)

System decyduje sie na jedng z nich, tworzy odpowiedni komunikat i wysyta go do kolejki
komunikatow.

Produkcja znakow

Stamtad predzej czy pdzniej wiadomos¢ o zdarzeniu zostanie pobrana przez aplikacje i
trafi do jej petli komunikatow. Petli, ktéra w najprostszej wersji wyglada tak:

MSG msgKomunikat;
while (GetMessage (&émsgKomunikat, NULL, 0, 0))
{

TranslateMessage (&msgKomunikat) ;
DispatchMessage (&msgKomunikat);

}

W kazdym z jej mozliwych wariantow niezmienne sg przywotania dwdch funkcji -
TranslateMessage () | DispatchMessage (). W tym momencie jeste$my niezwykle
zainteresowani pierwszg z nich.

Gdy przedstawiatem petle komunikatow na poczatku kursu WinAPI, wspomniatem, ze
niewielu programistow wie, co naprawde robi funkcja TranslateMessage (). Zapewne nie
jest to do konca prawda, niemniej faktem jest, ze nazwa tej funkcji niezupetnie oddaje
wykonywang przezen czynnosc.

457

Przede wszystkim TranslateMessage () hie dokonuje zadnego tlumaczenia komunikatu -
cokolwiek miatoby to znaczy¢. Jej rolg jest bowiem produkcja dodatkowych zdarzen, tzw.
komunikatow o znakach (ang. character messages) Generuje je na podstawie
nastepujacych po sobie wcisnie¢ i zwolnien tego samego klawisza na klawiaturze.

O zdarzeniach znakow i odpowiadajacych im komunikatach powiemy sobie wiecej w
ktéryms$ z nadchodzacych paragrafow.

Finisz

Na koniec wszystkie wytworzone komunikaty trafiajg do docelowego okna. Dotyczy to
zaréwno stworzonych w jadrze systemu powiadomien o zdarzeniach klawiszy, jak i
komunikatéw o znakach, postanych do kolejki przez TranslateMessage (). Wszystkie te

zdarzenia sg normalnie obstugiwane przez procedure zdarzeniowg okna, ktore je
ostatecznie otrzyma.

Wiasnie - ktdrego okna? Skad Windows wie, komu przekazywac informacje o zdarzeniach
klawiatury? Czas odpowiedzie¢ i na to pytanie.

Fokus

Komputer posiada tylko jedng klawiature. To niewiele, jezeli wezmie sie pod uwage
praktycznie nieograniczong liczbe programow, jakie moga jednoczesnie dziata¢ w
Windows. Dostep do tego cennego sprzetu musi by¢ zatem wydzielany, co spoczywa na
barkach systemu operacyjnego.

Radzi on sobie z tym zadaniem poprzez kontrole tzw. wej$ciowego fokusu klawiatury
(ang. keyboard input focus) - w skrocie fokusu (ang. focus). Jest to specjalna
wiasciwos¢, ktdérg w danej chwili moze posiadac tylko jedno okno.

Okno posiadajace fokus otrzymuje wszystkie komunikaty o zdarzeniach klawiatury*®°.

Dzieki temu, ze ktores z okien w systemie posiada fokus, Windows wie, do kogo kierowad
pojawiajace sie informacje od klawiatury. Takie okno jest wiec ostatecznym celem potoku
klawiszy.

Przetaczanie fokusu

Fokus jest dla klawiatury mniej wiecej tym samym, co dla myszki jest wtadza nad nig
(ang. mouse capture). Wystepuja tu jednak pewne rdznice.

Przede wszystkim, fokus nie jest tak ulotng wtasnoscig jak capture - zmienia sie on
rzadziej i zazwyczaj tylko wtedy, gdy uzytkownik sam sobie tego zazyczy. Osoba
obstugujaca aplikacje jest tez znacznie bardziej Swiadoma istnienia tego zjawiska, gdyz
odzwierciedla sie ono w wygladzie okien. Te posiadajace fokus odznaczajg sie np. innym
kolorem paska tytutu, migajacym kursorem (w polach tekstowych) czy kolorowg belka
zaznaczenia (w listach).

Jak odbywa sie przekazywanie fokusu miedzy oknami?... Jezeli programy nie ingerujg w
ten proces, to dzieje sie to zwykle poprzez:
> klikniecie myszg w obszarze innego okna
» postuzenie sie odpowiednim klawiszem (kombinacjq) przetaczania: Tab dla
kontrolek potomnych, Alt+Tab dla nadrzednych okien programéw

Wynika stad, ze potoczne rozumienie ,aktywnosci” okna to nic innego, jak wiasnie
posiadanie przezen fokusu. Dla twoércy aplikacji fakt, ze okno jest aktywne

- (ang. enabled), oznacza jednak co innego: wcale nie to, ze bedzie ono przyjmowato dane |

129 postaje tez komunikat WM MOUSEWHEEL, 0 czym powiedzieliémy sobie wcze$niej.

458

| wejsciowe od urzadzen zewnetrznych (myszy, klawatury), lecz jedynie to, iz moze ono |
. takie dane przyjmowac.
Zatem okno nieaktywne nie moze posiadac¢ fokusu, a spos$rod aktywnych okien fokus ma
tylko jedno. |

Kontrolujac fokus, Windows dba takze, aby okna byty odpowiednio informowane o jego
zmianach. W tym celu wysyfane sg dwa komunikaty:
» WM KILLFOCUS otrzymuje okno, ktére stracito fokus na rzecz innego. Uchwyt tego
nowego posiadacza jest zapisany w parametrze wParam niniejszego komunikatu
(moze to by¢ NULL)
» WM SETFOCUS dostaje z kolei to okno, ktére fokus otrzymato. W parametrze
wParam zapisany jest wtedy uchwyt poprzedniego posiadacza (albo NULL)

Obstuga tych komunikatéw jest konieczna, jezeli postugujemy sie tzw. karetkg

(ang. caret), stuzaca do oznaczania miejsca wpisywania tekstu w oknie. Nie bedziemy sie
aczkolwiek zajmowac blizej tym zagadnieniem.

Dla programisty gier i wszelkich innych aplikacji dziatajacych na petnym ekranie dwa
powyzsze komunikaty sg rowniez bardzo wazne. Pozwalajg one wykry¢ czas, gdy
program nie jest w kregu zainteresowania uzytkownika i oszczedzi¢ niepotrzebnego
wysitku przeznaczanego np. na rendering kolejnych klatek.

Funkcje pomocnicze

Windows API zawiera dwe funkcje przeznaczone do kontroli fokusu klawiatury. Pierwszg z
nich jest setFocus () :

HWND SetFocus (HWND hWnd) ;

Po nazwie nietrudno domysli¢ sie, ze stuzy ona do przekazania fokusu innemu oknu; jego
uchwyt podajemy w paramatrze funkcji. W wyniku dostajemy uchwyt poprzedniego
posiadacza fokusu.

Druga funkcjq jest GetFocus () :
HWND GetFocus () ;

Tutaj sprawa jest jeszcze prostsza: wywotanie to zwraca po prostu uchwyt aktualnego
wiasciciela fokusu klawiatury.

Parametry komunikatow klawiatury

Teraz moglibyémy w zasadzie przejs¢ juz do omawiania kazdego z komunikatow
zdarzeniowych klawiatury. Bedzie jednak lepiej i wygodniej, jezeli najpierw
skoncetrujemy sie na ich parametrach wParam i 1Param, jako ze sg one wspdlne dla
wszystkich komunikatéw. Podobnego rozpatrzenia parametréw dokonali§my zreszta przy
okazji zdarzen myszy, wiec tutaj tylko kontynuujemy te chlubng tradycje ;)

Popatrzmy zatem na dane dodatkowe komunikatow klawiatury.

Parametr wParam

Zawartoscig tej danej jest specyficzny kod wcisnietego (lub puszczonego) klawisza.
Rodzaj owego kodu zalezy od typu komunikatu:
> komunikaty o klawiszach zawierajq tutaj kod wirtualnego klawisza, czyli wartos¢,
ktorej odpowiada jedna ze statych vk
> komunikaty o znakach majg tu natomiast wpisany kod znaku, ktory zostat
wprowadzony (najczesciej jest on w systemie Unicode)

459

Doktadniejsze wiadomosci o obu rodzajach kodéw otrzymasz przy omawianiu
powigzanych z nimi komunikatéw.

Parametr 1Param

Drugi parametr komunikatu od klawiatury jest chyba najlepszym przyktadem gestego
upakowania danych w zmiennej, ktéra wydaje sie tylko liczbg. Ot6z 1Param wcale nie jest
tutaj liczbg - zawiera w sobie bowiem az szes¢€ (!) réoznych informacji. Sg one utozone w
odpowiednich bitach tej 32-bitowej wartosci, jak to jest ukazane na schemacie:

flaga klawisza rozszerzonego

(zarezerowane) licznik powtdrzen
g V_+_\

‘31 30 (20|28 ... 25|24 |23i..116|15| .. 1 0O

poprzedni stan klawisza

stan przejscia

Schemat 45. Informacje zawarte w parametrze IParam komunikatéw klawiatury

Poszczegodlne czesci oznaczytem kolorami - tak, aby utatwic ci ich dopasowanie do
ponizszych opiséw. Czes¢ z szarymi konturami nie jest uzywana przez aktualne wersje
Windows i zostata zarezerwowana dla ewentualnych przysztych celow.

Wyttumaczmy wiec po kolei znaczenie kazdej z tych danych - poczynajac od
najmtodszego bitu:

> licznik powtdérzen (ang. repeat count) okresla nam liczbe przycisnie¢ klawiszy,
jakie reprezentuje otrzymany komunikat. W przypadku zdarzen zwolnienia
klawisza jest to zawsze 1; dla pozostatych wiadomosci najczesciej tez tak jest.
Czasem jednak Windows nie nadaza z produkcjq oddzielnych komunikatéw dla
kazdego powtdrzenia klawisza - dzieje sie tak wtedy, gdy ustawimy duzg
czestotliwo$¢ powtarzania w Panelu Sterowania i przytrzymamy wcisniety klawisz

> kod skanowania (OEM) (ang. OEM scan code) jest niczym innym, jak tylko
sprzetowym kodem, jaki klawiatura wysyta do swojego sterownika. Jak pamietasz,
odbywa sie to na samym poczatku potoku klawiszy. Dziatanie sterownika
klawiatury sprawia, ze nie musimy sie martwi¢ o interpretacje kodu skanowania,
zaleznego od sprzetu, poniewaz mamy uniwersalne kody wirtualnych klawiszy.
Niemniej jednak Windows dotacza oryginalny kod do komunikatu, na wypadek
gdyby byt on komus potrzebny

> flaga klawisza rozszerzonego (ang. extended key flag) mowi nam, czy
wcisniety/zwolniony klawisz nalezy do tzw. zestawu rozszerzonego klawiatury
101- lub 102-klawiszowej. Obecnie takie modele nie sg niczym nadzwyczajnym,
wiec informacja ta nie stuzy zbyt wielkim celom i jest najczesciej ignorowana

> kod kontekstowy (ang. context code) tak naprawde nie jest zadnym kodem (,,I
cate szczescie” — powiesz zapewne ;D). Jest to tylko przetacznik wskazujacy na
to, czy zdarzenie klawiatury zaszto w czasie, gdy wcisniety byt klawisz Alt. Ten
klawisz ma specjalng role w Windows (zwigzana np. z paskami menu) i dlatego
jego wcisniecie jest tak wazne. Faktycznie, oprdocz innego kodu kontekstwego,
zdarzenia tych samych klawiszy z wcisnieciem i bez wcisniecia Alta skutujg
zupetnie innymi komunikatami. Wspomnimy sobie takze i o tym zjawisku przy
omawianiu komunikatéw o klawiszach

460

> poprzedni stan klawisza (ang. previous key state) jest bardzo prostg
informacjg. Okresla ona stan klawisza, ktérego dotyczy zdarzenie, przed
wystgpieniem tegoz zdarzenia. Bit ten moze by¢ ustawiony na 1 - co odpowiada
klawiszowi poprzednio wcisnietemu, lub na 0 - w przeciwnym wypadku

> stan przejscia (ang. transition state) precyzuje rodzaj zdarzenia, czyli co takiego
»Stato” sie z klawiszem. Warto$¢ 0 w tym bicie oznacza wcisniecie klawisza, a 1 -
zwolnienie.

Pozostaje jeszcze pytanie - jak odczytywac te wartosci? Wymaga to skonstruowania
odpowiedniej maski bitowej i wykonania jej koniunkcji z wartoscig 1param. PéZniej nalezy
jeszcze dosungc¢ wyizolowane bity do prawej strony za pomocg operacji przesuniecia
bitowego w prawo. Jezeli nie mozesz sobie poradzi¢ z tym zadaniem, zajrzyj do

Dodatku C, Manipulacje bitami.

Najprosciej jest uzyskac licznik powtorzen. Zauwazmy, ze stanowi on 16 pierwszych
bitdw dwustowa 1raram, czyli jego dolng potdéwke. Te zas mozemy wyekstrahowac
poprzez makro LOWORD () . LOWORD (1Param) jest wiec wartoscig licznika powtérzen w
| komunikatach klawiatury.

Komunikaty o klawiszach

Najbardziej naturalnymi zdarzeniami klawiatury sg komunikaty o klawiszach

(ang. keystroke messages). Windows wysyla je, gdy wykryje wcisniecie lub puszczenie
jednego z wirtualnych klawiszy, przyporzadkowanych oczywiscie tym realnie istniejacym
na klawiaturze.

W tym paragrafie przyjrzymy sie tego rodzaju komunikatom.

Przedstawiamy je

Mamy cztery komunikaty o zdarzeniach klawiszy w Windows. Przedstawia je wszystkie
ponizsza tabelka:

zdarzenie > i . , .. .
. wcisniecie klawisza | zwolnienie klawisza
rodzaj ¥
pozasystemowe WM KEYDOWN WM KEYUP
systemowe WM SYSKEYDOWN WM SYSKEYUP

Tabela 53. Komunikaty o zdarzeniach klawiszy

Nie jest zadng niespodzianka, ze wystepujg komunikaty o wcisnieciu i zwolnieniu
klawisza. Oba te zdarzenia zachodzg zwykle w parach, podobnie jak to sie dzieje w
przypadku przyciskédw myszy. Mozliwe jest jednak, ze Windows wysle wiecej
komunikatow wM_[SYS]KEYDOWN - bedzie tak, jezeli raz wcisniety klawisz przytrzymamy
na dtuzej. Woéwczas moze zosta¢ wystana wieksza liczba komunikatéw lub tez
nadchodzace wiadomosci wM [sYs]KEYDOWN bedq miaty odpowiednio ustawiony licznik
powtdrzen w dolnym stowie parametru 1Param. Zalezy to od ustawionej przez
uzytkownika czestotliwosci powtdrzen we WtasciwosSciach Klawiatury Panelu Sterowania.

Atoli najczesciej interesuje nas tylko sam fakt, iz dany przycisk jest aktualnie wcisniety i
dlatego na komunikat wM [SYS]XKEYDOWN reagujemy podobnie jak na inne, proste
zdarzenia notyfikujace. Oto przyktad reakcji na wcisniecie klawisza Esc:

case WM _KEYDOWN:
{
if (wParam == VK ESCAPE)
if (MessageBox ("Czy na pewno chcesz wyjsc?", "Wyjscie',
MB YESNO | MB ICONQUESTION) == IDYES))

461

PostQuitMessage (0);

return 0;

}

Sprawdzenia, czy wciskanym klawiszem jest rzeczywiscie klawisz ucieczki, dokonujemy,
konfrontujac warto$¢ wparam ze statg VK_ESCAPE. Wspomnimy jeszcze o takim
poréwnaniu w dalszej czesci aktualnego paragrafu.

Systemowe i inne

Zauwazytes$ pewnie tajemnicze sys w nazwach komunikatéw WM SYSKEYDOWN oraz

WM SYSKEYUP. Jego obecnosc znaczy te zdarzenia jako systemowe (ang. system
keystrokes). Nalezy to rozumiec¢ w ten sposdb, iz sg one wazniejsze dla samego systemu
Windows niz dla pracujacych w nim aplikacji.

WM SYSKEYDOWN | WM_SYSKEYUP generowane sg zwykle dla klawiszy wcisnietych w
pofaczeniu z przytrzymanym klawiszem Alt. Takie kombinacje sg wazne dla
funkcjonowania catego systemu, gdyz nierzadko sg im przypisane pewne standardowe
lub niestandardowe akcje. Wezmy chociazby Alt+Tab, ktory stuzy do przetaczania sie
miedzy oknami uruchomionych aplikacji, czy tez Alt+Esc.

Istniejg tez tzw. akceleratory, stanowigce skroty do czesto uzywanych polecert menu
aplikacji. Kombinacje klawiszy dla akceleratoréow ustala programista tworzgcy menu, zas
zapewnienie ich prawidtowej obstugi spoczywa potem wytacznie na barkach Windows.
Dlatego tez wcisniecia klawiszy akceleratorow sg traktowane jako systemowe.

O akceleratorach bedziemy moéwic¢ doktadniej przy opisywaniu paskéw menu dla okien.

tatwo zauwazy¢, ze systemowe zdarzenia klawiatury sg podobne w swej istocie i
przeznaczeniu do pozaklienckich komunikatéw myszy. Analogicznie tez wyglada ich
ewentualna obstuga - jezeli jest potrzebna. Ze wzgledu na wazny charakter tych zdarzen
powinniSmy zawsze przekazywac je do domysinej procedury zdarzeniowej - czyli
obstugiwac¢ w ten oto sposdb:

case WM SYSKEYDOWN: // albo WM _SYSKEYUP, a takze WM SYS[DEAD]CHAR
kod obstugi komunikatu
return DefWindowProc (hWnd, uMsg, lParam, wParam);

W przeciwnym wypadku okno moze stac sie catkowicie ,odporne” na systemowe
kombinacje klawiszy, co z kolei skutkowa¢ bedzie np. niemoznoscig uzycia Alt+Tab do
zmiany aktywnego programu.

Pozostate dwa komunikaty - WM KEYDOWN i WM KEYUP - sg ignorowane przez domysing
procedurg zdarzeniowg. Ich obstuga w programie nie napotyka wiec na zadne
ograniczenia i moze by¢ realizowana dowolnie (albo nijak, jak to sie dziato dotad).

Parametry

Omawiane komunikaty, tak samo jak wszystkie powiadomienia od klawiatury,
wykorzystujg oba parametry wParam i 1Param.

wParam zawiera kod identyfikujacy klawisz. Jest to tzw. kod wirtualnego klawisza
(ang. virtual-key code). To 16-bitowa, niezalezna od sprzetu wartos$¢ przyporzadkowana
kazdemu ,wirtualnemu” klawiszowi. Poniewaz klawisze sq wtasnie wirtualne, czyli
nieistniejagce w rzeczywistosci (cho¢ majace rzeczywiste odpowiedniki), ich kody s

462

uniwersalne. W kazdej wersji systemu Windows, obstugujacej w miare normalng
klawiature!®°, kod kazdego wirtualnego klawisza jest zawsze taki sam.

Jest to oczywiscie bardzo wygodne, gdyz nie musimy przez to martwic sie o sprzetowe
kody (czyli kody skanowania, ang. scan code), jakie wysytajg poszczegélne modele
klawiatur. Poza tym wiemy, ze do zestawu klawiszy wirtualnych wtaczono tez przyciski
myszy. Nie oznacza to aczkolwiek, ze zdarzenia wM_KEYDOWN i WM_KEYUP 0dnoszg si€
takze do kliknie¢ myszka. ,Klawiszowos¢” przyciskdw myszy objawia sie tylko tym, ze ich
stan mozemy sprawdzac¢ za pomocg funkcji w rodzaju GetKeyState (). MowiliSmy juz o
tym w podrozdziale o myszce, a niedtugo rozciggniemy temat takze na klawiature.

Natomiast o parametrze 1param i zawartym w nim koglomeracie szesciu informacji
zdotatem juz napisac catkiem sporo wyjasnien; mozesz teraz do nich powrdci¢. Pamietaj
przy tym, ze kombinacja bitowa o opisanym znaczeniu jest trescig 1Param w przypadku
kazdego z osmiu komunikatéw klawiatury. Nie wiem jak ty, ale ja sadze, ze to dobra
wiadomos¢ dla kazdego programisty :)

Komunikaty o znakach

Drugim rodzajem zdarzen klawiatury, z jakim spotykamy sie w Windows, sg
komunikaty o znakach (ang. character messages). Zamiast informowac tylko o
przycisnieciach klawiszy, komunikaty te mowig raczej o rzeczywistych znakach,
wprowadzonych do programu.

Obecnos¢ tych notyfikacji w Windows API jest niczym innym jak tylko utatwieniem dla
programisty. Komunikaty te sg bowiem automatycznie wyprowadzane ze zdarzen
klawiszy. W zasadzie kazda aplikacja mogtaby to robi¢ sama, jednak system wyrecza je
w tej czynnosci.
Za generowanie komunikatow o znakach odpowiada funkcja TranslateMessage (). J€j
dziatanie sprowadza sie w skrécie do:
> wytowienia z kolejki komunikatu wM [SYS]KEYDOWN
» sprawdzenia kodu wirtualnego klawisza, jaki jest przyporzadkowany takiemu
komunikatowi
» przettumaczenia go na kod odpowiedniego znaku, jezeli jest to mozliwe. W takim
ttumaczeniu sg uwzglednianie rowniez takie okolicznosci jak wcisniety klawisz
Shift czy aktywny Caps Lock
» postania do kolejki komunikatu wM [sys][DEAD]CHAR, zawierajacego
przettumaczony kod

Komunikaty o znakach sg wiec bardziej wysokopoziomowg formg obstugi klawiatury. Nie
sg one tylko prostymi informacjami, méwigcymi o wcisnieciu klawisza, lecz przynoszg ze
sobg takze dodatkowe dane. Uwzgledniajac stan kluczowych klawiszy oraz ustawienia
jezykowe klawiatury, komunikaty te powiadamiajg o wprowadzonych przez uzytkownika
znakach - nie za$ o klawiszach, ktore wciska. Potrafig one rozrézni¢ znak wielkiej litery
‘A’ od jej matej wersji (*a’), podczas gdy zdarzenia klawiszy moga jedynie poinformowac
o wcisnieciu klawisza A. Komunikaty o znakach biorg zatem pod uwage szerszy
kontekst przychodzacych do systemu informacji od klawiatury.

Prosimy na scene

Jest raczej czystym przypadkiem to, ze komunikaty o znakach réwniez wystepujq w
liczbie czterech rodzajow. Nie sg one jednak zadnymi odpowiednikami zdarzen klawiszy,
lecz zupetnie inaczej zorganizowanymi powiadomieniami.

Wszystkie komunikaty o znakach ujmuje nam ponizsza tabelka (jest w niej takze
odpowiedni podziat tychze komunikatéw):

130 Tzn, zawierajaca litery z jezykéw europejskich, a nie np. zestawy znakéw jezyka chifiskiego czy japonskiego.

463

rodzaj znaku >
rodzaj zdarzenia Vv

pozasystemowe WM CHAR WM DEADCHAR
systemowe WM SYSCHAR | WM SYSDEADCHAR

zwykty znak | martwy znak

Tabela 54. Komunikaty o zdarzeniach znakow

Jak wida¢, takze i tu mozna wyrozni¢ dwie naktadajgce sie na siebie grupy komunikatéw.
Pierwszg z nich znamy juz dos¢ dobrze, podczas gdy druga wydaje sie dos¢ tajemnicza -
rowniez z nazwy (martwy znak...?). Dlatego tez, aby miec petng jasnos¢, wyttumaczymy
sobie obie :)

Aby by¢ zupetnie Scistym musze wspomniec, ze istnieje jeszcze jeden komunikat o znaku
- WM _UNICHAR. ROzni si¢ on od wM CHAR tym, iz kod znaku, jaki przynosi w parametrze
wParam, jest zapisany w 32-bitowej wersji standardu Unicode (UTF-32). WM CHAR uzywa
tylko 16 bitéw (UTF-16), jednak wiemy dobrze, ze wystarcza to w zupetnosci na
reprezentacje wszystkich znakéw niemal kazdego cywlizowanego i zywego jezyka.
Zawarte w Windows wsparcie dla 4-bajtowych koddw jest wiec dalekim wybiegnieciem
przed orkiestre - zwtaszcza, ze nawet dwubajtowy unikod nie jest jeszcze powszechnie
wykorzystywany. Niemniej jednak nalezy sie spodziewac, ze w blizszej lub (raczej)
dalszej przysztosci pozostate komunikaty o znakach zostang ,przestawione” na UTF-32.
Wowczas WM UNICHAR zaniknie.

Ale zanim to sie stanie, mozesz swobodnie przeczytac opis tego komunikatu w MSDN :D

Systemowe - raz jeszcze

Wsrod komunikatéw o znakdédw rowniez wystepuje podziat na te systemowe i
pozasystemowe. Kryteria owego podziatu sg tez identyczne.

Przypominam, ze systemowe zdarzenie klawiatury jest wysytane w sytuacji, gdy
towarzyszy mu wcisniety klawisz Alt. Kombinacje zawierajgce ten klawisz sg bardzo
wazne dla systemu jako catosci oraz ogolnego sposobu jego funkcjonowania.

Systemowe komunikaty o znakach - WM SYSCHAR i WM SYSDEADCHAR - powinny byc¢
przetwarzane bez naruszania ich normalnej, domysinej reakcji, za ktérg odpowiada
DefWindowProc (). Komunikaty te muszg wiec ostatecznie trafi¢ do tej standardowej
procedury - rowniez wtedy, kiedy po drodze ,przeszty” przez tg nasza.

Przykfad obstugi systemowego komunikatu klawiatury podatem w poprzednich paragrafie
o zdarzeniach klawiszy. Zajrzyj tam, jezeli tego potrzebujesz.

Umart znak, niech Zyje znak

Zdarzenia WwM_DEADCHAR i WM_SYSDEADCHAR no0szg intrygujaca nazwe komunikatow o
martwych znakach (ang. dead characters messages). Chociaz ich obstuzenie nie jest w
wiekszosci przypadkdéw konieczne, omowienie tych zdarzen moze by¢ interesujace.

Najprosciej mdéwiagc, martwe znaki nie reprezentujg samodzielnie zadnego symbolu,
zadnej litery. Ich pojawianie sie wigze sie wytacznie z pewnymi uktadami klawiatury,
dostosowanymi do niektorych jezykdéw. Dobrym przyktadem jest jezyk niemiecki i
wystepujace w nim litery ‘a@’, ‘0’ czy '6’. Majq one tak zwany przegtos (niem. umlaut),

ktéry zmienia wymowe tych gtosek w stosunku do zwyktych ‘a’, ‘u’ i ‘o’. Faktycznie sq
one odrebnymi literami niemieckiego alfabetu.

Wprowadzenie tych znakéw do programu moze sie odbywac na wiele sposobdéw, gdyz jak
wiemy nie wystepujg one na standardowej klawiaturze. Jedng z drég moze by¢
zaprzegniecie do pracy okreslonych kombinacji klawiszy: najczesciej jest to Prawy Alt
plus odpowiednia ,zwykfa” litera. Wpisanie znaku ‘6’ odbywatoby sie wéwczas w ten
sposob, iz uzytkownik najpierw wciska i przytrzymuje Prawy Alt, a nastepnie uderza w

464

klawisz O. W wyniku tej czynnoéci na ekranie pojawia sie znak ‘6’ lub ‘0’ (zaleznie od
stanu klawisza Shift i Caps Lock).

Istnieje jeszcze inna metoda i to interesuje nas teraz bardziej. Otéz wprowadzenie znaku
diakrytycznego moze sie dokonywac poprzez oddzielne wcisniecia dwdch klawiszy.
Pierwszy wysylta do systemu jedynie sam przegtos, natomiast drugi jest dopiero wtasciwg
literg, ktéra 6w umlaut otrzymuje. Ostatecznie uzyskujemy pozadany symbol.

Gdzie jest wiec ten martwy znak?... Otdz jest nim sam przegtos - po wcisnieciu
odpowiadajacego mu klawisza, do okna z fokusem wysytany jest komunikat

WM _[SYS]DEADCHAR (przedtem oczywiscie wM [SYS]KEYDOWN) zawierajacy kod znaku
przegtosu. W tej chwili nie wiadomo jeszcze, jaka litera zostanie zaraz wpisana, ale
rzeczony komunikat méwi nam, iz bedzie posiadata dany ozdobnik (w tym przypadku
przegtos).

Nie jest to wielce porywajaca informacja i nie ma koniecznosci jej odczytywania. W
nastepujacym dalej komunikacie wM [SsYS]CHAR dostajemy jg bowiem niejako ponownie,
lecz w bardziej uzytecznej formie. Komunikat o ,zywym znaku” bedzie mianowicie
zawierat kod litery z juz zaaplikowanym przegtosem (a wiec np. ‘6’ lub *0’), nie za$
odpowiadajacej mu litery bez niego (czyli ‘o’ lub *0O’).

Pomienieciem wM [SYS]DEADCHAR hie czynimy wiec zadnej szkody ani sobie, ani
systemowi. Dlatego tez prawie zawsze mozemy sobie na to pozwolic.

W polskim uktadzie klawiatury martwe znaki generuje klawisz tyldy (~). W potaczeniu z
- klawiszami A, L, O, Z, X itd. wprowadza on znaki diakrytyczne: ‘q’, ¥, ‘0’, ‘2, ‘2’ itd.

Parametry

Komunikaty o znakach zachowujg podang na poczatku sekcji konwencje co do znaczenia
parametrow wParam i 1Param. Spdjrzmy, co to oznacza w tym przypadku.

Tradycyjnie wparam zawiera wazny dla zdarzenia kod. Tutaj jest to kod wprowadzonego
znaku - nie klawisza, lecz wtasnie znaku. Jest to 16-bitowa liczba, ktéra identyfikuje
jeden z kilkudziesieciu tysiecy znakoéw standardu Unicode (UTF-16). Standard ten w
zupetnosci wystarcza na kodyfikacje zbioru liter wszystkich jezykéw indoeuropejskich
oraz uzywanych symboli matematycznych, fizycznych i innych.

Nie bede tu szczegdtowo omawiat Unicode, bo jest to materiat na catkiem sporg ksigzke;
jezeli interesuje cie ten temat, mozesz na poczatek zajrzeé na oficialng_strone
internetowg standardu. Musze jednak wspomniec, co stato sie z tablicg znakéw ASCII i
ANSI, znang zapewne wiekszosci czytelnikéw.

A zatem - nie stato sie nic. Pierwsze 128 liczb (0x00 do 0x7F) jest nadal kodami znakow
w systemie ASCII. Wraz z kolejnymi 128 wartosciami (0x80 do 0xFF) tworzg one tabele
ANSI. Ten drugi zestaw kodow jest specyficzny dla Windows i oznaczany nazwg strony
kodowej - w Polsce jest to Windows-1250. Rdzni sie ona chociazby od DOSowej strony
852 czy tez unormowanego i popularnego w polskim Internecie systemu ISO-8859-2.
Jest to nieunikniona konsekwencja stosowania tylko 256 znakéw ANSI - Unicode ze
swymi 65536 miejscami na znaki rozwigzuje wiekszos¢ tego rodzaju kwestii.

| Znaki z wazniejszych stron kodowanych mozesz znalez¢ w Tablicach C.

A co 1raram? Nic nadzwyczajnego. Parametr ten zawiera znany juz agregat szesciu
danych. Raczej jednak nie majg one praktycznego znaczenia, gdyz sg doktadng kopig
lparam z komunikatu wM [SYS]KEYDOWN, poprzedzajacego zdarzenie znaku. Zwykle wiec
informacje odczytuje sie z wtasciwego im komunikatu klawisza, a nie znaku.

http://www.unicode.org/
http://www.unicode.org/

465

Kontrola wejscia od klawiatury

Zabawa z klawiaturg w Windows API nie ogranicza sie li tylko do odbierania zdarzen i
reakcji na nie. Tak samo jak dla myszy mozliwe jest przejecie wiekszej kontroli nad
wspotpracg sprzetu z systemem operacyjnym. I tym wtasnie zajmiemy sie tej sekcji.

Pobieranie stanu klawiszy

Otrzymywanie komunikatéw o klawiszach jest biernym sposobem kooperacji z
klawiatura. Istniejg tez metody, w ktérych to aplikacja ma wiekszg kontrole nad tym
procesem i sama sprawdza stany poszczegdlnych klawiszy.

O takim sprawdzaniu opowiemy sobie w tym paragrafie. Obejmie to miedzy innymi
doktadne omowienie funkcji GetKeyState () i GetAsyncKeyState (), z ktorymi
zapoznalismy sie juz w podobnej sytuacji dotyczacej myszy.

Stan pojedynczego klawisza

Jak pamietamy, sprawdzaniu stanu pojedynczego klawisza stuzy funkcja GetKeyState () :
SHORT GetKeyState (int nVirtKey) ;

Nalezy jej podac kod kontrolowanego, wirtualnego klawisza. Jest to jedna ze statych vk ,
ewentualnie (w przypadku klawiszy liter i liczb) kod ASCII odpowiedniego znaku.

W zamian dostajemy... wynik :) Jest nim wartos¢ typu SHORT (2 bajty) i sklada sie z
dwéch czesci:
» goérny bajt (czytany przez HIBYTE ()) po zrzutowaniu na typ logiczny*®! informuje
o wcisnieciu klawisza. true, TRUE lub ogdlnie wartos$c¢ rézna od zera wskazuje na
to, ze klawisz jest wcisniety. Nietrudno sie domysli¢, ze zero znaczy co$
przeciwnego :D
> dolny bajt (LOBYTE ()) daje wiedze o tym, czy klawisz jest wigczony. Wiekszosci
klawiszy nie dotyczy ta wtasnos¢, jest ona wazna tylko dla ,lockéw”: Num Lock,
Caps Lock i Scroll Lock'**. Podobnie jak wyzej, logiczna prawda wskazuje na
wigczenie danego klawisza, fatsz - przeciwnie.

Trzeba jeszcze powiedzie¢ jedng bardzo wazng rzecz na temat tej funkcji - skad ona
bierze stan klawiszy?... Wcale nie ,pyta” o niego samej klawiatury (tak robi
GetAsyncKeyState ()), lecz uzyskuje go na podstawie kolejki komunikatow. Decyduje tu
ostatnio otrzymany komunikat klawiatury, dotyczacy sprawdzanego klawisza.
Uzyskiwane informacje sg wiec zalezne od komunikatéw, jakie otrzymuje watek (tzn. cata
aplikacja - najczesciej) i nie dotyczg globalnego stanu klawiatury. Nie pochodzg z
poziomu przerwan sprzetowych, lecz zdarzen systemowych.

Czy jest to wada? Nieszczegodlnie. GetKeyState () uzywamy gtdwnie do sprawdzania
stanu takich klawiszy jak Shift i Ctrl podczas przetwarzania zdarzen innych klawiszy, np.:

case WM _KEYDOWN:
{
switch (wParam)
{
case VK Fl:
if (HIBYTE(GetKeyState(VK_SHIFT))
// kombinacja Shift+F1

131 Jak wiesz, takie rzutowanie mozna zastapi¢ poréwnaniem z zerem - takze tym niejawnym, stosowanym w
warunkach if czy petli.
132 Klawiszom tym odpowiadajq state VK NUMLOCK, VK_CAPITAL i VK_SCROLL.

466

else
// samo F1

break:
// itd.
}

Stan tych innych klawiszy otrzymujemy w komunikatach i to wlasnie ich powinnismy
uzywac do reakcji na wcisniecia i zwolnienia klawiszy w normalnych aplikacjach.

Stan catej klawiatury

W Windows API znajdziemy tez funkcje pobierajgca stan wszystkich klawiszy -
GetKeyboardState () :

BOOL GetKeyboardState (PBYTE lpKeyState);

Dziata ona mniej wiecej tak, jak zastosowanie GetKeystate () dla parametréow z
przedziatu od zera do 256. GetKeyboardState () przyjmuje mianowicie tablice 256
bajtow, ktérej indeksami sg kody kolejnych wirtualnych klawiszy.

Wynikiem funkcji jest TRUE dla operacji zakonczonej powodzeniem i zero (FALSE) w
innym przypadku.

Jest jeszcze funkcja SetKeyboardState (), pozwalajaca ustawi¢ chwilowy stan klawiatury
dla danego watku. Mozesz o niej poczyta¢ w MSDN.

Lepsza forma zmiany stanu klawiatury jest aczkolwiek uzycie symulowane wejscia, czyli
funkcji SendInput ().

Asynchroniczne pobieranie stanu klawisza

Druga z funkcji stworzonych do uzyskiwania stanu pojedynczego klawisza jest
GetAsyncKeyState () :

SHORT GetAsyncKeyState (int vKey) ;

Tak samo przynosimy jej kod wirtualnego klawisza, ktory chcemy sprawdzac. A co z
wynikiem? Réwniez jest podzielony na dwie czesci po jednym bajcie kazda:

» starszy bajt (HIBYTE ()) znaczy to samo, co w GetKeyState () : po konwersji na
wartos¢ logiczng informuje o wcisnietym klawiszu (true) lub zostawionym w
spokoju (false)

» miodszy bajt (LOBYTE ()) wskazuje, czy klawisz byt wciskany (logiczna prawda) od
czasu ostatniego wywotania GetAsyncKeyState (). Trzeba jednak wiedzieé, ze to
ostatnie wywotanie wcale nie musi pochodzi¢ z naszej aplikacji i dlatego omawiana
tu wartos¢ nie ma praktycznego sensu

Co rézni te funkcje od GetKeyState () ? Pewne wskazdwki co do tego mogtes wyczytac
miedzy wierszami powyzszego opisu i w akapicie o tamtej pokrewnej funkcji. Powiedzmy
jednak wprost, o co chodzi.

Otdz GetAsyncKeyState (), czynigc zados¢ swej nazwie, pobiera tzw. asynchroniczny
stan klawisza. Asynchroniczy to znaczy niezalezny od watku, a méwiac po ludzku -
globalny dla catego systemu oraz niezalezny od kolejki komunikatéw. Funkcja ta
pobiera dane bezposrednio od sprzetu, niejako z pominieciem mechanizmu zdarzen
Windows. Przejawia sie to chociazby w tym, ze kontroluje stan fizycznych, a nie
logicznych przyciskow myszki, o czym wspomniatem przy pierwszym spotkaniu z tg
funkcja.

467

Ze wzgledu na ten sposdb dziatania GetAsyncKeyState () jest przydatna w programach
czasu rzeczywistego. Bedziemy wiec uzywac tej funkcji do pobierania stanu klawiszy w
naszych grach - przynajmniej na poczatku. Przygotuj sie zatem na wiele dtugich i
owocnych spotkan z funkcjg GetAsyncKeyState () ;)

Symulowanie klawiatury

W poprzednim podrozdziale nauczyliSmy sie udawaé¢ myszke. Nie ma wiec powodu,
abysmy tego samego nie mogli czyni¢ z klawiaturg. Jest to o tyle proste, iz odbywa sie za
pomocg hiemal tych samych narzedzi. Sq nimi: funkcja SendInput () i struktura INPUT,
ktére sobie przypomnimy, oraz struktura KEYBDINPUT, ktorg teraz poznamy.

A zatem do dzietfa!

Funkcja SendInput () i struktura INPUT - powtdrzenie

Jak pamietamy, do generowania sztucznych zdarzen od urzadzen wejsciowych stuzy
funkcja SendInput ():

UINT SendInput (UINT nInputs,
LPINPUT pInputs,
int cbSize);

Przypomnijmy, ze w pierwszym parametrze nInputs nalezy jej przekazac¢ tablice struktur
INPUT o liczbie elementéw okreslonej drugim parametrem, pInputs. Trzeci argument
trzeba natomiast ustawi¢ na rozmiar struktury INPUT, czyli po prostu sizeof (INPUT).

Pojedynczy element przekazywanej do funkcji tablicy opisuje jedno symulowane
zdarzenie od urzadzenia wejsciowego. Czyni to za pomocg struktury INPUT:

struct INPUT

{
DWORD type;

union
{
MOUSEINPUT mi;
KEYBDINPUT ki;
HARDWAREINPUT hi;
i
}i

W niej tez pole type okresla nam zrddto zdarzenia, czyli rodzaj urzadzenia. Niedawno,
zajmujac sie myszka, ustawialiSmy je na INPUT MOUSE. Obecnie, gdy chcemy emulowac
klawiature, postuzymy sie raczej statg INPUT KEYBOARD.

Wiagze sie to takze z porzuceniem pola mi, uzywanego dotad. Zdarzenie klawiatury
musimy bowiem zapisa¢ w polu ki, nalezacym do innego typu - KEYBDINPUT.

Struktura KEYBDINPUT

Struktura opisujgca zdarzenie klawiatury przedstawia sie w ten oto sposob:

struct KEYBDINPUT
{
WORD wVk;
WORD wScan;
DWORD dwFlags;
DWORD dwTime;
ULONG_ PTR dwExtralInfo;

468

Co z szczescie - tylko piec¢ pdl ;D Ich znaczenie opisuje niniejsza tabelka:

typ

parametry

opis

WORD
WORD

wVk
wScan

W ktoryms z tych parametréw nalezy podac kod klawisza,
ktérego ma dotyczy¢ zdarzenie. Moze to by¢ kod wirtualnego
klawisza - wtedy wprowadzamy go w wvk - lub kod
skanowania (OEM) - wowczas wykorzystujemy pole wScan.
Nieuzywane pole wypetniamy zwykle zerem lub ignorujemy.

Znaczenie obu tych pdl zmienia aczkolwiek flaga
KEYEVENTF UNICODE, jezeli jest ustawiona w polu dwFlags.
Za chwile powiemy nieco wigcej na ten temat.

DWORD

dwFlags

Sa to flagi kontrolujgce produkowane zdarzenie. Ich lista
jest podana ponizej.

DWORD
ULONG_PTR

dwTime
dwExtraInfo

Te dwa pola majq identyczne przeznaczenie, jak time i
dwExtraInfo w strukturze MOUSEINPUT. Przypomnijmy tylko,
ze pierwsze z nich okresla moment wystgpienia
symulowanego zdarzenia w formie liczby milisekund od
startu systemu (czyli rezultatu GetTickCount ()). Drugie pole
to natomiast jakie$ dodatkowe informacje zwigzane ze
zdarzeniem, zwykle niewykorzystywane.

Tabela 55. Pola struktury KEYBDINPUT

Z tabelki dowiedzieliSmy sie, ze mozliwe jest podanie kodu klawisza, ktory bierze udziat
w generowanej akcji klawiatury. To jednak niewystarczajaca informacja i dlatego jest
jeszcze pole dwFlags, bedgce kombinacjg bitowa odpowiednich flag. Flagi te
podsumowuje nastepna tabela:

flaga

znaczenie

KEYEVENTF SCANCODE

Obecnosc¢ tej flagi informuje funkcje sendInput (), ze ma brac
pod uwage pole wScan, a wiec sprzetowy kod skanowania
klawisza. Analogicznie, jej brak sprawia, ze wazne staje sie
pole wvk, czyli ze klawisz jest rozpoznawany na podstawie
swego uniwersalnego kodu wirtualnego.

KEYEVENTF EXTENDEDKEY

Te flage ustawiamy, gdy za pomocag kodu skanowania (wScan)
generujemy zdarzenie klawisza rozszerzonego. Naturalnie,
musi ona wystgpi¢ razem z KEYEVENTF SCANCODE.

KEYEVENTFEF KEYUP

Kiedy flaga ta jest ustawiona, symulowanym zdarzeniem
bedzie zwolnienie klawisza. W przeciwnym wypadku klawisz
zostanie programowo wcisniety.

KEYEVENTFEF UNICODE

Pozwala na zasymulowanie wprowadzania znaku Unicode -
jego kod powinien by¢ w polu wScan. Z oczywistych wzgledéw
wszystkie znaki Unicode nie sg dostepne na klawiaturze, wiec

system radzi sobie tutaj w inny sposob: jako wcisniety

wirtualny klawisz przyjmuje specjalng statq VK _PACKET -
mozna jg potem znalez¢ w parametrze wParam komunikatéw
WM [SYS]XEYDOWN/UP. Natomiast kod znaku w wM [SYS]CHAR

jest juz podanym w wScan 16-bitowym kodem Unicode. W

sumie wiec aplikacjom ,wydaje sie”, ze uzytkownik nabrat
magicznej mocy wprowadzania kilkudziesieciu tysiecy znakow
bezposrednio ze swojej skromnej, nieco ponadstuklawiszowej

klawiatury.

Flaga KEYEVENTF UNICODE musi wystapi¢ z KEYEVENTF KEYUP,

469

flaga | zZnaczenie

| lecz bez KEYEVENTF SCANCODE.
Tabela 56. Flagi bitowe pola dwFlags struktury KEYBDINPUT

Jaka wiedze nabyliSmy stad? Przede wszystkim taka, ze domysinie generowanym
zdarzeniem jest zawsze wcisniecie klawisza; jezeli chcemy symulowac¢ jego zwolnienie,
musimy postuzyc sie flaga KEYEVENTF KEYUP. Poza tym wiemy tez, ze standardowo
SendInput () bierze pod uwage kod wirtualnego klawisza, czyli wartos$¢ pola wvk; jesli
pragniemy oprzec sie na kodzie skanowania (polu wScan), powinnisSmy podac flage
KEYEVENTF SCANCODE. Wreszcie poznaliSmy ciekawg mozliwos¢ symulowania zdarzen
fizycznie niemozliwych, czyli bezposredniego wprowadzania znakéw z catego zestawu
Unicode - dzieje sie to dzieki fladze KEYEVENTF UNICODE.

Przyktady

Gdy mamy juz za sobg formalny opis narzedzia, czas przyjrzec sie przyktadom jego
wykorzystania.

Najpierw wiec programowo przycisniemy klawisz Enter. Do wykonania tego zadania
mozna postuzyc sie takim kodem:

// deklaracja i wyzerowanie struktury INPUT
INPUT Klawisz;
ZeroMemory (&Klawisz, sizeof (INPUT));

// ustawienie pdl struktury i wygenerowanie zdarzenia

Klawisz.type = INPUT KEYBOARD; // generujemy zdarzenie klawiatury...
Klawisz.ki.wVk = VK _RETURN; // a doktadniej klawisza Enter
SendInput (1, &Klawisz, sizeof (INPUT)); // 1 voila :)

Zauwazmy, ze nie musieliSmy w nim w ogéle zajmowac sie polem dwFlags. Jest tak,
gdyz domysine jego opcje (odczytanie kodu wirtualnego klawisza i jego wcisniecie)
catkowicie nam odpowiadaja.

Po wykonaniu powyzszych wierszy przycisk Enter pozostaje wcisniety - pamietajmy o
tym. Konsekwencja tego jest ciagte wysytanie komunikatéw wM [SYS]KEYDOWN, zgodnie z
ustawiong czestotliwoscig powtarzania. Aby przerwac te serie, musimy zwolni¢ wcisniety
klawisz:

INPUT Klawisz;
ZeroMemory (&Klawisz, sizeof (INPUT))

// zwolnienie klawisza

Klawisz.type = INPUT KEYBOARD; // wskazujemy na klawiature
Klawisz.ki.wVk = VK RETURN; // kod klawisza Enter
Klawisz.ki.dwFlags = KEYEVENTF KEYUP; // flaga zwolnienia klawisza
SendInput (1, &Klawisz, sizeof (INPUT)); // it’s showtime! ;)

W ten sposob klawisz Enter wréci do stanu wyjsciowego, ale jego wcisniecie i puszczenie
zostanie zarejestrowane.

Pora na ostatni przykfad, znacznie bardziej skomplikowany. Napiszemy ciekawg funkcje,
ktéra zasymuluje wprowadzenie calego tekstu, podanego jej w parametrze - klawisz po
klawiszu. Funkcja ta mogtaby wygladaé tak!*3:

133 Intensywnie uzywam tu Biblioteki Standardowej, wiec jeéli nie znasz jej choé troche, mozesz mieé problemy
ze zrozumieniem kodu. Komentarze powinny jednak sporo wyjasniac.

470

#include <string>
#include <vector>
#include <windows.h>

bool SymulujTekst (const std::string& strTekst)
{

// sprawdzamy, czy napis nie jest pusty

if (strTekst.empty()) return false;

// zapisujemy diugos$¢ napisu w pomocniczej zmiennej
UINT uDlugosc = (UINT) strTekst.length();

/* generujemy tablice zdarzen */

// deklarujemy zmienne
std: :vector<INPUT> aZdarzenia; // rzeczona tablica
INPUT Zdarzenie; // jedno zdarzenie

// w tablicy potrzebne sa dwa elementy dla kazdego

// znaku napisu (wciséniecie i zwolnienie odpowiedniego klawisza)
// 1 tylez rezerwujemy

aZdarzenie.reserve (uDlugosc * 2);

// iterujemy po napisie i dla kazdego znaku tworzymy dwa zdarzenia
for (std::string::const iterator i = strTekst.begin();
i != strTekst.end(); ++1i)
{
// kontrolujemy, czy znak nalezy do zestawu ASCII
if ((*1) > Ox7F) return false;

// ustawiamy strukture na parametry wspdlne obu zdarzeniom
ZeroMemory (&Zdarzenie, sizeof (INPUT)) ;

Zdarzenie.type = INPUT KEYBOARD;

Zdarzenie.ki.wVk = (*i); // kod ASCII znaku == kod wirt. klaw.

// dodajemy pierwsze zdarzenie - wcidniecie klawisza
azdarzenia.push back (Zdarzenie);

// dodajemy drugie zdarzenie - zwolnienie klawisza
Zdarzenie.ki.dwFlags = KEYEVENTEF KEYUP;
azdarzenia.push back (Zdarzenie);

/* symulujemy zdarzenia */

// wywolujemy SendInput (), sprawdzajac liczbe poprawnych zdarzen

// rzutowanie const cast w drugim parametrze jest konieczne ze

// wzgledu na ewidentny burak w deklaracji SendInput (), gdzie

// ten parametr Jjest zwklym wskaznikiem, zmiast statym do staltej

if (SendInput (aTablica.size(), const cast<LPINPUT>(aTablica.data()),

sizeof (INPUT)) < (UINT) aTablica.size())

// gdy wygenerowane mniej zdarzen niz trzeba, zwracamy false
return false;

// w koncu, zwracamy true
return true;

471

}

Wada tej funkcji jest nieumiejetno$¢ generowania zdarzen znakéw spoza zestawu ASCII.
Ten problem mozna jednak obejs¢, jezeli zastosuje sie flage KEYEVENTF UNICODE.
Sprobuj samodzielnie napisa¢ poprawiong wersje funkcji - teraz lub pézniej, bo bedzie to
czescig pracy domowej na koniec rozdziatu :D

Ustawienia klawiatury

Klawiatura to pospolite urzadzenie, ktore jest w duzym stopniu konfigurowalne. Windows
posiada kilka opcji, umozliwiajgcych zmiane jego parametréw - bedg one trescig tej
sekdji.

Uzyjemy tutaj kilka razy funkcji SystemParametersInfo (), zatem dobrze bytoby, gdybys$
| przypomniat jg sobie - z poprzedniego podrozdziatu o myszce lub bezposrednio z MSDN.

Powtarzanie znaku

Chyba najwazniejszymi ustawieniami personalizacyjnymi klawiatury (albo jednymi z
najwazniejszych) sq opcje powtarzania znaku. Mam tu na mysli regulacje czasu
przytrzymywania klawisza, po ktérym nastepuje powtarzanie, oraz szybkosci duplikacji.
Ustawienie nieodpowiednich dla ciebie parametrow moze prowadzi¢ albo do powstawania
‘tttaakkkiiiicchhh bbteeddédww’ w pisaniu, albo do frustracji spowodowanej dtugim
czekaniem na wyprodukowanie np. sekwencji mysInikéw (-) imitujacych pozioma linie.

Z punktu widzenia uzytkownika opcje powtarzania mozna ustawi¢ w aplecie Panelu
Sterowania Wtasciwosci: Klawiatura. Jego interesujacy fragment wyglada tak:

Whaiciwosci: Klawiatura

Screen 65. Opcje powtarzania znaku

Widzimy tu dwa ustawienia, dostrajane za pomocg suwakow:
> OpodzZnienie powtarzania ma wptyw na czas przytrzywania klawisza, po uptynieciu
ktérego znak jest powtarzany
> Czestotliwos¢ powtarzania reguluje szybko$¢ produkcji kolejnych znakdéw przy
wcisnietym i przytrzymanym klawiszu

472

Nas, jako programistow, bedzie naturalnie interesowac sposéb manipulowania tymi
opcjami za posrednictwem funkcji Windows API. Tym wiec zajmiemy sie w aktualnym
paragrafie - przyjrzymy sie obu ustawieniom powtarzania znaku.

Opdznienie powtarzania

Interwat czasu, po jakim rozpocznie sie powtarzanie, mozemy kontrolowaé za pomocq
funkcji SystemParametersInfo ().

Pobranie wartosci tego ustawienia wigze sie z wykorzystaniem statej
SPI_GETKEYBOARDDELAY i wyglada tak:

UINT uOpoznienie;
SystemParametersInfo (SPI_GETKEYBOARDDELAY, 0, &uOpoznienie, 0);

W zmiennej, ktorej adres nalezy poda¢ w trzecim parametrze (pvParam) odnajdziemy
teraz liczbe z przedziatu od 0 do 3, mdwiacq jak dtugi jest omawiany okres czasu.
Faktyczna jego rozciggtosc zalezy od sprzetu i wynosi mniej wiecej 250 milisekund dla
ustawienia 0, a nastepnie o tylez przyrasta z kazdym krokiem (osigga wiec ok. 1 sekunde
dla ustawienia 3).

Taka sama jednostke dla opdznienia musimy przyjaé, gdy chcemy je zmodyfikowac.
Stuzy do tego stata SPI SETKEYBOARDDELAY uzyta na przyktad tak:

SystemParametersInfo (SPI SETKEYBOARDDELAY, 3, NULL, O0);

W drugim parametrze SystemParametersInfo () nalezy poda¢ nowg wartos¢ opcji. W
powyzszym kodzie bedzie wiec ona ustawiona na maksimum, a powtarzanie znaku
rozpocznie sie dopiero po okoto sekundzie przytrzymywania klawisza.

Czestotliwos¢ powtarzania

Gdy repetycja juz sie rozpocznie, za szybkosc¢ jej wykonywania odpowiada druga z opcji
powtarzania, czyli czestotliwos¢. Jej programistyczna obstuga takze wymaga uzycia
funkcji systemParametersInfo ().

Oczywiscie zaczniemy od pobierania. Aby uzyskac¢ czestotliwo$¢ powtarzania znaku
postugujemy sie identyfikatorem SPI GETKEYBOARDSPEED:

UINT uCzestotliwosc;
SystemParametresInfo (SPI_GETKEYBOARSPEED, 0, &uCzestotliwosc, 0);

Ponownie otrzymana wielkos¢ nie jest bezwgledna i oscyluje w granicach od 0 (co
odpowiada ok. 2-3 powtdrzeniom znaku na sekunde) do 31 (to znaczy przecietnie 30
powtdrzen na sekunde). Doktadna czestotliwos¢ jest, podobnie jak opdznienie, zalezna od
posiadanego modelu klawiatury.

Teraz zajmijmy sie ustawianiem tego ustawienia ;) By je zmodyfikowac¢, nalezatoby
podeprzec sig stata SPI_SETKEYBOARDSPEED W hiniejszy sposob:

SystemParametersInfo (SPI SETKEYBOARDSPEED, 31, NULL, O0);

Tak tez ustawiamy najwiekszg mozliwg predkos¢ powtarzania znakéw (31).

473

Utatwienia dostepu

Na koniec zapoznamy sie opcjami klawiatury, ktore utatwiajg prace z komputerem
osobom niepetnosprawnym. Wiele z tych ustawien moze by¢ aczkolwiek wygodna takze
dla zupetnie zdrowych uzytkownikéw.

Utatwienia klawiatury sg dos$¢ ztozonymi zagadnieniami; kazde z nich posiada na swdj
uzytek pewng strukture, ktérej pola nalezatoby oméwic. Nie ma na to juz miejsca ani
czasu, dlatego w tym paragrafie opisze jedynie poszczegdlne utatwienia i wskaze zrodta,
z ktorych mozesz sie dowiedzi¢ wiecej na ich temat.

KlawiszeFiltru

KlawiszeFiltru (ang. FilterKeys) sg opcjq, ktorej zadaniem jest przeciwdziatanie skutkom
nieumysinych wcisnie¢ klawiszy. Odbywa sie to poprzez ignorowanie takich przycisniec,
ktdére nie sg przytrzymane przez odpowiednio dtugi czas (dtugi znaczy tu raczej utamek
sekundy). Mozliwe jest takze drastyczne zmniejszenie szybkosci powtdrzen znakow.

Programowa kontrola KlawiszyFiltru moze by¢ przeprowadzana funkcjg
SystemParametersInfo () oraz statymi SPI GETFILTERKEYS i SPI SETFILTERKEYS. Z
opcjq jest tez zwigzana struktura FILTERKEYS.

KlawiszeTrwate

KlawiszeTrwate (ang. StickyKeys) zmieniajg sposob dziatania klawiszy Ctrl, Shift i Alt,
utatwiajac wykonywanie zawierajacych je kombinacji. Zamiast jednoczesnego wciskania
wszystkich klawiszy lub przytrzymywania wspomnianych trzech, wystarczy ich
jednokrotne docisniecie i zwolnienie. Przy wigczonych KlawiszachTrwatych wykonanie
kombinacje Alt+Tab sprowadza sie do wcisniecia i puszczenia klawisza Alt, a nastepnie
wcisniecia Tab - nie trzeba przytrzymywac pierwszego z klawiszy.

Za KlawiszeTrwate odpowiadajg state SPI GETSTICKYKEYS i SPI_SETSTICKYKEYS funkdcji
SystemParametersInfo () oraz struktura STICKYKEYS.

KlawiszePrzetgczajgce

Po uaktywnieniu KlawiszyPrzetaczajacych (ang. ToggleKeys) komputer bedzie generowat
dzwiek w momencie wcisniecia jednego z klawiszy Lock: Num Lock, Caps Lock i Scroll
Lock. Powinno to na przyktad zapobiec btedom polegajacym na wpisywaniu ‘tEKSTU
pODOBNEGO dO tEGO’ :)

Modyfikacja ustawien KlawiszyPrzetgczajacych odbywa sig stalymi SPI _GETTOGGLEKEYS i
SPI SETTOGGLEKEYS oraz strukturg TOGGLEKEYS.

Xk k

Zaprezentowaniem powyzszej tréjcy utatwien dostepu konczymy nasze spotkanie z
klawiaturg. PoznaliSmy tutaj wiekszos¢ aspektéw jej wykorzystania przy pomocy
Windows API, co powinno nam pomoc przy tworzeniu aplikacji okienkowych.

Z wazniejszych, a nieomoéwionych kwestii nalezy wymienic¢ ukfady klawiatury oraz
karetke. Jezeli chcesz, mozesz poczyta¢ na ich temat w MSDN.

Podsumowanie

DobrneliSmy wreszcie do konca tego rozdziatu. Teraz wiesz juz wszystko, co niezbedne
do poprawnego wykorzystania klawiatury i myszy w twoich programach dla srodowiska

474

Windows. Znasz juz odpowiednie komunkaty oraz pomocnicze funkcje WinAPI, ktére
bedg ci w tym pomocne.

W nastepnym rozdziale zajmiemy sie wreszcie rysowaniem i grafikgq. Wprawdzie nie
bedzie to jeszcze DirectX, ale i tak powinienes by¢ zadowolony. Zapoznamy sie bowiem
doktadnie z bogata biblioteka graficzng Windows GDI.

Pytania i zadania

Oto niezbedny zestaw pytan kontrolnych i zadan do wykonania. Mitej pracy ;)

Pytania
1. Czym jest urzadzenie wejsciowe? Jakie znasz rodzaje takich urzadzen?
2. Co w Windows API rozumiemy pod pojeciem myszy?
3. Jakie rodzaje komunikatéw myszy moze otrzymac okno w Windows?
4. Jakie informacje sq dostarczane w parametrach wparam i 1Param kazdego

o

B0 ®N

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.
24.
25.

komunikatu myszy?

Ktéry komunikat przycisku myszki nalezy obstugiwaé, aby zapewnic reakcje na
pojedyncze klikniecie?

Jaki wymaog musi spetni¢ okno, aby otrzymywac informacje o dwukrotnych
kliknieciach?

Ktdre okno otrzymuje komunikat wM MOUSEWHEEL o obrocie rolki myszy?

Co to znaczy, ze okno ma wiadze nad myszka? Jak mozna takg wtadze uzyskac?
Jak mozna pobrac pozycje kursora w dowolnym momencie?

. W jaki sposob sprawdzamy stan wcisniecia przyciskow myszy? O czym nalezy

pamietad, jezeli uzywamy do tego funkcji GetAsyncKeyState () ?

.Jak mozna programowo symulowac ruch myszy, wcisniecia przyciskéw oraz obrot

rolkg?

Jak sprawdzamy obecnos$¢ w komputerze i mozliwosci myszki?

Jakie utatwienia dostepu sg zwigzane z myszkg?

Czym jest potok klawiszy i jakie sg jego kolejne etapy?

Czym rozni sie kod skanowania od kodu wirtualnego klawisza?

Ktére okno otrzymuje komunikatu o zdarzeniach klawiatury?

Jakie informacje mozna odczytaé z parametru 1Param komunikatow klawiatury?
Jakie komunikaty o klawiszach generuje system Windows?

Czym sie rozni komunikat systemowy od pozasystemowego?

Skad pochodza komunikaty o znakach i jaka jest ich rola?

Co zawiera parametr wParam komunikatéow o znakach?

Jakimi dwoma funkcjami pobieramy stan pojedynczego klawisza wirtualnego i
czym roznig sie one miedzy sobg?

Jak wyglada programowe symulowanie klawiatury?

Jakie dwa ustawienia kontrolujg powtarzanie znaku przy wcisnietym klawiszu?
Podaj trzy ufatwienia dostepu zwigzane z klawiatura.

Cwiczenia

1.

2.

Napisz program, ktory wyswietli komunikat po kliknieciu lewym przyciskiem
myszy w obszarze klienta swojego okna.

(Trudne) Stworz aplikacje, ktéra bedzie reagowata pokazaniem menu sterujgcego
okna w odpowiedzi na klikniecie jego wnetrza.

Wskazdwka: wykorzystaj komunikat wM NCHITTEST.

Zmodyfikuj przyktad cursorpos tak, azeby wyswietlat on wspétrzedne ekranowe
kursora. Najlepiej, jezeli nie wykorzystasz do tego funkcji GetCursorPos ().

Zmien nasz przykfadowy szkicownik scribble - niech okno nie traci swej
zawartosci po odrysowywaniu.

475

Wskazéwka: przypomnij sobie omdwienie procesu tworzenia okna z poprzedniego
rozdziatu.

Utworz program pokazujacy w swym oknie kod wirtualnego klawisza, ktory wciska
uzytkownik.

(Trudne) Dodaj do tego jeszcze nazwe klawisza w postaci tekstu, np. "Enter"
Czy "Strzatka w doi'".

(Ekstremalne) Stworz aplikacje zliczajacq wcisniete przez uzytkownika klawisze
w catym systemie i pokazujaca ja w matym okienku w trybie ,zawsze na wierzchu
Wskazdwka: zainteresuj sie filtrami (ang. hooks), a szczegdlnie jednym rodzajem
- WH_JOURNALRECORD. Potrzebne infomacje znajdziesz w opisie funkciji
SetWindowsHookEx ().

Napisz program, ktoéry pozwalatby na zmiane tytutu swego okna. Niech bedzie on
poczatkowo pusty, a wcisniecia klawiszy alfanumerycznych niech powoduje
dodanie do niego odpowiednich znakdw.

(Trudniejsze) Spraw jeszcze, aby klawisz Backspace usuwat juz wprowadzone
znaki.

(Trudniejsze) Napisz lepsza wersje funkcji symulujTekst (). Powinna ona
przyjmowac dowolny tekst, najlepiej w formacie Unicode.

”

