WINDOWS GDI

Jeden obraz wart jest tysigc stow.
znane przystowie

Juz na poczatku kursu WinAPI wyjasnitem, ze bedziemy zajmowac sie programowaniem
graficznego interfejsu uzytkownika. Widoczne na ekranie monitora elementy GUI sg zas
niczym innym jak odpowiednio spreprarowanymi obrazkami. Windows potrafi zrobi¢
catkiem sporo, jezeli chodzi o manipulacje obrazem, jednak na co dzien nie pokazuje
zwykle catej swojej mocy. Praca modutu graficznego ogranicza sie do wyswietlania okien,
przyciskdw, menu, list, pol tekstowych i innych kontrolek. A przeciez potrafi on znacznie
wiecej.

Dlatego tez w tym rozdziale zajmiemy sie bibliotekg graficzng, jaka jest wbudowana w
Windows. Chodzi o tytutowe Windows GDI.

~Chwileczke”, mozesz powiedzie¢, ,MieliSmy przeciez zajac sie inng bibliotekg graficzng,
jakaq jest DirectX. Co z nig?...” Ha, jeste$ uwazny - to dobrze. Rzeczywiscie, GDI mozna
przyrownac do DirectX nie tylko dlatego, ze oba podsystemy majg podobng role do
spetnienia, ale tez wzgledu na zblizone mozliwosci. W grach bedziemy uzywac gtéwnie
DirectX, lecz niejednokrotnie przydatne bedg zaawansowane operacje na grafice
dwuwymiarowej, ktérych brakuje temu interfejsowi. Programowe generowanie tekstur,
wypisywanie formatowanego tekstu czy tworzenie wtasnego systemu GUI - to tylko
niektore kwestie, przy ktdrych bardzo pomocna, wrecz nieodzowna, staje sie znajomos¢
biblioteki Windows GDI.

Co jeszcze przemawia za uwaznym przyjrzeniem sie tej czesci WinAPI? Chociazby sam
fakt, z czym mamy do czynienia. Skoro niedtugo bedziemy na codzien uzywacd
skomplikowanego i poteznego instrumentarium graficznego DirectX, warto bytoby
zaznajomic sie wpierw z jego mtodszym bratem. Wiele koncepcji, termindéw, poje¢,
sposobdw, a nawet nazw funkcji bedzie powtarzato sie w identycznej lub zblizonej formie
w obu bibliotekach. Jesli wiec teraz poznamy je podczas nauki stosunkowo prostego
narzedzia, jakim jest GDI, fatwiej bedzie nam przenies¢ je potem na grunt bardziej
skomplikowanego DirectX’a.

Pomysimy wreszcie, ze oto bedziemy przeciez zajmowac¢ sie prawdziwg Grafikg przez
duze G :)) Jaka to mita odmiana po godzinach spedzonych przed siermieznym ekranem
konsoli czy tez na kontakcie z mato zachwycajacym, standardowym GUI systemu
Windows. Teraz bedziemy mogli odetchna¢ i zajac¢ sie bardziej przyjemnymi
zagadnieniami, a przy tym dostownie zobaczy¢ nasze programy w akcji!

Mysle wiec, Ze nauka obstugi Windows GDI bedzie dla ciebie catkiem przyjemnym (a
przynajmniej znosnym ;D) zajeciem.

Stowko o grafice komputerowej

Dotychczas w zasadzie nie mogliSmy powiedzie¢, ze zajmujemy sie grafikgq komputerowa.
Teraz witasnie przyszedt czas na pierwsze spotkanie nig i dlatego musimy sobie od razu
wyjasnic kilka spraw z tym zwigzanych.

484 Windows API

Powiemy wiec sobie o dwdch podstawowych rodzajach grafiki, pikselach i kolorach.
Przypatrzymy sie tez réznym typom urzadzen graficznych

Rodzaje grafiki

Tradycyjny podziat grafiki oznacza wyrdznienie jej dwoch rodzajow: grafiki rastrowej
oraz wektorowej. Roznica pomiedzy nimi polega na innej interpretacji obrazu oraz jego
zapisie w pamieci operacyjnej i w pliku dyskowym.

Grafika rastrowa

Tryb rastrowy jest naturalnym i czesto jedynym sposobem pracy wiekszosci urzadzen
graficznych. Zalicza sie do nich na przyktad monitor i drukarka.

W grafice rastrowej (ang. raster graphics) obraz jest przedstawiany jako
dwuwymiarowa tablica danych. Kazdy jego maty fragment jest opisany przez okreslong
ilos¢ informacji, czyli bitdbw. Od tego wziefa sie tez nazwa rysunkow rastrowych -
bitmapy.

| To co ogladasz na ekranie monitora jest wkasnie bitmapa.

Piksele

Najmniejszy element rastrowego obrazka nazywamy pikselem. Jest on najczesciej
kwadratowy i wypetniony zawsze jednolitym kolorem. Ogladajac ilustracje, zwykle nie
widzimy jednak pojendycznych pikseli z bardzo prostego powodu: sq one zbyt mate.
Stajq sie widoczne dopiero przy duzych powiekszeniach, tworzac niezbyt przyjemna dla
oczu siatke kwadratéw.

Azeby unikng¢ takich niepozadanych efektéw, bitmapa musi zawiera¢ dostatecznie duzo
pikseli. Inaczej méwigc, musi ona posiada¢ odpowiednio duzg rozdzielczos$¢

(ang. resolution). Wielkos¢ ta okresla ilos¢ pikseli w pionie i poziomie, tworzacych siatke
obrazu; dla przykfadu 300x200 oznacza, iz bitmapa ma szerokos$¢ 300 pikseli, a
wysokos¢ 200. Naturalnie, im wyzsze sg obie te wartosci, tym lepsza jakos$¢ obrazu i
wyzsza jego ,,odpornos¢ na powiekszanie”.

Rysunek 11. Obraz rastrowy w rozdzielczosci 32x32

Ze wzrostem rozdzielczosci zwigzany jest wzrost liczby pikseli, a zatem zwiekszenie liczby
informacji opisujacych. Sprawia to, ze duze bitmapy zajmuja wiele miejsca w komputerze
- niekiedy sg to nawet megabajty. Dlatego tez wymyslono wiele formatow grafiki
rastrowej,ktore oferujg kompresje danych. Najczesciej odbywa sie to kosztem jakosci

Windows GDI 485

obrazka, jest to wiec kompresja stratna. Popularnym formatem wyposazonym w taka
mozliwos¢ jest JPEG.

Zauwazmy aczkolwiek, ze takie sposoby zmniejszania rozmiaru obrazkéw dotycza tylko
ich przechowywania na dysku. Podczas obrébki bitmap musza by¢ one zapisane w
pamieci operacyjnej w swej zwykiej postaci - oto przyczyna, dla ktérej praca z grafikg
wymaga duzej ilosci RAMu.

Kolory

Na obiektywny rozmiar oraz subiektywng jakos$¢ rastrowej bitmapy wptywa jeszcze jeden
wazny czynnik. Jest nim doktadnos¢ odzwierciedlenia rzeczywistych koloréw, ich odcieni
oraz natezenia. Ta cecha obrazu jest najczesciej rowniez proporcjonalna do jego
wielkosci: lepsze odzworowanie barw pocigga za sobg najczesciej wiekszy rozmiar
wynikowego pliku graficznego.

Dzieje sie tak, gdyz bogatszy zbior koloréw, udostepniajacy duzo odcieni barw, wymaga
przechowywania wiekszej ilosci informacji dla pojedynczego piksela. Moze sie ona wahacd
od zaledwie jednego bitu do kilku bajtow.

Wazny jest rowniez sposob, w jaki wartosci zapisane dla kazdego piksela przektadajq sie
na rzeczywiste kolory, ktére mozemy zobaczy¢. Najprostsza drogg jest tutaj ustalenie
pewnej statej palety barw i przechowywanie w obrazie indekséw poszczegdlnych
kolorow w tejze palecie jako zwyczajnych liczb. W zasadzie mozna powiedzie¢, ze
wszystkie systemy zapisywania kolorow korzystajg z tej metody. Jednak w kazdym z nich
wartos¢ liczbowa piksela moze by¢ takze interpretowana na inny, bardziej swoisty
sposob.

Przyjrzymy sie teraz kilku takim systemom kodowowania barw.

RGB

Akronim RGB pochodzi od nazw trzech koloréw podstawowych w tym systemie:
czerwonego (ang. red), zielonego (ang. green) oraz niebieskiego (ang. blue).
Wszystkie inne barwy powstajg poprzez odpowiednie zmieszanie tych trzech koloréw
gtéwnych.

Sktadowe barw podstawowych w wynikowym kolorze nazywami kanatami
(ang. channels). W systemie RGB mamy wiec kanat czerwony, zielony i niebieski.

Trzeba jeszcze wiedzie¢, jak odbywa sie owo mieszanie. Otdz btedem jest sadzi¢, ze
dziata ono na podobnej zasadzie jak fgqczenie farb na malarskiej palecie. RGB jest
systemem uzywanym gtéwnie do wyswietlania na ekranach monitoréw i dlatego
kryterium mieszania kolordw jest tu interferencja fal swietlnych, ktére padaja na
kineskop.
Spokojnie, nie oznacza to dla nas koniecznosci nauki praw fizyki decydujacych o
wiasciwosciach swiatta (czyli optyki). Nie jest to nam potrzebne. Wystarczy tylko wiedziec¢
o dwoch stanach skrajnych:
> brak swiatta oznacza rowniez brak koloru. Kolor czarny odpowiada wiec takiej
sytuacji, gdy wszystkie trzy skladowe RGB sg rowne zeru
> najwieksza intensywnos¢ swiatta w kazdym z tréjki kanatéw oznacza natomiast
kolor biaty

Z tego powodu system koloréw RGB nazywamy addytywnym. Wiekszym wartosciom
sktadowych przyporzadkowane sg bowiem jasniejsze kolory.

Wszystkie pozostate barwy sytuujg sie gdzies pomiedzy tymi dwoma krancowymi
kolorami. Jesli kazdej ze sktadowych odpowiada taka sama intensywnos¢ koloru
podstawowego, wtedy mamy do czynienia z pewnym odcieniem szarosci
(ciemniejszym lub jasniejszym). Inne kolory powstajg przy réznych wartosciach barw
podstawowych w kanatach RGB.

486 Windows API

Rysunek 12. Spektrum barw podstawowych RGB

Komputerowy zapis kolorow w systemie RGB odbywa sie poprzez dobranie pewnych
wartosci liczbowych, ktdére okreslajg intensywnosc trzech sktadowych koloru. Zero
oznacza zawsze brak danej sktadowej w finalnej barwie; drugi koniec skali zalezy od
doktadnosci odwzorowania koloréw, na jakg mozemy sobie pozwoli¢. Im wiecej wartosci
posrednich zmiesci sie pomiedzy tymi skrajnymi, tym oczywiscie wiekszg liczbe koloréw
bedziemy mogli zapisa¢, a nasze obrazki beda miaty lepsza jakos¢ (i odpowiednio duzy

rozmiar).
H E
|

Rysunek 13. Przestrzen barw RGB. Osie wspoétrzednych odpowiadaja wartosciom koloréw
skladowych

Obecnie wiekszos$¢ aplikacji postugujgca sie systemem RGB (czyli wiekszos$¢ aplikacji w
ogdle :D) preferuje zapis kazdego kanatu w postaci liczby catkowitej bez znaku,
pochodzacej z przedziatu od zera do 255. tacznie daje to wiec 2563 barw mozliwych do
reprezentacji - nieco ponad 16 milionéw, prawie tyle ile potrafi rozrézni¢ przecietne
ludzkie oko. Dlatego tez tak bogaty zestaw koloréw nosi nazwe True Color, czyli
‘rzeczywistych barw’.

Windows GDI 487

Czy zakres <0; 255> nie wyglada znajomo?... Oczywiscie, sg to mozliwosci zapisu liczb w
jednym bajcie - osmiu bitach. Tryb True Color potrzebuje wiec tgcznie 3 bajtéw (24
bitdw) na zapisanie informacji o kolorze - taki kolor nazywamy wiec 24-bitowym.

W programowaniu nie ma jednak zmiennych zajmujacych w pamieci doktadnie tréjke
bajtow. Najmniejszym typem, ktdory moznaby wykorzysta¢ do przechowywania koloru,
jest DWORD - liczba 32-bitowa. Tak tez czynimy, zapisujac do jej poszczegdlnych bajtéw
wartosci kanatéw RGB:

kanat czerwony kanal ziglony kanat niebieski
| | 1

[| [RIRIRIR[RIRIRIR[G[G[C[G[G[G[G[G|B[B]B[B]E]B[B[B

J 11 || L L
I 1 1 1
bit31 bit23 bit 15 BiL T bit 0

Schemat 46. Format XRGB zapisu koloru

Windows API posiada przygotowany typ dla zapisu koloréw: jest to COLORREF, bedacy
niczym innym jak tylko kolejnym aliasem na 4-bajtowy numeryk.

O wiele bardziej przydatne sq makra, utatwiajace prace z takim sposobem reprezentacji
koloru. Sa one zadeklarowane w windows.h, a najwazniejsze z nich to RGB () :

#define RGB(r, g, b) (COLORREF) (((r) << 16) | ((g) << 8) | (b))

Tworzy ono identyfikator barwy z podanych mu sktadowych: czerwonej (r), zielonej (qg) i
niebieskiej (b). Jak widaé, czyni to poprzez ich wiasciwe rozmieszczenie w dwustowie, a
nastepnie potgczenie przy pomocy sumy bitowej |.

Odwrotnie do RGB () dziatajg makra GetRvalue (), GetGValue () i GetBValue():

#define GetRValue (rgb) (BYTE) ((rgb) >> 16)
#define GetGValue (rgb) (BYTE) ((rgb) >> 8)
#define GetBValue (rgb) (BYTE) (rgb)

Wytawiajg one kanaty RGB, zwracajac liczby okreslajace intensywnos¢ barw
podstawowych w podanym im kolorze. Robig to, dokonujac operacji bitowych odwrotnych
do tych z RGB () .

Ubozszg wersja True Color jest High Color (‘kolor wysokiej jakosci’). Tryb ten uzywa tylko
16-bitéw do zapisu informacji o kolorze, zatem miesci sie w zmiennej typu WORD.
Kazdemu kanatowi jest tu przypisane po 5 bitéw - z wyjatkiem sktadowej zielonej, ktéra
zajmuje 6 bitow. Jest tak dlatego, iz oko ludzkie jest przecietnie najbardziej wyczulone
na zmiane odcieni zieleni.

Format reprezentacji koloru, jaki przedstawitem na ostatnim schemacie, nosi nazwe
XRGB. Ta nazwa wskazuje na kolejnos¢ kanatow w gotowym dwustowie. Litera X odnosi
sie natomiast do pierwszych osmiu bitow, bowiem nie sq one wykorzystywane do
zadnych celow.

Takie marnotrastwo trudno uzna¢ za zadowalajgce rozwigzanie. Szybko wiec wymyslono,
co nalezy zapisywac¢ w nadmiarowym bajcie. Stat sie on w ten sposob kanalem alfa
(ang. alpha channel), ktérego zadaniem jest przechowywanie informaciji o
przezroczystosci danego piksela. Méwiac scislej, zawiera on warto$¢ odwrotng do
przezroczystosci - co$ w rodzaju ,stopnia widocznosci” punktu, zwanego po prostu alfa.
Zero w kanale alfa oznacza, ze ten fragment obrazu nie ma by¢ w ogdle widoczny;

488 Windows API

najwieksza warto$¢ 255 znaczy zas, iz piksel ma catkowicie przykrywac te lezace pod
nim.

Przydatnos¢ kanatu alfa jest niemozliwa do zaobserwowania w przypadku pojedynczej
bitmapy, ale otwiera bardzo ciekawe mozliwosci przy taczeniu dwdch obrazkéw w jeden.
Dziata wtedy mechanizm zwany taczeniem lub mieszaniem alfa (ang. alpha blending).
Zmienia on kolory nakfadajacych sie pikseli tak, ze ostatecznie mamy ztudzenie
czesciowej lub catkowitej przezroczystosci w wynikowym obrazie (z pikselami juz bez
kanatu alfa). Bez alpha blendingu mozna uzyskaé co najwyzej albo zupetne przykrycie,
albo zupetne odkrycie spodnich pikseli.

Nie trzeba chyba dodawaé, jak faczenie alfa jest przydatne, szczegdlnie w grach.
- Uzywajac czesciowej przezroczystosci mozna chociazby stworzy¢ efektowny interfejs
. uzytkownika, ktéry nie zastania catkowicie reszty ekranu gry.

Format koloru z okreslonym kanatem alfa okreslamy jako ARGB. Kolor mozna wowczas
nazwac¢ 32-bitowym.

kanat alfa kanat czerwony kanat zielony kanat niebleski
1 1 I 1

afai-afalRIR|=IRIR]G[G = [G|G|B|B| - {B[B

|
|
bit 31 bit 23 bit 15 bit 7 bit 0

Schemat 47. Format ARGB zapisu koloru
CMY(K)

Drugim z najwazniejszych systemow kodowania koloréow jest CMY. Skrét ponownie
pochodzi od nazw barw podstawowych - tym razem sa to kolory: morski (ang. cyan),
karmazynowy (ang. magenta) oraz (ang. yellow).

Na tym jednak nie koncza sie réznice pomiedzy tym systemem a RGB. Osobng kwestig
jest mianowicie sposob, w jaki sktadowe tych trzech podstawowych koloréw decydujg o
finalnej barwie; sposob ten jest odmienny niz w RGB. Jest uzasadnione, gdyz CMY zostat
stworzony do wspodtpracy przede wszystkim z drukarkami (oraz innymi urzadzeniami,
ktére tworzg swojg tworczosé na papierze :D). Mieszanie barw sktadowych nie moze wiec
juz polegac na taczeniu fal swietlnych, ale barwnikow atramentu. Zasady tego taczenia sq
ci zapewne doskonale znane - przypomnijmy wiec tylko, ze:

» brak barwnika jest brakiem koloru, a w przypadku systemu CMY oznacza to kolor

JKartki”, czyli biaty
» pelne nasycenie wszystkich trzech farb daje w wyniku kolor czarny

Mechanizm dziata zatem doktadnie odwrotng*3** metoda niz ten z RGB.

W odréznieniu od tego system CMY zwie sie wiec systemem subtraktywnym. Wiekszej
| intensywnosci sktadowych odpowiadajg tu ciemniejsze kolory wynikowe.

Kolory o takich samych wartosciach sktadowych sg w CMY réwniez odcieniami szarosci.
Podobnie, rézne intensywnosci barw podstawowych powodujg powstanie pozostatych
odcieni. Inaczej interpretowane sg jedynie same wartosci, zapisane w kazdym z trzech
kanatow - ich wzrost powoduje sciemnienie barwy, zas spadek rozjasnienie (przeciwnie
niz to jest w systemie RGB).

134 Lepiej powiedzie¢ - komplementarna.

Windows GDI 489

Rysunek 14. Spektrum barw podstawowych CMY

Ewentualny zapis koloru w systemie CMY wyglada najczesciej tak samo, jak w RGB.
Uzywana jest wiec liczba 32-bitowa, z ktorej efektywne wartosci zawierajq trzy dolne
bajty.

Rysunek 15. Przestrzen barw CMY

Nietrudno spostrzec, ze szesciany barw CMY i RGB sg do siebie bardzo podobne.
| Faktycznie, otrzymanie jednego z nich sprowadza sie do obrotu drugiego o 90° i
\ wlasciwego oznaczenia osi uktadu wspoétrzednych.

Standard CMY jest dobrym przykfadem na to, iz dobra teoria moze by¢ daleka od
rzeczywistej praktyki. Okazuje sie, ze zmieszanie maksymalnej intensywnosci trzech
barwnikéw podstawowych nie daje wcale koloru czarnego, lecz co najwyzej
ciemnobrazowy. Aby rozwigzac ten problem, dodaje sie jeszcze troche czarnego
atramentu. Tak oto powstat system CMYK - ostatnia litera pochodzi od nazwy koloru
czarnego (ang. blacK).

W zasadzie wiec to CMYK jest najszerzej uzywanym systemem kodowania koloréw dla
drukarek. Do wspétpracy z tym formatem system Windows deleguje podobne makra,
jakie przeznaczyt do RGB. Najistotniejsze sposrdd nich to CMYXK () :

490 Windows API

#define CMYK(c, m, y, k) (COLORREF) (((c) << 24) | ((m) << 16)
I ((y) << 8) | (k)

Uktada ono wartosci czterech sktadowych barwy poczynajac od lewej strony dwustowa
COLORREF. Dziatanie odwrotne - wytuskiwania wartosci kanatow - jest zadaniem czterech
makr: GetCvValue (), GetMValue (), GetYValue () i GetCValue ():

#define GetCValue (cmyk) (BYTE) ((cmyk) >> 24)
#define GetMValue (cmyk) (BYTE) ((cmyk) >> 16)
#define GetYValue (cmyk) (BYTE) ((cmyk) >> 8)
#define GetKValue (cmyk) (BYTE) (cmyk)

Robig one analogicznie to samo, co odpowiadajace im makra z RGB - dokonujg
mianowicie odwrotnych operacji do tych z makra CMYK ().

Jeszcze jednym uzywanym szeroko standardem zapisu barw jest HSB albo HSV. Skroéty
te pochodza on cech koloru, ktére go wyznaczajq: odcienia (ang. hue), nasycenia

(ang. saturation) oraz jasnosci (ang. brightness), zwanej tez walorem (ang. value).
Odcien jest tym, co funkcjonuje potocznie pod nazwg ‘koloru’ - mozna go utozsamiac z
dtugoscig fali Swietlnej. Nasycenie okresla, jak ,czysta” jest barwa, tzn. ile koloru
szarego, biatego lub czarnego zawiera w sobie. Jasnos¢ (walor) odpowiada intensywnosci
Swiatfa koloru.

Ze wzgledu na to, ze w systemie HSV (HSB) liczg sie faktyczne wiasnosci koloru, a nie
produkt mieszania barw podstawowych, jest on uzywany w wielu zaawansowanych
programach do grafiki rastrowej. Poza tym jednak nie ma wiekszego zastosowania, gdyz
ostatecznie i tak musi zostac przeliczony na RGB, aby kolor mégt by¢ wyswietlony na
ekranie.

Grafika wektorowa

Zupetnie inne podejscie do komputerowych rysunkéw prezentowane jest w grafice
wektorowej (ang. vector graphics).

Nie ma tu pojecia obrazu jako zbioru punktowych elementéw - pikseli. Zamiast tego
uzywany jest geometryczny opis tego, co mozna na nim zobaczy¢. Obraz wektorowy
skfada sie z linii prostych, otwartych i zamknietych krzywych, figur geometrycznych i
innych obiektéw, ktére mozna opisa¢ réwnaniami matematycznymi (na przyktad tekstu).

Niekwestionowang zaletg takiego potraktowania jest mozliwo$¢ dowolnego skalowania
rysunku wektorowego. Poniewaz zapisywana jest jedynie informacja o tym, jak
wygenerowac obraz, jego wyglad moze zosta¢ wyliczony przy kazdym powiekszeniu bez
najmniejszej utraty ostrosci.

Geometryczny sposdb opisu ogranicza jednak zastosowanie grafiki wektorowej. Na
pewno nie moze by¢ ona wykorzystywana do zapisu zdjeé, gdyz rzeczywisty Swiat jest
zbyt skomplikowany, by moc go opisa¢ matematycznie. Takie przedstawienie musiatoby
zresztg wymagac konwersji rysunku rastrowego na wektorowy, a to nie jest mozliwe ze
wzgledu na brak dostatecznych informacji w gotowej bitmapie.

Rysunki wektorowe nie powstajg wiec z fotograficznego odwzrowania rzeczywistosci, lecz
sg tworzone przy pomocy odpowiednich narzedzi - programdw. Sa to czesto szkice
techniczne, zawierajace zgeometryzowane obiekty: prostokaty, linie réoznej grubosci,
krzywe Béziera itp. Do takich zastosowan grafika wektorowa nadaje sie wyswienicie, bo
zapewnia przecyzje i scistos¢, ktorej brak pikselowatym obrazom rastrowym.

Do najwazniejszych aplikacji do tworzenia rysunkéw wektorowych nalezg zapewne
programy CAD, czyli narzedzia komputerowego wspomania projektowania.

Windows GDI 491

Chin

w..ih-...] Lin (:} Rl Llility

o Sewiny
[hning Camputer
Eil
13412 W& D Caaraa
e . M4
:b Ein
‘Wil

et Ll L)

M el R Living | e
16T 17x 14 EI_Q
Powder
inest Bed B

?L_ 4 . x4

Enry

EILNE

Hoated & Coobod | 740 54 Fi

Frarch

Rysunek 16. Wektorowy szkic projektu budynku mieszkalnego
(rysunek pochodzi z serwisu internetowego programu Embedded Vector Editor)

Grafika 3D

Bardzo waznym typem grafiki wektorowej sq sceny tréjwymiarowe (ang. 3D scenes).
Sg one bowiem jedynym sensownym kreowania przestrzennych swiatow.

tatwo domysli¢ sie, dlaczego tak jest. Gdyby w tym przypadku zastosowac technike
znang z grafiki rastrowej, czyli podziat na elementarne punkty, gotowy ,obraz” zajmowat
mndstwo miejsca - nawet tysigce razy wiecej niz duze bitmapy. Trudno tez wymysli¢
jakis sensowny sposdb tworzenia takich trojwymiarowych bitmap, podobnie jak
niemozliwie jest rysowanie przestrzennych szkicow na papierze.

W tym przypadku zwrdcenie sie w strone geometrii byto wiec konieczne. Dato to zresztg
catkiem zadowalajace efekty.

Obecna technika modelowania tréjwymiarowych scen zaktada ich podziat na bryty ztozone
z prostych figur ptaskich - zwykle tréjkatow. Figury te tworzg zewnetrzng ,,powtoke”
obiektdw w scenie, widoczng dla ogladajacego. Ich powierzchnie mogg by¢ dodatkowo
pokryte dwuwymiarowymi bitmapami - teksturami oraz dawac¢ ztudzenie odbijania i
rozpraszania Swiatta. Wszystkie te efekty sg osiggane poprzez odpowiednie obliczenia
matematyczne.

Screen 66. Programy do modelowania tréjwymiarowego tworzone obiekty pokazuja zazwyczaj w
trzech ptaskich widokach oraz w perspektywnie przestrzennej

Tworzenie obiektéw 3D (czyli modelowanie) moze sie z kolei odbywaé wieloma drogami.
Teoretycznie najprostszym jest reczne ustawianie w przestrzeni wierzchotkdw,
sktadajacych sie na tréjkaty (a w konsekwencji na cate bryty). O wiele efektywniejsze
jest ponowne zaprzegniecie do pracy geometrii analitycznej; za pomocg odpowiednich
kalkulacji generowane sg proste ksztatty, jak prostopadtosciany, walce, kule czy stozki. Z
ich pofaczenia sg nastepnie tworzone zarysy wtasciwych bryt, a przy pomocy pewnych

http://www.goosee.com/

492 Windows API

efektow (zwanych modyfikatorami, ang. modifiers) osiggany jest ostateczny ksztatt
obiektdow.

Rasteryzacja

Z prezentacjg grafiki wektorowej zwigzany jest pewien ktopot. Otéz mato ktére
urzadzenie wyj$ciowe potrafi podota¢ temu zadaniu bezposérednio'3®; wiekszo$¢ wymaga,
aby rysunek wektorowy zostat wczesniej przetozony na bitmape. Proces ten nazywamy
rasteryzacja i zachodzi on za kazdym razem, kiedy ogladamy obraz wektorowy na

ekranie monitora lub drukujemy go na zwyktej drukarce.

Dla ptaskiej grafiki rasteryzacja jest stosunkowo prostg czynnoscia, sprowadzajacq sie do
przeprowadzenia obliczen opisujacych obiekty na rysunku. Znacznie wiecej pracy
wymaga przedstawienie sceny tréjwymiarowej na ptaszczyznie ekranu - ten proces
zwiemy renderowaniem. Obejmuje on wyliczenie kolorow modeli na podstawie
natozonych tekstur i o$wietlenia, a nastepnie rzut przestrzeni 3D na powierzchnie ptaska.
Dopiero na koncu realizowane sg formuty matematyczne opisujace bryty na scenie, ktéra
jest wreszcie rasteryzowana na ekranie monitora.

Renderowaniem scen tréjwymiarowych, szczegdlnie w czasie rzeczywistym, zajmiemy sie
naturalnie jeszcze nie raz. Czynno$¢ ta jest przeciez jednym z gtdwnych zadan biblioteki |
DirectX, z ktéra mamy sie wkrétce zaznajomic.

Wyjsciowe urzgdzenia graficzne

Przypomnimy sobie teraz (a czesciowo tez wprowadzimy) niektére wazne kwestie
zwigzane z dwoma najwazniejszymi urzgadzeniami, stuzacymi do prezentacji grafiki:
monitorem oraz drukarka. Oba te urzadzenia stuza do wyswietlania obrazu rastrowego.

Monitor

Chociaz serwery i komputery mainframe mogq oby¢ sie bez monitora, osobiste pecety nie
mogtyby dziata¢ bez tego komputerowego ,telewizora”. Obraz wyswietlany na monitorze
jest bowiem podstawowym sposobem, w jaki dziatajgce programy informujg o swoim
stanie. Od czasu rozpowszechnienia sie interfejsow graficznych jest tez czyms w typie
pola manewrowego, po ktéorym uzytkownik rozstawia uruchomione aplikacje.

Typy monitoréw

Generalnie, monitory dzielimy na dwie duze grupy: na kineskopowe oraz
cieklokrystaliczne. R6zni je technologia wyswietlania obrazu, a nierzadko takze jego
jakosc.

Monitory kineskopowe

Ten typ monitoréw (zwanych tez CRT, od ang. Catode Ray Tube - kineskop katodowy)
dziata bardzo podobnie do odbiornikéw telewizyjnych. Powstawanie obrazu jest tu
wynikiem odpowiedniego natadowania kineskopu pod wptywem strumienia elektronéw.
Ow strumien kilkadziesiat razy na sekunde ,przelatuje” przez caty kineskop,
przemieszczajac sie wierszami - poczgwszy od lewego gornego rogu. Tak szybka zmiana
wyswietlacza powoduje ztudzenie jego statosci oraz ptynnego ruchu.

Technologia monitoréw kineskopowych liczy sobie prawie sto lat i przez ten czas byta
znacznie ulepszana. Obecnie jakos¢ obrazu w monitorach CRT jest bardzo wysoka; co

135 Do takich urzadzen naleza bodaj wytacznie specjalistyczne plotery.

Windows GDI 493

wiecej, nie przeszkadza ona w osigganiu wysokiej rozdzielczosci i czestotliwosci
odswiezania.

Jakis$ czas temu rozwigzano tez problem, ktéry pojawiat sie przy wielogodzinnym
pokazywaniu tego samego obrazu na ekranie monitora. Dawniej mogto spowodowac
wypalenie go na kineskopie, przez co zarys feralnego widoku zostawat na monitorze juz
na zawsze. Ta nieprzyjemna ewentualno$c byta przyczyng powstania programéw znanych
jako wygaszacze ekranu (ang. screen savers, dost. ‘oszczedacze ekranu’), ktorych
zadaniem byto wyswietlanie szybko zmieniajacych sie pikseli w czasie bezczynnosci
uzytkownika komputera. Teraz ryzyko wypalenia juz nie istnieje, ale wygaszacze
pozostaty - gtdwnie jako cieszace oko spektakle obrazow i nawet dzwiekdw.

Fotografia 7 i 8. Monitory kineskopowe
(fotografie pochodza z serwisu internetowego firmy Philips)

Teoretyczng wadg monitoréw kineskopowych jest emisja potencjalnie szkodliwego dla
oczu promieniowania. Teoretyczng, gdyz obecne normy w tym zakresie (oznaczana jako
TCO) sa tak rygorystyczne, ze spetniajace je produkty nie sg w zasadzie zadnych
zagrozeniem dla naszych spojowek. Nie zmienia to jednak faktu, ze diuga praca przed
ekranem meczy wzrok i przyczynia sie do jego ostabienia. Powodem tego nie sg jednak
tajemnicze promienie spoza zakresu widzialnego, lecz zbyt duza ilo$¢ swiatta
docierajacego do oka. Temu mozna zaradzic¢ tylko w jeden sposdb: trzeba wtasciwie
dostroi¢ ustawienia swego sprzetu.

Najwazniejszym sposrod nich jest temperatura koloréw. Powinno sie jg ustawié na jak
najmniejszg wartos¢, zazwyczaj 6500 kelwindw. Nastepnie nalezy dopasowac wyglad
obrazu za pomoca kontroli ostrosci, kontrastu i jasnosci.

Dawniej niedogodnoscig byt réwniez duzy rozmiar i waga tych monitoréow. Teraz jednak
produkowane modele sg lzejsze i wezsze, dzieki czemu nie odbiegajq zbytnio od
monitorow ciektokrystalistycznych w konkurencji zajmowanego na biurku miejsca.

Monitory ciektokrystaliczne

Drugi rodzaj monitoréw oznaczany jest skrétem LCD (ang. Liquid Crystal Display), ktory
wskazuje na wyswietlacz zbudowany z tzw. ciektych krysztaléw. Ta dziwna substancja
0 wewnetrznie sprzecznej nazwie!*® posiada zdolno$¢ polaryzacji, co pozwala jej
wys$wietla¢ zaprogramowany obraz. Jest on kontrolowany przez pole elektryczne, zatem
monitory LCD nie posiadajg strzelby elektronowej; mogg wiec by¢ o wiele wezsze niz ich
kuzyni z kineskopami.

Powierzchnia wys$wietlacza w monitorze ciektokrystalistycznym jest podzielona na
pojedyncze piksele - wynika stad, iz urzadzenia te majg zaprogramowang stalq

136 Krysztaty sq przeciez cialami statymi, a nie ciecza...

http://www.philips.com/

494 Windows API

rozdzielczo$¢. Dodatkowo, kazdy piksel sktada sie z trzech subpikseli, odpowiedzialnych
za wyswietlanie barw sktadowych systemu RGB.

Subpiksele po okresie dtuzszego uzytkowania moggq sie wypali¢, przez nie bedq wiernie
odzwierciedlaty koloréw. Uwaza sie, ze niezauwazalne dla ludzkiego oka jest wypalenie
sie od kilku do kilkunastu subpikseli. Niestety, wygaszacze ekranu nie mogg wiele zrobi¢
w sprawie zapobiegania temu niepozgadanemu zjawisku.

Fotografia 9 i 10. Monitory cieklokrystaliczne
(fotografie pochodza z serwisu internetowego firmy Philips)

Wadag monitoréw LCD jest niska jako$¢ obrazu - nizsza niz w modelach kineskopowych.
Nie chodzi tu wcale o obecnos$¢ uszkodzonych (sub)pikseli (cho¢ to rowniez sie liczy), lecz
o wzgledne réznice w jasnosci poszczegdlnych obszarach ekranu. Dotyczy do szczegodlnie
skrajnych i srodkowych partii wyswietlacza.

Nieszczegodlnie przychylna dla uzytkownika jest tez cena tych urzadzen. Monitory LCD sg
bowiem co najmniej dwukrotnie drozsze od analogicznych (pod wzgledem wielkosci)
modeli CRT. I nie zanosi sie na szybka zmiane tego stanu rzeczy.

Na plus mozna aczkolwiek zaliczy¢ tym monitorom brak emisji jakiegokolwiek
promieniowania (poza, oczywiscie, $wiattem widzialnym). Méwitem jednak, ze nie
wyprzedzajg zbytnio modeli CRT w tej dziedzinie, ktérych drakonskie normy doprowadzity
do spadku ilosci emitowanych fal elektromagnetycznych niemal do zera.

Snobistyczng ciekawostkg sgq monitory plazmowe, funkcjonujace na identycznej zasadzie
jak tego rodzaju telewizory. Obraz powstaje w nich poprzez jonizacje czasteczek gazéw
szlachetnych (zwykle neonu, kryptonu i ksenonu), pod wptywem ktdrej gazy zaczynajq
emitowac swiatto.

Jakos¢ obrazu w monitorach i telewizorach plazmowych jest bardzo wysoka. Niestety,
rownie wysoka jest tez cena - niemal dziesie¢ razy wieksza niz koszt monitoréw CRT.

Parametry obrazu

Monitor monitorowi nieréwny - nie tylko jesli chodzi o zastosowang technologie
prezentacji obrazu. Waznych jest mndstwo empirycznie obserwowanych parametréw, z
ktérych najwazniejszymi sq: rozdzielczo$¢ obrazu, gtebia koloréw oraz
czestotliwos¢ odswiezania.

Rozdzielczos¢

Najpopularniejszym (acz niezbyt precyzyjnym) sposobem opisania modelu monitora jest
podanie jego przekatnej. Liczba ta okresla odlegto$¢ przeciwlegtych wierzchotkéw
kineskopu lub wyswietlacza LCD danego monitora. Zwréémy wiec uwage, ze nie mowi
ona nic o wielkosci rzeczywistego obrazu, jaki bedziemy mogli obserwowac. Te zas
mozna sprawdzi¢ tylko w praktyce - zazwyczaj jest ona widocznie mniejsza.

http://www.philips.com/

Windows GDI 495

Zaréwno przekatng kineskopu (wyswietlacza), jak i obrazu podajemy w calach. Jeden cal
to ok. 2,54 cm, a symbolem tej jednostki jest znak ". Monitor CRT 17" ma zatem
kineskop o przekatnej dtugosci okoto 43 centrymetréw.

Dtuzsza przekatna oznacza wiecej miejsca dla pikseli ekranu. Ilos¢ punktéw obrazu, jaka
aktualnie wyswietla monitor, nazywamy jego rozdzielczoscia. Jest to wielkos¢
analogiczna do rozdzielczosci bitmapy i podajemy jg w tej samej postaci: dwéch liczb,
okreslajacych liczbe pikseli w poziomie i pionie.

Typowe rozdzielczosci monitordéw to: 640x480, 800x600, 1024x768, 1152x864,
1280x960, 1600x1200, 1920x1440 oraz 2048x1536 pikseli. Kilka ostatnich wartosci
osiggajq jednak tylko najwieksze monitory; reszta moze by¢ stosowana dla popularnych
wielkosci ekranu. Zalecane rozdzielczosci dla wybranych przekatnych monitoréw
przedstawia tabela:

przekatna rozdzielczos¢
14 cali 640x480
15 cali 640x480 lub 800x600
17 cali 800x600 lub 1024x768
19 cali 1152x864 lub 1280x960
21 cali 1280x960 lub 16001200

Tabela 57. Optymalne rozdzielczosci dla monitorow CRT réznych wielkosci. Modele LCD maja stala
rozdzielczosé, dl kazdej z przekatnych jest ona rowna wiekszej wartosci z tabeli

| Rozdzielczo$¢ ekranu mozesz ustawi¢ we Wtasciwosciach ekranu w Panelu Sterowania, a
| programowo pobrac za pomocg GetSystemMetrics (SM_CXSCREEN/SM CYSCREEN).

Mozna zauwazy¢, ze stosunek szerokosci do wysokosci ekranu jest w przypadku
wszystkich mozliwych rozdzielczosci ten sam i wynosi 4:3. Iloraz ten nazywamy
aspektem obrazu (ang. image aspect) monitora. Aspekt 4:3 jest uzywany szeroko
takze w telewizorach, natomiast filmy kinowe sg kadrowane z aspektem 16:9. Ich
odtwarzanie na domowych odbiornikach i monitorach powoduje wiec pojawienie sie
czarnych paskow na gorze i dole kadru.

Gtebia koloréw

Nie mniej wazna niz wielko$¢ obrazu jest wierno$¢ odwzorowania w nim barw. Decyduje
o tym liczba dostepnych koloréw, czyli ich gtebia (ang. color depth).

Glebia kolorow zalezy od ilosci bitow przypadajacych na jeden piksel. Liczba ta moze
wahac sie od jednego do (na razie) 32 bitow. Najczesciej obstugiwane tryby barwne
monitoréw sg zebrane w ponizszej tabelce:

ilosc liczba nazwa trybu uwagi
koloréow bitow
2 1 monochromatyczny obraz czarno-biaty
16 4 16 koloréw tryb oparty na palecie statych barw, a nie
256 8 256 koloréw na ich zapisie z uzyciem sktadowych RGB
65 536 16 High Color

16 777 216 >4 kolor zapisany z uzyciem kanatéw RGB

Jest to taki sam tryb jak 24-bitowy True

True Color Color, a dodatkowy bajt sprawia, ze dane

pikseli sg w pamieci obrazu wyréwnywane
do 4 bajtéw.

16 777 216 32

Tabela 58. Tryby giebi kolorow obstugiwane przez wspéirzedne monitory

496 Windows API

Dzisiaj kazdy model monitora i karty graficznej bez problemu radzi sobie z wySwietlaniem
milionédw barw trybu True Color. Na starszych pecetach ustawia sie aczkolwiek nizszg
gtebie High Color, gdyz zuzywa ona mniej cennego czasu procesora.

Czestotliwos¢ odswiezania

Radosne zwiekszanie rozdzielczosci i gtebi koloréw wyswietlanego obrazu, az do
sztywnych granic, jest catkowicie mozliwe. Pomijajac fakt, ze wieksza ilos¢ pikseli przy
niezmiennej przekatnej monitora powoduje zmniejszenie czytelnosci matych elementow,
zbyt wysSrubowane ustawienia mogg byc¢ przyczynag takze innej formy dyskomfortu. Jest
nig zbyt niska czestotliwo$¢ odswiezania (ang. refresh rate).

Parametr ten dotyczy wytacznie monitorow kineskopowych. W modelach LCD obraz jest
wyswietlany stale.

Wielkos$¢ ta mowi nam, jak wiele razy w ciggu sekundy monitor odrysowuje zawartos¢
ekranu. Jak kazdg czestotliwosé podajemy jg w hercach (Hz). Uznaje sie, ze dla komfortu
uzytkownika komputera nie powinna ona zej$¢ ponizej 60 Hz. W praktyce jest jednak o
wiele wieksza, siegajqca co najmniej 85 Hz, a wszelka przesada w tej materii jest bardzo
wskazana. Szybsze odswiezanie obrazu oznacza bowiem mniejsze zmeczenie dla oczu
patrzacego.

Jesli nasz monitor nie od$wieza obrazu dostatecznie szybko, to mozemy zauwazy¢ jego
migotanie - wlasciwy obraz przeplata sie z czarnym ekranem. Dzieje sie tak, gdyz to co
widzimy na ekranie monitora CRT jest tak naprawde stanem chwilowym, momentalnym
rozbtyskiem elektrondw ptynacych ze specjalnego dziata. Ta ,strzelba” przy kazdym
ods$wiezeniu obrazu wysyta tadunki do wszystkich pikseli, poczawszy od lewego gérnego i
posuwajac sie wierszami az do prawego dolnego rogu. Po wykonaniu tego
pracochtonnego zadania dziato wraca na wyjsciowg pozycje, gotowe do ponownego
rozpoczecia odswiezania. Moment pokonywania drogi po przekatnej, gdy nie sg wysytane
zadne elektrony, nazywamy powrotem pionowym (ang. vertical synchronisation, w
skrocie VSync). To wiasnie wtedy ekran monitora pozostaje czarny, co czasami mozna
dostrzec na starych lub psujacych sie modelach.

Moment powrotu pionowego jest idealng chwilg na dokonanie catosciowej zmiany obrazu
prezentowanego na ekranie. Jezeli bowiem dokonanoby takiej zmiany w trakcie
wysylania strumienia elektronow, wowczas pokazywany na ekranie obrazek bytby
podzielony na dwie czesci. Ten efekt nazywamy rozdarciem (ang. tearing up) i jest on
wysoce niepozadany.

Zaawansowane biblioteki graficzne, takie jak DirectX, czekajg wiec z od$Swiezeniem
obrazu az do wystgpienia powrotu pionowego. Gwarantuje to, ze efekt rozdarcia nigdy
nie wystapi.

Monitory ciektokrystaliczne nie sg okreslone przez swojg czestotliwos¢ odswiezania, jako
ze takiego pojecia w ogdle sie do nich nie stosuje. Wyswietlacze LCD prezentujg po
prostu staty obraz, na zadanie zmieniajac kolory potrzebnych pikseli.

Kombinacja rozdzielczosci ekranu, gtebi kolorow i czestotliwosci odswiezania nazywana
jest trybem graficznym (ang. graphics mode). Jego okreslenie zapisuje sie czesto
razem, postugujac sie czterema liczbami, np. 800x600x24@85. Ten tryb oznacza, ze
obraz jest wyswietlany w rozdzielczosci 800x600, z 24-bitowg gtebig kolorow i
odswiezany z czestotliwoscig 85 Hz.

Windows GDI 497

Drukarka

Kiedy chcemy otrzymac edytowany dokument na papierze, uzywamy drukarki
(ang. printer). Jest to drugie po monitorze, najwazniejsze urzadzenie wyjsciowe.

Typy drukarek

Od lat wyrdznia sie trzy typy drukarek, biorgc pod uwage uzywang technike naktadania
druku na papier. Te trzy rodzaje to drukarki igtlowe, atramentowe i laserowe.

Drukarki igtowe

Jest to najstarszy i najprymitywniejszy, cho¢ wcigz jeszcze popularny rodzaj drukarki. W
modelach igtowych (ang. needle printers) litery powstajq z drobnych porcji tuszu,
nakfadanych punktowo przez cienkie igty (stad nazwa) i tasme barwigcg. Wydruki sg
dokonywane zwykle na dtugich, perforowanych rolkach papieru, ktére w razie potrzeby
mozna rozdzieli¢ na pojedyncze arkusze.

Fotografia 11 i 12. Wspoétczesne modele drukarek igtlowych

Zaletg drukarki igtowej jest wzgledna szybkos$¢ produkowania zadrukowanych arkuszy.
Niebagatelnie wazna jest tez bardzo tania eksploatacja takiej drukarki - sprawia to, ze
»1gtéwki” sg popularne np. w sklepach, gdzie konieczne jest drukowanie duzej ilosci
rachunkéw i faktur.

Jakos$¢ wydrukéw pozostawia jednak wiele do zyczenia - z pewnoscig jest zbyt niska dla
zastosowan biurowych czy domowych. Poza tym praca drukarki igtowej wigze sie z
gto$nym i mato przyjemnym, piskliwym hatasem.

Drukarki atramentowe

Drukarki atramentowe (ang. inkjet printers), czyli popularne ,plujki”, sq obecnie
najpopularniejszym rodzajem urzadzen drukujacych. Znalez¢ je mozna w wielu domach
uzytkownikéow komputerow.

Dziatanie drukarek atramentowych polega na rozpylaniu nad papierem bardzo drobnych
kropelek tuszu. Kropelki te przylegaja do kartki papieru, pokrywajac jq i tworzac w ten
sposdb ksztalty tekstu oraz grafiki.

Pierwsze modele funkcjonowaty w oparciu o jeden pojemnik z tuszem, lecz teraz
standardem sg cztery, zawierajace podstawowe barwy systemu CMYK. Z ich potaczenia
mozna wiec otrzymac dowolny kolor i dlatego drukarki atramentowe najczesciej dobrze
oddajg barwy widoczne na ekranie (choc¢ zalezy to oczywiscie od klasy konkretnego
modelu).

Ogodlna jakos¢ wydrukow takze jest zadowalajgca, poza tym mozna jg czesto
programowo ustawiac. Najlepsze rezultaty wymagajg jednak duzych ilosci atramentu i z
tego powodu drukarki atramentowe nie sg zbyt ekonomiczne w eksploatowaniu.

498 Windows API

Bardzo powszechnym btedem jest okreslanie barwnikdéw do drukarek atramentowych
mianem tonera. Jest to niepoprawne, gdyz tonery sg tak naprawde uzywane tylko przez
drukarki laserowe. Atramentowe korzystajg natomiast z tuszu lub po prostu atramentu.

Fotografia 13 i 14. Typowe modele drukarek atramentowych
(fotografie pochodza z serwisu internetowego firmy Hewlett-Packard)

Generalnie mozna aczkolwiek powiedzieé, ze ,atramentéwki” sg dobrym kompromisem
miedzy jakoscig wydrukéw a ich kosztami.

Drukarki laserowe

Trzeci rodzaj drukarek jest znany z bardzo ostrych wydrukéw czarno-biatych oraz...
wysokiej ceny.

Drukarki laserowe (ang. laser printers) zawierajg w swym wnetrzu obrotowy mechanizm,
ktory w trakcie drukowania jest naswietlany i elektryzowany przez laser. W miejsach,
gdzie to sie dokonuje, do bebna (bo tak nazywa sie ten mechanizm) przylegaja czastki
drobnego proszku (tonera). Osiadajg one nastepnie na papierze, ktéry w tym celu jest
elektryzowany przeciwnym znakiem fadunku.

m—— e
%

¢ i
— \

Fotografia 15 i 16. Przykladowe drukarki laserowe
(fotografie pochodza z serwisu internetowego firmy Hewlett-Packard)

Uzyskiwane w ten sposdéb obrazy charakteryzujg sie duza ostrosciq i rozdzielczoscia.
Nieco gorzej bywa z odzwierciedleniem koloréw, jako ze technologia druku laserowego
przez dtugi czas byfa przeznaczona tylko do wydrukéw monochromatycznych. W zasadzie
jednak ogdlng jakos$¢ drukowania mozna uznac za wysoka.

Za te jakosc trzeba niestety sporo zaptaci¢. Chodzi tu szczegdlnie o cene samego
urzadzenia - co najmniej trzy razy wiekszg niz cena przecietnej drukarki atramentowej.
Koszt zuzywanego tonera jest natomiast nieco nizszy od kosztu eksploatacji ,plujki”.

http://www.hp.com/
http://www.hp.com/

Windows GDI 499

Przedstawione tu trzy rodzaje nie sg naturalnie jedynymi typami drukarem. Pozostate sg
jednak przeznaczone do specyficznych zastosowan. Ciekawym przyktadem sg chocby
drukarki termosublimacyjne, w ktérych obraz powstaje z czasteczek barwnika
doprowadzonych do stanu lotnego poprzez wysokg temperature. Czasteczki te osiadajq
na papierze, tworzac nieprzecietnie ostre wydruki, odpowiednie do prezentowania
kolorywch fotografii. Nie trzeba chyba dodawa¢, ze tego typu urzadzenia sq bardzo,
bardzo drogie.

Parametry wydruku

Drukarka, podobnie jak monitor, produkuje obraz rastrowy!*’. Jego parametry sg wiec
podobne do tych okreslajacych wyswietlacz komputerowego ,telewizora”. Przyjrzymy sie
im teraz.

Obszar wydruku

Bardzo niewiele drukarek potrafi zapetni¢ kazdy kawatek podanej im kartki papieru,
najczesciej w formacie A4. Ogromna wiekszos¢ ogranicza sie do jej czesci, zwanej
obszarem drukowania (ang. printing area). Zwykle nie jest on wiele mniejszy od
wymiaréw papieru.

Schemat 48. Przyktadowy obszar drukowania

Nalezy jednak zwraca¢ uwage, aby marginesy naszych dokumentéw znajdowaty sie w
catosci w tej strefie, bowiem w przeciwnym razie skonczy sie to ,obcieciem” tekstu lub
grafiki.

Rozdzielczos¢

Obraz wydrukowany, tak samo jak ten na ekranie, sktada sie z matych punktéw - juz nie
pikseli, a kropek (ang. dots). Mozemy wiec takze méwic o jego rozdzielczosci.

Jej miarg nie jest jednak ilo$¢ punktéw w pionowym i poziomym wymiarze kartki, gdyz
takiej wielkosci nie moznaby poréwnywac miedzy drukarkami operujacymi na réznych
formatach papieru. Zamiast tego mowi sie, jak wiele kropek przypada na pewng matg
jednostke powierzchni - cal kwadratowy (ok. 6,5 cm?). Miare te oznaczamy literami dpi
(ang. dots per inch - kropki na cal).

Rozdzielczos$¢ drukarki mozemy podawac jedng lub dwoma liczbami. W tym drugim
przypadku méwi sie, ile kropek przypada na cal dtugosci poziomej oraz pionowej.
Przyktadowo, 300x400 dpi oznacza, iz jeden cal kwadratowy wydruku jest prostokgtem
majacym 300 kropek diugosci i 400 wysokosci.

Zwykle kropki sg swym ksztatcie zblizone raczej do kot i dlatego rozdzielczo$¢ w obu
wymiarach jest taka sama. Wtedy tez wystarcza tylko jedna liczba do jej opisu, tak wiec

137 cidlej to takie drukarki nazywamy mozaikowymi (gdyz plotery sa formalnie takze drukarkami), ale przyjeto
sie nieuzywanie tego dodatkowego okreslenia.

500 Windows API

zamiast mowic¢, ze gestos¢ wydruku wynosi, dajmy na to, 600x600 dpi wystarczy
powiedzie¢, ze jest ona réwna 600 dpi. Taka miare rozdzielczosci stosuje sie najczesciej.

Dzisiaj drukarki atramentowe majq rozdzielczos¢ okoto 1200 dpi, zas laserowe niemal
| dwa razy wieksza.

Kolory

W przypadku monitoréw mozemy méwic¢ o wielu trybach wyswietlania, réznigcych sie
iloscig potencjalnych koloréw. Dla drukarek sprawa wyglada inaczej.

Otodz nie stosuje siew ogole pojecia gtebi koloréw. Zamiast tego wydruk mozna okresli¢
jako:
> monochromatyczny, gdy jego punkty sg albo czarne (zadrukowane), albo biate
(niezadrukowane). W ten sposéb funkcjonujg drukarki igtowe
> wykonany w skali szarosci przez drukarke atramentowg lub laserowa. Wieksza
lub mniejsza jasnos¢ punktow uzyskuje sie poprzez zmienng ilos¢ tuszu (tonera)
pokrywajacego kartke
> kolorowy

W tym ostatnim przypadku mozliwe sg oczywiscie rozbieznosci miedzy doktadnoscig
odwzorowania barw w réznych drukarkach. Faktycznie jednak sg one trudne do
obiektywnego okreslenia, poniewaz wymagatyby sprecyzowania, jak mate porcje
atramentu (tonera) mogg by¢ mieszane ze sobg przez dany model drukarki. Mimo to
wielu producentéw chwali sie milonami koloréw, jakie rzekomo mogg otrzymac ich
urzadzenia. Do takich doniesien trzeba wiec podchodzi¢ z duzg rezerwa.

Podstawy Windows GDI

W tym podrozdziale zajmiemy sie nareszcie zasadniczym zagadnieniem. Przedstawie
tutaj podstawowe wiadomosci na temat biblioteki graficznej Windows GDI. Przydadzg sie
one w dalszej czesci rozdziatu, gdy przejdziemy juz do poszczegdlnych elementéw tego
przebogatego interfejsu.

Rozpoczniemy tu od kluczowego pojecia potoku grafiki.

Potok graficzny

Sekwencyjna natura komputerdw jest przyczynag tego, ze wiele zwigzanych z nimi kwestii
dzieli sie na mniej lub bardziej oczywiste etapy. Nie inaczej jest tez z wyswietlaniem
obrazu przez biblioteki graficzne - ta kaskade kolejnych szczebli nazywamy w ich
przypadku potokiem graficznym (ang. graphics pipeline).

Taki potok obrazuje, w jaki sposéb polecenia i funkcje rysujace, wywotywane przez
program, przekfadajg sie ostatecznie na rezultat widoczny na ekranie. Miedzy punktem
startu a koncem moze sie znajdowac wiele stadiow posrednich - przeksztatcen,
transformacji, manipulacji. W sumie otrzymujemy taki, a nie inny obraz - obraz, ktéry
sami narysowalismy.

Znajomos¢ potoku graficznego jest wiec nieodzowna. Bez tego nie mogliby$smy
$wiadomie korzystac z biblioteki graficznej. Nie moglibysmy wtasciwie wykorzystac jej
potencjatu. Nie moglibysmy wreszcie przedstawié¢ na ekranie tego, co chcemy.

Potok graficzny jest tez pewnym rodzajem abstrakcji, wiec umozliwia niezaleznosc
biblioteki od sprzetu (ang. device-independece).

Windows GDI 501

W Windows GDI potok graficzny takze wystepuje, chociaz nie wszyscy zdaja sobie
sprawe z jego istnienia. Teoretycznie moznaby sie nawet oby¢ bez wiedzy o tym, ale jest
ona catkiem pozyteczna. Jesli bowiem poznasz teraz prosty potok zwigzany z GDI, fatwiej
bedzie ci pézniej zaznajomic sie ze znacznie bardziej skomplikowanym potokiem
geometrii w DirectX.

Rzu¢my zatem okiem na kolejne etapy przetwarzania obrazu w Windows GDI.

Te sekcje mozesz $miato pominac¢ przy pierwszym czytaniu, jezeli uznasz jg za zbyt
trudng. Wroc¢ jednak do niej po lekturze catego rozdziatu.

Tryby grafiki

Jak wiele diugozyjacych produktow programistycznych, biblioteka Windows GDI
podlegata ewolucji w trakcie swego istnienia. Zmiany nie omijaty takze jej istoty, czyli
potoku graficznego.

Doprowadzity one w koncu do wyodrebnienia sie dwéch trybéw grafiki (ang. graphics
mode). Majg one odrobine réznigce sie od siebie potoki graficzne - a méwigc doktadniej,
jeden z nich jest ubozsza wersjg drugiego.

Tryb kompatybilny

Prostszym trybem grafiki jest tryb kompatybilny (ang. compatible mode) Windows
GDI. Jego nazwa jest nieprzypadkowa, gdyz hipotetycznie zostat on zachowany wytgcznie
celem zgodnosci z 16-bitowymi wersjami Windows. Z powodu swej prostoty jest on
jednak szeroko wykorzystywany takze i teraz; zwtaszcza, iz jest to domysiny tryb
grafiki.

Potok graficzny w tym trybie mozna zilustrowa¢ ponizszym schematem:

wiwolania
funkeji GDI

EE—

1
] 1
I 1
rzutcwanie | | 'l prezentacia
— ! E —_—

ptaszczyzna ptaszczyzna

swiata (strony) urzadzenia urzadzenie

Schemat 49. Potok graficzny Windows GDI w trybie kompatybilnym

W tym akapicie omoéwimy go skréotowo, w kilku punktach. Kazdym etapem zajmiemy sie
dokfadnie w nastepnych akapitach, gdy poznamy takze potok trybu zaawansowany.
Wszystkie te stadia wystepujg bowiem réowniez i tam.

Rysowanie na ptaszczyznie swiata (strony)

Wywotywanie funkcji Windows GDI nie przektadasie natychmiast na zmiany obrazu na
ekranie monitora (lub innego urzadzenia wejsciowego). Wpierw modyfikowana jest
ptaszczyzna swiata (ang. world space®®®), w trybie kompatybilnym tozsama z
plaszczyzna strony (ang. page space). Jest to pewien dodatkowy poziom abstrakcji,
pozwalajacy na wzgledna niezaleznos¢ od rzeczywistego urzadzenia. Dzieki temu GDI
pozwala rysowac zaréwno na monitorze, jak cho¢by i na drukarce. To nadmiarowe
stadium umozliwia tez stosowanie dowolnych jednostek miary dla obrazu.

138 W zasadzie jest to niby przestrzen $wiata. Zdecydowatem sie jednak na nazwe ‘ptaszczyzna’, gdyz méwimy o
rysunkach dwuwymiarowych. Nazwe ‘przestrzen’ rezerwuje dla grafiki 3D.

502 Windows API

Rzutowanie dla ptaszczyzny urzadzenia

Ptaszczyzna $wiata (strony) jest teoretycznie niemal nieograniczona, wiec nie mozemy
wyswietli¢ jej catej. Trzeba zdecydowac sie na pewien wycinek.

Doktadniej méwimy tu o dwoch wycinkach w ksztatcie prostokatéw. Pierwszy znajduje sie
na ptaszczyznie $wiata (strony) i definiuje te jej czes¢, ktdra zostanie pobrana do
ostatecznego wyswietlenia. Poza tym - co zaraz sobie wyjasnimy - precyzuje on tez
granice ukfadu wspétrzednych swiata (strony).

Istnieje jeszcze drugi prostokat, obecny juz na plaszczyznie urzadzenia (ang. device
space). Jest on miejscem, gdzie fragment ptaszczyzny z poprzedniego stadium zostanie
zrzutowany i przygotowany do wtasciwego wyswietlenia.

Te dwa wazne prostokaty bedziemy nazywac kadrem i wziernikiem, a powiemy sobie o
| nich wiecej w kolejnych akapitach.

Prezentacja na fizycznym urzadzeniu

Z ptaszczyny urzadzenia jest juz krotka droga do... samego urzadzenia. W tym momencie
Windows GDI porzuca swojg niezaleznos¢ od sprzetu i przystepuje do najbardziej
widocznej dla nas pracy.

Biblioteka wysyta wiec albo odpowiednie polecenia, albo tez zrasteryzowany obraz do
sterownika urzadzenia wyjsciowego. Najczesciej tym urzadzeniem jest monitor, zatem
gotowy obraz trafia do karty graficznej. Ona przesyta sygnaty do monitora, ktory
ostatecznie wyswietla przygotowany rysunek.

Zwykle nie zajmuje on aczkolwiek catego dostepnego ekranu, lecz jest zawarty np. we
wnetrzu jakiego$ okna. Windows GDI musi zatem $cisle wspétpracowacd z interfejsem
uzytkownika systemu Windows, jednak nas zbytnio to nie interesuje. Wazne jest, ze
wynik naszej wspotpracy z GDI zostaje definitywnie pokazany na urzadzeniu wyjsciowym.
Sama biblioteka dba przy tym o jego odpowiednie przyciecie, gdyby nie miescit sie w
wyznaczonym dla siebie obszarze (np. oknie).

Tryb zaawansowany

Oprocz trybu kompatybilnego, GDI daje moznos$¢ dokonywania globalnych manipulacji
obrazu podczas jego przejscia przez pierwsze etapy potoku graficznego. Tryb grafiki,
ktéry to umozliwia nazywamy zaawansowanym (ang. advanced mode); posiada on
swoj wiasny potok graficzny - bardzo podobny do poprzedniego:

N N B

wywotania o s s

)
funkeji GOI transformacia i i rzutowanie
— — | : —
i [l

ptaszczyzna ptaszczyzna ptaszczyzna
Swiata strony urzgdzenia

prezentacja
—

urzgdzenie

Schemat 50. Potok graficzny w Windows GDI w trybie zaawansowanym

Wystepuje tu tylko jeden dodatkowy etap przeksztatcania, na ktéry z grubsza rzucimy
okiem.

Windows GDI 503

Transformacja Swiata

W trybie zaawansowanym ptaszczyzna $wiata jest oddzielna od ptaszczyzny strony, gdyz
ja poprzedza. Przejsciu od tej pierwszej do drugiej mogq przy tym towarzyszyé
uzupetniajgce transformacije.

Takimi transformacjami sg zwykte geometryczne odwzrowania w rodzaju przesuniecia,
obrotu i skalowania. Windows GDI uzywa macierzy 3x3 do reprezentacji tych dziatan na
obrazach. Forma ta pozwala na ich tatwe taczenie z zachowaniem kolejnosci
przeksztatcen.

Nie bedziemy tutaj omawiac tego zagadnienia, poniewaz transformacje ptaszczyzny
$wiata stosuje sie nadzwyczaj rzadko. Wprowadzenie w temat macierzy i ich role w
geometrii grafiki odtozymy az do czasu poznawania biblioteki DirectX. Tam juz nie
bedziemy sie mogli bez nich oby¢, ale w Windows GDI jest to catkowicie dopuszczalne i
poprawne.

Ustawianie trybu zaawansowego

W zasadzie jest to chyba nawet wiecej niz dopuszczalne. Tryb zaawansowany nie jest
bowiem domysinym trybem GDI w tych systemach Windows, ktére go obstugujg. Kwestig
o tym decydujaca jest zapewne zgodnos¢ z programami dla starszych wersji systemu.
Zachowanie kompatybilnosci jest na razie koniecznoscig, poniewaz tryb zaawansowany
jest obstugiwany dopiero w Windows NT, 2000 i XP.

Niemniej, chociaz nie bedziemy korzystac z tego trybu w niniejszym rozdziale, warto
wiedzie¢ jak mozna go przynajmniej wiaczyc¢. Nie jest to trudne, wystarczy postuzyc sie
funkcjg SetGraphicsMode ()

SetGraphicsMode (hdcKontekst, GM ADVANCED) ;

Jej drugi parametr wskazuje na wybrany tryb: GM ADVANCED to zadany tryb
zaawansowany, GM COMPATIBLE spowoduje powrot do standardowego ustawienia
kompatybilnego.

Pierwszym parametrem jest natomiast uchwyt do tzw. kontekstu urzadzenia. To
niezwykle wazne pojecie Windows GDI i dlatego poswiecimy mu wiele miejsca - ale nieco
pozniej. Na razie zapamietaj, ze kontekst ten precyzuje miejsce, w ktérym bedziemy
rysowac. Uchwytdéw do kontekstéw urzadzenia z powodzeniem uzywaliSmy w poprzednich
rozdziatach, wiec mysle, iz ta kwestia nie jest dla ciebie az takg nowoscia.

Zatem tryb grafiki ustawiamy dla konkretnego kontekstu urzadzenia, zwykle
przynaleznego naszej aplikacji. Nie jest to wiec parametr wtasciwy catemu systemowi, a
kazda aplikacja moze zdecydowac, w jakim trybie chce spozytkowac interfejs Windows
GDI.

Azeby jednak dobrze go wykorzysta¢, musimy dowiedzie¢ sie nieco wiecej o kolejnych
stadiach potoku graficznego, co uczynimy zaraz. Pézniej zajmiemy sie réwniez pojeciem
kontekstu urzadzenia.

Plaszczyzna Swiata (strony)

Pierwszym ,miejscem”, gdzie wywotania GDI dajq jakie$ rezultaty, jest ptaszczyzna
Swiata - w trybie kompatybilnym zwana takze ptaszczyzng strony. Stowo ‘miejsce’ pisze
tu w cudzystowiu, poniewaz faktycznie chodzi o co$ zupetnie abstrakcyjnego, znacznie
bardziej ,,wirtualnego” niz choéby powierzchnia pulpitu Windows, ktérg mozemy
normalnie ogladac¢ na ekranie swego monitora.

Pfaszczyzna Swiata nie jest nieskonczona, chocby dlatego ze jej wymiary ograniczatby
rozmiar zmiennych catkowitych. Jest ona skonczona takze z tego powodu, iz odnosi sie
do bardziej konkretnego zakresu na ekranie (np. wnetrza okna), strony w drukarce czy

504 Windows API

jeszcze innego rejonu w innym urzadzeniu wyjsciowym. Nie mozemy bowiem ,wyjs¢”
poza region, na ktérym pozwolono nam rysowac.

Mozemy jednak zmieni¢ sposob, w jaki po tym regionie bedziemy sie orientowac. Jest to
mozliwe poprzez ustanowienie na nim jakiego$ ukfadu wspétrzednych oraz zmiane kadru.

Mapowanie uktadu wspotrzednych

Biblioteka GDI zachowuje sie w tym wzgledzie bardzo porzadnie, bo pozwala
programiscie na daleko posunietg swobode w wyborze pasujgcego mu uktadu. System
wspotrzednych jest bowiem tutaj czyms wiecej niz tylko dwoma przecinajgcymi sie
osiami.

W GDI mamy pojecie trybu mapowania (ang. mapping mode) uktadu wspotrzednych.
Tryb ten precyzuje nie tylko orientacje ptaszczyzny (kierunek osi pionowej), ale tez
wielkos¢ jednostek, na ktore te ptaszczyzne podzielimy. Nazywamy je jednostkami
logicznymi (ang. logical units), w przeciwienstwie do jednostek urzadzenia (ang. device
units) - na przykifad pikseli.

W Windows GDI mozemy ustawic¢ jeden z kilku predefiniowanych trybéw mapowania.

Ustawianie trybu mapowania

Do tego celu postugujemy sie funkcjg SetMapMode () :

int SetMapMode (HDC hdc,
int fnMapMode) ;

Poniewaz omawiany tryb jest znowu ustawieniem powigzanym z kontekstem
urzadzeniam uchwyt do niego nalezy poda¢ w pierwszym parametrze. W drugim
wpisujemy natomiast jedng ze statych, identyfikujacg wybrany tryb mapowania:

rozmiar

stata tryb . Jjednostki zwrc_Jt uwagi
mapowania loai . osi
ogicznej
MM HIMETRIC metryczny 0,01 milimetra Te tryby moga by¢
gesty przydatne podczas
MM_LOMETRIC metryczny 0,1 milimetra zaawansowanego
luzny przetwarzania obrazow.
MM HIENGLISH angielski 0,001_;a|a (0,025
- gesty milimetra) X >
MM LOENGLISH ar;gllelskl 0,0l_lgalat(0,25 ya Tryby te sq uzywane
uzny 1m2I(;me rlit) zwykle podczas
d/ K pukq u drukowania.
MM TWIPS twips rukarskiego

(1/1440 cala -
0,018 milimetra)

Umozliwia dowolne
MM_ANISOTROPIC | anizotropowy ustawienie parametréw
ustalany przez uktadu wspétrzednych.

programiste dowolny Dba o to, aby pionowy i
MM ISOTROPIC izotropowy poziomy rozmiar
jednostek byt taki sam.
MM TEXT piksele jeden piksel X > Jest to domysiny tryb
- urzadzenia urzadzenia 7\ Z mapowania.

Tabela 59. Tryby mapowania ukladu wspéitrzednych w Windows GDI

Windows GDI 505

Mozemy wiec mierzy¢ nasze rysunki w milimetrach, calach, pikselach (domysine
ustawienie), jak rowniez w naszych wiasnych jednostkach, ustalanych ad hoc. Zobaczmy,
jak mozemy je zdefiniowac.

Kadr

Jezeli wybralismy jako tryb mapowania ustawienie MM ISOTROPIC lub MM ANISOTROPIC,
woéwczas mozemy sami ustali¢ jednostoke oraz zwrot uktadu wspotrzednych danego nam
fragmentu ptaszczyzny swiata. We wszystkich przypadkach mozemy takze okresli¢
potozenie punktu poczatkowego (0, 0) wybranego uktadu.

O wszystkich tych sprawach decydujemy, modyfikujgc wtasciwosci kadru na pfaszczyznie
Swiata.

Kadr (ang. window'*°) okre$la orientacje osi, potozenie poczatku, zakres jednostek oraz
ewentualnie ich rozmiar w uktadzie wspotrzednych ptaszczyzny Swiata.

Ustawienie kadru pozwala wiec opisa¢ podarowany nam kawatek ptaszczyzny zgodnie ze
swoimi zyczeniami. Zobaczmy zatem, jak mozna to zrobic.

Pozycja kadru

Potozenie kadru mozemy regulowaé. Mozliwe jest rozmieszczenie go w kazdym punkcie
wielkiej ptaszczyzny Swiata - do tego celu stuza funkcja setWindowOrgEx () :

BOOL SetWindowOrgEx (HDC hdc,
int X,
int Y,
LPPOINT lpPoint);

W parametrach x i Y podajemy jej punkt (w jednostkach logicznych), w ktérym zostanie
umieszczony lewy gorny rég kadru. Punkt ten bedzie rzutowany na piksel (0, 0) przy
przeksztatcaniu ptaszczyzny $wiata na ptaszczyzne urzadzenia.

Domyslnie kadr jest potozony w logicznych koordynatach (0, 0), ktore przekfadajg sie
bezposrednio na koordynaty urzadzenia - tez (0, 0). Jezeli wywotamy

SetWindowOrgEx (), zmienimy to.

W 1pPoint funkcja zwrdci nam poprzednie ustawienie kadru (chyba ze podamy tu NULL).

Rozciggtos¢ osi

Maksymalny rozstaw osi uktadu wspétrzednych w kadrze ustawiamy za pomocg
SetWindowExtEx () :

BOOL SetWindowExtEx (HDC hdc,
int nXExtent,
int nYExtent,
LPSIZE 1pSize);

Wywotanie tej funkcji przynosi jakikolwiek efekt tylko wtedy, gdy tryb mapowania jest
ustawiony na MM ISOTROPIC lub MM ANISOTROPIC. WoOwczas parametry nXExtent i
nYExtent okreslajg wartosc na osiach wspdtrzednych uktadu, jakie sg osiggane na
krawedziach kadru.

139 window znaczy oczywiécie ‘okno’. Z powodu naturalnego konfliktu ze znacznie cze$ciej uzywanym w WinAPI
znaczenie tego slowa zdecydowatem, ze w tym kontekscie lepiej bedzie uzy¢ innego terminu. Padto na kadr.

506 Windows API

Pamietajmy, ze ustawianie wiekszych rozciggtosci osi nie powoduje wcale zwiekszenia
faktycznego obszaru, na ktérym bedziemy rysowacé. Funkcja SetWindowExtEx () stuzy
bowiem zdefiniowaniu jednostek logicznych, jakich bedziemy uzywac¢ przy rysowaniu na
ptaszczyznie Swiata. Zatem:

Podawanie wiekszych wartosci do funkcji setiindowExtEx () nie spowoduje rozszerzenia
obszaru rysowania, lecz zmniejszenie rozmiaru jednostek logicznych.

Sam obszar rysowania jest dany nam odgornie (np. jako wnetrze okna o ustalonym
rozmiarze) i nie mozemy go na site powiekszy¢ lub zmniejszy¢. Mozemy aczkolwiek
podzieli¢ go na tyle jednostek, ile chcemy - do tego stuzy opisywana funkcja.

W parametrze 1psize zwraca ona biezace wymiary kadru.

Gdy trybem mapowania jest MM 1soTrROPIC, wtedy najlepiej bytoby, jesli jednostki
logiczne byty takie same w pionie i poziomie. Inaczej Windows GDI sam o to zadba, co
niekoniecznie musi by¢ dobre.

Aby temu zapobiec, mozemy pobrac pierwotne wymiary kadru poprzez

GetWindowExtEx (), @ nastepnie przeskalowac je, mnozac przez ten sam czynnik. Wtedy
aspekt obrazu zostanie zachowany.

O SetWindowOrgEx () i SetWindowExtEx () mMozesz rzecz jasna poczyta¢ w MSDN.

Ptaszczyzna urzadzenia

Przedostatnim etapem potoku graficznego - tuz przed wyswietleniem obrazu - jest
plaszczyzna urzadzenia (ang. device space).

Na te ptaszczyzne rzutowana jest poprzednia (Swiata lub tez strony), dzieki czemu
rysunek jest ostatecznie przygotowywany pod wzgledem, nazwijmy to,
~geometrycznym”. Obejmuje to miedzy innymi dostosowanie do uktadu wspoétrzednych
urzadzenia.

Uktad wspdtrzednych

Na tej ptaszczyznie na ma juz jednostek logicznych - sg tylko jednostki urzadzenia
(ang. device units). Interpretacja, czym one rzeczywiscie sg, zalezy sScisle od sprzetu. Dla
monitora bedg to pojedyncze piksele, zas dla drukarki - punkty na papierze, itp.

Z nowgq ptaszczyzng zwigzany jest tez inny uktad wspodtrzednych. Tutaj nie mozemy juz
go zmieniac¢, wiasnie ze wzgledu na wspomniang juz zaleznos$¢ od sprzetu.
Ten ukfad nie jest trudny do opanowania, bo spotykates sie z nim juz niejednokrotnie.

W uktadzie wspotrzednych ptaszczyzny urzadzenia punkt (0, 0) jest umieszczony w
lewym gornym rogu, zas o$ X biegnie w prawo, a Y - w dét.

Jest to wiec taki sam system, jaki stosujemy dla okreslania potozenia okien i innych
elementow interfejsu Windows. Nie jest to przypadkowe: przeciez sam intefejs takze jest
rysowany po ekranie monitora.

Wziernik

Na ptaszczyznie urzadzenia wystepuje rowniez pojecie prostokata podobnego do kadru.
Jest to wziernik.

Windows GDI 507

Wziernik (ang. viewport) okresla miejsce na ptaszczyznie urzadzenia, gdzie pojawi sie
wygenerowany obraz.

Pokrywa sie on poczatkowo z catym obszarem, na ktérym mozemy rysowac przy pomocy
danego kontekstu urzadzenia. W ogromnej wiekszosci przypadkéw nie ma tez
najmniejszej potrzeby zmiany tego.

Czasem konieczne jest moze tylko jego przesuniecie. Dokonujemy tego poprzez funkcje
SetViewportOrgEx () :

BOOL SetViewportOrgEx (HDC hdc,
int X,
int Y,
LPPOINT lpPoint);

W argumentach x i Y podajemy jej koordynaty punktu (w jednostkach urzadzenia), w
ktérym zostanie umieszczony rzut poczatku ukfadu wspétrzednych ptaszczyzny swiata
(strony). Jest to wiec taki piksel, ktéremu zostanie przyporzadkowany punkt (0, 0) w
jednostkach logicznych. Pozostata cze$¢ ptaszczyzny Swiata bedzie rzutowana w
odniesieniu do tego witasnie punktu.

Kontekst urzgdzenia

O ile potok graficzny moze nie wydawac sie wazng sprawa (bo i o jego istnieniu
niekoniecznie trzeba by¢ uswiadomionym), o tyle druga kluczowa koncepcja Windows
GDI jest dla programisty absolutnie niezbedna. Mowa tu o kontekscie urzadzenia.

Z terminem tym spotkaliSmy sie juz pare razy - zawsze wtedy, gdy chcieliSmy co$
narysowac w oknie programu. Nie ma w tym nic niezwyktego, bowiem do tego wtasnie
stuzy éw kontekst.

Kontekst urzadzenia (ang. device context) jest strukturg Windows GDI przechowujaca
informacje na temat urzadzenia graficznego. Na rzecz kontekstu mozna wywotywac
funkcje GDI, tworzac w ten sposob obrazy wyswietlane na tym urzadzeniu.

Konkretny kontekst moze wiec by¢ zwigzany z monitorem, drukarkg mozaikowa,
ploterem, plansza rzutnika slajdéow czy nawet tablicg do internetowych konferencji. Jego
uzytkowanie w kazdym z tych przypadkéw wyglada jednak bardzo podobnie i to jest
jedng z gtdwnych zalet biblioteki Windows GDI.

Kontekst urzadzenia jest strukturg, a sadzac z petnionych przez siebie zadan - strukturg,
bardzo skomplikowana. Jej ztozonos¢ jest na szczescie problemem Windows, a nie
naszym. Programista nie musi bowiem operowac bezposrednio na kontekscie urzadzenia;
wiasciwie bytoby to zupetnie niewskazane, jako ze nieuchronnie zatartoby niezaleznosé
sprzetowg, wpisang w idee Windows GDI.

Zamiast samej struktury bedziemy wiec dziata¢ tylko przy pomocy uchwytu do niej.
Nasza najwazniejsza dang przy rysowaniu bedzie w takim razie uchwyt do kontekstu
urzadzenia (ang. handle to device context). Jg tez bedziemy podawac, chcac cokolwiek
wyswietli¢, zmieni¢ parametry rysowania lub pobra¢ informacje o urzadzeniu.

Dla wygody czesto utozsamia sie kontekst urzadzenia z jego uchwytem, poniewaz
wspomniana wewnetrzna struktura Windows GDI nie jest uzywana przez programiste i
liczy sie tylko uchwyt do niej. Dlatego tez jesli dalej bede méwit o kontekscie urzadzenia,
to prawie na pewno bede miat na mysli jego uchwyt (chyba ze wyraznie zaznacze co$
innego).

508 Windows API

Uchwyt do kontekstu jest w gruncie rzeczy podobny do dziesigtkdw innych rodzajéw
uchwytéw w Windows API. Jest to wiec liczba 32-bitowa, dla ktérej przewidziano osobny
typ: HDC. Jak juz moze zdazyte$ zauwazyc¢, wszystkie widziane przez ciebie dotad funkcje
GDI (np. DrawText () Czy MoveToEx ()) zgdaty przynajmniej jednego parametru tego
typu. W ten sposob wiedzg one, gdzie doktadnie majg wykonac zgadane operacje
graficzne.

Gdyby kontekst urzadzenia byt klasg jezyka C++, to w zasadzie wszystkie funkcje
Windows GDI dziatatyby jako metody tej klasy. Niestety, interfejsu GDI (jak i catego
WiInAPI) nie napisano w C++, wiec sytuacja wyglada nieco gorzej. Niemniej, uchwyt do
kontekstu urzgdzenia mozna w logiczny sposéb utozsamia¢ ze wskaznikiem this, jaki
otrzymujg przy wywotaniu metody obiektow. Takie ,pseudoobiektowe” podejscie,
stawiajqce uchwyty w takiej roli jak obiekty OOP, jest zresztg charakterystyczne dla
catego Windows API i sprawdza sie catkiem dobrze. Jak zobaczysz niedtugo, z pewnymi
oporami mozna tak symulowa¢ nawet dziedziczenie i polimorfizm metod wirtualnych.

Pierwszg czynnoscig rysowania przy uzyciu Windows GDI powinno by¢ zatem uzyskanie
skads$ uchwytu do kontekstu urzadzenia, gdyz bez niego nie zrobimy zgota nic. Pdzniej
mozna juz dokonywac tych wszystkich wspaniatych rzeczy, o ktérych traktuje wieksza
czes$¢ aktualnego rozdziatu.

Rozpocznijmy wiec od pobrania uchwytu kontekstu urzadzenia.

Pobieranie uchwytu

Uchwyt do kontekstu urzadzenia mozna zdoby¢ wieloma réznymi drogami.
Najlogiczniejsze wydawatoby sie powiadomienie Windows, z ktérego urzadzenia
grafixznego chcemy skorzystac¢, a system zwrocitby nam wtedy uchwyt do niego.
Faktycznie jest to mozliwe i pokaze pdzniej, jak to zrobié.

W Windows czesciej jednak bedzie uzywali kontekstéw pochodzgcych z innych zrédet,
zwigzanych z ekranem. Mam tu na mysli konteksty urzadzen powigzane z oknami
Windows lub ich fragmentami (obszarami klienta). Wtasnie tego rodzaju uchwytéw
graficznych uzywaliémy dotad, gdy w poprzednich rozdziatach rysowaliSmy cokolwiek w
oknie naszych programéw przyktadowych.

Ostatnig mozliwoscig jest samodzielne utworzenie kontekstu na podstawie innego, juz
istniejgcego. Jest to bardzo przydatne przy operowaniu bitmapami, wiec o tym takze
sobie powiemy.

Poznajmy zatem te trzy metody pobierania uchwytow kontekstu urzadzenia.

Od okna

Chcac narysowac cokolwiek w oknie, musimy pobrac¢ kontekst odnoszacy do niego. Jest
to wykonalne na kilka sposobéw.

Podczas odrysowywania

Pierwszg mozliwos¢ wyraznie podsuwa nam sam system operacyjny: jest to moment
koniecznego odrysowania zawartosci okna. Kontekst urzadzenia zwigzany z oknem
mozemy bowiem bez probleméw pobra¢ podczas obstugi komunikatu wM PAINT.

Wiemy juz zreszta, jak to zrobié. Przy omawianiu tego komunikatu poznaliSmy
mianowicie funkcje BeginPaint (), ktéra do tego wiasnie stuzy:

HDC hdcKontekst;
PAINSTRUCT ps;

hdcKontekst = BeginPaint (hWnd, &ps);

Windows GDI 509

Jej wywotanie zwraca w wyniku zadany kontekst; ponadto zawiera go takze pole hdc
struktury PAINSTRUCT, ktorej wskaznik podajemy do BeginPaint ().

Kontekst, jaki w ten sposdb uzyskujemy, jest krotkozyjacy i traci waznos¢ po
odrysowaniu zawartosci. Jak wiemy, czynnos¢ te konczymy poprzez przywotanie
EndPaint () :

EndPaint (hWnd, &ps);

Po nim odswiezanie okna jest juz zakonczone, a kontekst pobrany na poczatku nie
nadaje sie do zadnego uzytku. Wéwczas konczymy wiec obstuge wM PAINT i nasza
zabawa na tym sie konczy.

Obszar klienta okna

Uchwyt kontekstu okna mozemy pobrac nie tylko przy reagowaniu na komunikat
WM PAINT. Rownie dobrze moglibysmy uzyska¢ w dowolnej sytuacji - wystaczy postuzyc
sie funkcjg GetDC () :

HDC hdcObszarKlienta = GetDC (hWnd) ;

Wymaga ona tylko podania uchwytu okna, a w zamian oddaje kontekst urzadzenia,
odnoszacy sie do jego obszaru klienta.

Po zakonczeniu pracy z kontekstem nalezy go zwykle zwolni¢, poniewaz zazwyczaj nie
jest to twor trwaty. Windows tworzy go tymczasowo, dla nas, i dlatego nalezy mu
powiedzie¢, kiedy juz go nie potrzebujemy. Robimy to poprzez wywotanie ReleaseDC () :

ReleaseDC (hWnd, hdcObszarKlienta) ;

Jest to zalecane w kazdym przypadku, bo catkowicie zapobiega ewentualnym
wyciekom zasobdw (kontekst urzadzenia jest przeciez zasobem systemowym).

Zwolnienie uchwytu nie jest aczkolwiek konieczne w przypadku, gdy jest to prywatny
kontekst okna lub kontekst wspélny dla catej klasy okien. Te dwa przypadku zachodzg,
kiedy przy rejestrowaniu klasy okna dotaczymy (odpowiednio) CS OWNDC lub CS CLASSDC
do jej stylu (pola WNDCLASS[EX]: :style).

Poniewaz jednak w przypadku tego rodzaju sytuacji ReleaseDC () nie robi nic, stosowanie
tego wywotania jest bardzo rozsadne niezaleznie od okolicznosci.

Cate okno

GetDC () pozwala nam bawi¢ sie z obszarem klienta okna - i tylko z nim. Pozostata jego
czes¢, czyli obszar pozakliencki, jest wtedy poza naszym zasiegiem. Jesli jednak chcemy
zajac sie takze i tym rejonem, potrzebujemy kontekstu dla calego okna. Pozyskujemy
go funkcjg GetWindowDC () :

HDC hdcOkno = GetWindowDC (hWnd) ;

Otrzymany ta drogq kontekst pokrywa obszar nie tylko wnetrza okna hwind, ale tez jego
paska tytutu, menu czy brzegow. Postugiwanie sie nim nalezy wiec do sytuacji raczej
specjalnych, gdyz te czesci okna sg wazne dla systemu Windows.

Po zakonczeniu pracy z kontekstem nalezy go zwolni¢, a postugujemy sie do tego
poznang przed chwilg funkcjg ReleaseDC () :

ReleaseDC (hWnd, hdcOkno);

510 Windows API

Dla kontekstu obejmujacego cate okno trzeba jg wywota¢ zawsze, aby unikna¢
niepozadanego zjawiska wycieku zasobow.

Do uzyskiwania kontekstu urzadzenia zwigzanego z oknem mozliwe jest tez uzycie
funkcji GetDCEx () . Jest ona bardzo elastyczna i zaleznie od swych parametrow moze
zachowywac sie jak GetDC (), GetWindowDC (), @ nawet jak BeginPaint (). Oferuje tez
pewne dodatkowe mozliwosci (pomocne np. przy obstudze wM NCPAINT); na temat ich
wszystkich mozesz co nieco poczyta¢ w dokumentacji MSDN.

Od urzgdzenia

Drugim zrédtem kontekstéw urzadzen sa... urzadzenia :) W Windows mozemy przy ich
pomocy uzyskac¢ dostep do przytaczonego do komputera sprzetu graficznego.

Ekran

Bardzo proste jest pobranie kontekstu urzadzenia pokrywajacego caly ekran. Mowigc
‘ekran’ nie mam na mysli pulpitu systemowego, lecz dostownie ekran monitora: czyli to
co widzimy patrzac w ,telewizor”, tj. zaréwno pulpit, jak i okna, ktére go ewentualnie
przykrywajg. Kontekst catego ekranu pozwala zatem na wtracanie sie w wyglad innych
aplikacji, wiec rysowanie po nim nie nalezy do dobrego tonu. Przy jego pomocy mozna
jednak wykonywac inne, catkiem ,kulturalne” i przydatne operacje. Jedng z nich za
chwile zaprezentuje.

Na razie dowiedzmy sie, jak pozyskac taki specjalny kontekst. Jak méwitem nie jest to
trudne i ogranicza sie do wywofania jednej prostej funkcji, w dodatku juz nam znanej. Tq
funkcjq jest GetDC () :

HDC hdcEkran = GetDC (NULL) ;

Zamiast uchwytu okna podajemy jej wartos$¢ NULL, czyli zero. W zamian dostajemy
kontekst dla catego ekranu'°.

Skoro jednak nie powinniSmy po nim rysowac, to céz sensownego da sie z nim zrobic¢?
Otéz da sie catkiem sporo; najciekawsze jest chyba stworzenie aplikacji pobieracza
koloréw (ang. color picker). Oto, jak moze ona wygladac:

// ColorPicker - pobieracz kolordw

#include <string>

#include <sstream>

#define WIN32 LEAN AND MEAN
#include <windows.h>
#include <windowsx.h>

// dane okna
std::string g strKlasaOkna = "odOdogk ColorPicker Window";
HWND g hwndOkno = NULL;

// uchwyt do kontekstu ekranu
HDC g _hdcEkran = NULL;

// pobrany kolor

140 Zamiast GetDC (), mozna tez uzy¢ GetWindowDC () (takze podajac jej NULL), ale wynik bytby inny w
systemach wielomonitorowych. Tam GetwWindowDC () zwrdcitaby kontekst gldwnego monitora, zas GetdC () w
przedstawionej formie oddaje zawsze kontekst dla catego wirtualnego ekranu - niezaleznie od tego, na ile
rzeczywistych monitoréw sie on rozciaga.

Windows GDI

511

COLORREF g clKolor = RGB (255, 255, 255); // poczatkowo biaty

LRESULT CALLBACK WindowEventProc (HWND hWnd, UINT uMsg,
LPARAM 1Param)

{

switch

{

(uMsqg)

case WM LBUTTONDOWN:

// tapiemy myszke
SetCapture (hWnd);

// ustawiamy kursor w ksztalcie celownika
SetCursor (LoadCursor (NULL, IDC CROSS)) :;
return 0;

case WM MOUSEMOVE:

// sprawdzamy, czy myszka Jjest zlapana
if (GetCapture() == hWnd)
{
// odczytujemy wspbdirzedne kursora
POINT ptKursor;
ptKursor.x = GET X LPARAM(lParam);
ptKursor.y = GET Y LPARAM (lParam);

// przeliczamy je na koordynaty ekranowe
ClientToScreen (hWnd, &ptKursor);

// pobieramy kolor z miejsca kursora
g _clKolor = GetPixel (g _hdcEkran,
ptKursor.x, ptKursor.y):;

// wymuszamy odéwiezenie okna programu,
// aby pokaza¢ pobrany kolor
InvalidateRect (hWnd, NULL, TRUE);

}

return 0;

case WM LBUTTONUP:

// uwalniamy mysz
ReleaseCapture () ;

// ustawiamy kursor strzaltki
SetCursor (LoadCursor (NULL, IDC ARROW)) ;
return 0;

case WM _PAINT:

// odrysowanie zawarto$ci okna
{

PAINTSTRUCT ps;

HDC hdcOkno;

// zaczynamy
hdcOkno = BeginPaint (hWnd, &ps);

// pobieramy obszar klienta okna
RECT rcObszarKlienta;
GetClientRect (hWnd, &rcObszarKlienta)

WPARAM wParam,

512 Windows API

// wypelniamy go pobranym kolorem

// w tym celu najpierw tworzymy odpowiedni pedzel,
// a potem wypeiniamy prostokat obszaru klienta
// potem usuwamy pedzel

HBRUSH hbrPedzel = CreateSolidBrush (g clKolor);
FillRect (hdcOkno, &rcObszarKlienta, hbrPedzel);
DeleteObject (hbrPedzel);

// kohczymy rysowanie
EndPaint (hWnd, é&ps);
}

// pokazanie sktadowych koloru

{
// pobieramy te sktadowe i konwertujemy na napis
std::stringstream Strumien;

Strumien << "RGB: " << (int) GetRValue (g clKolor)
<< ", " << (int) GetGValue (g _clKolor)
<< ", " << (int) GetBValue (g clKolor);

// ustawiamy ten napis jako tytuil okna programu
SetWindowText (hWnd, Strumien.str().c str());

return 0;

case WM DESTROY:
// zwalniamy kontekst ekranu
ReleaseDC (NULL, g hdcEkran) ;

// kohczymy program
PostQuitMessage (0);
return 0;

return DefWindowProc (hWnd, uMsg, wParam, lParam);

[/ mmmm e funkcja WinMain() -------=-"-------—---————

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE, LPSTR, int nCmdShow)
{

/* rejestrujemy klase okna */
WNDCLASSEX KlasaOkna;

// wypelniamy strukture WNDCLASSEX

ZeroMemory (&KlasaOkna, sizeof (WNDCLASSEX)) ;
KlasaOkna.cbSize = sizeof (WNDCLASSEX) ;
KlasaOkna.hInstance = hInstance;
KlasaOkna.lpfnWndProc = WindowEventProc;
KlasaOkna.lpszClassName = g strKlasaOkna.c str();
KlasaOkna.hCursor = LoadCursor (NULL, IDC ARROW) ;
KlasaOkna.hIcon = LoadIcon (NULL, IDI_APPLICATION);

// rejestrujemy klase okna
RegisterClassEx (&KlasaOkna);

Windows GDI 513

/* tworzymy okno */

// tworzymy okno funkcjg CreateWindowEx
g hwndOkno = CreateWindowEx (WS EX TOOLWINDOW,
g strKlasaOkna.c str(),
NULL,
WS OVERLAPPED | WS BORDER
| WS _CAPTION | WS SYSMENU,
0, O,
125,
80,
NULL,
NULL,
hInstance,
NULL) ;

// pokazujemy nasze okno 1 je od razu odswiezamy
ShowWindow (g _hwndOkno, nCmdShow) ;
UpdateWindow (g hwndOkno) ;

/* pobieramy kontekst urzadzenia ekranu */
g_hdcEkran = GetDC(NULL) ;

/* petla komunikatéw */

MSG msgKomunikat;
while (GetMessage (&émsgKomunikat, NULL, 0, 0))
{
TranslateMessage (&msgKomunikat) ;
DispatchMessage (&msgKomunikat);

}

// zwracamy kod wyjscia
return static cast<int>(msgKomunikat.wParam);

}

Program ten potrafi pobrac kolor z dowolnego piksela na ekranie, ktory zostanie mu
wskazany przez uzytkownika. W tym celu nalezy po prostu klikng¢ lewym przyciskiem
myszy i przeciagna¢ kursor do wybranego punktu. Jego kolor ukaze sie w oknie
programu, poznamy rowniez jego sktadowe RGB:

RGE: 108, 147,

Screen 67. Okno pobieracza kolorow

Ta prosta aplikacja nie jest wcale tak nieuzyteczna, jakby sie mogto z poczatku wydawac.
Gdyby jg odrobine ulepszy¢, stataby sie przydatnym narzedziem dla grafikow i
webmasteréw. Czesto korzystajg oni z takich wtasnie programow.

Dziatanie naszego pobieracza jest dosc proste. Najpierw, zaraz po utworzeniu wtasnego
okna, pobiera on kontekst urzadzenia catego ekranu w opisany wczesniej sposéb:

g _hdcEkran = GetDC (NULL) ;

514 Windows API

Uzywajac go, moze juz pobierac kolory pikseli ekranu. Przy wcisnieciu lewego przycisku
myszy przejmuje wiec kontrole nad urzadzeniem wskazujacym, poniewaz bedzie chciat
rejestrowac pozycje kursora takze poza wiasnym oknem. Po co? Po to, azeby wylowié
kolor piksela w miejscu kursora, co tez czyni ponizszymi wierszami z kodu obstugi

WM MOUSEMOVE!:

POINT ptKursor;
ptKursor.x = GET X LPARAM(lParam);
ptKursor.y = GET Y LPARAM(lParam);

// przeliczamy pozycje kursora na koordynaty ekranowe
ClientToScreen (hWnd, &ptKursor);

// pobieramy kolor z miejsca kursora
g _clKolor = GetPixel (g _hdcEkran, ptKursor.x, ptKursor.y);

Najwazniejsze zadanie spoczywa tu na funkcji GetPixel (). Nietrudno domysli¢ sie tutaj
jej dziatania, ale wyjasnimy je sobie takze w kolejnym podrozdziale.

Pokazaniem pobranego koloru oraz jego sktadowych RGB zajmuje sie kod komunikatu
WM _PAINT. Wypetnia on obszar klienta okna programu rzeczonym kolorem:

// pobieramy obszar klienta okna
RECT rcObszarKlienta;
GetClientRect (hWnd, &rcObszarKlienta);

// wypelniamy go pobranym kolorem

HBRUSH hbrPedzel = CreateSolidBrush(g clKolor);
FillRect (hdcOkno, &rcObszarKlienta, hbrPedzel);
DeleteObject (hbrPedzel);

Dokonuje tego, tworzac tzw. pedzel i postugujac sie nim do wypetnienia prostokata
(Fillrect ()) definiujgcego wnetrze okna. O pedzlach réwniez powiemy sobie wiecej w
nastepnym podrozdziale.

Dalej nastepuje jeszcze pobranie wartosci kanatow RGB koloru i ich wyswietlenie na
pasku tytutowym okna:

// pobieramy te skladowe 1 konwertujemy na napis

std::stringstream Strumien;

Strumien << "RGB: " << (int) GetRValue (g _clKolor) << ", "
<< (int) GetGValue(g_clKolor) << ", "
<< (int) GetBValue(g_clKolor);

// ustawiamy ten napis jako tytul okna programu
SetWindowText (hWnd, Strumien.str().c str());

Widzimy tu praktyczne spozytkowanie makr Get?value ().

Dowolne urzadzenie

W ogdlnym przypadku, uchwyt do kontekstu mozemy utworzy¢ dla dowolnego
urzadzenia. Jest mozliwe przy uzyciu funkcji CreateDC () :

HDC CreateDC (LPCTSTR lpszDriver,
LPCTSTR lpszDevice,
LPCTSTR lpszOutput,
CONST DEVMODE* lpInitData);

Windows GDI 515

Funkcja ta jest bardziej skomplikowana niz to by sie mogto wydawac z jej prototypu,
dlatego tez nie bedziemy jej doktadnie omawiaé. Wyjasnimy sobie aczkolwiek znaczenie
poszczegolnych parametrow:

typ parametry opis

Te dwa napisy okreslajg tacznie urzadzenie, ktorego
kontekst chcemy pobraé. W 1pszDriver wpisujemy
nazwe sterownika - dokumentacja wspomina o dwoch
mozliwosciach: "pIspLAY" dla monitora oraz
"WINSPOOL" ("WwIiNsPL16") dla drukarki. Mozliwe jest tez
wpisanie tam nazwy konkretnego modelu (np. "HP
Color LaserJet 1500L"), jednak podaje sie jg zwykle
W lpszDevice, zostawiajgc wowczas pierwszy parametr
z wartos$cig NULL.

W ogole niemal zawsze wykorzystuje sie tylko jeden z
tych dwdch parametrow, podajac zero (NULL) w drugim.

lpszDriver
lpszDevice
LPCTSTR

Jest to parametr zachowany celem kompatybilnosci z
lpszOutput 16-bitowymi wersjami Windows. Obecnie nalezy tu
zawsze wpisywacé NULL.

Sa to dodatkowe parametry dla urzadzenia innego
niz monitor (czyli zwykle dla drukarki). DEVMODE, na co
pokazuje ten wskaznik, jest skomplikowang strukturg
zawierajacq te pomocnicze dane.

Jezeli w 1pszDriver wpisujemy "DISPLAY", wtedy tutaj
musimy poda¢ wartos$¢ NULL.

CONST DEVMODE* | lpInitData

Tabela 60. Parametry funkcji CreateDC()

Najprostsze uzycie tej funkcji to pobranie za jej posrednictwem kontekstu urzadzenia
ekranu:

HDC hdcEkran = CreateDC("DISPLAY", NULL, NULL, NULL);
Wynik jest wtedy identyczny z tym uzyskanym poprzez GetDC (NULL) .

Pobranie kontekstu drukarki jest o wiele trudniejsze, gdyz musimy wtedy podac petng
nazwe tego urzadzenia. W systemie moze by¢ bowiem zainstalowanych wiele drukarek,
niekoniecznie fizycznie istniejacych, ale np. drukujacych do pliku; poza tym faksy sgq
takze interpretowane jako drukarki.

Utworzenie kontekstu wymaga wiec najpierw wyliczenia wszystkich tego typu urzadzen, a
nastepnie wybrania jednego z nich. Inng metodg jest pozostawienie wyboru
uzytkownikowi poprzez wyswietlenie odpowiedniego okna dialogowego (za pomocg
funkcji printD1g[Ex] ()), a nastepnie pobranie otrzymanego wyniku.

Tak czy owak nie jest to proste, lecz jesli interesujq sie szczegoty, to odsytam do MSDN
lub innych zrédet informacji o Windows GDI.

CreateDC () ma kuzyna w postaci funkcji create1C (). Funkcja ta przyjmuje identyczne
parametry, ale jej wynik jest uchwyt do tzw. kontekstu informacyjnego

(ang. information context). Rézni sie on od kontekstu urzadzenia tym, iz nie mozna przy
jego pomocy niczego narysowac, a jedynie pobrac informacje o samym urzadzeniu.
Kontekst informacyjny moze wiec by¢ tylko i wytacznie przekazany do funkcji w rodzaju
GetDeviceCaps (), DeviceCapabilities () €zZy DocumentProperties().

Mozna sie domysli¢, ze utworzenie kontekstu informacyjnego jest szybsze od stworzenia
~petnowymiarowego” kontekstu urzgdzenia. Rzeczywiscie, tak wiasnie jest.

516 Windows API

Kontekst pamieciowy

Istnieje jeszcze jedna metoda pozyskania kontekstu urzadzenia, niepodobna do zadnej
wczesniej. Takze jej produkt jest odmienny - to kontekst pamieciowy (ang. memory
context).

Taki kontekst nie jest bezposrednio zwigzany z zadnym urzadzeniem. Jest on raczej
czyms$ w rodzaju bufora - pomocniczego obiektu, utatwiajacego (a czesto wrecz
umozliwiajacego) operacje na obrazach.

Pamieciowego kontekstu nie bierzemy znikad. Mozemy go utworzy¢ tylko nad podstawie
juz istniejacego, innego kontekstu. Woéwczas ten nowy bedzie z nim kompatybilny, co
tez sugeruje nazwa funkcji CreateCompatibleDC () :

// zaktadamy, ze w hdcKontekst mamy Jjuz jaki$ kontekst urzadzenia
HDC hdcKontekstPamieciowy = CreateCompatibleDC (hdcKontekst) .

Funkcji tej podajemy uchwyt do posiadanego kontekstu, a w zamian dostajemy nowy
kontekst pamieciowy, kompatybilny z podanym. Mozemy tez poda¢ NULL, a wtedy
otrzymamy kontekst zgodny z ekranem.

Ustawianie obszaru rysowania

Musimy koniecznie zwrdéci¢ uwage na to, ze kompatybilny kontekst pamieciowy nie jest
kopia pierwotnego kontekstu. Jest on z nim jedynie zgodny, to znaczy moze by¢
uzywany do wymiany danych ze swa matryca. Absolutnie jednak nie zawiera on kopii
samego rysunku.

Nie mégtby zresztg jej zawierac, bo jego obszar rysowania jest poczgtkowo znikomy: ma
on posta¢ monochromatycznej bitmapy o wymiarach 1x1. Taki obszar nie jest szczegdlnie
przydatny, zatem nalezy go powiekszy¢é. W tym celu mozna stworzy¢ nowg bitmape - o
tak:

HBITMAP hbmpBitmapa = CreateCompatibleBitmap (hdcKontekst,
nSzerokosc, nWysokosc) ;

Jest bardzo wazne, aby do CreateCompatibleBitmap () przekazaé uchwyt do ,starego”
kontekstu, a nie do kontekstu pamieciowego.

Po utworzeniu nowej bitmapy (obszaru rysowania), wigzemy jq z naszym kontekstem
pamieciowym. Jednoczes$nie zachowujemy te poprzednig, jednopikselowa:

HBITMAP hbmpStaraBitmapa = (HBITMAP) SelectObject (hdcKontekstPamieciowy,
hbmpBitmapa) ;

Teraz mozemy juz normalnie korzystac z kontekstu pamieciowego - zupetnie tak, jakby
byt on np. kontekstem wnetrza o okna o wymiarach nSzerokosc i niwysokosc. ROznica
polega na tym, ze nie zobaczymy nigdzie efektow rysowania - chyba ze $wiadomie je
przekopiujemy do pierwotnego kontekstu. Jak to zrobi¢, dowiesz sie przy omawianiu
bitmap GDI.

Jest jeszcze jedno zrddto kontekstu urzadzenia - to metaplik (ang. metafile), czyli plik
dyskowy zawierajacy zapis polecen Windows GDI. Nie bedziemy tutaj zajmowac sie
metaplikami; mozesz poczytac na ich temat w MSDN, jesli chcesz.

Atrybuty kontekstu

Co mozna powiedzie¢ o gotowym kontekscie urzgdzenia? Na pewno to, ze charakteryzuje
go spora ilos¢ réznych witasciwosci. Opisze je teraz krotko. Wiekszoscig z nich zajmiemy
sie doktadniej w dalszej czesci rozdziatu.

Windows GDI 517

Atrybuty potoku graficznego

O potoku graficznym traktuje blizej poprzednia sekcja. Tutaj przedstawie tylko skrétowo
trzy ustawienia przynalezne kazdemu kontekstowi urzadzenia.

Tryb mapowania

Domysine ustawienie: MM TEXT
Funkcja ustawiajgca atrybut: SetMapMode ()
Funkcja pobierajgca atrybut: GetMapMode ()

Tryb mapowania okresla wielko$¢ jednostek logicznych, czyli jednostek w ptaszczyznie
Swiata (strony) dla danego kontekstu urzadzenia. Domys$Inie jednostkami te sq
identyczne z punktami fizycznego urzadzenia, czyli na przyktad z pikselami.

Kadr

pozycja rozciggtosc
Domysline ustawienie: (0, 0) (1, 1)
Funkcja ustawiajgqca atrybut: SetWindowOrgEx () SetWindowExtEx ()
Funkcja pobierajgca atrybut: GetWindowOrgEx () GetWindowExtEx ()

Kadr jest specjalnym prostokatem na ptaszczyznie $wiata (strony), ktéry podczas
przeksztatcania obrazu na ptaszyczne urzadzenia jest rzutowany do odpowiadajacego mu
wziernika.

Wziernik

pozycja rozciggtosc
Domyslne ustawienie: (0, 0) (1, 1)
Funkcja ustawiajgca atrybut: SetViewportOrgEx () SetViewportExtEx()
Funkcja pobierajgca atrybut: GetViewportOrgEx () GetViewportExtEx ()

Wziernik jest prostokatem potozonym na ptaszczyznie urzadzenia. Okresla on, gdzie
pojawi sie wygenerowany obraz.

Atrybuty pidra

Pidro jest obiektem kontrolujgcym styl i grubosc linii uzywanej do rysowania prostych i
krzywych. Jest on takze odpowiedzialny za obramowanie figur zamknietych.
Szczego6towe informacje o pidrze uzyskasz z nastepnego podrozdziatu.

Obiekt pidra

Domysline ustawienie: BLACK_PEN

Funkcja ustawiajqca atrybut: SelectObject ()
Funkcja pobierajgca atrybut: GetCurrentObject ()

Pidra moga istnie¢ niezaleznie od kontekstu urzadzenia, jednak kazdy kontekst posiada
doktadnie jedno pidro, ktérego uzywa do rysowania. Domyslinie jest to twér rysujacy
czarne kreski o grubosci 1 piksela.

Aktualna pozycja

Domysline ustawienie: (0, 0)
MoveToEx ()
LineTo ()

Funkcje ustawiajgce atrybut: PolylineTo ()
PolyBezierTo ()
ArcTo ()

Funkcja pobierajgca atrybut: GetCurrentPositionEx ()

518 Windows API

Aktualna pozycja pidra jest czyms$ w rodzaju graficznego kursora. Wiele funkcji
rysujacych krzywe (cztery wymienione wyzej) rozpoczyna od tego witasnie miejsca. Majq
one aczkolwiek swoje odpowiedniki, ktére nie polegajg na pozycji pidra. Ktorych uzyjemy
- jest to w duzej mierze kwestia gustu.

Tryb rysowania

Domysine ustawienie: R2 COPYPEN
Funkcja ustawiajqca atrybut: SetROP2 ()
Funkcja pobierajgca atrybut: GetROP2 ()

Tryb rysowania piérem mowi bibliotece GDI, jak ma sie obchodzi¢ z problemem
przykrywania juz narysowanych pikseli z tymi, ktére ma zamiar zakresli¢ piéro.
Standardowo, nowe piksele catkowicie zastaniajg stare, lecz mozna tak poinstruowac
GDI, aby zamiast tego dokonywana byta odpowiednia operacja maskowania na bitach
koloru pidra oraz ekranu.

Atrybuty pedzla

Pedzel odpowiada za wypetnianie zamknietych ksztattéw, takich jak figury geometryczne.
W szczegdlnych przypadkach moze tez stuzy¢ do kreslenia wzorzystych obramowan.
Obszerne informacje o pedzlach znajdujg sie w nastepnym podrozdziale.

Obiekt pedzla

Domysine ustawienie: WHITE BRUSH
Funkcja ustawiajgca atrybut: SelectObject ()
Funkcja pobierajgca atrybut: GetCurrentObject ()

Kazdy kontekst urzgdzenia posiada dokfadnie jeden zwigzany z nim pedzel. Jezeli nie
ustalimy inaczej, jest to obiekt wypetniajacy regiony jednolitym biatym kolorem.

Punkt odniesienia pedzla

Domysline ustawienie: (0, 0)
Funkcja ustawiajqca atrybut: SetBrushOrgEx ()
Funkcja pobierajgca atrybut: GetBrushOrgEx ()

Punkt odniesienia jest stosowany tylko dla pedzli, ktére malujg regiony sgsiadujacymi
kopiami bitmap lub predefiniowanymi deseniami. Dla takich pedzli punkt odniesienia
kontroluje uktadanie sie stworzonego w ten sposéb wzoru na wypetnianych nim
powierzchniach.

Atrybuty bitmap

Operacje na bitmapach sg jednym z wazniejszych dziatan podejmowanych przy uzyciu
funkcji Windows GDI. Kontekst urzadzenia posiada dwa atrybuty zwigzane z bitmapami.

Bitmapa kontekstu urzgdzenia

monochromatyczna bitmapa 1x1 lub

Domysline ustawienie: bitmapa o parametrach zaleznych od
macierzystego urzadzenia kontekstu

Funkcja ustawiajqca atrybut: SelectObject ()

Funkcja pobierajgca atrybut: GetCurrentObject ()

Kazdy kontekst urzadzenia jest zwigzany z pewng bitmapa. Funkcje rysujace zmieniajq
piksele tej wtasnie bitmapy. Mozliwa jest aczkolwiek catosciowa zmiana obrazka na inny,
na przyktad na zawartosc¢ pliku graficznego, Takie postepowanie jest bardzo czeste w
przypadku kontekstow pamieciowych, uzywanych do prezentacji bitmap lub ich
fragmentéw na ekranie.

Windows GDI 519

Tryb rozciggania

Domysline ustawienie: BLACKONWHITE
Funkcja ustawiajgca atrybut: SetStretchBltMode ()
Funkcja pobierajgca atrybut: GetStretchBltMode ()

Wiasciwose ta definiuje sposdb rozciggania bitmap przy kopiowaniu ich za pomocg funkcji
StretchBlt (). Ustawiajgc ten atrybut mozemy w pewnym zakresie decydowa¢, jak
zmienig sie piksele kopiowanego obrazka przy zmianie jego wymiarow. Zazwyczaj jednak
zadne ustawienie nie daje zbyt dobrych rezultatéw.

Atrybuty tekstu

Dobra biblioteka graficzna powinna umozliwia¢ manipulacje tekstem. Windows GDI nie
jest tu wyjatkiem, a konteksty urzadzenia zawierajg kilka atrybutoéw zwigzanych z tymi
mozliwosciami.

Kolor tekstu

Domysline ustawienie: czarny (RGB (0, 0, 0))
Funkcja ustawiajqca atrybut: SetTextColor ()
Funkcja pobierajgca atrybut: GetTextColor ()

Tego ustawienia chyba nie trzeba wyjasnia¢. Zauwazmy tylko, ze kolor tekstu jest
niezalezny od czcionki i jej stylu (patrz nizej).

Kolor tta

Domysline ustawienie: biaty (RGB (255, 255, 255))
Funkcja ustawiajgca atrybut: SetBkColor ()

Funkcja pobierajgca atrybut: GetBkColor ()

Kolor tta jest kolorem wypetnienia najmniejszego prostokata okalajagcego tekst
wypisywany w kontekscie urzadzenia. Zwykle nie chcemy zadnego wypetnienia w tym
rejonie, a to wymaga ustawienia trybu tta - o czym pisze ponizej.

Tryb tfa

Domysline ustawienie: OPAQUE
Funkcja ustawiajgca atrybut: SetBkMode ()
Funkcja pobierajgca atrybut: GetBkMode ()

Tryb tta to ustawienie precyzujace, czy tto tekstu ma by¢ rysowane (OPAQUE -
domyslnie), czy tez nie (TRANSPARENT). Jesli wybierzemy drugq mozliwos¢, to oczywiscie
nie zobaczymy koloru tta (poprzedni atrybut) wokot tekstu.

Zaréowno kolor, jak i tryb tta sg uzywane jeszcze w kilku innych sytuacjach niezwigzanych
z tekstem, np. podczas wypetniania deseniowymi pedzlami. O wiekszosci tych sytuacji
dowiesz sie w stosownym czasie.

Czcionka

Domysine ustawienie: SYSTEM FONT
Funkcja ustawiajgca atrybut: SelectObject ()
Funkcja pobierajgca atrybut: GetCurrentObject ()

W GDI, majac na mysli czcionke, myslimy takze o jej stylu czy dekoracji znakdéw. Zatem
~Verdana” jest nie jest w tym rozumieniu czcionka, ale ,Verdana, rozmiar 10 punktow,
pogrubiona, kursywa, nachylenie 0°, ...” - jak najbardziej.

Czcionki tworzymy, wybieramy i usuwamy podobnie jak pedzle i piéra. W danej chwili
kontekst urzadzenia jest zwigzany z doktadnie jedng czcionka.

520 Windows API

Odstep miedzy znakami

Domysline ustawienie: 0
Funkcja ustawiajgca atrybut: SetTextCharacterExtra ()
Funkcja pobierajgca atrybut: GetTextCharacterExtra ()

Ten atrybut jest doktadnie tym, o czym modwi jego nazwa. Odstep miedzy pojedynczymi
znakami wypisywanego tekstu jest tu podawany w jednostkach logicznych.

Atrybuty regionow

Regiony sa zespotami zamknietych figur, uzywanymi do ograniczania obszaru, ktéry
podlega rysowaniu. Przy ich pomocy mozna tatwiej wykonaé pewne czynnosci graficzne,
ktére inaczej bytyby skomplikowane.

Kontekst urzadzenia ma okoto jeden atrybut, odnoszacy sie do regionow.

Region przycinania

Domysline ustawienie: caly obszar rysowania
SelectObject ()
SetClipRgn ()
IntersectClipRect ()
OffsetClipRgn ()
ExcludeClipRect ()
SelectClipPath ()
GetClipRgn ()
GetClipBox ()

Funkcje ustawiajgce atrybut:

Funkcje pobierajgce atrybut:

Region przycinania definiuje obszar rysunku, ktore zostanie wyswietlony. Standardowo
pokazywana jest cata bitmapa zwigzana z kontekstem urzadzenia, lecz ustawianie
regionu przycinania pozwala wptyna¢ na to zachowanie.

Tryb wypetniania wielokatow

Domysline ustawienie: ALTERNATE
Funkcja ustawiajqca atrybut: SetPolyFillMode ()
Funkcja pobierajgca atrybut: GetPolyFillMode ()

Okresla tryb wypetniania wielokatéw o przecinajacych sie krawedziach (zaréwno tych
pochodzacych od regiondw, jak i rysowanych za pomoca funkcji Polygon () i
PolyPolygon ()). Domys$lny tryb ALTERNATE sprawia, ze wypetnienie otrzymajg tylko te
fragmenty prostokata wielokata, ktér lezg miedzy jego nieparzystymi wierzchotkami;
druga mozliwa opcja WINDING powoduje bezwarunkowe wypetnienie catej figury.

Zapisywanie i odtwarzanie atrybutow

Mnogosc¢ atrybutéw kontekstéw urzadzenia sprawia, ze ich ustawianie, pobieranie i
modyfikacja sq czynnosciami bardzo czestymi. Nierzadko tez kilka parametréw
kontekstdw ustawia sie po sobie. Potem za$ czesto zachodzi potrzeba powrotu do stanu
poczatkowego i wydawatoby sie, ze nie mozna tego zrobi¢ inaczej niz przez zapisywanie
pierwotnych wartosci atrybutéw w wydzielonych zmiennych, a potem ich mozolne
przywracanie. Nic bardziej mylnego!

GDI udostepnia prosty mechanizm uwalniajacy programiste od tej ucigzliwej czynnosci.
Sa nim dwie funkcje: saveDC () i RestoreDC (). Pokaze teraz, jak nalezy je stosowac.

Tworzenie i przywracanie stanow kontekstu

Zaczniemy od omodwienia podstawowego sposobu uzycia zapisu standéw kontekstu,
wynikajacego bezposrednio ze sktadni wspomnianych funkcji.

Windows GDI 521

Funkcje saveDC () | RestoreDC ()

Pierwsza z przedstawianych funkcji to saveDcC (). Oto jej prototyp:

int SaveDC (HDC hdc) ;

Jak widzimy, funkcja ta zada uchwytu do kontekstu urzgadzenia. W zamian wykona ona
co$ w rodzaju fotografii jego biezacego stanu. Zapisze po prostu wartosci wszystkich jego
atrybutow w wewnetrznej strukturze danych Windows, abysmy w razie potrzeby mogli je
przywrdcic.

Wynikiem wywotania funkcji saveDC () jest liczba catkowita, dziatajgca jako jednoznaczy
identyfikator zapisanego stanu kontekstu. Zmieniajac atrybuty kontekstu, a nastepnie
wywotujac kilkakrotnie savebc () uzyskaliémy wiele takich identyfikatorow i kazdy bytby
poprawny. Wynika stad, ze Windows GDI potrafi przechowywac¢ wiele stanow
kontekstu urzadzenia i, jesli tylko zapisujemy ich identyfikatory, mozemy w kazdej
chwili wroci¢ do dowolnego wczesniejszego.

Jak to zrobi¢? Nalezy wywotac druga funkcje, RestoreDC () :

BOOL RestoreDC (HDC hdc,
int nSavedDC) ;

tatwo wydedukowac, ze podajemy jej uchwyt do naszego kontekstu urzadzenia oraz
identyfikator zapisanego statusu. RestoreDC () przywraca kontekst do podanego stanu,
ustawiajac jego atrybuty na zachowane wczesniej wartosci.

Uzycie mechanizmu standw kontekstu
Podejrzewam, Zze wilasciwy sposob uzycia tych funkcji nasuwa ci sie sam, ale moze dla
zupetnej pewnosci zaprezentuje go.

Majac kontekst urzadzenia, dajmy na to hdcKontekst, mozemy zapisa¢ jego biezacy
stan:

int idStan = SaveDC (hdcKontekst) ;

Teraz mozemy w spokoju wykonywac zatozone czynnosci. Dla przyktadu, narysujemy
czerwony prostokat o wymiarach 50x50 pikseli otoczony grubg czarng kreska i
umieszczony w punkcie (20, 20). W tym celu musimy miedzy innymi ustawi¢ nowe
obiekty pidra i pedzla dla kontekstu urzadzenia.

O pidrach, pedzlach i rysowaniu figur geometrycznych dowiesz sie (prawie) wszystkiego z
| nastepnego podrozdziatu. |

Poniewaz aktualne pidro i pedzel zostaty zapisane przez SaveDC (), hie musimy sie o nie
martwi¢. Mozemy normalnie zastgpic¢ je nowymi obiektami:

// utworzenie pidra rysujacego gruba czarna kreske i1 ustawienie go
HPEN hpenPioro = CreatePen(PS _SOLID, 5, RGB(0O, 0, 0));
SelectObject (hdcKontekst, hpenPioro);

// utworzenie pedzla wypeiniajacego czerwienia 1 ustawienie go

HBRUSH hbrPedzel = CreateSolidBrush (RGB (255, 0, 0));
SelectObject (hdcKontekst, hbrBrush);

Nastepnie rysujemy prostokat:

Rectangle (hdcKontekst, 20, 20, 70, 70); // 70 = 20 + 50

522 Windows API

Potem mozemy juz przywréci¢ poprzedni stan kontekstu, czyli poprzednie pioro i pedzel.
Robimy to oczywiscie poprzez RestoreDC () :

RestoreDC (hdcKontekst, idStan):;

Na koniec nie zapomnijmy jeszcze o zwolnieniu obiektéw pidra i pedzla; mozemy i
musimy to zrobi¢. Mozemy - bo po przywroceniu stanu kontekstu nie sg one z nim
zwigzane. Musimy - bo sami je stworzyliSmy i bez ich zwolnienia dosztoby do wycieku
zasobéw. Wywotujemy zatem odpowiednig funkcje:

DeleteObject (hpenPioro);
DeleteObject (hbrPedzel);

Ogodlny schemat postepowania w tego rodzaju sytuacjach wyglada wiec nastepujaco:

int identyfikator zapisu = SaveDC (kontekst);
zmiana stanu kontekstu 1 rysowanie
RestoreDC (kontekst, identyfikator zapisu);
[zwolnienie utworzonych obiektdw]

Ostatni etap zwolnienia wystgpi wowczas, gdy zmiana stanu kontekstu pociggata za
sobg utworzenie jakichs obiektow, jak pidra czy pedzle. W innym przypadku nie jest
konieczna, bo i nie ma czego zwalniac.

Prostszy sposob

Mozliwosci zapisu stanu kontekstu urzadzenia uzywamy zwykle zgodnie z podanym wyzej
schematem. Dlatego tez Windows GDI utatwit nawet jeszcze bardziej wykorzystanie go.

Stos ustawien

Otéz niekoniecznie musimy zapisywac identyfikator zapisu, jaki zwraca saveDC ().
Funkcja ta ukfad bowiem kolejne stanu kontekstu w stos, przykrywajac starsze zapisy
nowszymi. Wszystkie one sg jednak dostepne na zwyktych zasadach, jakimi kieruje sie
stos, tzn. pobieranie zachowanych stanéw powinno sie odbywaé w kolejnosci odwrotnej
do ich zapisywania.

Jezeli wiec wywotamy saveDC () np. trzy razy po sobie, to nastepujace dalej przywofanie
RestoreDC () przywrdci najnowszy zapis; kolejne wywotanie - starszy status; trzecie zas
- najstarszy. Rzadko jednak bedziemy potrzebowali az tylu mozliwych stanéw, gdyz w
zupetnosci wystarcza jeden.

Azeby wiec zachowac biezace ustawienia kontekstu bez zbednych ceregieli, wywotujemy
jednokrotnie saveDC (), ignorujac zwracang przezen:

SaveDC (hdcKontekst);

Kiedy zas pragniemy przywroci¢ zapisany stan, postugujemy sie RestoreDC () W nieco
inny sposéb. Nie mozemy juz podac jej identyfikatora zapisu, bo go nie mamy. Zamiast
tego w drugim parametrze wpisujemy liczbe ujemna okreslajaca, ktory status, liczac od
gory stosu, chcemy ustawié. -1 przywrdci wiec pierwszy (szczytowy) stan; -2 - ten
lezacy bezposrednio pod nim; -3 - jeszcze giebszy, itd. Podajemy wiec, ile do ktérego
ostatnich wywotan saveDc () chcielibysmy sie cofnac.

Najczesciej chodzi nam wszakze o wywotanie najpdzniejsze, zatem przywrdcenie
zapisanego wéwczas stanu to uzycie ponizszej linijki:

RestoreDC (hdcKontekst, -1);

Windows GDI 523

Eliminujemy zatem koniecznos$¢ posiadania dodatkowej zmiennej oraz potencjalne ryzyko
pomyiki, jezeli mechanizm zachowywania stanu stosujemu wobec kilku kontekstow
urzadzenia.

Przyktad

Przyktadem wykorzystania funkcji saveDdC () i RestoreDC () moze by¢ procedura rysujgca
jakis ksztatt, ktéry wymaga tymczasowej zmiany pidra, pedzla lub innego obiektu
zwigzanego z kontekstem urzadzenia. Oto jest funkcja, ktéra kresli koto o podanym
kolorze kreski i wypetnienia (a takze pozycji i promieniu):

void RysujKolo (HDC hdcKontekst,
POINT ptPozycja, unsigned uPromien,
COLORREF clObwod, COLORREF clWnetrze)

// zachowanie biezacego stanu kontekstu
SaveDC (hdcKontekst);

/* ustawienie odpowiedniego pidra i pedzla */

// stworzenie nowego pidéra i ustawienie go w kontekscie
HPEN hpenPioro = CreatePen (PS SOLID, 1, clObwod);
SelectObject (hdcKontekst, hpenPioro);

// stworzenie nowego pedzla i wybranie go
HBRUSH hbrPedzel = CreateSolidBrush (clWnetrze);
SelectObject (hdcKontekst, hbrPedzel);

/* wykreslenie kota */
unsigned uSrednica = uPromien * 2;
Ellipse (hdcKontekst,
ptPozycja.x, ptPozycja.y,
ptPozycja.x + uSrednica, ptPozycja.y + uSrednica);

/* czynnosci koncowe */

// przywrbcenie poczatkowego stanu kontekstu urzadzenia
RestoreDC (hdcKontekst);

// usuniecie utworzonego pidra 1 pedzla
DeleteObject (hpenPioro);
DeleteObject (hbrPedzel);

}

Dzieki zapisowi stanow nie musimy osobno troszczy¢ sie o zachowanie oryginalnego piora
i pedzla. Im wiecej parametréw kontekstu zmieniamy, tym bardziej bedziemy to
doceniad.

Wszystkie potrzebne wiadomosci na temat uzytych tu funkcji GDI odnoszacych sie pior i
pedzli oraz rysujacych figury geometryczne uzyskasz w nastepnym podrozdziale. Nawet
teraz nie powiniene$ mie¢ jednak zbyt duzych ktopotow z wywnioskowaniem ich dziatania
na podstawie sktadni wywotan.

524 Windows API

Zwalnianie kontekstu

Jak niemal wszystko w programowaniu, takze kontekst urzadzenia wymaga poprawnego
posprzatania, gdy juz nie jest potrzebny. Po uzyciu kontekst nalezy wiec zwolnic
(ang. release).

Sposoby zwalniania kontekstow

W jaki sposéb trzeba uczyni¢? Wtasciwa droga zalezy od zrddta pozyskania danego
kontekstu, przy czym mamy trzy mozliwe metody. Zawsze nalezy wybiera¢ wiasciwg w
danym przypadku!

Tymczasowy kontekst w obstudze wM PAINT

Najczestszym powodem pobrania kontekstu urzadzenia jest obstuga komunikatu
WM PAINT. Uzyskany wtedy kontekst jest zwigzany z obszarem klienta okna, ktére ulega
o$wiezaniu.

Nie jest to obiekt dtugo zyjacy. Powstaje w wyniku wywotania funkcji BeginPaint (),
ktéra moéwi systemowi, Ze oto rozpoczyna sie odrysowywanie okna. Kontekst istnieje
tylko podczas trwania tej czynnosci, a jak wiemy, kofczymy jg funkcjg EndPaint (). Ona
tez zwalnia kontekst urzadzenia:

case WM _PAINT:

{
HDC hdcKontekst;
PAINTSTRUCT ps;

hdcKontekst = BeginPaint (hWnd, &ps);
// tutaj rysujemy, ods$wiezajac okno
EndPaint (hWnd, é&ps);

// ! W tym miejscu hdcKontekst jest juz niepoprawnym uchwytem
// do kontekstu urzadzenia !!

}

Musimy pamietac, ze za wywotaniem EndPaint () kontekst pobrany z BeginPaint () jest
juz niewazny. tatwo to przeoczy¢, poniewaz uchwytu do tego kontekstu nie podajemy
do EndPaint () bezposrednio. Jest on jednak polem struktury PAINTSTRUCT, ktérej
wskaznik przekazujemy w drugim parametrze funkcji.

Zapamietajmy zatem (a raczej przypomnijmy sobie), ze:

Kontekst urzadzenia uzyskany w BeginPaint () jest zwalniany poprzez funkcje
EndPaint (). Te dwie funkcje wyznaczajg takze proces odswiezania okna w reakcji na
komunikat wM PAINT. Wspomniany kontekst mozemy wykorzystywa¢ wytacznie w
ramach tego procesu.

Konteksty zwigzane z oknem

Poza kodem obstugi wM PAINT takze mozemy pobrac kontekst urzadzenia zwigzany z
oknem. Jak powiedzieliSmy wczesniej, funkcja GetDC () pobiera kontekst pokrywajacy
obszar klienta okna, natomiast GetwWindowDC () - cate okno.

W ogromnej wiekszosci przypadkow oba te konteksty wymagajg zwolnienia. Odpowiada
za to funkcja ReleaseDC () :

ReleaseDC (hWnd, hdcKontekst);

Windows GDI 525

Musimy jej przekazac¢ dwa parametry: pierwszym jest uchwyt okna, od ktérego
pobralismy kontekst; drugim - uchwyt samego kontekstu. Funkcja zwalni wéwczas
zasoby stworzone wraz z kontekstem urzadzenia, tacznie z nim samym.

Teoretycznie istniejg dwie sytuacje, w ktérych zwolnienie kontekstu pobranego przez
GetDC () (lecz nie przez GetWindowDC () !) nie jest niezbedne. Sytaucje te zachodza, gdy
klasa okna, od ktdrego pobieramy kontekst, ma ustawiony styl cs ownDC lub
Cs_cLassDc. Wowczas bowiem kontekst urzadzenia, jaki pobieramy, istnieje przez caty
czas istnienia okna i nie jest specjalnie tworzony dla nas.

Jednak nawet w tych szczegdlnych przypadkach uzycie ReleaseDC () nie jest btedem.
Funkcja ta zignoruje po prostu kazdy prywatny (cs_owNDC) lub klasowy (CS CLASSDC)
kontekst okna, ktory jej przekazemy i nie zrobi z nim absolutnie nic.

Mozemy wiec zapamieta¢ ogolna i prostg zasade:

Konteksty urzadzenia zwiazane z oknem, czyli pobrane przez GetDC (), GetDCEx () i
GetWindowDC (), powinny by¢ po uzyciu bezwzglednie zwalniane funkcjg ReleaseDC ().

W przypadku kontekstu ekranu pobranego przez GetDC (NULL) zwolnienie odbywa sie
takze poprzez ReleaseDC (), ale z uchwytem okna (pierwszym parametrem) ustawionym
na zero - czyli wiasnie NULL.

Pozostate rodzaje kontekstow

A co z innymi rodzajami kontekstéw - tymi stworzonymi przez CreateDC () czy
CreateCompatibleDC () ?... Otdz ich usuniecie przebiega chyba najprosciej, bo ogranicza
sie przekazania ich - i tylko ich - do funkcji beleteDC () :

DeleteDC (hdcKontekst);

Ta bez zbednych pytan usunie podany jej kontekst, zwalniajgc wszystkie powigzane z
nim zasoby.

Jako ostatnig zasade pamietajmy zatem, ze:

Niezwigzane z oknami konteksty urzadzen nalezy zwalnian poprzez DeleteDC ().

O zwalnianiu obiektow powigzanych

Trzeba nam wiedzie¢, ze z kazdym kontekstem urzadzenia w Windows GDI jest
zwigzanych kilka obiektéw pomocnicznych. Wspomniatem o nich podczas pobieznej
prezentacji atrybutéw kontekstu, ale powtérze liste ich wszystkich.

Tak wiec kontekst urzgdzenia jest przez caly czas swego istnienia powigzany jest z
jednym i tylko jednym obiektem:

pidra

pedzla

czcionki

bitmapy

regionu przycinania

YV VVYY

Kazdy z tych obiektéw mozemy aczkolwiek podmienié¢!*!, postugujac sie na przyktad
funkcjg SselectObject (). Wiecej informacji na temat uzyskasz w nastepnych
podrozdziatach.

41 pewnym wyjatkiem jest bitmapa, ktérych podmiana jest mozliwa tylko dla kontekstu pamieciowego. Z
pozostatymi typami kontekstéw bitmapy sa zwigzane na state.

526 Windows API

Teraz skupimy sie tylko na tym, jak zmiana powyzszych obiektéw wptywa na sposéb
zwalniania kontekstu urzadzenia. Wptyw ten jest bowiem bardzo znaczacy.

Porzucony obiekt nie ginie

Koniecznie musimy zdawac sobie sprawe, ze owg pigtke obiektéw kontekst posiada
zawsze, nawet tuz po swoim powstaniu. Jezeli wiec zmienimy ktérys, to nie wypetnimy
zadnej luki, ale zamienimy miejscami dwa obiekty. Do kontekstu trafi ten wybrany przez
nas, my natomiast otrzymamy poprzedni obiekt. Bedziemy odtad odpowiedzialni za jego
zwolnienie.

Dlatego tez kategorycznie niepoprawnym postepowaniem jest np. wybranie dla kontekstu
nowego piéra w ten oto sposob:

HPEN hpenNiebieskiePioro = CreatePen(PS_SOLID, 1, RGB(0, 0, 255));
SelectObject (hdcKontekst, hpenNiebieskiePioro); // ZLE!!! (zazwyczaj)

Btedem jest tu zignorowanie wartosci zwracanej przez selectObject (). Jest nig tutaj
uchwyt do starego pidra kontekstu, ktory powinien by¢ zachowany; samo piéro
przechodzi teraz pod naszg kuratele i dlatego musimy zna¢ jego uchwyt, aby moc je
zwolni¢, jezeli nie jest juz potrzebne.

Prawidlowe wybranie nowego pidéra powinno wiec wygladac tak:

HPEN hpenStarePioro = (HPEN) SelectObject (hdcKontekst,
hpenNiebieskiePioro) ;

Mozliwe tez (a nawet bardzo czeste), ze stare pidro nie jest nam potrzebne juz w tej
chwili - bo przeciez wybieramy nowe. W takim przypadku mozemy od razu pozbyc¢ sie
ktopotu, wykorzystujac ponizszg - dos$¢ zaskakujaca, ale catkowicie poprawng -
konstrukcje:

DeleteObject (SelectObject (hdcKontekst, hpenNiebieskiePioro));

Przekazujemy tu po prostu wynik funkcji selectobject (), czyli uchwyt do starego piodra,
do funkcji DeleteObject (), ktdora je natychmiast usunie. Nie potrzebujemy wtedy
posrednictwa dodatkowej zmiennej.

Obiekty powigzane znikajq razem ze swoim kontekstem

Wielu programistow inaczej podchodzi do przedstawionej tu kwestii. Zamiast pozbywac¢
sie starego obiektu wzietego z kontekstu urzadzenia (jak to czyni ostatni wiersz kodu w
poprzednim punkcie), zostawiajq to samej bibliotece GDI. Zachowujq wiec te oryginalne
obiekty, a gdy przychodzi czas usuniecia kontekstu, umieszczajq je w nim z powrotem.
Nastepnie zwalniajg kontekst, a potem (lub ewentualnie przed zwolnieniem kontekstu)
usuwajg swoje witasne obiekty, stworzone na poczatku.

Na przyktadzie naszych operacji z piorem wygladatoby to tak:

// stworzenie wtasnego pibdra i wybranie go (z zachowaniem oryginalnego)

HPEN hpenNiebieskiePioro = CreatePen(PS_SOLID, 1, RGB(0, 0, 255));

HPEN hpenStarePioro = (HPEN) SelectObject (hdcKontekst,
hpenNiebieskiePioro) ;

// (rysowanie...)

// przywrbcenie starego pidra 1 usuniecie kontekstu

SelectObject (hdcKontekst, hpenStarePioro);

DeleteDC (hdcKontekst); // lub ReleaseDC (), ewentualnie EndPaint()...

// usuniecie wtasnego pidra

Windows GDI 527

DeleteObject (hpenNiebieskiePioro);

Nie usuwamy tutaj jawnie oryginalnego piora kontekstu urzadzenia, lecz pozwalamy to
zrobic¢ bibliotece GDI. I ona to robi - w chwili usuniecia kontekstu, poniewaz:

Wszystkie pie¢ obiektow powiazanych z kontekstem urzadzenia jest niszczonych
w momencie jego zwalniania.

Ktory sposob jest lepszy: natychmiastowe niszczenie nieuzywanych obiektow czy tez
przywracanie ich do kontekstu i zwalnianie tylko tych wtasnych? Ciezko odpowiedzie¢ na
to pytanie. I w jednym, i w drugim przypadku musimy zwolni¢ ktérys$ z obiektow - nasz
lub oryginalny obiekt kontekstu, wiec nie wyglada na to, iz miedzy obiema metodami
byta jakas istotna rdéznica.

Mozna jeszcze argumentowac, ze sposob pokazany przed chwilg jest bardziej przejrzysty,
poniewaz doktadnie wida¢ czas zycia naszych obiektow. Poza tym zwalniamy tutaj tylko
twory, ktére sami wykreowaliémy. Tworzg sie wiec ,bloki” kodu, ograniczone funkcjami
CreatePen () i podobnymi oraz funkcjg DeleteObject (); wewnatrz tych blokow istniejg
nasze obiekty. Nieco tatwiej wiec $ledzi¢ czas ich zycia, a przy wiekszej liczbie zapobiegad
wyciekom zasobdw.

No tak, ale wieksza ilo$¢ zmienianych obiektéw implikuje koniecznos¢ istnienia coraz
wiekszej liczby zmiennych. Jezeli na przyktad oprdcz pidra podmienialibysmy takze
pedzel i czcionke, to potrzebowalibysmy w sumie szesciu uchwytdéw, chociaz
tworzyliby$smy tylko trzy obiekty.

Ale i na to jest rada. Przypomnijmy sobie mechanizm zapisu stanow kontekstu z
poprzedniego paragrafu - jest on doktadnie tym, czego potrzebujemy. Zachowujac
poczatkowy stan kontekstu i przywracajac go tuz przed usunieciem, unikamy
koniecznosci deklarowania dodatkowych zmiennych. Zaprezentowany uprzednio kod
moze wiec wygladac tak:

// zapisanie stanu kontekstu
SaveDC (hdcKontekst);

// stworzenie wltasnego pidra 1 wybranie go (z zachowaniem oryginalnego)
HPEN hpenNiebieskiePioro = CreatePen(PS SOLID, 1, RGB(0, 0, 255));
SelectObject (hdcKontekst, hpenNiebieskiePioro); // teraz tak mozemy

// (rysowanie...)

// przywrbcenie zapisanego stanu i usuniecie kontekstu
RestoreDC (hdcKontekst, -1);
DeleteDC (hdcKontekst);

// usuniecie wlasnego pidra
DeleteObject (hpenNiebieskiePioro);

Jak wida¢, nie potrzebujemy juz zmiennej hpenStarePioro. Mozemy tez bezpiecznie
zignorowac rezultat funkcji selectobject (), bo i tak jest on zapisany razem z fotografig
statusu dokonang przez saveDC (). Pamietajmy aczkolwiek, ze w innym przypadku bytoby
to niepoprawne - zwracatem na to uwage wczesniej.

Niewybrane obiekty takze nalezy zwolnié

Gdy usuwamy kontekst urzadzenia, tak jak w przykfadzie powyzej, zajmie sie on
wszystkimi posiadanymi obiektami, czyli takze je zniszczy. Pozostate obiekty, nienalezace
juz do niego, nie ucierpig jednak w ogdle. U nas takim obiektem jest
hpenNiebieskiePioro; musimy zatem usunac¢ je samodzielnie:

528 Windows API

DeleteObject (hpenNiebieskiePioro);
Jest to logiczne, bo w koncu sami to pidro stworzyliSmy.

Zachowaj zatem w swojej pamieci, iz:

Nalezy zwalnia¢ wszystkie obiekty, ktére nie byly powiazane z kontekstem
urzadzenia w chwili jego niszczenia. W przeciwnym wypadku dojdzie do
niebezpiecznego wycieku zasobow systemowych.

GDI w skrocie

Poznalismy juz podstawowe pojecia Windows GDI, czyli kontekst urzadzenia oraz potok
graficzny. Zanim jednak przejdziemy do szczegdétowego omdwienia poszczegdlnych czesci
tej obszernej biblioteki, spdjrzmy na nig z ogdlniejszego punktu widzenia.

Podstawowym zatozeniem GDI, ktérym wionie niemal z kazdego jej kata, jest
uniwersalnos¢. Korzystajac z tej biblioteki nie odwotujemy sie bezposrednio do sprzetu,
takiego jak monitor czy drukarka. Zamiast tego, wykorzystujemy pewien poziom
abstrakcji, jakim jest kontekst urzadzenia. Ogromng wiekszos¢ funkcji graficznych
wykonujemy w stosunku do takich wiasnie kontekstéw. Dzieki temu nie musimy
interesowac sie tym, w jaki sposéb wyniki naszej pracy sg ostatecznie prezentowane. W
tym jest bowiem rola biblioteki Windows GDI, ktéra odpowiednio wspotpracuje ze
sterownikami sprzetu.

Drugim waznym aspektem GDI jest jej elastycznos$c¢ oraz bardzo duze mozliwosci.
Istnieje naprawde niewiele operacji na grafice dwuwymiarowej, ktére nie zostaty
zaimplementowane w tej bibliotece. Co wiecej, te ktdre zostaty w niej zawarte (a jest ich
mnostwo), zakodowano w sposdb niezwykle fatwo poddajacy sie zamierzeniom
programisty. W GDI prawie nic nie jest niezmienne, zmodyfikowa¢ mozemy wszystko:
styl i kolor rysowanych linii, sposéb wypetniania zamknietych powierzchni, czcionke
uzywang do pisania tekstu, kolor i wielko$¢ znakdw, ich nachylenie do poziomu czy
choc¢by obszar, w ktérym dokonuje sie rysowanie (moze on miec¢ najrézniejsze ksztatty),
a takze mnéstwo innych parametréow. Bardzo rzadko bedziemy wiec napotykaé na istotne
ograniczenia w mozliwosciach biblioteki Windows GDI.

~Skoro tak”, odpowiesz, ,to gdzie tu jest haczyk?... Przeciez nie moze by¢ az tak
pieknie!” Chciatbym powiedzie¢, ze jeste$ pesymista, ale niestety musze stwierdzi¢, ze
jestes raczej realistg. Faktycznie jest pewien kruczek, i to z gatunku tych kruczkéw, ktore
programisci gier ,lubig” najbardziej. Tak jest, zgadza sie - to wydajnos¢. Windows GDI
nie jest szczegdlnie szybkie, jezeli chodzi o wyswietlanie dynamicznie zmieniajacych sie
obrazéw. Zostata ona bowiem gtéwnie do prezentacji statycznych rysunkoéw, nie radzi
sobie z ruchem czy animacja.

Zupetnie Zle jednak nie jest. Nie ma przeciwwskazan, azeby skorzystac¢ z GDI do
napisania np. gry logicznej, karcianej, strategicznej turéwki czy nawet zrecznosciowego
Ponga albo wrecz prostej gry platformowej. Nie nalezy jednak oczekiwaé, ze biblioteka ta
sprawi sie wystarczajqco dobrze w najezonej efektami graficznymi kosmicznej strzelance,
a juz na pewno polegnie, jezeli sprobowatoby sie symulowac przy jej pomocy rendering
grafiki 3D (co zresztg nie ma zbytniego sensu w obliczu istnienia wyspecjalizowanych
API). Niezaleznos$¢ od sprzetu, uniwersalnosc¢ i elastycznos$¢ odbijajg sie wtedy czkawka,
stajg sie niepotrzebnych balastem na drodze do osiggniecia duzej szybkosci dziatania.

Juz we wstepie do tego rozdziatu napisatem jednak, ze nie powinniSmy zarzucac sensu
nauki biblioteki GDI. Nie wykorzystamy jej wprawdzie jako gtéwnego ,silnika” naszych
gier, ale wypetnimy luke, jaka niewatpliwie zostawia DirectX. Pozwélmy GDI wykazac sie
tym, w czym jest niezrownana: w generowaniu nieruchomych obrazéw
dwuwymiarowych. DirectX nie jest biegty w tej sztuce, wiec GDI moze petni¢ nieodzownie

Windows GDI 529

wazng role pomocniczg. Dotyczy to w szczegdlnosci tekstur - jednego z fundamentéw
grafiki 3D.

Kontynuujmy zatem poznawanie Windows GDI, przypatrujac sie teraz giebiej strukturze
tego narzedzia.

Sktadniki interfejsu GDI

GDI jest bardzo duza biblioteka, zawierajqca wiele funkcji i struktur danych. Naturalnie
wiec dzielg sie one pomiedzy sktadniki, jakie mozna wyodrebni¢ w interfejsie GDI.

Konteksty urzgdzen

Kontekst urzadzenia jest podstawq biblioteki GDI. Uchwyt do niego jest najwazniejszg
dang, jaka musi posiadac program, aby médc korzystac z funkcji rysujacych. Bez
kontekstu urzadzenia nie mozna wiasciwie w zaden sposéb korzysta¢ z Windows GDI.

Jak pokazatem w poprzedniej sekcji, mozliwe jest uzyskanie kontekstu z bardzo wielu
zrédet. Do najwazniejszych nalezg okna Windows oraz wyjsciowe urzadzenia graficzne,
jak monitor i drukarka.

Z kazdym kontekstem zwigzanych jest pie¢ obiektow, niezbednych dla jego
funkcjonowania. Korzystanie z GDI sprowadza sie do kontrolowania tych obiektéw, a
takze do rysowania w kontekscie urzadzenia za pomocg prymitywow.

Prymitywy

Typy grafik, jakie mozna rysowa¢ w ramach kontekstu urzadzenia w Windows GDI,
nazywamy dos$¢ dziwng nazwa prymitywow (ang. primitives). Dzielg sie one na kilka
kategorii:
> figury geometryczne - sg to czysto wektorowe prymitywy, opisane przez
rownania matematyczne. Mozna wsrod nich wyroéznic¢ jeszcze dwie podgrupy:

v krzywe otwarte - nalezg do nich linie proste, tamane, tuki okregéw oraz
krzywe Béziera. Wszystkie one sg kreslone za pomoca piora aktualnie
wybranego w kontekscie urzadzenia

v krzywe zamkniete to prostokaty (z ostrymi lub zaokraglonymi rogami)
oraz elipsy, a takze szczegdlne przypadki tych figury, czyli kwadraty i kofa.
GDI rysuje ich obramowania przy pomocy wybranego piéra, natomiast
wnetrza sg wypetniane pedzlem nalezgcym do kontekstu urzadzenia

> bitmapy - to prostokatne tablice bitow, zawierajace dane o kolorowych pikselach
urzadzenia. Sg one uzywane do prezentacji skomplikowanych obrazéw
rastrowych, jakich nie datoby sie zapisa¢ w postaci wektorowej. Bitmapa jest
ponadto czyms$ w rodzaju ptdtna, na ktérym pojawiajq sie efekty dziatania funkcji
rysunkowych; kazdy kontekst urzadzenia ma na wtasnosc takg wtasnie bitmape,
ktérej zawartosc jest najczesciej prezentowana na ekranie

> tekst jest najbardziej skomplikowanym prymitywem, ale tez najwazniejszym
(jako ze analfabeci sg nadal w mniejszosci ;D). GDI zapewnia tutaj petne wsparcie
dla czcionek systemowych, w tym takze dla czcionek TrueType, ktdre moga by¢
dowolnie skalowane. Mozliwe jest rowniez stosowanie dowolnego formatowania
tekstu (jak pogrubienie, pochylenie, kursywa czy kolor) oraz rysowanie znakow
przy uzyciu pior i pedzli

Poznanie biblioteki GDI to w gruncie rzeczy nauka postugiwania sie tymi trzema
rodzajami prymitywow. Totez oméwimy sobie doktadnie kazdy z nich juz w kolejnym
podrozdziale.

Pozostate sktadniki

Oprocz wymienionych wyzej prymitywywéow, w Windows GDI mozemy tez znalez¢ kilka
innych aspektéw grafiki: Oto i one:

530

Windows API

regiony - nazywamy nimi dowolne kombinacje figur zamknietych. Regionow
bedziemy uzywac¢ do kreslenia obramowan, wypetniania ich, a takze do
przycinania rysunkdéw

$ciezki (ang. paths) to potagczenia kilku krzywych otwartych. Kontekst urzadzenia
moze w danej chwili przechowywac tylko jedng sciezke, dla ktérej mozliwe do
wykonania sg operacje wykreslenia piéorem, wypetnienia pedzlem oraz konwersji
na region.

Nie bedziemy sie blizej zajmowac Sciezkami, wiec jezeli chciatby$ samodzielnie
dowiedzie¢ sie czegos o nich, zajrzyj do MSDN

metapliki (ang. metafiles) sa zapisem polecen dla Windows GDI w postaci pliku
dyskowego. Pliki takie majq rozszerzenie .wmf (zwykte metapliki) lub .emf
(rozszerzone metapliki) i mogq by¢ odczytywane i zapisywane przez biblioteke
GDI.

Jezeli chcesz dowiedziec¢ sie wiecej na ich temat, zajrzyj do opisu w MSDN. W tym
kursie nie bedziemy bowiem zajmowa¢ sie metaplikami

palety koloréw (ang. color palettes) sq juz mocno przestarzatg czescig GDI,
reliktem z czaséw, gdy monitory mogty wyswietla¢ najwyzej 256 koloréw. Paleta
okreslata wéwczas zestaw 236 dowolnych barw, z jakich mogty korzystac obrazy.
Obecnie, w czasach niepodzielnego panowania trybu True Color palety sq juz
zupelnie nieprzydatne

Z powyzszych zagadnien obszernie oméwimy tylko pierwsze z nich, czyli regiony. Po
informacje na temat reszty mozesz udac sie do dokumentacji MSDN, jezeli tego
potrzebujesz.

Obiekty

Oprocz wiasciwego rysowania, praca z Windows GDI polega takze na manipulowaniu
réoznego rodzaju obiektami pomocniczymi - mniej lub bardziej istotnymi. Oto ich
wyszczegdlnienie:

>

konteksty urzadzenia - o nich powiedziatem juz tak duzo, ze chyba nie mam juz
nic do dodania :) Jak echo powtdrze tylko, ze to najwazniejsze i kluczowe obiekty
Windows GDI

pidéra definiujg styl, kolor, grubos¢ i inne cechy linii, ktérg GDI uzywa do
zakreslania obwodow figur zamknietych, wyrysowywania krzywych otwartych oraz
wyznaczania sciezek.

Prawie wszystko na temat piér powiemy sobie przy opisywaniu prymitywdw figur
geometrycznych, jako ze w ich towarzystwie sg on najpowszechniej stosowane
pedzle okreslajg sposdb wypetniania zamknietych powierzchni. Mozliwe jest ich
pokrywanie jednolitym kolorem, jednym z ustalonych deseni, jak réwniez wybrang
bitmapa.

O pedzlach napisze wiecej réowniez przy okazji omawiania figur geometrycznych
bitmapy przechowujg rastrowg postac obrazkéw. Kazdy kontekst urzadzenia jest
zwigzany z doktadnie jedng bitmapa, na ktorej wyglad wptywajg wywotywane
funkcje GDI.

Wiecej wiadomosci o bitmapach znajduje sie w poswieconej im sekcji nastepnego
podrozdziatu

czcionki regulujg kroj pisma w wypisywanym tekscie. Okreslajg one nie tylko
nazwe fizycznie istniejgcej na dysku czcionki (np. Arial czy Times New Roman),
ale tez jej dodatkowe atrybuty, jak pogrubienie czy podkreslenie.

Tworzenie obiektdédw czcionek i ich wykorzystanie bedzie tematem sekcji
pos$wieconej tekstowi w nastepnym podrozdziale

regiony mogg wptywac na zmiane obszaru rysowania, a takze stuzy¢ do
wykonywania innych czynnosci graficznych. Sg to zespoty potaczonych,
zamknietych figur geometryczny, takich jak prostokaty i elipsy.

Regionom, a zwifaszcza ich roli w przycinaniu, jest poswiecony osobny podrozdziat

Windows GDI 531

Kazdy z tych typow obiektéw poznamy blizej przy omawianiu prymitywywow, na
rysowanie ktérych majg one wptyw. Regionom poswiecimy osobng czesé naszej uwagi,
natomiast o kontekstach urzadzen mamy juz catkowicie wystarczajace wiadomosci i
wiecej juz ich nam nie trzeba ;)

Funkcje

Ogromng czes$¢ Windows GDI stanowi kilkaset (!) réznorodnych funkcji graficznych i
pokrewnych. To oczywiste, ze fizycznie niemozliwe jest dogtebne omdwienie ani nawet
wyliczenie ich wszystkich; jest to zresztg niepotrzebne, skoro ich doktadne opisy znajdujq
sie w dokumentacji MSDN.

W tej sekcji wyrdznie wiec tylko kilka(nascie) kategorii, na ktdre mozna podzieli¢ funkcje
Windows GDI. Podam tez nazwy najwazniejszych procedur, ktére spetniajg konkretne
zadania - tak, aby$ samodzielnie poszukac informacji o nich, czy to w dalszej czesci tego
rozdziatu, czy to w dokumentacji.

Jezeli masz dobre IDE, jak np. Visual C++ .NET, to ponizsze opisy funkcji moga by¢
catkiem wystarczajace do ich uzytkowania. Kiedy bowiem napiszesz nazwe ktérej$ z nich
w oknie edytora kodu i otworzysz nawias, otrzymasz liste jej parametréow, z nazwami i
typami kazdego z nich. To czesto wystarcza do wydedukowania prawidtowego dziatania
funkcji.

Obejrzyjmy wiec ten skromny katalog funkcji GDI.

Zarzgdzanie kontekstem urzgdzenia

Wokot kontekstow urzadzenia wszystko tu sie kreci, zatem zaczniemy od funkcji
umozliwiajacych zarzadzanie tymi obiektami.

Tworzenie kontekstu

Za tworzenie kontekstu urzadzenia i zwracanie uchwytu do niego odpowiadajg takie oto
funkcje:
> dla kontekstéw pochodzacych od okien:

v BeginPaint () pobiera uchwyt do tymczasowego kontekstu urzadzenia,
istniejacego na czas obstugi komunikatu wM PAINT. Kontekst ten jest
zwalniany przez wywotanie EndPaint ()

v GetDC () zwraca kontekst urzadzenia wnetrza okna. Jezeli w stylu klasy
okna nie sg podane flagi: cs ownNDC lub cs cLassDc, nietrwaty kontekst
urzadzenia jest specjalnie tworzony i po uzyciu powinien by¢ zwolniony za
pomocg ReleaseDC ()

v’ GetWindowDC () podaje nam kontekst urzadzenia zwigzany z catym oknem,
a wiec takze z jego obszarem pozaklienckiem. Musi on by¢ zawsze
zwolniony przez ReleaseDC ()

v GetDCEx () zachowuje sie jak jedna z trzech poprzednich funkcji (zaleznie
od podanej kombinacji flag), a takze udostepnia pewne dodatkowe
mozliwosci

> dla kontekstow tworzonych dla dowolnych urzadzen

v’ CreateDC () tworzy kontekst dla podanego urzadzenia

v' CreateIC() tworzy kontekst informacyjny, ktory moze by¢ uzyty wytacznie
do pobrania informacji o urzadzeniu, lecz nie do rysowania

» CreateCompatibleDC () kreuje pamieciowy kontekst urzadzenia, kompatybilny z
podanym

Pobieranie informacji o urzgdzeniu

Majac juz konteksty urzadzenia (zwyktu lub informacyjny), mozemy pokusic sie o
pobranie jakichs informacji o zwigzanym z nim sprzecie. Czynig to ponizsze funkcje:

532 Windows API

» GetDeviceCaps () stuzy do uzyskania specyficznych informacji o urzadzeniu
» DeviceCapabilities () podaje dane na temat drukarki, jezeli posiadamy jej
kontekst urzadzenia

Kontrola atrybutéow kontekstu

Za zmiane i pozyskanie wartosci kilkunastu atrybutow kontekstu urzadzenia stuzy kilka
ponizszych funkcji:
> za zarzadzanie obiektami kontekstu odpowiadajg dwie funkcje:
v’ SelectObject () ustawia nowe pidro, pedzel, bitmape, czcionke lub region
przycinania, zwracajac jednoczesnie uchwyt do starego obiektu
v\ GetCurrentObject () zwraca uchwyt do obiektu okreslonego rodzaju, ktéry
jesy aktualnie powigzany z podanym kontekstem urzadzenia
v’ GetStockObject () pobiera jeden z przechowywanych wewnetrznie
obiektéw GDI
> za ustawianie parametrow potoku graficznego odpowiadajg nastepujace funkcje:
v’ SetMapMode () ustawia tryb mapowania, czyli wielko$¢ jednostek logicznej
oraz kierunek osi uktadu wspétrzednych ptaszczyzny swiata (strony)
v' kadr na pfaszczyznie $wiata (strony) kontrolujg funkcje:
x SetWindowOrgEx () i GetWindowOrgEx () odpowiedzialne sq za
ustawianie i pobieranie pozycji kadru
x SetWindowExtEx () i GetWindowExtEx () zarzadzajg rozciggtoscig osi
kadru
v'wziernik na ptaszczyznie urzadzenia jest pod opieka funkcji:
x SetViewportOrgEx () i GetViewportOrgEx (), ktére dbajg o jego
pofozenie
x SetViewportExtEx () i GetViewportExtEx (), zarzadzajacych jego
rozciggtoscig
> z pidrem w kontekscie urzadzenia radzg sobie ponizsze funkcje:
v/ pozycja piora na bitmapie kontekstu urzadzenia to domena funkcji:
x MoveToEx () - przesuwa ona pioro do podanej pozycji
x GetCurrentPositionEx () - zwraca aktualng pozycje pidra
v' SetROP2 () i GetROP2 () kontrolujg tryb rysowania piérem
» SetBrushOrgEx () | GetBrushOrgEx () zarzadzajg punktem zaczepienia pedzla
» SetStretchBltMode () i GetStretchBltMode () modyfikujg zachowanie funkcji
StretchBlt () przy kopiowaniu bitmapy do podanego kontekstu urzadzenia
» ustawienia zwigzane z tekstem sa zastuga funkcji:
v’ SetTextColor () i GetTextColor (), ktdre ustawiajg i pobierajg kolor
tekstu
v' SetBkColor () i GetBkColor (), kontrolujgcych kolor tta tekstu
v/ SetBkMode () i GetBkMode (), zmieniajacych tryb wypetnienia tta tekstu
(przezroczysty lub nie)
v SetTextCharacterExtra () i GetTextCharacterExtra (), zawiadujacych
odstepami miedzy znakami tekstu
> region przycinania pozostaje pod wtadzg funkcji:
vz ktérych niektére go modyfikuja:
x SelectClipRgn () ustawia region przycinania rownie dobrze jak
SelectObject ()
x ExtSelectClipRgn () umozliwia kombinacje nowego regionu
przycinania z juz obowigzujagcym
IntersectClipRect () dodaje do regionu podany prostokat
ExcludeClipRect () wyklucza z regionu dany prostokat
OffsetClipRgn () przesuwa region przycinania o podany wektor
SelectClipPath () taczy aktualng Sciezke kontekstu urzadzenia z
jego regionem przycinania
v'a niektore stuzg do pobierania regionu przycinania:

X X X %

Windows GDI 533

x GetClipRgn () pobiera éw region

x GetRandomRgn () pobiera kopie regionu przycinania

x GetClipBox () pobiera koordynaty najmniejszego prostokatu
otaczajqcego region przycinania

Zapisywanie i odtwarzanie kontekstu urzgdzenia

W tej kategorii sg tylko dwie znane funkcje:
> SaveDC () zapisuje stan kontekstu urzadzenia, tj. wszystkich jego atrybutéw
> RestoreDC () odtwarza zapisany wczesniej stan

Zwalnianie kontekstu urzadzenia

Utworzony kontekst trzeba predzej czy pdzniej zwolniec (raczej predzej niz pdzniej).
Mamy wtedy do wyboru takie oto funkcje:
> EndPaint (), ktéra konczy odswiezanie zawartosci okna rozpoczete przez
BeginPaint () W reakcji na komunikat wM PAINT
» ReleaseDC () zwalnia kontekst urzadzenia zwigzany z oknem (stworzony przez
GetDC (), GetDCEx () lub GetWindowDC ())
> DeleteDC () usuwa wszystkie pozostate rodzaje kontekstow (w szczegdlnosci te
utworzone przez CreateDC (), CreateIC() i CreateComaptibleDC ())

Tworzenie obiektow GDI

Zanim pokaze funkcje odpowiedzialne za tworzenie poszczegdlnych typdéw obiektow GDI,
podejde do zagadnienia wpierw ,,0d tytu”. Przedtem jak stworzymy jakikolwiek obiekt,
musimy bowiem wiedze¢, w jaki sposéb bo potem zniszczy¢. Stuzy do tego funkcija:
> DeleteObject (), ktdra usuwa obiekt pidra, pedzla, bitmapy, czcionki, regionu lub
palety

Dalej patrzmy juz na funkcje kreujace obiekty.
Tworzenie pior

Do utworzenia piéra mozna w GDI wykorzystac¢ funkcje:
> CreatePen () tworzy pidro o podanym stylu, grubosci i kolorze linii
» CreatePenIndirect () ma te same mozliwosci co CreatePen(), ale przyjmuje
jeden parametr (w postaci struktury LOGPEN) zamiast trzech
> ExtCreatePen () pozwala stworzy¢ pidro kreslace linie pokryte deseniem lub
bitmapa, czyli majgce witasciwosci pedzla

Tworzenie pedzli

Za tworzenie pedzli odpowiadajg ponizsze funkcje:
» CreateSolidBrush () tworzy pedzel malujacy jednolitym kolorem
» CreateHatchBrush () stwarza pedzel postugujacy sie dwukolorowym deseniem
» CreatePatternBrush () kreuje pedzel wypetniajacy figury kopiami bitmapy
» CreateBrushIndirect () tworzy pedzel na podstawie podanej struktury LOGBRUSH

Tworzenie bitmap

Do stworzenia obiektu bitmapy mozna wykorzystac¢ funkcje:

» CreateBitmap (), tworzacg bitmape o podanych wymiarach, gtebi kolorow i
ewentualnie zawartosci

» CreateBitmapIndirect (), dziatajacq tak jak CreateBitmap (), lecz przyjmujacq
jako parametr strukture typu BITMAP

» CreateCompatibleBitmap (), stwarzajacq bitmape kompatybilng z danym
kontekstem urzadzenia i majacq podane wymiary

» LoadImage () (zastepujaca starsza, lecz nadal dziatajacq funkcje LoadBitmap ()),
ktoéra potrafi wczyta¢ bitmape z pliku dyskowego

534 Windows API

Tworzenie obiektow czcionek

Aby utworzy¢ obiekt czcionki, nalezy uzyc¢ jednej z tych oto funkcji:
» CreateFont () tworzy obiekt czcionki o podanym kroju i stylu pisma
» CreateFontIndirect () dziala jak CreateFont (), lecz przyjmuje parametry w
formie struktury LOGFONT

» CreateFontIndirectEx () tworzy czcionke na podstawie przekazanej struktury
ENUMLOGFONTEXDV

Tworzenie regiondw

Funkcji tworzacych regiony takze mamy kilka:
> sg wsrod nich funkcje stwarzajgce proste regiony:
v' na przyktad prostokatne:
x CreateRectRgn () tworzy prostokatny region
x CreateRectRgnIndirect () dziata jak CreateRectRgn (), lecz
przyjmuje jeden parametr typu RECT
x CreateRoundRectRgn () tworzy region w ksztalcie prostokata z
zaokraglonymi rogami
v a takze takie w ksztatcie wielokatéw:
x CreatePolygonRgn () kreuje region w formie wielokata
x CreatePolyPolygonRgn () stwarza region ztozony z kilku
wielokatow
v ewentualnie takze w formie elips:
x CreateEllipticRgn () tworzy region w ksztaicie elipsy
% CreateEllipticRgnIndirect () dziata jak CreateEllipticRgn (),
ale zada struktury typu RECT
» CombineRgn () tgczy dwa regiony w jeden, postugujac sie podanym trybem
kombinacji

Rysowanie prymitywdw
Popatrzmy teraz na liste funkcji GDI rysujacych prymitywy.
Figury geometryczne

Za kreslenie figur geometrycznych sg odpowiedzialne ponizsze funkcje:
> punkty i linie rysujg takie oto funkcje:
v za zaznaczanie punktéw odpowiadajq procedury:
x SetPixel () zaznacza podanym kolorem punkt na powierzchni
urzadzenia
x SetPixelV () uzywa do tego najblizszej aproksymacji podanego
koloru
x GetPixel () pobiera kolor podanego punktu
v'linie proste rysujq funkcje:
x LineTo () kresli prosta od aktualnej pozycji piéra do podanego
punktu
x PolylineTo () kresli tamang od biezacej pozycji pidra przez podane
punkty
x Polyline () rysuje tamang zaczynajac od podanego punktu przez
kolejne podane
x PolyPolyline () wykresla kilka tamanych naraz
v krzywe otwarte sgq domeng takich funkcji:
x AngleArc () rysuje prostg od biezacego potozenia pidra do podanej
punktu, a nastepnie tuk - wycinek obwodu elipsy
x ArcTo () rysuje wycinek obwodu elipsy, poczynajac od pozycji pidra
x Arc () kresli tuk w dowolnym miejscu

Windows GDI 535

x PolyBezierTo () rysuje krzywg Béziera poczawszy od aktualnego
miejsca pidra
x PolyBezier () kresli krzywg Béziera w dowolnym miejscu
» figury zamkniete sgq rysowane przez te oto funkcje:
v wielokgtami zajmujq sig:
x Rectangle () - rysuje prostokat
x FillRect () wypetnia prostokat podanym pedzlem
x FrameRect () kresli obramowanie prostokata przy pomocy pedzla
x InvertRect () odwraca kolory (za pomocg bitowej negacja) w
podanym prostokacie
v krzywe zamkniete to zadania funkcji:
x Ellipse () rysuje elipse (takze koto)
x Pie () rysuje wycinek elipsy (kota)
x Chord () rysuje odcinek elipsy (kotfa)
v' RoundRect () rysuje prostokat z zaokraglonymi rogami

Bitmapy

Za wyswietlanie bitmap (a raczej zawartosci innych kontekstow urzadzen) odpowiadajq
funkcje:
> BitBlt (), ktora dokonuje dostownego przekopiowania pikseli z jednego kontekstu
urzadzenia do drugiego, uzywajac podanego sposobu taczenia kolorow
> TransparentBlt (), dokonujgaca kopiowania z mozliwoscig wybrania koloru
przezroczystego
> StretchBlt (), potrafigca kopiowac obrazy z ich jednoczesnym skalowaniem

Tekst

Wypisywanie tekstu w kontekscie urzadzenia to zadanie dla ponizszych funkcji:

> oto funkcje piszace tekst w okreslonej pozycji:
v TextOut () dokonuje prostego wypisania tekstu w podanym miejscu
v' ExtTextoOut () potrafi jeszcze dokonac np. przycinania do prostokata
v\ TabbedTextOut () pozwala na wyrdwnywanie tekstu do podanych

tabulatoréow

> sq tez funkcje rozmieszczajgce tekst w podanym prostokacie:

v' DrawText () rysuje tekst wyréwnany do krawedzi lub srodka danego

prostokata
v' DrawTextEx () umozliwia jeszcze okreslenie margineséw poprzez strukture
DRAWTEXTPARAMS

Regiony
Mamy jeszcze kilka funkcji zwigzanych z regionami GDI.
Rysowanie z uzyciem regionow

Regiony mogg stuzy¢ do rysowania za posrednictwem tych funkcji:
> PaintRgn () wypetnia region pedzlem wybranym w kontekscie urzadzenia
» FillRgn () wypetnia region podanym pedzlem
> FrameRgn () kresli obramowanie wokét regionu przy uzyciu podanego pedzla
» InvertRgn () odwraca kolory (jak InvertRect ()) w obszarze regionu

Regiony i okna

Do taczenia regiondéw i okien stuzg funkcje:
» SetWindowRgn () ustawia nowy region, wyznaczajacy ksztatt okna
> GetWindowRgn () pobiera region okna

Xk k

536 Windows API

Zakanczamy juz ten przydtugi wstep do opisu biblioteki Windows GDI. W nastepnym
podrozdziale zajmiemy sie juz konkretami, czyli rysowaniem prymitywow. Wreszcie wiec
ujrzymy cokolowiek na naszych ekranach :)

Prymitywy

To, czym sie teraz bedzie zajmowac, dla wielu programistow (gtéwnie niezbyt
zaawansowanych) jest niemal tozsame z cata bibliotekg GDI. Jak wiemy, nie jest to
prawda, jednak nie da sie ukry¢, ze prymitywy graficzne sg jej najwazniejszg czescig. To
przeciez naturalne, ze narzedzie graficzne oceniamy przede wszystkim po tym, co
mozemy przy jego pomocy rysowac. Bogate mozliwosci wyswietlania ksztattow
graficznych sq wiec niezwykle wazne.

Window GDI jest pod tym wzgledem bardzo rozwinietg biblioteka, mogacg zaréwno
kresli¢c zgeometryzowane ksztatty figur, jak rdwniez rastrowe bitmapy czy wreszcie
napisy tekstowe. Dla kazdego z tych prymitywow istnieje poza tym wiele opcji
regulujacych ich prezencje.

Niniejszy podrozdziat poswiecimy tym strategicznym elementom GDI, jakimi sg
prymitywy. Omoéwimy tu osobno figury geometryczne, bitmapy oraz tekst.

Figury geometryczne

Najbardziej wektorowy charakter ze wszystkich prymitywéw w Windows GDI zachowujg
figury geometryczne. Sq one catkowicie niewrazliwe na skalowanie czy przesunigcie,
zatem moga byc¢ rysowane w dowolnym rozmiarach i w dowolnych miejscu.

W matematyce figury na ptaszczyznie sg opisane odpowiednimi réwnaniami, ale nie
musimy ich znac¢, aby rysowac takie ksztatty. Biblioteka GDI zawiera sporo funkcji
wyreczajacych nas w tym zadaniu - wiele z nich poznamy w tej sekcji.

Zanim jednak to sie stanie, musimy sobie powiedzie¢ co nieco o dwoch waznych
obiektach, ktére wigzg sie z kwestig rysowania figur geometrycznych w Windows GDI.
Tymi obiektami sg pidra i pedzle.

Pioro
GDI pozwala na rysowanie linii prostych oraz krzywych. Takie linie mogg miec¢ okreslone

atrybuty, jak na przyktad kolor. Decyduje o nich obiekt kontekstu urzadzenia zwany
piérem.

Pioro (ang. pen) kontroluje wtasciwosci rysowanych linii: ich grubos¢, kolor
(ewentualnie desen) oraz styl.

Piéra sq w GDI reprezentowane poprzez uchwyty typu HPEN.

Chcac zatem rysowac rozne typy linii, musimy odpowiednio zmodyfikowac¢ wiasciwosci
piéra. Jest ich niewiele, wiec w GDI najczesciej bedziemy po prostu tworzy nowe, swoje
wiasne pidro i wybierac je dla danego kontekstu urzadzenia. Po tym wszystkie linie bedg
kreslone przy uzyciu tego wtasnie nowowybranego pidra.

Korzystanie z pior

Typowa kolejnos¢ krokow przy korzystaniu z wtasnego pidra sprowadza sie zatem do:
> stworzenia piora
> wybrania go w uzywanym kontekscie urzadzenia

Windows GDI 537

» narysowania figur
> odtozenia pidra z kontekstu, czyli wybranie w nim poprzednio ustawionego piora
> usuniecia piora

Wyjasnimy sobie tutaj kazdy z tych krokdéw, oczywiscie z wyjatkiem samego rysowania
figur, gdyz to jest tematem prawie catej pozostatej czesci sekcji.
Tworzenie pidra

Do utworzenia nowego pidra mozemy wykorzystac¢ funkcje CreatePen() i tak tez
bedziemy czyni¢ najczesciej. Oto prototyp tej funkcji:

HPEN CreatePen (int fnPenStyle,
int nWidth,
COLORREF crColor) ;

Umozliwia ona stworzenie piéra kreslacego linie o podanej grubosci, kolorze i stylu. Te
cechy pidra wyznaczajq trzy parametry funkcji:

typ parametr opis

Ten parametr okresla styl piéra, tj. rysowanych przy jego

fnPenStyle L . P .
Y pomocy linii. Mozliwe wartosci ujmuje nastepna tabelka.

Tutaj podajemy grubosé linii piéra w jednostkach logicznych.
Jezeli chcemy uzy¢ innego stylu pidra niz domysiny jednolity
(ps_soL1D, ewentualnie takze PS INSIDEFRAME), to najlepiej

int podac¢ tu 0, gdyz jesli szerokos¢ linii przekroczy jedng jednostke

nWidth urzadzenia (zwykle piksel), inny styl niz
PS SOLID/PS INSIDEFRAME nie bedzie mdgt by¢ zastosowany i
zostanie wybrany ps_soLID. W przypadku podania zera grubosc
linii wyniesie natomiast jeden piksel i wszystko bedzie w
porzadku, niezaleznie od wartosci fnPenStyle.

W tym parametrze okreslamy kolor linii rysowanych przez

COLORREF crColor RA
pioro.

Tabela 61. Parametry funkcji CreatePen()

Czym jest styl pidra?... To po prostu pewien sposdb na okreslenie ciggtosci linii. GDI
udostepnia kilka takich styli, przedstawia je ponizsza tabelka:

flaga styl linia
PS NULL brak linii
PS SOLID linia ciagta
PS_DASH linia przerywana (kreski) | ——
PS_DOT linia kropkowana
PS_DASHDOT kreska-kropka
PS DASHDOTDOT kreska-kropka-kropka
PS INSIDEFRAME linia ciggta

Tabela 62. Style zwyktych piér w Windows GDI

Ostatni styl s INSIDEFRAME wyglada jak pierwszy, ale jest miedzy nimi pewna roznica.
Uwidacznia sie ona przy obrysowywaniu regionéw: PS INSIDEFRAME generuje ramke
zawierajaca sie w catosci wewnatrz regionu, zas ps_SOLID - na zewnatrz.

Popatrzmy teraz na przyktady wykorzystania funkcji CreatePen () do tworzenia pior:

// tworzy pidro rysujace gruba czarna kreskag

538 Windows API

HPEN hpenCzarnyFlamaster = CreatePen(PS SOLID, 5, 0x0);

// pidro kredlone najcienszag mozliwag, czerwong linie
HPEN hpenCienkaCzerwonalLinia = CreatePen(PS_SOLID, 0, RGB (255, 0, 0));

// bardzo gruba linia w kolorze zielonym
HPEN hpenPasZieleni = CreatePen(PS SOLID, 10, RGB (0, 255, 0));

// wykropkowana linia w kolorze magenty
HPEN hpenKarmazynoweKropki = CreatePen (PS DOT, 0, RGB (255, 0, 255));

// normalna niebieska kreska
HPEN hpenAtrament = CreatePen(PS SOLID, 1, RGB(0, 0, 255));

Jak wida¢, utworzenie wtasnego pidra jest bardzo proste.

Identycznie do CreatePen () dziata funkcja CreatePenIndirect (). Zamiast trzech
parametrow przyjmuje ona jedng strukture LOGPEN, zawierajg pola odpowiadajgce tym
parametrom. Funkcja ta moze byc¢ uzyteczna, jezeli np. chcemy zapisaé nasze pidéra w
pliku na dysku.

Wigzanie pidra z kontekstem urzadzenia

Samo istnienie pidra nic nam jeszcze nie daje. Musimy je bowiem zwigzaé z kontekstem
urzadzenia.

Mozemy to zrobi¢ przy pomocy funkcji selectObject (). Trzeba jednak pamietac, aby
zajac sie odpowiednio starym pidrem, oryginalnie wybranym w konteks$cie urzadzenia.
Nalezy bowiem zadbac o jego zwolnienie; jest to, jak wiemy, mozliwe na trzy sposoby:
> poprzez natychmiastowe usuniecie starego pidra funkcjg DeleteObject ()
» poprzez zachowanie uchwytu do starego pidra w osobnej zmiennej i przywrocenie
go do kontekstu przed jego usunieciem
> przez zapisanie stanu kontekstu (saveDC ()) i przywrdcenie go (RestoreDC ()) tuz
przed kresem jego zycia

Wszystkie te trzy drogi byly prezentowane w paragrafie poswieconym zwalnianiu
kontekstu urzadzenia. Tutaj wiec pokaze tylko najczesciej stosowang - zachowanie
starego w dodatkowej zmiennej:

HPEN hpenZoltePioro = CreatePen(PS _SOLID, 2, RGB(255, 255, 0));
HPEN hpenStarePioro (HPEN) SelectObject (hdcKontekst, hpenZoltePioro);

Po wybraniu piéra mozemy juz rysowac przy jego pomocy dowolne figury geometryczne.
Odktadanie i zwalnianie pidra

Gdy zakonczymy juz prace z piérem, powinnismy je zwolni¢. Jak juz powiedziatem,
zwolnienie moze odbywac¢ sie wraz z niszczeniem kontekstu urzadzenia lub tez (czesciej)
by¢ prowokowane jawnie funkcjg DeleteObject ().

Ten drugi przypadek ukazuje ten kod. Jest to ,druga potowa” listingu z poprzedniego
punktu:

SelectObject (hdcKontekst, hpenStarePioro);
DeleteDC (hdcKontekst) ; // tu jest usuwane pibdro hpenStarePioro
DeleteObject (hpenZoltePioro); // tu jest usuwane pidéro hpenZoltePioro

Mozliwe jest rzecz jasna, abys stosowat inne drogi (np. z SaveDC () i RestoreDC ()), jezeli
uznasz je za wygodniejsze. Wazne jest jednak, by zadne pidéro nie zostato ,zgubione”, a

Windows GDI 539

wszystkie obiekty zwolnione. W przeciwnym wypadku dojdzie do niebezpieczenego
wycieku zasobow.

Elastyczne piéro

Czesta wymiana obiektu pidra w kontekscie urzadzenia moze nie by¢ zbyt efektywna.
Jednoczes$nie zmiana koloru rysowanej linii jest czynnoscig bardzo czesto, a ta, jak
wiemy, wymaga zmiany obiektu pidra... A moze niekoniecznie?

Poczgwszy od Windows 2000 mozliwe jest wykorzystanie tzw. elastycznego piora. Jest
to pidro rysujace cienka linie ciggta. Kolor tej linii moze byé zmieniany bez koniecznosci
wybierania nowego obiektu.

Zobaczmy zatem, jak wykorzystac elastyczne piéro.

Wybieranie elastycznego pidra

Na poczatek musimy poinformowac GDI, ze bedziemy korzystac z tego specjalnego
rodzaju pidra. Uchwyt do niego mozna pozyska¢, wywotujac funkcje GetStockObject () z
parametrem DC_PEN; wybranie elastycznego pidra w kontekscie urzadzenia najlepiej
zrealizowa¢ wiec w jednym wywofaniu:

DeleteObject (SelectObject (hdcKontekst, GetStockObject (DC PEN))) ;

Robimy tu jednoczesnie az trzy rzeczy: pobieramy uchwyt do elastycznego pidra
(GetStockObiject ()), ustawiamy je w kontekscie urzadzenia (SelectObject ()), a na
koniec usuwamy obiekt starego pidora (DeleteObject ()).

Ten - wydawatoby sie, nieco zakrecony sposéb - jest najwtasciwszy. Elastyczne pidro nie
wymaga bowiem jawnego usuniecia'*?, wiec jesli zachowaliby$my uchwyt do starego
pidra, a po zakonczeniu pracy z powrotem umiescili je w kontekscie, tylko dodalibysmy
sobie wiekszego zachodu. Lepiej bedzie, jezeli od razu pozbedziemy sie niepotrzebnego,
oryginalnego pidra; pozniej nie bedziemy juz musieli martwic sie o zadne inne.

Jezeli jednak kontekst urzadzenia miat wczesniej ustawione nasze wilasne pioro, wtedy
trzeba naturalnie rozwazy¢, czy chcemy je teraz usungcé. Zwykle nie chcemy.

Zmiana koloru pidra

Kiedy wybraliSmy juz elastyczne piéro w kontekscie urzadzenia, mozemy kontrolowac
jego kolor. Robimy to poprzez funkcje setdDCPenColor (). Ponizsza linijka kodu ustawia
przyktadowo kolor piéra na morski:

SetDCPenColor (hdcKontekst, RGB(0, 255, 255));

Zmieniajac kolory elastycznego piora mozemy fatwo narysowac np. kwadrat o bokach w
czterech barwach:

void Kwadrat4Kolorowy (HDC hdcKontekst, POINT ptPozycja, unsigned uBok,
COLORREF aKolory[4])
{

// zapisanie ustawien kontekstu
SaveDC (hdcKontekst) ;
/* narysowanie kwadratu */

// ustawienie elastycznego pidra
SelectObject (hdcKontekst, GetStockObject (DC_PEN));

142 podobnie zresztg jak kazdy obiekt uzyskany funkcjg GetStockobject ().

540 Windows API

// pomocnicza tablica statych, opisujacych kierunki bokdw
// (kwadrat rysujemy od lewego gdérnego rogu zgodnie ze wsk. zegara)
const POINT BOKI[4] = { {1, 0O}, {O, 1}, {-1, O}, {0, =1} };

// ustawimy sie w podane]j pozycji (lewy gbrny rdg kwadratu)
MoveToEx (hdcKontekst, ptPozycja.x, ptPozycja.y, NULL);

// rysujemy kolejne boki

POINT ptPozycjaPiora;

for (unsigned i = 0; 1 < 4; ++1)

{
// ustawiamy kolor pidéra na kolejny z podanych
SetDCPenColor (hdcKontekst, aKoloryl[i]);

// pobieramy aktualnag pozycje pidra
GetCurrentPositionEx (hdcKontekst, &ptPozycjaPiora);

// kreélimy linie w odpowiednim kierunku; uzyskujemy go,
// mnozac dlugos$é¢ bokdéw przez wspoirzedne wektordw zapisane
// w tablicy BOKI. W ten sposbéb dowiadujemy sie, o ile
// powinniémy sie przesunal
LineTo (hdcKontekst,
ptPozycjaPiora.x + BOKI[i].x * uBok,
ptPozycjaPiora.y + BOKI[i].y * uBok);

/* przywracamy oryginalny stan kontekstu */
RestoreDC (hdcKontekst, -1);
}

SetDCPenColor () zapobiega tutaj koniecznosci utworzenia, przechowywania i zniszczenia
czterech pidr w kontekscie z urzadzenia. Pidr, ktére roznig sie tylko kolorem; w takich
sytuacjach znacznie lepiej jest uzy¢ elastycznego piora.

Wtasciwosci pidra w kontekscie urzgdzenia

Z obecnoscig piora w kontekscie urzadzenia zwigzane sg dwie jego wtasciwosci. Wptywaja
one na rysowane figury. Tymi atrybutami kontekstu sg aktualna pozycja piéra oraz tryb
rysowania.

Aktualna pozycja

Nie zdziwitbym sie, jezeli przynajmniej niektdrzy z obecnych tu czytelnikéw mieli
stycznos¢ z tak zwanym ‘jezykiem programowania’ o nazwie LOGO. Jezeli nawet nie
zaczynali od niego swoich koderskich doswiadczen, to jest catkiem prawdopodobne, ze
byli nim meczeni w szkole.

Nie bede jednak rozwodzit sie tutaj nad kwestig, jak koszmarnym programem (bo
jezykiem nie moge tego nazwac...) jest LOGO, bo zajetoby to reszte miejsce
przeznaczonego na ten kurs ;D Chce tylko wspomnie¢ o czyms takim jak zétw. Tak wiec
z6tw w LOGO to taki rodzaj kursora, ktory mogt by¢ sterowany instrukcyjnie i rysowat
przerdzne figury geometryczne. Zajmowat on pewng pozycje na ekranie i mozna go byto
skierowa¢ w inng; po drodze zostawiat za sobg $lad w postaci linii.

Jak to sie ma do GDI?... Otdz, z6tw z LOGO ma sporo wspolnego z pidrami w Windows
GDI - nie wszystko wprawdzie, ale przynajmniej jedna jego wtasciwosc jest dla nas teraz
istotna. Tq wiasciwoscig jest pozycja.

Pioro w GDI takze zajmuje okreslong pozycje na bitmapie kontekstu urzadzenia. Niektore
funkcje rysujace, takie jak LineTo (), korzystaja z niej, rozpoczynajac z tego miejsca

Windows GDI 541

rysowanie figur. Po ich wykresleniu pozycja pidra ulega zmianie: zatrzymuje sie ono na
przeciwlegtym koncu narysowanej krzywej. W ten sposdb sterujemy pidérem podobnie jak
z6twiem.

Przesuniecie pidora moze sie tez odbywac bez zostawiania jakichkolwiek ,Sladéw”. Stuzy
do tego funkcja MoveToEx () :

BOOL MoveToEx (HDC hdc,
int X,
int Y,
LPPOINT lpPoint);

Bytbym bardzo zawiedziony, gdybys z jej prototypu nie wydedukowat znaczenia
parametrow... Mysle wiec, ze poradzites sobie z tym :) Powiem jedynie, ze wskaznik do
struktury POINT, jakiego funkcja zgda w ostatnim parametrze, moze by¢ ustawiony na
NULL. W takiej sytuacji nie otrzymamy poprzednich wspdtrzednych pidra - zazwyczaj i tak
nie sq nam one potrzebne.

Jezeli jednak zdarzytaby sie taka okoliczno$¢, mozna sie jeszcze salwowac funkcjg
GetCurrentPositionEx () :

BOOL GetCurrentPositionEx (HDC hdc, LPPOINT lpPoint);

Przy okazji rysowania czterokolorowego kwadratu, mogtes$ zobaczy¢, ze bywa ona
przydatna.

Tryb rysowania

Rysujac linie proste, krzywe, obramowania figur i inne ksztatty, piéro domysinie
zastepuje juz istniejace piksele w kontekscie urzadzenia. Te standardowe zachowanie
mozemy zmieni¢ - stuzy do tego funkcja setROP2 () :

int SetROP2 (HDC hdc,
int fnDrawMode) ;

ROP jest tu skrétem od raster operation, czyli ‘operacji rastrowej’, za$ 2 oznacza ilos¢
argumentow tej operacji. Owymi dwiema danymi sg tutaj:
> istniejacy w kontekscie urzadzenia kolor, zwany kolorem ekranowym (oznacze go
tutaj clScreen)
> kolor pidra (clpen)

Operacja rastrowa definiuje sposdb potgczenia tych dwdch koloréw wejsciowych w jeden
kolor wynikowy. Barwa ta pozostanie na pikselu w kontekscie urzadzenia.

Windows GDI oferuje kilka mozliwych operacji rastrowych. Wszystkie one sg dziataniami
na bitach kanatéw RGB, wiec w tabeli sg one zapisane przy uzyciu obecnych w C++

operatordéw bitowych!*3;
flaga operacji | _kolor wynikowy
R2 BLACK czarny
R2 NOTMERGEPEN | ~(clPen | clScreen)
R2 MASKNOTPEN clScreen & ~clPen
R2 NOTCOPYPEN ~clPen

143 Dla przypomnienia: s to koniunkcja bitowa (daje 1 tylko dla dwéch jedynek), | to alternatywa (daje O tylko
dla dwdch zer), ~ jest roznicg symetryczng (daje 1 dla réznych bitéw), zas ~ to negacja, zmieniajagca 1 w 0 i
odwrotnie.

542 Windows API

flaga operacji kolor wynikowy
R2 MASKPENNOT clPen & ~clScreen
R2 NOT ~clScreen
R2_ XORPEN clPen © clScreen
R2 NOTMASKPEN | ~(clPen & clScreen)
R2 MASKPEN clPen & clScreen
R2 NOTXORPEN ~(clPen ~ clScreen)
R2 NOP clScreen
R2 MERGENOTPEN clScreen | ~clPen
R2 COPYPEN clPen
R2 MERGEPENNOT clPen | ~clScreen
R2 MERGEPEN clPen | clScreen
R2 WHITE biaty

Tabela 63. State binarnych operacji rastrowych w Windows GDI

Poszczegodlne operacje mozesz wyprobowac empirycznie, jesli chcesz. Rzadko jednak
bedziesz musiat korzystac z innego trybu rysowania niz domysiny R2 COPYPEN.

Pedzel

Jesli chodzi o rysowanie figur geometrycznych w Windows, to wraz z piérem w parze
idzie tu zawsze pedzel.

Pedzel (ang. brush) decyduje o sposobie wypetniania zamknietych powierzchni.

Typem uchwytu do pedzla jest HBRUSH.

Wypetnienie pedzlem jest stosowane dla wszystkich figur zamknietych, jakie rysujemy w
kontekscie urzadzenia. Nalezg do nich na przyktad prostokaty i okregi.

Innym, bardzo waznym zastosowaniem pedzla jest tez pokrywanie jakim$ wzorem lub
kolorem wnetrza okna. Pedzel byt pierwszym obiektem GDI, z jakim w ogdle mieliSmy do
czynienia. SpotkaliSmy go bowiem juz przy rejestrowaniu klasy okna, gdzie pole
WNDCLASS[EX]: :hbrBackground musiato zawiera¢ nic innego, jak tylko uchwyt do pedzla
malujgcego obszar klienta okna.

Obecnie jednak skoncetrujemy sie gtdwnie na zastosowani pedzli w dziataniach
rysunkowych biblioteki Windows GDI. Powiemy wiec sobie, jak sie je tworzy i korzysta z
nich.

Korzystanie z pedzli

Z pedzli korzystamy identycznie jak z piér. Takze tutaj wystepuje wiec ich tworzenie,
wybieranie, odkfadanie i zwalnianie.

Tworzenie pedzla

Windows GDI oferuje pedzle malujace powierzchnie az na trzy sposoby. Mogg by¢ one
wypetniane:

> jednolitym kolorem (ang. solid color)

» dwukolorowym deseniem (ang. hatch)

> kafelkowang bitmapq (ang. pattern)
W zwigzku z tym mamy trzy podstawowe funkcje tworzace obiekty pedzli.

Pierwsza z nich jest CreateSoildBrush (), najprostsza z nich wszystkich:

HBRUSH CreateSolidBrush (COLORREF crColor);

Windows GDI 543

Wynikiem jest dziatania jest pedzel oferujacy wypetnienie catkowicie jednolitym kolorem.
Wartos¢ tej barwy podajemy oczywiscie w jednym parametrze funkcji, crColor.

Innym rodzajem wypetnienia jest desen. Pedzel, ktéry bedzie je stosowat, nalezy
stworzy¢ funkcjg CreateHatchBrush () :

HBRUSH CreateHatchBrush (int fnStyle,
COLORREF clrref);

Parametr fnstyle okresla w niej rodzaj deseniu, jakim bedzie sie postugiwat nasz pedzel.
Mozliwych jest sze$¢ rodzajow, przedstawia je ponizsza tabelka:

stala nazwa deseniu | desen
HS HORIZONTAL pozknny
HS VERTICAL MQnowy
HS CROSS siatka

HS FDIAGONAL ukosny w dot
HS BDIAGONAL | ukoé$ny w gére
HS DIAGCROSS kratka

Tabela 64. Wzory deseni dla pedzli Windows GDI

Nie mozemy niestety uzupetnia¢ tego zestawu o wtasne desenie. Powyzsza szostka jest
chyba jednak wystarczajgca do wiekszosci potrzeb.

Mozna zauwazy¢, ze desen jest rysowany dwoma kolorami. Pierwszy jest nazywany
kolorem pierwszoplanowym (ang. foreground color) - w tabeli jest to kolor czarny.
Drugi kolor jest drugoplanowym albo kolorem tta (ang. background color). Obie te
barwy mozemy ustali¢, chociaz tylko kolor pierwszoplanowy jest wtasnoscig samego
pedzla - podajemy go bowiem w parametrze clrref. Kolor tla jest natomiast atrybutem
kontekstu urzgdzenia i mozemy go zmieni¢ funkcjg SetBkColor () :

COLORREF SetBkColor (HDC hdc, COLORREF crColor);

Jak sie pdzniej przekonamy, wptywa on nie tylko na wypetnianie deseniowymi pedzlami,
ale tez na wypisywanie tekstu.

Ostatni rodzaj pedzla potrafi zamalowywac¢ powierzchnie sgsiadujacymi kopiami bitmap;
nazywamy to czesto kafelkowaniem. Utworzenie pedzla tego typu wymaga wywotania
funkcji CreatePatternBrush () :

BRUSH CreatePatternBrush (HBITMAP hbmp) ;

Ta za$ wymaga tylko jednego parametru: jest to uchwyt do obiektu bitmapy, ktora
bedzie stuzyc¢ za ,kafelek”. O tworzeniu bitmap bedziemy wiele méwi¢ w poswieconej im
sekcji, na razie wiec powiem tylko, ze obrazek do kafelkowania moze by¢ wziety zaréwno
z pliku, jak i stworzony programowo. Nie ma tez ograniczen, co do rodzaju bitmapy:
dozwolony jest obrazek rastrowy typu DIB (bitmapa niezalezna od urzadzenia), jak i
normalna bitmapa, zapisywana w plikach z rozszerzeniem .bmp.

Jest jednak wymagane, aby podana bitmapa istniata przez caly czas istnienia pedzla.
Nie powinnismy bowiem usuwac zadnej bitmapy, ktora jest zwigzana z jakimkolwiek
pedzlem (podobnie jak nie mozemy usuwac pedzla, pidra czy innego obiektu zwigzanego
z kontekstem urzadzenia).

Wybieranie pedzla

Jesli chcemy wykorzystac¢ pedzel, musimy wybra¢ go w swoim kontekscie urzadzenia.
Operacja ta wyglada dokfadnie identycznie jak wigzanie piéra. W jej przypadku takze
musimy wiec pamietac¢ o tym, aby zapisac stary pedzel kontekstu:

544 Windows API

HBRUSH hbrZielonaSiatka = CreateHatchBrush (HS DIAGCROSS, 0x0000££00));

HBRUSH hbrStaryPedzel = (HBRUSH) SelectObject (hdcKontekst,
hbrZielonaSiatka) ;

Jak tego dokonamy, nie ma znaczenia. Tutaj pokazuje najczestszgq metode z deklaracja
osobnej zmiennej, ale réwnie dobrze mozemy uzy¢ mechanizmu zapisywania stanu
kontekstu.

Zwalnianie pedzla

Po uzyciu pedzel nalezy odtozy¢, a nastepnie usunac. Ponownie wyglada to w zasadzie
tak samo, jak dla pior:

SelectObject (hdcKontekst, hbrStaryPedzel);
DeleteDC (hdcKontekst) ; // usuniecie pedzla hbrStaryPedzel
DeleteObject (hbrZielonaSiatka); // usuniecie pedzla hbrZielonaSiatka

Wazne, aby zaréwno stary, jak i nasz wtasny pedzel zostaty usuniete. Sposéb, w jaki to
sie dokona nie jest juz tak istotny dla biblioteki GDI, wiec mamy tutaj petng swobode
wyboru.

Wiedzmy tez, ze gdy usuwamy pedzel kafelkujacy bitmapowy wzoér, to zwolnieniu

| podlega sam obiekt pedzla i tylko on. Catkowicie bez szwanku wychodzi z tego bitmapa.
| Tak wiec jesli nie potrzebujemy jej juz dtuzej, powinniSmy usungé wykorzystywang
bitmape poprzez oddzielne wywotanie DeleteObject ().

Elastyczny pedzel

Odpowiednikiem elastycznego pidéra w obiektach pedzli jest elastyczny pedzel. Potrafi
on malowac ksztatty jednolitym kolorem, ktérego odcien mozna swobodnie i wygodnie
zmieniac¢. Jest to wiec uzyteczne, gdy musimy wyrysowac wiele figur o zmieniajacych sie
kolorach.

Elastyczny pedzel, tak samo jak i piéro, sg dostepne od Windows 2000 wzwyz.

Wybor elastycznego pedzla

Uzyskanie uchwyt do elastycznego pedzla oznacza wywotanie funkcji GetStockObject ()
z parametrem DC_BRUSH. Jezeli zas chcemy ustawi¢ ten pedzel w kontekscie urzadzenia,
to oczywiscie podajemy go do SelectObject () :

SelectObject (hdcKontekst, GetStockObject (DC BRUSH)) ;

Nic nie stoi tez na przeszkodzie, aby jednoczesnie usuna¢ poprzedni pedzel kontekstu.
Musimy tylko (tak samo jak przy elastycznym piorze) objac¢ przywotanie selectObject ()
funkcjg DeleteObiject ().

Zmiana koloru pedzla

Kolor elastycznego pedzla lezy pod kontrolg funkcji SetDCBrushColor (). Uzywamy jej
identycznie jak setDCPenColor (), tzn. podajemy uchwyt kontekstu urzadzenia oraz
nowy kolor, np. tak:

// zmiana koloru elastycznego pedzla na szary
SetDCBrushColor (hdcKontekst, RGB (128, 128, 128));

Ilustracjg dla elastycznego pedzla niech bedzie ponizszy, catkiem efektowny program. Nie
robi on niczego konkretnego, ale prezentuje prosty fajerwerk graficzny:

Windows GDI 545

// RandomRects - inwazja losowych prostokatdéw

#include <string>

#include <ctime>

#define WIN32 WINNT 0x500 // aby dziatal elastyczny pedzel
#define WIN32 LEAN AND MEAN

#include <windows.h>

// nazwa klasy okna
std::string g strKlasaOkna = "odOdogk Window";

// dane okna
HDC g_hdcOkno; // uchwyt kontekstu urzadzenia okna

// pomocnicza funkcja zwracajaca liczbe losowa z podanego zakresu ---—---

int Random(int nMin, int nMax)

[

{ return rand() % (nMax - nMin + 1) + nMin; }

LRESULT CALLBACK WindowEventProc (HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM 1Param)
{
switch (uMsgqg)
{
case WM _TIMER:
{
// pobieramy obszar klienta
RECT rcObszarKlienta;
GetClientRect (hWnd, &rcObszarKlienta);

// generujemy wspdirzedne nowego prostokata;

// prawa 1 dolna krawedZ dobieramy tak,

// aby zawsze byta polozona miedzy lewa/gbrna krawedziag

// prostok. i prawa/dolna krawedzig obszaru klienta okna

RECT rcProstokat;

rcProstokat.left = Random(0, rcObszarKlienta.right);

rcProstokat.right = Random (rcProstokat.left,
rcObszarKlienta.right);

rcProstokat.top = Random(0, rcObszarKlienta.bottom);

rcProstokat.bottom = Random(rcProstokat.top,
rcObszarKlienta.bottom) ;

// ustawiamy losowy kolor pedzla
SetDCBrushColor (g_hdcOkno,
RGB (Random (0, 255),
Random (0, 255),
Random (0, 255)));

// rysujemy prostokat
Rectangle (g _hdcOkno, rcProstokat.left, rcProstokat.top,
rcProstokat.right, rcProstokat.bottom);

return 0;

}

case WM DESTROY:

546

Windows API

// kohczymy program
PostQuitMessage (0);
return 0;

}

return DefWindowProc (hWnd, uMsg, wParam, lParam);

——————————————————————— funkcja WinMain() --—-———====-"""——————————————

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE, LPSTR, int nCmdShow)

{

/* rejestrujemy klase okna */
WNDCLASSEX KlasaOkna;

// wypelniamy strukture WNDCLASSEX

ZeroMemory (&KlasaOkna, sizeof (WNDCLASSEX)) ;

KlasaOkna.cbSize = sizeof (WNDCLASSEX) ;

KlasaOkna.hInstance = hInstance;

KlasaOkna.lpfnWndProc = WindowEventProc;

KlasaOkna.lpszClassName = g strKlasaOkna.c str();

KlasaOkna.hCursor = LoadCursor (NULL, IDC ARROW) ;

KlasaOkna.hIcon = LoadIcon (NULL, IDI APPLICATION) ;

KlasaOkna.hbrBackground = (HBRUSH) GetStockObject (WHITE BRUSH) ;

KlasaOkna.style = CS_OWNDC // witasny kontekst urzadzenia okna
| CS_HREDRAW | CS_ VREDRAW;

// rejestrujemy klase okna
RegisterClassEx (&KlasaOkna);
/* tworzymy okno */

HWND hOkno;
// (darujemy sobie wywolanie CreateWindowEx ())

// pokazujemy nasze okno
ShowWindow (hOkno, nCmdShow) ;
/* przygotowujemy sie do rysowania prostokatdw */

// pobieramy uchwyt do kontekstu urzadzenia obszaru klienta okna
g_hdcOkno = GetDC (hOkno) ;

// ustawiamy mu elastyczny pedzel
DeleteObject (SelectObject (g _hdcOkno, GetStockObject (DC_BRUSH)));

// tworzymy stoper, aby generowal zdarzenie WM TIMER
// co ¢wierc¢ sekundy

SetTimer (hOkno, 1, 250 /* milisekund */, NULL);

// inicjujemy generator liczb pseudolosowych

srand (static cast<unsigned>(time (NULL))) ;

/* petla komunikatéw */

MSG msgKomunikat;

Windows GDI 547

while (GetMessage (&msgKomunikat, NULL, 0, 0))
{
TranslateMessage (&msgKomunikat) ;
DispatchMessage (&msgKomunikat) ;

}

// zwracamy kod wyjscia
return static cast<int>(msgKomunikat.wParam);

}

Gdy uruchomimy ten program, zobaczymy prostokaty o losowych wymiarach, wypetnione
losowym kolorem i pojawiajace sie w losowych miejscach. Jednym stowem: catkowity
chaos :)

Il Frostokaty

Screen 68. Efekt losowych prostokatow

Wiasnie ze wzgledu na te przypadkowos¢, elastyczny pedzel sprawdza sie tu dobrze.
Gdybysmy bowiem dla kazdego prostokata generowali odrebny obiekt pedzla z innym
kolorem, mogtoby to nawet w widoczny sposdéb zawazy¢ na wydajnosci.

W tym programie przykfadowym uzytem stopera (ang. timer), o ktérym jeszcze nie
mowiliSmy i oméwimy w jednym z przysztych rozdziatéw. Jezeli chcesz, mozesz o tym
poczyta¢ w MSDN, bo jest w gruncie rzeczy bardzo tatwe zagadnienie. Stoper wysyfa po
prostu komunikat wM_TIMER do okna programu w okreslonych odstgpach czasu - u nas
jest to 250 milisekund, czyli ¢wieré sekundy. Aplikacja moze za$ reagowac na to
zdarzenie i wykonywac jakies$ cykliczne akcje, jak np. mato sensowne rysowanie
prostokatéw :)

Wypetnianie obszaru rysunku

W powyzszym przyktadzie uzytem prostokatéw wypetnionych kolorami. W zasadzie
jednak nie trzeba nawet rysowac zadnych figur, aby mdc skorzystac z pedzla. Potrafi on
bowiem wykonaé czynnos¢ znang dobrze z programéw graficznych - wypetnienie
obszaru (ang. flood fill, dostownie ‘wypetnienie powodziowe’, co mozna tez ttumaczy¢
jako ‘wylanie farby’).

Jak dziata wypetnienie obszaru, mozesz sie przekonaé, uruchamiajac choc¢by program
Paint, wybierajac narzedzie Wypefnienie kolorem i klikajac w dowolne miejsce obrazka.
Zobaczysz zwykle, ze spory obszar rysunku zostat pokryty nowym kolorem. Technicznie
rzecz biorgc, Wypetnianie kolorem dziata w ten sposob, iz zastepuje barwy wszystkich
pikseli, ktére sasiadujg z tym kliknietym i majg taka sama barwe jak on. Tych pikseli

548 Windows API

moze by¢ bardzo duzo, a wtedy nowy kolor ,rozlewa” sie na znacznym fragmencie
bitmapy. Stad tez wzieta sie angielska nazwa tego rodzaju wypetniania.

Biblioteka Windows GDI jest madrzejsza niz Paint, bo oferuje nie tyle wypetnianie jakims
kolororem, ale kazdym mozliwym rodzajem pedzla (w tym takze jednolicie kolorujgcym).
Ponadto udostepnia tez dodatkowy sposob wyznaczania obszaru, na ktéry zostanie
~wylana farba”.

Za czynnos$¢ wypetniania odpowiada funkcja ExtFloodFill () :

BOOL ExtFloodFill (HDC hdc,
int nXStart,
int nYStart,
COLORREF crColor,
UINT fuFillType):;

Jesli chodzi o jej parametry, to ich znaczenie jest raczej nietrudne do zrozumienia. hdc to
kontekst urzgdzenia, w ktérym bedzie grasowac wypetnienie. Liczby nxStart i nYStart
sg wspotrzednymi punktu, z ktorego efekt wezmie swdj poczatek; w programach
graficznych jest to ten punkt, w ktéry klikamy mysza. Kolor crColor moze mie¢ dwa
znaczenia, w zaleznosci od typu wypetniania, podanego w fuFillType.

ExtFloodFill () obstuguje dwa typy wypetniania pedzlem, ktére rozréznia za pomoca
wartosci parametru fuFillType:

» FLOODFILESURFACE jest znanym nam sposobem, polegajacym na wypetnianiu
wszystkich pikseli, ktore sgsiadujg z tym , kliknietym” i majg ten sam kolor. Polega
to po prostu na zastgpieniu pewnego obszaru, wypetnionego danym kolorem,
obszarem pokrytym wzorem pedzla:

poczatek wypetnienia

Rysunek 17. Wypetnienie funkcja ExtFloodFill () w trybie FLOODFILLSURFACE

Przy taki trzybie wypetnienia, warto$¢ parametru crColor musi zgadzac sie w z
kolorem w punkcji o podanych wspotrzednych nxstart i nyStart. Najlepiej wiec
pobra¢ go stamtad i napisac¢ np. taka funkcje:

BOOL Fill (HDC hdc, int nX, int nY)

{
return ExtFloodFill (hdc, nX, nY,
GetPixel (hde, nX, nY), FLOODFILLSURFACE) ;

}

Funkcjg GetPixel () pobieramy kolor piksela o podanych wspédtrzednych

» FLOODFILLBORDER to drugi sposéb wypetniania. W tym ustawieniu dziata ona
wiasciwie odwrotnie niz poprzednim: kiedy tam kolor podany w crcolor byt
swego rodzaju warunkiem kontynowania wypetniania, tutaj jest on kryterium jego

Windows GDI 549

zakonczenia. Méwiac prostej, w tym trybie funkcja ExtFloodFill () radosnie
maluje pedzlem caty rysunek az do napotkania obramowania w kolorze crColor:

poczatek wypeinienia

Rysunek 18. Wypetnienie funkcja ExtFloodFill () w trybie FLOODFILLBORDER

Wtedy konczy ona swe dziatanie. Jego wynikiem jest wypetnienie pedzlem catego
obszaru, znajdujgcego sie wewnatrz obramowania w kolorze crColor. Na rysunku
powyzej jest to kolor czerwony

Uzywajac ExtFloodFill () musimy dbac o to, aby warunki dziatania tej funkcji byty
spetnione. Znaczy to na przyktad, ze przy stosowaniu trybu FLOODFILLSURFACE kolor
piksela o wspotrzednych nxstart i nyStart powinien rzeczywiscie by¢ rowny crColor.
Dla FLOODFILLBORDER musi by¢ z kolei odwrotnie: piksel ten nie moze miec¢ koloru
podanego w czwartym parametrze, bo w tej sytuacji funkcja nie bedzie miata czego
wypetniac.

Pamietajmy tez, ze funkcja poszukuje doktadnego dopasowania koloru podanego w
crColor. Jesli wiec podamy jej barwe RGB (34, 56, 178), to RGB (34, 57, 178) bedzie
uznana za catkowicie inny kolor, mimo ze optyczna réznica miedzy nimi jest zasadzie
zadna. Moze to powodowac powstawanie niewypetnionych ,dziur” lub przeciwnie,
wypetnionych ,plam”, ktérych wcale nie chcieliSmy pokrywaé pedzlem.

Kwestia ta w programach graficznych nieco lepszych od Painta nosi nazwe tolerancji
koloru i jest zwykle ustawialna. Nie tylko mozna podac jej liczbowg warto$¢ (zazwyczaj
od 0 do 255 - im wiecej, tym wieksza tolerancja zmiany koloru), ale takze sposéb, w jaki
kolory sg dopasowywane do tego poszukiwanego. Mozliwe jest nie tylko poréwnywanie
kanatdw RGB, czyli ilosci czerwieni, zieleni i btekitu, ale tez konfrontacja odcienia,
jasnosci, optycznego wrazenia koloru czy tez wartosci kanatow barw podstawowych w
innych systemach, np. CMYK.

Niestety, w przypadku ExtFloodFill () tolerancja wynosi zawsze 0 i nie da sie jej
ustawi¢. Mozna co najwyzej napisa¢ wtasng funkcje...

Punkty i linie

Wykreslanie figur zamknietych zaczniemy od punktéw, linii prostych i krzywych. Nie sg to
zamkniete ksztatty, wiec za ich wyglad odpowiada wytacznie pidéro. Wspédtprace pidra i
pedzla zobaczymy dopiero przy takich figurach jak prostokaty czy elipsy.

Na razie jednak nie zajmiemy sie nimi, lecz poprzestaniemy na rysowaniu punktow,
odcinkow, tamanych oraz linii krzywych.

Zaznaczanie punktu

Pomys$imy sobie: po co nam w zasadzie taka rozbudowana biblioteka graficzna jak
Windows GDI? Przeciez wiekszos¢ jej czynnosci sprowadza sie do stawiania kolorowych

550 Windows API

pikseli na bitmapach. Majac funkcje od tego, moglibysmy teoretycznie oby¢ sie bez catej
reszty procedur i interfejséw!...

Coz, teoria teorig, ale praktyka uczy, ze lepiej nie wywazac¢ otwartych drzwi. Jest prawie
pewne, ze wszystkie funkcje rysujace GDI zostaty napisane tak szybko, jak to tylko byto
mozliwe. Istnieje wiec bardzo niewielkie prawdopodobienstwo, ze moglibysSmy napisac
lepsze wersje algorytmow kreslacych np. linie czy prostokaty. Takie operacje sg zresztg
nierzadko optymalizowane sprzetowo, a z kartg graficzng naprawde nie radze sie

scigac :)

Poza tym, czy aby na pewno chcielibysmy pisa¢ wszystko sami?... Oczywiscie, ze nie! W
koncu po to ktos wymysla, projektuje i implementuje takie biblioteki jak Windows GDI,
aby utatwi¢ innym programistom wykonywanie powtarzalnych czynnosci. Rysowanie
skomplikowanych figur geometrycznych czy grafiki w ogdle jest takg wtasnie czynnoscia.
Mamy wiec interfejs GDI, ktéry radzi sobie z nim; zapewniam cie, ze nauka postugiwania
sie nim jest przynajmniej o kilka rzedéw wielkosci tatwiejsza od samodzielnego pisania
podobnego kodu.

A jednak czasami trudno obyc¢ sie bez bezposredniej modyfikacji pikseli. To wszakze nie
problem, jako ze GDI udostepnia i takg dziatanos¢ graficzng. Zobaczmy wiec, jak sie ona
odbywa.

Ustawienie piksela na okreslony kolor

A zatem - aby ustawié piksel o znanej wspétrzednej na zadany kolor, wywotujemy
funkcje o wiele mowiacej nazwie setPixel ():

COLORREF SetPixel (HDC hdc,
int X,
int Y,
COLORREF crColor) ;

C6z mozna o niej powiedzie¢? Wiasciwie sposdb jej uzycia jednoznacznie wynika z
prototypu. Napisze wiec tylko, ze wartoscig zwracang przez funkcje jest kolor, na ktory
piksel zostat ustawiony. Barwa ta moze sie rézni¢ od parametru crColor, jesli kontekst
urzadzenia nie obstuguje petnego spektrum 24-bitowych koloréw RGB.

Nieco szybciej

Zazwyczaj nie potrzebujemy informacji, jaka zwraca setpPixel (). W takim wypadku
mozemy uzyc¢ jej wydajniejszej wersji, SetPixelV () :

BOOL SetPixelV (HDC hdc,
int X,
int Y,
COLORREF crColor) ;

Réznica jest zwykle niewielka, ale zawsze lepiej uzywac wydajniejszego kodu -
szczegolnie jesli nie wigze sie to z zadnymi niedogodnosciami.
Przyktad szumu

Spytasz moze: ,Jak szybkie jest takie ustawianie pikseli, jezeli musielibySmy zapetnic
nimi np. caty ekran?” Mysle, ze dobrze jest przekonac sie o tym samemu. Przedstawie
prosty program symulujacy zachowanie sie... telewizora odtqczonego od anteny :)

Oto najwazniejszy fragment kodu tego programu:

// DeadTV - efekt zepsutego telewizora ;)

// zmiennos$¢ efektu
// (liczba pikseli zmienianych z kazdym przebiegiem)

Windows GDI 551

const unsigned ZMIENNOSC = 2500;

// ———————— funkcja wykonywana w kazdym przebiegu efektu------—-—-—-——-—---—-
void Pracuj ()
{

POINT ptPiksel;

BYTE byOdcien;

// wybieramy pewna ilo$¢ pikseli i zmieniamy ich kolory

for (unsigned i = 0; i < ZMIENNOSC; ++i)

{
// losujemy wspdirzedne zmienianego piksela
ptPiksel.x = rand() % g rcObszarKlienta.right;
ptPiksel.y rand() % g rcObszarKlienta.bottom;

// losujemy odcien szarosci
byOdcien = rand() % 256;

// zmieniamy piksel

SetPixelV (g hdcOkno, ptPiksel.x, ptPiksel.y,
RGB (byOdcien, byOdcien, byOdcien));

Jego ciggte wykonywanie sie powoduje powstanie efektu charakterystycznego szumu:

Screen 69. Efekt jednorodnego szumu

Im wieksza czesto$¢ zmiany pikseli, tym bardziej program upodabnia sie prawdziwego
»~Sniegu” w telewizorze. A poniewaz w tym przykfadzie zastosowatem nie stoper, lecz
petle komunikatéow z peekMessage (), efekt wykonuje sie tak szybko, na ile pozwalajg mu
mozliwosci komputera.

Nie wiem oczywiscie, jak wyglada on na twoim sprzecie, lecz bardzo prawdopodobne, ze
dosy¢ niewiele brakuje mu do doskonatosci. Biblioteka GDI wydajnosciowo sprawdza tu
sie zatem catkiem dobrze, a musisz wiedzie¢, ze ustawianie koloréw pojedynczych pikseli
jest newralgicznym punktem kazdego interfejsu graficznego.

552 Windows API

Linie proste

Teraz przyszedt na najprotsze krzywe, czyli krzywe, ktore sa... proste :) Zobaczymy tutaj,
jak mozna wykreslac¢ odcinki oraz famane. Figury te sg rysowane przy pomocy piora
wybranego w kontekscie urzadzenia, zatem zmiana ich koloru czy szerokosci linii odbywa
sie poprzez podmiane obiektu pidra. Jak to zrobi¢, pisatem w odpowiednim paragrafie
poswieconym piérom.

Kreslenie odcinka

Za najprostsze narysowanie odcinka od jednego punktu do drugiego odpowiada w GDI
funkcja LineTo () :

BOOL LineTo (HDC hdc,
int X,
int Y);

~Hmm... Tu jest chyba za mato parametréw!...” Faktycznie, mozna tu podac¢ wspodtrzedne
tylko jednego punktu - punktu koncowego. Po narysowaniu odcinka pioro zostaje w
nim umieszczone. Swoj poczatek linia bierze natomiast z aktualnej pozycji piéra. Jezeli
wiec chcielibysmy rozpocza¢ rysowanie odcinka od ustalonego miejsca, wpierw musimy
jeszcze skorzystac z funkcji MoveToEx () .

Mozemy aczkolwiek napisac sobie taka funkcje, ktora potrafi kresli¢ linie o okreslonym
poczatku i konica. Prawdopodobnie bedzie ona wygladata tak:

BOOL Line (HDC hdcKontekst, POINT ptStart, POINT ptKoniec)

{
POINT ptPoprzedniaPozycja;

// przesuwamy pidéro do ptStart, zapisujac Jjego poprzednia pozycje
if (!MoveToEx (hdcKontekst, ptStart.x, ptStart.y,
&ptPoprzedniaPozycja))
return FALSE;

// kreslimy linie do ptKoniec
if (!LineTo (hdcKontekst, ptKoniec.x, ptKoniec.y))
return FALSE;

// przywracamy oryginalna pozycje pidra
MoveToEx (hdcKontekst, ptPoprzedniaPozycja.x, ptPoprzedniaPozycja.y,
NULL) ;

// zwracamy TRUE
return TRUE;
}

Pamietajmy, ze wymaga ona facznie trzech operacji, wiec jesli jest to mozliwe, lepiej
stosuj wbudowang funkcje LineTo ().

Rysowanie tamanej

Co sie stanie, gdy parokrotnie wywotamy funkcje LineTo () ?... Nic strasznego: zwyczajnie
wyrysujemy kilka odcinkéw potgczonych ze sobg tak, ze koniec jednego jest jednoczesnie
poczatkiem nastepnego. Innymi stowy, narysujemy famana.

W GDI mozna oczywiscie stosowac i ten sposéb, ale mamy przeciez funkcje Polyline () i
PolylineTo () :

HDC Polyline[To] (HDC hdc,

Windows GDI 553

CONST POINT* lppt,
int cPoints);

Wskaznik, ktérego obie funkcje zgdajg w drugim parametrze, jest tablicg elementéw typu
POINT - czyli wspdtrzednych punktow. Liczbe elementdw tej tablicy okreslamy w ostatnim
parametrze, cpoints.

Do funkcji Polyline () i PolylineTo () musimy tg drogg przekazac co najmniej dwa
punkty. Funkcje korzystaja z nich, rysujac linie tamana: rozpoczynajg od pierwszego
punktu, ustawiajac w nim piéro; dalej prowadzg linie do kolejnych miejsc opisanych
koordynatami elementow tablicy, az narysujg wszystkie odcinki. Nietrudno wyliczy¢, ze
bedzie to tacznie cPoints - 1 kresek.

Teraz pewnie zapytasz, czym rdéznig sie obydwie funkcje. I bardzo stusznie, go w ten
sposdéb dojdziemy do ogdlniejszej, a waznej i przydatnej zasady. Ot6z PolylineTo ()
zachowuje sie doktadnie tak samo jak cigg polecen:

MoveToEx (hdc, lppt[0].x, lppt[0].y, NULL);
LineTo (hdc, lppt[l].x, lppt[l].y, NULL);
LineTo (hdc, lppt[2].x, lppt[2].y, NULL);

LineTo (hdc, lpptlcPoints - 1].x, lppt[cPoints - 1].y, NULL);
Natomiast Polyline () mozna przedstawi¢ jako:

POINT ptPos;
MoveToEx (hdc, lppt[0].x, lpptl[0].y, &ptPos);

LineTo (hdc, lppt[l].x, lppt[l].y, NULL);
LineTo (hdc, lppt(2].x, lpptl[2].y, NULL);

LineTo (hdc, lpptlcPoints - 1].x, lppt[cPoints - 1].y, NULL);

MoveToEx (hdc, ptPos.x, ptPos.y, NULL);

Jestem przekonany, ze dostrzegasz rdéznice - zwiaszcza, jezeli przypomnisz sobie
zaprezentowang wczesdniej funkcje Line ().

Powiedzmy jednak jasno, o co chodzi. Mianowicie, PolylineTo () konczy rysowanie,
zostawiajac piéro w pozycji ostatniego punktu - ma zatem wptyw na jeden z atrybutéw
kontekstu urzadzenia. Z kolei polyline () jest kulturalniejsza: po zakonczonym
rysowaniu przywraca piéro do pierwotnej pozycji tak, ze wydaje nam sie, iz nie zostato
ono w ogole poruszone.

Oczywiscie nie nalezy mowic¢, ze druga z funkcji jest , grzeczniejsza” niz pierwsza. Dla nas
wazne jest, ze obie takie funkcje istniejg i zawsze mozna wybiera¢ wariant bardziej
pasujacy w danej chwili.

Co wiecej, wytaniajaca sie tu zasade mozna uogdlni¢ dla wszystkich funkcji rysujacych
krzywe otwarte. Brzmi ona:

Funkcje o nazwach zakonczonych na To zmieniaja pozycje pidra, ustawiajac je w
miejscu, gdzie skonczyty rysowanie.

Podwdjne wersje procedur istniejg réwniez dla tukéw elips oraz krzywych Béziera.
Poznamy je wszystkie za momencik.

Do wykreslania tamanych mozna jeszcze wykorzystac funkcje PolyPolyline (). Potrafi
narysowac kilka tamanych za jednym ,zamachem” wirtualnego piéra. Trudno wprawdzie
znalez¢ ku temu jakies konkretne zastosowanie nawet przy duzej dozie entuzjazmu, ale

554 Windows API

przyjrzenie sie opisowi tej funkcji w MSDN moze by¢ ciekawe. Jest on bowiem ideowo
bardzo podobny do metod interfejsu DirectX, renderujacych tréjwymiarowe prymitywy.
Tam nieustannie uzywa sie tablic punktéw oraz innych tablic liczb, opisujacych te
pierwsze - tak jak w PolyPolyline ().

Krzywe otwarte

Chcac narysowac krzywa, moglibysmy sprébowac jej przyblizeniu odpowiednio krotkimi
odcinami famanej. To oczywiste, ze nie odcinkdéw tych nie mozemy skraca¢ w
nieskonczonos$¢, ale przeciez nie ma takie potrzeby, poniewaz rozdzielczo$¢ kazdego
urzadzenia, a tym bardziej monitora, jest skonczona.

Windows GDI posiada aczkolwiek bardziej wyspecjalizowane funkcje rysujace krzywe
otwarte. Radzg sobie one z tukami elips oraz z krzywymi Béziera.

tuki

Sg dwie funkcje, ktore rysuja tuki elips: Arc () i ArcTo (). Rdznica miedzy nimi sprowadza
sie tylko do tego, iz ArcTo () uaktualnia pozycje pidra, ustawiajac je na koncu tuku;
Arc () tego nie robi.

Prototyp obu funkcji wyglada tak:

BOOL Arc[To] (HDC hdc,

int nLeftRect,
int nTopRect,
int nRightRect,
int nBottomRect,
int nXStartArc,
int nYStartArc,
int nXEndArc,
int nYEndArc);

Niestety, oczy cie nie mylg: oto skromne dziewie¢ parametrow. Bytoby trudno dociec ich
znaczenia z samego tylko nagtéwka funkcji, ale pewnie i opis stowny niewiele tu pomoze.
Najlepszy bedzie rysunek, ktéry podpowie znaczenie wszystkich argumentdéw:

(n¥Startire,
nYStarthre)
*
|
(nLeftRact |
nTopRect)

(n¥EndArc,
nYEndArc)

(nEightRect,
nBottomBRect)

Rysunek 19. Znaczenie parametrow funkcji Arc() i ArcTo()

Windows GDI 555

Zastosowane tu podejscie jest dosc ciekawe: tuk definiowany jest przez catg elipse, do
ktérej nalezy, oraz tzw. punkt poczatkowy (o wspétrzednych nxStartArc i nyStartArc) i
koncowy (nxEndArc i nYEndArc). Wraz z $rodkiem elipsy wyznaczajg one dwa odcinki, a
miejscach, gdzie te odcinki przecinajg sie z tg elipsa, rozpoczyna sie i konczy tuk. Jak
mozna zauwazy¢, jest on kreslony w kierunku przeciwnym do ruchu wskazéwek
zegara (ang. counterclockwise).

Co do samej elipsy, to jest ona wyznaczona przez otaczajacy jq najmniejszy prostokat.
Kolejne parametry - nLeftRect, nTopRect, nRightRect i nBottomRect - Sq
odpowiednikami pdl struktury RECT. Jak przektadajq sie one na ksztatt owalu, wida¢ na
rysunku; o wykreslaniu elipsy bedziemy zresztg mowi¢ w akapicie poswieconym figurom
zamknietym.

Zauwazmy, ze punkty poczgtkowe i koricowe fuku nie muszag koniecznie leze¢ na samej
elipsie - Windows nie wymaga az takiej precyzji. Mogg by¢ one umieszczone w dowolnej
odlegtosci na zewnatrz elipsy.

Nie da sie jednak ukry¢, ze ten sposob okreslania kawatka obwodu owalu jest ktopotliwy.
Wygodniej bytoby podawac go jako zakres katow. Nic aczkolwiek nie stoi na
przeszkodzie, aby napisac procedure, ktéra bedzie spetniata to zadanie:

#include <cmath>

void EllipticArc (HDC hdcKontekst,
RECT rcElipsa, float fStart, float fKoniec)
{
// obliczamy $rodek elipsy
POINT ptSrodek;
ptSrodek.x = rcElipsa.left + (rcElipsa.right - rcElipsa.left) / 2;
ptSrodek.y = rcElipsa.top + (rcElipsa.bottom - rcElipsa.top) / 2;

// wyliczamy diugos$c promienia wodzacego, ktdéry bedzie odlegioscia
// punktu poczatkowego i kohcowego od $rodka elipsy
// promien ten musi by¢ diuzszy niz kazdy z "bokdédw" elipsy
int nPromien = max (rcElipsa.right - rcElipsa.left,
rcElipsa.bottom - rcElipsa.top);

// wyznaczamy punkty poczatkowe 1 kohcowe tuku
// za pomoca funkcji trygonometrycznych
POINT ptPoczatek = { ptSrodek.x + nPromien * cos(fStart),
ptSrodek.y - nPromien * sin(fStart)
POINT ptKoniec = { ptSrodek.x + nPromien * cos (fKoniec),
ptSrodek.y - nPromien * sin(fKoniec) };

)i

// wreszcie kres$limy iuk
Arc (hdcKontekst,
rcElipsa.left, rcElipsa.top, rcElipsa.right, rcElipsa.bottom,
ptPoczatek.x, ptPoczatek.y, ptKoniec.x, ptKoniec.y);
}

Uzywajac tej funkcji nalezy tylko pamietaé, ze wzgledu na pewne wiasnosci funkcji sinus i
cosinus, kat 0 odnosi sie do najbardziej wysunietej w prawo czesci elipsy. No i nie
zapominajmy, ze katy podajemy zawsze w radianiach.

Krzywe Béziera
Ten rodzaj krzywych nie jest tak powszechnie znany jak inne, ale w grafice
komputerowej majgq one bardzo duze znaczenie.

Krzywe Béziera wziety swoja nazwe od nazwiska Pierre’a Béziera, francuskiego
matematyka pracujgcego w firmie Renault. W latach 60. ubiegtego wieku opracowat on
ten ciekawy rodzaj krzywych, ktore staty mu sie potem pomocne w projektowaniu

556 Windows API

karoserii samochodowych. P&zZniej znalazty zastosowanie takze w grafie komputerowej,
na przyktad do opisywania ksztattdéw czcionek proporcjonalnych.

Krzywa Béziera jest wyznaczona przez co najmniej trzy punkty:
> jeden punkt poczatkowy
> jeden punkt koncowy
» przynajmniej jeden punkt kontrolony

Punkty kontrolne definiujg krzywizne figury: odcinki faczace je punktem poczatkowym i

koncowym potrafig ,wyciggac¢” lub ,Sciskac” krzywa. Waznym faktem jest, ze krzywa
Béziera nigdy nie przechodzi przez punkty kontrolne.

/'! punkt koncowy

punkt poczatkowy /

o

Rysunek 20. Krzywa Béziera z dwoma punktami kontrolnymi

Windows GDI rysuje tylko krzywe wyznaczone przez swoje dwa punkty kontrolne.
tacznie zatem potrzebuje do tego czterech punktéw, wraz z poczatkowym i koncowym.
Takie krzywe Béziera nazywamy krzywymi trzeciego stopnia ze wzgledu na stopien
wielomiandéw w opisujacych je réwnaniach.

Rownania opisujace takg krzywa wygladaja mniej wiecej tak:
x(t)=£x, +3* (1-1)x, +3t(1-1)" %, +(1-1) x,

y()=£2y, +3° (1-1)y, +3t(1—t)2 Ve, +(1—t)3 Y

W tych wzorach wspotrzedne (xp,yp) i (xk,yk) oznaczajq punkty: poczatkowy i
koncowy, za$s (xkl,ykl) [(kaJ’kz) sg punktami kontrolnymi. Parametr t powinien

przebiega¢ po wartosciach od 0 do 1 (¢ e <O;1>); wartos¢ 0 da w wyniku punkt

poczatkowy, 1 - koncowy, a liczby posrednie pozwalajg wyliczy¢ inne punkty nalezace do
krzywej.

Mozna zauwazy¢, ze réwnania dla osi X i Y roznig sie tylko tym, ze wykorzystujemy w
nich inne wspotrzedne punktéw krzywej. To duza zaleta, bo tatwo mozemy dodac trzeci
wzor, opisujacy wspétrzedna Z, i kresli¢ krzywe Béziera w przestrzeni trojwymiarowej.

Windows GDI 557

Dla dowolnej liczby punktow kontrolnych réwnanie krzywej jest troche bardziej
skomplikowane:

S-S0

Opisuje ono krzywgq Béziera wyznaczong przez (n+1) punktéw, czyli przez jeden
poczatkowy (p,), jeden koncowy (p,) i (n-1) punktéw kontrolnych (p,,..., p,).

Koordynaty punktéw zapisatem jako wektory, wiec réwnanie dziata niezaleznie od liczby

wymiaréw**: aby uzyskaé wzory dla kazdej osi uktadu wspoétrzednych, wystarczy zamiast

p, wstawi¢ odpowiednie wspétrzedne punktéw (x,, y, i ewentualnie z,).

Do narysowania krzywej mozna sie postuzy¢ funkcjami PolyBezier () oraz
PolyBezierTo (). ROznica miedzy nimi polega oczywiscie na tym, ze PolyBezierTo ()
uaktualnia pozycje pidra. Oprocz tego funkcja ta traktuje aktualng pozycje piéra jako
punkt poczatkowy krzywej.

Oto prototyp obydwu funkcji:

BOOL PolyBezier[To] (HDC hdc,
CONST POINT* lppt,
DWORD cCount) ;

Zadaja one tablicy punktéw wyznaczajacych krzywa - podajemy ja w parametrze 1ppt,
zas ilo$¢ punktow ccount. Ilos¢ ta powinna wynosi co najmniej 4 w funkcji PolyBezier ()
i 3w PolyBezierTo (), aby funkcja mogta wyrysowac co najmniej jedng figure.
PolyBezier[To] () potrafi bowiem rysowac wiecej takich krzywych. Sg one wtedy
potgczone ze sobg tak, ze punkt koncowy jednej z nich jest jednoczesnie punktem
poczatkowym drugiej. Na kazdg nastepng krzywg potrzeba wiec juz tylko 3 punktow -
dwoch kontrolnych i koricowych. Chcac np. wykresli¢ cztery potaczone krzywe Béziera
trzeciego stopnia, musimy uzy¢ 13 punktéw dla funkcji PolyBezier () lub 12 dla
PolyBezierTo ().

Potaczenie miedzy tak narysowanymi krzywymi moze by¢ ,kanciate”. Jezeli chcemy, aby
byto gtadkie, to musimy pamietaé, zeby dwa punkty sasiadujace z punktem potaczenia
byty wspotliniowe. Tzn. chodzi o to, aby drugi punkt kontrolny pierwszej krzywej, punkt
potgczenia oraz pierwszy punkt kontrolny drugiej krzywej lezaty na jednej prostej.

W tym celu mozemy wyliczy¢ pozycje pierwszego punktu kontrolnego drugiej krzywej
postugujac sie rownaniem:

1_51”1 = ﬁk i (ﬁk N ﬁk—l)

D, reprezentuje w nim wspotrzedne punktu wspdlnego dla obu krzywych, zas indeksy

przy wektorach odnoszg sie do numerdow elementéw tablicy przekazywanej do funkcji
PolyBezier[To] ().

Krzywe Béziera sg bardzo uzyteczne, gdyz za ich pomocg mozna narysowac niemal kazda
mozliwg krzywizne. Figury te nie sg jednak odpowiednie do rysowania tukow elips czy
két, jako ze zadna krzywa Béziera nie bedzie doktadnie wyznaczata okregu.

144 Aczkolwiek krzywe Béziera istniejg w przestrzeni co najwyzej tréjwymiarowej.

558 Windows API

Jesli sposob, w jaki punkty kontrolne okreslajg ksztatt krzywej Béziera sprawia ci klopot,
mozesz pobawic¢ sie w ich rysowanie w programie Paint. Narzedzie Krzywa, w ktore jest
on wyposazony, to nic innego jak witasnie krzywa Béziera.

Przyjrzyj sie takze przyktadowemu programowi Bezier - nie tylko w dziataniu, ale i od
strony kodu.

Figury zamkniete

Przyszedt czas na rozpoczecie rysowania figur zamknietych. Sg one zwykle tym, co
rozumiemy pod pojeciem ‘figura geometryczna’. Najprostszymi figurami sg prostokaty i
elipsy.

Windows GDI rysuje takie figury z uzyciem zaréwno pioro, jak i pedzla. Pidro stuzy mu do
zaznaczenia obwodu figury, natomiast pedzel jest uzywany do wypetnienia wnetrza.
Mozliwe jest aczkolwiek pozostawienie wnetrza w nienaruszonym stanie - nalezy po
prostu wybra¢ odpowiedni pedzel:

HBRUSH hbrStary = (HBRUSH) SelectObject (hdcKontekst,
GetStockObject (NULL BRUSH)) ;

W niniejszym paragrafie zajmiemy sie wiec gtéwnie funkcjami Windows GDI, rysujgcymi
ksztatty o obramowaniu kreslonym pidorem oraz wnetrzu wypetnionym pedzlem.
Podzielimy je sobie na funkcje odnoszace sie do wielokgatow i do elips lub ich fragmentow.

Wielokgty

Z geometrycznego puntku widzenia wielokat jest to tamana zamknieta, czyli taka, ktérej
poczatek pokrywa sie z koncem. Wynika stad, ze w GDI moglibysmy rysowac wielokaty
za pomocg funkcji polyline[To] (). Takie figury miatyby wtedy nienaruszone wnetrze,
nietkniete zadnym pedzlem.

Jezeli jednak chcemy zastosowac wypetnienie, wtedy odpowiedniejszg funkcjg jest
Polygon (). Oméwimy jgq za chwile.

Najpierw bowiem zajmiemy sie szczegélnym, chyba najwazniejszym rodzajem
wielokatow - prostokatami.

Prostokgt

Z prostokatami znamy sie juz dosy¢ dtugo, od kiedy poznalismy strukture RECT i
dowiedzielismy sie, ze przy jej pomocy Windows okresla te figury na ekranie. Przypomne
tylko, ze pola tej struktury - 1eft, top, right i bottom - sg wspdtrzednymi czterech
krawedzi prostokata. Jesli zgrupujemy je w pary, to otrzymamy tez pozycje lewego
gornego oraz prawego dolnego wierzchotka prostokata.

Takze w GDI prostokaty sg reprezentowane w ten sposdb. Wezmy na przyktad funkcje
Rectangle () :

BOOL Rectangle (HDC hdc,
int nLeftRect,
int nTopRect,
int nRightRect,
int nBottomRect);

Jej cztery parametry dokfadnie odpowiadajq polom struktury RECT. Sama funkcja rysuje
prostokat o podanej charakterystyce za pomocg aktualnego pidra, zas wypetnia go przy
pomocy biezacego pedzla.

Rectangle () przyjmuje tacznie cztery parametry, cho¢ mégtaby dwa - wtedy opis
prostokata byiby zapisany w strukturze rRecT. Nic jednak nie stoi na przeszkodzie, aby

Windows GDI 559

napisa¢ sobie pasujgce nam funkcje. Przy okazji takze tg, ktéra rysowac bedzie prostokat
0 podanej pozycji i wymiarach:

BOOL Rectangle (HDC hdc, RECT rc)
{ return Rectangle (hdc, rc.left, rc.top, rc.right, rc.bottom; }

BOOL Rectangle (HDC hdc, POINT pos, SIZE size)
{ return Rectangle (hdc, pos.x, pos.y,
pos.x + size.cx, pos.y + size.cy); }

By¢ moze znalaztyby sie one w samej bibliotece Windows GDI, gdyby tylko jezyk C, w
ktérym zostata ona napisana, dopuszczat przecigzanie funkcji.

Stosujac Rectangle () musimy pamietac, ze jezeli nasze piéro nie ma stylu
PS_INSIDEFRAME, a jegdo linia jest grubsza niz 1 piksel, wtedy czes¢ obramowania moze
~Wystawac” poza zakres okreslony przez parametry funkcji.

Inng funkcjq rysujacq prostokaty jest FillRect ():

BOOL FillRect (HDC hdc,
CONST RECT* lprc,
HBRUSH hbr) ;

Ona z kolei potrzebuje wskaznika do struktury RECT. Oprdcz tego rdzni sie ona tym, ze w
ogole nie bierze pod uwage obecnych w kontekscie obiektéw pidra i pedzla. Ignoruje
pioro - gdyz go zwyczajnie nie uzywa, nie rysuje obramowania figury; pedzel natomiast
podajemy jako dodatkowy parametr funkcji. Funkcja wypetnia nim wskazany obszar i na
tym konczy sie jej rola.

Niemal identyczny prototyp posiada funkcja FrameRect () :

int FrameRect (HDC hdc,
CONST RECT* 1lprc,
HBRUSH hbr) ;

Funkcja zada tu uchwytu do pedzla, ale nie stosuje go do wypetniania. Otéz, ona maluje
nim nie wnetrze, lecz obramowanie prostokata. Innymi stowy, pedzel dziata tu troche
jak pioro. Nie mozemy jednak liczy¢ na jakie$ oszatamijgce efekty deseniowego
obramowania prostokatéw, gdyz rysowana krawedz ma grubos¢ tylko 1 jednostki
logicznej. Najlepiej wiec stosowac tutaj wytacznie pedzle o jednolitym kolorze.

Operacje zupetnie innego rodzaju przeprowadza funkcja InvertRect () :

BOOL InvertRect (HDC hdc,
CONST RECT* lprc);

W zasadzie trudno powiedzie¢, aby wykonywata ona jakiekolwiek rysowanie. Funkcja ta
bierze podany jej prostokat, odczytuje zawarte w nim piksele, a nastepnie odwraca ich
kolory i zapisuje z powrotem. Odwrocenie oznacza tu operacji negacji bitowej (NOT, w
C++ operator ~) na liczbowej reprezentacji kantdw RGB tych koloréw. Przykfadowo, jezeli
mieliSmy prostokat, gdzie jakis fragment byt koloru biatego, inny zoéttego, a jeszcze inny
niebieskiego, to po zastosowaniu InvertRect () kolory zmienig sie na (odpowiednio):
czarny, niebieski i zotty.

InvertRect () przypomina wiec zrobienie negatywu fotografii.

Chcac zobaczy¢ przykfady rysowania prostokatow, wrd¢ do programu RandomRects,
| prezentowanego podczas omawiania pedzli.

560 Windows API

Dowolny wielokgt

Do narysowania wielokata o liczbie bokéw mniejszej lub wiekszej od 4 mozesz postuzy¢
sie funkcjg Polygon () :

BOOL Polygon (HDC hdc,
CONST POINT* lpPoints,
int nCount) ;

Funkcja ta wyglada podobnie jak Polyline () - tez potrzebuje do szczescia tablicy
punktow, ktérg podajemy w drugim parametrze, jej wielko$¢ zas w trzecim. W tym
przypadku sg to jednak wierzchotki wielokata, ktore sg taczone linig wyrysowang przez
pidro. Nie musimy aczkolwiek podawa¢ dwa razy pierwszego wierzchotka, bo figura
zostanie zamknieta automatycznie. Nastepnie jest ona wypetniana przez aktualny pedzel.

Przy wypetnianiu wielokgtéw, ktérych boki sie przecinaja, liczy sie takze tryb wypetniania,
ustawiany funkcjg SetPolyFillMode ().

Przyktadowo, narysowanie pewnego prostokgatnego tréjkata oznacza wywotanie:

POINT aTrojkat[] = { { 100, 100 }, { 100, 200 }, { 200, 200 } };
Polygon (hdc, aTrojkat, 3);

Przy pomocy Polygon () mozna tez napisac funkcje rysujgce bardziej konkretne rodzaje
wielokatow. Oto np. procedura rysowania trojkata foremnego:

BOOL RegularTriangle (HDC hdc, POINT ptPozycja, unsigned uBok)

{
/* tworzymy tablice punktdw */

POINT aTrojkat[3];

// obliczamy wysoko$é
unsigned uWysokosc = static cast<unsigned>(uBok * sqrtf(3) / 2);

// pierwszy wierzchotek - lewy dolny
aTrojkat[0].x = ptPozycja.x;
aTrojkat[0].y = ptPozycja.y + uWysokosc;

// drugi wierzchotek - prawy dolny
aTrojkat[l].x = ptPozycja.x + uBok;
aTrojkat[1l].y = aTrojkat[0].y;

// trzeci wierzcholek - gbrny
aTrojkat[2].x = ptPozycja.x + uBok / 2;
aTrojkat[2].y = ptPozycja.y;

/* rysujemy trdjkat */
return Polygon (hdc, aTrojkat, 3);
}

Polygon () moze tez stuzy¢ do przyblizonego rysowania zamknietych krzywych
wypetnionych, podobnie jak Polyline () potrafi przybliza¢ krzywe otwarte.

Windows GDI 561

Elipsy i kota

Elipsa to drugi wazny rodzaj figury geometrycznej. GDI potrafi rysowa¢ go w catosci, jak
rowniez kresli¢ i wypetnia¢ wycinki oraz odcinki elips. Przypatrzmy sie wiec funkcjom,
ktére to potrafia.

Elipsa

W potocznym rozumieniu elipsa to takie ,Sci$niete koto”. Nie jest to wcale zte okreslenie.
Przypomnijmy sobie, ze koto moze by¢ wpisane w kwadrat. Wobec tego elipsa moze by¢
wpisana w prostokat. Nawet wiecej - w jeden i w dokladnie jeden prostokat. Latwy z
tego wynika wniosek: elipse mozemy w wygodny sposob okresli¢, podajac
charakterystyke najmniejszego prostokata, ktéry moze jg otoczyc.

Tak tez czynimy, wywotujac funkcje Ellipse () :

BOOL Ellipse (HDC hdc,
int nLeftRect,
int nTopRect,
int nRightRect,
int nBottomRect) ;

Ma ona identyczny prototyp, co Rectangle (). Tutaj wspotrzedne prostokata oznaczajq
jednak nie sam wielokat, ale granice, w ktérych jest wrysowywana elipsa:

(nLaftRact,
nTopRact)

(nRightRect,
nBottomRect)

Rysunek 21. Znaczenie parametrow funkcji Ellipse()

Dtugosci dwéch promieni elipsy bedgq wynosity (nRightRect - nLeftRect) / 2 oraz
(nBottomRect - nTopRect) / 2. Jesli chcemy narysowac okrag, to musimy naturalnie
zadbad, aaby byty one rowne. Przekazany do funkcji okragg musi wiec by¢ kwadratem.

Wycinek elipsy

Wycinkiem elipsy nazywamy jej cze$¢ ograniczong dwoma promieniami, biegngcymi od
srodka do krawedzi figury. Wyglada ona troche jak kawatek tortu - tym smaczniejszy, im
bardziej elipsa jest okragta :)

Do rysowania wycinka elipsy stuzy w Windows GDI funkcja o nazwie pie (), zatem
poréwnaniu do tortu nie jest wcale takie odlegte!*®. Oto prototyp tej funkcji:

BOOL Pie (HDC hdc,

143 pie po angielsku oznacza ‘szarlotke’.

562 Windows API

int nLeftRect,
int nTopRect,
int nRightRect,
int nBottomRect,
int nXRadiall,
int nYRadiall,
int nXRadial2,
int nYRadial2);

Wyglada on podobnie do nagtdwka arc[To] () i, jak sie pewnie domyslasz, nie jest to
przypadek. Pie () okresla wycinek elipsy w bardzo podobny sposob, jak wspomiane
funkcje definiujg tuk. Spojrz zresztg na ponizszy rysunek:

[(nXRadiall,
nYRadiall)
']
|
(nLeftRect, |
nTopRect) I
(nXRadialZ,
nYRadial2) -

(nRightRect,
nBottomRect)

Rysunek 22. Znaczenie parametrow funkcji Pie()

Kierunek zakreslania wycinka elipsy jest tu, tak samo jest w Arc[To] (), przeciwny do
ruchu wskazowek. Punkty wyznaczajgce fragment elipsy rowniez nie muszg na niej lezec.

Odcinek elipsy

Ostatnig figurg z gatunku elips i okolic jest odcinek elipsy. Jest to figura geometryczna,
bedaca czescig wspdlng elipsy i potptaszczyzny. Mowiac jasniej, jezeli przetniemy naszg
elipse linig prosta, to dwie figury, jakie przy okazji powstang, bedg niczym innym jak
wiasnie odcinkami elipsy.

Za rysowanie tego rodzaju ksztattéw odpowiada w Windows GDI funkcja o nazwie
Chord () (‘cieciwa’). Popatrzmy na jej, znajomy juz pewnie, prototyp:

BOOL Chord (HDC hdc,

int nLeftRect,
int nTopRect,
int nRightRect,
int nBottomRect,
int nXRadiall,
int nYRadiall,
int nXRadial2,
int nYRadial?2);

Windows GDI 563

Znowu mamy dziewie¢ znajomych argumentdow, okreslajacych catg elipse oraz wycinek
jej okregu. Ich znaczenie tradycyjnie przestudiujemy na rysunku:

[(nXRadiall,
nY¥Radiall)
’
|
(nLeftRect, I
nTopRect) I
[nXRadialz,
n¥Radial?) T

(nRightRect,
nBottomRect)

Rysunek 23. Znaczenie parametréw funkcji Chord()

Zasady znane z Arc[To] () stosujq sie takze i tutaj.

Zaokraglony prostokat

Patrzac na tytut tego akapitu mozesz by¢ troche zdezorientowany. Jak prostokat, ktéry
nawet z nazwy ma proste katy, moze by¢ zaokraglony?... Céz, to pewna niescistos¢, bo
faktycznie chodzi o prostokat z zaokraglonymi rogami, ale powszechnie przyjeto sig,
by o tej figurze méwié wtasnie ‘zaokraglony prostokat’. Zapewne wynika to z ttumaczenia
angielskiego terminu rounded rectangle.

W GDI tego typu figure mozna narysowac, stosujgc przeznaczong do tego funkcje
RoundRect () :

BOOL Rectangle (HDC hdc,
int nLeftRect,
int nTopRect,
int nRightRect,
int nBottomRect,
int nWidth,
int nHeight);

Jej pierwszych pie¢ parametrow z pewnoscig wyglada znajomo, bo pochodzi z funkcji
Rectangle (). Ostatnie dwa muszg wiec mie¢ wptyw na nowg ceche prostokata, czyli
zaokraglenie jego rogow - i rzeczywiscie tak jest. Parametry nwWwidth i nHeight okreslajg
bowiem szerokos¢ i wysokosc elipsy, ktéra wyznacza kragto$¢ rogéow. Innymi stowy, jest
to pozioma i pionowa $rednica tejze elipsy lub jeszcze inaczej - wymiary prostokata
okalajacego te elipse.

No dobrze, ale czym wiasciwie jest ta elipsa?... Odpowiedzig na to pytanie bedzie kolejny
rysunek, obrazujacy znaczenie wszystkich parametréw funkcji Roundrect (). Oto i ten
szkic:

564 Windows API

(nLaftRact, oWidth
nTopRact)
e F—
i(,__ - - ﬂﬁ\:
. nHaight
.Sﬁh - = -ﬂf{i
{nRightRect,
nBottomRect)

Rysunek 24. Znaczenie parametrow funkcji RoundRect()

Na rysunku widac¢, ze zaokraglenie rogéw jest precyzowane poprzez matg elipse.
Parametry nwidth i nHeight sg jej wymiarami - w praktyce réwnymi, gdyz symetryczne
naroza wygladaja zwykle najlepiej.

Bitmapy

Duza czesc¢ pracy z grafikg zwigzana jest z obrdbka gotowych bitmap. Uzywajac
wykonanych wczesniej obrazkéw nie musimy dbac¢ o reczne generowanie kazdego
szczegdtu wygladu obrazka. Wiele elementéw graficznych, pochodzacych zwilaszcza z
realnego $wiata, nie da sie efektywnie zamodelowac¢ przy pomocy obiektéw wektorowych.
Bitmapy stajq sie wéwczas niezbedne.

Windows GDI posiada kilka sposobéw manipulacji bitmapami jako catoscig. Umozliwia
miedzy innymi wczytywanie ich z plikéw, kopiowanie do wybranego kontekstu
urzadzenia, skalowanie czy wyswietlanie z przezroczystoscia.

Jest to mozliwe przy pomocy obiektéw bitmap, ktorymi zarzadzamy poprzez uchwyty
typu HBITMAP.

Zarzadzanie bitmapg

Z bitmapami obchodzimy sie podobnie jak z innymi obiektami GDI: tworzymy je,
podpinamy do kontekstu urzadzenia, wykonujemy pozadane operacje, a wreszcie
zwalniamy, odzyskujac zasoby. Popatrzymy teraz na kazdy z tych etapow.

Tworzenie obiektu bitmapy

Obiekt bitmapy mozemy stworzy¢, opierajac sie na pliku, na kontekscie urzadzenia lub
tez samodzielnie podac jej wszystkie parametry. Poznamy tutaj kazdy z tych trzech
sposobow.

Odczytanie z pliku

Znamy juz funkcje, ktéra potrafi wczytywac obrazki z plikow. Jest to LoadImage () :

HANDLE LoadImage (HINSTANCE hInstance,
LPCTSTR lpszName,
UINT uType,
int cxDesired,
int cyDesired,
UINT fulLoad):;

Windows GDI 565

Zgodnie z obietnicg, omoéwimy jg sobie doktadnie w tym momencie. Zajmijmy sie wiec jej
parametrami - pomocg bedzie tu tradycyjna tabelka:

typ parametr opis

Jezeli chcemy wczytacé obrazek z zasobow zawartych w pliku
EXE, podajemy tutaj uchwyt instancji programu. Jezeli
natomiast zalezy nam na zatadowaniu obrazku z pliku na dysku
(wzglednie skorzystanie z obrazu systemowego), wpisujemy tu
NULL. My bedziemy na razie tak wtasnie robi¢, jako ze jeszcze
nie umiemy postugiwac sie zasobami Windows.

HINSTANCE | hInstance

Tutaj podajemy jedng z trzech informacji:
> identyfikator zasobu, jezeli w hInstance podalismy
wartos¢ inng niz NULL
LPCTSTR lpszName > stalg okreslajacq obrazek systemowy, jezeli chcemy
takowy wczytac
» nazwe pliku, skad chcemy wczyta¢ obrazek
Nas bedzie naturalnie interesowac ostatnia opcja.

Podajemy tu typ wczytywanego obrazka. Kiedy chcieliSmy
pobrac ikone lub kursor, byt to IMAGE ICON lub IMAGE CURSOR.

UINT utype Teraz chcemy wczytywac bitmapy, wiec wpisujemy tu
IMAGE BITMAP.
Gdybysmy zajmowali sie tadowaniem ikony lub kursora,
oxDesired wpisaliby$my tu jego pozadane rozmiary. Poniewaz jednak

int chodzi nam o bitmape, mozemy zignorowac te parametry i

cyDesired
wpisaC w nich zera - nie sq one brane pod uwage, jezeli uType
ma wartos¢ IMAGE BITMAP.
UINT fuload To zas$ sa flagi wczytywania obrazka, czyli dodatkowe opcje.

Tabela 65. Parametry funkcji Loadlmage()

Jezeli chodzi o ostatni parametr, to dozwolone sg miedzy innymi takie oto flagi:

flaga opis

Zachowuje oryginalne kolory bitmapy i nie dostosowuje ich do
gtebi koloréw ekranu. Te flage trzeba podac, jezeli chcemy
wczytac bitmape z zapisanym kanatem alfa (z 32-bitowym

formatem koloru).

LR _CREATEDIBSECTION

Redukuje liczbe koloréw bitmapy do monochromatycznosci, czyli

LR MONOCHROME R
- czerni i bieli.

LR LOADFROMFILE Flaga ta okresla, iz chcemy wczytac bitmape z pliku.
Tabela 66. Flagi bitowe funkcji Loadlmage()

Nas najbardziej interesuje LR LOADFROMFILE. Przy jej pomocy mozemy bowiem bez
problemu odczyta¢ obrazek rastrowy zapisany w pliku, a nastepnie uzywac¢ go w
operacjach graficznych. LoadImage () obstuguje formaty BMP oraz DIB.
Przyktadowe uzycie tej funkcji moze by¢ nastepujace:

HBITMAP hbmpBitmapa = (HBITMAP) LoadImage (NULL, "obrazek.pbmp", 0, O,
LR LOADFROMFILE) ;

Rzutowanie na HBITMAP jest tu konieczne, bo LoadImage () 0gdlny uchwyt typu HANDLE.
Jest on dla uchwytéw tym, czy void* dla wskaznikow. Musimy zatem zastosowac
konwersje, aby przypisa¢ warto$¢ do zmiennej hbmpBitmapa.

566 Windows API

Nazwa pliku, jaka podajemy do funkcji LoadImage (), jest relatywna do katalogu
programu. Najlepiej wiec wpisywac petng sciezke do pliku graficznego.

W taki oto sposéb stajemy sie posiadaczami uchwytu do obiektu bitmapy wczytanej z
pliku na dysku.

Dopasowanie do kontekstu

Czasem warto jest zacza¢ od zera. Jezeli nie chcemy opierac sie na istniejgcym pliku
graficznym przy tworzeniu obiektu bitmapy, to oczywiscie nie musimy tego robi¢.
Powinnismy jednak wiedzie¢, z jakim kontekstem urzadzenia ma wspdtpracowad nasza, z
poczatku pusta, bitmapa. Dzieki temu bedziemy mogli jg w przyszlosci podpigé pod ten
lub kompatybilny z nim kontekst lub chociazby mie¢ pewno$¢ zgodnosci koloréow przy
wyswietlaniu bitmapy w tym kontekscie.

Kiedy juz wiemy, gdzie bedziemy pracowaé, pozostaje nam wywofaé funkcje
CreateCompatibleBitmap () :

HBITMAP CreateCompatibleBitmap (HDC hdc,
int nWidth,
int nHeight);

Podajemy jej uchwyt kontekstu urzadzenia, ktéry ma by¢ kompatybilny z tworzong
bitmapa. Musimy tutaj koniecznie pamietac, aby byt to kontekst inny niz pamieciowy.
Najlepiej niech to bedzie taki kontekst, w ktérym chcielibysmy tak stworzong bitmape
wyswietli¢ - a wiec zwigzany np. z ekranem lub obszarem klienta okna.

Oprocz tego dostarczamy tez wymiary nowej bitmapy.

Tak utworzona bitmapa jest pusta, wiec wydaje sie to mato przydatne rozwigzanie.
Jednak, jak sie niedtugo przekonamy, mozliwe jest rysowanie po takiej bitmapie przy
uzyciu pamieciowego kontekstu urzadzenia. Zatem nie jest to wcale takie nieuzyteczne,
jakby sie mogto wydawac.

Dowolny format

Dla porzadku podam jeszcze prototyp funkcji CreateBitmap () :

HBITMAP CreateBitmap (int nWidth,
int nHeight,
UINT cPlanes,
UINT cBitsPerPel,
CONST VOID* 1lpvBits);

Funkcja ta stuzy do stworzenia bitmapy od podstaw, tj. z podaniem jej wszystkich
parametrow. Oto i one:

typ parametry opis
int nngqelf;thht Wpisujemy tu wymiary bitmapy w pikselach.

Ten parametr to liczba tzw. ptatéw koloru (ang. color
planes). Wartos¢ ta wywodzi z zamierzchtych czaséw kart
cPlanes graficznych w rodzaju EGA i zostala zachowana wytacznie
celem kompatybilnosci wstecz. Obecnie wpisujemy tu

zawsze 1.

UINT

Glebia koloru, czyli ilos¢ bitdow przypadajacych na jeden
cBitsPerPel | piksel. Zwykle jest to 8, 16 lub 24. Mozna tez wpisac 32 -
wowczas bedziemy mieli bitmape z miejscem na kanat alfa.

Mozna tu podac¢ zawartos¢ bitmapy w postaci ciggu

CONST VOID* 1lpvBits s i S o : ;
P bitow. Ciag ten powinien zawierac reprezentacje kolejnych

Windows GDI 567

typ parametry opis

pikseli bitmapy, poczynajac od jej lewego gérnego rogu i
posuwajac sie rzedami.
Jezeli nie chcemy inicjowa¢ nowej bitmapy zadng
zawartoscig, wtedy w tym parametrze nalezy wpisac
warto$¢ NULL.

Tabela 67. Parametry funkcji CreateBitmap()

CreateBitmap () uzywamy zwykle wtedy, gdy chcemy utworzy¢ obiekt bitmapy majac juz
jej pamieciowg reprezentacje w postaci tablicy. Taka tablica moze np. poprzez wtasny
algorytm wczytujacy (ang. loader) obrazek w jakims szczegdlnym formacie pliku.

Inne przypadki korzystania z tej funkcji co raczej rzadkie.

Pamieciowy kontekst urzadzenia

Wczytanie bitmapy to dopiero pierwszy krok do jej wykorzystania. Tak naprawde aby
zrobi¢ z nig cokolwiek konkretnego, musimy jg zwigzac¢ z kontekstem urzadzenia.

Ale co to znaczy - zwigzac bitmape z kontekstem urzadzenia? Przeciez obrazek to nie jest
piéro ani pedzel, w jaki sposob miatby on pomagac¢ w rysowaniu, ktérym zajmuje sie
kontekst?...

A jednak pomaga on, a wtadciwie to je nawet umozliwia. Zeby to zrozumieé¢ musimy
sobie uswiadomi¢, ze to, na czym rysujemy poprzez kontekst urzadzenia, to tak
naprawde nic innego jak wiasnie bitmapa. Ekran jest jedng wielkg bitmapg, podobnie
jak wszystkie jego czesci (np. okno), od ktorych mozemy uzyskac konteksty urzadzen.
Bitmape zwigzang z kontekstem urzadzenia nazywamy ptétnem (ang. canvas).

Powigzanie bitmapy z kontekstem urzadzenia jest wiec zamiang ptétna. To troche tak,
jakbysmy zdjeli jeden obraz ze sztalugi malarskiej i potozyli inny, ktéry w szczegdlnosci
moze by¢ pustym ptotnem. Po zamianie wszystkie nastepne czynnosci rysunkowe bedg
skutkowaty malowaniem po nowej bitmapie kontekstu urzadzenia.

Jednak nie wszystkim kontekstom urzadzenia mozemy swobodnie zabieraé ptétna.
Wiasciwie to wiekszosci z nich nie mozemy tego zrobi¢, poniewaz bitmapy, do ktorych sie
one odnosza, nalezg do systemu operacyjnego, a ten zadecydowat, iz bedq one na stale
przybite do swoich sztalug - kontekstéw. Dzieje sie tak, bo konteksty fizycznie
odpowiadajq np. fragmentom ekranu monitora, a tej przynaleznosci nie mozemy zmienic
- przeciez nie odbierzemy pecetowi monitora, prawda? :)

Ale jak w takim razie uzyskac niezalezny kontekst urzadzenia, ktéry moglibysmy zwigzac
Z naszg bitmapga?... Otéz musimy go sobie stworzy¢ i wiemy juz, jak to zrobi¢. Srodkiem
do osiagniecia celu jest bowiem pamieciowy kontekst urzadzenia (ang. memory
device context).

Aby moc wykonywac na bitmapie operacje graficzne, powinniSmy powigzac jg z
pamieciowym kontekstem urzadzenia.

Powinnismy tworzy¢ go dla kazdej bitmapy, ktéra zamierzamy kopiowa¢, wyswietlaé¢ na
ekranie czy tez po ktorej chcemy rysowac. Jest to zwigzane ze specyfikg niektorych
operacji w Windows GDI, ktore dziatajg tylko w odniesieniu do kontekstow urzadzen, a
nie bitmap jako takich. Poznamy je catkiem niedtugo.

Najpierw zobaczmy, jak poprawnie stworzy¢ pamieciowy kontekst urzadzenia i podpigc
pod niego bitmape.

568 Windows API

Utworzenie kontekstu

Pamieciowego kontekstu urzadzenia nie tworzy sie od podstaw, lecz tylko przy pomocy
innego, juz istniejgcego kontekstu. Nowy kontekst bedzie z nim kompatybilny, tzn.
mozliwe bedzie przeprowadzanie operacji graficznych miedzy nim, a starym kontekstem.

Do utworzenia pamieciowego kontekstu urzadzenia postugujemy sie funkcjg
CreateCompatibleDC () :

HDC CreateCompatibleDC (HDC hdc) ;

Podajemy jej oczywiscie uchwyt do kontekstu urzadzenia, z ktérym nasz nowy kontekst
ma by¢ kompatybilny. Moze to by¢ hdc pozyskany na przyktad od okna czy tez catego
ekranu - w tym drugim przypadku mozliwe jest podanie NULL jako parametru.

Utworzenie pamieciowego kontekstu wyglada wiec mniej wiecej tak:

HDC hdcPamiec = CreateCompatibleDC (hdcKontekst) ;

Istniejacy uchwyt hdcKontekst musi sie odnosi¢ do kontekstu urzadzenia, ktére potrafi
wykonywac dziatania na grafice rastrowej - czyli np. do monitora.

Powigzanie bitmapy z kontekstem

Ostatnim etapem sztuki jest powigzanie naszej bitmapy (zatézmy na razie, ze wczytanej
z pliku) z nowostworzonym, pamieciowym kontekstem urzadzenia. Jest to bardzo proste,
nalezy jedynie wywota¢ funkcje selectObject () w znany nam doskonale sposob:

HBITMAP hbmpStaraBitmapa = (HBITMAP) SelectObject (hdcPamiec,
hbmpBitmapa) ;

W zmiennej hbmpStaraBitmapa zapisujemy uchwyt do starej bitmapy - w przypadku
pamieciowego kontekstu jest to zawsze monochromatyczny obrazek o wymiarach
1x1 piksela. Zapisujemy jego uchwyt, poniewaz tak samo jak piéro czy pedzel bitmapa
nie moze by¢ pozostawiona sama sobie. Wtedy bowiem nastgpitby wyciek pamieci.
Oczywiscie mozliwe jest zastosowanie innej metody postepowania z nieuzywanymi
obiektami, takiej jak natychmiastowe usuniecie bitmapy (opakowanie wywotania
SelectObject () W DeleteObject ()) lub skorzystanie z zapisu standéw kontekstu przez
SaveDC ().

W sumie, przygotowanie bitmapy do pracy z GDI wyglada nastepujaco:

// 1. wczytanie bitmapy
HBITMAP hbmpBitmapa = (HBITMAP) LoadImage (NULL, "bitmapa.bmnp", 0, O,
LR LOADFROMFILE) ;

// 2. stworzenie pamieciowego kontekstu urzadzenia
// (tutaj bedzie on kompatybilny z ekranem)
HDC hdcPamiec = CreateCompatibleDC (NULL) ;

// 3. wybranie wczytanej bitmapy w kontek$cie pamieciowym
HBITMAP hbmpStara = (HBITMAP) SelectObject (hdcPamiec, hbmpBitmapa) ;

Po wykonaniu tych czynnos$ci mozemy stosowac takie funkcje jak BitBlt () czy
StretchBlt (), aby np. wyswietli¢ zawarto$¢ bitmapy hbmpBitmapa wewnatrz obszaru
klienta okna. O tych funkcjach powiemy sobie wszystko w nastepnym paragrafie.

Musze jeszcze wspomnie¢ o sytuacji, gdy naszej bitmapy nie chcemy wczytac¢ z pliku.
Mozemy mianowicie stworzy¢ sobie pustg bitmape, zwigzac ja z pamieciowym

Windows GDI 569

kontekstem urzadzenia, wykonywac na niej wybrane operacje graficzne i wyswietli¢
dopiero wtedy, gdy bedzie juz gotowa.

W takim wypadku musimy sobie stworzy¢ nowy obiekt bitmapy przy pomocy funkcji
CreateCompatibleBitmap (). Do funkcji tej podajemy m.in. uchwyt kontekstu
urzadzenia, z ktérym bitmapa bedzie kompatybilna. Z tego kontekstu obrazek pobierze
ustawienia gtebi koloréw, czyli ilos¢ bitdéw przypadajaca na jeden piksel.

Poprawne zastosowanie wspomnianej funkcji do stworzenia pustej bitmapy oraz
powigzanie jej z pamieciowym kontekstem urzadzenia wyglada tak:

// (zaktadamy, ze w hdcKontekst mamy pewien kontekst, np. od okna)

// tworzymy kontekst pamieciowy
HDC hdcPamiec = CreateCompatibleDC (hdcKontekst);

// tworzymy pusta bitmape dla tego kontekstu, o wymiarach 100x100
HBITMAP hbmpBitmapa = CreateCompatibleBitmap (hdcKontekst, 100, 100);

// wiazemy nowa bitmape z kontekstem pamieciowym, zachowujac

// jednoczesnie uchwyt do stare] (czarno-biata, 1x1 piksel)
HBITMAP hbmpStara = (HBITMAP) SelectObject (hdcPamiec, hbmpBitmapa) ;

Koniecznie zwré¢my uwage na linijke tworzaca bitmape:
HBITMAP hbmpBitmapa = CreateCompatibleBitmap (hdcKontekst, 100, 100);

Wida¢, ze do funkcji CreateCompatibleBitmap () nie podajemy uchwytu do
kontekstu pamieciowego. Zamiast tego przekazujemy jej oryginalny kontekst
hdcKontekst, a wiec ten, ktory postuzyt nam do stworzenia pamieciowego hdcPamiec.
Dlaczego wtasnie tak? Przypomnij sobie, co przed chwilg méwitem na temat poczatkowej
bitmapy w kontekscie pamieciowym. Jest to czarno-biaty obrazek wielkosci 1 piksela.
Rozmiar nie jest tu akurat wazny, ale gtebia koloréw - jak najbardziej. W pierwotnej
bitmapie pamieciowego kontekstu obejmuje ona tylko dwa kolory, jest 1-bitowa. Jezeli
wiec postuzymy sie tym kontekstem do utworzenia kompatybilnej bitmapy, jej gtebia
koloréw bedzie z tym zgodna - ergo: nowa bitmapa réwniez bedzie monochromatyczna.
Nie wydaje mi sie, aby o to wiasnie nam chodzito. Chcielibysmy raczej, by nasz obrazek
maogt zawierac tyle kolorow, ile potrafi wyswietli¢ ekran monitora. Dlatego tez do
CreateCompatibleBitmap () powinnismy podac¢ uchwyt kontekstu odnoszacego sie do
monitora wiasnie, nie zas do kontekstu pamieciowego.

Zapamietaj zatem, ze:

Tworzac pusta bitmape dla pamieciowego kontekstu urzadzenia, do funkgcji
CreateCompatibleBitmap () musisz przekaza€ oryginalny hdc - ten, na podstawie
ktérego stworzytes kontekst pamieciowy. W przeciwnym wypadku powstata bitmapa
bedzie monochromatyczna.

Zwalnianie bitmapy

Bitmapaq nalezy sie odpowiednio zaja¢, gdy juz nie jest nam potrzebna. Kolejnosc i
charakter czynnosci nastepujacych w tym procesie jest w zasadzie odwrotna do tych,
jakie podejmujemy podczas przygotowywania bitmapy do pracy. Musimy wiec najpierw
pozby¢ sie pamieciowego kontekstu urzadzenia (jezeli takowy stwarzalismy, zwykle tak),
a nastepnie usunac¢ tez sam obiekt bitmapy.

Usuwanie kontekstu pamieciowego

Przez usunieciem kontekstu pamieciowego postepujemy podobnie, jak przez zwalnianie
kazdego innego kontekstu. Przywracamy wiec jego obiekty do stanu poczatkowego - w

570 Windows API

tym przypadku jedynym takim obiektem jest monochromatyczne ptétno 1x1. Wybieramy
je w kontekscie pamieciowym:

SelectObject (hdcPamiec, hbmpStara);

Naturalnie, jezeli nie zachowalismy uchwytu do starej bitmapy, lecz usunelismy ja od
razu, nie bedziemy mieli co przywracac¢, zatem ten etap pominiemy. Mozemy od razu
przejs¢ do usuniecia samego kontekstu.

Zwolnienie kontekstu pamieciowego jest proste i oznacza tylko wywotanie funkcji
DeleteDC():

DeleteDC (hdcPamiec):;

Razem z kontekstem zostaje tez usuniete jego ptotno, czyli najczesciej ta mata
monochromatyczna bitmapa. Mozliwe jest aczkolwiek, ze ta bitmapa zostata usunieta juz
wczesniej, przy wybieraniu dla kontekstu nowego ptétna. Wtedy razem z usunieciem
pamieciowego hdc ginie tez jego bitmapa. W takiej sytuacji nie jest konieczne jej
oddzielne zwalnianie, opisane w nastepnym punkcie.

Usuwanie obiektu bitmapy

Na sam koniec pozbywamy sie wtasciwego obiektu bitmapy. Wywotujemy
DeleteObject (), Usuwajac go z pamieci:

DeleteObject (hbmpBitmapa);

Nie jest to koniecznie, jezeli nasz bitmapa zgineta razem z kontekstem pamieciowym.
Moéwitem jednak juz kilka razy, ze dla przejrzystosci kodu lepiej jest, aby obiekty
tworzone przez nas byly tez przez nas usuwane, a te pochodzace od GDI - zwalniane
przez sama biblioteke GDI.

Postugiwanie sie bitmapg

Miedzy stworzeniem a zwolnieniem obiektu wypadatoby wykona¢ na nim jakie$ sensowne
czynnosci. Tym witasnie zajmiemy sie w niniejszym paragrafie: zobaczymy, céz takiego
mozemy zrobic¢ z posiadang bitmapa.

Wyswietlanie bitmapy

Chyba najlogiczniejsza czynnosciag, ktdrg mozemy wykonaé przy uzyciu bitmapy, jest jej
wyswietlenie. Oznacza to prezentacje zawartosci obrazka w wybranym kontekscie
urzadzenia, zwigzanym z fizycznym urzadzeniem - zwykle monitorem.

Na tej, w gruncie rzeczy prostej, czynnosci opiera sie mndstwo aplikacji, z grami na
czele. Pokazywanie dwuwymiarowych obrazkéw (tzw. sprite’éw) jest w nich bowiem
podstawowym sposobem tworzenia oprawy graficznej.

Zobaczmy wiec, jak realizowac to wazne zadanie w Windows GDI. Poznamy zaraz trzy
sposoby (czy moze raczej tryby) prezentacji bitmapy w kontekscie urzadzenia
rastrowego.

Dostowne kopiowanie

Wyswietlenie bitmapy w innym kontekscie urzadzenia niz pamieciowy wymaga pewnej
formy przekopiowania pikseli. Méwimy, ze nalezy zastosowac¢ transfer bloku bitéw
(ang. bit-block transfer), co oznaczamy angielskim skrétem bitbit (czytaj [bit blit])

Taka tez nazwe ma funkcja Windows GDI, ktéra wykonuje transfer - BitB1t (). Oto jej
prototyp:

Windows GDI 571

BOOL BitBlt (HDC hdcDest,
int nXDest,
int nYDest,
int nWidth,
int nHeight,
HDC hdcSrc,
int nXSrc,
int nYSrc,
DWORD dwRop) ;

Wydaje sie moze, iz to skomplikowana funkcja, ale w rzeczywistosci wcale tak nie jest.
Przekazujemy jej raczej niezbedne dane - przede wszystkim uchwyty do dwoch
kontekstow urzadzenia. Pierwszy z nich, hdcbest, okresla cel transferu bitow; jest to ten
kontekst, w ktérym pojawi sie wyswietlana przez nas bitmapa. Z kolei zatem drugi
uchwyt, hdcsrc, musi by¢ zrodtem kopiowanych pikseli.

Nastepne parametry - nwidth i nHeight - sg rozmiarami kopiowanego prostokata. Mowig
one po prostu, jak duzy jest kopiowany fragment ptétna. Jego wielko$¢ jest w BitB1t ()
identyczna zaréwno dla kontekstu zrédtowego i docelowego.

Ostatnie dwie pary parametrow sg wspoétrzednymi lewego gérnego wierzchotka
kopiowanego prostokata. nxDest i nyDest sg docelowymi koordynatami w kontekscie
hdcDest, zas nXSrc i nYSrc to wspoétrzedne Zzrédtowego kawatka bitmapy z kontekstu
hdcSrc.

Role kazdego z tych parametréow najtatwiej przesledzi¢ na rysunku:

n¥Dest
n¥src
. d 4
nXsSrec BltBltt}_ nXDast
prostokat) prostokat)
Zrodiowy nHeight docelowy nHeight
nWidth nWidth
hdcSre

hdcDest

Rysunek 25. Kopiowanie (fragmentu) bitmapy poprzez funkcje BitBlt()

Wszystko jasne? To $wietnie, bo teraz bedzie najciezszy orzech do zgryzienia :) Ale
spokojnie, nie bedzie az tak zle. Parametr dwRop, bo 0 nim mowa, nie jest wcale taki
trudny do zrozumienia.

Okresla on operacje rastrowg przeprowadzang podczas taczenia prostokata zrédlowego z
docelowym. Z takimi operacjami spoktaliémy sie juz przy okazji pior i funkcji setRoP2 ().
Tutaj takze mamy do wyboru kilkanascie znacznikdw, ktorych dziatanie przedstawia
ponizsza tabela. Uzyto w nich trzech oznaczen dla argumentow operacji (dlatego
nazywamy jq ternarna):

> clsrc - kolor ze zrodtowego kontekstu urzadzenia

» clbest - kolor z docelowego kontekstu urzadzenia

572

Windows API

» clbestBrush - kolor pedzla docelowego kontekstu urzadzenia

flaga operacji

kolor wynikowy

BLACKNESS
DSTINVERT
MERGECOPY
MERGEPAINT
NOTSRCCOPY
NOTSRCERASE
PATCOPY
PATINVERT
PATPAINT
SRCAND
SRCCOPY
SRCERASE
SRCINVERT
SRCPAINT
WHITENESS

czarny
~clDest
clSrc & clDestBrush
~clSrc | clDest
~clSrc
~(clSrc | clDest)
clDestBrush
clDestBrush * clDest
(clDestBrush | ~clSrc) | clDest
clSrc & clDest
clSrc
clSrc & ~clDest
clSrc ~ clDest
clSrc | clDest

biaty

Tabela 68. State ternarnych operacji rastrowych w Windows GDI

Zdecydowanie najczesciej uzywa sie SRCCOPY, jako ze zazwyczaj chodzi nam o dostowne
przekopiowanie bitmapy z hdcSrc do hdcDest. Inne znaczniki mogg by¢ przydatne np.
wtedy, gdy chcemy wyswietli¢ bitmape z nieregularnym ksztattem, ktérego tto ma by¢

przezroczyste.

Na koniec omawiania tej funkcji zobaczmy konkretny przyktad jej wykorzystania - czyli
wyswietlenie bitmapy wczytanej z pliku w kontekscie urzadzenia:

// zaktadamy,

// wczytujemy bitmape
HBITMAP hbmpBitmapa =

ze posiadamy kontekst hdcKontekst,

(HBITMAP)

np. od okna

LoadImage (NULL, "bitmapa.bmp", 0, O,

LR LOADFROMFILE) ;

// tworzymy dla niej kontekst pamieciowy 1 wigzemy ja z nim

HDC hdcPamiec =
HBITMAP hbmpStara =

CreateCompatibleDC (hdcKontekst)
(HBITMAP) SelectObject (hdcPamiec, hbmpBitmapa);
// pobieramy wymiary bitmapy (potrzebne do jej skopiowania) ;

// beda one zawarte w polach bmWidth i1 bmHeight ponizszej struktury
BITMAP Bitmapa;
GetObject (hbmpBitmapa,

sizeof (BITMAP), &Bitmapa);

// dokonujemy transferu pikseli, czyli wysSwietlamy bitmape

// w punkcie (nX, nY) kontekstu hdcKontekst
BitBlt (hdcKontekst, nX, nY, Bitmapa.bmWidth, Bitmapa.bmHeight,
hdcPamiec, 0, 0, SRCCOPY) ;

// zwalniamy kontekst pamieciowy, przywracajac mu wpierw stara bitmape
SelectObject (hdcPamiec, hbmpStara);
DeleteDC (hdcPamiec);

// zwalniamy obiekt bitmapy
DeleteObject (hbmpBitmapa):;

Przy okazji mozesz tu zobaczy¢, w jaki sposdb pobiera sie wymiary bitmapy o znanym
uchwycie.

Windows GDI 573

Rozcigganie obrazka

BitBlt () gwarantuje, ze prostokat wziety z kontekstu zrédtowego bedzie w
niezmienionej postaci zmiksowany'*® z tej samej wielkoéci prostokatem w kontekscie
docelowym. Windows pozwala tez na transfer fragmentu bitmapy z jego jednoczesnym
skalowaniem - dokonuje tego funkcja stretchBlt () (czytaj [strecz blit]):

BOOL StretchBlt (HDC hdcDest,
int nXOriginDest,
int nYOriginDest,
int nWidthDest,
int nHeightDest,
HDC hdcSrc,
int nXOriginSrc,
int nYOriginSrc,
int nWidthSrc,
int nHeightSrc,
DWORD dwRop) ;

Jej prototyp jest podobny do BitBl1t (), ale posiada on dwie pary parametrow
okreslajacych wymiary kopiowanego prostokata. nWwidthSrc i nHeightSrc okreslajg wiec
jego rozmiar w kontekscie zrodtowym (hdcSrc), za$ nWidthDest | nHeightDest - W
kontekscie docelowym (hdcDest). Pozostate wspotrzedne majg takie samo znaczenie jak
w BitBlt (), tzn. okreslaja pozycje kopiowanego i docelowego prostokata.

W tym przypadku dobry rysunek moze by¢ nawet bardziej pomocny niz wczesniej.
Popatrz zatem na nastepujacy szkic:

-
nY¥Dest
B '
n¥sSrec n¥XDest L
StretchBlt ()
rostokat HeightDast
e gncelowq et s
prostokat ¥
ir’ﬁd}ﬂwv nHeightSrc
- !
nWidthSrec P E——
nWidthDest
hdeSre
hdchest

Rysunek 26. Kopiowanie (fragmentu) bitmapy poprzez funkcje StretchBlt()

Widzimy na nim, Ze bitmapa pobrana z kontekstu zrodtowego ulega przeskalowaniu -
Zmieniajq sie jej rozmiary. Nie bytoby w tym nic ztego, gdyby nie to, ze mamy przeciez
do czynienia z obrazkami rastrowymi. Takie rysunku ,nie wiedzg”, jak sie zachowaé¢ w
sytuacji, gdy zmieniana jest ich wielko$¢: majg bowiem zapisany okreslony zestaw
pikseli, ktéry jest wiasciwie interpretowany tylko w swej oryginalnej rozdzielczosci. Kiedy
chcemy zmieni¢ rozmiary obrazka rastrowego, mogg pojawic sie problemy.

Dlatego z funkcji stretchBlt () nalezy korzysta¢ rozsadnie. Rzadko, jezeli w ogdle,
powinno sie zwiekszac¢ rozmiary bitmapy - zazwyczaj bowiem powoduje to powstanie
niezbyt mitej dla oka ,pikselozy”. Zmniejszanie obrazka jest bezpieczniejsze, o ile
pamietamy o zachowaniu jego oryginalnego aspektu - znaczy to, ze stosunek szerokosci

146 7godnie z podang w dwRop operacjg rastrowa.

574 Windows API

do wysokosci w zrodtowym i docelowym prostokacie powinien by¢ taki sam, jezeli
chcemy otrzymac zadowalajacy rezultat.

Sposob, w jaki stretchBlt () zmienia rozmiary obrazow, mozna kontrolowac funkcja,
SetStretchBlitMode (). Poczytaj o niej w MSDN.

Nie moge tez nie wspomniec o jeszcze jednej, mato przyjemnej cesze funkcji
StretchBlt (). Otdz jest ona w wiekszosci wypadkow zatosnie wolna, o wiele wolniejsza
niz BitB1lt (). Jest to spowodowane tym, iz skalowanie rastrowego obrazka wymaga
sporo zasobow obliczeniowych komputera - niestety, jak juz mdéwitem, rezultaty i tak nie
sq zbyt dobre.

Oczywiscie szybkos$¢ stretchBlt () nhie ma zbyt wielkiego znaczenia w aplikacjach
uzytkowych. Jesli jednak chcielibysmy przy pomocy GDI napisac jakakolwiek gre czy
prezentacje multimedialng (co jest jak najbardziej mozliwe), wtedy StretchBlt () moze
by¢ gtébwnym winowajcg niezadowalajacej szybkosci dziatania.

Chcac zobaczy¢ przyktad wykorzystania funkcji stretchBlt (), zerknij na program
Magnifier dotgczony do kursu. Jest to ekranowa lupa, dokonujaca powiekszenia
wybranego kursorem fragmentu pulpitu.

Przezroczyste wyswietlanie

Zaréwno BitBlt (), jak i stretchBlt () majg pewien duzy mankament: obie funkcje
potrafig wyswietla¢ wylgcznie prostokatne fragmenty bitmap. To niewystaczajace, jezeli
chcemy prezentowac obrazki o nieregularnych ksztattach. Przyktadowo, chcac wyswietli¢
obrazek pitki, nie otrzymamy okragtego zestawu pikseli, lecz prostokat obejmujacy takze
oryginalne tto bitmapy. Najczesciej nie pasuje ono do tta okna i wtedy zaczynajg sie
problemy.

Z poczatku radzono sobie z nimi w do$¢ pokretny sposdéb. Przygotowywano bowiem po
dwie bitmapy tego samego rozmiaru dla kazdego sprite’a u nieregularnych ksztaltach:
> pierwszym byt wtasciwy obrazek. Musiat on koniecznie posiada¢ czarne tto, gdyz w
procesie wyswietlania wszystkie czarne piksele byty traktowane jako
przezroczyste
» drugq bitmapg byta tzw. maska. Byt to monochromatyczny zestaw pikseli: czarne
punkty znajdowaty sie w miejscach odpowiadajacych wtasciwemu obrazkowi (czyli
np. pitce), natomiast biatymi pikselami wypetniano tto (ktére na wtasciwym
obrazku byto czarne)

Majac tak spreparowany obrazek oraz jego maske, wyswietlanie czesciowo
przezroczystego ksztattu odbywato sie dwuetapowo:

1. Najpierw wykonywano BitB1t () dla maski obrazu, postugujac sie znacznikiem
SRCAND. Powodowato to zaczernienie na ekranie wszystkich pikseli, ktére w masce
byty czarne. W miejscu, gdzie miat pojawic sie sprite, powstawata ,czarna dziura”.

2. Nastepnie przywotywano BitBlt () dla wiasciwego obrazu, tym razem z operacjg
rastrowg SRCPAINT. Wowczas czarne piksele tta obrazka nie zmieniaty istniejgcych
pikseli na docelowym kontekscie urzadzenia. Interesujgca nas czes¢ bitmapy
zostawata natomiast przekopiowana w miejsce ,czarnej dziury”, zastaniajac ja
catkowicie.

Wida¢, ze ten sposdb jest co najmniej mocno kombinowany. Na szczescie od czasu
wydania Windows 98 nie jesteSmy zmuszeni do wykonywania takich dziwacznych
operacji. GDI wzbogacito sie bowiem o niezwykle przydatng funkcje TransparentBlt ()
(czytaj [transparent blit]):

BOOL TransparentBlt (HDC hdcDest,
int nXOriginDest,

Windows GDI 575

int nYOriginDest,

int nWidthDest,

int nHeightDest,

HDC hdcSrc,

int nXOriginSrc,

int nYOriginSrc,

int nWidthSrc,

int nHeightSrc,

COLORREF crTransparent);

Aby z niej skorzystaé, w ustawieniach linkera musisz doda¢ biblioteke msimg32.lib do
listy linkowanych modutow.

W Visual Studio .NET otwdrz zaktadke Solution Explorer, kliknij prawym przyciskiem
myszy na nazwe swojego projektu i wybierz Properties z menu podrecznego. Przejdz do
zaktadki Linker|Input i wpisz nazwe biblioteki w polu Additional Dependencies
(oddzielajac ja srednikiem od ewentualnych innych nazw).

Jej prototyp jest podobny do stretchBlt (), skad wynika, ze funkcja ta réwniez
obstuguje skalowanie obrazka. W wiekszosci przypadkow nie jest to jednak potrzebne.

O wiele wazniejszy jest tutaj ostatni parametr, crTransparent. Zastepuje on kod
operacji rastrowej, poniewaz w TransparentBlt () jest to zawsze SRCCOPY.

Nie jest to jednak doktadnie to samo kopiowanie, co w Bit/StretchBlt (). Ow ostatni
parametr pozwala nam podac kolor, ktéry w zrédlowym kontekscie urzadzenia bedzie
traktowany jako przezroczysty. Innymi stowy, jezeli TransparentBlt () spotka piksel
tego koloru w zrédiowym prostokacie, to nie przekopiuje go - zupetnie tak, jakby byt on
wlasnie przezroczysty.

Oto wiec mamy sposdb na proste wyswietlanie obrazéw o nieprostokatnych ksztattach.
Wystarczy zaznaczy¢ w ich bitmapach piksele tta tym samym kolorem, a przy prezentacji
podac jego warto$¢ do TransparentBlt (). Tg drogg otrzymamy na ekranie wytgcznie
pozadadny ksztalt sprite’a.

Mozemy nawet uwolni¢ sie od koniecznosci pamietania koloru, ktéry ma by¢
przezroczysty. Z duzg dozg prawdopodobiefistwa mozna bowiem przyjaé, ze tym kolorem
jest barwa pierwszego piksela bitmapy - czyli tego o wspotrzednych (0, 0). Mozliwe jest
wowczas napisanie prostej funkcji, dokonujacej prezentacji cze$ciowo przezroczystego
obrazu:

BOOL ShowSprite (HDC hdcDest, int nXDest, int nYDest,
HDC hdcSprite, int nWidth, int nHeight)

{
return TransparentBlt (hdcDest, nXDest, n¥YDest, nWidth, nHeight,
hdcSprite, 0, 0, nWidth, nHeight,
GetPixel (hdcSprite, 0, 0));
}

TransparentBlt () nie oferuje nic wiecej poza wykluczeniem jednego koloru z
kopiowania. Jest to zwykle wystarczajace, cho¢ nie zawsze. Chcac uzyskac bardziej
wyrafinowane efekty, musimy siegna¢ po inne srodki...

Ciekawostka: tqczenie alfa

Generalnie Windows GDI jest przygotowana do pracy z bitmapami o 24-bitowym
formacie koloru. Biblioteka posiada jednak ograniczone wsparcie dla kanatu alfa w postaci
np. funkcji AlphaBlend (). Oprocz tego GDI potrafi tez wczytywac bitmapy z 32-bitowym
formatem pikseli - czyni to funkcja LoadImage (), ktérej podamy flage

LR CREATEDIBSECTION. Ewentualnie mozna sie tez postuzy¢ funkcjg CreateBitmap (),
jezeli napisaliSmy wtasny loader bitmap z zachowanym kanatem alfa - wtedy w

576 Windows API

parametrze cBitsPerPel nalezy podac¢ wartos¢ 32, a w 1pvBits wskaznik do odczytanej
samodzielnie tablicy bitow.

Zajmijmy sie jednak samag kwestig wyswietlania bitmap z kanatem alfa. W GDI istnieje
przeznaczona do tego funkcja AlphaBlend (). Ma ona prototyp podobny w swej postaci
do znanej z operacji na bitmapach 24-bitowych funkcji TransparentBlt () - jest ona
bowiem jakby lepsza wersja tej funkcji. Oto i jej deklaracja:

BOOL AlphaBlend (HDC hdcDest,
int nXOriginDest,
int nYOriginDest,
int nWidthDest,
int nHeightDest,
HDC hdcSrc,
int nXOriginSrc,
int nYOriginSrc,
int nWidthSrc,
int nHeightSrc,
BLENDFUNCTION blendFunction);

Rowniez podajemy tutaj pozycje i wymiary zrodtowego i docelowego prostokata. Wynika
stad, ze AlphaBlend () obstuguje takze skalowanie kopiowanego obrazka w docelowym

kontekscie urzadzenia.

Oprécz znanych parametréw mamy jeszcze jeden, bedq strukturg typu BLENDFUNCTION:

struct BLENDFUNCTION

{
BYTE BlendOp;
BYTE BlendFlags;
BYTE SourceConstantAlpha;
BYTE AlphaFormat;
bi

Mimo ze widzimy tu cztery pola, swoboda wypetniania tej struktury jest praktycznie
zadna, jako ze trzy z nich muszg miec jedynie stuszne wartosci domysine, a czwarte
(sourceConstantAlpha) daje sensowny efekt alpha blendingu pikseli tez tylko przy

jednej okreslonej wartosci.

Wszystkie te poprawne wartosci przedstawia tabela:

pole | wartoséé
BlendOp AC_SRC_OVER
BlendFlags 0
SourceConstantAlpha 255
AlphaFormat AC SRC ALPHA

Tabela 69. Wiasciwe wartosci p6l struktury BLENDFUNCTION

Poprawne wywotanie funkcji AlphaBlend () wyglada wiec na przykfad tak:

const BLENDFUNCTION BF = { AC _SRC OVER, 0, 255, AC SRC_ALPHA Y
AlphaBlend (hdcEkran, 0, 0, 100, 100,
hdcPamiec, 0, 0, 100, 100, BF);

Niestety, efekty zastosowania tej funkcji nie sg zwykle zadowolajgce - wynikowy obrazek

ma zazwyczaj zbyt duzy kontrast. Procedura uzywa bowiem do blendingu tradycyjnego
wzoru:

C=a C, +(1—a)(N?d

Windows GDI 577

gdzie o to oczywiscie wartos¢ kanatu alfa obrazka zrédiowego, a 6, C,iCato kolory:
wynikowy, zrédfowy oraz istniejgcy na obrazku docelowym. Wszystkie kanaty RGB oraz
alfa muszg tu by¢ znormalizowane, tzn. miesci¢ sie w przedziale wartosci od 0 do 1.

Chcac znormalizowac bajtowa reprezentacje koloru, powinniSmy wartos¢ kazdego
kanatu podzieli¢ zmiennoprzecinkowo przez 255.

Jak wida¢, rownanie interpoluje kolory w sposdb liniowy, wiec efekty mogg by¢ nieco
~poszarpane”. Dlatego tez lepiej uzy¢ przyblizenia kwadratowego:

~ ~ 2 ~ 2
Cz\/a-Cs +(1-a)-Ca .
Jezeli zas chcemy zastosowac taki blending w praktyce, to piszemy np. taka funkcje:

// makro wyiuskujace wartos$é kanatu alfa z piksela ARGB
#define GetAValue (argb) (BYTE) ((argb) >> 24)

// struktura zawierajaca znormalizowane wartosci ARGB
struct ARGB { float a, r, g, b; };

// -—— funkcja wykonujaca taczenie alfa z interpolacja kwadratowg --------

void AlphaBlending (HDC hdcSrc, POINT ptSrc,
HDC hdcDest, POINT ptDest, SIZE cSize)
{
COLORREF clSrc, clDest, clResult;
ARGB argbSrc, argbDest, argbResult = { 255, 0, 0, 0 };

// kopiujemy piksel po pikselu

for (unsigned i = 0; i <= cSize.cx; ++1)
for (unsigned j = 0; j <= cSize.cy; ++J)
{

/* pobieramy kolory 1 normalizujemy Jje */

// obrazek zrédilowy
clSrc = GetPixel (hdcSrc, ptSrc.x + i, ptSrc.y + J);
argbSrc.a = GetAValue (clSrc) / 255.0f;

argbSrc.r = GetRValue(clSrc) / 255.0f;
argbSrc.g = GetGValue (clSrc) / 255.0f;
argbSrc.b = GetBValue(clSrc) / 255.0f;

// obrazek docelowy
clDest = GetPixel (hdcDest, ptDest.x + i, ptDest.y + J);
argbDest.a = GetAValue (clDest) / 255.0f;

argbDest.r = GetRValue (clDest) / 255.0f;
argbDest.g = GetGValue (clDest) / 255.0f;
argbDest.b = GetBValue (clDest) / 255.0f;

/* wyliczamy kolor wynikowy */

// kanal czerwony
argbResult.r = sqrtf(argbSrc.a * argbSrc.r * argbSrc.r
+ (1 - argbSrc.a)
* argbDest.r * argbDest.r);

// kanal zielony

578 Windows API

argbResult.g = sqrtf(argbSrc.a * argbSrc.g * argbSrc.g
+ (1 - argbSrc.a)
* argbDest.g * argbDest.qg);

// kanal czerwony
argbResult.b = sqgrtf(argbSrc.a * argbSrc.b * argbSrc.b
+ (1 - argbSrc.a)
* argbDest.b * argbDest.b);

// przeliczamy na format 0..255

clResult = RGB(argbResult.r * 255,
argbResult.g * 255,
argbResult.b * 255);

/* ustawiamy kolor piksela w obrazku docelowym */
SetPixelV (hdcDest, clResult);

}

Poniewaz jednak sg to dziatania na pojedynczych pikselach, nie nalezy oczekiwac wielkiej
szybkosci. Zawsze efektywniejsze bedq sprzetowe wspomagania taczenia alfa w
nowoczesnych kartach graficznych, ktoérych jednak nie obstuguje GDI. Aby stosowac
wydajny alpha blending, trzeba uzy¢ lepszej biblioteki graficznej, jak np. DirectX.

Rysowanie po bitmapie

Prezentacja gotowej bitmapy nie jest jedyng czynnoscia, jakg mozemy wykonac na
obrazie rastrowym w Windows GDI. Zupetnie poprawne jest przeciez zwyczajne
rysowanie po powierzchni tejze bitmapy przy pomocy wszystkich znanych funkcji
interfejsu graficznego.

Dlaczego tak mozna? Przypomnijmy sobie, ze podczas przygotowywania bitmapy
tworzymy dla niej osobny (pamieciowy) kontekst urzgdzenia. Nastepnie wigzemy jq z
tym kontekstem, wobec czego nasza bitmapa staje sie dla niego ptétnem. Zas ptotno,
jak wiemy, jest tym miejscem, gdzie wysitki rysunkowe poczynione w kontekscie
urzadzenia dajg widoczny skutek. Wynika stad, ze:

Rysowanie w pamieciowym kontekscie urzadzenia powoduje modyfikacje
bitmapy, ktdrg z nim zwigzalismy.

Nie widzimy rzecz jasna bezposrednich efektow funkcji graficznych wywotywanych dla
pamieciowego kontekstu. Jest tak, bo kontekst ten z samej nazwy nie mozetego
zapewnié: jest on tylko pomocniczym tworem rezydujacym w pamieci operacyjnej, nie
odnosi sie do zadnego fizycznego urzadzenia.

Tym niemniej potrafilibysmy zobaczy¢ efekty swej pracy - wystarczy tylko skorzystac z
poznanych w poprzednim akapicie technik transferu bitow miedzy kontekstami. Stosujac
BitBlt (), StretchBlt () CzZy TransparentBlt () mozemy zaprezentowac uzytkownikowi
dynamicznie wygenerowang bitmape w identyczny sposéb, w jaki pokazujemy obrazek
wczytany z pliku i pozostawiony bez zmian. Daje to spore mozliwosci tworzenia
elementow grafiki w czasie dziatania programu, a nastepnie ich wielokrotnego
wykorzystywania.

Tekst

Geometria geometrig, bitmapy tez sq wazne, ale zadna biblioteka graficzna nie moze
obyc¢ sie bez chocby prostych mozliwosci wyswietlania tekstu. Potencjat Windows GDI jest
w tym wzgledzie wiecej niz duzy: interfejs ten pozwala nie tylko na wielorakie

Windows GDI 579

wypisywanie tancuchdéw znakoéw, ale tez na szeroko zakrojong zmiane jego rozmiaru czy
wygladu. Obstuguje bowiem formatowanie za pomocqg czcionek (ang. fonts).

W tej sekcji przyjrzymy sie obu tym kwestiom wykorzystania tekstu w GDI. Zobaczymy
wiec, jak prezentowac napisy w kontekscie urzadzenia oraz w jaki sposob pracowac z
czcionkami.

Wypisywanie tekstu

Pisanie tekstu na ekranie jest czynnoscig tak starg, jak samo programowanie. Pierwszy
program, jaki byt zaprezentowany w tym kursie, robit nic innego jak wtasnie wypisywanie
tekstu przy pomocy strumienia wyjscia. Podobnie, pierwsza aplikacja dla Windows
rowniez pokazywata nam komunikat, tyle ze korzystata z funkcji WinAPI - MessageBox () .
Mozna wiec powiedzie¢, ze znowu zataczamy koto i wracamy do zagadnienia oméwionego
juz wielokrotnie. Ale sg to tylko pozory: uzywanie std: :cout Czy MessageBox () hie moze
sie bowiem réwnac z mechanizmami GDI stuzacymi do wys$wietlania tekstu. Dla nich
napis jest bowiem kolejnym prymitywem, na ktérym mozna wykonywaé wszlkiego typu
operacje graficzne. Zmiana potozenia, koloru czy wreszcie czcionki jest tu catkiem
naturalna, podczas gdy w stosowanych przez nas dotad narzedziach tekstowych -
zupetnie niemozliwa.

Windows GDI pozwala zatem na znacznie bardziej elastyczne postugiwanie sie tekstem.
Poznawanie mozliwosci biblioteki w tym zakresie musimy jednak zacza¢ od podstaw.
Zobaczymy najpierw, w jaki sposdb wypisuje sie tekst w domysinych ustawieniach, a
dopiero potem zajmiemy sie zmiang jego parametréw - z czcionkg na czele.

Proste wyswietlanie

By¢ moze pamietasz funkcje Textout (), ktérej uzytem kiedys$ jako przyktadu podczas
omawiania odswiezania okna. Jesli nie, nic straconego - teraz wtasnie przypomnimy jg
sobie i opiszemy doktadniej.

Istniejq tez funkcje: TabbedTextOut () oraz ExtTextOut (). Pierwsza z nich pozwala
wypisac tekst z uwzglednieniem pozycji zdefiniowanych tabulatoréw, zas druga potrafi
m.in. zmieni¢ odlegtosci miedzy znakami napisu.

Funkcja Textout ()

Rozpoczniemy oczywiscie od prototypu:

BOOL TextOut (HDC hdc,
int nXStart,
int nYStart,
LPCTSTR lpString,
int cbString);

Kolejne parametry nie powinni ci chyba sprawi¢ ktopotu. hdc to kontekst urzadzenia, w
ktérym zostanie wypisany wypisany tekst. Napis podajemy w parametrze 1pString -
zwrd¢ uwage, ze nie musi to by¢ tancuch znakow w stylu C (zakonczony zerem),
poniewaz funkcja chce jeszcze jego dtugosci (liczby znakéw) w parametrze cbString.
Dlatego tez jezeli uzywamy tancuchdw std: :string, to nie ma znaczenia, czy
skorzystamy z ich metod ¢ _str () czy data (). W innych funkcjach WinAPI trzeba zawsze
stosowac te pierwsza.

Pozycja tekstu

Dwa pozostate parametry, nxStart i nyStart, okreslajg pozycje tekstu (punkt
referencyjny) w bitmapie kontekstu urzadzenia. Interpretacja tych wartos$ci moze by¢

580 Windows API

rozna; domysinie oznaczajg one wspotrzedne lewego gérnego rogu najmniejszej obwiedni
tekstu. Mozna to aczkolwiek zmieni¢ przy pomocy funkcji SetTextAlign () :

UINT SetTextAlign (HDC hdc, UINT fMode) ;

Dopuszcza ona kilka rodzajéw flag, okreslajacych odpowiednie potozenie punktu
referencyjnego w stosunku do prostokata otaczajgcego tekst. Jeden ich rodzaj
manipuluje tymze punktem w poziomie, drugi w pionie; trzeci rodzaj méwi jeszcze, czy
aktualna pozycja pidéra ma sie przesunac¢ w punkt referencyjny (nXstart, nyStart) po
wywotaniu Textout (). Do funkcji mozemy podac co najwyzej jedng flage kazdego
rodzaju.

Wszystkie te flagi funkcji setTextalign () podaje ponizsza tabela (podkresleniem
zaznaczytem wartosci domysine):

rodzaj flag flaga znaczenie
. . TA LEFT punkt referencyjny po lewej stronie tekstu
cja ma — : .
putfl?tflyréfe‘:grzr?yjnego TA CENTER punkt referencyjny na srodku tekstu
TA RIGHT punkt referencyjny po prawej stronie tekstu
. TA TOP punkt referencyjny na goérze tekstu
n o . - :
pu:fl?tflyféie‘:-;(;wc‘;l%aego TA BASELINE | punkt referencyjny na linii bazowej**’ tekstu
TA BOTTOM punkt referencyjny na dole tekstu
aktualizacja TA_UPDATECP | pozycja jest brana pod uwage i uaktualniana
pofozenia piora TA NOUPDATECP pozycja pidra nie jest brana pod uwage

Tabela 70. Flagi bitowe funkcji SetAlignText()

Flaga Ta UPDATECP sprawia, ze funkcja TextOut () ignoruje parametry nxStart i
nYStart, @ zamiast tego wypisuje tekst w punkcie referencyjnym biezacej pozycji piora.
Moze tez jego potozenie: przy TA LEFT ustawi je po prawej stronie tekstu, a przy

TA RIGHT - po lewej.

Przyktad wykorzystania Textout ()

Funkcje Textout () wykorzystywali$my juz pare razy, ale nie zaszkodzi przypomniec jej
zastosowania:

std::string strTekst = "Hello world!";

// wypisanie tekstu w lewym gbérnym rogu np. okna
TextOut (hdc, 0, 0, strTekst.c str(), strTekst.length());

// pokazanie tekstu w prawym dolnym rogu ekranu

HDC hdcEkran = GetDC (NULL) ;

SetTextAlign (hdcEkran, TA RIGHT | TA BOTTOM) ;

TextOut (hdcEkran,
GetSystemMetrics (SM _CXSCREEN), GetSystemMetrics (SM CYSCREEN),
strTekst.c str(), strTekst.length());

ReleaseDC (NULL, hdcEkran);

Szczegdlnie drugi przyktad jest interesujacy. Uzyte w nim wywotania funkcji
GetSystemMetrics () zwracajg wymiary ekranu, czyli rozdzielczo$¢ monitora.

Bardziej wyrafinowany sposob

Nieco wiekszg kontrole nad wypisywaniem tekstu oferuje funkcja DrawText () :

Nl N\,

47 Linia bazowa jest linig, ponizej ktérej leza ,ogonki” od liter *p’, 'y’ itd. Mozna ja utozsamiaé z pionowym
$rodkiem tekstu, cho¢ troche obnizonym.

Windows GDI 581

int DrawText (HDC hdc,
LPCTSTR lpString,
int nCount,
LPRECT lpRect,
UINT uFormat);

Od razu spostrzezemy, ze w nie ma w niej parametréw odpowiedzialnych bezposrednio
za pozycje wypisywanego tekstu. Zamiast tego mamy prostokat 1pRect, ktory,
najogodlniej méwigc, otacza tekst i pozwala na jego wyréwnywanie do swoich krawedzi.
Za to wyréwnywanie, a takze za kilka innych opcji, odpowiada parametr uFormat. Moze
on przyjmowac zestaw paru flag bitowych. Nie podam ich wszystkich tutaj, ale opisze
kilka kwestii z nimi zwigzanych.

Co do znaczenia pozostatych parametréw nie mam nic odkrywczego do powiedzenia.
1lpString to tekst, ktéry wypisujemy, nCount jest jego diugoscia, a hdc oznacza
docelowy kontekst urzadzenia.

Bardziej zaawansowana wersja tej funkcji nosi nazwe DrawTextEx (). Potrafi ona nie tylko
ustawiac tabulatory, ale tez okresla¢ marginesy. Znajdzmy jeszcze pare podobnych
funkcji, a bedziemy bez problemu napisa¢ wtasny edytor tekstu ;-)

Wymiary prostokata okalajgcego

W najprostszym przypadku mozemy przyjac, ze pola left i top prostokata 1pRect
oznaczajg lewy gorny rég obramowania napisu. Mogtyby one by¢ odpowiednikiem
parametrow nxsStart i nYStart funkcji Textout ().

Mogtyby - ale nie do kofca. brawText () bierze bowiem pod uwage caty podany jej
prostokat, sprawdzajac, czy tekst zmiesci sie w nim catkowicie. Jezeli tak nie bedzie, jego
~Wystajaca” czesc zostanie przycieta, zatem liczba faktycznie wypisanych znakéw (wynik
funkcji) bedzie mniejsza od dtugosci napisu.

Mozemy zmieni¢ to domysine zachowanie: wystarczy podac flage DT NOCLIP w
parametrze uFormat. Przycinanie nie bedzie woéwczas dokonywane, a ponadto sama
czynnos¢ rysowania tekstu przebiegnie szybciej.

Alternatywnie, mozemy zapytac funkcje brawText () o prawidlowe wymiary prostokata.
Aby to uczyni¢, nalezy podac¢ jej flage bT CALCRECT. Takie wywotanie jest odrobine
mylace, poniewaz obecnos¢ tej flagi powoduje, ze nie jest dokonywane zadne
wypisywanie tekstu. Funkcja oblicza po prostu wymiary prostokata dla tekstu i zapisuje w
strukturze o wskazniku lpRect.

Dopiero nastepne wywotanie funkcji powinno dokonac¢ wyrysowania tekstu - w nim nie
dotaczamy juz flagi DT CALCRECT do ostatniego parametru.

Wyréwnanie tekstu

A w zasadzie to po co mi ten caty prostokat 1pRect?...” Stuszna uwaga. Ow prostokat
jest jednak bardzo przydatny w momencie, gdy chcemy wyréwnac tekst do krawedzi
jakiegos prostokatnego zakresu rysunku. Moze to by¢ chociazby prostokat obszaru
klienta okna albo tez figura narysowana przed chwilg za pomoca funkcji Rectangle ().

O czymkolwiek bysmy nie méwili, wyréwnanie tekstu do brzegéw (lub srodka) prostokata
jest nadzwyczaj proste. Kontroluje je zbior szesciu flag - po trzy na rozmieszczenie w
pionie i poziomie. Przedstawia je ta oto tabelka (podkreslenie oznacza flage domysing):

kierunek flaga wyréwnanie

DT LEFT do lewej krawedzi
poziomy | DT CENTER | do poziomego $rodka
DT RIGHT do prawej krawedzi

582 Windows API

kierunek | flaga | wyréwnanie
DT TOP do godrnej krawedzi
pionowy | DT VCENTER | do pionowego srodka
DT_BOTTOM | do dolnej krawedzi

Tabela 71. Flagi wyréwnania tekstu funkcji DrawText()

Musimy aczkolwiek wiedzie¢, ze zastosowanie wyréwnania pionowego innego niz DT TOP
wymaga podania jeszcze flagi DT SINGLELINE. W takim wypadku wypisywany tekst nie
moze by¢ podzielony na wiersze.

Ilustracjg skutkow zastosowania kazdej z 9 mozliwych kombinacji tych flag jest ponizszy
rysunek:

LT TOE | oT TOE | {1 | DT _TOPR |
DT_LEFT | DT_VCENTER | . DT_RIGHT| :
.
E ﬁ i
K DT_VCENTER| DT VCENTER | ipr vcenter| &
i | DT_LEFT | DT CENTER i {| pr_RIGAT| B iH
5 f - I 1
ﬂ mafd A aAAAA A aAEAASA AR R aAa At sadaRad A e A AAE AR ad daRaaaadaafaana anasadeaaasannanaanananaanann ey =1 "l
: a
DT_BOTTOM | DI_BOTTOM | | i DT_BOTTOM
DT_LEFT | DT_CENTER | {| DT_RIGHT
S-S ¢ "'-D-T;E-EHT-ER-": L. A
DT BOTTOM

Rysunek 27. Wyroéwnanie tekstu w prostokacie funkcji DrawText()

Mozna na nim tatwo zauwazy¢, ze funkcja DrawText () potrafi wyréwnywac tekst
podobnie, jak czynig to zaawansowane edytory tekstu w komorkach tabel.

Dzielenie na wiersze

Przewaga DrawText () ujawnia sie takze w tym, iz funkcja ta potrafi dzieli¢ wyswietlany
tekst na wiersze. Jezeli nie podamy jej flagi DT SINGLELINE, to ztamie ona nasz napis na
znakach powrotu karetki (' \r', kod 0x0D) oraz konca linii (' \n', kod 0x02). Niepodanie
flagi DT SINGLELINE wyklucza aczkolwiek uzycie wyréwnania w pionie innego niz DT TOP.

DrawText () potrafi jednak wiecej. Nie tylko interpretuje odpowiednio ustalone przez nas
miejsca tamania wierszy, ale tez potrafi samodzielnie zaja¢ sie podziatem na linijki.
Podajac jej znacznik DT WORDBREAK sprawimy, ze zostanie od podzielony tak, aby zaden
wyraz nie przekraczat prawej krawedzi prostokata 1prect. Jezeli miatoby sie tak stac,
ktopotliwe stowo zostanie w catosci przeniesione do nowej linijki. Miejmy na uwadze, ze
powoduje to zwykle rozrost tekstu w pionie.

Przy obecnej fladze DT WORDBREAK nadal mozemy tez wstawi¢ reczny podziat linijki:
nalezy wtedy uzy¢ kombinacji dwéch wspomnianych wczesniej znakdw podziatu (czyli
sekwencji "\r\n").

Windows GDI 583

Nie trzeba chyba dodawac, ze flagi DT SINGLELINE i DT WORDBREAK wzajemnie sig
wykluczajq i nie mogg wystapi¢ jednoczesnie.

Ustawienia tekstu

Teraz wiemy juz catkiem sporo na temat metod wypisywania tekstu i ta wiedza nam
chyba wystarczy. Zajmijmy sie wiec zmiang wygladu wyswietlanych liter. Na poczatek
poznamy te ustawienia tekstu, ktdre nie wymagajg uzycia obiektoéw czcionek. Jest to:
kolor tekstu, ustawienia tta oraz odstepy miedzyznakowe.

Kolor

W wiekszosci aplikacji Windows postugujacych sie tekstem jego kolor wybieramy czesto
w tym samym oknie, co czionke. W GDI kolor tekstu jest jedng kwestig zupetnie odrebng
od obiektu czcionki. Kontroluje go bowiem ustawienie kontekstu urzadzenia, a te mozna
zmienia¢ poprzez funkcje setTextColor ():

COLORREF SetTextColor (HDC hdc, COLORREF crColor);

W parametrze crColor podajemy rzecz jasng nowg barwe tekstu. Wptynie ona na
wszystkie nastepujace dalej w kodzie wywotania funkcji Textout (), DrawText (), itp.
Stary kolor otrzymujemy jako wynik wywotania SetTextColor ().

Tto

Jezeli probowates wypisac jakis tekst w oknie o domysinym kolorze (COLOR WINDOW), na
pewno zorientowates sie, ze jest on otoczony biatym prostokgtem. Biel jest domysinym
kolorem tta w Windows GDI, ktory mozemy oczywiscie zmienié. Stuzy do tego funkcja
SetBkColor () :

COLORREF SetBkColor (HDC hdc, COLORREF crColor);

Dziala ona analogicznie jak setTextColor (). W opisanej przed chwilg wywotalibysmy ja
zapewne w takiej formie:

SetBkColor (hdcOkno, GetSysColor (COLOR WINDOW)) ;

W ten sposdb ustawilibysmy kolor tta tekstu na zgodny z kolorem okien Windows - biate

tlo pod napisem zniknetoby!*8,

Lepiej jednak nie polegac¢ na dopasowywaniu koloréw, szczegdlnie ze zupetnie nie
sprawdza sie przy pisaniu po niejednolitej powierzchni. W takim wypadku rozsadniejsze
jest uczynienie tta catkowicie przezroczystym. Pozwala na to funkcja setBkMode () :

int SetBkMode (HDC hdc, int iBkMode) ;

Mozemy jej podac jedng z dwdch statych. Domysina 0PAQUE czyni tto widocznym i
powoduje jego zamalowanie przy pomocy koloru tta. Druga mozliwo$¢ to TRANSPARENT -
w tym ustawieniu tto nie jest wyswietlane i zwykle jest to bardziej pasujgca nam
ewentualnosé.

Ustawienia tta modyfikowane przez setBkColor () i SetBkMode () majg wptyw nie tylko
| na tekst, lecz takze na wypetnianie przerw pomiedzy liniami w niektérych stylach piér
oraz na tto pedzli deseniowych.

148 Do petni szczedcia musieliby$my jeszcze odrysowywaé okno w reakcji na komunikat WM _SYSCOLORCHANGE.

584 Windows API

Odstepy miedzy znakami

Ostatnim ustawieniem tekstu sg odstepy miedzy poszczegdlnymi znakami
prezentowanych napiséw. Standardowo Windows GDI nie wstawia zadnego dodatkowego
odstepu, poza tym zdefiniowanym w aktualnej czcionce. Mozemy to jednak zmienic¢ za
pomocqg funkcji SetTextCharacterExtra():

int SetTextCharacterExtra (HDC hdc, int nCharExtra);

Zwazmy, ze pomimo typu drugiego parametru (int), nadmiarowy odstep pomiedzy
znakami moze byc¢ tylko wiekszy niz domysine zero. Jezeli podamy tutaj liczbe ujemng
(chcac zapewne Scisngc litery napisu), Windows zastosuje bezwzgledng wartosé
przekazanego argumentu. Dziwne, ale prawdziwe.

Czcionki

Zaawansowane opcje formatowania tekstu sg zwigzane przede wszystkim z czcionkami.
Windows GDI zawiera mnostwo mozliwosci kontroli tego aspektu tekstu; zajmiemy sie
nimi w tym rozdziale.

Typy czcionek

Zanim przejdziemy do praktycznego wykorzystywania réznych czcionek, powinnismy
doktadnie wiedzie¢, o czym mowimy. Odpowiedzmy wiec sobie na pytanie: Czym jest
czcionka?

Czcionka (ang. font) jest elektroniczng postacig pisma, czyli zestawem obrazkow
(gliféw) reprezentujacych poszczegolne znaki.

Czcionki (zwane tez krojami pisma) decydujg wiec o ksztatcie liter i cyfr, zatem w
najwiekszym stopniu wptywajg na ich wyglad. Wybdr odpowiedniej czcionki jest bardzo
wazny dla czytelnosci dokumentu czy nawet zwyktego komunikatu na ekranie.

Jezeli chodzi o podziat komputerowych czcionek, to mozna wsrdd nich wyrdznié:
> czcionki zawierajace zestawy znakow alfanumerycznych, wsréd ktédrych mamy:
v czcionki imitujace druk, czyli nasladujace tradycyjne czcionki zecerskie.
Wsrod nich mozemy jeszcze rozgraniczyc:
x czcionki szeryfowe (franc. serif) - w tych krojach skrajne punkty
liter sq zakoniczone matymi, prostopadtymi liniami -
tzw. szeryfami. W dtuzszym tekscie szeryfy wyznaczajg bazowq
linie pisme, co niektérzy uwazajg za utatwienie w czytaniu.
Przykfadami znanych czcionek szeryfowych sg: Times New Roman,
Garamond, Courier New, Sylfaen, Batang
x czcionki bezszeryfowe (franc. sans serif) nie posiadajg szeryfow.
Linie znakéw konczg sie w nich swobodnie.
Do najbardziej znanych czcionek tego rodzaju nalezq: Tahoma,
Verdana, Trebuchet, Arial
v" czcionki nasladujace pismo odreczne. Litery w tych czcionkach sg
wyposazone w rézne ,zawijasy”, imitujace naturalne pismo reczne. Czesto
tez wystepuja w nich tzw. ligatury, czyli czesto wystepujace potaczenia
dwoch znakow, zapisane inaczej niz dwa osobne glify (np. ‘ff’, ‘ffl’, \ffi’, a w
polskim ‘H').
Przyktadami takich czcionek s@: "kbo-ow, Qivstream, Galleo, Dymaxicn Seript,
Monotype Corsiva, cAristorerat
v/ czcionki zawierajq litery i cyfry o specjalnych, celowo wykonanych
ksztattach. Mogg one nasladowat litery ze znakéw popularnych marek
(np. Coca Cola czy Disney) lub tez by¢ catkowici oryginalnymi dzietami

Windows GDI 585

Takimi czcionkami sg np.: ripst opder, CNN, PEPSI, AVWNYVYVVYY,
NASALIZATION, @ur BDfseep Scefpr, SSERPMWI
> czcionki bez znakéw alfanumerycznych, wsrdod ktorych mamy:

v czcionki zawierajgce rézne, czesto uzywane symbole, jak chocby litery
greckie czy symbole matematyczne.
Najbardziej znang czcionka tego typu jest Symbol (Zyupoi)

v czcionki, ktére posiadajq zbidr réznych obrazkdw, uzywanych najczesciej w
celach zdobniczych.
Do najpopularniejszych czcionek z tej grupy naleza trzy kroje Wingdings
(#HMYH XA Yr, O0QPmOO=® [, lo>®le->V «) oraz Webdings
(a9 O@E?)

Powyzszy podziat jest w wielu miejscach tozsamy z powszechnym terminem rodziny
czcionki (ang. font family).

Z punktu widzenia intensywnego uzytkownika czcionek wazny jest jednak inny podziat,
zwigzany z podatnoscig znakdéw na skalowanie. Chodzi tu o wyrdznienie krojow
proporcjonalnych i nieproporcjonalnych.

Proporcjonalne

Czcionki proporcjonalne charakteryzujq sie tym, ze ich znaki sgq opisane jako rysunki
wektorowe. Nie zawierajg wiec map bitowych dla poszczegdlnych gliféw, lecz figury
geometryczne i réwnania matematyczne, ktére je definiuja.

Zalety takiego podejscia wydajg sie oczywiste: podobnie jak grafika wektorowa, czcionki
proporcjonalne mogg byc¢ skalowane do dowolnych rozmiaréw bez widocznej utraty
jakosci. Bez problemy mozna nimi pisac tekst zarowno w rozmiarze 10, jak i 72 punktow.
Co wiecej, wygladajg one identycznie w wydruku mozaikowym, jak i na ekranie monitora.

Wsrod czcionek proporcjonalnych najpopularniejsze sg czcionki TrueType (opisywane
krzywami Béziera) oraz Type 1.

Pewnym rodzajem fontdéw proporcjonalnych sa czcionki kreskowe (ang. stroke fonts). Ich
znaki sktadajq sie wytacznie z linii prostych, poprawdzonych miedzy skonczong liczbg
punktow. Takie czcionki teoretycznie moga by¢ takze skalowane do dowolnych
rozmiarow, jednak przy matych wielkosciach ich czytelnos$c¢ jest niewielka, a przy
wiekszych widac¢ , kanciatos¢” krawedzi znakow.

Czcionki kreskowe sg uzywane gtéwnie przez drukarki wektorowe, tj. plotery.

Nieproporcjonalne

Historycznie pierwszym rodzajem czcionek sg fonty nieproporcjonalne. Stanowity one
zestawy kilkudziesieciu matych bitmap (stad inna nazwa - czcionki bitmapowe),
odpowiadajgcych danemu stylowi pisma i jego wielkosci. Takie czcionki wystepowaty
czesto w wielu kopiach, gdyz musiaty zapewnia¢ oddzielne glify dla kazdego rozmiaru
znakow.

Mozna oczywiscie uzyskac wielkosci liter nieuwzglednione przez tworce czcionki rastrowej
(kolejna nazwa tych fontoéw :D), ale bedzie to operacja rozciggania bitmapy, co jak
wiemy, zwykle nie daje zadowalajacych rezultatow. Dlatego tez czcionki
nieproporcjonalne wychodzg z uzycia, znajdujac wykorzystanie chyba tylko w konsolach
tekstowych.

Praca z czcionkami GDI

W Windows GDI czcionkami postugujemy sie dokfadnie tak, jak piérami czy pedzlami.
Najpierw wiec tworzymy obiekt czcionki, wybieramy go w kontekscie urzadzenia,
wykonujemy dziatania graficzne (tutaj: wypisywanie tekstu), a nastepnie zwalniamy
obiekt.

586 Windows API

Obiektom czcionek odpowiadajgq uchwyty typu HFONT.

W tym akapicie przyjrzymy sie kazdej z tych czynnosci, koncentrujac najwiekszg uwage
na tworzeniu fontu.

Tworzenie obiektu czcionki

Utworzenie obiektu czcionki (tzw. czcionki logicznej, ang. logical font) zajmie nam
raczej duzo miejsca. Bedzie tak choc¢by ze wzgledu na prototyp funkcji CreateFont (),
ktoéra stuzy do wykonania tego zadania:

HFONT CreateFont (int nHeight,
int nWidth,
int nEscapement,
int nOrientation,
int fnWeight,
DWORD fdwItalic,
DWORD fdwUnderline,
DWORD fdwStrikeOut,
DWORD fdwCharset,
DWORD fdwOutputPrecision,
DWORD fdwClipPrecision,
DWORD fdwQuality,
DWORD fdwPitchAndFamily,
LPCTSTR lpszFace);

Mozesz przeciera¢ oczy, mozesz wygladac¢ za okno, mozesz sie uszczypnga¢ lub zrobic
cokolwiek innego, ale ten prototyp nie zniknie, bo on wcale nie jest sennym

koszmarem :D Naprawde funkcja ta ma az czternascie parametrow - to prawdopodobnie
jedna z rekordzistek w Windows API pod tym wzgledem.

Cdz wiec pocza¢ z taka gigantyczng funkcjq?... Moge cie tylko pocieszy¢ tym, iz
zdecydowana wiekszos$¢ parametréw da sie ustawi¢ na sensowne wartosci domysine,
prawidtowe w wiekszosci przypadkow. W praktyce wiec najlepiej bedzie opakowac
funkcje createFont () W co$ bardziej dla nas przyjaznego: wtasng funkcje czy nawet
klase.

Abys$ jednak mégt to uczyni¢, powinienes$ przynajmniej spojrze¢ na znaczenie wszystkich
parametrow oryginalnej funkcji. W tym przypadku stosowana tabelka bedzie wyjatkowo
pomocna:

typ parametry opis

Podajemy tu wysokos¢ znakéw w tworzonej czcionce
logicznej. Miara ta nie jest jednak wyrazona w
punktach typograficznych, ale w jednostkach

logicznych - przy najczestszym trybie mapowania
MM TEXT oznacza to wysokos¢ w pikselach.

nHeight jest liczbg typu int, poniewaz moze by¢
zaréwno dodatnig, jak i ujemng wartoscig:
> wartos¢ dodatnia oznacza, ze podajemy
wysokosc¢ tzw. komorki znaku (ang. character
cell); jest to prostokat, w ktérym twdrca
czcionki zmiecit wszystkie znaki kroju
> wartos¢ ujemna wskazuje, ze bezwzgledna
liczba oznacza wysokos¢ rzeczywistego znaku,
zwykle mniejsza niz wysokos$¢ jego komorki
» zero oznacza przyjecie przez Windows

int nHeight

Windows GDI

587

typ

parametry

opis

domysinej wysokosci czcionki

Poniewaz wielko$¢ w jednotkach logicznych czy nawet
w pikselach nie jest czasami tym, o co nam chodzi przy
uzywaniu czcionki, cytuje za MSDN formute
pozwalajaca przelicza¢ zadang wysokos¢ znaku w
punktach na piksele (wymagany tryb mapowania
MM TEXT):

nHeight = -MulDiv (nPunkty,
GetDeviceCaps (hdc, LOGPIXELSY), 72);

Zauwazmy jednak, ze jesli chcemy postugiwac fontem
w celach bardziej graficznych, wtedy wysokos$¢ podana
w pikselach nie jest wcale ztym rozwigzaniem.

int

nWidth

Mozemy tutaj podac przecietna szerokos¢ znakéw
tworzonego stylu pisma. W wiekszosci przypadkéw nie
nalezy tutaj zdawac sie na wiasng intuicje lub
przypadek, poniewaz zle dobrana wartos¢ zaburza
aspekt znakdéw (chyba ze jest to celowe).
Dlatego tez najlepiej wpisac tu 0, zostawiajac kwestie
szerokos$ci znakéw samemu systemowi GDI.

int

nEscapement

nEscapement okresla kat nachylenia miedzy bazowa
linig pisma a dodatnig osiag X. Podajemy go, uwaga,
w dziesigtych czesciach stopnia (!) - oznacza to np., iz
wartos$¢ 900 spowoduje pisanie tekstu w kierunku
pionowym w gore.

int

nOrientation

nOrientation jest podobny do poprzedniego
parametru z tym, ze okresla kat nachylenia
poszczegodlnych znakow. Uzywa przy tym tej samej
miary, czyli 1/10 stopnia.

W kompatybilnym trybie grafiki (czyli zdecydowanie
najczesciej, bo domysinie) wartosci nEscapement i
nOrientation powinny by¢ réwne.

Zwykle zarbwno w nEscapement, jak i W nOrientation
podajemy 0, co oznacza pisanie tekstu w poziomie.

int

fnWeight

W tym parametrze podajemy pogrubienie czcionki.
Dozwolone sg tu wartosci od 0 do 1000, przy czym
wieksze liczby oznaczajq grubsze pismo.

Najczesciej stosuje sie tu jednak wartos¢ 400 (lub state
FW NORMAL/FW REGULAR), 0znaczajaca normalng
czcionke, lub 700 (wzglednie Fw_BOLD), odpowiadajacej
zwyktemu pogrubieniu. Powdd jest prosty: w
przypadku czcionek TrueType pogrubienie nie moze by¢
aplikowane dowolnie, gdyz kazdy jego stopiert wymaga
dodatkowego fontu. Zatem podawanie wartosci innych
niz 400 lub 700 bedzie zaokraglane do najblizszych
mozliwych do zrealizowania.

Podanie zera powoduje stworzenia czcionki o0 normalnej
grubosci pisma.

588

Windows API

typ

parametry

opis

DWORD

fdwItalic
fdwUnderline
fdwStrikeOut

Oto sq trzy wartosci BooLowskie, okreslajace
dodatkowe efekty dla czcionki. Jest to odpowiednio:
kursywa (italik), podkreslenie i przekrestenie. Podanie

w tych parametrach TRUE powoduje zastosowanie
efektu, FALSE da przeciwny efekt.

DWORD

fdwCharset

Definiuje zestaw znakow (ang. charset), z jakiego
chcemy korzystaé. Najczesciej wykorzystywanymi
wartosciami sg tu:
> ANSI CHARSET - oryginalny zestaw znakéw ANSI
» OEM CHARSET - zestaw zalezny od systemu
operacyjnego
» SYMBOL CHARSET - zestaw symboli
» DEFAULT CHARSET - domysiny zestaw znakow,
zwykle ANSI

Chcac uzywac polskich liter diakrytycznych, nalezy
skorzystac z zestawu EASTEUROPE CHARSET.

DWORD

fdwOutputPrecision

Ten parametr okresla, jak bardzo serio funkcja
CreateFont () ma traktowac¢ podane jej w nHeight,
nWidth, nEscapement, nOrientation Oraz
fdwPitchAndFamily dane. Wiadomo, ze Sciste
dopasowanie sie do tych parametréow moze albo by¢
niemozliwe, albo powodowac duze znieksztatcenia
wygladu znakodw.

W praktyce ten parametr okresla, czy chcemy
korzysta¢ z czcionek TrueType, czy tez nie. Poniewaz
trudno nie chcie¢ z nich korzystaé¢, wiec w tym polu
wpisuje sie zwykle OUT TT PRECIS.

DWORD

fdwClipPrecision

Tutaj podajemy funkcji, w jaki sposdb tworzona
czcionka ma ulegac¢ przycinaniu (np. w funkcji
DrawText ()). Zwykle nie ma to szczegdlnego znaczenie
i dletego stosujemy tutaj statg CLIP DEFAULT PRECIS.

DWORD

fdwQuality

fdwQuality specyfikuje pozadang jakos$é czcionki.
Mozna tutaj okresli¢, czy na przyktad chcemy
skorzysta¢ z mechanizmu wygtadzania krawedzi
(ang. antialiasing) - wtedy podajemy statq
ANTIALIASED QUALITY.

To pole ma réwniez znaczenie przy mozliwym
skalowaniu czcionek rastrowych. Podajac tu
DRAFT QUALITY pozwalamy na te operacjg, co
aczkolwiek nie musi wygladac zbyt dobrze.
PROOF QUALITY zapobiega takiemu skalowaniu, wiec
tekst pisany fontem bitmapowym moze by¢ mniejszy
niz zaltozony.

Poniewaz jednak obecnie mamy do czynienia gtéwnie z
czcionkami TrueType, parametr ten nie ma zbyt
wielkiego znaczenia. Zazwyczaj podajemy w nim
DEFAULT QUALITY. Wartos¢ lezy w potowie drogi

miedzy $cistym dopasowywaniem sie do parametréw
funkcji (DRAFT QUALITY), a w miare dobrym wygladem
tekstu (PROOF QUALITY) przu uzyciu czcionek

Windows GDI

589

typ

parametry

opis

rastrowych. Dla fontow proporcjonalnych wartos$¢ w
fdwQuality zdaje sie w ogdle nie mie¢ zadnego
Znaczenia.

DWORD

fdwPitchAndFamily

To pole to modelowy przyktad oszczednosci w
przekazywaniu informacji... a moze tylko rozpaczliwa
proba uczynienia prototypu funkcji CreateFont ()
mniej odstreczajacym?...

Niezaleznie od tego, jak jest naprawde, pole
fdwPitchAndFamily stato sie zbiorem dwédch
informacji. taczymy je za pomocq alternatywy bitowej,
czyli operatora |.

Pierwsza dang jest tzw. skok (ang. pitch) czcionki.
Okresla on, czy szerokos$¢ znakow czcionki jest stata
(FIXED PITCH) - jak to jest np. w foncie Courier New -
czy tez zmienna (VARIABLE PITCH) - W wigekszosci
czcionek. Najczesciej stosujemy tu trzecig wartosc
DEFAULT PITCH, CO 0znacza stuszny brak
zainteresowania tym problemem.

Druga wartos¢ precyzuje rodzine czcionki (ang. font
family). Rozsadng domysing wartoscia, z jakiej zwykle
korzystamy, jest tu FF DONTCARE.

LPCTSTR

lpszFace

Dopiero na ostatku mamy ten parametr, ktory
wydawatby sie najwazniejszy. W lpszFace podajemy
bowiem nazwe czcionki, ktérej logiczny obiekt
chcemy stworzy¢.

Mozliwe jest jednak pominiecie tego parametru i
podanie w nim NULL. CreateFont () wykorzysta wtedy
wartosci nadane pozostatym parametrom i wykorzysta

pierwszg napotkang w systemie czcionke, ktéra im
odpowiada.

Tabela 72. Parametry funkcji CreateFont()

Wyjasnienie ostatniego parametru funkcji - 1pszFace - ttumaczy ogdlng ilos¢ parametrow
CreateFont (). Wiekszo$¢ z nich jest bowiem przygotowana na okoliczno$¢ nieobecnosci
w systemie czcionki o nazwie podanej na koncu. W takiej sytuacji dokonana zostanie
proba wybrania alternatywnego fontu, najbardziej pasujacego do pokaznej liczby danych
przekazanych funkcji.
Takie zachowanie rzadko jest pozadane, bowiem nawet najlepsze dopasowanie wykonane
przez komputer nie bedzie rownato sie z oceng estetyczng dokonang przez grafikg czy
chocéby programiste. Dlatego tez lepiej jest zadba¢ o to, aby CreateFont () na pewno
znalazta czcionke, ktorej nazwe podajemy jej w 1pszFace. Mozna to uczyni¢ dwojako:
> korzystajac tylko z tych krojow pisma, ktére sg standardowo dostepne w
Windows. Mamy wtedy gwarancje, ze na kazdym systemie uzytkownika beda one
obecne.
Do standardowych fontdw nalezg: Arial, Courier New, Times New Roman
(wszystkie z wariantami Bold i Italic), Symbol, Fixedsys, System, Terminal,
Courier, MS Serif, MS Sans Serif i Small Fonts. Tylko pierwsze cztery sa
czcionkami TrueType
» dofaczajac do programu kazda uzytq, niestandardowa czcionke i dbajac o to, aby
trafita ona do katalogu Fonts w Windows. Zwykle oznacza to koniecznosc
zapewnienia aplikacji programu instalacyjnego

590 Windows API

Niezaleznie od tego, ktéry sposdb wybierzemy, mozemy zignorowac¢ znaczenie wiekszosci
parametrow CreateFont (). A poniewaz tworcy Windows API wykazali sie zdolnosSciami
profetycznymi i przewidzieli, ze tak postapimy, przygotowali dla nas utatwienie.
Tym udogodnieniem jest funkcja CreateFontIndirect () i struktura LOGFONT, na ktérg
wskaznik jako jedyny parametr przyjmuje owa funkcja. Pola struktury odpowiadajq
natomiast parametrom createFont (). W potaczeniu z faktem, ze wiekszos¢
wspomnianych wartosci domysinych dla parametréw wyraza sie zerami, otrzymujemy
prosty sposdb tworzenia czcionek. Wystarczy bowiem:

» zadeklarowac i wyzerowac (zeroMemory ()) strukture typu LOGFONT

> wypetni¢ tych kilka pol, ktére nas interesujg

> wywotac funkcje CreateFontIndirect (), podajac jej adres struktury

Opierajac sie na tym, mozemy tatwo napisac prostszg wersje funkcji do tworzenia
logicznych fontéw:

HFONT CreatelLogFont (HDC hdcKontekst,
const std::string& strNazwa, unsigned uWysPunkty,
bool bPogrubienie = false,
bool bKursywa = false,
bool bPodkreslenie = false,
bool bPrzekreslenie = false)

if (strNazwa.empty() || strNazwa.size() > 31 || uWysPunkty == 0)
return NULL;

/* tworzymy czcionke */

// deklarujemy i zerujemy strukture LOGFONT

LOGFONT Font;

ZeroMemory (&Font, sizeof (LOGFONT)) ;

// wypelniamy strukture LOGFONT

CopyMemory (Font.lfFaceName, strNazwa.c str(), strNazwa.size() + 1);
Font.lfCharSet = DEFAULT CHARSET;
Font.lfHeight = -MulDiv (uWysPunkty,

GetDeviceCaps (hdcKontekst, LOGPIXELSY), 72);
Font.lfWeight (bPogrubienie ? FW BOLD : FW NORMAL) ;
Font.1lfItalic = bKursywa;
Font.lfUnderline = bPodkreslenie;
Font.lfStrikeOut = bPrzekreslenie;

// wywotujemy funkcje CreateFontIndirect ()
return CreateFontIndirect (&Font);

Patrzac na jej prototyp stwierdzimy, ze obstuguje ona tylko podstawowe efekty tekstowe.
Sg one jednak w wielu przypadkach wystarczajgce. Chcac osiagna¢ bardziej
skomplikowane ustawienia, musimy sami pobawic¢ sie z funkcjg
CreateFont[Indirect] ().

Wybieranie czcionki dla kontekstu urzagdzenia

Przy wigzaniu gotowej czcionki logicznej z kontekstem urzadzenia powtarza sie ten sam
schemat, ktory przerabialiSmy juz dla pior, pedzli i ptocien.

Wybieramy wiec font w kontekscie urzgadzenia, zachowujac jednoczesnie starg czcionke:

HFONT hfntVerdana = CreatelogFont (hdcKontekst, "Verdana", 10);

Windows GDI 591

HFONT hfntStara = (HFONT) SelectObject (hdcKontekst, hfntVerdana);

Wszelkie inne sposoby - vide usuniecie poprzedniej czcionki lub zachowanie stanu
kontekstu - sg naturalnie rowniez poprawne.

Zwalnianie obiektu czcionki

Zwalnianie czcionki po uzyciu nie przynosi zadnych niespodzianek. Ponownie musimy
zatroszczyc¢ sie o to, aby zaréwno nasza, jak i oryginalna czcionka kontekstu zostata
usunieta podczas zwalniania kontekstu urzadzenia.

Musze tu wyjasni¢ mozliwe nieporozumienie. Otéz ,usuwanie czcionki”, o jakim madwi ten
punkt, nie ma nic wspdlnego z fizyczng eksterminacjg pliku .ttf lub .fon, gdzie fizyczne
czcionki rezyduja na dysku. Usuniecie czcionki jest tu tylko usunieciem jej reprezentaciji

- w postaci obiektu Windows GDI - rzeczywisty kroj pisma pozostaje nienaruszony.
i Podobna uwaga moze tez dotyczy¢ bitmap GDI.

Kod usuwajacy czcionke stworzong i wybrang w poprzednim punkcie moze wiec wygladac
tak:

SelectObject (hdcKontekst, hfntStara);
DeleteObject (hfntVerdana);

Jezeli po nim nastgpi usuniecie kontekstu, to oczywiscie czcionka z uchwytem w
hfntStara takze zostanie zwolniona.

Xk k%

Przypomnieniem tej wielokrotnie przypominanej drogi zakoriczymy ten obszerny
podrozdziat. Omoéwitem w nim wszystkie podstawowe prymitywy Windows GDI, ktérych
mozesz uzy¢ do prezentacji wszelkiego rodzaju grafiki w systemie Windows. ZajeliSmy sie
wiec figurami geometrycznymi, bitmapami rastrowymi oraz tekstem i czcionkami.

Na prymitywach nie konczy sie wszakze biblioteka GDI. Wiekszos$¢ z pozostatych jej
mozliwosci nie jest jednak na tyle wazna i interesujace, by poswieca¢ im miejsce w tym
kursie - ktéry nie jest, badz co badz, kursem samego tylko Windows API czy GDI.
Istnieje aczkolwiek jeden mechanizm wart blizszego poznania - to regiony. Przyblizymy
je sobie w nastepnym podrozdziale.

Regiony i przycinanie

Regiony sg elementem GDI kontrolujacym obszar rysowania oraz umozliwiajgcym
wykonywanie niektdrych operacji graficznych.

Region jest zespotem figur zamknietych: prostokatéow, wielokatow i elips.

W Windows GDI regionom odpowiadajg uchwyty typu HRGN. W niniejszym podrozdziale
zobaczymy, jak mozna tworzy¢ regiony i do czego sie one przydaja.

Tworzenie regionow

Proces tworzenia regionu zalezy od tego, jak bardzo ma on by¢ skomplikowany. Dla
prostych obiektow ogranicza sie to do wywofania jednej funkcji, bardziej ztozone regiony
wymagajq nieco wiecej pracy zwigzanej z faczeniem regionéw elementarnych.

592 Windows API

Tutaj zobaczymy zaréwno kreowanie najprotszych, jak i nieco bardziej pokretnych
regiondéw.

Proste regiony

Najprostszy region skfada sie z pojedynczej figury zamknietej. Jego utworzenie oznacza
wywofanie jednej funkcji, bardzo podobnej do tej, ktéra rysuje owg figure w kontekscie
urzadzenia.

Prostokagtny region

Typowym przedstawicielem regiondw jest wariant prostokatny. Za jego utworzenie
odpowiada funkcja CreateRectRgn () :

HRGN CreateRectRgn (int nLeftRect,
int nTopRect,
int nRightRect,
int nBottomRect) ;

Inng mozliwoscig jest tez CreateRectRgnIndirect ():

HRGN CreateRectRgnIndirect (CONST RECT* lprc);

Jak wida¢, obie funkcje przyjmujg te same dane, z tym Ze jedna pobiera je jako cztery
parametry, a druga w postaci struktury RECT.

Wynikiem jest oczywiscie uchwyt do regionu w ksztatcie prostokata o podanych
wymiarach.

Eliptyczny region

Niemal identycznie wygladajq funkcje tworzace regiony eliptyczne:

HRGN CreateEllipticRgn (int nLeftRect,
int nTopRect,
int nRightRect,
int nBottomRect) ;

HRGN CreateEllipticRgnIndirect (CONST RECT* lprc);

Podajemy do nich prostokat okalajacy elipse, ktérej ksztatt przyjmie region. Jest ten sam
mechanizm, jaki mogliSmy zaobserowac¢ w funkcji E11ipse () ; przypomnij sobie dziatanie
tej funkcji, jezeli go nie pamietasz.

Wielokatny region

Region w ksztatcie dowolnego wielokatu jest takze mozliwy do stworzenia. Wystarczy
postuzy¢ sie funkcjg CreatePolygonRgn () :

HRGN CreatePolygonRgn (CONST POINT* lppt,
int cPoints,
int fnPolyFillMode) ;

Jej parametry sg niemal identyczne jak w funkcji Polygon (). Ostatni argument
fnPolyFillMode okresla tryb wypetniania wielokatow, jaki bedzie uzyty do stworzenia
regionu. Obowigzujg tu te same dwie state, jak w przypadku analogicznego trybu -
atrybutu kontekstu urzadzenia. Tak wiec warto$¢ ALTERNATE powoduje, ze czesci
wielokata powstate z przeciecia sie jego bokéow beda wypetniane na przemian, zas
WINDING gwarantuje, ze region bedzie sktadat sie z catkowicie zamknietej figury, bez
zadnych ,dziur”.

Windows GDI 593

tgczenie regionow

Tworzenie prostych regionéw nei bytoby niczym nadzwyczajnym, gdyby nie to, ze
mozemy je ze sobg faczy¢ (ang. combine). To taczenie regiondw jest najwazniejszq i
najpotezniejszg ich cecha.

Do taczenia uzywamy funkcji CombineRgn () :

int CombineRgn (HRGN hrgnDest,
HRGN hrgnSrcl,
HRGN hrgnSrc2,
int fnCombineMode) ;

Tworzy ona kombinacje regiondw hrgnsrcl i hrgnSrc2, zapisujac jg w regionie
hrgnDest. Region ten musi wiec istnie¢, ale sposéb jego utworzenia nie ma znaczenia,
gdyz i tak zostanie on zastgpiony przez potaczenie hrgnSrcl i hrgnSrc2.

W jaki sposdb regiony sg taczone? O tym decyduje czwarty parametr funkcji -
fnCombineMode. Okresla on operacje na regionach hrgnSrcl i hrgnSrc2, w wyniku ktorej
powstanie docelowy region hrgnbDest. Mozliwe dziatania ujmuje tabelka:

stafa nazwa operacji wynik operacji
RGN_AND [iloczyn (cze$¢ wspdlna) | hrgnSrcl mn hrgnSrc2
RGN _OR suma hrgnSrcl U hrgnSrc2
RGN DIFF rdznica hrgnSrcl - hrgnSrc2
RGN_XOR roznica symetryczna | hrgnSrcl @ hrgnSrc2
RGN COPY kopia hrgnSrcl

Tabela 73. Stale operacji taczenia regionéw funkcji CombineRgn(Q)

Potencjalne operacje najlepiej jednak przesledzi¢ na rysunku, np. takim:

RGM_AND RGN_OR

RGN_COPY

KO RGN_DIFF RGN_XOR

Rysunek 28. Laczenie regionéw réznymi operacjami przy pomocy funkcji CombineRgn()

Widzimy na nim, ze skomplikowane regiony mozemy fatwo sktadac z prostszych, a
ponadto mamy petng kontrole nad procesem ich tgczenia.

594 Windows API

Zajmijmy sie jeszcze wartoscig zwracang przez CombineRgn (). Oto sg mozliwe jej
rezultaty:

stata | znaczenie
NULLREGION powstaty region jest pusty
SIMPLEREGION wynikowy region ma ksztatt prostokata
COMPLEXREGION | powstat region o skomplikowanym ksztatcie
ERROR wystapit btad

Tabela 74. Mozliwe wyniki zwracane przez funkcje CombineRgn()

Informujg one nie tylko o powodzeniu lub niepowodzeniu operacji kombinowania, ale tez
daja pewne pojecie na temat jej rezultatu.

Wykorzystanie regionow

Skoro wiemy juz, jak tworzy¢ regiony, dowiedzmy sie, do czego mozemy je wykorzystac.
W tej sekcji zobaczysz zastosowania regiondw w rysowaniu, przycinaniu oraz zmianie
ksztattu okien.

Rysowanie z pomocq regionu

Jako zbiory figur zamknietych, regiony mogg by¢ w rysowaniu. Mozliwe jest ich
wykorzystanie na kilka sposobdw.

Wypetnianie pedzliem

Najprostszg czynnoscig jest wypetnienie obszaru regionu pedzlem, czyli pozostawienie
przezen pewnego rodzaju sladu na bitmapie kontekstu urzadzenia.

Operacje te mozna przeprowadzi¢ na przykfad za pomocg funkcji PaintRgn () :
BOOL PaintRgn (HDC hdc, HRGN hrgn) ;

Uzywa ona pedzla aktualnie wybranego w kontekscie hdc to wypetnienia obszaru, jaki
wyznacza region o podanym uchwycie hrgn. Przyjmuje tez, ze wspotrzedne regionu sg
wyrazone w jednostkach logicznych.

Podobng funkcjg jest Fil1Rgn () :

BOOL FillRgn (HDC hdc,
HRGN hrgn,
HBRUSH hbr) ;

Wida¢ w niej podobienstwo do FillRect (), lecz ma ona nieco wieksze mozliwosci,
poniewaz uzywa regiondw, nie zas prostokgtow. FillRgn () takze wypetnia region
pewnym pedzlem, z tym ze pozwala na podanie w trzecim parametrze. Pedzel ten nie
musi by¢ wiec wybrany w kontekscie urzadzenia hdc. Ponownie, funkcja uznaje, ze
koordynaty regionu zg zapisane w postaci jednostek logicznych.

Obrysowywanie

Regiony maja tez funkcje bedacqg odpowiednikiem FrameRect () - jest to FrameRgn () :

BOOL FrameRgn (HDC hdc,
HRGN hrgn
HBRUSH hbr,
int nWidth,

Windows GDI

595

Dokonuje ona obrysowywania krawedzi regionu, uzywajac do tego pedzla podanego w

int nHeight);

parametrze hbr. Dwa ostatnie argumenty, nWidth i nHeight, 0znaczajgq natomiast
szerokos$c¢ i wysokos¢ linii obramowania.

Oto przyktad, jak mozna narysowa¢ obramowanie regionu sktadajacego sie z dwéch
prostopadtych elips:

/* utworzenie regionu */

// regiony elementarne
HRGN hrgnElipsal = CreateEllipticRgn (0, 30, 90, 60);
HRGN hrgnElipsa2 = CreateEllipticRgn (30, 0, 60, 90);

// kombinacja regiondw
HRGN hrgnRegion = CreateRectRgn (0, 0, 0, 0);
CombineRgn (hrgnRegion, hrgnElipsal, hrgnElipsa2, RGN _OR);

// usuniecie
DeleteObject
DeleteObject

regiondéw elementarnych
(hrgnElipsal);
(hrgnElipsaZ2);

/* obramowanie */

// stworzenie pedzla malujacego na zielono
HBRUSH hbrPedzel = CreateSolidBrush (RGB (0, 255, 0));

// wykonanie

obramowania

FrameRgn (hdcKontekst, hrgnRegion, hbrPedzel, 5, 5);

/* porzadki */

// usuniecie
DeleteObject

// usuniecie
DeleteObject

pedzla
(hbrPedzel) ;

regionu
(hrgnRegion) ;

Wynikiem wykonania powyzszego kodu (przy zatozeniu, ze hdcKontekst jest uchwytem
kontekstu wnetrza okna) bedzie ponizszy obrazek:

Screen 70. Obramowanie regionu

Inwersja kolorow

Ostatnig operacjq z gatunku rysunkowych jest inwersja pikseli kontekstu urzadzenia we
whnetrzu regionu. Wykonuje ja funkcja InvertRgn () :

BOOL InvertRgn (HDC hdc, HRGN hrgn) ;

596 Windows API

Inwersja oznacza negacje bitowg wartosci koloru, tak samo jak w funkcji InvertRect ().
Kolor biaty staje sie wiec czarnym, zielony - karmazynowym, itd.

Uzycie regionu do przycinania

Innym zastosowaniem regiondéw w GDI jest ich uzycie do przycinania.

Przycinanie (ang. clipping) zapewnia, ze zostang wyswietlone tylko te piksele ptoétna
kontekstu urzadzenia, ktére lezag wewnatrz ustalonego regionu - nazywamy go
regionem przycinania (ang. clipping region).

Region przycinania jest wiasnoscig kontekstu urzadzenia, podobnie jak pidro, pedzel,
ptétno i czcionka. Mozemy go pobierac i ustawiaé, aby kontrolowaé¢ wyniki pokazywane
na ekranie.

Poczatkowo region przycinania obejmuje oczywiscie caty obszar rysowania kontekstu
urzadzenia.

Ustawienie nowego regionu przebiega jednak nieco inaczej niz podobne postepowanie z
innymi obiektami GDI. Wyglada bowiem np. tak:

SelectObject (hdcKontekst, hrgnRegion);

Zignorowanie rezultatu funkcji SelectObject () jest tu jak najbardziej mozliwe, gdyz nie
jest nim wcale uchwyt do starego regionu. Kontekst urzadzenia nie wykorzystuje bowiem
obiektu hrgnRegion w sposéb bezposredni, lecz tworzy jego kopie. Ta kopia jest w
catkowitej wiadzy kontekstu urzadzenia - kontekst sam jg zwalnia, gdy nie jest juz
potrzebna, a dzieje sie to chocby wtedy, kiedy ustawiamy inny region przycinania.
Dlatego tez mozemy bezpiecznie zignorowac wartos¢ zwrdcong przez SelectObject ().
Faktycznie nie jest to zaden uchwyt, lecz jedna ze statych, bedacych rezultatami
CombineRgn ().

Innym sposobem ustawienienia regionu przycinania jest funkcja selectClipRgn () :

SelectClipRgn (hdcKontekst, hrgnRegion);

Do niej takze stosuje sie reguta kopiowania regionu i mozliwego zingorowania wartosci
zwracanej.

A co ze zwalnianiem regionéw?... Kod dla tego zadania jest skromniejszy, poniewaz nie
mamy zadnego ,oryginalnego regionu przycinania”, ktéry nalezatoby przywrocic¢
kontekstowi urzadzenia przed jego zwolnieniem. Naszym zadaniem jest tylko usuniecie
tego regionu, ktéry sami stworzyliSmy:

DeleteObject (hrgnRegion);

Mozna to zrobi¢ zaréwno przed, jak i po usuniecie kontekstu urzadzenia.

Zmiana ksztattu okna

Jedng z bardziej interesujacych opcji wykorzystania regionu jest uzycie go zmiany
ksztattu okna. Méwigc ,ksztatt”, mam na mysli ten obszar okna, ktéry jest rysowany i
zastania okna lezace nizej w porzadku Z.

Ustawianie regionu okna

Chcac zmieni¢ ksztatt okna, ustawiamy jego region przy pomocy SetWindowRgn () :

Windows GDI 597

int SetWindowRgn (HWND hWnd,
HRGN hRgn,
BOOL bRedraw;

Trzeci parametr funkcji informuje Windows, czy po ustawieniu regionu ma dokona¢
odrysowania okna. Prawie zawsze chcemy tego, totez ustawiamy ten parametr na TRUE.

Musimy wiedzieé, ze po wywotaniu SetWindowRgn () region podany w hRgn staje sie
wiasnoscig systemu Windows. Zatem:

Nie powinni$my nic robi¢ z regionem, ktérego uchwyt przekazaliSmy do funkcji
SetWindowRgn () .

Nie musi nawet dbac o jego usuniecie, zajmie sie tym system operacyjny podczas
niszczenia okna.

Koordynaty regionu okna sg liczone wzgledem potozenia okna, nie zas wzgledem jego
obszaru klienta. Jest tak, bo region obejmuje swoim zasiegiem nie tylko wnetrze okna,
ale tez jego obszar pozakliencki.

Pobieranie regionu okna

Dla porzadku zerknijmy jeszcze na funkcje pobierajaca region okna, GetWindowRgn () :

int GetWindowRgn (HWND hWnd, HRGN hRgn) ;

Zapisuje ona kopie regionu, zastepujac nig region o podanym uchwycie hrRgn. Tak wiec
zeby wywotac te funkcje, musimy juz posiadac jakis region - mozemy go stworzy¢
podobnie jak region docelowy dla CombineRgn (), tzn. tak:

HRGN hrgnRegion = CreateRectRgn (0, 0, 0, 0);

Sposodb nie ma zadnego znaczenia, poniewaz region i tak zostanie zastgpiony po
wywotaniu GetWindowRgn ().

Xk k

Na tym zakonczymy nasze spotkanie z regionami. Pozostate funkcje, ktére ich dotycza,
zwigzane sg gtéwnie z obiektami $ciezek, a tych zdecydowatem sie nie omawiac.
Naturalnie, jezeli ten temat interesuje cie bardziej, mozesz zawsze zajrze¢ do stosownych
zrédet, na przyktad MSDN.

Podsumowanie

Biblioteka Windows GDI jest doprawdy ogromna. Nawet ten, rozpuchniety do granic
mozliwosci rozdziat nie opisuje wszystkich jej elementéw. Pozwala jednak poznac te
zagadnienia, ktére sg chyba niezbedne do stosowania interfejsu GDI w swoich
programach.

Czego zatem zdotates sie dowiedziec?...

Najpierw zaprezentowatem ci podstawowe kwestie zwigzane ze wspdtczesng grafikg
komputerowg. Poznalismy wiec jej rodzaje, systemy zapisu koloréw oraz typy
najwazniejszych urzadzen graficznych.

5908 Windows API

Dalej przedstawitem fundamenty biblioteki Windows GDI: potok graficzny oraz kontekst
urzadzenia. W tym podrozdziale zrobiliSmy tez krotkg wycieczke po wszystkich
elementach interfejsu.

Potem juz na powaznie zajeliSmy sie samym GDI. Omdwitem po kolei trzy rodzaje
prymitywow graficznych: figury geometryczne, bitmapy i tekst. Mogtes sie dowiedzie¢, w
jaki sposéb korzystac z tego bogactwa narzedzi do tworzenia aplikacji wyposazonych w
grafike.

Na koniec przyswoite$ sobie umiejetnos¢ korzystania z regionéw w celu rysowania oraz
przycinania.

Na tym etapie twoja nauka GDI moze sie rzecz jasna skonczy¢ i nie bedzie to wielkg
strata. Chcac jednak tworzy¢ bardziej zaawansowany programy dla Windows, bedziesz
predzej czy pdzniej zmuszony poznac ten interfejs doktadnie. Poniewaz wykracza to poza
zagadnienie programowania gier, nie znajdzie sobie miejsca w tym kursie...

Pytania i zadania

Wielki rozdziat wymaga réownie wielkiej pracy domowej, prawda? ;) Oto wiec sg zestawy
pytan i ¢wiczen do wykonania dla ciebie.

Pytania
1. Wymien dwa rodzaje grafiki komputerowej. Czym charakteryzuje sie kazdy z
nich?
2. Z jakich barw podstawowych korzysta system RGB, a z jakich CMYK?
3. Za co odpowiada kanat alfa w systemie RGB?
4, Ile koloréw wyswietla monitor w trybie True Color? Ilu bitow uzywa wtedy do

zapisu pojedynczego piksela w pamieci graficznej?

5. Czym jest rasteryzacja i dlaczego jest ona konieczna?

6. Wymien dwa typy monitoréw komputerowych.

7. O czym moéwi rozdzielczos¢ obrazu?

8. Co skiada sie na tryb graficzny, w jakim pracuje monitor?

9. Podaj trzy najpopularniejsze typy drukarek mozaikowych.

10. W jakich dwdch trybach rysowania pracuje Windows GDI?

11. Co okresla tryb mapowania?

12.Skad mozemy wzig¢ kontekst urzadzenia przeznaczony do pracy z oknem?

13. Jakie rodzaje prymitywow graficznych oferuje GDI?

14. Jakimi obiektami postuguje sie GDI?

15. Co charakteryzuje piéro? Jak je tworzymy?

16. Jakimi sposobami mozna stworzy¢ pedzel?

17.Jak dziata wypetnianie pedzlem?

18. Jakie rodzaje krzywych otwartych i figur zamknietych mozemy rysowac przy
pomocy funkcji Windows GDI?

19. Co, oprocz obiektu bitmapy, jest potrzebne do prezentacji obrazka rastrowego w
wybranym kontekscie urzgdzenia?

20.Jak mozna wyswietli¢ sprite bez tta otaczajacego jego bitmape?

21. Podaj dwie funkcje stuzgce do wypisywania tekstu.

22. W jaki sposob zmieniamy kolor tekstu, wyswietlanego w kontekscie urzadzenia?
23.Jakie dwie funkcje stuzg do tworzenia czcionek logicznych? Dlaczego zadajg tak
duzo informacji, ktére niekoniecznie muszg by¢ przez nie wykorzystywane?

24.Czym sg regiony i do czego mozna je wykorzystac?

Cwiczenia
1. Zmodyfikuj szkicownik z poprzedniego rozdziatu (przyktfad scribble) tak, aby:

a) klawiszami 1-9 z klawiatury alfanumerycznej mozna byto wybiera¢ kolor
rysowanych linii.

Windows GDI 599

b) klawiszami strzatek w lewo i w prawo mozliwy byt wybor stylu linii

c) klawiszami strzatek w gdre i w déf mozliwe byto okreslenie grubosci linii

2. Stworz program, ktoéry po kliknieciu we wnetrze okna zmienia jego kolor na
losowy.

3. (Trudniejsze) Pobaw sie w symulacje znanego z LOGO zétwia w Windows. Stwérz
klase cTurtle, ktéra bedzie reprezentowata éw zacny rodzaj kursora. Okresl jej
pola i metody. Projektujac klase, pamietaj, ze:

a) z6tw porusza sie zawsze naprzod w ustalonym kierunku. Ksztatt zotwia na
ekranie (zwykle trojkat) odpowiada temu kierunkowi

b) kierunek mozna zmieniaé, kazac zotwiowi obrdcic sie w jego lewa lub prawg
strone o okreslong liczbe stopni

c) mozliwe jest takze polecenie zétwiowi, aby poszedt do okreslonego punktu. Po
jego wykonaniu z6tw zachowuje obrany kierunek ruchu

d) zétw moze poruszacd sie, rysujac lub nie rysujac linii, w zaleznosci od
aktualnego ustawienia (domyslnie linie sg rysowane)

Pomysl tez o jakiej formie interakcji z obiektem zdétwia. Proponuje jeden z dwdch

sposobow:

a) wykorzystanie klawiatury. Niech klawisze strzatek w lewo i prawo powodujg
obrot w tych kierunkach w jakims$ sensownym tempie. Strzatka w gére niech
skutkuje ruchem zétwia naprzdd, a Spacja wtaczeniem lub wytaczeniem
rysowania. Klikniecie mysza powinno umiejscawiac¢ zétwia w kliknietym
punkcie

b) (Trudne) dodanie do programu pola tekstowego, przeznaczonego na
wpisywanie polecen sterujacych (zatwierdzanych klawiszem Enter):

1) fwd odleg?osé - ruch naprzéd o podang odlegtosc

2) rotl kat - obrot w lewo o podany kat (w stopniach)
3) rotr kat - obrot w prawo o podany kat (w stopniach)
4) draw on/off - wlaczenie/wytgczenie rysowania

5) goto x,y - wystanie zétwia w okreslone miejsce

2. (Bardzo trudne) Rozbuduj przyktad Bezier tak, aby mozliwe byto dodawanie i
usuwanie punktéow kontrolnych krzywej. Niech klikniecie prawym przyciskiem
myszy powoduje te dziatania: dodanie punktu, jezeli kliknieto w wolne miejsce,
lub usuniecie punktu, jezeli kliknieto w juz istniejacy.

3. (Trudniejsze) Napisz funkcje pentagon () i Hexagon (), rysujgce pieciokat i
szesciokat foremny.

4, Poszerz funkcjonalnosé procedury E1lipticArc (), zaprezentowanej przy
omawianiu tukéw elips. Niech nowa funkcja potrafi rysowac zaréwno fuki, jak tez
wycinki i odcinki elipsy. Zastandéw sie, jaki mechanizm rozrdzniania tych trzech
czynnosci bedzie najlepszy.

5. Stworz klase utatwiajacq postugiwanie sie bitmapami w Windows GDI. Klasa ta
powinna ukrywac wszystkie szczegoty zwigzane z wczytywaniem i zwalnianiem
bitmap, a na zewnatrz powinna udostepniac:

a) metode pozwalajacg wczytaé bitmape z pliku

b) metode umozliwiajacq stworzenie pustej bitmapy o podanych wymiarach

c) uchwyt do pamieciowego kontekstu urzadzenia, aby mozliwe byto uzywanie go
w dowolnych operacjach graficznych

d) wymiary bitmapy

4. Napisz program wypisujacy tekst w srodku obszaru klienta okna o zmiennym
rozmiarze.

5. (Trudne) Stworz aplikacje pokazujaca ten sam napis przy uzyciu 5 czcionek
wybranych losowo sposréd wszystkich obecnych w systemie.

6. Utwodrz okno w ksztatcie kota, w ktérym narysujesz koncentryczne, z6tto-czerwone
kregi, przypominajace tarcze strzelecka.

(Trudne) Zapewnij mozliwos$¢ przesuwania okna poprzez przeciggania za jego

obszar klienta (czy raczej to, co z niego zostanie...).

600 Windows API

7. (Bardzo trudne) Wypisz na Pulpicie tekst, ktéry bedzie mozna przesuwag,
przeciggajac go mysza.

