
3 
MYSZ I KLAWIATURA 

 
Wiele rzeczy wymyślono po to, 

aby nie trzeba było dużo myśleć. 
Regedit 

 
Tytułowe dwa urządzenia wejściowe (ang. input devices) są najintensywniej 
wykorzystywanymi środkami do komunikacji użytkownika z komputerem. Historycznie 
starsza jest klawiatura, jednak obecnie oba te sprzęty wzajemnie się uzupełniają, a 
obsługa większości dobrych programów może być realizowana przy pomocy każdego z 
nich. 
Powstało naturalnie mnóstwo innych urządzeń wejściowych, do których należą choćby 
joysticki czy tablety graficzne. Coraz więcej mówi się też o sterowaniu aplikacjami za 
pomocą komend głosowych. Wydaje się jednak, że nawet jeśli ten nowe interfejsy 
komunikacyjne zostaną w przyszłości udoskonalone, to tradycyjne klawiatury i myszki 
(albo ich zastępniki, np. trackballe) nigdy nie odejdą całkiem do lamusa. Praca z nimi jest 
po prostu szybka i wygodna, a nadto dyskretna - i chyba nie zmienią tego żadne 
nadchodzące nowniki. Klawiatury zyskają oczywiście więcej klawiszy, myszki - więcej 
przycisków i rolek, ale zasadnicze przeznaczenie i wykorzystanie obu tych urządzeń 
będzie przez cały czas takie same. 
 
Skoro więc są one dzisiaj podstawową metodą porozumienia się użytkownika z 
komputerem, nowoczesny system operacyjny w rodzaju Windows musi zapewniać 
właściwą obsługę klawiatury i myszy. I rzeczywiście, środowisko aplikacji rodem z 
Microsoftu daje bodaj wszystko, co jest potrzebne, by programista mógł zaoferować 
użytkownikom swych produktów pełną współpracę z możliwościami tych dwóch 
kluczowych urządzeń. Ta kooperacja jest realizowana w ramach Windows API, którego 
część za to odpowiedzialną poznamy bliżej w tym oto rozdziale. 

Obsługa myszy 
Mysz jest urządzeniem wskazującym (ang. pointing device), którego przeznaczeniem 
jest współpraca z graficznym interfejsem użytkownika. Nie ma ono większego 
zastosowania w konsoli tekstowej, gdzie prym cały czas wiedzie (i musi wieść) klasyczna 
klawiatura. 
 
Każda osoba posługująca się komputerem wie oczywiście, w jaki sposób działa myszka. 
Nie wszyscy jednak wiedzą, że nie jest ona jedynym możliwym urządzeniem, za pomocą 
którego można sterować kursorem na ekranie. Do innych należy chociażby trackball; jego 
obsługa polega na umiejętnym poruszaniu kulką, której obroty powodują ruch kursora na 
ekranie. Urządzenie to ma sporą zaletę w postaci braku konieczności posiadania 
specjalnej podkładki i dlatego jest szczególnie często wykorzystywane w komputerach 
przenośnych. 
 
Słowo ‘trackball’ weszło już na dobre do słownika komputerowego i nikt już nawet nie 
próbuje go tłumaczyć. Ale jeszcze kilka lat można było okazjonalnie spotkać wyjątkowo 
idiotyczne określenie dla tego urządzenia: otóz nazywano je kotem, chcąc je rzekomo 



 424 

odróżnić od standardowej myszki. Wyjaśnienie to jest raczej dziwne, bo chociaż 
komputerowa mysz może faktycznie budzić skojarzenia z pospolitym gryzoniem, to 
przecież trackball nie różni się od niej prawie wcale. Słusznie więc zdaje się, że obecność 
jednego komputerowego zwierzęcia w zupełności nam wystarczy. 
 

  
Fotografia 3 i 4. Komputerowe urządzenia wskazujące: myszka oraz trackball 

(fotografie pochodzą z serwisu internetowego firmy Logitech) 

  
Jako przyjazny system operacyjny Windows zawiera naturalnie odpowiednią obsługę 
urządzeń wskazujących - niezależnie od tego, czym one są. W WinAPI przyjęło się 
aczkolwiek nazywać je wszystkie myszami, ponieważ tak jest po prostu wygodniej. My 
również będziemy tak wobec tego czynić. 
 
W tym podrozdziale zajmiemy się więc tą częścią Windows API, która umożliwia 
programom okienkowym wykorzystanie obecności myszy. Poznamy wpierw wszystkie 
najważniejsze komunikaty o zdarzeniach myszy oraz reguły ich otrzymywania przez 
okna. Później nauczymy się odczytywać stan myszy bezpośrednio, a nawet symulować 
jego zmianę. Na sam koniec zostawimy sobie odczytywanie różnorakich parametrów 
myszy. 

Zdarzenia myszy 

System Windows posługuje się łącznie kilkudziesięcioma (!) komunikatami o zdarzeniach 
pochodzących od myszy. Spośród tej mnogości najważniejszych jest dla nas kilkanaście, 
informujących przede wszystkim o wciśnięciu lub puszczeniu któregoś z przycisków 
myszy, ruchu kursora lub też zmianie pozycji rolki (jeżeli jest obecna). Tymi właśnie 
komunikatami zajmiemy się w tej sekcji. 
 
One wszystkie posiadają przynajmniej jedną przyjemną cechę, związaną ze swymi 
parametrami wParam i lParam. Otóż znaczenie tych parametrów jest dla wymienionych 
zdarzeń zawsze takie samo: zmienne te zawierają mianowicie aktualną pozycję kursora 
myszy oraz informację o tym, czy pewne klawisze są w danej chwili wciśnięte. 
Pierwsza z tych danych zawarta jest w lParam. Pozioma i pionowa współrzędna kursora 
jest w niej zapisana w dolnym i górnym słowie tej 32-bitowej wartości. Aby je uzyskać, 
możemy zatem posłużyć się poznanymi makrami LOWORD() oraz HIWORD(). Windows API 
deklaruje też dwa bardziej wyspecjalizowane makra: 
 

nX = GET_X_LPARAM(lParam); 
nY = GET_Y_LPARAM(lParam); 

 
Jak wskazują ich nazwy, służą one właśnie do pobrania pozycji kursora z parametru 
lParam. Aby z nich skorzystać, trzeba jeszcze dołaczyć nagłówek windowsx.h: 
 

#include <windowsx.h> 
 

http://www.logitech.com/


 425

Istnieje również makro MAKEPOINTS(), które zmienia lParam w strukturę POINTS - bardzo 
podobną do poznanej wcześniej POINT, ale z polami typu SHORT (16-bitowymi). 
 
Z kolei wParam zawiera nieco inną informację120. Jest to bowiem kombinacja bitowa 
pewnych flag, które określają stan kilku ważnych klawiszy na klawiaturze oraz przycisków 
myszy. Można tam znaleźć wartości stałych wymienionych w tabeli: 
 

stała klawisz 
MK_CONTROL Ctrl 
MK_SHIFT Shift 
MK_LBUTTON lewy przycisk myszy 
MK_MBUTTON środkowy przycisk myszy 
MK_RBUTTON prawy przycisk myszy 

Tabela 42. Stałe parametru wParam komunikatów myszy, określające wciśnięte przy ich okazji 
klawisze 

 
Jako że są to flagi bitowe, wParam może mieć ustawioną więcej niż jedną taką stałą 
naraz. Sprawdzenia, czy jakaś flaga jest tu zawarta, należy dokonywać za pomocą 
odpowiedniej operacji bitowej: 
 

if ((wParam & stała) /* != 0 */) 
{ 
 // stała jest ustawiona 
} 

 
Przykładowo, aby dowiedzieć się, czy w momencie zajścia zdarzenia myszy wciśnięty był 
klawisz Shift, trzeba posłużyć się warunkiem: 
 

if (wParam & MK_SHIFT) 
 
Więcej informacji o flagach bitowych możesz znaleźć w Dodatku B, Reprezentacja danych 
w pamięci. 
 
To wszystko, jeżeli chodzi o parametry komunikatów myszy. Teraz wypadałoby przyjrzeć 
się bliżej każdemu z tych ważnych zdarzeń. 

Kliknięcia przycisków 

Ewolucja komputerowych myszek, jaka następowała przez ostatnie dekady, polegała w 
dużej mierze na dodawania kolejnych przycisków. Pierwsze urządzenia tego typu 
posiadały tylko jeden taki przycisk, później standardem stały się dwa. Dzisiaj minimalna 
liczba przycisków, potrzebna dla wygodnej pracy z każdą aplikacją, to trzy; jednak wiele 
myszek posiada teraz nawet szerszy ich asortyment, z których wszystkie są często 
konfigurowalne. 
 
Liczbę dostępnych przycisków myszy można pobrać za pomocą wywołania 
GetSystemMetrics(SM_CMOUSEBUTTONS). 
 
Wszystkie wersje Windows szeroko używane w chwili obecnej zapewniają standardową 
obsługę dla trzech przycisków myszy: 

                                                 
120 W przypadku komunikatu WM_MOUSEWHEEL informacja ta zajmuje tylko młodsze słowo z wParam 
(LOWORD(wParam)), gdyż starsze jest przeznaczone na dane o pozycji rolki. Podobnie jest też z trzema 
komunikatami WM_XBUTTON* w Windows 2000/XP. 



 426 

 lewego, używanego zdecydowanie najczęściej. Kliknięcia tym przyciskiem są 
standardową metodą wyboru elementów interfejsu użytkownika, jak na przykład 
przycisków czy opcji menu 

 prawego, służącego głównie do pokazywania menu podręcznego (ang. context 
menu) oraz specjalnych typów przeciągania (ang. dragging) obiektów 

 środkowego, którego działania jest zwykle zależne od aplikacji. Dla przykładu, w 
programie 3ds max służy on między innymi do przewijania długich pasków 
narzędzi; fani gry Saper zapewne znają zastosowanie tego przycisku w ich 
ulubionej grze 

 
Myszy dwuprzyciskowe symulują środkowy przycisk za pomocą jednoczesnego wciśnięcia 
swego lewego i prawego przycisku. 
 
Każdy z tych trzech przycisków myszy może z kolei generować trójkę związanych ze sobą 
zdarzeń: 

 wciśnięcie przycisku (ang. button down) 
 zwolnienie przycisku (ang. button up) 
 dwukrotne kliknięcie (ang. double click) 

 
Zauważmy, że Windows nie generuje oddzielnego komunikatu dla pojedynczego 
kliknięcia danym przyciskiem myszy. Takie kliknięcie jest bowiem interpretowane jako 
dwa zdarzenia: wciśnięcia i zwolnienia przycisku, następujące po sobie. 

Nazwy komunikatów 

Trzy przyciski i trzy możliwe do wystąpienia akcje… Nie trzeba być specem od 
matematyki, by wywnioskować, że łącznie daje to nam 9 komunikatów o zdarzeniach 
myszy. Każdemu z nich odpowiada oczywiście pewna stała, której nazwę można łatwo 
zbudować wedle następującego schematu: 
 

WM_przyciskBUTTONakcja 
 
Etykiety przycisk i akcja powinny być w nim zastąpione fragmentami nazw, 
odnoszącymi się do jednego z przycisków oraz do rodzaju występowanego zdarzenia. 
Możliwe warianty w obu tych kwestiach przedstawiają dwie poniższe tabelki: 
 

przycisk przycisk myszy 
L lewy 
M środkowy 
R prawy  

akcja zdarzenie przycisku 
DOWN wciśnięcie przycisku 
UP zwolnienie przycisku 

DBLCLK dwukrotne kliknięcie  
Tabela 43 i 44. Fragmenty nazw komunikatów o zdarzeniach myszy 

 
Budując z tych informacji wszystkie możliwe nazwy komunikatów, otrzymamy dziewięć 
odpowiadających im stałych: 
 
zdarzenie  
przycisk  

wciśnięcie przycisku zwolnienie przycisku dwukrotne kliknięcie 

lewy WM_LBUTTONDOWN WM_LBUTTONUP WM_LBUTTONDBLCLK 

środkowy WM_MBUTTONDOWN WM_MBUTTONUP WM_MBUTTONDBLCLK 

prawy WM_RBUTTONDOWN WM_RBUTTONUP WM_RBUTTONDBLCK 

Tabela 45. Nazwy komunikatów o zdarzeniach myszy 

 
Windows 2000 i XP posiada też wbudowaną obsługę ewentualnych dwóch dodatkowych 
przycisków myszy, oznaczanych jako X1 i X2. Związana jest z nimi aczkolwiek tylko 
trójka stosownych komunikatów (zamiast sześciu); obydwa przyciski są bowiem 



 427

rozróżnianie przez wartość górnego słowa wParam. 
Wszystkie informacje na temat możesz naturalnie znaleźć w MSDN przy opisach 
komunikatów WM_XBUTTONDOWN, WM_XBUTTONUP i WM_XBUTTONDBLCLK. 
 
Poznamy obecnie nieco bliżej wszystkie wymienione tu komunikaty. 

Pojedyncze kliknięcia 

Jak już nadmieniłem, Windows nie wyróżnia żadnego komunikatu do informowania o 
pojedynczych kliknięciach przycisku myszy. Wysyła za to powiadomienia o wciśnięciu 
oraz puszczeniu każdego z przycisków. 
 
Szczególnie komunikaty o przyciśnięciach są dla nas interesujące. To właśnie ich używa 
się, by reagować na kliknięcia w obszarze klienta okna. 
Wśród tych zdarzeń zdecydowanie najczęściej jest z kolei wykorzystywane zawiadomienie 
WM_LBUTTONDOWN. Jest to bowiem prosta droga reagowania na kliknięcia myszy dotyczące 
okna. Na ten komunikat odpowiadaliśmy chociażby w przykładowym programie 
TaskbarHider z poprzedniego rozdziału. Naciśnięcie lewego przycisku myszy powodowało 
tam pokazywanie lub ukrywanie systemowego paska zadań. 
 
Mówiąc na temat komunikatów o wciśnięciu lub zwolnieniu przycisków myszy trzeba 
jeszcze zwrócić uwagę na pewien trudno uchwytny fakt. Otóż wystąpienie 
WM_?BUTTONDOWN wcale nie musi pociągać za sobą późniejszego pojawienia się 
WM_?BUTTONUP. Jeżeli bowiem użytkownik, wcisnąwszy przycisk, przeniesie kursor poza 
obszar klienta okna programu, wówczas komunikat o puszczeniu przycisku nie trafi do 
tego okna. 
Niekiedy bywa to zachowaniem niepożądanym, ale na szczęście Windows oferuje 
możliwość jego zmiany. Poznamy ją w jednym z następnych paragrafów. 

Dwukrotne kliknięcia 

Zdarzenie podwójnego kliknięcia występuje wtedy, gdy nastąpi dwukrotne, szybkie 
wciśnięcie i zwolnienie jednego z przycisków myszy (nie tylko lewego). Musi to nastąpić 
w odpowiednio krótkim czasie oraz przy stosunkowo niewielkiej lub żadnej zmianie 
pozycji kursora. 
 
Wiele modeli myszek umożliwia też przypisanie akcji dwukrotnego kliknięcia lewym 
przyciskiem do jednego z dodatkowych przycisków myszy. Windows traktuje takie 
emulowane kliknięcia identycznie jak normalne, jednak z wiadomych względów nie 
stosują się do nich wymienione wyżej ograniczenia. 
 
Restrykcyjność tych ograniczeń można oczywiście regulować i dopasować do swoich 
potrzeb. Maksymalny interwał czasu jest ustawiany w Panelu Sterowania, zaś tolerowane 
przesunięcie myszy przy pomocy narzędza Tweak UI. 
Oba te parametry systemowe można też zmienić programowo poprzez Windows API - 
tego również nauczymy się w tym podrozdziale. 
 
Wróćmy jednak do samych komunikatów o dwukrotnych kliknięciach. Od razu trzeba 
powiedzieć na ich temat dwie ważne kwestie. 
Po pierwsze, żadnemu oknu nie jest bezwarunkowo dane odbieranie tych komunikatów. 
Być może (mam nadzieję :D) pamiętasz, że w grę wchodzą tu style klasy okna. 
Uściślając to stwierdzenie, trzeba powiedzieć, iż: 
 
Tylko okna, których klasy zawierają styl CS_DBLCKLS, odbierają komunikaty o 
dwukrotnych kliknięciach przyciskami myszy. 
 



 428 

Tak więc ażeby reagować na te zdarzenia, należy wpierw ustawić odpowiedni styl klasy 
okna - na przykład w ten sposób: 
 

KlasaOkna.style = CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS; 
 
Jeżeli bowiem nie zrobimy tego, nasze okno nie otrzyma żadnego z komunikatów 
WM_?BUTTONDBLCLK. 
 
Druga kwestia dotyczy rzeczywistej sekwencji komunikatów, jakie dostaje okno w 
przypadku wystąpienia dwukrotnego kliknięcia. Nie jest tak, że WM_?BUTTONDBLCLK 
zastępuje informacje o pojedynczych kliknięciach, które składają się w sumie na to 
podwójne. Prawdziwa kolejność komunikatów wygląda bowiem tak: 
 

// nieustawiony styl CS_DBLCLKS 
WM_?BUTTONDOWN 
WM_?BUTTONUP 
WM_?BUTTONDOWN 
WM_?BUTTONUP 

// ustawiony styl CS_DBLCLKS 
WM_?BUTTONDOWN 
WM_?BUTTONUP 
WM_?BUTTONDBLCLK // to ten! :) 
WM_?BUTTONUP 

 
Widać, że WM_?BUTTONDBLCLK zastępuje drugi z komunikatów WM_?BUTTONDOWN. Pierwsza 
notyfikacja o wciśnięciu przycisku myszy trafia jednak do okna i jest przetwarzana tak, 
jak zwykłe pojedyncze kliknięcie. Dopiero potem do okna dociera również 
WM_?BUTTONDBLCLK, interpretowane jako podwójne naciśnięcie przycisku. 
Z tego powodu ważne jest, aby kod obsługi dwukrotnego kliknięcia nie był całkiem inny 
od reakcji na pojedyncze wciśnięcie przycisku myszy. Powinien raczej uzupełniać ją; 
dobrym przykładem jest tu Eksplorator Windows. W programie tym pojedyncze kliknięcie 
na ikonę pliku powoduje jego zaznaczenie, zaś podwójne poleca otwarcie pliku w 
domyślnej aplikacji. Akcja otwarcia jest więc uzupełnieniem akcji zaznaczenia. 

Komunikaty spoza obszaru klienta 

Dziewiątka opisanych tu komunikatów oraz WM_MOUSEMOVE, który zostanie omówione za 
chwilę, powiadamia okno o zdarzeniach myszy, zachodzacych wewnątrz jego obszaru 
klienta. Takie zdarzenia mogą jednakże zachodzić także poza nim; Windows informuje o 
nich poprzez dziesięć odmiennych komunikatów121. 
Odpowiadają one dokładnie każdemu ze zdarzeń klienckich i mają nawet podobne nazwy. 
Dodany jest w nich jedynie przedrostek NC, przez co ich stałe to na przykład 
WM_NCLBUTTONDOWN czy WM_NCMOUSEMOVE. 
 
Ponieważ komunikaty te dotyczą zdarzeń występujących w pozaklienckim obszarze okna, 
zwykle nie potrzeby pisania kodu reakcji na nie. Domyślna procedura zdarzeniowa radzi 
sobie z nimi w standardowy dla Windows sposób, dbając np. o to, aby kliknięcie w 
przycisk  powodowało zamknięcie okna, a przeciąganie za pasek tytułu skutkowało 
jego przesuwaniem. Wtrącanie się w ten naturalny układ prowadzi najczęściej do 
dezorientacji użytkownika programu i dlatego nie jest szczególnie wskazane. 
 
Jeden z pozaklienckich komunikatów myszy nie ma swego odpowiednika w zdarzeniach 
obszaru klienta. Tym komunikatem jest WM_NCHITTEST. 
Zdarzenie to jest interesujące również z innego powodu. Otóż można je uważać za 
przyczynek wszystkich pozostałych zdarzeń myszy. Windows poprzedza nim każdy 
komunikat o zmianie stanu komputerowego gryzonia, wysyłając do okna razem z nim 
także aktualną pozycję kursora. Procedura zdarzeniowa okna analizuje te dane i na ich 
podstawie stwierdza, którego miejsca okna dotyczy dane zdarzenie myszy. W ten sposób 

                                                 
121 Lub raczej poprzez trzynaście komunikatów, jeżeli uwzględnić także powiadomienia o stanie dodatkowych 
prxycisków myszy (WM_[NC]XBUTTON*). 



 429

rozróżniana jest potrzeba wysłania komunikatu klienckiego lub pozaklienckiego, zaś 
system Windows wie, czy kliknięto np. w pasek tytułu czy też wciśnięto przycisk będąc 
już w obszarze klienta okna. 
Zadanie rozróżniania tych wszystkich możliwości przypada najczęściej domyślnej 
procedurze zdarzeniowej DefWindowProc(), jako że zazwyczaj nie zajmujemy się 
komunikatem WM_NCHITTEST. Obsłużenie go może jednak pozwolić na swego rodzaju 
oszukanie systemu - tak, by „myślał” on, że zainstniałe zdarzenie (np. kliknięcie) dotyczy 
innego fragmentu okna niż w rzeczywistości. 
Typowym zastosowaniem tej techniki jest umożliwienie przesuwania okna poprzez 
przeciąganie za jego obszar klienta (a nie tylko za pasek tytułu). Prezentuje to 
przykładowy program ClientMove. 
 
Jeżeli jednak chcesz napisać kod obsługi tych zdarzeń i jednocześnie nie przeszkadzać 
systemowi w normalnej reakcji na nie, możesz samodzielnie wywoływać domyślną 
procedurę DefWindowProc(). Przykładowa reakcja na WM_NCLBUTTONDOWN może więc 
wyglądać tak: 
 

case WM_NCLBUTTONDOWN: 
{ 
 // twój kod 
 
 return DefWindowProc(hWnd, uMsg, wParam, lParam); 
} 

 
Powinieneś też pamiętać, że w przypadku komunikatów spoza obszaru klienta 
współrzędne kursora podane w lParam są liczone względem ekranu, a nie obszaru 
klienta okna. 

Ruch myszy 

Następnym z komunikatów myszy, któremu poświęcimy swoją uwagę, jest 
WM_MOUSEMOVE. 
 
System Windows wysyła go do okna, gdy kursor przelatuje nad jego obszarem klienta - 
także wtedy, kiedy samo okno jest nieaktywne. Otrzymanie tego zdarzenia wskazuje, że 
pozycja strzałki myszy uległa jakiejś zmianie. Okno jest informowane o każdej takiej 
zmianie - nawet, jeśli było to tylko przesunięcie kursora o jeden jedyny piksel. 
WM_MOUSEMOVE powiadamia bowiem o ruchu myszy; na to też wskazuje nazwa tego 
komunikatu. 
 
Przy jego przetwarzaniu, bardziej niż w pozostałych zdarzeniach myszy, przydają się 
dostarczane wraz z nim dane dodatkowe. Szczególnie interesująca jest zmienna lParam, 
zawierająca nową pozycję kursora, liczoną względem lewego górnego rogu obszaru 
klienta okna. Możemy wyświetlić te współrzędne chociażby na pasku tytułu: 
 

 
Screen 60. Współrzędne kursora na pasku tytułu okna 

 
// CursorPos - pokazywanie pozycji kursora w oknie 
 
// (fragment procedury zdarzeniowej) 
case WM_MOUSEMOVE: 
{ 



 430 

 // pobieramy współrzędne kursora i zapisujemy je jako napis 
 std::stringstream Strumien; 
 Strumien << "(" << GET_X_LPARAM(lParam) << "; " << 
 GET_Y_LPARAM(lParam) << ")"; 
 
 // ustawiamy tytuł okna na ów napis 
 SetWindowText (hWnd, Strumien.str().c_str()); 
 return 0; 
} 

 
Oprócz współrzędnych w lParam, komunikat WM_MOUSEMOVE dostarcza też w wParam tych 
samych informacji o wciśniętych klawiszach, które omawialiśmy na samym początku 
poznawania zdarzeń myszy. 
Po obsłużeniu zdarzenia WM_MOUSEMOVE zwracamy do systemu tradycyjną wartość zero. 
 
Pozaklienckim odpowiednikiem przedstawionego komunikatu jest oczywiście 
WM_NCMOUSEMOVE. Okno otrzymuje go, kiedy kursor myszy porusza się ponad paskiem 
tytułu albo brzegiem okna. Do tego zdarzenia stosują się wszystkie uwagi o 
pozaklienckich komunikatach myszy, wymienione w poprzednim paragrafie. 
Szczegółowe wiadomości można jak zwykle znaleźć w MSDN. 

Rolka 

Od kilku lat wszystkie modele komputerowych myszek są wyposażane w pewien 
dodatkowy instrument, uzupełniający działanie przycisków. Jest to tak zwana rolka 
myszy (ang. mouse wheel), służąca głównie do przewijania dokumentów i stron 
internetowych. Znajduje się ona zwykle w miejscu środkowego przycisku myszy, 
zachowując jednak jego pełnią funkcjonalność (można nią klikać tak, jak przyciskiem). 
Ponadto możliwe jest też obracanie rolką w przód i w tył - powoduje to najczęściej 
przewinięcie oglądanego tekstu w górę lub w dół. 
Przydatność i wygoda rolki jest bardzo duża, zwłaszcza podczas przeglądania serwisów 
WWW: nie trzeba wówczas kierować kursora, zajętego kilkaniem w hiperłącza, do pasków 
przewijania, aby przejść w inne miejsce na stronie. Podobnie w edytorach tekstu rolka 
ułatwia i usprawnia pracę. 

Komunikat rolki i jego adresaci 

Windows zapewnia współpracę z rolką myszy poprzez komunikat WM_MOUSEWHEEL. Jak 
nietrudno się domyślić, jest on wysyłany wtedy, gdy użytkownik zmieni pozycję 
gryzoniowego pokrętła. Kto jednak otrzyma ten komunikat?… 
 
Sprawa nie jest tak prosta jak w przypadku innych zdarzeń myszy. Kręcenie rolką nie 
jest bowiem zdarzeniem podobnym choćby do wciśnięcia przycisku. W tamtym przypadku 
komunikat dostawało zawsze to okno, które znajdowało się „pod kursorem”. 
Jednocześnie, na co nie zwróciliśmy dotąd uwagi, stawało się ono oknem aktywnym. 
Uaktywnienie okna objawia się zmianą koloru jego paska tytułu, z szarego na 
(domyślnie) niebieski. Innym objawem, mniej dostrzegalnym dla normalnych okien (ale 
widocznym doskonale dla pól tekstowych), jest też przejęcie wejścia od klawiatury - czyli 
uzyskanie fokusu (ang. focus). Obecnie nie interesujemy się rzecz jasna obsługiwaniem 
klawiatury, jednak pojęcie fokusu ma znaczenie także dla myszki i jej rolki, ponieważ: 
 
Komunikat rolki WM_MOUSEWHEEL otrzymuje tylko to okno, którego w danej chwili 
posiada fokus. 
 
Wiedząc o tym, łatwo wyjaśnić, dlaczego możemy przewijać dokumenty i strony WWW za 
pomocą rolki także wtedy, gdy „wyjedziemy” kursorem poza okna ich programów. Jeśli 
jednak klikniemy następnie którymś z przycisków myszy, okno straci fokus, a my 



 431

możliwość przewijania jego zawartości za pomocą rolki. Możemy ją oczywiście przywrócić 
poprzez ponowne uaktywnienie okna (np. kliknięciem). 

Obsługa rolki 

Niektóre kontrolki potomne, jak listy zwykłe i rozwijalne oraz przewijane pola tekstowe, 
mają standardowo zapewnioną odpowiednią reakcję na komunikat WM_MOUSEWHEEL. 
Warto jednak wiedzieć, jak możemy sami na niego reagować. 
 
Zacznijmy od parametrów tego komunikatu. W dużym stopniu są one zbieżne z 
parametrami zdarzeń przycisków oraz WM_MOUSEMOVE. Istnieją aczkolwiek pewne drobne 
różnice. 
Atoli skoncetrujmy się wpierw na podobnieństwach. Przede wszystkim lParam zawiera 
doskonale znany nam zestaw dwóch wartości, określających pozycję kursora myszki. 
Możemy je uzyskać za pomocą makr GET_X_LPARAM() i GET_Y_LPARAM() (dołączywszy 
wcześniej nagłówek windowsx.h). 
Odmiennie należy traktować wartość wParam - zawiera ona tutaj dwie dane: 

 dolne słowo to kombinacja bitowa flag, określających klawisze wciśnięte w chwili 
zajścia zdarzenia. Została ona przedstawiona na początku tej sekcji, wraz z wielce 
przydatną tabelką odpowiednich stałych :) Parametr ten możemy uzyskać przy 
pomocy makra GET_KEYSTATE_WPARAM() 

 górne słowo specyfikuje dystans, o jaki obróciła się rolka. Pobieramy go poprzez 
makro GET_WHEEL_DELTA_WPARAM() 

 
Zauważmy, że nie ma czegoś takiego jak „aktualna pozycja rolki”, podobna do bieżącej 
pozycji kursora myszki. Obrót rolki nie jest bowiem ograniczony żadną skalą i może 
dokonywać się w obu kierunkach bez żadnych ograniczeń. 
 
GET_WHEEL_DELTA_WPARAM(wParam) jest więc miarą obrotu, jakiego dokonał palec 
użytkownika, poruszający rolką. Wyraża się on liczbą całkowitą ze znakiem: dodatnie 
wartości oznaczają obrót naprzód (w kierunku „od użytkownika”), powodujący zazwyczaj 
przewijanie ekranu do góry; wartości ujemne odpowiadają obrotowi w tył („do 
użytkownika”) i przewijaniu tekstów w dół. 
Sama wartość jest natomiast wielokrotnością stałej WHEEL_DELTA, ustawionej na 120. 
Liczba ta odpowiada jednej elementarnej akcji (krokowi), jaką ma powodować obrót rolki 
- przykładowo, może to być przewinięcie tekstu o określoną liczbę linii (zwykle trzy122). 
WHEEL_DELTA nie jest równe jedności, aby stanowić furtkę dla możliwych przyszłych 
urządzeń, wyposażonych w bardziej dokładne rolki. Wtedy wartość zapisana w górnym 
słowiem wParam nie będzie musiała być koniecznie całkowitą wielokrotnością delty, lecz 
mogła wynosić, powiedzmy, 40. Taka liczba powinna więc spowodować wykonanie 
„jednej trzeciej akcji” przewidzianej na całą deltę - w opisywanym przypadku będzie to 
przewinięcie tekstu o jedną linijkę. 
Już teraz pojawiają się myszki, umożliwiające w miarę płynne przewijanie, zatem należy 
być przygotowanym na odbieranie zdarzeń obrotu rolki o mniej niż jedną deltę. W 
idealnym przypadku powinny one skutkować podjęciem właściwego, „ułamkowego” 
działania. Jeżeli jednak nie jest to możliwe, wtedy najlepiej dodawać przychodzące dane 
o obrocie i wykonywać akcję dopiero wtedy, gdy tak powstała suma osiągnie wartość co 
najmniej WHEEL_DELTA: 
 

                                                 
122 Ilość przewijanych za jednym razem linii jest ustawieniem systemowym i należy je pobierać za pomocą 
wywołania SystemParametersInfo(SPI_GETWHEELSCROLLLINES, 0, &nPrzewijaneLinie, 0);, gdzie 
nPrzewijaneLinie jest zmienną typu całkowitego. Aby zaś obliczyć liczbę wierszy przewijanym w reakcji na 
WM_MOUSEWHEEL, trzeba przemnożyć pobraną wielkość przez liczbę wielokrotności WHEEL_DELTA w parametrze 
zdarzenia, tj.: float fLinie = (float) GET_WHEEL_DELTA_WPARAM(wParam) / WHEEL_DELTA * 
nPrzewijanieLinie;. 



 432 

// zmienna globalna przechowująca obrót rolki 
int g_nCalkowityObrot = 0; 
 
// (procedura zdarzeniowa) 
case WM_MOUSEWHEEL: 
{ 
 // dodajemy otrzymaną wartość obrotu 
 g_nCalkowityObrot += GET_WHEEL_DELTA_WPARAM(wParam); 
 
 // sprawdzamy, czy jest on bezwględnie większy niż WHEEL_DELTA 
 if (abs(g_nCalkowityObrot) >= WHEEL_DELTA) 
 { 
  // dla pewności obliczamy ilość kroków - 
  // - wielokrotności WHEEL_DELTA 
  int nKroki = g_nCalkowityObrot / WHEEL_DELTA; 
 
  // podejmujemy odpowiednie akcje... 
 
  // odejmujemy wykorzystane obroty od licznika 
  // (ustawiając go na resztę z dzielenia przez WHEEL_DELTA) 
  g_nCalkowityObrot %= WHEEL_DELTA; 
 } 
 
 // tradycyjnie zwracamy zero 
 return 0; 
} 

 
Można się spodziewać, że wraz z upowszechnieniem myszek z płynnie obracającymi się 
rolkami coraz więcej programów będzie oferowało ciągłe, a nie tylko skwantowane 
przewijanie dokumentów. 

Łapanie myszy 

Tyle okien, a tylko jedna myszka… - tak mógłby jęknąć spersonifikowany system 
Windows, gdy umiał mówić. Programy komputerowe jako twory martwe nie wyrażają 
jednak swoich opinii i dlatego Windows musi potulnie i sprawnie radzić sobie z 
problemem współdzielenia jednego urządzenia między wiele aplikacji. 

Władza nad myszką 

Cały mechanizm odbierania zdarzeń od myszki opiera się na prostej zasadzie. Mówi ona, 
że dany komunikat (np. o kliknięciu) zostanie wysłany zawsze do tego okna, nad którym 
aktualnie przebywa kursor myszki. W ten sposób różne okna w systemie dostają 
informacje tylko o tych zdarzeniach, które bezpośrednio ich dotyczą. 
 
Istnieją jednak sytuacje, w których jedno okno powinno otrzymywać wszystkie 
komunikaty o zdarzeniach myszki. W takim przypadku powinno ono przejąć od systemu 
władzę nad myszką. 
 
Okno posiadające władzę nad myszką (ang. mouse capture) otrzymuje informacje o 
wszystkich zdarzeniach, pochodzących od urządzenia wskazującego. 
 
W normalnej sytuacji myszka jest „wolna” - żadne okno nie posiada nad nią władzy. Gdy 
chcemy to zmienić, musimy posłużyć się odpowiednimi funkcjami Windows API. 

Przykład przechwycenia myszki 

Zobaczmy to na klasycznym już przykładzie okienkowego szkicownika (ang. scribble). 
Jest to prosty program, pozwalający rysować szlaczki i inne zawijasy w swoim oknie: 
 



 433

 
Screen 61. Okno komputerowego szkicownika 

 
Linie kreślimy w nim poprzez kliknięcie lewym przyciskiem myszy, przytrzymanie go i 
poruszanie kursorem. Taki programik pomaga początkującym użytkownikom komputera 
nabrać wprawy w przeciąganiu. My oczywiście nie potrzebujemy żadnych ćwiczeń tego 
typu i dlatego spojrzymy raczej na kod tej przykładowej aplikacji: 
 

// Scribble - okienkowy szkicownik 
 
#include <string> 
#define WIN32_LEAN_AND_MEAN 
#include <windows.h> 
#include <windowsx.h> 
 
 
// nazwa klasy okna 
std::string g_strKlasaOkna = "od0dogk_Window"; 
 
// dane okna 
HDC g_hdcOkno;  // uchwyt kontekstu urządzenia okna 
 
 
// ------------------- procedura zdarzeniowa okna ------------------------  
 
LRESULT CALLBACK WindowEventProc(HWND hWnd, UINT uMsg, 
 WPARAM wParam, LPARAM lParam) 
{ 
 switch (uMsg) 
 { 
  case WM_LBUTTONDOWN: 
   // przejmujemy myszkę 
   SetCapture (hWnd); 
 
   // przesuwamy pióro (służące do rysowania po oknie) 
   // w punkt kliknięcia 
   MoveToEx (g_hdcOkno, 
 GET_X_LPARAM(lParam), GET_Y_LPARAM(lParam), 
 NULL); 
 
   // zwracamy zero 
   return 0; 
 
  case WM_MOUSEMOVE: 
   // jeżeli nasze okno posiada myszkę 
   if (GetCapture() == hWnd) 
    // rysujemy linie od poprzedniego do aktualnego 
    // miejsca kursora myszki 
    LineTo (g_hdcOkno, 
 GET_X_LPARAM(lParam), GET_Y_LPARAM(lParam)); 
    
   // zwracamy zero 
   return 0; 
 
  case WM_LBUTTONUP: 
   // oddajemy władzę nad myszką do systemu 



 434 

   ReleaseCapture(); 
   return 0; 
 
 //-------------------------------------------------------------  
   
  case WM_DESTROY: 
   // kończymy program 
   PostQuitMessage (0); 
   return 0; 
 } 
 
 return DefWindowProc(hWnd, uMsg, wParam, lParam); 
} 
 
 
// ------------------------funkcja WinMain() ----------------------------  
 
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE, LPSTR, int nCmdShow) 
{ 
 /* rejestrujemy klasę okna */ 
 
 WNDCLASSEX KlasaOkna; 
  
 // wypełniamy strukturę WNDCLASSEX 
 // (pomijamy z tego większość pól) 
 KlasaOkna.hbrBackground = (HBRUSH) GetStockObject(WHITE_BRUSH); 
 KlasaOkna.style = CS_OWNDC; // własny kontekst urządzenia okna 
  
 // rejestrujemy klasę okna 
 RegisterClassEx (&KlasaOkna); 
 
 
 /* tworzymy okno */ 
 
 // tworzymy okno funkcją CreateWindowEx 
 // (znana czynność, więc pomijamy (uchwyt trafia do hOkno)) 
 
 // pobieramy uchwyt do kontekstu urządzenia obszaru klienta okna 
 g_hdcOkno = GetDC(hOkno); 
  
 // pokazujemy nasze okno 
 ShowWindow (hOkno, nCmdShow); 
 
 
 /* pętla komunikatów */ 
 
 // (w zwyczajowej formie, darujemy ją sobie) 
 
 // zwracamy kod wyjścia 
 return static_cast<int>(msgKomunikat.wParam); 
} 

 
Ogólna zasada działania tej aplikacji jest prosta. W momencie wciśnięcia lewego 
przycisku myszy (WM_LBUTTONDOWN) przejmuje ona władzę nad myszką, ustawiając ją dla 
swego okna: 
 

SetCapture (hWnd): 
 
Odtąd będzie ono otrzymywało informacje o wszystkich zdarzeniach myszki. Zanim 
jednak zajmiemy się nimi, musimy zapamiętać pozycję kursora w chwili kliknięcia - tak, 
aby móc potem rysować ślad jego ruchu. Wyręcza nas w tym sam Windows: 



 435

 
MoveToEx (g_hdcOkno, GET_X_LPARAM(lParam), GET_Y_LPARAM(lParam), NULL); 

 
Funkcja MoveToEx() przesuwa tzw. pióro, związane z kontekstem urządzenia naszego 
okna (g_hdcOkno) w miejsce o współrzednych kliknięcia. Koordynaty te pobieramy 
naturalnie za pomocą makr GET_X/Y_LPARAM(). Każda linia, jaką teraz narysujemy w 
oknie, będzie się zaczynała we wskazanym przed chwilą punkcie. 
 
A kiedyż to rysujemy linie w naszym oknie? Otóż robimy to w reakcji na zdarzenie 
WM_MOUSEMOVE: 
 

case WM_MOUSEMOVE: 
 if (GetCapture() == hWnd) 
  LineTo (g_hdcOkno, GET_X_LPARAM(lParam), GET_Y_LPARAM(lParam)); 
 
 return 0; 

 
Wcześniej sprawdzamy jeszcze, czy główne (i notabene jedyne) okno programu posiada 
istotnie władzę nad myszką. Dokonujemy tego przy pomocy funkcji GetCapture(); jeżeli 
zwracany przezeń uchwyt jest zgodny z uchwytem docelowego okna zdarzenia 
WM_MOUSEMOVE, wtedy czujemy się zobowiązani do narysowania linii znaczącej drogę 
kursora. 
 
Zamiast GetCapture() moglibyśmy wykorzystać też zmienną logiczną, określającą czy 
okno programu przechwyciło myszkę. Ustawialibyśmy ją na true w reakcji na 
WM_LBUTTONDOWN i na false w WM_LBUTTONUP, a tutaj dokonywalibyśmy sprawdzenia jej 
wartości. Wykorzystałem jednak GetCapture(), aby pokazać wszystkie funkcje związane 
z zagadnieniem władzy nad myszką. 
 
Linię te rysujemy poprzez LineTo(), podając tej funkcji docelowe współrzędne drugiego 
końca odcinka. Oprócz kreślenia rzeczonej linii, funkcja ta dokonuje też przesunięcia 
pióra w owe miejsce, tak więc następne rysowane odcinki będą się łączyły z poprzednimi. 
Tym sposobem powstanie ciągły ślad drogi kursora myszki, a o to nam przecież chodzi. 
 
O funkcjach MoveToEx() oraz LineTo() pomówimy sobie dokładnie przy omawianiu 
geometrycznej części biblioteki Windows GDI w następnym rozdziale. 
 
Wreszcie dochodzimy do komunikatu WM_LBUTTONUP, oznaczającego zwolnienie lewego 
przycisku myszki. W odpowiedzi na niego wykonujemy tylko jedną czynność: oddajemy 
władzę nad myszką z powrotem do systemu, wywołując funkcję ReleaseCapture(). Od 
tej pory notyfikacje o zdarzeniach myszy będą, jak zwykle, trafiać do okna mieszczącego 
się pod kursorem myszy, a nie do naszego programu. 
 
Nasuwa się jeszcze pytanie: Co właściwie czyni ta kombinacja funkcja SetCapture() i 
ReleaseCapture()? Czy nie można byłoby obejść się bez niej?… 
Teoretycznie jest to możliwe123, jednak niesie pewnie nieprzyjemne konsekwencje 
praktyczne. Wyobraźmy sobie, że użytkownik wciska lewy przycisk myszki, a następnie 
przeciąga kursor poza obręb okna i zwalnia przycisk. Kiedy teraz powróci z powrotem w 
obszar okna programu, kursor będzie kreślił sobą linie - mimo że przecież przycisk 
myszki nie jest wciśnięty! 
Dzieje się tak dlatego, że po przeciągnięciu kursora poza okno, komunikat WM_LBUTTONUP 
nie dociera już do naszego programu. Ten „myśli” więc, że lewy przycisk jest nadal 

                                                 
123 O ile dodamy jeszcze wspomnianą kilka akapitów wyżej zmienną logiczną, która będzie określała, czy należy 
rysować ślad kursora. 



 436 

wciśnięty, a zatem rysuje linie w ślad za strzałką. Dzięki przechwytywaniu władzy nad 
myszką zapobiegamy podobnej sytuacji. 

Zastosowania 

Przejmowanie władzy nad myszką ma sporo zastosowań przede wszystkich w różnych 
programach graficznych, choćby tak prostych jak zaprezentowany przykład. Nie dotyczy 
to tylko swobodnego rysowania, ale też wyznacza linii prostych, krzywych Beziera; nawet 
aplikacje do trójwymiarowego modelowania korzystają z tej techniki. Innym 
zastosowaniem jest też implementowanie specyficznego rodzaju przeciągania jakichś 
elementów. 

Kontrolowanie wejścia od myszy 

Przyjmowanie komunikatów o zdarzeniach to nie jedyna forma kooperacji z myszką, 
dostępna w Windows. W tej sekcji poznamy większość pozostałych, które dają pełen 
obraz możliwości WinAPI w zakresie obsługi urządzeń wskazujących. 

Pozycja kursora 

Myszkę na ekranie monitora reprezentuje kursor, mający zwykle postać strzałki. Znajduje 
się on w określonej pozycji, wyrażonej we współrzędnych ekranowych. Pozycję tę 
otrzymujemy ze wszystkimi komunikatami o zdarzeniach myszy124. Możemy też na nią 
wpływać w inny sposób niż tylko poprzez bezpośrednie poruszanie gryzoniem. 
Spójrzmy więc, jak to się odbywa. 

Pobieranie i ustawianie pozycji kursora 

Aktualne współrzedne kursora, oprócz tego że dostajemy w lParam każdego zdarzenia 
myszy, możemy pobrać za pomocą funkcji GetCursorPos(): 
 

BOOL GetCursorPos(LPPOINT lpPoint); 
 
Podajemy jej wskaźnik do prostej struktury typu POINT, posiadającej dwa pola x i y. Z 
nich też odczytujemy żądaną pozycję strzałki. 
Jedyną różnicą w stosunku do danych otrzymywanych przy okazji zdarzeń jest to, iż: 
 
GetCursorPos() zwraca ekranowe współrzędne kursora. 
 
Jak zaś pamiętamy, lParam komunikatów myszy zawiera pozycję kursora relatywną do 
lewego górnego rogu obszaru klienta okna. 
 
A co z ustawianiem pozycji kursora? Służy do tego funkcja SetCursorPos(): 
 

BOOL SetCursorPos(int X, int Y); 
 
Łatwo można się domyślić, że podajemy jej nowe współrzędne dla kursora myszy w obu 
parametrach. Są to również koordynaty ekranowe, zatem wywołanie w postaci: 
 

SetCursorPos (0, 0); 
 
Przesunie strzałkę do lewego górnego skraju ekranu (pulpitu) - co było do okazania ;) 

                                                 
124 Przy czym jest to pozycja liczona względem obszaru klienta okna-adresata komunikatu. 



 437

(Bez)względne współrzędne 

Dwie metody liczenia współrzędnych kursora (i nie tylko kursora) mogą być trochę 
kłopotliwe - szczególnie, jeżeli nie byłoby prostego sposobu konwersji między nimi. Taki 
sposób jednak istnieje i stanowią go niniejsze dwie funkcje: 
 

BOOL ClientToScreen(HWND hWnd, LPPOINT lpPoint); 
BOOL ScreenToClient(HWND hWnd, LPPOINT lpPoint); 

 
Ich przeznaczenie dobrze obrazują nazwy. ClientToScreen() zamienia współrzędne 
liczone względem obszaru klienta okna na koordynaty ekranowe. Należy podać jej 
uchwyt okna (hWnd) oraz rzeczone współrzędne w postaci adresu struktury POINT. 
Stamtąd też odczytamy nowe współrzedne (ekranowe) po wykonaniu funkcji. 
Odwrotnie działa ScreenToClient(). Tutaj podajemy jej liczby odnoszące się do ekranu, 
a w zamian dostajemy koordynaty tyczące się obszaru klienta okna o uchwycie hWnd. 
 
Ogólnie więc zapamiętajmy, że: 
 
ClientToScreen() dokonuje konwersji typu obszar klienta  ekran. 
ScreenToClient() zamienia współrzędne wedle schematu ekran  obszar klienta. 
 
Te dwie funkcje przydają się w wielu typowych i nietypowych sytuacjach 
programistycznych. 

Ograniczanie swobody w poruszaniu kursorem 

Inicjalnie kursor posiada nieograniczoną swobodę w poruszaniu się po całym ekranie. 
Jeżeli z jakichś względów nie odpowiada to nam, możemy ograniczyć do wybranego 
prostokąta rejon ekranu, który będzie dla myszy dostępny. Czynimy to za pomoca funkcji 
ClipCursor(): 
 

BOOL ClipCursor(const RECT* lpRect); 
 
Jako parametru żąda ona wskaźnika do struktury RECT, opisującej tenże prostokąt, 
ograniczający kursor. Skąd go weźmiemy - to już nasza sprawa: może być to np. 
prostokąt okna naszego programu: 
 

RECT rcOkno; 
GetWindowRect (hWnd, &rcOkno); 
ClipCursor (&rcOkno); 

 
Uruchamiając powyższy kod sprawimy, iż użytkownik nie będzie w stanie „wyjechać” 
kursorem poza obręb okna aplikacji. Takie zachowanie ogranicza więc wygodę 
korzystania z aplikacji i systemu operacyjnego, zatem powinno być stosowane jedynie w 
uzasadnionych przypadkach. Zawsze też należy pamiętać o uwolnieniu kursora, gdy 
będzie to już możliwe: 
 

ClipCursor (NULL); 
 
Przekazanie NULL do funkcji ClipCursor() spowoduje rozciągnięcie rejonu dostępnego 
dla myszy na cały ekran. Będzie to więc powrót do stanu początkowego. 

Sprawdzanie przycisków myszy 

O wciśnięciu i zwolnieniu przycisków myszy informują nas zdarzenia WM_?BUTTONDOWN/UP. 
O aktualnym stanie tychże przycisków możemy też dowiedzieć się podczas przetwarzania 



 438 

któregokolwiek z klienckim komunikatów myszy - wystarczy odczytać wartość wParam125 
tego komunikatu i porównać ją z odpowiednią flagą bitową (jedną ze stałych MK_). 
 
Jako elastyczny system operacyjny Windows oferuje jednak także inne sposoby na 
pozyskanie bieżącej kondyncji przycisków myszy - czyli informacji o ich wciśnięciu. Służą 
do tego na przykład funkcje GetKeyState() i GetAsyncKeyState(). 

Kody wirtualne przycisków myszy 

Nazwy tych dwóch funkcji sugerują, że ich zasadniczym przeznaczeniem jest kontrola 
stanu klawiszy na klawiaturze. To faktycznie prawda, jednak w Windows API pod 
pojęciem ‘klawisz’ (ang. key) kryją się także przyciski właściwe innym urządzeniom 
wejściowym - na przykład myszce. Łącznie nazywa się je klawiszami wirtualnymi 
(ang. virtual-keys). 
Takie podejście może się wydawać dziwne, ale w praktyce jest bardzo wygodne. 
Każdemu „klawiszowi” (cokolwiek to słowo chwilowo znaczy…) przyporządkowany jest 
pewien kod (ang. virtual-key code), który go jednoznacznie identyfikuje za pomocą stałej 
o nazwie zaczynającej się przedrostkiem VK_. Nas oczywiście interesują teraz tylko te 
kody, za którymi kryją się przyciski myszy. Przedstawia je poniższa tabelka: 
 

stała wartość przycisk 
VK_LBUTTON 0x0001 lewy 
VK_RBUTTON 0x0002 prawy 
VK_MBUTTON 0x0004 środkowy 
VK_XBUTTON1 0x0005 pierwszy dodatkowy (X1) 
VK_XBUTTON2 0x0006 drugi dodatkowy (X2) 

Tabela 46. Kody wirtualne przycisków myszy 
(dwa ostatnie przyciski są dostępne tylko w Windows 2000/XP lub nowszych) 

 
Zerknijmy teraz na funkcje Get[Async]KeyState() i zobaczmy, jak mogą nam one 
pomóc w pozyskiwaniu stanu przycisków myszy. 

Kontrola stanu przycisków myszy 

Omawiane dwie funkcje są na tyle do siebie podobne, że możemy je rozpatrywać łącznie 
- również pod względem prototypów: 
 

SHORT Get[Async]KeyState(int nKey); 
 
Widzimy, że funkcje te żądają jednego parametru. Jest nim kod wirtualnego klawisza, 
który ma być sprawdzany; u nas będzie to rzecz jasna jedna z pięciu stałych właściwych 
przyciskom myszy. 
 
Co zaś otrzymujemy w zamian? Otóż dostajemy wartość 16-bitową, która łącznie niesie 
w sobie aż dwie dane. Poznamy je obie przy omawianiu obsługi klawiatury, a teraz 
skoncetrujemy się na ważniejszej z nich, zawartej w starszym bajcie słowa zwracanego 
przez Get[Async]KeyState(). 
Jak nietrudno zgadnąć, mam tu na myśli pożądaną przez cały czas informację o tym, czy 
dany przycisk myszy jest w aktualnej chwili wciśnięty, czy też nie. Sprawdzić można to w 
prosty sposób: należy ustalić, czy starszy bajt wyniku jest liczbą różną od zera. Jeśli 
tak, znaczy to, iż kontrolowany przycisk jest w danym momencie wciśnięty. 
 
Aby więc skontrolować stan lewego przycisku myszy, można użyć wywołania podobnego 
do poniższego: 

                                                 
125 W przypadku WM_MOUSEWHEEL jest to dolne słowo wParam, uzyskiwane poprzez GET_KEYSTATE_WPARAM(). 



 439

 
if (HIBYTE(Get[Async]KeyState(VK_LBUTTON)) /* != 0 */) 
{ 
 // lewy przycisk myszy jest aktualnie wciśnięty 
} 

 
Sprawa wygląda identycznie dla czterech pozostałych przycisków. 

Różnica mała, lecz ważna 

Wypadałoby teraz rozróżnić wreszcie funkcje GetKeyState() i GetAsyncKeyState(). 
Pełnego rozgraniczenia tych dwóch procedur dokonamy wtedy, gdy poznamy je 
całkowicie - stanie się to przy okazji poznawania zagadnień związanych z klawiaturą z 
WinAPI. Obecnie skupimy się na jednym niuansie, dotyczącym przycisków myszy. 
 
Chodzi o to, iż Windows oferuje pewne przydatne udogodnienie dla osób leworęcznych. 
Użytkownicy posługujący się odmienną kończyną niż pozostali chcą bowiem trzymać 
mysz raczej po lewej stronie biurka, w lewej dłoni. Wówczas pod palcem wskazującym 
znajdzie się nie lewy, lecz prawy przycisk myszy; analogicznie palec serdeczny spocznie 
na lewym przycisku myszy, który dla użytkownika-mańkuta wydaje się prawym. 
Nie jest to przy tym problemem, ponieważ Windows daje możliwość dostosowania się do 
tej sytuacji. Polega ona na zamianie zwyczajowego znaczenia lewego i prawego przycisku 
na wzajemnie odwrotne. Opcja taka może być ustawiona na przykład w systemowym 
Panelu Sterowania. 
 
Jak to jednak czesto bywa, ułatwienia dla użytkownika są utrudnieniami dla programisty. 
Fakt, że lewy przycisk myszy może w pewnych sytuacjach odpowiadać prawemu i 
odwrotne, wprowadza trochę zamieszania. Ale przecież nie z takimi rzeczami radziliśmy 
sobie wcześnie, prawda? :) 
Na początek dodajmy do naszego słownika dwa przydatne określenia: fizycznych i 
logicznych przycisków myszy. 
 
Fizyczne przyciski myszy (ang. physical mouse buttons) to przyciski umieszczone na 
urządzeniu wskazującym (zwykle myszy). 
 
Logiczne przyciski myszy (ang. logical mouse buttons) to systemowa interpretacja 
fizycznych przycisków myszy. 
 
Przyciski fizyczne są dosłownie namacalne - możemy ich dotknąć i je wciskać. Poza tym 
powinniśmy zwrócić uwagę na pozornie oczywisty fakt: fizyczne przyciski zawsze 
„pozostają sobą” - lewy przycisk jest zawsze lewym, a prawy prawym. 
Inaczej jest w przypadku przycisków logicznych. W większości przypadków będą one 
odpowiadały swym fizycznym braciom… z wyjątkiem jednego wyjątku :) Domyślasz się, 
że tą nietypową sytuacją jest włączona opcja zamiany przycisków. Wtedy też przyciski 
myszy są interpretowane „na opak”: 
 

 
Schemat 42. Mapowanie fizycznych przycisków myszy na logiczne 



 440 

 
No dobrze, ale jak ta sytuacja ma się do odbierania przez system Windows zdarzeń od 
myszy oraz do bezpośredniego pobierania jej stanu?… Otóż prawie zawsze liczą się tu 
wyłącznie logiczne przyciski myszy. 
 
Niemal wszystkie elementy Windows API przeznaczone do pracy z przyciskami myszy 
operują na logicznych przyciskach. 
 
Nieprzypadkowo zaznaczyłem to drobne słówko - ‘niemal’. Istnieje bowiem jedna funkcja, 
która odczytuje stan wyłącznie fizycznych przycisków myszy - jest nią 
GetAsyncKeyState(). 
 
GetKeyState() pobiera stan logicznych przycisków myszy. 
GetAsyncKeyState() pobiera stan fizycznych przycisków myszy. 
 
I to jest właśnie ta różnica, na którą chciałem zwrócić uwagę. Wynika z niej, że dwa 
poniższe wywołania mogą w istocie sprawdzać fizycznie odmienne przyciski: 
 

GetKeyState(VK_LBUTTON) 
GetAsyncKeyState(VK_LBUTTON) 

 
Zależy to od ustawienia systemowego, wprowadzanego w Panelu Sterowania. 
Programowo możemy je odczytać poprzez GetSystemMetrics(SM_SWAPBUTTON): 
 

// sprawdzenie stanu lewego przycisku i opcji zamiany przycisków... 
if (HIBYTE(GetAsyncKeyState(VK_LBUTTON)) 
  && GetSystemMetrics(SM_SWAPBUTTON)) 
{ 
 // fizycznie wciśnięto lewy przycisk, ale ze względu na ustawioną 
 // należy go zinterpretować jako prawy 
} 

 
Powyższy kod odpowiada z grubsza (bo nie do końca, o czym powiemy później) prostszej 
instrukcji z użyciem GetKeyState(): 
 

if (HIBYTE(GetKeyState(VK_LBUTTON))) 
{ 
 // wciśnięto logicznie lewy przycisk 
} 

 
Jest ona także bardziej przejrzysta, lecz aby ją właściwie stosować, trzeba dowiedzieć się 
nieco więcej o kwestiach różniących funkcje GetKeyState() i GetAsyncKeyState() w 
odniesieniu do wszystkich klawiszy wirtualnych. Uczynimy to w podrozdziale na temat 
klawiatury w Windows. 
O pobieraniu ustawień myszy, takich jak przytoczona tu zamiana przycisków, powiemy 
sobie natomiast w jednym z najbliższych paragrafów. 

Symulowanie zdarzeń myszy 

Normalnie zadaniem programu okienkowego jest reakcja na czynności wykonywane 
przez użytkownika. Wiążę się to z odbieraniem i obsługą komunikatów systemowych. 
Komunikaty te generuje pośrednio osoba korzystająca z aplikacji; czyni to za pomocą 
urządzeń wejściowych. 
 
Także sam program może postawić się w tej roli i symulować występowanie 
odpowiednich zdarzeń. Najprostszym sposobem zdawałoby się bezpośrednie wysyłanie 
komunikatów o zdarzeniach poprzez funkcję SendMessage() lub PostMessage(). 



 441

Jednakże tą drogą będziemy emulować jedynie skutek, a nie przyczynę występowania 
pewnych zdarzeń. Jest to tylko udawanie systemowej interpretacji danych od 
urządzeń, nie zaś danych jako takich. Nie bez znaczenia jest też fakt, że z wysyłanym 
komunikatem łączy się wiele pobocznych aspektów, którymi zwykle się nie zajmujemy, 
lecz które mogą okazać się ważne (np. kwestia wątków). Wreszcie, komunikaty muszą 
być skierowane do konkretnego okna, mającego je otrzymać, a przecież wiemy, że 
Windows zwykł sam o tym decydować (przykładem jest kliknięcie myszką: w zależności 
od pozycji kursora komunikat o tym zdarzeniu mogą dostać zupełnie różne okna). 
 
Samodzielne produkowanie zdarzeń nie jest więc dobrym rozwiązaniem. Byłoby lepiej, 
gdyby to system oferował jakiś własny sposób „udawania” sygnałów od myszki czy 
klawiatury. I tak się przypadkowo składa, iż podobny mechanizm faktycznie istnieje :D 
Poznamy go teraz, zajmując się programowym symulowaniem myszki. 

Funkcja SendInput() 

W starszych wersjach Windows do generowania zdarzeń myszy służyła funkcja 
mouse_event(). Począwszy od Windows 98 zalecane jest jednak użycie innej funkcji126 - 
SendInput(): 
 

UINT SendInput(UINT nInputs, 
 LPINPUT pInputs, 
 int cbSize); 

 
Nie wygląda ona na zbyt złożoną, przyjrzyjmy się więc jej parametrom: 
 

typy parametry opis 

UINT 
LPINPUT 

nInputs 
pInputs 

Te dwa argumenty określają tablicę struktur typu INPUT, która 
zostanie przekazana do funkcji. nInputs zawiera liczbę 

elementów tej tablicy, zaś pInputs - wskaźnik do niej. Każdy 
element jest natomiast oddzielną strukturą, opisującą jedno 

symulowane zdarzenie myszy lub klawiatury. 

int cbSize Musimy podać tutaj rozmiar typu INPUT w bajtach, czyli po 
prostu sizeof(INPUT). 

Tabela 47. Parametry funkcji SendInput() 

 
Widać, że funkcja ta potrafi wygenerować naraz więcej niż jedno zdarzenie od urządzenia 
wejściowego, ponieważ pobiera ona tablicę struktur INPUT. Następnie przetwarza ją 
element po element, zwracając w wyniku liczbę poprawnie zasymulowanych zdarzeń. 

Struktura INPUT 

Punkt ciężkości zagadnienia przesuwa się nam z funkcji SendInput() na strukturę INPUT. 
Spójrzmy zatem na definicję tego typu: 
 

struct INPUT 
{ 
 DWORD type; 
 
 union 
 { 
  MOUSEINPUT mi; 
  KEYBDINPUT ki; 
  HARDWAREINPUT hi; 

                                                 
126 Funkcja ta zastępuje również keybd_event(), służącą do symulowania klawiatury. Jak to robi - o tym 
napiszę w następnym podrozdziale. 



 442 

 }; 
}; 

 
Różni się on zdecydowanie od większości typów strukturalnych, z jakimi mieliśmy dotąd 
do czynienia. Względną nowością jest bowiem anonimowa unia (ang. anonymous 
union), zamykająca trzy pola struktury. Jeżeli pamiętamy, jak funkcjonują unie, to 
wiemy, iż taka deklaracja powoduje następujący efekt: tylko jedno z pól - mi, ki lub hi 
- może być wykorzystane do zapisywania sensownych informacji. Jest to najlogiczniejsza 
realizacja założenia, aby jedna struktura INPUT opisywała tylko jedno zdarzenie - myszki, 
klawiatury czy też specjalnego „rodzaju sprzętowego”. 
Niemniej jednak system operacyjny (zredukowany chwilowo do funkcji SendInput()) 
musi wiedzieć, jakiego typu symulowane zdarzenie chcemy wygenerować. Informujemy o 
tym w jedynym „pozaunijnym” polu struktury INPUT - type. W tym celu może ono 
przyjmować jedną z następujących wartości, odpowiadających poszczególnym polom 
unii: 
 

stała znaczenie pole unii 
INPUT_MOUSE symulowane wejście od myszy mi 

INPUT_KEYBOARD symulowane zdarzenie klawiatury ki 
INPUT_HARDWARE symulacja innego urządzenia (tylko Windows 9x/Me) hi 

Tabela 48. Stałe pola type struktury INPUT 

 
Trzecia z nich jest już mocno przestarzała i dlatego nie należy jej używać. Druga nie 
interesuje nas w tej chwili, gdyż obecnie nie zajmujemy się klawiaturą. Wybieramy zatem 
bramkę numer 1 - INPUT_MOUSE :) 

Struktura MOUSEINPUT 

Jako że chcemy symulować akcje myszy, powinniśmy użyć pola mi (oraz wartości 
INPUT_MOUSE w polu type). Pole mi jest, jak możnaby przypuszczać, również strukturą. 
Tym razem typem tej struktury jest MOUSEINPUT, a opisuje ona wszystkie szczegóły 
naszego wymuszonego zdarzenia myszy: 
 

struct MOUSEINPUT 
{ 
 LONG dx; 
 LONG dy; 
 DWORD mouseData; 
 DWORD dwFlags; 
 DWORD time; 
 ULONG_PTR dwExtraInfo; 
}; 

 
Całkiem ich sporo, więc nie od rzeczy będzie ujęcie opisów powyższych pól w zgrabnej 
tabelce: 
 

typ pola opis 

LONG dx 
dy 

Wpisujemy tutaj współrzędne opisujące ruch kursora myszy 
(jeżeli mamy zamiar nim poruszać). Współrzędne te mogą 

być podane w liczbach bezwzględnych - są wówczas 
liczone w odniesieniu do lewego górnego rogu ekranu; są to 
więc koordynaty ekranowe. Alternatywnie możliwe jest 

podanie współrzędnych względnych, będących raczej 
określeniem przesunięcia kursora; system operacyjny doda 

je wtedy do aktualnej pozycji strzałki, otrzymując w ten 
sposób jej nowe położenie. 

 



 443

typ pola opis 
O tym, jakiego rodzaju współrzędne podajemy w polach dx i 
dy informuje obecność lub brak flagi MOUSEEVENTF_ABSOLUTE 

w polu dwFlags. 

DWORD mouseData 

W tym polu podajemy dodatkowe dane na temat zdarzenia 
myszy. Mogą one przyjąć jedną z dwóch postaci, zależnie od 

rodzaju zdarzenia: 
 w przypadku symulowanej zmiany położenia rolki 

myszy pole mouseData zawiera wartość jej obrotu, 
czyli deltę. Jest to taka sama wartość, jaką 

otrzymujemy w górnym słowie parametru wParam przy 
przetwarzaniu komunikatu WM_MOUSEWHEEL 

 gdy mamy na celu emulowanie wciśnięcia jednego z 
dwóch dodatkowych przypcisków myszy - 

oznaczonych X1 i X2, a nazywanych wspólnie 
przyciskami X - pole mouseData powinno zawierać 

wskazanie jednego z tych przycisków: 
 stała XBUTTON1 wskazuje na przycisk X1 

 stała XBUTTON2 odpowiada przyciskowi X2 

DWORD dwFlags 

Tutaj dostarczamy kombinację flag bitowych, 
określających m.in. rodzaj zdarzenia myszy (przesunięcie, 

kliknięcie, itd.), jakie chcemy zasymulować. Dopuszczalnych 
flag jest całkiem sporo, więc ujmie je za chwile kolejna 

tabelka :D 

DWORD time 

Pole time określa moment zaistnienia zdarzenia. Ma on 
być wyrażony w spotkanej już przez nas formie liczby 

milisekund od startu systemu. Czas w takiej postaci można 
uzyskać poprzez GetTickCount() i umieścić w tym polu; 

można też zostawić w nim zero, wtedy system sam zapisze 
tutaj chwilę generacji zdarzenia. 

ULONG_PTR dwExtraInfo 

To pole może przechowywać jakieś pomocnicze dane dla 
odbiorcy zdarzenia. Zwykle nie ma potrzeby przekazywania 
żadnych takich danych, zatem wpisujemy tu najczęściej zero. 

 
Owe dodatkowe dane można uzyskać podczas przetwarzania 

komuniaktów o zdarzeniach - wystarczy wywołać funkcję 
GetMessageExtraInfo(). 

Tabela 49. Pola struktury MOUSEINPUT 

 
O rodzaju symulowanego zdarzenia, oraz o kilku innych kwestiach, informujemy funkcję 
SendInput() za pośrednictwem pola dwFlags. Jest to kombinacja jednej lub kilku flag 
bitowych spośród poniższych: 
 

flaga znaczenie 
MOUSEEVENTF_MOVE ruch myszą 

MOUSEEVENTF_LEFTDOWN wciśnięcie lewego przycisku myszy 
MOUSEEVENTF_LEFTUP zwolnienie lewego przycisku myszy 

MOUSEEVENTF_MIDDLEDOWN wciśnięcie środkowego przycisku myszy 
MOUSEEVENTF_MIDDLEUP zwolnienie środkowego przycisku myszy 
MOUSEEVENTF_RIGHTDOWN wciśnięcie prawego przycisku myszy 
MOUSEEVENTF_RIGHTUP zwolnienie prawego przycisku myszy 
MOUSEEVENTF_XDOWN wciśnięcie jednego z dodatkowych przycisków myszy 
MOUSEEVENTF_XUP zwolnienie jednego z dodatkowych przycisków myszy 
MOUSEEVENTF_WHEEL obrót rolką myszy 



 444 

flaga znaczenie 

MOUSEEVENTF_ABSOLUTE 

Obecność tej flagi sprawia, że pola dx oraz dy będą 
traktowane jako docelowe, bezwzględne współrzedne 
ekranowe kursora. Funkcja SendInput() ustawi więc 
strzałkę myszy w pozycji wyznaczonej przez te pola 

Jeżeli zaś flaga nie bdzie obecna w polu dwFlags, wtedy dx i 
dy zostaną potraktowane jako określenie przesunięcia 
kursora, czyli dystansu poziomowego i pionowego, który 

zostanie dodany do aktualnego położenia kursora po to, aby 
otrzymać nowe. 

 
Rzeczywiste przesunięcie kursora może się nieco różnić od 

wartości podanych w dx i dy, gdyż system operacyjny 
bierze jeszcze pod uwagę kilka innych czynników, jak np. 

aktualną prędkość ruchu myszki. 
Jeśli interesują cię szczegóły, zajrzyj do opisu struktury 

MOUSEINPUT w MSDN. 

MOUSEEVENTF_VIRTUALDESK 

Flaga ta działa tylko w połączeniu z 
MOUSEEVENTF_ABSOLUTE. Jej ustawienie powoduje, że 
absolutne koordynaty kursora podane w dx i dy są 

traktowane w odniesieniu do całego pulpitu, a nie do ekranu 
bieżącego monitora. Ma to znaczenie wyłącznie w 

systemach wielomonitorowych. 

Tabela 50. Flagi bitowe pola dwFlags struktury MOUSEINPUT 

 
Ze względu na fakt, iż dwFlags jest kombinacją bitową, możliwe jest ustawienie więcej 
niż jednej flagi naraz. Tym samym można zasymulować kilka zdarzeń myszy za pomocą 
jednej struktury [MOUSE]INPUT. Niedozwolone jest jedynie połączenie 
MOUSEEVENTF_XDOWN/UP z MOUSEEVENTF_WHEEL; powody są czysto techniczne: oba 
zdarzenia korzystają bowiem z pola mouseData, ale każde na swój własny sposób i nie 
potrafią się tym polem podzielić. 

Stosowalność praktyczna 

Uff, sporo tej teorii, w dodatku nie jest ona wcale taka prosta. Najlepiej więc zająć się 
konkretnymi przypadkami: wtedy wszystko stanie się jasne, a przy okazji zdobędziesz 
praktyczne umiejętności generowania zdarzeń myszy. 
A zatem spójrzmy na sposoby sztucznego wywoływania każdego z możliwych zdarzeń 
myszy. 
 
Stosunkowo najprościej wytworzyć „oszukane” przyciśnięcia lub zwolnienia trzech 
przycisków myszy. Ignorujemy wówczas prawie wszystkie pola struktury MOUSEINPUT - 
wszystkie z wyjątkiem dwFlags, w którym ustawiamy tylko jedną jedyną flagę: którąś z 
MOUSEEVENTF_*UP/DOWN. 
Zobaczmy przykładowy kod, generujący programowo wciśnięcie lewego przycisku myszy: 
 

// struktura INPUT, przechowująca nasze zdarzenie 
INPUT Klik; 
ZeroMemory (&Klik, sizeof(INPUT)); // zerujemy ją 
 
// ustawiamy odpowiednie parametry 
Klik.type = INPUT_MOUSE; // informujemy o tym, że zajmujemy się myszą 
Klik.mi.dwFlags = MOUSEEVENTF_LEFTDOWN; // lewy przycisk "w dół" 



 445

SendInput (1, &Klik, sizeof(INPUT));  // generujemy zdarzenie127 
 
Nieco bardziej skomplikowane jest zasymulowanie kliknięcia jednym z dwóch 
dodatkowych przycisków - wymaga to wykorzystania jeszcze pola mouseData: 
 

Klik.mi.mouseData = XBUTTON1;  // przycisk X1 
Klik.mi.dwFlags = MOUSEEVENTF_XDOWN; // dodatkowy przycisk "w dół" 
SendInput (1, &Klik, sizeof(INPUT)); // i jazda :D 

 
Analogicznie jak w dwóch powyższych kodach możemy również emulować zwolnienie 
wciśniętych przycisków, zamieniając flagi *DOWN na *UP. 
 
Następnym interesującym wydarzeniem jest ruch myszy. Jak można wnioskować z opisu 
struktury MOUSEINPUT, może on odbywać się na dwa sposoby. Pierwszym jest 
natychmiastowa teleportacja kursora w określony rejon ekranu: 
 

INPUT Ruch; 
ZeroMemory (&Ruch, sizeof(INPUT)); 
 
// ustawiamy kursor w środku ekranu 
Ruch.type = INPUT_MOUSE; 
Ruch.mi.dx = GetSystemMetrics(SM_CXSCREEN) / 2; // współ. pozioma 
Ruch.mi.dy = GetSystemMetrics(SM_CYSCREEN) / 2; // współ. pionowa 
Ruch.mi.dwFlags = MOUSEEVENTF_MOVE | MOUSEEVENTF_ABSOLUTE; // flagi 
SendInput (1, &Ruch, sizeof(INPUT)); 

 
Można zapytać, czym różni się powyższy kod od wywołania SetCursorPos() (pomijając 
większą jego długość)?… Odmienność tych dwóch dróg osiągnięcia celu jest żadna - obie 
powodują dokładnie to samo. Zdaje się, że możliwość bezwględnej zmiany położenia 
kursora za pomocą SendInput() została raczej gwoli kompletności w symulowaniu myszy 
- świadczy o tym choćby fakt, iż działanie to wymaga podania dodatkowej flagi. Jedynie 
dołączenie MOUSEEVENTF_VIRTUALDESK sprawia wyraźną różnicę, która jednak jest 
widoczna tylko w systemach z kilkoma monitorami128. 
Inaczej jest w przypadku relatywnego przesuwania kursora, gdy SendInput() jest 
całkowicie niezastąpiona (chyba że przez przestarzałą mouse_event()). 
 
Przesunięcie kursora może też odbywać się w odniesieniu do jego bieżącej pozycji. Jak 
już kilkakrotnie wspominałem, wartości pól MOUSEINPUT::dx i MOUSEINPUT::dy zostaną 
wtedy zwyczajnie dodane do aktualnych współrzędnych myszy. 
Takie działanie jest w zasadzie domyślne, gdyż nie wymaga podania żadnej dodatkowej 
flagi (naturalnie poza niezbędną MOUSEEVENTF_MOVE, określającą rodzaj symulowanego 
zdarzenia myszy): 
 

Ruch.mi.dwFlags = MOUSEEVENTF_MOVE; // bez MOUSEEVENTF_ABSOLUTE 
 
Ponieważ użycie SendInput() jest jedynym sposobem na relatywne przesunięcie 
kursora, zaś przemieszczenie bezwględne ma swój odpowiednik w funkcji 
SetCursorPos(), flaga MOUSEEVENTF_ABSOLUTE jest używana raczej rzadko. 
SetCursorPos() jest zwyczajnie prostszą drogą osiągnięcia tego samego celu, czyli 
ustawienia kursora w ściśle określonym miejscu ekranu. 

                                                 
127 Korzystamy tu z operatora pobrania adresu, ponieważ mamy pojedynczą zmienną (strukturę), a nie tablicę. 
Klik możnaby aczkolwiek zadeklarować jako INPUT Klik[1];, lecz wtedy musielibyśmy odwoływać się do jego 
pól poprzez poprzez Klik[0].. Poza tym tablica składająca się z jednego elementu to raczej dziwny twór, 
nieprawdaż? :) (podobne uwagi mogą dotyczyć także każdego z następnych kodów w tym akapicie) 
128 SetCursorPos() potrafi przesuwać kursor tylko w obrębie aktualnego monitora, zaś SendInput() ze 
wspomnianą flagą może działać na całym pulpicie, rozciągniętym nawet na kilka monitorów. 



 446 

 
Ostatnią akcją związaną z myszą jest obrót jej rolki. Emulowanie tego zjawiska nie należy 
do trudnych zadań: wiemy, że wartość żądanego obrotu, wyrażoną jako 
(pod)wielokrotność WHEEL_DELTA, należy wpisać w polu MOUSEINPUT::mouseData. Oprócz 
tego należy jeszcze podać odpowiednią flagę; w całości wygląda to mniej więcej tak: 
 

INPUT Obrot; 
ZeroMemory (&Obrot, sizeof(INPUT)); 
 
// obrót rolki o jeden krok w przód ("od użytkownika") 
Obrot.type = INPUT_MOUSE; 
Obrot.mi.mouseData = WHEEL_DELTA; // wartość obrotu rolki 
Obrot.mi.dwFlags = MOUSEEVENTF_WHEEL; // akcja == obrót rolką 
SendInput (1, &Obrot, sizeof(INPUT)); // działamy 

 
Pamiętajmy, że symulowanie obrotu rolką myszy jest możliwe, tylko wtedy, gdy 
zainstalowana w komputerze mysz faktycznie taką rolkę posiada. O sprawdzaniu tej i 
innych cech myszy powiemy sobie w następnej sekcji. 

Możliwości i ustawienia myszy 

Jeszcze nie tak dawno temu niezwykle popularne wśród użytkowników komputerów były 
myszy zaledwie dwuprzyciskowe. Szybko dorobiły się jednak kolejnego przycisku, a 
nawet większej ich liczby; potem zyskały też obrotowe rolki, czasem nawet w liczbie 
większej niż jedna. Dzisiaj na komputerowym rynku i podkładkach użytkowników istnieje 
całe mnóstwo modeli urządzeń wskazujących, różniących się swoimi możliwościami. 
Co więcej, na potencjał tych urządzeń można w dużym stopniu wpływać programowo, za 
pośrednictwem różnorodnych opcji, jakie oferuje Windows. Będąc całkiem elastycznym 
systemem operacyjnym, pozwala on na dostrojenie bardzo wielu ustawień z rejonu 
myszy i okolic. 
Opcje te są ustawiane przede wszystkim przez użytkownika w Panelu Sterowania. Nie 
znaczy to jednak, że aplikacje działające pdo kontrolą systemu nie mają do nich dostępu. 
Przeciwnie, mogą one nie tylko odczytywać stan tychże opcji, ale też samodzielnie je 
zmieniać. W tym celu twórcy programów muszą oczywiście skorzystać z odpowiednich 
funkcji Windows API - tych, które teraz poznamy. 
 
Są nimi głównie dwa wywołania: znane ci już skądinąd GetSystemMetrics() oraz nowe 
SystemParametersInfo(). 
Przypomnijmy prototyp pierwszej z tych funkcji: 
 

int GetSystemMetrics(int nIndex); 
 
Być może pamiętasz, że w jej parametrze podajemy jedną ze stałych SM_* 
(oznaczających globalne ustawienia systemowe), a w zamian otrzymujemy wartość 
przyporządkowanej jej opcji. Jeśli nie, to właśnie sobie o tym przypomniałeś :D 
Druga z ważnych dla nas funkcji to SystemParametersInfo(): 
 

BOOL SystemParametersInfo(UINT uiAction, 
 UINT uiParam, 
 PVOID pvParam, 
 UINT fWinIni); 

 
Ma ona nieco więcej parametrów, gdyż służy nie tylko do pobierania, ale też do zmiany 
opcji systemowych. Niniejsza tabelka opisuje te parametry: 
 
typy parametry opis 
UINT uiAction Tu podajemy stałą identyfikującą opcję, której ustawienie chcemy 



 447

typy parametry opis 
pozyskać lub zmodyfikować. Każdej takiej opcji odpowiada stała o 
nazwie z przedrostkiem SPI_, a ich liczba oscyluje wokół setki. Nie 
będziemy oczywiście omawiać ich wszystkich; w tym podrozdziale 

zajmiemy się tylko tymi, które dotyczą myszy. 
UINT 
PVOID 

uiParam 
pvParam 

Są to dwa parametry specyficznego przeznaczenia, których 
użycie zależy od wartości uiAction. 

UINT fWinIni 
Ten parametr określa sposób powiadomienia działających 

programów o zainstniałej zmianie ustawienia systemowego. Zwykle 
nie przejmujemy się tym parametrem i wpisujemy doń zero. 

Tabela 51. Parametry funkcji SystemParametersInfo() 

 
Warto zajrzeć do opisu SystemParametersInfo() w MSDN. Jest w nim zawarta m.in. 
pełna lista wartości, jakie może przyjmować parametr uiAction. 
 
W dalszej części tej sekcji zajmiemy się niektórymi z wyliczeniowych stałych, jakie można 
przekazać do funkcji GetSystemMetrics() i SystemParametersInfo(), a także poznamy 
kilka innych, bardziej specyficznych funkcji. Rzecz jasna, wszystkie te elementy Windows 
API będą dotyczyły wyłącznie ustawień myszy. 

Rekonesans możliwości myszy 

Najsampierw chcielibyśmy wiedzieć, z jak potężnym urządzeniem mamy do czynienia. 
Innymi słowy, zrobimy teraz szybki wgląd w arsenał funkcji, w które została wyposażona 
mysz. 

Czy jest na pokładzie…? 

Mało kto zdaje sobie sprawę, że myszka nie jest niezbędnym elementem zestawu 
komputerowego, pracującego pod kontrolą systemu Windows. Nasz okienkowy OS radzi 
sobie całkiem dobrze, mając do dyspozycji wyłącznie klawiaturę. Tego samego nie można 
zwykle powiedzieć o użytkowniku pozbawionym myszy, co jednak nie znaczy, że takich 
użytkowników już nie ma. Zobaczmy zatem, jak sprawdzić obecność myszy w 
komputerze. 
 
Na szczęście jest to bardzo proste i ogranicza się do wywołania funkcji 
GetSystemMetrics() z parametrem SM_MOUSEPRESENT: 
 

BOOL bMyszkaObecna = GetSystemMetrics(SM_MOUSEPRESENT); 
 
W wyniku otrzymujemy wartość TRUE lub FALSE o oczywistym znaczeniu; możemy ją 
wykorzystać chociażby tak: 
 

if (!bMyszkaObecna) 
{ 
 MessageBox (NULL, "Ten program nie może działać bez myszki!", 
 "Brak myszy", MB_OK | MB_ICONSTOP) 
 PostQuitMessage (0); 
} 

 
Niemniej pamiętajmy, że pomimo powszechności występowania myszek w komputerach 
użytkowników, dobry program powinien zapewniać również wygodne wsparcie dla 
klawiatury. 



 448 

Liczba przycisków 

Poszczególne modele myszek różnią się między innymi liczbą dostępnych przycisków. 
Dzisiejsze minimum zakłada przynajmniej trzy przyciski: lewy, środkowy i prawy, ale 
rzeczywista ich ilość może być większa lub mniejsza. 
 
Liczbę przycisków myszy też pobieramy za pomocą GetSystemMetrics(), lecz tym 
razem parametrem jest SM_CMOUSEBUTTONS: 
 

UINT uPrzyciskiMyszy = GetSystemMetrics(SM_CMOUSEBUTTONS); 
 
W wyniku otrzymujemy naturalnie liczbę całkowitą, określającą ilość dostępnych 
przycisków myszy - lub zero, jeśli mysz nie jest obecna w systemie. 

Wykrywanie rolki 

Prawie niezbędnym elementem myszy stała się rolka, służąca do przewijania długich 
dokumentów, a okazjonalnie pełniąca honory środkowego przycisku. 
 
Posiadanie przez myszkę rolki możemy ustalić za pomocą… funkcji GetSystemMetrics() 
oczywiście :) Tym razem jej parametrem musi być SM_MOUSEWHEELPRESENT: 
 

BOOL bRolkaObecna = GetSystemMetrics(SM_MOUSEWHEELPRESENT); 
 
Trzeba tu przypomnieć, że brak lub obecność kółka myszy determinuje nie tylko 
oczywiste tego następstwa, ale też możliwość programowej symulacji obrotu rolki 
poprzez funkcje SendInput() czy mouse_event(). Nie można bowiem udawać działania 
czegoś, czego tak naprawdę nie ma. 

Ustawienia podwójnego kliknięcia 

Mechanizm podwójnego kliknięcia wprowadzono do Windows głównie po to, aby skrócić 
czas wykonywania najczęstszych operacji. Przykładem niech będzie zarządzanie plikami 
w Eksploratorze Windows: pojedyncze kliknięcie powoduje zaznaczenie pliku, co pozwala 
na wykonanie na jego rzecz pewnych poleceń, dostepnych na pasku menu programu. 
Bardzo często takim poleceniem będzie otwarcie pliku, więc wymyślono dla niego 
łatwiejszy sposób wywoływania - podwójne kliknięcie. Nie wymaga ona długiej wędrówki 
kursorem do paska menu, a jedynie dwóch szybkich wciśnięc lewego przycisku. 
 
Chociaż podwójne kliknięcie jest z pewnością wygodne, początkującym użytkownikom, 
nieobytym z myszą, może ono sprawiać problemy. Dlatego też system Windows 
umożliwia dostrojenie parametrów dwukrotnego kliknięcia tak, aby odpowiadały ony 
indywidualnym preferencjom. 
W tym paragrafie zobaczymy, w jaki sposób nasze programy mogą pobierać i ustawiać 
opcje podwójnego kliknięcia. 

Interwał czasu pomiędzy kliknięciami 

Aby system mógł zinterpretować wciśnięcia przycisku myszy jako dwukrotne kliknięcie, 
muszą one zaistnieć odpowiednio szybko. Jeżeli drugie kliknięcie będzie spóźnione, 
wówczas Windows zarejestruje dwa pojedyncze przyciśnięcia, a nie jedno podwójne. 
Ważne jest więc właściwe dopasowanie ustawienia systemowego, regulującego 
maksymalny interwał czasu pomiędzy dwoma kliknięciami, które będą 
rejestrowane jako jedno podwójne. 
 
Rzeczona opcja znajduje się w aplecie Właściwości: Mysz Panelu Sterowania: 
 



 449

 
Screen 62. Ustawianie szybkości dwukrotnego kliknięcia 

(podziękowania dla gemGrega za wykonanie tego screena) 

 
Naturalnie, możliwa jest także jej programowa kontrola za pomocą funkcji Windows API. 
Zauważ, że choć użytkownik może mówić o szybkości dwukrotnego kliknięcia, to my, 
programiści, będziemy zajmowali się czasem pomiędzy oboma kliknięciami. Nietrudno 
domyślić się, że obie te wielkości są do siebie odwrotnie proporcjonalne, tj. większa 
szybkość oznacza mniejszy interwał czasu. 
Zobaczmy teraz, jak można pobrać i ustawić tę wielkość systemową. 
 
A więc: w celu pobrania aktualnego interwału czasu dwukrotnego kliknięcia (ang. double-
click time) należy posłużyć się specjalną funkcją GetDoubleClickTime(): 
 

UINT uCzasDwukliku = GetDoubleClickTime(); 
 
Wywołanie jej jest banalnie proste, bo nie potrzebuje żadnych dodatkowych parametrów. 
W wyniku dostajemy żądany interwał czasu w milisekundach (tysięcznych częściach 
sekundy). 
 
Ustawienie czasu dwukrotnego kliknięcia jest natomiast możliwe aż na dwa sposoby: 

 poprzez wywołanie specjalnej funkcji SetDoubleClickTime(). Podajemy jej nowy 
interwał czasu, oczywiście w milisekundach: 

 
SetDoubleClickTime (250); 

 
 za pomocą funkcji SystemParametersInfo(); należy wtedy w jej pierwszym 

parametrze podać stałą SPI_SETDOUBLECLICKTIME, zaś w drugim nową wartość 
ustawienia (trzeci i czwarty parametr wypełniamy zerami): 

 
SystemParametersInfo (SPI_SETDOUBLECLICKTIME, 250, NULL, 0); 

 
Z uwagi na fakt, że pierwsza metoda jest znacznie łatwiejsza, nie obrażę się, 
jeżeli całkiem zapomnisz o drugiej :) 

 
Powiedzmy jeszcze, że w obu przypadkach możemy jako interwał podać zero… Nie, nie 
spowoduje to wyłączenia dwukrotnego kliknięcia. W takiej sytuacji Windows przyjmie po 
prostu wartość domyślną dla tego ustawienia, czyli 500 milisekund (pół sekundy). 

Dopuszczalne przesunięcie kursora 

Zmieszczenie się w wąskim przedziale czasu nie jest jedynym wymogiem, jakie stawia 
system wobec dwukrotnego kliknięcia. Drugim (i na szczęście ostatnim) jest 
nieruchomość myszy podczas dokonywania operacji. 
Nie znaczy to aczkolwiek, że kursor między jednym a drugim przyciśnięciem nie może się 
przesunąć nawet o piksel. Toleracja w tym względzie jest nieco większa, a co więcej - 
można ją również ustawić. 
 
Użytkownik może tego dokonać przy pomocy narzędzia Tweak UI, ustalając wartość na 
zakładce Mouse: 
 



 450 

 
Screen 63. Dostrajanie tolerancji przesunięcia myszy podczas dwukrotnego kliknięcia (opcja 

Double-click; druga z opcji, Drag, określa najmniejsze przemieszczenie, które inicjuje operację 
przeciągania - o tej wartości nie będziemy tutaj mówić) 

(program Tweak UI możesz ściągnąć ze strony Microsoftu) 

 
Podobnie jak to było w przypadku szybkości dwukrotnego kliknięcia, dla programistów 
obowiązuje nieco inna miara opisywanej opcji. Tweak UI stosuje odległość pomiędzy 
miejscami kolejnych kliknięć, zaś Windows API posługuje się okalającym je 
prostokątem. System wymaga, aby oba kliknięcia zawierały się w tym prostokącie (o 
domyślnych wymiarach kilku pikseli), gdyż w przeciwnym razie nie zostaną potraktowane 
jako dwukrotne: 
 

 
Schemat 43. Prostokąt dwukrotnego kliknięcia 

 
Na tym schemacie nieprzypadkowo opatrzyłem wymiary prostokąta (x i y) nazwami 
SM_CXDOUBLECLK i SM_CYDOUBLECLK. Są to bowiem nazwy stałych, jakie należy przekazać 
do funkcji GetSystemMetrics() celem pobrania wymiarów prostokąta dwukrotnego 
kliknięcia: 
 

SIZE cProstokatDwukliku; 
cProstokatDwukliku.cx = GetSystemMetrics(SM_CXDOUBLECLK); 
cProstokatDwukliku.cy = GetSystemMetrics(SM_CYDOUBLECLK); 

 
SIZE to predefiniowany typ strukturalny z WinAPI, który zawiera dwa pola typu LONG - cx 
i cy, przeznaczone do przechowywania wymiarów (szerokości i wysokości) wszelkiego 
rodzaju obiektów. 
 
Możliwe jest też ustawienie tych wartości przy pomocy funkcji SystemParametersInfo() 
oraz stałych SPI_SETDOUBLECLKWIDTH/HEIGHT: 
 

SystemParametersInfo (SPI_SETDOUBLECLKWIDTH, 1, NULL, 0); 
SystemParametersInfo (SPI_SETDOUBLECLKHEIGHT, 1, NULL, 0); 

 

http://download.microsoft.com/download/f/c/a/fca6767b-9ed9-45a6-b352-839afb2a2679/TweakUiPowertoySetup.exe
http://www.microsoft.com/windowsxp/pro/downloads/powertoys.asp


 451

Wykonanie powyższego kodu ustawi prostokąt dwukliku na rozmiar 1×1 piksela, zatem 
Windows nie będzie teraz tolerował żadnego przesunięcia myszy w czasie dwukrotnego 
kliknięcia. 

Ułatwienia dostępu 

Teraz poznamy takie opcje myszy, które ułatwiają korzystanie z komputera także 
osobom z upośledzoną sprawnością ruchową i niepełnosprawnym. Co ciekawe, niektóre z 
tych opcji są na tyle przydatne, że bywają pomocne również dla w pełni sprawnych 
użytkowników. 

Zamiana przycisków myszy 

Leworęczni użytkownicy Windows chcieliby trzymać mysz w w lewej ręce, po lewej 
stronie monitora. Aby w takim ustawieniu swobodnie z niej korzystać, należy zamienić 
miejscami (ang. button swap) funkcjonalność lewego i prawego przycisku myszy. Można 
to uczynić w Panelu Sterowania. 
 
Program działający w Windows może pobrać stan ten opcji za pomocą funkcji 
GetSystemMetrics() z parametrem SM_SWAPBUTTON: 
 

BOOL bZamienionePryciski = GetSystemMetrics(SM_SWAPBUTTON); 
 
Pamiętamy, że ustawienie tej opcji ma znaczenie w momencie, gdy sprawdzamy 
wciśnięcie lewego (VK_LBUTTON) lub prawego (VK_RBUTTON) przycisku myszy za pomocą 
funkcji GetAsyncKeyState(). Należy wtedy uwzględnić tłumaczenie fizycznych 
przycisków myszy na logiczne, jak to było mówione w odpowiednim paragrafie 
poprzedniej sekcji. 
 
Zmiana opisywanej opcji jest natomiast możliwa dwiema drogami: 

 poprzez dedykowaną funkcję SwapMouseButton(). Należy jej podać wartość 
logiczną, określającą włączenie (TRUE) lub wyłączenie (FALSE) opcji: 

 
SwapMouseButton (FALSE); // domyślne znaczenie przycisków 

 
Funkcja ta zwraca w wyniku poprzednie ustawienie 

 przy pomocy wywołania SystemParametersInfo() ze stałą 
SPI_SETMOUSEBUTTONSWAP oraz z nowym stanem opcji w parametrze uiParam: 

 
SystemParameters (SPI_SETMOUSEBUTTONSWAP, FALSE, NULL, 0); 

 
Podobnie jak w przypadku czasu dwukrotnego kliknięcia, specjalnie wydelegowana 
funkcja jest znacznie protsza w użyciu niż uniwersalne SystemParametersInfo(). 

 
Uważajmy, gdyż tak poczyniona zmiana jest znacząca i dotyczy natychmiast całego 
systemu, zatem należy ją stosować tylko w uzasadnionych okolicznościach. 

Ślad kursora 

Na niektórych monitorach (szczególnie starszych ciekłokrystalicznych, w laptopach) obraz 
jest na tyle niewyraźny, że dostrzeżenie ruchu jest często trudne. Również wady wzroku 
(spowodowane np. długim siedzeniem przed komputerem :D) mogą to utrudniać. W 
takiej sytuacji można włączyć ciekawą nomen omen opcję śladu kursora (ang. cursor 
trails), podążającego za ruchomą strzałką myszy. 
 



 452 

 
Screen 64. Włączenia śladu kursora dokonujemy we właściwościach myszy w Panelu Sterowania, 

tam też ustalamy jego długość. Nawet jeśli nie masz kłopotów ze śledzeniem kursora, ta opcja może 
być interesującym fajerwerkiem graficznym 

 
Pewnie cię nieco zmartwię, ale do programowej kontroli tego ustawienia służy wyłącznie 
funkcja SystemParametersInfo(). By pobrać stan opcji należy wywołać tę funkcję ze 
stałą SPI_GETMOUSETRAILS: 
 

int nSladKursora; 
SystemParametersInfo (SPI_GETMOUSETRAILS, 0, &nSladKursora, 0); 

 
Wynik odczytujemy ze zmiennej liczbowej, do której wskaźnik przekazujemy w trzecim 
parametrze. Jeśli ma ona wartość większą od 1, wtedy opcja jest włączona; jednocześnie 
otrzymana wartość wskazuje na długość śladu, jaki zostawia kursor (innymi słowy, ile 
razy jest on powielany). 
 
Modyfikacja śladu wymaga wywołania naszej wielce szacownej funkcji z parametrem 
SPI_SETMOUSETRAILS. Nową długość śladu podajemy z kolei w drugim parametrze, np.: 
 

SystemParametersInfo (SPI_SETMOUSETRAILS, 4, NULL, 0); 
 
W powyższy sposób ustawiamy ślad kursora średniej długości (strzałka będzie 
replikowana 4 razy). 

Sonar 

Inną metodą poprawy widoczności kursora jest sonar (ang. mouse sonar). Nie ma on 
niestety nic wspólnego z łodziami podwodnymi i pełnymi skarbów okrętami na dnie 
morza. Mechanizm sonaru w systemie Windows polega na wizualnym wyróżnieniu 
kursora myszy koncentrycznymi kręgami. Są one pokazywane, gdy użytkownik wciśnie 
klawisz Ctrl. Sonar ułatwia więc lokalizowanie kursora na ekranie zaśmieconym oknami, 
przy wysokiej rozdzielczości lub zepsutym wzroku. 
 
Sonar jest dostępny tylko Windows Me i XP. 
 
Sprawdzenia, czy sonar jest włączony, dokonujemy poprzez SystemParametersInfo() ze 
stałą SPI_GETMOUSESONAR: 
 

BOOL bSonar; 
SystemParametersInfo (SPI_GETMOUSESONAR, 0, &bSonar, 0); 

 
Wynik kontroli ląduje oczywiście w zmiennej BOOLowskiej, której adres podajemy w 
trzecim parametrze. 
 
W(y)łączenia sonaru dokonujemy także za pomocą doskonale już znanej funkcji o długiej 
nazwie, a także jej parametru SPI_SETMOUSESONAR: 
 

SystemParametersInfo (SPI_SETMOUSESONAR, TRUE, NULL, 0); // włącz. sonaru 
 
Informację o nowym stanie opcji sonaru wysyłamy z drugim argumentem funkcji. 



 453

KlawiszeMyszy 

Bardzo ciekawą opcją z zakresu ułatwień Windows są KlawiszeMyszy (ang. MouseKeys). 
Pozwala ona na przesuwanie kursora myszy za pomocą klawiszy strzałek klawiatury 
numerycznej (8, 4, 6 i 2) oraz Shift i Ctrl. Te dwa ostatnie oferują możliwość zwolnienia 
lub przyspieszenia ruchu kursora. 
Osobiście sądzę, że ciężko zaliczyć tę możliwość do kategorii ułatwień, bo opanowanie 
mechaniki kursora tą metodą wydaje się o wiele trudniejsze i mniej efektywnie niż 
poruszanie. KlawiszeMyszy mają jednak pewną niezaprzeczalną zaletę, która może być 
bardzo przydatna podczas tworzenia grafiki czy konstruowania interfejsu użytkownika. 
Mam tu na myśli możliwość precyzyjnego poruszania „myszą” - z dokładnością do 
jednego piksela. Bardzo ułatwia do rozmieszczanie elementów grafiki czy UI. 
 
Programowa kontrola tego ustawienia, posiadającego sporo podopcji, jest dość 
obszernym zagadnieniem, na który chyba nie ma tu już miejsca. Jeżeli cię to interesuje, 
poczytaj w MSDN opis struktury MOUSEKEYS oraz informacje o parametrach 
SPI_GET/SETMOUSEKEYS funkcji SystemParametersInfo(). 

BlokadaKliknięcia 

Jeżeli masz kłopoty z przeciąganiem kursora myszy przy wciśniętym przycisku, możesz 
włączyć opcję Windows znaną jako ClickLock. Tłumaczyć ją można jako 
‘BlokadaKliknięcia’. Działa ona w prosty sposób: jeśli użytkownik wciśnie logicznie lewy 
przycisk myszy i przytrzyma go przez określony czas (który można regulować), system 
uzna, że rozpoczyna się operacja przeciągania. Można teraz już zwolnić przycisk myszy, a 
Windows nadal będzie traktował go jako wciśnięty. Poruszając myszą w zwykły 
sposób (przy fizycznie zwolnionym przycisku), można teraz dokonywać przeciągania bez 
konieczności przytrzymywania przycisku palcem, jak to było dotychczas. Kiedy zaś 
uznamy, że chcemy zakończyć przeciąganie, kilkamy po prostu jeszcze raz, aby upuścić 
podniesiony obiekt (np. plik). 
 
BlokadaKliknięcia działa tylko w Windows Me i XP. 
 
Niniejsza opcja jest także domeną funkcji SystemParametersInfo(). By dowiedzieć się, 
czy jest aktualnie włączona, należy zastosować parametr SPI_GETMOUSECLICKLOCK: 
 

BOOL bBlokadaKlikniecia; 
SystemParametersInfo (SPI_GETMOUSECLICKLOCK, 0, &bBlokadaKlikniecia, 0); 

 
Ze zmiennej typu BOOL, której adres należy podać w pokazany wyżej sposób, odczytamy 
stan opcji. Jak można się domyślić, TRUE oznacza włączone, a FALSE - wyłączone 
ustawienie. 
Jego zmiana to z kolei wywołanie z użyciem SPI_SETMOUSECLICKLOCK: 
 

// włączenie BlokadyKliknięcia 
SystemParametersInfo (SPI_SETMOUSECLICKLOCK, TRUE, NULL, 0); 

 
Nowy status opcji podajemy w drugim parametrze, uiParam. 
 
Kiedy już włączymy Blokadę, możemy też regulować czas (w milisekundach), po którym 
przycisk myszy zostanie zablokowany. Do jego pobrania służy 
SPI_GETMOUSECLICKLOCKTIME: 
 

unsigned uCzasBlokadyKlikniecia; 
SystemParametersInfo (SPI_GETMOUSECLICKLOCKTIME, 0, 
  &uCzasBlokadyKlikniecia, 0); 

 



 454 

Ponownie otrzymujemy pożądaną wartość w zmiennej, do której wskaźnik podajemy. To 
się już robi całkiem proste, prawda? ;) 
Ustawienie nowego interwału czas oznacza konieczność użycia stałej 
SPI_SETMOUSECLICKLOCKTIME - o tak: 
 

SystemParametersInfo (SPI_SETMOUSECLICKLOCKTIME, 500, NULL, 0); 
 
Nowy czas podajemy w drugim parametrze. Powinien on być nie mniejszy niż kilkaset 
milisekund, gdyż w przeciwnym razie może być zbyt krótki na wykonanie zwykłego 
kliknięcia (bez przeciągania). 
 

*** 
 
Na tym kończy się nasza opowieść o myszy. Były to długa historia, a mimo nie dotarliśmy 
do jej definitywnego epilogu. Oprócz kilku nieomówionych ustawień systemowych (o 
których poczytasz sobie w MSDN), nie zajęliśmy się jeszcze zagadnieniem własnego 
kształtu kursora myszy - stanie się to w rozdziale o zasobach Windows. 

Wykorzystanie klawiatury 
Czy można sobie wyobrazić komputer bez klawiatury? „Oczywiście” — odpowiesz pewnie 
— „Weźmy choćby HALa z Odysei kosmicznej 2001!” Faktycznie, masz rację: komputery 
sterowane głosem (może nie tak inteligentne jak HAL) istnieją już dzisiaj i ta forma 
komunikacji z maszyną na pewno będzie się rozwijać. Jednak klawiatury nie znikną 
nigdy, a powodem tego jest zwykła potrzeba poufności i prywatności - nie chcielibyśmy 
przecież, aby wszyscy dookoła słyszeli, jakie informacje wprowadzamy do komputera. 
Pośrednictwo klawiatury stwarza więc pewną ochronę danych - o ile nikt nie zagląda nam 
przez ramię :) 
 
Podobnie jak myszki i wszystkie urządzenia peryferyjne, klawiatury przez lata były 
udoskonalane. Ich przodkami są zapewne maszyny do pisania, jednak od początku 
istnienia komputerów osobistych ich klawiatury nie ograniczały się tylko do liter i cyfr. 
Szybko pojawiły się dodatkowe klawisze strzałek, klawisze funkcyjne, a ostatnio nawet 
specjalne klawisze ułatwiające serfowanie po Internecie. 
Wygląd i kształt klawiatur także ulegał przeobrażeniom. Ostatnimi czasy popularne są 
tzw. klawiatury ergonomiczne, których część alfanumeryczna jest rozdzielona na dwoje, a 
klawisz spacji odpowiednio wygięty. W komputerach zadomowiły się też klawiatury 
bezprzewodowe, tworząc często zestawy z myszkami. 
 

  
Fotografia 5 i 6. Przykładowe modele dzisiejszych klawiatur 

(fotografie pochodzą z serwisu internetowego firmy Logitech) 

 
Ten podrozdział stanowi przegląd możliwości Windows API w zakresie współpracy z 
klawiaturą. Poznamy w nim zdarzenia, jakie są generowane w reakcji na wciśnięcia 
klawiszy, sposoby na pobieranie stanu klawiatury oraz symulowania jego zmiany. 
Popatrzymy też na ustawienia systemowe, związane z tym urządzeniem. 

http://www.logitech.com/


 455

Zdarzenia klawiatury 

Najważniejsze są oczywiście komunikaty o zdarzeniach. Reakcja na nie będzie lwią 
częścią obsługi klawiatury w naszych programach okienkowych. Zajmijmy się zatem ich 
powstawaniem i rodzajami. 

Potok klawiszy 

Zanim fakt fizycznego wciśnięcia lub zwolnienia klawisza dotrze do okna w postaci 
odpowiedniego komunikatu, przechodzi on dosyć długą drogę. Nazywam ją potokiem 
klawiszy (ang. keys pipeline) lub modelem wejścia od klawiatury (ang. keyboard input 
model). Obrazuje on, w jaki sposób system Windows zamienia sygnały pochodzące od 
urządzenia na komunikaty trafiające do okien. 
 
Potok klawiszy można przedstawić obrazowo na schemacie: 
 

 
Schemat 44. Potok klawiszy w Windows 

 
Opiszmy każdy z przedstawionych tu etapów, jakie pokonuje informacja o zdarzeniu 
klawiatury. 

Tłumaczenie kodów 

Gdy użytkownik wciska lub zwalnia klawisz, wiadomość o tym przedostaje się do systemu 
poprzez przerwanie klawiatury. Powiadomienie zawiera tzw. kod skanowania (ang. scan 
code) lub kod OEM (ang. OEM code) - po prostu pewną liczbę. Jest ona specyficzna dla 
każdego klawisza, a dodatkowo różni się w przypadku jego wciśnięcia i zwolnienia. 
 
Kody OEM są ponadto charakterystyczne dla urządzenia i zależne od niego. Znaczy to, że 
różne modele klawiatur mogą generować różne kody skanowania. Programując w 
niskopoziomowym asemblerze, należałoby uwzględniać wszystkie możliwe kody 
interesujących nas klawiszy. Ponieważ jednak pracujemy w bardziej przyjaznym 
środowisku Windows, ominie nas ta wątpliwa przyjemność. 
Kod skanowania zostaje bowiem przetłumaczony na inny, uniwersalny dla każdej 
możliwej klawiatury. Takiego tłumaczenia dokonuje sterownik urządzenia (ang. device 
driver) - w tym przypadku chodzi oczywiście o sterownik klawiatury, dostarczany wraz ze 
sprzętem lub systemem Windows. 



 456 

Kody wirtualnych klawiszy 

Produktem tłumaczenia jest kod wirtualnego klawisza (ang. virtual-key code), zwany 
dla wygody kodem wirtualnym. Jest to 16-bitowy, jednoznaczny identyfikator każdego 
obsługiwanego przez Windows klawisza na dowolnej klawiaturze. Jak wiemy, swoje kody 
mają także przyciski myszy. 
 
Większości wirtualnych kodów przyporządkowane są odpowiednie stałe o nazwach 
zaczynających się od przedrostka VK_. Poniższa tabelka przedstawia część 
najpopularniejszych klawiszy (z wyłączeniem przycisków myszy, których kody były 
podane wcześniej): 
 

stała kod klawisz stała kod klawisz 
VK_BACK 0x0008 Backspace VK_NEXT 0x0022 Page Down 
VK_TAB 0x0009 Tab VK_END 0x0023 End 

VK_RETURN 0x000D Enter VK_HOME 0x0024 Home 
VK_SHIFT 0x0010 Shift VK_LEFT 0x0025 Strzałka w lewo 
VK_CONTROL 0x0011 Ctrl VK_UP 0x0026 Strzałka w górę 
VK_MENU 0x0012 Alt VK_RIGHT 0x0027 Strzałka w prawo 
VK_ESCAPE 0x001B Esc VK_DOWN 0x0028 Strzałka w dół 
VK_SPACE 0x0020 Spacja VK_INSERT 0x002D Insert 
VK_PRIOR 0x0021 Page Up VK_DELETE 0x002E Delete 

Tabela 52. Niektóre kody wirtualnych klawiszy 

 
Pełną listę możesz znaleźć w Tablicach C oraz w MSDN. 

Zapakowanie w komunikat 

Drugim produktem tłumaczenia, dokonywania przez sterownik klawiatury, jest 
wydzielona informacja o rodzaju zainstniałego zdarzenia (akcji). Na jej podstawie 
Windows wybiera komunikat, jaki wygeneruje. A możliwości są generalnie dwie: 

 wciśnięcie klawisza (ang. key down) 
 zwolnienie klawisza (ang. key up) 

 
System decyduje się na jedną z nich, tworzy odpowiedni komunikat i wysyła go do kolejki 
komunikatów. 

Produkcja znaków 

Stamtąd prędzej czy później wiadomość o zdarzeniu zostanie pobrana przez aplikację i 
trafi do jej pętli komunikatów. Pętli, która w najprostszej wersji wygląda tak: 
 

MSG msgKomunikat; 
while (GetMessage(&msgKomunikat, NULL, 0, 0)) 
{ 
 TranslateMessage (&msgKomunikat); 
 DispatchMessage (&msgKomunikat); 
} 

 
W każdym z jej możliwych wariantów niezmienne są przywołania dwóch funkcji - 
TranslateMessage() i DispatchMessage(). W tym momencie jesteśmy niezwykle 
zainteresowani pierwszą z nich. 
 
Gdy przedstawiałem pętlę komunikatów na początku kursu WinAPI, wspomniałem, że 
niewielu programistów wie, co naprawdę robi funkcja TranslateMessage(). Zapewne nie 
jest to do końca prawdą, niemniej faktem jest, że nazwa tej funkcji niezupełnie oddaje 
wykonywaną przezeń czynność. 



 457

Przede wszystkim TranslateMessage() nie dokonuje żadnego tłumaczenia komunikatu - 
cokolwiek miałoby to znaczyć. Jej rolą jest bowiem produkcja dodatkowych zdarzeń, tzw. 
komunikatów o znakach (ang. character messages) Generuje je na podstawie 
następujących po sobie wciśnięć i zwolnień tego samego klawisza na klawiaturze. 
O zdarzeniach znaków i odpowiadających im komunikatach powiemy sobie więcej w 
którymś z nadchodzących paragrafów. 

Finisz 

Na koniec wszystkie wytworzone komunikaty trafiają do docelowego okna. Dotyczy to 
zarówno stworzonych w jądrze systemu powiadomień o zdarzeniach klawiszy, jak i 
komunikatów o znakach, posłanych do kolejki przez TranslateMessage(). Wszystkie te 
zdarzenia są normalnie obsługiwane przez procedurę zdarzeniową okna, które je 
ostatecznie otrzyma. 
 
Właśnie - którego okna? Skąd Windows wie, komu przekazywać informacje o zdarzeniach 
klawiatury? Czas odpowiedzieć i na to pytanie. 

Fokus 

Komputer posiada tylko jedną klawiaturę. To niewiele, jeżeli weźmie się pod uwagę 
praktycznie nieograniczoną liczbę programów, jakie mogą jednocześnie działać w 
Windows. Dostęp do tego cennego sprzętu musi być zatem wydzielany, co spoczywa na 
barkach systemu operacyjnego. 
 
Radzi on sobie z tym zadaniem poprzez kontrolę tzw. wejściowego fokusu klawiatury 
(ang. keyboard input focus) - w skrócie fokusu (ang. focus). Jest to specjalna 
właściwość, którą w danej chwili może posiadać tylko jedno okno. 
 
Okno posiadające fokus otrzymuje wszystkie komunikaty o zdarzeniach klawiatury129. 
 
Dzięki temu, że któreś z okien w systemie posiada fokus, Windows wie, do kogo kierować 
pojawiające się informacje od klawiatury. Takie okno jest więc ostatecznym celem potoku 
klawiszy. 

Przełączanie fokusu 

Fokus jest dla klawiatury mniej więcej tym samym, co dla myszki jest władza nad nią 
(ang. mouse capture). Występują tu jednak pewne różnice. 
Przede wszystkim, fokus nie jest tak ulotną własnością jak capture - zmienia się on 
rzadziej i zazwyczaj tylko wtedy, gdy użytkownik sam sobie tego zażyczy. Osoba 
obsługująca aplikacje jest też znacznie bardziej świadoma istnienia tego zjawiska, gdyż 
odzwierciedla się ono w wyglądzie okien. Te posiadające fokus odznaczają się np. innym 
kolorem paska tytułu, migającym kursorem (w polach tekstowych) czy kolorową belką 
zaznaczenia (w listach). 
 
Jak odbywa się przekazywanie fokusu między oknami?… Jeżeli programy nie ingerują w 
ten proces, to dzieje się to zwykle poprzez: 

 kliknięcie myszą w obszarze innego okna 
 posłużenie się odpowiednim klawiszem (kombinacją) przełączania: Tab dla 

kontrolek potomnych, Alt+Tab dla nadrzędnych okien programów 
 
Wynika stąd, że potoczne rozumienie „aktywności” okna to nic innego, jak właśnie 
posiadanie przezeń fokusu. Dla twórcy aplikacji fakt, że okno jest aktywne 
(ang. enabled), oznacza jednak co innego: wcale nie to, że będzie ono przyjmowało dane 

                                                 
129 Dostaje też komunikat WM_MOUSEWHEEL, o czym powiedzieliśmy sobie wcześniej. 



 458 

wejściowe od urządzeń zewnętrznych (myszy, klawatury), lecz jedynie to, iż może ono 
takie dane przyjmować. 
Zatem okno nieaktywne nie może posiadać fokusu, a spośród aktywnych okien fokus ma 
tylko jedno. 
 
Kontrolując fokus, Windows dba także, aby okna były odpowiednio informowane o jego 
zmianach. W tym celu wysyłane są dwa komunikaty: 

 WM_KILLFOCUS otrzymuje okno, które straciło fokus na rzecz innego. Uchwyt tego 
nowego posiadacza jest zapisany w parametrze wParam niniejszego komunikatu 
(może to być NULL) 

 WM_SETFOCUS dostaje z kolei to okno, które fokus otrzymało. W parametrze 
wParam zapisany jest wtedy uchwyt poprzedniego posiadacza (albo NULL) 

 
Obsługa tych komunikatów jest konieczna, jeżeli posługujemy się tzw. karetką 
(ang. caret), służącą do oznaczania miejsca wpisywania tekstu w oknie. Nie będziemy się 
aczkolwiek zajmować bliżej tym zagadnieniem. 
Dla programisty gier i wszelkich innych aplikacji działających na pełnym ekranie dwa 
powyższe komunikaty są również bardzo ważne. Pozwalają one wykryć czas, gdy 
program nie jest w kręgu zainteresowania użytkownika i oszczędzić niepotrzebnego 
wysiłku przeznaczanego np. na rendering kolejnych klatek. 

Funkcje pomocnicze 

Windows API zawiera dwe funkcje przeznaczone do kontroli fokusu klawiatury. Pierwszą z 
nich jest SetFocus(): 
 

HWND SetFocus(HWND hWnd); 
 
Po nazwie nietrudno domyślić się, że służy ona do przekazania fokusu innemu oknu; jego 
uchwyt podajemy w paramatrze funkcji. W wyniku dostajemy uchwyt poprzedniego 
posiadacza fokusu. 
 
Drugą funkcją jest GetFocus(): 
 

HWND GetFocus(); 
 
Tutaj sprawa jest jeszcze prostsza: wywołanie to zwraca po prostu uchwyt aktualnego 
właściciela fokusu klawiatury. 

Parametry komunikatów klawiatury 

Teraz moglibyśmy w zasadzie przejść już do omawiania każdego z komunikatów 
zdarzeniowych klawiatury. Będzie jednak lepiej i wygodniej, jeżeli najpierw 
skoncetrujemy się na ich parametrach wParam i lParam, jako że są one wspólne dla 
wszystkich komunikatów. Podobnego rozpatrzenia parametrów dokonaliśmy zresztą przy 
okazji zdarzeń myszy, więc tutaj tylko kontynuujemy tę chlubną tradycję ;) 
Popatrzmy zatem na dane dodatkowe komunikatów klawiatury. 

Parametr wParam 

Zawartością tej danej jest specyficzny kod wciśniętego (lub puszczonego) klawisza. 
Rodzaj owego kodu zależy od typu komunikatu: 

 komunikaty o klawiszach zawierają tutaj kod wirtualnego klawisza, czyli wartość, 
której odpowiada jedna ze stałych VK_ 

 komunikaty o znakach mają tu natomiast wpisany kod znaku, który został 
wprowadzony (najczęściej jest on w systemie Unicode) 

 



 459

Dokładniejsze wiadomości o obu rodzajach kodów otrzymasz przy omawianiu 
powiązanych z nimi komunikatów. 

Parametr lParam 

Drugi parametr komunikatu od klawiatury jest chyba najlepszym przykładem gęstego 
upakowania danych w zmiennej, która wydaje się tylko liczbą. Otóż lParam wcale nie jest 
tutaj liczbą - zawiera w sobie bowiem aż sześć (!) różnych informacji. Są one ułożone w 
odpowiednich bitach tej 32-bitowej wartości, jak to jest ukazane na schemacie: 
 

 
Schemat 45. Informacje zawarte w parametrze lParam komunikatów klawiatury 

 
Poszczególne części oznaczyłem kolorami - tak, aby ułatwić ci ich dopasowanie do 
poniższych opisów. Część z szarymi konturami nie jest używana przez aktualne wersje 
Windows i została zarezerwowana dla ewentualnych przyszłych celów. 
 
Wytłumaczmy więc po kolei znaczenie każdej z tych danych - poczynając od 
najmłodszego bitu: 

 licznik powtórzeń (ang. repeat count) określa nam liczbę przyciśnięć klawiszy, 
jakie reprezentuje otrzymany komunikat. W przypadku zdarzeń zwolnienia 
klawisza jest to zawsze 1; dla pozostałych wiadomości najczęściej też tak jest. 
Czasem jednak Windows nie nadąża z produkcją oddzielnych komunikatów dla 
każdego powtórzenia klawisza - dzieje się tak wtedy, gdy ustawimy dużą 
częstotliwość powtarzania w Panelu Sterowania i przytrzymamy wciśnięty klawisz 

 kod skanowania (OEM) (ang. OEM scan code) jest niczym innym, jak tylko 
sprzetowym kodem, jaki klawiatura wysyła do swojego sterownika. Jak pamiętasz, 
odbywa się to na samym początku potoku klawiszy. Działanie sterownika 
klawiatury sprawia, że nie musimy się martwić o interpretację kodu skanowania, 
zależnego od sprzętu, ponieważ mamy uniwersalne kody wirtualnych klawiszy. 
Niemniej jednak Windows dołącza oryginalny kod do komunikatu, na wypadek 
gdyby był on komuś potrzebny 

 flaga klawisza rozszerzonego (ang. extended key flag) mówi nam, czy 
wciśnięty/zwolniony klawisz należy do tzw. zestawu rozszerzonego klawiatury 
101- lub 102-klawiszowej. Obecnie takie modele nie są niczym nadzwyczajnym, 
więc informacja ta nie służy zbyt wielkim celom i jest najczęściej ignorowana 

 kod kontekstowy (ang. context code) tak naprawdę nie jest żadnym kodem („I 
całe szczęście” — powiesz zapewne ;D). Jest to tylko przełącznik wskazujący na 
to, czy zdarzenie klawiatury zaszło w czasie, gdy wciśnięty był klawisz Alt. Ten 
klawisz ma specjalną rolę w Windows (związaną np. z paskami menu) i dlatego 
jego wciśnięcie jest tak ważne. Faktycznie, oprócz innego kodu kontekstwego, 
zdarzenia tych samych klawiszy z wciśnięciem i bez wciśnięcia Alta skutują 
zupełnie innymi komunikatami. Wspomnimy sobie także i o tym zjawisku przy 
omawianiu komunikatów o klawiszach 



 460 

 poprzedni stan klawisza (ang. previous key state) jest bardzo prostą 
informacją. Określa ona stan klawisza, którego dotyczy zdarzenie, przed 
wystąpieniem tegoż zdarzenia. Bit ten może być ustawiony na 1 - co odpowiada 
klawiszowi poprzednio wciśniętemu, lub na 0 - w przeciwnym wypadku 

 stan przejścia (ang. transition state) precyzuje rodzaj zdarzenia, czyli co takiego 
„stało” się z klawiszem. Wartość 0 w tym bicie oznacza wciśnięcie klawisza, a 1 - 
zwolnienie. 

 
Pozostaje jeszcze pytanie - jak odczytywać te wartości? Wymaga to skonstruowania 
odpowiedniej maski bitowej i wykonania jej koniunkcji z wartością lParam. Później należy 
jeszcze dosunąć wyizolowane bity do prawej strony za pomocą operacji przesunięcia 
bitowego w prawo. Jeżeli nie możesz sobie poradzić z tym zadaniem, zajrzyj do 
Dodatku C, Manipulacje bitami. 
 
Najprościej jest uzyskać licznik powtórzeń. Zauważmy, że stanowi on 16 pierwszych 
bitów dwusłowa lParam, czyli jego dolną połówkę. Tę zaś możemy wyekstrahować 
poprzez makro LOWORD(). LOWORD(lParam) jest więc wartością licznika powtórzeń w 
komunikatach klawiatury. 

Komunikaty o klawiszach 

Najbardziej naturalnymi zdarzeniami klawiatury są komunikaty o klawiszach 
(ang. keystroke messages). Windows wysyła je, gdy wykryje wciśnięcie lub puszczenie 
jednego z wirtualnych klawiszy, przyporządkowanych oczywiście tym realnie istniejącym 
na klawiaturze. 
W tym paragrafie przyjrzymy się tego rodzaju komunikatom. 

Przedstawiamy je 

Mamy cztery komunikaty o zdarzeniach klawiszy w Windows. Przedstawia je wszystkie 
poniższa tabelka: 
 

zdarzenie  
rodzaj  

wciśnięcie klawisza zwolnienie klawisza 

pozasystemowe WM_KEYDOWN WM_KEYUP 

systemowe WM_SYSKEYDOWN WM_SYSKEYUP 

Tabela 53. Komunikaty o zdarzeniach klawiszy 

 
Nie jest żadną niespodzianką, że występują komunikaty o wciśnięciu i zwolnieniu 
klawisza. Oba te zdarzenia zachodzą zwykle w parach, podobnie jak to się dzieje w 
przypadku przycisków myszy. Możliwe jest jednak, że Windows wyśle więcej 
komunikatów WM_[SYS]KEYDOWN - będzie tak, jeżeli raz wciśnięty klawisz przytrzymamy 
na dłużej. Wówczas może zostać wysłana większa liczba komunikatów lub też 
nadchodzące wiadomości WM_[SYS]KEYDOWN będą miały odpowiednio ustawiony licznik 
powtórzeń w dolnym słowie parametru lParam. Zależy to od ustawionej przez 
użytkownika częstotliwości powtórzeń we Właściwościach Klawiatury Panelu Sterowania. 
 
Atoli najczęściej interesuje nas tylko sam fakt, iż dany przycisk jest aktualnie wciśnięty i 
dlatego na komunikat WM_[SYS]KEYDOWN reagujemy podobnie jak na inne, proste 
zdarzenia notyfikujące. Oto przykład reakcji na wciśnięcie klawisza Esc: 
 

case WM_KEYDOWN: 
{ 
 if (wParam == VK_ESCAPE) 
  if (MessageBox("Czy na pewno chcesz wyjść?", "Wyjście", 
 MB_YESNO | MB_ICONQUESTION) == IDYES)) 



 461

   PostQuitMessage (0); 
 
 return 0; 
} 

 
Sprawdzenia, czy wciskanym klawiszem jest rzeczywiście klawisz ucieczki, dokonujemy, 
konfrontując wartość wParam ze stałą VK_ESCAPE. Wspomnimy jeszcze o takim 
porównaniu w dalszej części aktualnego paragrafu. 

Systemowe i inne 

Zauważyłeś pewnie tajemnicze SYS w nazwach komunikatów WM_SYSKEYDOWN oraz 
WM_SYSKEYUP. Jego obecność znaczy te zdarzenia jako systemowe (ang. system 
keystrokes). Należy to rozumieć w ten sposób, iż są one ważniejsze dla samego systemu 
Windows niż dla pracujących w nim aplikacji. 
 
WM_SYSKEYDOWN i WM_SYSKEYUP generowane są zwykle dla klawiszy wciśniętych w 
połączeniu z przytrzymanym klawiszem Alt. Takie kombinacje są ważne dla 
funkcjonowania całego systemu, gdyż nierzadko są im przypisane pewne standardowe 
lub niestandardowe akcje. Weźmy chociażby Alt+Tab, który służy do przełączania się 
między oknami uruchomionych aplikacji, czy też Alt+Esc. 
Istnieją też tzw. akceleratory, stanowiące skróty do często używanych poleceń menu 
aplikacji. Kombinacje klawiszy dla akceleratorów ustala programista tworzący menu, zaś 
zapewnienie ich prawidłowej obsługi spoczywa potem wyłącznie na barkach Windows. 
Dlatego też wciśnięcia klawiszy akceleratorów są traktowane jako systemowe. 
 
O akceleratorach będziemy mówić dokładniej przy opisywaniu pasków menu dla okien. 
 
Łatwo zauważyć, że systemowe zdarzenia klawiatury są podobne w swej istocie i 
przeznaczeniu do pozaklienckich komunikatów myszy. Analogicznie też wygląda ich 
ewentualna obsługa - jeżeli jest potrzebna. Ze względu na ważny charakter tych zdarzeń 
powinniśmy zawsze przekazywać je do domyślnej procedury zdarzeniowej - czyli 
obsługiwać w ten oto sposób: 
 

case WM_SYSKEYDOWN:  // albo WM_SYSKEYUP, a także WM_SYS[DEAD]CHAR 
 kod_obsługi_komunikatu 
 return DefWindowProc(hWnd, uMsg, lParam, wParam); 

 
W przeciwnym wypadku okno może stać się całkowicie „odporne” na systemowe 
kombinacje klawiszy, co z kolei skutkować będzie np. niemożnością użycia Alt+Tab do 
zmiany aktywnego programu. 
 
Pozostałe dwa komunikaty - WM_KEYDOWN i WM_KEYUP - są ignorowane przez domyślną 
procedurą zdarzeniową. Ich obsługa w programie nie napotyka więc na żadne 
ograniczenia i może być realizowana dowolnie (albo nijak, jak to się działo dotąd). 

Parametry 

Omawiane komunikaty, tak samo jak wszystkie powiadomienia od klawiatury, 
wykorzystują oba parametry wParam i lParam. 
 
wParam zawiera kod identyfikujący klawisz. Jest to tzw. kod wirtualnego klawisza 
(ang. virtual-key code). To 16-bitowa, niezależna od sprzętu wartość przyporządkowana 
każdemu „wirtualnemu” klawiszowi. Ponieważ klawisze są właśnie wirtualne, czyli 
nieistniejące w rzeczywistości (choć mające rzeczywiste odpowiedniki), ich kody są 



 462 

uniwersalne. W każdej wersji systemu Windows, obsługującej w miarę normalną 
klawiaturę130, kod każdego wirtualnego klawisza jest zawsze taki sam. 
Jest to oczywiście bardzo wygodne, gdyż nie musimy przez to martwić się o sprzętowe 
kody (czyli kody skanowania, ang. scan code), jakie wysyłają poszczególne modele 
klawiatur. Poza tym wiemy, że do zestawu klawiszy wirtualnych włączono też przyciski 
myszy. Nie oznacza to aczkolwiek, że zdarzenia WM_KEYDOWN i WM_KEYUP odnoszą się 
także do kliknięć myszką. „Klawiszowość” przycisków myszy objawia się tylko tym, że ich 
stan możemy sprawdzać za pomocą funkcji w rodzaju GetKeyState(). Mówiliśmy już o 
tym w podrozdziale o myszce, a niedługo rozciągniemy temat także na klawiaturę. 
 
Natomiast o parametrze lParam i zawartym w nim koglomeracie sześciu informacji 
zdołałem już napisać całkiem sporo wyjaśnień; możesz teraz do nich powrócić. Pamiętaj 
przy tym, że kombinacja bitowa o opisanym znaczeniu jest treścią lParam w przypadku 
każdego z ośmiu komunikatów klawiatury. Nie wiem jak ty, ale ja sądzę, że to dobra 
wiadomość dla każdego programisty :) 

Komunikaty o znakach 

Drugim rodzajem zdarzeń klawiatury, z jakim spotykamy się w Windows, są 
komunikaty o znakach (ang. character messages). Zamiast informować tylko o 
przyciśnięciach klawiszy, komunikaty te mówią raczej o rzeczywistych znakach, 
wprowadzonych do programu. 
 
Obecność tych notyfikacji w Windows API jest niczym innym jak tylko ułatwieniem dla 
programisty. Komunikaty te są bowiem automatycznie wyprowadzane ze zdarzeń 
klawiszy. W zasadzie każda aplikacja mogłaby to robić sama, jednak system wyręcza je 
w tej czynności. 
Za generowanie komunikatów o znakach odpowiada funkcja TranslateMessage(). Jej 
działanie sprowadza się w skrócie do: 

 wyłowienia z kolejki komunikatu WM_[SYS]KEYDOWN 
 sprawdzenia kodu wirtualnego klawisza, jaki jest przyporzadkowany takiemu 

komunikatowi 
 przetłumaczenia go na kod odpowiedniego znaku, jeżeli jest to możliwe. W takim 

tłumaczeniu są uwzględnianie również takie okoliczności jak wciśnięty klawisz 
Shift czy aktywny Caps Lock 

 posłania do kolejki komunikatu WM_[SYS][DEAD]CHAR, zawierającego 
przetłumaczony kod 

 
Komunikaty o znakach są więc bardziej wysokopoziomową formą obsługi klawiatury. Nie 
są one tylko prostymi informacjami, mówiącymi o wciśnięciu klawisza, lecz przynoszą ze 
sobą także dodatkowe dane. Uwzględniając stan kluczowych klawiszy oraz ustawienia 
językowe klawiatury, komunikaty te powiadamiają o wprowadzonych przez użytkownika 
znakach - nie zaś o klawiszach, które wciska. Potrafią one rozróżnić znak wielkiej litery 
‘A’ od jej małej wersji (‘a’), podczas gdy zdarzenia klawiszy mogą jedynie poinformować 
o wciśnięciu klawisza A. Komunikaty o znakach biorą zatem pod uwagę szerszy 
kontekst przychodzących do systemu informacji od klawiatury. 

Prosimy na scenę 

Jest raczej czystym przypadkiem to, że komunikaty o znakach również występują w 
liczbie czterech rodzajów. Nie są one jednak żadnymi odpowiednikami zdarzeń klawiszy, 
lecz zupełnie inaczej zorganizowanymi powiadomieniami. 
Wszystkie komunikaty o znakach ujmuje nam poniższa tabelka (jest w niej także 
odpowiedni podział tychże komunikatów): 
 
                                                 
130 Tzn. zawierającą litery z języków europejskich, a nie np. zestawy znaków języka chińskiego czy japońskiego. 



 463

rodzaj znaku  
rodzaj zdarzenia  

zwykły znak martwy znak 

pozasystemowe WM_CHAR WM_DEADCHAR 

systemowe WM_SYSCHAR WM_SYSDEADCHAR 

Tabela 54. Komunikaty o zdarzeniach znaków 

 
Jak widać, także i tu można wyróżnić dwie nakładające się na siebie grupy komunikatów. 
Pierwszą z nich znamy już dość dobrze, podczas gdy druga wydaje się dość tajemnicza - 
również z nazwy (martwy znak…?). Dlatego też, aby mieć pełną jasność, wytłumaczymy 
sobie obie :) 
 
Aby być zupełnie ścisłym muszę wspomnieć, że istnieje jeszcze jeden komunikat o znaku 
- WM_UNICHAR. Różni się on od WM_CHAR tym, iż kod znaku, jaki przynosi w parametrze 
wParam, jest zapisany w 32-bitowej wersji standardu Unicode (UTF-32). WM_CHAR używa 
tylko 16 bitów (UTF-16), jednak wiemy dobrze, że wystarcza to w zupełności na 
reprezentację wszystkich znaków niemal każdego cywlizowanego i żywego języka. 
Zawarte w Windows wsparcie dla 4-bajtowych kodów jest więc dalekim wybiegnięciem 
przed orkiestrę - zwłaszcza, że nawet dwubajtowy unikod nie jest jeszcze powszechnie 
wykorzystywany. Niemniej jednak należy się spodziewać, że w bliższej lub (raczej) 
dalszej przyszłości pozostałe komunikaty o znakach zostaną „przestawione” na UTF-32. 
Wówczas WM_UNICHAR zaniknie. 
Ale zanim to się stanie, możesz swobodnie przeczytać opis tego komunikatu w MSDN :D 

Systemowe - raz jeszcze 

Wśród komunikatów o znaków również występuje podział na te systemowe i 
pozasystemowe. Kryteria owego podziału są też identyczne. 
 
Przypominam, że systemowe zdarzenie klawiatury jest wysyłane w sytuacji, gdy 
towarzyszy mu wciśnięty klawisz Alt. Kombinacje zawierające ten klawisz są bardzo 
ważne dla systemu jako całości oraz ogólnego sposobu jego funkcjonowania. 
Systemowe komunikaty o znakach - WM_SYSCHAR i WM_SYSDEADCHAR - powinny być 
przetwarzane bez naruszania ich normalnej, domyślnej reakcji, za którą odpowiada 
DefWindowProc(). Komunikaty te muszą więc ostatecznie trafić do tej standardowej 
procedury - również wtedy, kiedy po drodze „przeszły” przez tą naszą. 
Przykład obsługi systemowego komunikatu klawiatury podałem w poprzednich paragrafie 
o zdarzeniach klawiszy. Zajrzyj tam, jeżeli tego potrzebujesz. 

Umarł znak, niech żyje znak 

Zdarzenia WM_DEADCHAR i WM_SYSDEADCHAR noszą intrygującą nazwę komunikatów o 
martwych znakach (ang. dead characters messages). Chociaż ich obsłużenie nie jest w 
większości przypadków konieczne, omówienie tych zdarzeń może być interesujące. 
 
Najprościej mówiąc, martwe znaki nie reprezentują samodzielnie żadnego symbolu, 
żadnej litery. Ich pojawianie się wiąże się wyłącznie z pewnymi układami klawiatury, 
dostosowanymi do niektórych języków. Dobrym przykładem jest język niemiecki i 
występujące w nim litery ‘ä’, ‘ü’ czy ‘ö’. Mają one tak zwany przegłos (niem. umlaut), 
który zmienia wymowę tych głosek w stosunku do zwykłych ‘a’, ‘u’ i ‘o’. Faktycznie są 
one odrębnymi literami niemieckiego alfabetu. 
 
Wprowadzenie tych znaków do programu może się odbywać na wiele sposobów, gdyż jak 
wiemy nie występują one na standardowej klawiaturze. Jedną z dróg może być 
zaprzęgnięcie do pracy określonych kombinacji klawiszy: najczęściej jest to Prawy Alt 
plus odpowiednia „zwykła” litera. Wpisanie znaku ‘ö’ odbywałoby się wówczas w ten 
sposób, iż użytkownik najpierw wciska i przytrzymuje Prawy Alt, a następnie uderza w 



 464 

klawisz O. W wyniku tej czynności na ekranie pojawia się znak ‘ö’ lub ‘Ö’ (zależnie od 
stanu klawisza Shift i Caps Lock). 
Istnieje jeszcze inna metoda i to interesuje nas teraz bardziej. Otóż wprowadzenie znaku 
diakrytycznego może się dokonywać poprzez oddzielne wciśnięcia dwóch klawiszy. 
Pierwszy wysyła do systemu jedynie sam przegłos, natomiast drugi jest dopiero właściwą 
literą, która ów umlaut otrzymuje. Ostatecznie uzyskujemy pożądany symbol. 
 
Gdzie jest więc ten martwy znak?… Otóż jest nim sam przegłos - po wciśnięciu 
odpowiadającego mu klawisza, do okna z fokusem wysyłany jest komunikat 
WM_[SYS]DEADCHAR (przedtem oczywiście WM_[SYS]KEYDOWN) zawierający kod znaku 
przegłosu. W tej chwili nie wiadomo jeszcze, jaka litera zostanie zaraz wpisana, ale 
rzeczony komunikat mówi nam, iż będzie posiadała dany ozdobnik (w tym przypadku 
przegłos). 
Nie jest to wielce porywająca informacja i nie ma konieczności jej odczytywania. W 
następującym dalej komunikacie WM_[SYS]CHAR dostajemy ją bowiem niejako ponownie, 
lecz w bardziej użytecznej formie. Komunikat o „żywym znaku” będzie mianowicie 
zawierał kod litery z już zaaplikowanym przegłosem (a więc np. ‘ö’ lub ‘Ö’), nie zaś 
odpowiadającej mu litery bez niego (czyli ‘o’ lub ‘O’). 
 
Pomienięciem WM_[SYS]DEADCHAR nie czynimy więc żadnej szkody ani sobie, ani 
systemowi. Dlatego też prawie zawsze możemy sobie na to pozwolić. 
 
W polskim układzie klawiatury martwe znaki generuje klawisz tyldy (~). W połączeniu z 
klawiszami A, L, O, Z, X itd. wprowadza on znaki diakrytyczne: ‘ą’, ł’, ‘ó’, ‘ż’, ‘ź’ itd. 

Parametry 

Komunikaty o znakach zachowują podaną na początku sekcji konwencję co do znaczenia 
parametrów wParam i lParam. Spójrzmy, co to oznacza w tym przypadku. 
 
Tradycyjnie wParam zawiera ważny dla zdarzenia kod. Tutaj jest to kod wprowadzonego 
znaku - nie klawisza, lecz właśnie znaku. Jest to 16-bitowa liczba, która identyfikuje 
jeden z kilkudziesięciu tysięcy znaków standardu Unicode (UTF-16). Standard ten w 
zupełności wystarcza na kodyfikację zbioru liter wszystkich języków indoeuropejskich 
oraz używanych symboli matematycznych, fizycznych i innych. 
Nie bedę tu szczegółowo omawiał Unicode, bo jest to materiał na całkiem sporą książkę; 
jeżeli interesuje cię ten temat, możesz na początek zajrzeć na oficjalną stronę 
internetową standardu. Muszę jednak wspomnieć, co stało się z tablicą znaków ASCII i 
ANSI, znaną zapewne większości czytelników. 
A zatem - nie stało się nic. Pierwsze 128 liczb (0x00 do 0x7F) jest nadal kodami znaków 
w systemie ASCII. Wraz z kolejnymi 128 wartościami (0x80 do 0xFF) tworzą one tabelę 
ANSI. Ten drugi zestaw kodów jest specyficzny dla Windows i oznaczany nazwą strony 
kodowej - w Polsce jest to Windows-1250. Różni się ona chociażby od DOSowej strony 
852 czy też unormowanego i popularnego w polskim Internecie systemu ISO-8859-2. 
Jest to nieunikniona konsekwencja stosowania tylko 256 znaków ANSI - Unicode ze 
swymi 65536 miejscami na znaki rozwiązuje większość tego rodzaju kwestii. 
 
Znaki z ważniejszych stron kodowanych możesz znaleźć w Tablicach C. 
 
A co lParam? Nic nadzwyczajnego. Parametr ten zawiera znany już agregat sześciu 
danych. Raczej jednak nie mają one praktycznego znaczenia, gdyż są dokładną kopią 
lParam z komunikatu WM_[SYS]KEYDOWN, poprzedzającego zdarzenie znaku. Zwykle więc 
informacje odczytuje się z właściwego im komunikatu klawisza, a nie znaku. 

http://www.unicode.org/
http://www.unicode.org/


 465

Kontrola wejścia od klawiatury 

Zabawa z klawiaturą w Windows API nie ogranicza się li tylko do odbierania zdarzeń i 
reakcji na nie. Tak samo jak dla myszy możliwe jest przejęcie większej kontroli nad 
współpracą sprzetu z systemem operacyjnym. I tym właśnie zajmiemy się tej sekcji. 

Pobieranie stanu klawiszy 

Otrzymywanie komunikatów o klawiszach jest biernym sposobem kooperacji z 
klawiaturą. Istnieją też metody, w których to aplikacja ma większą kontrolę nad tym 
procesem i sama sprawdza stany poszczególnych klawiszy. 
O takim sprawdzaniu opowiemy sobie w tym paragrafie. Obejmie to między innymi 
dokładne omówienie funkcji GetKeyState() i GetAsyncKeyState(), z którymi 
zapoznaliśmy się już w podobnej sytuacji dotyczącej myszy. 

Stan pojedynczego klawisza 

Jak pamiętamy, sprawdzaniu stanu pojedynczego klawisza służy funkcja GetKeyState(): 
 

SHORT GetKeyState(int nVirtKey); 
 
Należy jej podać kod kontrolowanego, wirtualnego klawisza. Jest to jedna ze stałych VK_, 
ewentualnie (w przypadku klawiszy liter i liczb) kod ASCII odpowiedniego znaku. 
 
W zamian dostajemy… wynik :) Jest nim wartość typu SHORT (2 bajty) i składa się z 
dwóch części: 

 górny bajt (czytany przez HIBYTE()) po zrzutowaniu na typ logiczny131 informuje 
o wciśnięciu klawisza. true, TRUE lub ogólnie wartość różna od zera wskazuje na 
to, że klawisz jest wciśnięty. Nietrudno się domyślić, że zero znaczy coś 
przeciwnego :D 

 dolny bajt (LOBYTE()) daje wiedzę o tym, czy klawisz jest włączony. Większości 
klawiszy nie dotyczy ta własność, jest ona ważna tylko dla „locków”: Num Lock, 
Caps Lock i Scroll Lock132. Podobnie jak wyżej, logiczna prawda wskazuje na 
włączenie danego klawisza, fałsz - przeciwnie. 

 
Trzeba jeszcze powiedzieć jedną bardzo ważną rzecz na temat tej funkcji - skąd ona 
bierze stan klawiszy?… Wcale nie „pyta” o niego samej klawiatury (tak robi 
GetAsyncKeyState()), lecz uzyskuje go na podstawie kolejki komunikatów. Decyduje tu 
ostatnio otrzymany komunikat klawiatury, dotyczący sprawdzanego klawisza. 
Uzyskiwane informacje są więc zależne od komunikatów, jakie otrzymuje wątek (tzn. cała 
aplikacja - najczęściej) i nie dotyczą globalnego stanu klawiatury. Nie pochodzą z 
poziomu przerwań sprzetowych, lecz zdarzeń systemowych. 
 
Czy jest to wada? Nieszczególnie. GetKeyState() używamy głównie do sprawdzania 
stanu takich klawiszy jak Shift i Ctrl podczas przetwarzania zdarzeń innych klawiszy, np.: 
 

case WM_KEYDOWN: 
{ 
 switch (wParam) 
 { 
  case VK_F1: 
   if (HIBYTE(GetKeyState(VK_SHIFT)) 
    // kombinacja Shift+F1 

                                                 
131 Jak wiesz, takie rzutowanie można zastąpić porównaniem z zerem - także tym niejawnym, stosowanym w 
warunkach if czy pętli. 
132 Klawiszom tym odpowiadają stałe VK_NUMLOCK, VK_CAPITAL i VK_SCROLL. 



 466 

   else 
    // samo F1 
 
   break: 
 
  // itd. 
 } 
} 

 
Stan tych innych klawiszy otrzymujemy w komunikatach i to właśnie ich powinniśmy 
używać do reakcji na wciśnięcia i zwolnienia klawiszy w normalnych aplikacjach. 

Stan całej klawiatury 

W Windows API znajdziemy też funkcję pobierająca stan wszystkich klawiszy - 
GetKeyboardState(): 
 

BOOL GetKeyboardState(PBYTE lpKeyState); 
 
Działa ona mniej więcej tak, jak zastosowanie GetKeyState() dla parametrów z 
przedziału od zera do 256. GetKeyboardState() przyjmuje mianowicie tablicę 256 
bajtów, której indeksami są kody kolejnych wirtualnych klawiszy. 
Wynikiem funkcji jest TRUE dla operacji zakończonej powodzeniem i zero (FALSE) w 
innym przypadku. 
 
Jest jeszcze funkcja SetKeyboardState(), pozwalająca ustawić chwilowy stan klawiatury 
dla danego wątku. Możesz o niej poczytać w MSDN. 
Lepszą formą zmiany stanu klawiatury jest aczkolwiek użycie symulowane wejścia, czyli 
funkcji SendInput(). 

Asynchroniczne pobieranie stanu klawisza 

Drugą z funkcji stworzonych do uzyskiwania stanu pojedynczego klawisza jest 
GetAsyncKeyState(): 
 

SHORT GetAsyncKeyState(int vKey); 
 
Tak samo przynosimy jej kod wirtualnego klawisza, który chcemy sprawdzać. A co z 
wynikiem? Również jest podzielony na dwie części po jednym bajcie każda: 

 starszy bajt (HIBYTE()) znaczy to samo, co w GetKeyState(): po konwersji na 
wartość logiczną informuje o wciśniętym klawiszu (true) lub zostawionym w 
spokoju (false) 

 młodszy bajt (LOBYTE()) wskazuje, czy klawisz był wciskany (logiczna prawda) od 
czasu ostatniego wywołania GetAsyncKeyState(). Trzeba jednak wiedzieć, że to 
ostatnie wywołanie wcale nie musi pochodzić z naszej aplikacji i dlatego omawiana 
tu wartość nie ma praktycznego sensu 

 
Co różni tę funkcję od GetKeyState()? Pewne wskazówki co do tego mogłeś wyczytać 
między wierszami powyższego opisu i w akapicie o tamtej pokrewnej funkcji. Powiedzmy 
jednak wprost, o co chodzi. 
Otóż GetAsyncKeyState(), czyniąc zadość swej nazwie, pobiera tzw. asynchroniczny 
stan klawisza. Asynchroniczy to znaczy niezależny od wątku, a mówiąc po ludzku - 
globalny dla całego systemu oraz niezależny od kolejki komunikatów. Funkcja ta 
pobiera dane bezpośrednio od sprzętu, niejako z pominięciem mechanizmu zdarzeń 
Windows. Przejawia się to chociażby w tym, że kontroluje stan fizycznych, a nie 
logicznych przycisków myszki, o czym wspomniałem przy pierwszym spotkaniu z tą 
funkcją. 
 



 467

Ze względu na ten sposób działania GetAsyncKeyState() jest przydatna w programach 
czasu rzeczywistego. Będziemy więc używać tej funkcji do pobierania stanu klawiszy w 
naszych grach - przynajmniej na początku. Przygotuj się zatem na wiele długich i 
owocnych spotkań z funkcją GetAsyncKeyState() ;) 

Symulowanie klawiatury 

W poprzednim podrozdziale nauczyliśmy się udawać myszkę. Nie ma więc powodu, 
abyśmy tego samego nie mogli czynić z klawiaturą. Jest to o tyle proste, iż odbywa się za 
pomocą niemal tych samych narzędzi. Są nimi: funkcja SendInput() i struktura INPUT, 
które sobie przypomnimy, oraz struktura KEYBDINPUT, którą teraz poznamy. 
A zatem do dzieła! 

Funkcja SendInput() i struktura INPUT - powtórzenie 

Jak pamiętamy, do generowania sztucznych zdarzeń od urządzeń wejściowych służy 
funkcja SendInput(): 
 

UINT SendInput(UINT nInputs, 
 LPINPUT pInputs, 
 int cbSize); 

 
Przypomnijmy, że w pierwszym parametrze nInputs należy jej przekazać tablicę struktur 
INPUT o liczbie elementów określonej drugim parametrem, pInputs. Trzeci argument 
trzeba natomiast ustawić na rozmiar struktury INPUT, czyli po prostu sizeof(INPUT). 
 
Pojedynczy element przekazywanej do funkcji tablicy opisuje jedno symulowane 
zdarzenie od urządzenia wejściowego. Czyni to za pomocą struktury INPUT: 
 

struct INPUT 
{ 
 DWORD type; 
 
 union 
 { 
  MOUSEINPUT mi; 
  KEYBDINPUT ki; 
  HARDWAREINPUT hi; 
 }; 
}; 

 
W niej też pole type określa nam źródło zdarzenia, czyli rodzaj urządzenia. Niedawno, 
zajmując się myszką, ustawialiśmy je na INPUT_MOUSE. Obecnie, gdy chcemy emulować 
klawiaturę, posłużymy się raczej stałą INPUT_KEYBOARD. 
Wiąże się to także z porzuceniem pola mi, używanego dotąd. Zdarzenie klawiatury 
musimy bowiem zapisać w polu ki, należącym do innego typu - KEYBDINPUT. 

Struktura KEYBDINPUT 

Struktura opisująca zdarzenie klawiatury przedstawia się w ten oto sposób: 
 

struct KEYBDINPUT 
{ 
 WORD wVk; 
 WORD wScan; 
 DWORD dwFlags; 
 DWORD dwTime; 
 ULONG_PTR dwExtraInfo; 
}; 



 468 

 
Co z szczęście - tylko pięć pól ;D Ich znaczenie opisuje niniejsza tabelka: 
 

typ parametry opis 

WORD 
WORD 

wVk 
wScan 

W którymś z tych parametrów należy podać kod klawisza, 
którego ma dotyczyć zdarzenie. Może to być kod wirtualnego 

klawisza - wtedy wprowadzamy go w wVk - lub kod 
skanowania (OEM) - wówczas wykorzystujemy pole wScan. 
Nieużywane pole wypełniamy zwykle zerem lub ignorujemy. 

 
Znaczenie obu tych pól zmienia aczkolwiek flaga 

KEYEVENTF_UNICODE, jeżeli jest ustawiona w polu dwFlags. 
Za chwilę powiemy nieco więcej na ten temat. 

DWORD dwFlags Są to flagi kontrolujące produkowane zdarzenie. Ich lista 
jest podana poniżej. 

DWORD 
ULONG_PTR 

dwTime 
dwExtraInfo 

Te dwa pola mają identyczne przeznaczenie, jak time i 
dwExtraInfo w strukturze MOUSEINPUT. Przypomnijmy tylko, 

że pierwsze z nich określa moment wystąpienia 
symulowanego zdarzenia w formie liczby milisekund od 

startu systemu (czyli rezultatu GetTickCount()). Drugie pole 
to natomiast jakieś dodatkowe informacje związane ze 

zdarzeniem, zwykle niewykorzystywane. 

Tabela 55. Pola struktury KEYBDINPUT 

 
Z tabelki dowiedzieliśmy się, że możliwe jest podanie kodu klawisza, który bierze udział 
w generowanej akcji klawiatury. To jednak niewystarczająca informacja i dlatego jest 
jeszcze pole dwFlags, będące kombinacją bitową odpowiednich flag. Flagi te 
podsumowuje następna tabela: 
 

flaga znaczenie 

KEYEVENTF_SCANCODE 

Obecność tej flagi informuje funkcję SendInput(), że ma brać 
pod uwagę pole wScan, a więc sprzętowy kod skanowania 

klawisza. Analogicznie, jej brak sprawia, że ważne staje się 
pole wVk, czyli że klawisz jest rozpoznawany na podstawie 

swego uniwersalnego kodu wirtualnego. 

KEYEVENTF_EXTENDEDKEY 
Tę flagę ustawiamy, gdy za pomocą kodu skanowania (wScan) 

generujemy zdarzenie klawisza rozszerzonego. Naturalnie, 
musi ona wystąpić razem z KEYEVENTF_SCANCODE. 

KEYEVENTF_KEYUP 
Kiedy flaga ta jest ustawiona, symulowanym zdarzeniem 

będzie zwolnienie klawisza. W przeciwnym wypadku klawisz 
zostanie programowo wciśnięty. 

KEYEVENTF_UNICODE 

Pozwala na zasymulowanie wprowadzania znaku Unicode - 
jego kod powinien być w polu wScan. Z oczywistych względów 
wszystkie znaki Unicode nie są dostępne na klawiaturze, więc 

system radzi sobie tutaj w inny sposób: jako wciśnięty 
wirtualny klawisz przyjmuje specjalną stałą VK_PACKET - 

można ją potem znaleźć w parametrze wParam komunikatów 
WM_[SYS]KEYDOWN/UP. Natomiast kod znaku w WM_[SYS]CHAR 

jest już podanym w wScan 16-bitowym kodem Unicode. W 
sumie więc aplikacjom „wydaje się”, że użytkownik nabrał 

magicznej mocy wprowadzania kilkudziesięciu tysięcy znaków 
bezpośrednio ze swojej skromnej, nieco ponadstuklawiszowej 

klawiatury. 
 

Flaga KEYEVENTF_UNICODE musi wystapić z KEYEVENTF_KEYUP, 



 469

flaga znaczenie 
lecz bez KEYEVENTF_SCANCODE. 

Tabela 56. Flagi bitowe pola dwFlags struktury KEYBDINPUT 

 
Jaką wiedzę nabyliśmy stąd? Przede wszystkim taką, że domyślnie generowanym 
zdarzeniem jest zawsze wciśnięcie klawisza; jeżeli chcemy symulować jego zwolnienie, 
musimy posłużyć się flagą KEYEVENTF_KEYUP. Poza tym wiemy też, że standardowo 
SendInput() bierze pod uwagę kod wirtualnego klawisza, czyli wartość pola wVk; jeśli 
pragniemy oprzeć się na kodzie skanowania (polu wScan), powinniśmy podać flagę 
KEYEVENTF_SCANCODE. Wreszcie poznaliśmy ciekawą możliwość symulowania zdarzeń 
fizycznie niemożliwych, czyli bezpośredniego wprowadzania znaków z całego zestawu 
Unicode - dzieje się to dzięki fladze KEYEVENTF_UNICODE. 

Przykłady 

Gdy mamy już za sobą formalny opis narzędzia, czas przyjrzeć się przykładom jego 
wykorzystania. 
 
Najpierw więc programowo przyciśniemy klawisz Enter. Do wykonania tego zadania 
można posłużyć się takim kodem: 
 

// deklaracja i wyzerowanie struktury INPUT 
INPUT Klawisz; 
ZeroMemory (&Klawisz, sizeof(INPUT)); 
 
// ustawienie pól struktury i wygenerowanie zdarzenia 
Klawisz.type = INPUT_KEYBOARD; // generujemy zdarzenie klawiatury... 
Klawisz.ki.wVk = VK_RETURN; // a dokładniej klawisza Enter 
SendInput (1, &Klawisz, sizeof(INPUT)); // i voilà :) 

 
Zauważmy, że nie musieliśmy w nim w ogóle zajmować się polem dwFlags. Jest tak, 
gdyż domyślne jego opcje (odczytanie kodu wirtualnego klawisza i jego wciśnięcie) 
całkowicie nam odpowiadają. 
 
Po wykonaniu powyższych wierszy przycisk Enter pozostaje wciśnięty - pamiętajmy o 
tym. Konsekwencją tego jest ciągłe wysyłanie komunikatów WM_[SYS]KEYDOWN, zgodnie z 
ustawioną częstotliwością powtarzania. Aby przerwać tę serię, musimy zwolnić wciśnięty 
klawisz: 
 

INPUT Klawisz; 
ZeroMemory (&Klawisz, sizeof(INPUT)); 
 
// zwolnienie klawisza 
Klawisz.type = INPUT_KEYBOARD;  // wskazujemy na klawiaturę 
Klawisz.ki.wVk = VK_RETURN;  // kod klawisza Enter 
Klawisz.ki.dwFlags = KEYEVENTF_KEYUP; // flaga zwolnienia klawisza 
SendInput (1, &Klawisz, sizeof(INPUT)); // it’s showtime! ;) 

 
W ten sposób klawisz Enter wróci do stanu wyjściowego, ale jego wciśnięcie i puszczenie 
zostanie zarejestrowane. 
 
Pora na ostatni przykład, znacznie bardziej skomplikowany. Napiszemy ciekawą funkcję, 
która zasymuluje wprowadzenie całego tekstu, podanego jej w parametrze - klawisz po 
klawiszu. Funkcja ta mogłaby wyglądać tak133: 
                                                 
133 Intensywnie używam tu Biblioteki Standardowej, więc jeśli nie znasz jej choć trochę, możesz mieć problemy 
ze zrozumieniem kodu. Komentarze powinny jednak sporo wyjaśniać. 



 470 

 
#include <string> 
#include <vector> 
#include <windows.h> 
 
// ----------------------------------------------------------------------  
 
bool SymulujTekst(const std::string& strTekst) 
{ 
 // sprawdzamy, czy napis nie jest pusty 
 if (strTekst.empty()) return false; 
 
 // zapisujemy długość napisu w pomocniczej zmiennej 
 UINT uDlugosc = (UINT) strTekst.length(); 
 
 
 /* generujemy tablicę zdarzeń */ 
 
 // deklarujemy zmienne 
 std::vector<INPUT> aZdarzenia; // rzeczona tablica 
 INPUT Zdarzenie;    // jedno zdarzenie 
 
 // w tablicy potrzebne są dwa elementy dla każdego 
 // znaku napisu (wciśnięcie i zwolnienie odpowiedniego klawisza) 
 // i tyleż rezerwujemy 
 aZdarzenie.reserve (uDlugosc * 2); 
 
 // iterujemy po napisie i dla każdego znaku tworzymy dwa zdarzenia 
 for (std::string::const_iterator i = strTekst.begin(); 
 i != strTekst.end(); ++i) 
 { 
  // kontrolujemy, czy znak nalezy do zestawu ASCII 
  if ((*i) > 0x7F) return false; 
 
  // ustawiamy strukturę na parametry wspólne obu zdarzeniom 
  ZeroMemory (&Zdarzenie, sizeof(INPUT)); 
  Zdarzenie.type = INPUT_KEYBOARD; 
  Zdarzenie.ki.wVk = (*i); // kod ASCII znaku == kod wirt. klaw. 
 
  // dodajemy pierwsze zdarzenie - wciśnięcie klawisza 
  aZdarzenia.push_back (Zdarzenie); 
 
  // dodajemy drugie zdarzenie - zwolnienie klawisza 
  Zdarzenie.ki.dwFlags = KEYEVENTF_KEYUP; 
  aZdarzenia.push_back (Zdarzenie); 
 } 
 
 
 /* symulujemy zdarzenia */ 
 
 // wywołujemy SendInput(), sprawdzając liczbę poprawnych zdarzeń 
 // rzutowanie const_cast w drugim parametrze jest konieczne ze 
 // względu na ewidentny burak w deklaracji SendInput(), gdzie 
 // ten parametr jest zwkłym wskaźnikiem, zmiast stałym do stałej 
 if (SendInput(aTablica.size(), const_cast<LPINPUT>(aTablica.data()), 
 sizeof(INPUT)) < (UINT) aTablica.size()) 
  // gdy wygenerowane mniej zdarzeń niż trzeba, zwracamy false 
  return false; 
 
 // w końcu, zwracamy true 
 return true; 



 471

} 
 
Wadą tej funkcji jest nieumiejętność generowania zdarzeń znaków spoza zestawu ASCII. 
Ten problem można jednak obejść, jeżeli zastosuje się flagę KEYEVENTF_UNICODE. 
Spróbuj samodzielnie napisać poprawioną wersję funkcji - teraz lub później, bo będzie to 
częścią pracy domowej na koniec rozdziału :D 

Ustawienia klawiatury 

Klawiatura to pospolite urządzenie, które jest w dużym stopniu konfigurowalne. Windows 
posiada kilka opcji, umożliwiających zmianę jego parametrów - będą one treścią tej 
sekcji. 
 
Użyjemy tutaj kilka razy funkcji SystemParametersInfo(), zatem dobrze byłoby, gdybyś 
przypomniał ją sobie - z poprzedniego podrozdziału o myszce lub bezpośrednio z MSDN. 

Powtarzanie znaku 

Chyba najważniejszymi ustawieniami personalizacyjnymi klawiatury (albo jednymi z 
najważniejszych) są opcje powtarzania znaku. Mam tu na myśli regulację czasu 
przytrzymywania klawisza, po którym następuje powtarzanie, oraz szybkości duplikacji. 
Ustawienie nieodpowiednich dla ciebie parametrów może prowadzić albo do powstawania 
‘tttaakkkiiiicchhh bbłęędóóww’ w pisaniu, albo do frustracji spowodowanej długim 
czekaniem na wyprodukowanie np. sekwencji myślników (-) imitujących poziomą linię. 
 
Z punktu widzenia użytkownika opcje powtarzania można ustawić w aplecie Panelu 
Sterowania Właściwości: Klawiatura. Jego interesujący fragment wygląda tak: 
 

 
Screen 65. Opcje powtarzania znaku 

 
Widzimy tu dwa ustawienia, dostrajane za pomocą suwaków: 

 Opóźnienie powtarzania ma wpływ na czas przytrzywania klawisza, po upłynięciu 
którego znak jest powtarzany 

 Częstotliwość powtarzania reguluje szybkość produkcji kolejnych znaków przy 
wciśniętym i przytrzymanym klawiszu 

 



 472 

Nas, jako programistów, będzie naturalnie interesować sposób manipulowania tymi 
opcjami za pośrednictwem funkcji Windows API. Tym więc zajmiemy się w aktualnym 
paragrafie - przyjrzymy się obu ustawieniom powtarzania znaku. 

Opóźnienie powtarzania 

Interwał czasu, po jakim rozpocznie się powtarzanie, możemy kontrolować za pomocą 
funkcji SystemParametersInfo(). 
 
Pobranie wartości tego ustawienia wiąże się z wykorzystaniem stałej 
SPI_GETKEYBOARDDELAY i wygląda tak: 
 

UINT uOpoznienie; 
SystemParametersInfo (SPI_GETKEYBOARDDELAY, 0, &uOpoznienie, 0); 

 
W zmiennej, której adres należy podać w trzecim parametrze (pvParam) odnajdziemy 
teraz liczbę z przedziału od 0 do 3, mówiącą jak długi jest omawiany okres czasu. 
Faktyczna jego rozciągłość zależy od sprzętu i wynosi mniej więcej 250 milisekund dla 
ustawienia 0, a następnie o tyleż przyrasta z każdym krokiem (osiąga więc ok. 1 sekundę 
dla ustawienia 3). 
 
Taką samą jednostkę dla opóźnienia musimy przyjąć, gdy chcemy je zmodyfikować. 
Służy do tego stała SPI_SETKEYBOARDDELAY użyta na przykład tak: 
 

SystemParametersInfo (SPI_SETKEYBOARDDELAY, 3, NULL, 0); 
 
W drugim parametrze SystemParametersInfo() należy podać nową wartość opcji. W 
powyższym kodzie będzie więc ona ustawiona na maksimum, a powtarzanie znaku 
rozpocznie się dopiero po około sekundzie przytrzymywania klawisza. 

Częstotliwość powtarzania 

Gdy repetycja już się rozpocznie, za szybkość jej wykonywania odpowiada druga z opcji 
powtarzania, czyli częstotliwość. Jej programistyczna obsługa także wymaga użycia 
funkcji SystemParametersInfo(). 
 
Oczywiście zaczniemy od pobierania. Aby uzyskać częstotliwość powtarzania znaku 
posługujemy się identyfikatorem SPI_GETKEYBOARDSPEED: 
 

UINT uCzestotliwosc; 
SystemParametresInfo (SPI_GETKEYBOARSPEED, 0, &uCzestotliwosc, 0); 

 
Ponownie otrzymana wielkość nie jest bezwględna i oscyluje w granicach od 0 (co 
odpowiada ok. 2-3 powtórzeniom znaku na sekundę) do 31 (to znaczy przeciętnie 30 
powtórzeń na sekundę). Dokładna częstotliwość jest, podobnie jak opóźnienie, zależna od 
posiadanego modelu klawiatury. 
 
Teraz zajmijmy się ustawianiem tego ustawienia ;) By je zmodyfikować, należałoby 
podeprzeć się stałą SPI_SETKEYBOARDSPEED w niniejszy sposób: 
 

SystemParametersInfo (SPI_SETKEYBOARDSPEED, 31, NULL, 0); 
 
Tak też ustawiamy największą możliwą prędkość powtarzania znaków (31). 



 473

Ułatwienia dostępu 

Na koniec zapoznamy się opcjami klawiatury, które ułatwiają pracę z komputerem 
osobom niepełnosprawnym. Wiele z tych ustawień może być aczkolwiek wygodna także 
dla zupełnie zdrowych użytkowników. 
 
Ułatwienia klawiatury są dość złożonymi zagadnieniami; każde z nich posiada na swój 
użytek pewną strukturę, której pola należałoby omówić. Nie ma na to już miejsca ani 
czasu, dlatego w tym paragrafie opiszę jedynie poszczególne ułatwienia i wskażę źródła, 
z których możesz się dowiedzić więcej na ich temat. 

KlawiszeFiltru 

KlawiszeFiltru (ang. FilterKeys) są opcją, której zadaniem jest przeciwdziałanie skutkom 
nieumyślnych wciśnięć klawiszy. Odbywa się to poprzez ignorowanie takich przyciśnięć, 
które nie są przytrzymane przez odpowiednio długi czas (długi znaczy tu raczej ułamek 
sekundy). Możliwe jest także drastyczne zmniejszenie szybkości powtórzeń znaków. 
 
Programowa kontrola KlawiszyFiltru może być przeprowadzana funkcją 
SystemParametersInfo() oraz stałymi SPI_GETFILTERKEYS i SPI_SETFILTERKEYS. Z 
opcją jest też związana struktura FILTERKEYS. 

KlawiszeTrwałe 

KlawiszeTrwałe (ang. StickyKeys) zmieniają sposób działania klawiszy Ctrl, Shift i Alt, 
ułatwiając wykonywanie zawierających je kombinacji. Zamiast jednoczesnego wciskania 
wszystkich klawiszy lub przytrzymywania wspomnianych trzech, wystarczy ich 
jednokrotne dociśnięcie i zwolnienie. Przy włączonych KlawiszachTrwałych wykonanie 
kombinacje Alt+Tab sprowadza się do wciśnięcia i puszczenia klawisza Alt, a następnie 
wciśnięcia Tab - nie trzeba przytrzymywać pierwszego z klawiszy. 
 
Za KlawiszeTrwałe odpowiadają stałe SPI_GETSTICKYKEYS i SPI_SETSTICKYKEYS funkcji 
SystemParametersInfo() oraz struktura STICKYKEYS. 

KlawiszePrzełączające 

Po uaktywnieniu KlawiszyPrzełączających (ang. ToggleKeys) komputer będzie generował 
dźwięk w momencie wciśnięcia jednego z klawiszy Lock: Num Lock, Caps Lock i Scroll 
Lock. Powinno to na przykład zapobiec błędom polegającym na wpisywaniu ‘tEKSTU 
pODOBNEGO dO tEGO’ :) 
 
Modyfikacja ustawień KlawiszyPrzełączających odbywa się stałymi SPI_GETTOGGLEKEYS i 
SPI_SETTOGGLEKEYS oraz strukturą TOGGLEKEYS. 
 

*** 
 
Zaprezentowaniem powyższej trójcy ułatwień dostępu kończymy nasze spotkanie z 
klawiaturą. Poznaliśmy tutaj większość aspektów jej wykorzystania przy pomocy 
Windows API, co powinno nam pomóc przy tworzeniu aplikacji okienkowych. 
 
Z ważniejszych, a nieomówionych kwestii należy wymienić układy klawiatury oraz 
karetkę. Jeżeli chcesz, możesz poczytać na ich temat w MSDN. 

Podsumowanie 
Dobrnęliśmy wreszcie do końca tego rozdziału. Teraz wiesz już wszystko, co niezbędne 
do poprawnego wykorzystania klawiatury i myszy w twoich programach dla środowiska 



 474 

Windows. Znasz już odpowiednie komunkaty oraz pomocnicze funkcje WinAPI, które 
będą ci w tym pomocne. 
 
W następnym rozdziale zajmiemy się wreszcie rysowaniem i grafiką. Wprawdzie nie 
będzie to jeszcze DirectX, ale i tak powinieneś być zadowolony. Zapoznamy się bowiem 
dokładnie z bogatą biblioteką graficzną Windows GDI. 

Pytania i zadania 

Oto niezbędny zestaw pytań kontrolnych i zadań do wykonania. Miłej pracy ;) 

Pytania 

1. Czym jest urządzenie wejściowe? Jakie znasz rodzaje takich urządzeń? 
2. Co w Windows API rozumiemy pod pojęciem myszy? 
3. Jakie rodzaje komunikatów myszy może otrzymać okno w Windows? 
4. Jakie informacje są dostarczane w parametrach wParam i lParam każdego 

komunikatu myszy? 
5. Który komunikat przycisku myszki należy obsługiwać, aby zapewnić reakcję na 

pojedyncze kliknięcie? 
6. Jaki wymóg musi spełnić okno, aby otrzymywać informacje o dwukrotnych 

kliknięciach? 
7. Które okno otrzymuje komunikat WM_MOUSEWHEEL o obrocie rolki myszy? 
8. Co to znaczy, że okno ma władzę nad myszką? Jak można taką władzę uzyskać? 
9. Jak można pobrać pozycję kursora w dowolnym momencie? 
10. W jaki sposób sprawdzamy stan wciśnięcia przycisków myszy? O czym należy 

pamiętać, jeżeli używamy do tego funkcji GetAsyncKeyState()? 
11. Jak można programowo symulować ruch myszy, wciśnięcia przycisków oraz obrót 

rolką? 
12. Jak sprawdzamy obecność w komputerze i możliwości myszki? 
13. Jakie ułatwienia dostępu są związane z myszką? 
14. Czym jest potok klawiszy i jakie są jego kolejne etapy? 
15. Czym różni się kod skanowania od kodu wirtualnego klawisza? 
16. Które okno otrzymuje komunikatu o zdarzeniach klawiatury? 
17. Jakie informacje można odczytać z parametru lParam komunikatów klawiatury? 
18. Jakie komunikaty o klawiszach generuje system Windows? 
19. Czym się różni komunikat systemowy od pozasystemowego? 
20. Skąd pochodzą komunikaty o znakach i jaka jest ich rola? 
21. Co zawiera parametr wParam komunikatów o znakach? 
22. Jakimi dwoma funkcjami pobieramy stan pojedynczego klawisza wirtualnego i 

czym różnią się one między sobą? 
23. Jak wygląda programowe symulowanie klawiatury? 
24. Jakie dwa ustawienia kontrolują powtarzanie znaku przy wciśniętym klawiszu? 
25. Podaj trzy ułatwienia dostępu związane z klawiaturą. 

Ćwiczenia 

1. Napisz program, który wyświetli komunikat po kliknięciu lewym przyciskiem 
myszy w obszarze klienta swojego okna. 

2. (Trudne) Stwórz aplikację, która będzie reagowała pokazaniem menu sterującego 
okna w odpowiedzi na kliknięcie jego wnętrza. 
Wskazówka: wykorzystaj komunikat WM_NCHITTEST. 

3. Zmodyfikuj przykład CursorPos tak, ażeby wyświetlał on współrzędne ekranowe 
kursora. Najlepiej, jeżeli nie wykorzystasz do tego funkcji GetCursorPos(). 

4. Zmień nasz przykładowy szkicownik Scribble - niech okno nie traci swej 
zawartości po odrysowywaniu. 



 475

Wskazówka: przypomnij sobie omówienie procesu tworzenia okna z poprzedniego 
rozdziału. 

5. Utwórz program pokazujący w swym oknie kod wirtualnego klawisza, który wciska 
użytkownik. 
(Trudne) Dodaj do tego jeszcze nazwę klawisza w postaci tekstu, np. "Enter" 
czy "Strzałka w dół". 

6. (Ekstremalne) Stwórz aplikację zliczającą wciśnięte przez użytkownika klawisze 
w całym systemie i pokazującą ją w małym okienku w trybie „zawsze na wierzchu” 
Wskazówka: zainteresuj się filtrami (ang. hooks), a szczególnie jednym rodzajem 
- WH_JOURNALRECORD. Potrzebne infomacje znajdziesz w opisie funkcji 
SetWindowsHookEx(). 

7. Napisz program, który pozwalałby na zmianę tytułu swego okna. Niech będzie on 
początkowo pusty, a wciśnięcia klawiszy alfanumerycznych niech powoduje 
dodanie do niego odpowiednich znaków. 
(Trudniejsze) Spraw jeszcze, aby klawisz Backspace usuwał już wprowadzone 
znaki. 

8. (Trudniejsze) Napisz lepszą wersję funkcji SymulujTekst(). Powinna ona 
przyjmować dowolny tekst, najlepiej w formacie Unicode. 


