
4
WINDOWS GDI

Jeden obraz wart jest tysiąc słów.

znane przysłowie

Już na początku kursu WinAPI wyjaśniłem, że będziemy zajmować się programowaniem
graficznego interfejsu użytkownika. Widoczne na ekranie monitora elementy GUI są zaś
niczym innym jak odpowiednio spreprarowanymi obrazkami. Windows potrafi zrobić
całkiem sporo, jeżeli chodzi o manipulacje obrazem, jednak na co dzień nie pokazuje
zwykle całej swojej mocy. Praca modułu graficznego ogranicza się do wyświetlania okien,
przycisków, menu, list, pól tekstowych i innych kontrolek. A przecież potrafi on znacznie
więcej.
Dlatego też w tym rozdziale zajmiemy się biblioteką graficzną, jaka jest wbudowana w
Windows. Chodzi o tytułowe Windows GDI.

„Chwileczkę”, możesz powiedzieć, „Mieliśmy przecież zając się inną biblioteką graficzną,
jaką jest DirectX. Co z nią?…” Ha, jesteś uważny - to dobrze. Rzeczywiście, GDI można
przyrównać do DirectX nie tylko dlatego, że oba podsystemy mają podobną rolę do
spełnienia, ale też względu na zbliżone możliwości. W grach będziemy używać głównie
DirectX, lecz niejednokrotnie przydatne będą zaawansowane operacje na grafice
dwuwymiarowej, których brakuje temu interfejsowi. Programowe generowanie tekstur,
wypisywanie formatowanego tekstu czy tworzenie własnego systemu GUI - to tylko
niektóre kwestie, przy których bardzo pomocna, wręcz nieodzowna, staje się znajomość
biblioteki Windows GDI.
Co jeszcze przemawia za uważnym przyjrzeniem się tej części WinAPI? Chociażby sam
fakt, z czym mamy do czynienia. Skoro niedługo będziemy na codzień używać
skomplikowanego i potężnego instrumentarium graficznego DirectX, warto byłoby
zaznajomić się wpierw z jego młodszym bratem. Wiele koncepcji, terminów, pojęć,
sposobów, a nawet nazw funkcji będzie powtarzało się w identycznej lub zbliżonej formie
w obu bibliotekach. Jeśli więc teraz poznamy je podczas nauki stosunkowo prostego
narzędzia, jakim jest GDI, łatwiej będzie nam przenieść je potem na grunt bardziej
skomplikowanego DirectX’a.
Pomyślmy wreszcie, że oto będziemy przecież zajmować się prawdziwą Grafiką przez
duże G :)) Jaka to miła odmiana po godzinach spędzonych przed siermiężnym ekranem
konsoli czy też na kontakcie z mało zachwycającym, standardowym GUI systemu
Windows. Teraz będziemy mogli odetchnąć i zająć się bardziej przyjemnymi
zagadnieniami, a przy tym dosłownie zobaczyć nasze programy w akcji!

Myślę więc, że nauka obsługi Windows GDI będzie dla ciebie całkiem przyjemnym (a
przynajmniej znośnym ;D) zajęciem.

Słówko o grafice komputerowej
Dotychczas w zasadzie nie mogliśmy powiedzieć, że zajmujemy się grafiką komputerową.
Teraz właśnie przyszedł czas na pierwsze spotkanie nią i dlatego musimy sobie od razu
wyjaśnić kilka spraw z tym związanych.

Windows API 484

Powiemy więc sobie o dwóch podstawowych rodzajach grafiki, pikselach i kolorach.
Przypatrzymy się też różnym typom urządzeń graficznych

Rodzaje grafiki
Tradycyjny podział grafiki oznacza wyróżnienie jej dwóch rodzajów: grafiki rastrowej
oraz wektorowej. Różnica pomiędzy nimi polega na innej interpretacji obrazu oraz jego
zapisie w pamięci operacyjnej i w pliku dyskowym.

Grafika rastrowa
Tryb rastrowy jest naturalnym i często jedynym sposobem pracy większości urządzeń
graficznych. Zalicza się do nich na przykład monitor i drukarka.

W grafice rastrowej (ang. raster graphics) obraz jest przedstawiany jako
dwuwymiarowa tablica danych. Każdy jego mały fragment jest opisany przez określoną
ilość informacji, czyli bitów. Od tego wzięła się też nazwa rysunków rastrowych -
bitmapy.

To co oglądasz na ekranie monitora jest właśnie bitmapą.

Piksele
Najmniejszy element rastrowego obrazka nazywamy pikselem. Jest on najczęściej
kwadratowy i wypełniony zawsze jednolitym kolorem. Oglądając ilustrację, zwykle nie
widzimy jednak pojendycznych pikseli z bardzo prostego powodu: są one zbyt małe.
Stają się widoczne dopiero przy dużych powiększeniach, tworząc niezbyt przyjemną dla
oczu siatkę kwadratów.

Ażeby uniknąć takich niepożądanych efektów, bitmapa musi zawierać dostatecznie dużo
pikseli. Inaczej mówiąc, musi ona posiadać odpowiednio dużą rozdzielczość
(ang. resolution). Wielkość ta określa ilość pikseli w pionie i poziomie, tworzących siatkę
obrazu; dla przykładu 300×200 oznacza, iż bitmapa ma szerokość 300 pikseli, a
wysokość 200. Naturalnie, im wyższe są obie te wartości, tym lepsza jakość obrazu i
wyższa jego „odporność na powiększanie”.

Rysunek 11. Obraz rastrowy w rozdzielczości 32×32

Ze wzrostem rozdzielczości związany jest wzrost liczby pikseli, a zatem zwiększenie liczby
informacji opisujących. Sprawia to, że duże bitmapy zajmują wiele miejsca w komputerze
- niekiedy są to nawet megabajty. Dlatego też wymyślono wiele formatów grafiki
rastrowej,które oferują kompresję danych. Najczęściej odbywa się to kosztem jakości

Windows GDI 485

obrazka, jest to więc kompresja stratna. Popularnym formatem wyposażonym w taką
możliwość jest JPEG.
Zauważmy aczkolwiek, że takie sposoby zmniejszania rozmiaru obrazków dotyczą tylko
ich przechowywania na dysku. Podczas obróbki bitmap muszą być one zapisane w
pamięci operacyjnej w swej zwykłej postaci - oto przyczyna, dla której praca z grafiką
wymaga dużej ilości RAMu.

Kolory
Na obiektywny rozmiar oraz subiektywną jakość rastrowej bitmapy wpływa jeszcze jeden
ważny czynnik. Jest nim dokładność odzwierciedlenia rzeczywistych kolorów, ich odcieni
oraz natężenia. Ta cecha obrazu jest najczęściej również proporcjonalna do jego
wielkości: lepsze odzworowanie barw pociąga za sobą najczęściej większy rozmiar
wynikowego pliku graficznego.
Dzieje się tak, gdyż bogatszy zbiór kolorów, udostępniający dużo odcieni barw, wymaga
przechowywania większej ilości informacji dla pojedynczego piksela. Może się ona wahać
od zaledwie jednego bitu do kilku bajtów.

Ważny jest również sposób, w jaki wartości zapisane dla każdego piksela przekładają się
na rzeczywiste kolory, które możemy zobaczyć. Najprostszą drogą jest tutaj ustalenie
pewnej stałej palety barw i przechowywanie w obrazie indeksów poszczególnych
kolorów w tejże palecie jako zwyczajnych liczb. W zasadzie można powiedzieć, że
wszystkie systemy zapisywania kolorów korzystają z tej metody. Jednak w każdym z nich
wartość liczbowa piksela może być także interpretowana na inny, bardziej swoisty
sposób.
Przyjrzymy się teraz kilku takim systemom kodowowania barw.

RGB

Akronim RGB pochodzi od nazw trzech kolorów podstawowych w tym systemie:
czerwonego (ang. red), zielonego (ang. green) oraz niebieskiego (ang. blue).
Wszystkie inne barwy powstają poprzez odpowiednie zmieszanie tych trzech kolorów
głównych.

Składowe barw podstawowych w wynikowym kolorze nazywami kanałami
(ang. channels). W systemie RGB mamy więc kanał czerwony, zielony i niebieski.

Trzeba jeszcze wiedzieć, jak odbywa się owo mieszanie. Otóż błędem jest sądzić, że
działa ono na podobnej zasadzie jak łączenie farb na malarskiej palecie. RGB jest
systemem używanym głównie do wyświetlania na ekranach monitorów i dlatego
kryterium mieszania kolorów jest tu interferencja fal świetlnych, które padają na
kineskop.
Spokojnie, nie oznacza to dla nas konieczności nauki praw fizyki decydujących o
właściwościach światła (czyli optyki). Nie jest to nam potrzebne. Wystarczy tylko wiedzieć
o dwóch stanach skrajnych:

 brak światła oznacza również brak koloru. Kolor czarny odpowiada więc takiej
sytuacji, gdy wszystkie trzy składowe RGB są równe zeru

 największa intensywność światła w każdym z trójki kanałów oznacza natomiast
kolor biały

Z tego powodu system kolorów RGB nazywamy addytywnym. Większym wartościom
składowych przyporządkowane są bowiem jaśniejsze kolory.

Wszystkie pozostałe barwy sytuują się gdzieś pomiędzy tymi dwoma krańcowymi
kolorami. Jeśli każdej ze składowych odpowiada taka sama intensywność koloru
podstawowego, wtedy mamy do czynienia z pewnym odcieniem szarości
(ciemniejszym lub jaśniejszym). Inne kolory powstają przy różnych wartościach barw
podstawowych w kanałach RGB.

Windows API 486

Rysunek 12. Spektrum barw podstawowych RGB

Komputerowy zapis kolorów w systemie RGB odbywa się poprzez dobranie pewnych
wartości liczbowych, które określają intensywność trzech składowych koloru. Zero
oznacza zawsze brak danej składowej w finalnej barwie; drugi koniec skali zależy od
dokładności odwzorowania kolorów, na jaką możemy sobie pozwolić. Im więcej wartości
pośrednich zmieści się pomiędzy tymi skrajnymi, tym oczywiście większą liczbę kolorów
będziemy mogli zapisać, a nasze obrazki będą miały lepszą jakość (i odpowiednio duży
rozmiar).

Rysunek 13. Przestrzeń barw RGB. Osie współrzędnych odpowiadają wartościom kolorów

składowych

Obecnie większość aplikacji posługująca się systemem RGB (czyli większość aplikacji w
ogóle :D) preferuje zapis każdego kanału w postaci liczby całkowitej bez znaku,
pochodzącej z przedziału od zera do 255. Łącznie daje to więc 2563 barw możliwych do
reprezentacji - nieco ponad 16 milionów, prawie tyle ile potrafi rozróżnić przeciętne
ludzkie oko. Dlatego też tak bogaty zestaw kolorów nosi nazwę True Color, czyli
‘rzeczywistych barw’.

Windows GDI 487

Czy zakres <0; 255> nie wygląda znajomo?… Oczywiście, są to możliwości zapisu liczb w
jednym bajcie - ośmiu bitach. Tryb True Color potrzebuje więc łącznie 3 bajtów (24
bitów) na zapisanie informacji o kolorze - taki kolor nazywamy więc 24-bitowym.

W programowaniu nie ma jednak zmiennych zajmujących w pamięci dokładnie trójkę
bajtów. Najmniejszym typem, który możnaby wykorzystać do przechowywania koloru,
jest DWORD - liczba 32-bitowa. Tak też czynimy, zapisując do jej poszczególnych bajtów
wartości kanałów RGB:

Schemat 46. Format XRGB zapisu koloru

Windows API posiada przygotowany typ dla zapisu kolorów: jest to COLORREF, będący
niczym innym jak tylko kolejnym aliasem na 4-bajtowy numeryk.

O wiele bardziej przydatne są makra, ułatwiające pracę z takim sposobem reprezentacji
koloru. Są one zadeklarowane w windows.h, a najważniejsze z nich to RGB():

#define RGB(r, g, b) (COLORREF)(((r) << 16) | ((g) << 8) | (b))

Tworzy ono identyfikator barwy z podanych mu składowych: czerwonej (r), zielonej (g) i
niebieskiej (b). Jak widać, czyni to poprzez ich właściwe rozmieszczenie w dwusłowie, a
następnie połączenie przy pomocy sumy bitowej |.
Odwrotnie do RGB() działają makra GetRValue(), GetGValue() i GetBValue():

#define GetRValue(rgb) (BYTE)((rgb) >> 16)
#define GetGValue(rgb) (BYTE)((rgb) >> 8)
#define GetBValue(rgb) (BYTE)(rgb)

Wyławiają one kanały RGB, zwracając liczby określające intensywność barw
podstawowych w podanym im kolorze. Robią to, dokonując operacji bitowych odwrotnych
do tych z RGB().

Uboższą wersją True Color jest High Color (‘kolor wysokiej jakości’). Tryb ten używa tylko
16-bitów do zapisu informacji o kolorze, zatem mieści się w zmiennej typu WORD.
Każdemu kanałowi jest tu przypisane po 5 bitów - z wyjątkiem składowej zielonej, która
zajmuje 6 bitów. Jest tak dlatego, iż oko ludzkie jest przeciętnie najbardziej wyczulone
na zmianę odcieni zieleni.

Format reprezentacji koloru, jaki przedstawiłem na ostatnim schemacie, nosi nazwę
XRGB. Ta nazwa wskazuje na kolejność kanałów w gotowym dwusłowie. Litera X odnosi
się natomiast do pierwszych ośmiu bitów, bowiem nie są one wykorzystywane do
żadnych celów.
Takie marnotrastwo trudno uznać za zadowalające rozwiązanie. Szybko więc wymyślono,
co należy zapisywać w nadmiarowym bajcie. Stał się on w ten sposób kanałem alfa
(ang. alpha channel), którego zadaniem jest przechowywanie informacji o
przezroczystości danego piksela. Mówiąc ściślej, zawiera on wartość odwrotną do
przezroczystości - coś w rodzaju „stopnia widoczności” punktu, zwanego po prostu alfą.
Zero w kanale alfa oznacza, że ten fragment obrazu nie ma być w ogóle widoczny;

Windows API 488

największa wartość 255 znaczy zaś, iż piksel ma całkowicie przykrywać te leżące pod
nim.
Przydatność kanału alfa jest niemożliwa do zaobserwowania w przypadku pojedynczej
bitmapy, ale otwiera bardzo ciekawe możliwości przy łączeniu dwóch obrazków w jeden.
Działa wtedy mechanizm zwany łączeniem lub mieszaniem alfa (ang. alpha blending).
Zmienia on kolory nakładających się pikseli tak, że ostatecznie mamy złudzenie
częściowej lub całkowitej przezroczystości w wynikowym obrazie (z pikselami już bez
kanału alfa). Bez alpha blendingu można uzyskać co najwyżej albo zupełne przykrycie,
albo zupełne odkrycie spodnich pikseli.

Nie trzeba chyba dodawać, jak łączenie alfa jest przydatne, szczególnie w grach.
Używając częściowej przezroczystości można chociażby stworzyć efektowny interfejs
użytkownika, który nie zasłania całkowicie reszty ekranu gry.

Format koloru z określonym kanałem alfa określamy jako ARGB. Kolor można wówczas
nazwać 32-bitowym.

Schemat 47. Format ARGB zapisu koloru

CMY(K)

Drugim z najważniejszych systemów kodowania kolorów jest CMY. Skrót ponownie
pochodzi od nazw barw podstawowych - tym razem są to kolory: morski (ang. cyan),
karmazynowy (ang. magenta) oraz żółty (ang. yellow).

Na tym jednak nie kończą się różnice pomiędzy tym systemem a RGB. Osobną kwestią
jest mianowicie sposób, w jaki składowe tych trzech podstawowych kolorów decydują o
finalnej barwie; sposób ten jest odmienny niż w RGB. Jest uzasadnione, gdyż CMY został
stworzony do współpracy przede wszystkim z drukarkami (oraz innymi urządzeniami,
które tworzą swoją twórczość na papierze :D). Mieszanie barw składowych nie może więc
już polegać na łączeniu fal świetlnych, ale barwników atramentu. Zasady tego łączenia są
ci zapewne doskonale znane - przypomnijmy więc tylko, że:

 brak barwnika jest brakiem koloru, a w przypadku systemu CMY oznacza to kolor
„kartki”, czyli biały

 pełne nasycenie wszystkich trzech farb daje w wyniku kolor czarny

Mechanizm działa zatem dokładnie odwrotną134 metodą niż ten z RGB.

W odróżnieniu od tego system CMY zwie się więc systemem subtraktywnym. Większej
intensywności składowych odpowiadają tu ciemniejsze kolory wynikowe.

Kolory o takich samych wartościach składowych są w CMY również odcieniami szarości.
Podobnie, różne intensywności barw podstawowych powodują powstanie pozostałych
odcieni. Inaczej interpretowane są jedynie same wartości, zapisane w każdym z trzech
kanałów - ich wzrost powoduje ściemnienie barwy, zaś spadek rozjaśnienie (przeciwnie
niż to jest w systemie RGB).

134 Lepiej powiedzieć - komplementarną.

Windows GDI 489

Rysunek 14. Spektrum barw podstawowych CMY

Ewentualny zapis koloru w systemie CMY wygląda najczęściej tak samo, jak w RGB.
Używana jest więc liczba 32-bitowa, z której efektywne wartości zawierają trzy dolne
bajty.

Rysunek 15. Przestrzeń barw CMY

Nietrudno spostrzec, że sześciany barw CMY i RGB są do siebie bardzo podobne.
Faktycznie, otrzymanie jednego z nich sprowadza się do obrotu drugiego o 90° i
właściwego oznaczenia osi układu współrzednych.

Standard CMY jest dobrym przykładem na to, iż dobra teoria może być daleka od
rzeczywistej praktyki. Okazuje się, że zmieszanie maksymalnej intensywności trzech
barwników podstawowych nie daje wcale koloru czarnego, lecz co najwyżej
ciemnobrązowy. Aby rozwiązać ten problem, dodaje się jeszcze trochę czarnego
atramentu. Tak oto powstał system CMYK - ostatnia litera pochodzi od nazwy koloru
czarnego (ang. blacK).

W zasadzie więc to CMYK jest najszerzej używanym systemem kodowania kolorów dla
drukarek. Do współpracy z tym formatem system Windows deleguje podobne makra,
jakie przeznaczył do RGB. Najistotniejsze spośród nich to CMYK():

Windows API 490

#define CMYK(c, m, y, k) (COLORREF)(((c) << 24) | ((m) << 16)
 | ((y) << 8) | (k))

Układa ono wartości czterech składowych barwy poczynając od lewej strony dwusłowa
COLORREF. Działanie odwrotne - wyłuskiwania wartości kanałów - jest zadaniem czterech
makr: GetCValue(), GetMValue(), GetYValue() i GetCValue():

#define GetCValue(cmyk) (BYTE)((cmyk) >> 24)
#define GetMValue(cmyk) (BYTE)((cmyk) >> 16)
#define GetYValue(cmyk) (BYTE)((cmyk) >> 8)
#define GetKValue(cmyk) (BYTE)(cmyk)

Robią one analogicznie to samo, co odpowiadające im makra z RGB - dokonują
mianowicie odwrotnych operacji do tych z makra CMYK().

Jeszcze jednym używanym szeroko standardem zapisu barw jest HSB albo HSV. Skróty
te pochodzą on cech koloru, które go wyznaczają: odcienia (ang. hue), nasycenia
(ang. saturation) oraz jasności (ang. brightness), zwanej też walorem (ang. value).
Odcień jest tym, co funkcjonuje potocznie pod nazwą ‘koloru’ - można go utożsamiać z
długością fali świetlnej. Nasycenie określa, jak „czysta” jest barwa, tzn. ile koloru
szarego, białego lub czarnego zawiera w sobie. Jasność (walor) odpowiada intensywności
światła koloru.
Ze względu na to, że w systemie HSV (HSB) liczą się faktyczne własności koloru, a nie
produkt mieszania barw podstawowych, jest on używany w wielu zaawansowanych
programach do grafiki rastrowej. Poza tym jednak nie ma większego zastosowania, gdyż
ostatecznie i tak musi zostać przeliczony na RGB, aby kolor mógł być wyświetlony na
ekranie.

Grafika wektorowa
Zupełnie inne podejście do komputerowych rysunków prezentowane jest w grafice
wektorowej (ang. vector graphics).
Nie ma tu pojęcia obrazu jako zbioru punktowych elementów - pikseli. Zamiast tego
używany jest geometryczny opis tego, co można na nim zobaczyć. Obraz wektorowy
składa się z linii prostych, otwartych i zamkniętych krzywych, figur geometrycznych i
innych obiektów, które można opisać równaniami matematycznymi (na przykład tekstu).

Niekwestionowaną zaletą takiego potraktowania jest możliwość dowolnego skalowania
rysunku wektorowego. Ponieważ zapisywana jest jedynie informacja o tym, jak
wygenerować obraz, jego wygląd może zostać wyliczony przy każdym powiększeniu bez
najmniejszej utraty ostrości.
Geometryczny sposób opisu ogranicza jednak zastosowanie grafiki wektorowej. Na
pewno nie może być ona wykorzystywana do zapisu zdjęć, gdyż rzeczywisty świat jest
zbyt skomplikowany, by móc go opisać matematycznie. Takie przedstawienie musiałoby
zresztą wymagać konwersji rysunku rastrowego na wektorowy, a to nie jest możliwe ze
względu na brak dostatecznych informacji w gotowej bitmapie.

Rysunki wektorowe nie powstają więc z fotograficznego odwzrowania rzeczywistości, lecz
są tworzone przy pomocy odpowiednich narzędzi - programów. Są to często szkice
techniczne, zawierające zgeometryzowane obiekty: prostokąty, linie różnej grubości,
krzywe Béziera itp. Do takich zastosowań grafika wektorowa nadaje się wyświenicie, bo
zapewnia przecyzję i ścisłość, której brak pikselowatym obrazom rastrowym.
Do najważniejszych aplikacji do tworzenia rysunków wektorowych należą zapewne
programy CAD, czyli narzędzia komputerowego wspomania projektowania.

Windows GDI 491

Rysunek 16. Wektorowy szkic projektu budynku mieszkalnego

(rysunek pochodzi z serwisu internetowego programu Embedded Vector Editor)

Grafika 3D
Bardzo ważnym typem grafiki wektorowej są sceny trójwymiarowe (ang. 3D scenes).
Są one bowiem jedynym sensownym kreowania przestrzennych światów.

Łatwo domyślić się, dlaczego tak jest. Gdyby w tym przypadku zastosować technikę
znaną z grafiki rastrowej, czyli podział na elementarne punkty, gotowy „obraz” zajmował
mnóstwo miejsca - nawet tysiące razy więcej niż duże bitmapy. Trudno też wymyślić
jakiś sensowny sposób tworzenia takich trójwymiarowych bitmap, podobnie jak
niemożliwie jest rysowanie przestrzennych szkiców na papierze.

W tym przypadku zwrócenie się w stronę geometrii było więc konieczne. Dało to zresztą
całkiem zadowalające efekty.
Obecna technika modelowania trójwymiarowych scen zakłada ich podział na bryły złożone
z prostych figur płaskich - zwykle trójkątów. Figury te tworzą zewnętrzną „powłokę”
obiektów w scenie, widoczną dla oglądającego. Ich powierzchnie mogą być dodatkowo
pokryte dwuwymiarowymi bitmapami - teksturami oraz dawać złudzenie odbijania i
rozpraszania światła. Wszystkie te efekty są osiągane poprzez odpowiednie obliczenia
matematyczne.

Screen 66. Programy do modelowania trójwymiarowego tworzone obiekty pokazują zazwyczaj w

trzech płaskich widokach oraz w perspektywnie przestrzennej

Tworzenie obiektów 3D (czyli modelowanie) może się z kolei odbywać wieloma drogami.
Teoretycznie najprostszym jest ręczne ustawianie w przestrzeni wierzchołków,
składających się na trójkąty (a w konsekwencji na całe bryły). O wiele efektywniejsze
jest ponowne zaprzęgnięcie do pracy geometrii analitycznej; za pomocą odpowiednich
kalkulacji generowane są proste kształty, jak prostopadłościany, walce, kule czy stożki. Z
ich połączenia są następnie tworzone zarysy właściwych brył, a przy pomocy pewnych

http://www.goosee.com/

Windows API 492

efektów (zwanych modyfikatorami, ang. modifiers) osiągany jest ostateczny kształt
obiektów.

Rasteryzacja
Z prezentacją grafiki wektorowej związany jest pewien kłopot. Otóż mało które
urządzenie wyjściowe potrafi podołać temu zadaniu bezpośrednio135; większość wymaga,
aby rysunek wektorowy został wcześniej przełożony na bitmapę. Proces ten nazywamy
rasteryzacją i zachodzi on za każdym razem, kiedy oglądamy obraz wektorowy na
ekranie monitora lub drukujemy go na zwykłej drukarce.

Dla płaskiej grafiki rasteryzacja jest stosunkowo prostą czynnością, sprowadzającą się do
przeprowadzenia obliczeń opisujących obiekty na rysunku. Znacznie więcej pracy
wymaga przedstawienie sceny trójwymiarowej na płaszczyźnie ekranu - ten proces
zwiemy renderowaniem. Obejmuje on wyliczenie kolorów modeli na podstawie
nałożonych tekstur i oświetlenia, a następnie rzut przestrzeni 3D na powierzchnię płaską.
Dopiero na końcu realizowane są formuły matematyczne opisujące bryły na scenie, która
jest wreszcie rasteryzowana na ekranie monitora.

Renderowaniem scen trójwymiarowych, szczególnie w czasie rzeczywistym, zajmiemy się
naturalnie jeszcze nie raz. Czynność ta jest przecież jednym z głównych zadań biblioteki
DirectX, z którą mamy się wkrótce zaznajomić.

Wyjściowe urządzenia graficzne
Przypomnimy sobie teraz (a częściowo też wprowadzimy) niektóre ważne kwestie
związane z dwoma najważniejszymi urządzeniami, służącymi do prezentacji grafiki:
monitorem oraz drukarką. Oba te urządzenia służa do wyświetlania obrazu rastrowego.

Monitor
Chociaż serwery i komputery mainframe mogą obyć się bez monitora, osobiste pecety nie
mogłyby działać bez tego komputerowego „telewizora”. Obraz wyświetlany na monitorze
jest bowiem podstawowym sposobem, w jaki działające programy informują o swoim
stanie. Od czasu rozpowszechnienia się interfejsów graficznych jest też czymś w typie
pola manewrowego, po którym użytkownik rozstawia uruchomione aplikacje.

Typy monitorów
Generalnie, monitory dzielimy na dwie duże grupy: na kineskopowe oraz
ciekłokrystaliczne. Różni je technologia wyświetlania obrazu, a nierzadko także jego
jakość.

Monitory kineskopowe

Ten typ monitorów (zwanych też CRT, od ang. Catode Ray Tube - kineskop katodowy)
działa bardzo podobnie do odbiorników telewizyjnych. Powstawanie obrazu jest tu
wynikiem odpowiedniego naładowania kineskopu pod wpływem strumienia elektronów.
Ów strumień kilkadziesiąt razy na sekundę „przelatuje” przez cały kineskop,
przemieszczając się wierszami - począwszy od lewego górnego rogu. Tak szybka zmiana
wyświetlacza powoduje złudzenie jego stałości oraz płynnego ruchu.

Technologia monitorów kineskopowych liczy sobie prawie sto lat i przez ten czas była
znacznie ulepszana. Obecnie jakość obrazu w monitorach CRT jest bardzo wysoka; co

135 Do takich urządzeń należa bodaj wyłącznie specjalistyczne plotery.

Windows GDI 493

więcej, nie przeszkadza ona w osiąganiu wysokiej rozdzielczości i częstotliwości
odświeżania.
Jakiś czas temu rozwiązano też problem, który pojawiał się przy wielogodzinnym
pokazywaniu tego samego obrazu na ekranie monitora. Dawniej mogło spowodować
wypalenie go na kineskopie, przez co zarys feralnego widoku zostawał na monitorze już
na zawsze. Ta nieprzyjemna ewentualnośc była przyczyną powstania programów znanych
jako wygaszacze ekranu (ang. screen savers, dosł. ‘oszczędacze ekranu’), których
zadaniem było wyświetlanie szybko zmieniających się pikseli w czasie bezczynności
użytkownika komputera. Teraz ryzyko wypalenia już nie istnieje, ale wygaszacze
pozostały - głównie jako cieszące oko spektakle obrazów i nawet dźwięków.

Fotografia 7 i 8. Monitory kineskopowe

(fotografie pochodzą z serwisu internetowego firmy Philips)

Teoretyczną wadą monitorów kineskopowych jest emisja potencjalnie szkodliwego dla
oczu promieniowania. Teoretyczną, gdyż obecne normy w tym zakresie (oznaczana jako
TCO) są tak rygorystyczne, że spełniające je produkty nie są w zasadzie żadnych
zagrożeniem dla naszych spojówek. Nie zmienia to jednak faktu, że długa praca przed
ekranem męczy wzrok i przyczynia się do jego osłabienia. Powodem tego nie są jednak
tajemnicze promienie spoza zakresu widzialnego, lecz zbyt duża ilość światła
docierającego do oka. Temu można zaradzić tylko w jeden sposób: trzeba właściwie
dostroić ustawienia swego sprzętu.

Najważniejszym spośród nich jest temperatura kolorów. Powinno się ją ustawić na jak
najmniejszą wartość, zazwyczaj 6500 kelwinów. Następnie należy dopasować wygląd
obrazu za pomocą kontroli ostrości, kontrastu i jasności.

Dawniej niedogodnością był również duży rozmiar i waga tych monitorów. Teraz jednak
produkowane modele są lżejsze i węższe, dzięki czemu nie odbiegają zbytnio od
monitorów ciekłokrystalistycznych w konkurencji zajmowanego na biurku miejsca.

Monitory ciekłokrystaliczne

Drugi rodzaj monitorów oznaczany jest skrótem LCD (ang. Liquid Crystal Display), który
wskazuje na wyświetlacz zbudowany z tzw. ciekłych krysztalów. Ta dziwna substancja
o wewnętrznie sprzecznej nazwie136 posiada zdolność polaryzacji, co pozwala jej
wyświetlać zaprogramowany obraz. Jest on kontrolowany przez pole elektryczne, zatem
monitory LCD nie posiadają strzelby elektronowej; mogą więc być o wiele węższe niż ich
kuzyni z kineskopami.

Powierzchnia wyświetlacza w monitorze ciekłokrystalistycznym jest podzielona na
pojedyncze piksele - wynika stąd, iż urządzenia te mają zaprogramowaną stałą

136 Kryształy są przecież ciałami stałymi, a nie cieczą…

http://www.philips.com/

Windows API 494

rozdzielczość. Dodatkowo, każdy piksel składa się z trzech subpikseli, odpowiedzialnych
za wyświetlanie barw składowych systemu RGB.
Subpiksele po okresie dłuższego użytkowania mogą się wypalić, przez nie będą wiernie
odzwierciedlały kolorów. Uważa się, że niezauważalne dla ludzkiego oka jest wypalenie
się od kilku do kilkunastu subpikseli. Niestety, wygaszacze ekranu nie mogą wiele zrobić
w sprawie zapobiegania temu niepożądanemu zjawisku.

Fotografia 9 i 10. Monitory ciekłokrystaliczne

(fotografie pochodzą z serwisu internetowego firmy Philips)

Wadą monitorów LCD jest niska jakość obrazu - niższa niż w modelach kineskopowych.
Nie chodzi tu wcale o obecność uszkodzonych (sub)pikseli (choć to również się liczy), lecz
o względne różnice w jasności poszczególnych obszarach ekranu. Dotyczy do szczególnie
skrajnych i środkowych partii wyświetlacza.
Nieszczególnie przychylna dla użytkownika jest też cena tych urządzeń. Monitory LCD są
bowiem co najmniej dwukrotnie droższe od analogicznych (pod względem wielkości)
modeli CRT. I nie zanosi się na szybką zmianę tego stanu rzeczy.

Na plus można aczkolwiek zaliczyć tym monitorom brak emisji jakiegokolwiek
promieniowania (poza, oczywiście, światłem widzialnym). Mówiłem jednak, że nie
wyprzedzają zbytnio modeli CRT w tej dziedzinie, których drakońskie normy doprowadziły
do spadku ilości emitowanych fal elektromagnetycznych niemal do zera.

Snobistyczną ciekawostką są monitory plazmowe, funkcjonujące na identycznej zasadzie
jak tego rodzaju telewizory. Obraz powstaje w nich poprzez jonizację cząsteczek gazów
szlachetnych (zwykle neonu, kryptonu i ksenonu), pod wpływem której gazy zaczynają
emitować światło.
Jakość obrazu w monitorach i telewizorach plazmowych jest bardzo wysoka. Niestety,
równie wysoka jest też cena - niemal dziesięć razy większa niż koszt monitorów CRT.

Parametry obrazu
Monitor monitorowi nierówny - nie tylko jeśli chodzi o zastosowaną technologię
prezentacji obrazu. Ważnych jest mnóstwo empirycznie obserwowanych parametrów, z
których najważniejszymi są: rozdzielczość obrazu, głębia kolorów oraz
częstotliwość odświeżania.

Rozdzielczość

Najpopularniejszym (acz niezbyt precyzyjnym) sposobem opisania modelu monitora jest
podanie jego przekątnej. Liczba ta określa odległość przeciwległych wierzchołków
kineskopu lub wyświetlacza LCD danego monitora. Zwróćmy więc uwagę, że nie mówi
ona nic o wielkości rzeczywistego obrazu, jaki bedziemy mogli obserwować. Tę zaś
można sprawdzić tylko w praktyce - zazwyczaj jest ona widocznie mniejsza.

http://www.philips.com/

Windows GDI 495

Zarówno przekątną kineskopu (wyświetlacza), jak i obrazu podajemy w calach. Jeden cal
to ok. 2,54 cm, a symbolem tej jednostki jest znak ". Monitor CRT 17" ma zatem
kineskop o przekątnej długości około 43 centrymetrów.

Dłuższa przekątna oznacza więcej miejsca dla pikseli ekranu. Ilość punktów obrazu, jaką
aktualnie wyświetla monitor, nazywamy jego rozdzielczością. Jest to wielkość
analogiczna do rozdzielczości bitmapy i podajemy ją w tej samej postaci: dwóch liczb,
określających liczbę pikseli w poziomie i pionie.
Typowe rozdzielczości monitorów to: 640×480, 800×600, 1024×768, 1152×864,
1280×960, 1600×1200, 1920×1440 oraz 2048×1536 pikseli. Kilka ostatnich wartości
osiągają jednak tylko największe monitory; reszta może być stosowana dla popularnych
wielkości ekranu. Zalecane rozdzielczości dla wybranych przekątnych monitorów
przedstawia tabela:

przekątna rozdzielczość
14 cali 640×480
15 cali 640×480 lub 800×600
17 cali 800×600 lub 1024×768
19 cali 1152×864 lub 1280×960
21 cali 1280×960 lub 1600×1200

Tabela 57. Optymalne rozdzielczości dla monitorów CRT różnych wielkości. Modele LCD mają stałą
rozdzielczość, dl każdej z przekątnych jest ona równa większej wartości z tabeli

Rozdzielczość ekranu możesz ustawić we Właściwościach ekranu w Panelu Sterowania, a
programowo pobrać za pomocą GetSystemMetrics(SM_CXSCREEN/SM_CYSCREEN).

Można zauważyć, że stosunek szerokości do wysokości ekranu jest w przypadku
wszystkich możliwych rozdzielczości ten sam i wynosi 4:3. Iloraz ten nazywamy
aspektem obrazu (ang. image aspect) monitora. Aspekt 4:3 jest używany szeroko
także w telewizorach, natomiast filmy kinowe są kadrowane z aspektem 16:9. Ich
odtwarzanie na domowych odbiornikach i monitorach powoduje więc pojawienie się
czarnych pasków na górze i dole kadru.

Głębia kolorów

Nie mniej ważna niż wielkość obrazu jest wierność odwzorowania w nim barw. Decyduje
o tym liczba dostępnych kolorów, czyli ich głębia (ang. color depth).

Głębia kolorów zależy od ilości bitów przypadających na jeden piksel. Liczba ta może
wahać się od jednego do (na razie) 32 bitów. Najczęściej obsługiwane tryby barwne
monitorów są zebrane w poniższej tabelce:

ilość
kolorów

liczba
bitów

nazwa trybu uwagi

2 1 monochromatyczny obraz czarno-biały
16 4 16 kolorów
256 8 256 kolorów

tryb oparty na palecie stałych barw, a nie
na ich zapisie z użyciem składowych RGB

65 536 16 High Color
16 777 216 24

kolor zapisany z użyciem kanałów RGB

16 777 216 32
True Color

Jest to taki sam tryb jak 24-bitowy True
Color, a dodatkowy bajt sprawia, że dane
pikseli są w pamięci obrazu wyrównywane

do 4 bajtów.

Tabela 58. Tryby głębi kolorów obsługiwane przez współrzędne monitory

Windows API 496

Dzisiaj każdy model monitora i karty graficznej bez problemu radzi sobie z wyświetlaniem
milionów barw trybu True Color. Na starszych pecetach ustawia się aczkolwiek niższą
głębię High Color, gdyż zużywa ona mniej cennego czasu procesora.

Częstotliwość odświeżania

Radosne zwiększanie rozdzielczości i głebi kolorów wyświetlanego obrazu, aż do
sztywnych granic, jest całkowicie możliwe. Pomijając fakt, że większa ilość pikseli przy
niezmiennej przekątnej monitora powoduje zmniejszenie czytelności małych elementów,
zbyt wyśrubowane ustawienia mogą być przyczyną także innej formy dyskomfortu. Jest
nią zbyt niska częstotliwość odświeżania (ang. refresh rate).

Parametr ten dotyczy wyłącznie monitorów kineskopowych. W modelach LCD obraz jest
wyświetlany stale.

Wielkość ta mówi nam, jak wiele razy w ciągu sekundy monitor odrysowuje zawartość
ekranu. Jak każdą częstotliwość podajemy ją w hercach (Hz). Uznaje się, że dla komfortu
użytkownika komputera nie powinna ona zejść poniżej 60 Hz. W praktyce jest jednak o
wiele większa, sięgająca co najmniej 85 Hz, a wszelka przesada w tej materii jest bardzo
wskazana. Szybsze odświeżanie obrazu oznacza bowiem mniejsze zmęczenie dla oczu
patrzącego.

Jeśli nasz monitor nie odświeża obrazu dostatecznie szybko, to możemy zauważyć jego
migotanie - właściwy obraz przeplata się z czarnym ekranem. Dzieje się tak, gdyż to co
widzimy na ekranie monitora CRT jest tak naprawdę stanem chwilowym, momentalnym
rozbłyskiem elektronów płynących ze specjalnego działa. Ta „strzelba” przy każdym
odświeżeniu obrazu wysyła ładunki do wszystkich pikseli, począwszy od lewego górnego i
posuwając się wierszami aż do prawego dolnego rogu. Po wykonaniu tego
pracochłonnego zadania działo wraca na wyjściową pozycję, gotowe do ponownego
rozpoczecia odświeżania. Moment pokonywania drogi po przekątnej, gdy nie są wysyłane
żadne elektrony, nazywamy powrotem pionowym (ang. vertical synchronisation, w
skrócie VSync). To właśnie wtedy ekran monitora pozostaje czarny, co czasami można
dostrzec na starych lub psujących się modelach.

Moment powrotu pionowego jest idealną chwilą na dokonanie całościowej zmiany obrazu
prezentowanego na ekranie. Jeżeli bowiem dokonanoby takiej zmiany w trakcie
wysyłania strumienia elektronów, wówczas pokazywany na ekranie obrazek byłby
podzielony na dwie części. Ten efekt nazywamy rozdarciem (ang. tearing up) i jest on
wysoce niepożądany.

Zaawansowane biblioteki graficzne, takie jak DirectX, czekają więc z odświeżeniem
obrazu aż do wystąpienia powrotu pionowego. Gwarantuje to, że efekt rozdarcia nigdy
nie wystąpi.

Monitory ciekłokrystaliczne nie są określone przez swoją częstotliwość odświeżania, jako
że takiego pojęcia w ogóle się do nich nie stosuje. Wyświetlacze LCD prezentują po
prostu stały obraz, na żądanie zmieniając kolory potrzebnych pikseli.

Kombinacja rozdzielczości ekranu, głębi kolorów i częstotliwości odświeżania nazywana
jest trybem graficznym (ang. graphics mode). Jego określenie zapisuje się często
razem, posługując się czterema liczbami, np. 800×600×24@85. Ten tryb oznacza, że
obraz jest wyświetlany w rozdzielczości 800×600, z 24-bitową głębią kolorów i
odświeżany z częstotliwością 85 Hz.

Windows GDI 497

Drukarka
Kiedy chcemy otrzymać edytowany dokument na papierze, używamy drukarki
(ang. printer). Jest to drugie po monitorze, najważniejsze urządzenie wyjściowe.

Typy drukarek
Od lat wyróżnia się trzy typy drukarek, biorąc pod uwagę używaną technikę nakładania
druku na papier. Te trzy rodzaje to drukarki igłowe, atramentowe i laserowe.

Drukarki igłowe

Jest to najstarszy i najprymitywniejszy, choć wciąż jeszcze popularny rodzaj drukarki. W
modelach igłowych (ang. needle printers) litery powstają z drobnych porcji tuszu,
nakładanych punktowo przez cienkie igły (stąd nazwa) i taśmę barwiącą. Wydruki są
dokonywane zwykle na długich, perforowanych rolkach papieru, które w razie potrzeby
można rozdzielić na pojedyncze arkusze.

Fotografia 11 i 12. Współczesne modele drukarek igłowych

Zaletą drukarki igłowej jest względna szybkość produkowania zadrukowanych arkuszy.
Niebagatelnie ważna jest też bardzo tania eksploatacja takiej drukarki - sprawia to, że
„igłówki” są popularne np. w sklepach, gdzie konieczne jest drukowanie dużej ilości
rachunków i faktur.
Jakość wydruków pozostawia jednak wiele do życzenia - z pewnością jest zbyt niska dla
zastosowań biurowych czy domowych. Poza tym praca drukarki igłowej wiąże się z
głośnym i mało przyjemnym, piskliwym hałasem.

Drukarki atramentowe

Drukarki atramentowe (ang. inkjet printers), czyli popularne „plujki”, są obecnie
najpopularniejszym rodzajem urządzeń drukujących. Znaleźć je można w wielu domach
użytkowników komputerów.

Działanie drukarek atramentowych polega na rozpylaniu nad papierem bardzo drobnych
kropelek tuszu. Kropelki te przylegają do kartki papieru, pokrywając ją i tworząc w ten
sposób kształty tekstu oraz grafiki.
Pierwsze modele funkcjonowały w oparciu o jeden pojemnik z tuszem, lecz teraz
standardem są cztery, zawierające podstawowe barwy systemu CMYK. Z ich połączenia
można więc otrzymać dowolny kolor i dlatego drukarki atramentowe najcześciej dobrze
oddają barwy widoczne na ekranie (choć zależy to oczywiście od klasy konkretnego
modelu).
Ogólna jakość wydruków także jest zadowalająca, poza tym można ją często
programowo ustawiać. Najlepsze rezultaty wymagają jednak dużych ilości atramentu i z
tego powodu drukarki atramentowe nie są zbyt ekonomiczne w eksploatowaniu.

Windows API 498

Bardzo powszechnym błędem jest określanie barwników do drukarek atramentowych
mianem tonera. Jest to niepoprawne, gdyż tonery są tak naprawdę używane tylko przez
drukarki laserowe. Atramentowe korzystają natomiast z tuszu lub po prostu atramentu.

Fotografia 13 i 14. Typowe modele drukarek atramentowych

(fotografie pochodzą z serwisu internetowego firmy Hewlett-Packard)

Generalnie można aczkolwiek powiedzieć, że „atramentówki” są dobrym kompromisem
między jakością wydruków a ich kosztami.

Drukarki laserowe

Trzeci rodzaj drukarek jest znany z bardzo ostrych wydruków czarno-białych oraz…
wysokiej ceny.

Drukarki laserowe (ang. laser printers) zawierają w swym wnętrzu obrotowy mechanizm,
który w trakcie drukowania jest naświetlany i elektryzowany przez laser. W miejsach,
gdzie to się dokonuje, do bębna (bo tak nazywa się ten mechanizm) przylegają cząstki
drobnego proszku (tonera). Osiadają one następnie na papierze, który w tym celu jest
elektryzowany przeciwnym znakiem ładunku.

Fotografia 15 i 16. Przykładowe drukarki laserowe

(fotografie pochodzą z serwisu internetowego firmy Hewlett-Packard)

Uzyskiwane w ten sposób obrazy charakteryzują się duża ostrością i rozdzielczością.
Nieco gorzej bywa z odzwierciedleniem kolorów, jako że technologia druku laserowego
przez długi czas była przeznaczona tylko do wydruków monochromatycznych. W zasadzie
jednak ogólną jakość drukowania można uznać za wysoką.
Za tę jakośc trzeba niestety sporo zapłacić. Chodzi tu szczególnie o cenę samego
urządzenia - co najmniej trzy razy większą niż cena przeciętnej drukarki atramentowej.
Koszt zużywanego tonera jest natomiast nieco niższy od kosztu eksploatacji „plujki”.

http://www.hp.com/
http://www.hp.com/

Windows GDI 499

Przedstawione tu trzy rodzaje nie są naturalnie jedynymi typami drukarem. Pozostałe są
jednak przeznaczone do specyficznych zastosowań. Ciekawym przykładem są choćby
drukarki termosublimacyjne, w których obraz powstaje z cząsteczek barwnika
doprowadzonych do stanu lotnego poprzez wysoką temperaturę. Cząsteczki te osiadają
na papierze, tworząc nieprzeciętnie ostre wydruki, odpowiednie do prezentowania
kolorywch fotografii. Nie trzeba chyba dodawać, że tego typu urządzenia są bardzo,
bardzo drogie.

Parametry wydruku
Drukarka, podobnie jak monitor, produkuje obraz rastrowy137. Jego parametry są więc
podobne do tych określających wyświetlacz komputerowego „telewizora”. Przyjrzymy się
im teraz.

Obszar wydruku

Bardzo niewiele drukarek potrafi zapełnić każdy kawałek podanej im kartki papieru,
najczęściej w formacie A4. Ogromna większość ogranicza się do jej części, zwanej
obszarem drukowania (ang. printing area). Zwykle nie jest on wiele mniejszy od
wymiarów papieru.

Schemat 48. Przykładowy obszar drukowania

Należy jednak zwracać uwagę, aby marginesy naszych dokumentów znajdowały się w
całości w tej strefie, bowiem w przeciwnym razie skończy się to „obcięciem” tekstu lub
grafiki.

Rozdzielczość

Obraz wydrukowany, tak samo jak ten na ekranie, składa się z małych punktów - już nie
pikseli, a kropek (ang. dots). Możemy więc także mówić o jego rozdzielczości.

Jej miarą nie jest jednak ilość punktów w pionowym i poziomym wymiarze kartki, gdyż
takiej wielkości nie możnaby porównywać między drukarkami operującymi na różnych
formatach papieru. Zamiast tego mówi się, jak wiele kropek przypada na pewną małą
jednostkę powierzchni - cal kwadratowy (ok. 6,5 cm2). Miarę tę oznaczamy literami dpi
(ang. dots per inch - kropki na cal).

Rozdzielczość drukarki możemy podawać jedną lub dwoma liczbami. W tym drugim
przypadku mówi się, ile kropek przypada na cal długości poziomej oraz pionowej.
Przykładowo, 300×400 dpi oznacza, iż jeden cal kwadratowy wydruku jest prostokątem
mającym 300 kropek długości i 400 wysokości.
Zwykle kropki są swym kształcie zbliżone raczej do kół i dlatego rozdzielczość w obu
wymiarach jest taka sama. Wtedy też wystarcza tylko jedna liczba do jej opisu, tak więc

137 Ściślej to takie drukarki nazywamy mozaikowymi (gdyż plotery są formalnie także drukarkami), ale przyjęło
się nieużywanie tego dodatkowego określenia.

Windows API 500

zamiast mówić, że gęstość wydruku wynosi, dajmy na to, 600×600 dpi wystarczy
powiedzieć, że jest ona równa 600 dpi. Taką miarę rozdzielczości stosuje się najczęściej.

Dzisiaj drukarki atramentowe mają rozdzielczość około 1200 dpi, zaś laserowe niemal
dwa razy większą.

Kolory

W przypadku monitorów możemy mówić o wielu trybach wyświetlania, różniących się
ilością potencjalnych kolorów. Dla drukarek sprawa wygląda inaczej.

Otóż nie stosuje sięw ogóle pojęcia głębi kolorów. Zamiast tego wydruk można określić
jako:

 monochromatyczny, gdy jego punkty są albo czarne (zadrukowane), albo białe
(niezadrukowane). W ten sposób funkcjonują drukarki igłowe

 wykonany w skali szarości przez drukarkę atramentową lub laserową. Większą
lub mniejszą jasność punktów uzyskuje się poprzez zmienną ilość tuszu (tonera)
pokrywającego kartkę

 kolorowy

W tym ostatnim przypadku możliwe są oczywiście rozbieżności między dokładnością
odwzorowania barw w różnych drukarkach. Faktycznie jednak są one trudne do
obiektywnego określenia, ponieważ wymagałyby sprecyzowania, jak małe porcje
atramentu (tonera) mogą być mieszane ze sobą przez dany model drukarki. Mimo to
wielu producentów chwali się milonami kolorów, jakie rzekomo mogą otrzymać ich
urządzenia. Do takich doniesień trzeba więc podchodzić z dużą rezerwą.

Podstawy Windows GDI
W tym podrozdziale zajmiemy się nareszcie zasadniczym zagadnieniem. Przedstawię
tutaj podstawowe wiadomości na temat biblioteki graficznej Windows GDI. Przydadzą się
one w dalszej części rozdziału, gdy przejdziemy już do poszczególnych elementów tego
przebogatego interfejsu.

Rozpoczniemy tu od kluczowego pojęcia potoku grafiki.

Potok graficzny
Sekwencyjna natura komputerów jest przyczyną tego, że wiele związanych z nimi kwestii
dzieli się na mniej lub bardziej oczywiste etapy. Nie inaczej jest też z wyświetlaniem
obrazu przez biblioteki graficzne - tą kaskadę kolejnych szczebli nazywamy w ich
przypadku potokiem graficznym (ang. graphics pipeline).

Taki potok obrazuje, w jaki sposób polecenia i funkcje rysujące, wywoływane przez
program, przekładają się ostatecznie na rezultat widoczny na ekranie. Między punktem
startu a końcem może się znajdować wiele stadiów pośrednich - przekształceń,
transformacji, manipulacji. W sumie otrzymujemy taki, a nie inny obraz - obraz, który
sami narysowaliśmy.
Znajomość potoku graficznego jest więc nieodzowna. Bez tego nie moglibyśmy
świadomie korzystać z biblioteki graficznej. Nie moglibyśmy właściwie wykorzystać jej
potencjału. Nie moglibyśmy wreszcie przedstawić na ekranie tego, co chcemy.

Potok graficzny jest też pewnym rodzajem abstrakcji, więc umożliwia niezależność
biblioteki od sprzętu (ang. device-independece).

Windows GDI 501

W Windows GDI potok graficzny także występuje, chociaż nie wszyscy zdają sobie
sprawę z jego istnienia. Teoretycznie możnaby się nawet obyć bez wiedzy o tym, ale jest
ona całkiem pożyteczna. Jeśli bowiem poznasz teraz prosty potok związany z GDI, łatwiej
będzie ci później zaznajomić się ze znacznie bardziej skomplikowanym potokiem
geometrii w DirectX.
Rzućmy zatem okiem na kolejne etapy przetwarzania obrazu w Windows GDI.

Tę sekcję możesz śmiało pominąć przy pierwszym czytaniu, jeżeli uznasz ją za zbyt
trudną. Wróć jednak do niej po lekturze całego rozdziału.

Tryby grafiki
Jak wiele długożyjących produktów programistycznych, biblioteka Windows GDI
podlegała ewolucji w trakcie swego istnienia. Zmiany nie omijały także jej istoty, czyli
potoku graficznego.
Doprowadziły one w końcu do wyodrębnienia się dwóch trybów grafiki (ang. graphics
mode). Mają one odrobinę różniące się od siebie potoki graficzne - a mówiąc dokładniej,
jeden z nich jest uboższą wersją drugiego.

Tryb kompatybilny
Prostszym trybem grafiki jest tryb kompatybilny (ang. compatible mode) Windows
GDI. Jego nazwa jest nieprzypadkowa, gdyż hipotetycznie został on zachowany wyłącznie
celem zgodności z 16-bitowymi wersjami Windows. Z powodu swej prostoty jest on
jednak szeroko wykorzystywany także i teraz; zwłaszcza, iż jest to domyślny tryb
grafiki.

Potok graficzny w tym trybie można zilustrować poniższym schematem:

Schemat 49. Potok graficzny Windows GDI w trybie kompatybilnym

W tym akapicie omówimy go skrótowo, w kilku punktach. Kazdym etapem zajmiemy się
dokładnie w następnych akapitach, gdy poznamy także potok trybu zaawansowany.
Wszystkie te stadia występują bowiem również i tam.

Rysowanie na płaszczyźnie świata (strony)

Wywoływanie funkcji Windows GDI nie przekładasię natychmiast na zmiany obrazu na
ekranie monitora (lub innego urządzenia wejściowego). Wpierw modyfikowana jest
płaszczyzna świata (ang. world space138), w trybie kompatybilnym tożsama z
płaszczyzną strony (ang. page space). Jest to pewien dodatkowy poziom abstrakcji,
pozwalający na względną niezależność od rzeczywistego urzadzenia. Dzięki temu GDI
pozwala rysować zarówno na monitorze, jak choćby i na drukarce. To nadmiarowe
stadium umożliwia też stosowanie dowolnych jednostek miary dla obrazu.

138 W zasadzie jest to niby przestrzeń świata. Zdecydowałem się jednak na nazwę ‘płaszczyzna’, gdyż mówimy o
rysunkach dwuwymiarowych. Nazwę ‘przestrzeń’ rezerwuję dla grafiki 3D.

Windows API 502

Rzutowanie dla płaszczyzny urządzenia

Płaszczyzna świata (strony) jest teoretycznie niemal nieograniczona, więc nie możemy
wyświetlić jej całej. Trzeba zdecydować się na pewien wycinek.

Dokładniej mówimy tu o dwóch wycinkach w kształcie prostokątów. Pierwszy znajduje się
na płaszczyźnie świata (strony) i definiuje tę jej część, która zostanie pobrana do
ostatecznego wyświetlenia. Poza tym - co zaraz sobie wyjaśnimy - precyzuje on też
granice układu współrzędnych świata (strony).
Istnieje jeszcze drugi prostokąt, obecny już na płaszczyźnie urządzenia (ang. device
space). Jest on miejscem, gdzie fragment płaszczyzny z poprzedniego stadium zostanie
zrzutowany i przygotowany do właściwego wyświetlenia.

Te dwa ważne prostokąty będziemy nazywać kadrem i wziernikiem, a powiemy sobie o
nich więcej w kolejnych akapitach.

Prezentacja na fizycznym urządzeniu

Z płaszczyny urzadzenia jest już krótka droga do… samego urzadzenia. W tym momencie
Windows GDI porzuca swoją niezależność od sprzetu i przystępuje do najbardziej
widocznej dla nas pracy.

Biblioteka wysyła więc albo odpowiednie polecenia, albo też zrasteryzowany obraz do
sterownika urządzenia wyjściowego. Najczęściej tym urządzeniem jest monitor, zatem
gotowy obraz trafia do karty graficznej. Ona przesyła sygnały do monitora, który
ostatecznie wyświetla przygotowany rysunek.
Zwykle nie zajmuje on aczkolwiek całego dostępnego ekranu, lecz jest zawarty np. we
wnętrzu jakiegoś okna. Windows GDI musi zatem ściśle współpracować z interfejsem
użytkownika systemu Windows, jednak nas zbytnio to nie interesuje. Ważne jest, że
wynik naszej współpracy z GDI zostaje definitywnie pokazany na urządzeniu wyjściowym.
Sama biblioteka dba przy tym o jego odpowiednie przycięcie, gdyby nie mieścił się w
wyznaczonym dla siebie obszarze (np. oknie).

Tryb zaawansowany
Oprócz trybu kompatybilnego, GDI daje możność dokonywania globalnych manipulacji
obrazu podczas jego przejścia przez pierwsze etapy potoku graficznego. Tryb grafiki,
który to umożliwia nazywamy zaawansowanym (ang. advanced mode); posiada on
swój własny potok graficzny - bardzo podobny do poprzedniego:

Schemat 50. Potok graficzny w Windows GDI w trybie zaawansowanym

Występuje tu tylko jeden dodatkowy etap przekształcania, na który z grubsza rzucimy
okiem.

Windows GDI 503

Transformacja świata

W trybie zaawansowanym płaszczyzna świata jest oddzielna od płaszczyzny strony, gdyż
ją poprzedza. Przejściu od tej pierwszej do drugiej mogą przy tym towarzyszyć
uzupełniające transformacje.

Takimi transformacjami są zwykłe geometryczne odwzrowania w rodzaju przesunięcia,
obrotu i skalowania. Windows GDI używa macierzy 3×3 do reprezentacji tych działań na
obrazach. Forma ta pozwala na ich łatwe łączenie z zachowaniem kolejności
przekształceń.
Nie bedziemy tutaj omawiać tego zagadnienia, ponieważ transformacje płaszczyzny
świata stosuje się nadzwyczaj rzadko. Wprowadzenie w temat macierzy i ich rolę w
geometrii grafiki odłożymy aż do czasu poznawania biblioteki DirectX. Tam już nie
będziemy się mogli bez nich obyć, ale w Windows GDI jest to całkowicie dopuszczalne i
poprawne.

Ustawianie trybu zaawansowego

W zasadzie jest to chyba nawet więcej niż dopuszczalne. Tryb zaawansowany nie jest
bowiem domyślnym trybem GDI w tych systemach Windows, które go obsługują. Kwestią
o tym decydującą jest zapewne zgodność z programami dla starszych wersji systemu.
Zachowanie kompatybilności jest na razie koniecznością, ponieważ tryb zaawansowany
jest obsługiwany dopiero w Windows NT, 2000 i XP.

Niemniej, chociaż nie będziemy korzystać z tego trybu w niniejszym rozdziale, warto
wiedzieć jak można go przynajmniej włączyć. Nie jest to trudne, wystarczy posłużyć się
funkcją SetGraphicsMode():

SetGraphicsMode (hdcKontekst, GM_ADVANCED);

Jej drugi parametr wskazuje na wybrany tryb: GM_ADVANCED to żądany tryb
zaawansowany, GM_COMPATIBLE spowoduje powrót do standardowego ustawienia
kompatybilnego.
Pierwszym parametrem jest natomiast uchwyt do tzw. kontekstu urządzenia. To
niezwykle ważne pojęcie Windows GDI i dlatego poświęcimy mu wiele miejsca - ale nieco
później. Na razie zapamiętaj, że kontekst ten precyzuje miejsce, w którym będziemy
rysować. Uchwytów do kontekstów urzadzenia z powodzeniem używaliśmy w poprzednich
rozdziałach, więc myślę, iż ta kwestia nie jest dla ciebie aż taką nowością.

Zatem tryb grafiki ustawiamy dla konkretnego kontekstu urzadzenia, zwykle
przynależnego naszej aplikacji. Nie jest to więc parametr właściwy całemu systemowi, a
każda aplikacja może zdecydować, w jakim trybie chce spożytkować interfejs Windows
GDI.
Ażeby jednak dobrze go wykorzystać, musimy dowiedzieć się nieco więcej o kolejnych
stadiach potoku graficznego, co uczynimy zaraz. Później zajmiemy się również pojęciem
kontekstu urządzenia.

Płaszczyzna świata (strony)
Pierwszym „miejscem”, gdzie wywołania GDI dają jakieś rezultaty, jest płaszczyzna
świata - w trybie kompatybilnym zwana także płaszczyzną strony. Słowo ‘miejsce’ piszę
tu w cudzysłowiu, ponieważ faktycznie chodzi o coś zupełnie abstrakcyjnego, znacznie
bardziej „wirtualnego” niż choćby powierzchnia pulpitu Windows, którą możemy
normalnie oglądać na ekranie swego monitora.

Płaszczyzna świata nie jest nieskończona, choćby dlatego że jej wymiary ograniczałby
rozmiar zmiennych całkowitych. Jest ona skończona także z tego powodu, iż odnosi się
do bardziej konkretnego zakresu na ekranie (np. wnętrza okna), strony w drukarce czy

Windows API 504

jeszcze innego rejonu w innym urządzeniu wyjściowym. Nie możemy bowiem „wyjść”
poza region, na którym pozwolono nam rysować.
Możemy jednak zmienić sposób, w jaki po tym regionie będziemy się orientować. Jest to
możliwe poprzez ustanowienie na nim jakiegoś układu współrzednych oraz zmianę kadru.

Mapowanie układu współrzędnych
Biblioteka GDI zachowuje się w tym względzie bardzo porządnie, bo pozwala
programiście na daleko posuniętą swobodę w wyborze pasującego mu układu. System
współrzędnych jest bowiem tutaj czymś więcej niż tylko dwoma przecinającymi się
osiami.

W GDI mamy pojęcie trybu mapowania (ang. mapping mode) układu współrzednych.
Tryb ten precyzuje nie tylko orientację płaszczyzny (kierunek osi pionowej), ale też
wielkość jednostek, na które tę płaszczyznę podzielimy. Nazywamy je jednostkami
logicznymi (ang. logical units), w przeciwieństwie do jednostek urządzenia (ang. device
units) - na przykład pikseli.
W Windows GDI możemy ustawić jeden z kilku predefiniowanych trybów mapowania.

Ustawianie trybu mapowania

Do tego celu posługujemy się funkcją SetMapMode():

int SetMapMode(HDC hdc,
 int fnMapMode);

Ponieważ omawiany tryb jest znowu ustawieniem powiązanym z kontekstem
urządzeniam uchwyt do niego należy podać w pierwszym parametrze. W drugim
wpisujemy natomiast jedną ze stałych, identyfikującą wybrany tryb mapowania:

stała
tryb

mapowania

rozmiar
jednostki
logicznej

zwrot
osi

uwagi

MM_HIMETRIC metryczny
gesty

0,01 milimetra

MM_LOMETRIC metryczny
luźny

0,1 milimetra

Te tryby mogą być
przydatne podczas
zaawansowanego

przetwarzania obrazów.

MM_HIENGLISH angielski
gęsty

0,001 cala (0,025
milimetra)

MM_LOENGLISH angielski
luźny

0,01 cala (0,25
milimetra)

MM_TWIPS twips

1/20 punktu
drukarskiego

(1/1440 cala -
0,018 milimetra)

x
y

Tryby te są używane
zwykle podczas

drukowania.

MM_ANISOTROPIC anizotropowy
Umożliwia dowolne

ustawienie parametrów
układu współrzędnych.

MM_ISOTROPIC izotropowy

ustalany przez
programistę

dowolny
Dba o to, aby pionowy i

poziomy rozmiar
jednostek był taki sam.

MM_TEXT piksele
urządzenia

jeden piksel
urządzenia

x
y

Jest to domyślny tryb
mapowania.

Tabela 59. Tryby mapowania układu współrzędnych w Windows GDI

Windows GDI 505

Możemy więc mierzyć nasze rysunki w milimetrach, calach, pikselach (domyślne
ustawienie), jak również w naszych własnych jednostkach, ustalanych ad hoc. Zobaczmy,
jak możemy je zdefiniować.

Kadr
Jeżeli wybraliśmy jako tryb mapowania ustawienie MM_ISOTROPIC lub MM_ANISOTROPIC,
wówczas możemy sami ustalić jednostokę oraz zwrot układu współrzędnych danego nam
fragmentu płaszczyzny świata. We wszystkich przypadkach możemy także określić
położenie punktu początkowego (0, 0) wybranego układu.

O wszystkich tych sprawach decydujemy, modyfikując właściwości kadru na płaszczyźnie
świata.

Kadr (ang. window139) określa orientację osi, położenie początku, zakres jednostek oraz
ewentualnie ich rozmiar w układzie współrzędnych płaszczyzny świata.

Ustawienie kadru pozwala więc opisać podarowany nam kawałek płaszczyzny zgodnie ze
swoimi życzeniami. Zobaczmy zatem, jak można to zrobić.

Pozycja kadru

Położenie kadru możemy regulować. Możliwe jest rozmieszczenie go w każdym punkcie
wielkiej płaszczyzny świata - do tego celu służa funkcja SetWindowOrgEx():

BOOL SetWindowOrgEx(HDC hdc,
 int X,
 int Y,
 LPPOINT lpPoint);

W parametrach X i Y podajemy jej punkt (w jednostkach logicznych), w którym zostanie
umieszczony lewy górny róg kadru. Punkt ten będzie rzutowany na piksel (0, 0) przy
przekształcaniu płaszczyzny świata na płaszczyznę urządzenia.
Domyślnie kadr jest położony w logicznych koordynatach (0, 0), które przekładają się
bezpośrednio na koordynaty urządzenia - też (0, 0). Jeżeli wywołamy
SetWindowOrgEx(), zmienimy to.

W lpPoint funkcja zwróci nam poprzednie ustawienie kadru (chyba że podamy tu NULL).

Rozciągłość osi

Maksymalny rozstaw osi układu współrzędnych w kadrze ustawiamy za pomocą
SetWindowExtEx():

BOOL SetWindowExtEx(HDC hdc,
 int nXExtent,
 int nYExtent,
 LPSIZE lpSize);

Wywołanie tej funkcji przynosi jakikolwiek efekt tylko wtedy, gdy tryb mapowania jest
ustawiony na MM_ISOTROPIC lub MM_ANISOTROPIC. Wówczas parametry nXExtent i
nYExtent określają wartośc na osiach współrzednych układu, jakie są osiągane na
krawędziach kadru.

139 window znaczy oczywiście ‘okno’. Z powodu naturalnego konfliktu ze znacznie częściej używanym w WinAPI
znaczenie tego slowa zdecydowałem, że w tym kontekście lepiej będzie użyć innego terminu. Padło na kadr.

Windows API 506

Pamiętajmy, że ustawianie większych rozciągłości osi nie powoduje wcale zwiększenia
faktycznego obszaru, na którym będziemy rysować. Funkcja SetWindowExtEx() służy
bowiem zdefiniowaniu jednostek logicznych, jakich będziemy używać przy rysowaniu na
płaszczyźnie świata. Zatem:

Podawanie większych wartości do funkcji SetWindowExtEx() nie spowoduje rozszerzenia
obszaru rysowania, lecz zmniejszenie rozmiaru jednostek logicznych.

Sam obszar rysowania jest dany nam odgórnie (np. jako wnętrze okna o ustalonym
rozmiarze) i nie możemy go na siłę powiększyć lub zmniejszyć. Możemy aczkolwiek
podzielić go na tyle jednostek, ile chcemy - do tego służy opisywana funkcja.

W parametrze lpSize zwraca ona bieżące wymiary kadru.

Gdy trybem mapowania jest MM_ISOTROPIC, wtedy najlepiej byłoby, jeśli jednostki
logiczne były takie same w pionie i poziomie. Inaczej Windows GDI sam o to zadba, co
niekoniecznie musi być dobre.
Aby temu zapobiec, możemy pobrać pierwotne wymiary kadru poprzez
GetWindowExtEx(), a następnie przeskalować je, mnożąc przez ten sam czynnik. Wtedy
aspekt obrazu zostanie zachowany.

O SetWindowOrgEx() i SetWindowExtEx() możesz rzecz jasna poczytać w MSDN.

Płaszczyzna urządzenia
Przedostatnim etapem potoku graficznego - tuż przed wyświetleniem obrazu - jest
płaszczyzna urządzenia (ang. device space).

Na tę płaszczyznę rzutowana jest poprzednia (świata lub też strony), dzięki czemu
rysunek jest ostatecznie przygotowywany pod względem, nazwijmy to,
„geometrycznym”. Obejmuje to między innymi dostosowanie do układu współrzędnych
urządzenia.

Układ współrzędnych
Na tej płaszczyźnie na ma już jednostek logicznych - są tylko jednostki urządzenia
(ang. device units). Interpretacja, czym one rzeczywiście są, zależy ściśle od sprzętu. Dla
monitora będą to pojedyncze piksele, zaś dla drukarki - punkty na papierze, itp.

Z nową płaszczyzną związany jest też inny układ współrzędnych. Tutaj nie możemy już
go zmieniać, właśnie ze względu na wspomnianą już zależność od sprzętu.
Ten układ nie jest trudny do opanowania, bo spotykałeś się z nim już niejednokrotnie.

W układzie współrzędnych płaszczyzny urządzenia punkt (0, 0) jest umieszczony w
lewym górnym rogu, zaś oś X biegnie w prawo, a Y - w dół.

Jest to więc taki sam system, jaki stosujemy dla określania położenia okien i innych
elementów interfejsu Windows. Nie jest to przypadkowe: przecież sam intefejs także jest
rysowany po ekranie monitora.

Wziernik
Na płaszczyźnie urządzenia występuje również pojęcie prostokąta podobnego do kadru.
Jest to wziernik.

Windows GDI 507

Wziernik (ang. viewport) określa miejsce na płaszczyźnie urządzenia, gdzie pojawi się
wygenerowany obraz.

Pokrywa się on początkowo z całym obszarem, na którym możemy rysować przy pomocy
danego kontekstu urządzenia. W ogromnej większości przypadków nie ma też
najmniejszej potrzeby zmiany tego.

Czasem konieczne jest może tylko jego przesunięcie. Dokonujemy tego poprzez funkcję
SetViewportOrgEx():

BOOL SetViewportOrgEx(HDC hdc,
 int X,
 int Y,
 LPPOINT lpPoint);

W argumentach X i Y podajemy jej koordynaty punktu (w jednostkach urządzenia), w
którym zostanie umieszczony rzut początku układu współrzednych płaszczyzny świata
(strony). Jest to więc taki piksel, któremu zostanie przyporządkowany punkt (0, 0) w
jednostkach logicznych. Pozostała część płaszczyzny świata będzie rzutowana w
odniesieniu do tego właśnie punktu.

Kontekst urządzenia
O ile potok graficzny może nie wydawać się ważną sprawą (bo i o jego istnieniu
niekoniecznie trzeba być uświadomionym), o tyle druga kluczowa koncepcja Windows
GDI jest dla programisty absolutnie niezbędna. Mowa tu o kontekście urządzenia.

Z terminem tym spotkaliśmy się już parę razy - zawsze wtedy, gdy chcieliśmy coś
narysować w oknie programu. Nie ma w tym nic niezwykłego, bowiem do tego właśnie
służy ów kontekst.

Kontekst urządzenia (ang. device context) jest strukturą Windows GDI przechowującą
informacje na temat urządzenia graficznego. Na rzecz kontekstu można wywoływać
funkcje GDI, tworząc w ten sposób obrazy wyświetlane na tym urządzeniu.

Konkretny kontekst może więc być związany z monitorem, drukarką mozaikową,
ploterem, planszą rzutnika slajdów czy nawet tablicą do internetowych konferencji. Jego
użytkowanie w każdym z tych przypadków wygląda jednak bardzo podobnie i to jest
jedną z głównych zalet biblioteki Windows GDI.

Kontekst urządzenia jest strukturą, a sądząc z pełnionych przez siebie zadań - strukturą
bardzo skomplikowaną. Jej złożoność jest na szczęście problemem Windows, a nie
naszym. Programista nie musi bowiem operować bezpośrednio na kontekście urządzenia;
właściwie byłoby to zupełnie niewskazane, jako że nieuchronnie zatarłoby niezależność
sprzętową, wpisaną w idee Windows GDI.
Zamiast samej struktury będziemy więc działać tylko przy pomocy uchwytu do niej.
Naszą najważniejszą daną przy rysowaniu będzie w takim razie uchwyt do kontekstu
urządzenia (ang. handle to device context). Ją też będziemy podawać, chcąc cokolwiek
wyświetlić, zmienić parametry rysowania lub pobrać informacje o urządzeniu.

Dla wygody często utożsamia się kontekst urządzenia z jego uchwytem, ponieważ
wspomniana wewnętrzna struktura Windows GDI nie jest używana przez programistę i
liczy się tylko uchwyt do niej. Dlatego też jeśli dalej będę mówił o kontekście urządzenia,
to prawie na pewno będę miał na myśli jego uchwyt (chyba że wyraźnie zaznaczę coś
innego).

Windows API 508

Uchwyt do kontekstu jest w gruncie rzeczy podobny do dziesiątków innych rodzajów
uchwytów w Windows API. Jest to więc liczba 32-bitowa, dla której przewidziano osobny
typ: HDC. Jak już może zdążyłeś zauważyć, wszystkie widziane przez ciebie dotąd funkcje
GDI (np. DrawText() czy MoveToEx()) żądały przynajmniej jednego parametru tego
typu. W ten sposób wiedzą one, gdzie dokładnie mają wykonać żądane operacje
graficzne.

Gdyby kontekst urządzenia był klasą języka C++, to w zasadzie wszystkie funkcje
Windows GDI działałyby jako metody tej klasy. Niestety, interfejsu GDI (jak i całego
WinAPI) nie napisano w C++, więc sytuacja wygląda nieco gorzej. Niemniej, uchwyt do
kontekstu urządzenia można w logiczny sposób utożsamiać ze wskaźnikiem this, jaki
otrzymują przy wywołaniu metody obiektów. Takie „pseudoobiektowe” podejście,
stawiające uchwyty w takiej roli jak obiekty OOP, jest zresztą charakterystyczne dla
całego Windows API i sprawdza się całkiem dobrze. Jak zobaczysz niedługo, z pewnymi
oporami można tak symulować nawet dziedziczenie i polimorfizm metod wirtualnych.

Pierwszą czynnością rysowania przy użyciu Windows GDI powinno być zatem uzyskanie
skądś uchwytu do kontekstu urządzenia, gdyż bez niego nie zrobimy zgoła nic. Później
można już dokonywać tych wszystkich wspaniałych rzeczy, o których traktuje większa
część aktualnego rozdziału.
Rozpocznijmy więc od pobrania uchwytu kontekstu urządzenia.

Pobieranie uchwytu
Uchwyt do kontekstu urządzenia można zdobyć wieloma różnymi drogami.
Najlogiczniejsze wydawałoby się powiadomienie Windows, z którego urządzenia
grafixznego chcemy skorzystać, a system zwróciłby nam wtedy uchwyt do niego.
Faktycznie jest to możliwe i pokażę później, jak to zrobić.
W Windows częściej jednak będzie używali kontekstów pochodzących z innych źródeł,
związanych z ekranem. Mam tu na myśli konteksty urządzeń powiązane z oknami
Windows lub ich fragmentami (obszarami klienta). Właśnie tego rodzaju uchwytów
graficznych używaliśmy dotąd, gdy w poprzednich rozdziałach rysowaliśmy cokolwiek w
oknie naszych programów przykładowych.
Ostatnią możliwością jest samodzielne utworzenie kontekstu na podstawie innego, już
istniejącego. Jest to bardzo przydatne przy operowaniu bitmapami, więc o tym także
sobie powiemy.

Poznajmy zatem te trzy metody pobierania uchwytów kontekstu urządzenia.

Od okna
Chcąc narysować cokolwiek w oknie, musimy pobrać kontekst odnoszący do niego. Jest
to wykonalne na kilka sposobów.

Podczas odrysowywania

Pierwszą możliwość wyraźnie podsuwa nam sam system operacyjny: jest to moment
koniecznego odrysowania zawartości okna. Kontekst urządzenia związany z oknem
możemy bowiem bez problemów pobrać podczas obsługi komunikatu WM_PAINT.

Wiemy już zresztą, jak to zrobić. Przy omawianiu tego komunikatu poznaliśmy
mianowicie funkcję BeginPaint(), która do tego właśnie służy:

HDC hdcKontekst;
PAINSTRUCT ps;

hdcKontekst = BeginPaint(hWnd, &ps);

Windows GDI 509

Jej wywołanie zwraca w wyniku żądany kontekst; ponadto zawiera go także pole hdc
struktury PAINSTRUCT, której wskaźnik podajemy do BeginPaint().

Kontekst, jaki w ten sposób uzyskujemy, jest krótkożyjący i traci ważność po
odrysowaniu zawartości. Jak wiemy, czynność tę kończymy poprzez przywołanie
EndPaint():

EndPaint (hWnd, &ps);

Po nim odświeżanie okna jest już zakończone, a kontekst pobrany na początku nie
nadaje się do żadnego użytku. Wówczas kończymy więc obsługę WM_PAINT i nasza
zabawa na tym się kończy.

Obszar klienta okna

Uchwyt kontekstu okna możemy pobrac nie tylko przy reagowaniu na komunikat
WM_PAINT. Równie dobrze moglibyśmy uzyskać w dowolnej sytuacji - wystaczy posłużyć
się funkcją GetDC():

HDC hdcObszarKlienta = GetDC(hWnd);

Wymaga ona tylko podania uchwytu okna, a w zamian oddaje kontekst urządzenia,
odnoszący się do jego obszaru klienta.

Po zakończeniu pracy z kontekstem należy go zwykle zwolnić, ponieważ zazwyczaj nie
jest to twór trwały. Windows tworzy go tymczasowo, dla nas, i dlatego należy mu
powiedzieć, kiedy już go nie potrzebujemy. Robimy to poprzez wywołanie ReleaseDC():

ReleaseDC (hWnd, hdcObszarKlienta);

Jest to zalecane w każdym przypadku, bo całkowicie zapobiega ewentualnym
wyciekom zasobów (kontekst urządzenia jest przecież zasobem systemowym).

Zwolnienie uchwytu nie jest aczkolwiek konieczne w przypadku, gdy jest to prywatny
kontekst okna lub kontekst wspólny dla całej klasy okien. Te dwa przypadku zachodzą,
kiedy przy rejestrowaniu klasy okna dołączymy (odpowiednio) CS_OWNDC lub CS_CLASSDC
do jej stylu (pola WNDCLASS[EX]::style).
Ponieważ jednak w przypadku tego rodzaju sytuacji ReleaseDC() nie robi nic, stosowanie
tego wywołania jest bardzo rozsądne niezależnie od okoliczności.

Całe okno

GetDC() pozwala nam bawić się z obszarem klienta okna - i tylko z nim. Pozostała jego
część, czyli obszar pozakliencki, jest wtedy poza naszym zasięgiem. Jeśli jednak chcemy
zajać się także i tym rejonem, potrzebujemy kontekstu dla całego okna. Pozyskujemy
go funkcją GetWindowDC():

HDC hdcOkno = GetWindowDC(hWnd);

Otrzymany tą drogą kontekst pokrywa obszar nie tylko wnętrza okna hWnd, ale też jego
paska tytułu, menu czy brzegów. Posługiwanie się nim należy więc do sytuacji raczej
specjalnych, gdyż te części okna są ważne dla systemu Windows.

Po zakończeniu pracy z kontekstem należy go zwolnić, a posługujemy się do tego
poznaną przed chwilą funkcją ReleaseDC():

ReleaseDC (hWnd, hdcOkno);

Windows API 510

Dla kontekstu obejmującego całe okno trzeba ją wywołać zawsze, aby uniknąć
niepożadanego zjawiska wycieku zasobów.

Do uzyskiwania kontekstu urządzenia związanego z oknem możliwe jest też użycie
funkcji GetDCEx(). Jest ona bardzo elastyczna i zależnie od swych parametrów może
zachowywać się jak GetDC(), GetWindowDC(), a nawet jak BeginPaint(). Oferuje tez
pewne dodatkowe możliwości (pomocne np. przy obsłudze WM_NCPAINT); na temat ich
wszystkich możesz co nieco poczytać w dokumentacji MSDN.

Od urządzenia
Drugim źródłem kontekstów urządzeń są… urządzenia :) W Windows możemy przy ich
pomocy uzyskać dostęp do przyłączonego do komputera sprzętu graficznego.

Ekran

Bardzo proste jest pobranie kontekstu urządzenia pokrywającego cały ekran. Mówiąc
‘ekran’ nie mam na myśli pulpitu systemowego, lecz dosłownie ekran monitora: czyli to
co widzimy patrząc w „telewizor”, tj. zarówno pulpit, jak i okna, które go ewentualnie
przykrywają. Kontekst całego ekranu pozwala zatem na wtrącanie się w wygląd innych
aplikacji, więc rysowanie po nim nie należy do dobrego tonu. Przy jego pomocy można
jednak wykonywać inne, całkiem „kulturalne” i przydatne operacje. Jedną z nich za
chwilę zaprezentuję.

Na razie dowiedzmy się, jak pozyskać taki specjalny kontekst. Jak mówiłem nie jest to
trudne i ogranicza się do wywołania jednej prostej funkcji, w dodatku już nam znanej. Tą
funkcją jest GetDC():

HDC hdcEkran = GetDC(NULL);

Zamiast uchwytu okna podajemy jej wartość NULL, czyli zero. W zamian dostajemy
kontekst dla całego ekranu140.

Skoro jednak nie powinniśmy po nim rysować, to cóż sensownego da się z nim zrobić?
Otóż da się całkiem sporo; najciekawsze jest chyba stworzenie aplikacji pobieracza
kolorów (ang. color picker). Oto, jak może ona wyglądać:

// ColorPicker - pobieracz kolorów

#include <string>
#include <sstream>
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <windowsx.h>

// dane okna
std::string g_strKlasaOkna = "od0dogk_ColorPicker_Window";
HWND g_hwndOkno = NULL;

// uchwyt do kontekstu ekranu
HDC g_hdcEkran = NULL;

// pobrany kolor

140 Zamiast GetDC(), można też użyć GetWindowDC() (także podajać jej NULL), ale wynik byłby inny w
systemach wielomonitorowych. Tam GetWindowDC() zwróciłaby kontekst głównego monitora, zaś GetDC() w
przedstawionej formie oddaje zawsze kontekst dla całego wirtualnego ekranu - niezależnie od tego, na ile
rzeczywistych monitorów się on rozciąga.

Windows GDI 511

COLORREF g_clKolor = RGB(255, 255, 255); // początkowo biały

// ------------------- procedura zdarzeniowa okna ------------------------

LRESULT CALLBACK WindowEventProc(HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM lParam)
{
 switch (uMsg)
 {
 case WM_LBUTTONDOWN:
 // łapiemy myszkę
 SetCapture (hWnd);

 // ustawiamy kursor w kształcie celownika
 SetCursor (LoadCursor(NULL, IDC_CROSS));
 return 0;

 case WM_MOUSEMOVE:
 // sprawdzamy, czy myszka jest złapana
 if (GetCapture() == hWnd)
 {
 // odczytujemy współrzędne kursora
 POINT ptKursor;
 ptKursor.x = GET_X_LPARAM(lParam);
 ptKursor.y = GET_Y_LPARAM(lParam);

 // przeliczamy je na koordynaty ekranowe
 ClientToScreen (hWnd, &ptKursor);

 // pobieramy kolor z miejsca kursora
 g_clKolor = GetPixel(g_hdcEkran,
 ptKursor.x, ptKursor.y);

 // wymuszamy odświeżenie okna programu,
 // aby pokazać pobrany kolor
 InvalidateRect (hWnd, NULL, TRUE);
 }
 return 0;

 case WM_LBUTTONUP:
 // uwalniamy mysz
 ReleaseCapture();

 // ustawiamy kursor strzałki
 SetCursor (LoadCursor(NULL, IDC_ARROW));
 return 0;

 case WM_PAINT:
 {
 // odrysowanie zawartości okna
 {
 PAINTSTRUCT ps;
 HDC hdcOkno;

 // zaczynamy
 hdcOkno = BeginPaint(hWnd, &ps);

 // pobieramy obszar klienta okna
 RECT rcObszarKlienta;
 GetClientRect (hWnd, &rcObszarKlienta);

Windows API 512

 // wypełniamy go pobranym kolorem
 // w tym celu najpierw tworzymy odpowiedni pędzel,
 // a potem wypełniamy prostokąt obszaru klienta
 // potem usuwamy pędzel
 HBRUSH hbrPedzel = CreateSolidBrush(g_clKolor);
 FillRect (hdcOkno, &rcObszarKlienta, hbrPedzel);
 DeleteObject (hbrPedzel);

 // kończymy rysowanie
 EndPaint (hWnd, &ps);
 }

 // pokazanie składowych koloru
 {
 // pobieramy te składowe i konwertujemy na napis
 std::stringstream Strumien;
 Strumien << "RGB: " << (int) GetRValue(g_clKolor)
 << ", " << (int) GetGValue(g_clKolor)
 << ", " << (int) GetBValue(g_clKolor);

 // ustawiamy ten napis jako tytuł okna programu
 SetWindowText (hWnd, Strumien.str().c_str());
 }

 return 0;
 }

 case WM_DESTROY:
 // zwalniamy kontekst ekranu
 ReleaseDC (NULL, g_hdcEkran);

 // kończymy program
 PostQuitMessage (0);
 return 0;
 }

 return DefWindowProc(hWnd, uMsg, wParam, lParam);
}

// ------------------------funkcja WinMain() ----------------------------

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE, LPSTR, int nCmdShow)
{
 /* rejestrujemy klasę okna */

 WNDCLASSEX KlasaOkna;

 // wypełniamy strukturę WNDCLASSEX
 ZeroMemory (&KlasaOkna, sizeof(WNDCLASSEX));
 KlasaOkna.cbSize = sizeof(WNDCLASSEX);
 KlasaOkna.hInstance = hInstance;
 KlasaOkna.lpfnWndProc = WindowEventProc;
 KlasaOkna.lpszClassName = g_strKlasaOkna.c_str();
 KlasaOkna.hCursor = LoadCursor(NULL, IDC_ARROW);
 KlasaOkna.hIcon = LoadIcon(NULL, IDI_APPLICATION);

 // rejestrujemy klasę okna
 RegisterClassEx (&KlasaOkna);

Windows GDI 513

 /* tworzymy okno */

 // tworzymy okno funkcją CreateWindowEx
 g_hwndOkno = CreateWindowEx(WS_EX_TOOLWINDOW,
 g_strKlasaOkna.c_str(),
 NULL,
 WS_OVERLAPPED | WS_BORDER
 | WS_CAPTION | WS_SYSMENU,
 0, 0,
 125,
 80,
 NULL,
 NULL,
 hInstance,
 NULL);

 // pokazujemy nasze okno i je od razu odświeżamy
 ShowWindow (g_hwndOkno, nCmdShow);
 UpdateWindow (g_hwndOkno);

 /* pobieramy kontekst urządzenia ekranu */
 g_hdcEkran = GetDC(NULL);

 /* pętla komunikatów */

 MSG msgKomunikat;
 while (GetMessage(&msgKomunikat, NULL, 0, 0))
 {
 TranslateMessage (&msgKomunikat);
 DispatchMessage (&msgKomunikat);
 }

 // zwracamy kod wyjścia
 return static_cast<int>(msgKomunikat.wParam);
}

Program ten potrafi pobrać kolor z dowolnego piksela na ekranie, który zostanie mu
wskazany przez użytkownika. W tym celu należy po prostu kliknąć lewym przyciskiem
myszy i przeciągnąć kursor do wybranego punktu. Jego kolor ukaże się w oknie
programu, poznamy również jego składowe RGB:

Screen 67. Okno pobieracza kolorów

Ta prosta aplikacja nie jest wcale tak nieużyteczna, jakby się mogło z początku wydawać.
Gdyby ją odrobinę ulepszyć, stałaby się przydatnym narzędziem dla grafików i
webmasterów. Często korzystają oni z takich właśnie programów.

Działanie naszego pobieracza jest dośc proste. Najpierw, zaraz po utworzeniu własnego
okna, pobiera on kontekst urządzenia całego ekranu w opisany wcześniej sposób:

g_hdcEkran = GetDC(NULL);

Windows API 514

Używając go, może już pobierać kolory pikseli ekranu. Przy wciśnięciu lewego przycisku
myszy przejmuje więc kontrolę nad urządzeniem wskazującym, ponieważ będzie chciał
rejestrować pozycję kursora także poza własnym oknem. Po co? Po to, ażeby wyłowić
kolor piksela w miejscu kursora, co też czyni poniższymi wierszami z kodu obsługi
WM_MOUSEMOVE:

POINT ptKursor;
ptKursor.x = GET_X_LPARAM(lParam);
ptKursor.y = GET_Y_LPARAM(lParam);

// przeliczamy pozycję kursora na koordynaty ekranowe
ClientToScreen (hWnd, &ptKursor);

// pobieramy kolor z miejsca kursora
g_clKolor = GetPixel(g_hdcEkran, ptKursor.x, ptKursor.y);

Najważniejsze zadanie spoczywa tu na funkcji GetPixel(). Nietrudno domyślić się tutaj
jej działania, ale wyjaśnimy je sobie także w kolejnym podrozdziale.

Pokazaniem pobranego koloru oraz jego składowych RGB zajmuje się kod komunikatu
WM_PAINT. Wypełnia on obszar klienta okna programu rzeczonym kolorem:

// pobieramy obszar klienta okna
RECT rcObszarKlienta;
GetClientRect (hWnd, &rcObszarKlienta);

// wypełniamy go pobranym kolorem
HBRUSH hbrPedzel = CreateSolidBrush(g_clKolor);
FillRect (hdcOkno, &rcObszarKlienta, hbrPedzel);
DeleteObject (hbrPedzel);

Dokonuje tego, tworząc tzw. pędzel i posługując się nim do wypełnienia prostokąta
(FillRect()) definiującego wnętrze okna. O pędzlach również powiemy sobie więcej w
następnym podrozdziale.
Dalej następuje jeszcze pobranie wartości kanałów RGB koloru i ich wyświetlenie na
pasku tytułowym okna:

// pobieramy te składowe i konwertujemy na napis
std::stringstream Strumien;
Strumien << "RGB: " << (int) GetRValue(g_clKolor) << ", "
 << (int) GetGValue(g_clKolor) << ", "
 << (int) GetBValue(g_clKolor);

// ustawiamy ten napis jako tytuł okna programu
SetWindowText (hWnd, Strumien.str().c_str());

Widzimy tu praktyczne spożytkowanie makr Get?Value().

Dowolne urządzenie

W ogólnym przypadku, uchwyt do kontekstu możemy utworzyć dla dowolnego
urządzenia. Jest możliwe przy użyciu funkcji CreateDC():

HDC CreateDC(LPCTSTR lpszDriver,
 LPCTSTR lpszDevice,
 LPCTSTR lpszOutput,
 CONST DEVMODE* lpInitData);

Windows GDI 515

Funkcja ta jest bardziej skomplikowana niż to by się mogło wydawać z jej prototypu,
dlatego też nie będziemy jej dokładnie omawiać. Wyjaśnimy sobie aczkolwiek znaczenie
poszczególnych parametrów:

typ parametry opis

lpszDriver
lpszDevice

Te dwa napisy określają łącznie urządzenie, którego
kontekst chcemy pobrać. W lpszDriver wpisujemy

nazwę sterownika - dokumentacja wspomina o dwóch
możliwościach: "DISPLAY" dla monitora oraz

"WINSPOOL" ("WINSPL16") dla drukarki. Możliwe jest też
wpisanie tam nazwy konkretnego modelu (np. "HP

Color LaserJet 1500L"), jednak podaje się ją zwykle
w lpszDevice, zostawiając wówczas pierwszy parametr

z wartością NULL.
W ogóle niemal zawsze wykorzystuje się tylko jeden z

tych dwóch parametrów, podając zero (NULL) w drugim.

LPCTSTR

lpszOutput
Jest to parametr zachowany celem kompatybilności z
16-bitowymi wersjami Windows. Obecnie należy tu

zawsze wpisywać NULL.

CONST DEVMODE* lpInitData

Są to dodatkowe parametry dla urządzenia innego
niż monitor (czyli zwykle dla drukarki). DEVMODE, na co
pokazuje ten wskaźnik, jest skomplikowaną strukturą

zawierającą te pomocnicze dane.
Jeżeli w lpszDriver wpisujemy "DISPLAY", wtedy tutaj

musimy podać wartość NULL.

Tabela 60. Parametry funkcji CreateDC()

Najprostsze użycie tej funkcji to pobranie za jej pośrednictwem kontekstu urządzenia
ekranu:

HDC hdcEkran = CreateDC("DISPLAY", NULL, NULL, NULL);

Wynik jest wtedy identyczny z tym uzyskanym poprzez GetDC(NULL).

Pobranie kontekstu drukarki jest o wiele trudniejsze, gdyż musimy wtedy podać pełną
nazwę tego urządzenia. W systemie może być bowiem zainstalowanych wiele drukarek,
niekoniecznie fizycznie istniejących, ale np. drukujących do pliku; poza tym faksy są
także interpretowane jako drukarki.
Utworzenie kontekstu wymaga więc najpierw wyliczenia wszystkich tego typu urządzeń, a
następnie wybrania jednego z nich. Inną metodą jest pozostawienie wyboru
użytkownikowi poprzez wyświetlenie odpowiedniego okna dialogowego (za pomocą
funkcji PrintDlg[Ex]()), a następnie pobranie otrzymanego wyniku.
Tak czy owak nie jest to proste, lecz jeśli interesują się szczegóły, to odsyłam do MSDN
lub innych źródeł informacji o Windows GDI.

CreateDC() ma kuzyna w postaci funkcji CreateIC(). Funkcja ta przyjmuje identyczne
parametry, ale jej wynik jest uchwyt do tzw. kontekstu informacyjnego
(ang. information context). Różni się on od kontekstu urządzenia tym, iż nie można przy
jego pomocy niczego narysować, a jedynie pobrać informacje o samym urządzeniu.
Kontekst informacyjny może więc być tylko i wyłącznie przekazany do funkcji w rodzaju
GetDeviceCaps(), DeviceCapabilities() czy DocumentProperties().
Można się domyślić, że utworzenie kontekstu informacyjnego jest szybsze od stworzenia
„pełnowymiarowego” kontekstu urządzenia. Rzeczywiście, tak właśnie jest.

Windows API 516

Kontekst pamięciowy
Istnieje jeszcze jedna metoda pozyskania kontekstu urządzenia, niepodobna do żadnej
wcześniej. Także jej produkt jest odmienny - to kontekst pamięciowy (ang. memory
context).
Taki kontekst nie jest bezpośrednio związany z żadnym urządzeniem. Jest on raczej
czymś w rodzaju bufora - pomocniczego obiektu, ułatwiającego (a często wręcz
umożliwiającego) operacje na obrazach.

Pamięciowego kontekstu nie bierzemy znikąd. Możemy go utworzyć tylko nad podstawie
już istniejącego, innego kontekstu. Wówczas ten nowy będzie z nim kompatybilny, co
też sugeruje nazwa funkcji CreateCompatibleDC():

// zakładamy, że w hdcKontekst mamy juz jakiś kontekst urządzenia
HDC hdcKontekstPamieciowy = CreateCompatibleDC(hdcKontekst).

Funkcji tej podajemy uchwyt do posiadanego kontekstu, a w zamian dostajemy nowy
kontekst pamięciowy, kompatybilny z podanym. Możemy też podać NULL, a wtedy
otrzymamy kontekst zgodny z ekranem.

Ustawianie obszaru rysowania

Musimy koniecznie zwrócić uwagę na to, że kompatybilny kontekst pamięciowy nie jest
kopią pierwotnego kontekstu. Jest on z nim jedynie zgodny, to znaczy może być
używany do wymiany danych ze swą matrycą. Absolutnie jednak nie zawiera on kopii
samego rysunku.

Nie mógłby zresztą jej zawierać, bo jego obszar rysowania jest początkowo znikomy: ma
on postać monochromatycznej bitmapy o wymiarach 1×1. Taki obszar nie jest szczególnie
przydatny, zatem należy go powiększyć. W tym celu można stworzyć nową bitmapę - o
tak:

HBITMAP hbmpBitmapa = CreateCompatibleBitmap(hdcKontekst,
 nSzerokosc, nWysokosc);

Jest bardzo ważne, aby do CreateCompatibleBitmap() przekazać uchwyt do „starego”
kontekstu, a nie do kontekstu pamięciowego.
Po utworzeniu nowej bitmapy (obszaru rysowania), wiążemy ją z naszym kontekstem
pamięciowym. Jednocześnie zachowujemy tę poprzednią, jednopikselową:

HBITMAP hbmpStaraBitmapa = (HBITMAP) SelectObject(hdcKontekstPamieciowy,
 hbmpBitmapa);

Teraz możemy już normalnie korzystać z kontekstu pamięciowego - zupełnie tak, jakby
był on np. kontekstem wnętrza o okna o wymiarach nSzerokosc i nWysokosc. Różnica
polega na tym, że nie zobaczymy nigdzie efektów rysowania - chyba że świadomie je
przekopiujemy do pierwotnego kontekstu. Jak to zrobić, dowiesz się przy omawianiu
bitmap GDI.

Jest jeszcze jedno źródło kontekstu urządzenia - to metaplik (ang. metafile), czyli plik
dyskowy zawierający zapis poleceń Windows GDI. Nie będziemy tutaj zajmować się
metaplikami; możesz poczytać na ich temat w MSDN, jeśli chcesz.

Atrybuty kontekstu
Co można powiedzieć o gotowym kontekście urządzenia? Na pewno to, że charakteryzuje
go spora ilość różnych właściwości. Opiszę je teraz krótko. Większością z nich zajmiemy
się dokładniej w dalszej części rozdziału.

Windows GDI 517

Atrybuty potoku graficznego
O potoku graficznym traktuje bliżej poprzednia sekcja. Tutaj przedstawię tylko skrótowo
trzy ustawienia przynależne każdemu kontekstowi urządzenia.

Tryb mapowania

Domyślne ustawienie: MM_TEXT
Funkcja ustawiająca atrybut: SetMapMode()
Funkcja pobierająca atrybut: GetMapMode()

Tryb mapowania określa wielkość jednostek logicznych, czyli jednostek w płaszczyźnie
świata (strony) dla danego kontekstu urządzenia. Domyślnie jednostkami te są
identyczne z punktami fizycznego urządzenia, czyli na przykład z pikselami.

Kadr

 pozycja rozciągłość
Domyślne ustawienie: (0, 0) (1, 1)
Funkcja ustawiająca atrybut: SetWindowOrgEx() SetWindowExtEx()
Funkcja pobierająca atrybut: GetWindowOrgEx() GetWindowExtEx()

Kadr jest specjalnym prostokątem na płaszczyźnie świata (strony), który podczas
przekształcania obrazu na płaszycznę urzadzenia jest rzutowany do odpowiadającego mu
wziernika.

Wziernik

 pozycja rozciągłość
Domyślne ustawienie: (0, 0) (1, 1)
Funkcja ustawiająca atrybut: SetViewportOrgEx() SetViewportExtEx()
Funkcja pobierająca atrybut: GetViewportOrgEx() GetViewportExtEx()

Wziernik jest prostokątem położonym na płaszczyźnie urządzenia. Określa on, gdzie
pojawi się wygenerowany obraz.

Atrybuty pióra
Pióro jest obiektem kontrolującym styl i grubość linii używanej do rysowania prostych i
krzywych. Jest on także odpowiedzialny za obramowanie figur zamkniętych.
Szczegółowe informacje o piórze uzyskasz z następnego podrozdziału.

Obiekt pióra

Domyślne ustawienie: BLACK_PEN
Funkcja ustawiająca atrybut: SelectObject()
Funkcja pobierająca atrybut: GetCurrentObject()

Pióra mogą istnieć niezależnie od kontekstu urządzenia, jednak każdy kontekst posiada
dokładnie jedno pióro, którego używa do rysowania. Domyślnie jest to twór rysujący
czarne kreski o grubości 1 piksela.

Aktualna pozycja

Domyślne ustawienie: (0, 0)

Funkcje ustawiające atrybut:

MoveToEx()
LineTo()
PolylineTo()
PolyBezierTo()
ArcTo()

Funkcja pobierająca atrybut: GetCurrentPositionEx()

Windows API 518

Aktualna pozycja pióra jest czymś w rodzaju graficznego kursora. Wiele funkcji
rysujących krzywe (cztery wymienione wyżej) rozpoczyna od tego właśnie miejsca. Mają
one aczkolwiek swoje odpowiedniki, które nie polegają na pozycji pióra. Których użyjemy
- jest to w dużej mierze kwestia gustu.

Tryb rysowania

Domyślne ustawienie: R2_COPYPEN
Funkcja ustawiająca atrybut: SetROP2()
Funkcja pobierająca atrybut: GetROP2()

Tryb rysowania piórem mówi bibliotece GDI, jak ma się obchodzić z problemem
przykrywania już narysowanych pikseli z tymi, które ma zamiar zakreślić pióro.
Standardowo, nowe piksele całkowicie zasłaniają stare, lecz można tak poinstruować
GDI, aby zamiast tego dokonywana była odpowiednia operacja maskowania na bitach
koloru pióra oraz ekranu.

Atrybuty pędzla
Pędzel odpowiada za wypełnianie zamkniętych kształtów, takich jak figury geometryczne.
W szczególnych przypadkach może też służyć do kreślenia wzorzystych obramowań.
Obszerne informacje o pędzlach znajdują się w następnym podrozdziale.

Obiekt pędzla

Domyślne ustawienie: WHITE_BRUSH
Funkcja ustawiająca atrybut: SelectObject()
Funkcja pobierająca atrybut: GetCurrentObject()

Każdy kontekst urządzenia posiada dokładnie jeden związany z nim pędzel. Jeżeli nie
ustalimy inaczej, jest to obiekt wypełniający regiony jednolitym białym kolorem.

Punkt odniesienia pędzla

Domyślne ustawienie: (0, 0)
Funkcja ustawiająca atrybut: SetBrushOrgEx()
Funkcja pobierająca atrybut: GetBrushOrgEx()

Punkt odniesienia jest stosowany tylko dla pędzli, które malują regiony sąsiadującymi
kopiami bitmap lub predefiniowanymi deseniami. Dla takich pędzli punkt odniesienia
kontroluje układanie się stworzonego w ten sposób wzoru na wypełnianych nim
powierzchniach.

Atrybuty bitmap
Operacje na bitmapach są jednym z ważniejszych działań podejmowanych przy użyciu
funkcji Windows GDI. Kontekst urządzenia posiada dwa atrybuty związane z bitmapami.

Bitmapa kontekstu urządzenia

Domyślne ustawienie:
monochromatyczna bitmapa 1×1 lub
bitmapa o parametrach zależnych od
macierzystego urządzenia kontekstu

Funkcja ustawiająca atrybut: SelectObject()
Funkcja pobierająca atrybut: GetCurrentObject()

Każdy kontekst urządzenia jest związany z pewną bitmapą. Funkcje rysujące zmieniają
piksele tej właśnie bitmapy. Możliwa jest aczkolwiek całościowa zmiana obrazka na inny,
na przykład na zawartość pliku graficznego, Takie postępowanie jest bardzo częste w
przypadku kontekstów pamięciowych, używanych do prezentacji bitmap lub ich
fragmentów na ekranie.

Windows GDI 519

Tryb rozciągania

Domyślne ustawienie: BLACKONWHITE
Funkcja ustawiająca atrybut: SetStretchBltMode()
Funkcja pobierająca atrybut: GetStretchBltMode()

Właściwość ta definiuje sposób rozciągania bitmap przy kopiowaniu ich za pomocą funkcji
StretchBlt(). Ustawiając ten atrybut możemy w pewnym zakresie decydować, jak
zmienią się piksele kopiowanego obrazka przy zmianie jego wymiarów. Zazwyczaj jednak
żadne ustawienie nie daje zbyt dobrych rezultatów.

Atrybuty tekstu
Dobra biblioteka graficzna powinna umożliwiać manipulacje tekstem. Windows GDI nie
jest tu wyjątkiem, a konteksty urządzenia zawierają kilka atrybutów związanych z tymi
możliwościami.

Kolor tekstu

Domyślne ustawienie: czarny (RGB(0, 0, 0))
Funkcja ustawiająca atrybut: SetTextColor()
Funkcja pobierająca atrybut: GetTextColor()

Tego ustawienia chyba nie trzeba wyjaśniać. Zauważmy tylko, że kolor tekstu jest
niezależny od czcionki i jej stylu (patrz niżej).

Kolor tła

Domyślne ustawienie: biały (RGB(255, 255, 255))
Funkcja ustawiająca atrybut: SetBkColor()
Funkcja pobierająca atrybut: GetBkColor()

Kolor tła jest kolorem wypełnienia najmniejszego prostokąta okalającego tekst
wypisywany w kontekście urządzenia. Zwykle nie chcemy żadnego wypełnienia w tym
rejonie, a to wymaga ustawienia trybu tła - o czym pisze poniżej.

Tryb tła

Domyślne ustawienie: OPAQUE
Funkcja ustawiająca atrybut: SetBkMode()
Funkcja pobierająca atrybut: GetBkMode()

Tryb tła to ustawienie precyzujące, czy tło tekstu ma być rysowane (OPAQUE -
domyślnie), czy też nie (TRANSPARENT). Jeśli wybierzemy drugą możliwość, to oczywiście
nie zobaczymy koloru tła (poprzedni atrybut) wokół tekstu.

Zarówno kolor, jak i tryb tła są używane jeszcze w kilku innych sytuacjach niezwiązanych
z tekstem, np. podczas wypełniania deseniowymi pędzlami. O większości tych sytuacji
dowiesz się w stosownym czasie.

Czcionka

Domyślne ustawienie: SYSTEM_FONT
Funkcja ustawiająca atrybut: SelectObject()
Funkcja pobierająca atrybut: GetCurrentObject()

W GDI, mając na myśli czcionkę, myślimy także o jej stylu czy dekoracji znaków. Zatem
„Verdana” jest nie jest w tym rozumieniu czcionką, ale „Verdana, rozmiar 10 punktów,
pogrubiona, kursywa, nachylenie 0°, …” - jak najbardziej.
Czcionki tworzymy, wybieramy i usuwamy podobnie jak pędzle i pióra. W danej chwili
kontekst urządzenia jest związany z dokładnie jedną czcionką.

Windows API 520

Odstęp między znakami

Domyślne ustawienie: 0
Funkcja ustawiająca atrybut: SetTextCharacterExtra()
Funkcja pobierająca atrybut: GetTextCharacterExtra()

Ten atrybut jest dokładnie tym, o czym mówi jego nazwa. Odstęp między pojedynczymi
znakami wypisywanego tekstu jest tu podawany w jednostkach logicznych.

Atrybuty regionów
Regiony sa zespołami zamkniętych figur, używanymi do ograniczania obszaru, który
podlega rysowaniu. Przy ich pomocy można łatwiej wykonać pewne czynności graficzne,
które inaczej byłyby skomplikowane.
Kontekst urządzenia ma około jeden atrybut, odnoszący się do regionów.

Region przycinania

Domyślne ustawienie: cały obszar rysowania

Funkcje ustawiające atrybut:

SelectObject()
SetClipRgn()
IntersectClipRect()
OffsetClipRgn()
ExcludeClipRect()
SelectClipPath()

Funkcje pobierające atrybut:
GetClipRgn()
GetClipBox()

Region przycinania definiuje obszar rysunku, które zostanie wyświetlony. Standardowo
pokazywana jest cała bitmapa związana z kontekstem urządzenia, lecz ustawianie
regionu przycinania pozwala wpłynąć na to zachowanie.

Tryb wypełniania wielokątów

Domyślne ustawienie: ALTERNATE
Funkcja ustawiająca atrybut: SetPolyFillMode()
Funkcja pobierająca atrybut: GetPolyFillMode()

Określa tryb wypełniania wielokątów o przecinających się krawędziach (zarówno tych
pochodzących od regionów, jak i rysowanych za pomocą funkcji Polygon() i
PolyPolygon()). Domyślny tryb ALTERNATE sprawia, że wypełnienie otrzymają tylko te
fragmenty prostokąta wielokąta, któr leżą między jego nieparzystymi wierzchołkami;
druga możliwa opcja WINDING powoduje bezwarunkowe wypełnienie całej figury.

Zapisywanie i odtwarzanie atrybutów
Mnogość atrybutów kontekstów urządzenia sprawia, że ich ustawianie, pobieranie i
modyfikacja są czynnościami bardzo częstymi. Nierzadko też kilka parametrów
kontekstów ustawia się po sobie. Potem zaś często zachodzi potrzeba powrotu do stanu
początkowego i wydawałoby się, że nie można tego zrobić inaczej niż przez zapisywanie
pierwotnych wartości atrybutów w wydzielonych zmiennych, a potem ich mozolne
przywracanie. Nic bardziej mylnego!

GDI udostępnia prosty mechanizm uwalniający programistę od tej uciążliwej czynności.
Są nim dwie funkcje: SaveDC() i RestoreDC(). Pokażę teraz, jak należy je stosować.

Tworzenie i przywracanie stanów kontekstu
Zaczniemy od omówienia podstawowego sposobu użycia zapisu stanów kontekstu,
wynikającego bezpośrednio ze składni wspomnianych funkcji.

Windows GDI 521

Funkcje SaveDC() i RestoreDC()

Pierwsza z przedstawianych funkcji to SaveDC(). Oto jej prototyp:

int SaveDC(HDC hdc);

Jak widzimy, funkcja ta żąda uchwytu do kontekstu urządzenia. W zamian wykona ona
coś w rodzaju fotografii jego bieżącego stanu. Zapisze po prostu wartości wszystkich jego
atrybutów w wewnętrznej strukturze danych Windows, abyśmy w razie potrzeby mogli je
przywrócić.
Wynikiem wywołania funkcji SaveDC() jest liczba całkowita, działająca jako jednoznaczy
identyfikator zapisanego stanu kontekstu. Zmieniając atrybuty kontekstu, a następnie
wywołując kilkakrotnie SaveDC() uzyskaliśmy wiele takich identyfikatorów i każdy byłby
poprawny. Wynika stąd, że Windows GDI potrafi przechowywać wiele stanów
kontekstu urządzenia i, jeśli tylko zapisujemy ich identyfikatory, możemy w każdej
chwili wrócić do dowolnego wcześniejszego.

Jak to zrobić? Należy wywołać druga funkcję, RestoreDC():

BOOL RestoreDC(HDC hdc,
 int nSavedDC);

Łatwo wydedukować, że podajemy jej uchwyt do naszego kontekstu urządzenia oraz
identyfikator zapisanego statusu. RestoreDC() przywraca kontekst do podanego stanu,
ustawiając jego atrybuty na zachowane wcześniej wartości.

Użycie mechanizmu stanów kontekstu

Podejrzewam, że właściwy sposób użycia tych funkcji nasuwa ci się sam, ale może dla
zupełnej pewności zaprezentuję go.

Mając kontekst urządzenia, dajmy na to hdcKontekst, możemy zapisać jego bieżący
stan:

int idStan = SaveDC(hdcKontekst);

Teraz możemy w spokoju wykonywać założone czynności. Dla przykładu, narysujemy
czerwony prostokąt o wymiarach 50×50 pikseli otoczony grubą czarną kreską i
umieszczony w punkcie (20, 20). W tym celu musimy między innymi ustawić nowe
obiekty pióra i pędzla dla kontekstu urządzenia.

O piórach, pędzlach i rysowaniu figur geometrycznych dowiesz się (prawie) wszystkiego z
następnego podrozdziału.

Ponieważ aktualne pióro i pędzel zostały zapisane przez SaveDC(), nie musimy się o nie
martwić. Możemy normalnie zastąpić je nowymi obiektami:

// utworzenie pióra rysującego grubą czarną kreskę i ustawienie go
HPEN hpenPioro = CreatePen(PS_SOLID, 5, RGB(0, 0, 0));
SelectObject (hdcKontekst, hpenPioro);

// utworzenie pędzla wypełniającego czerwienią i ustawienie go
HBRUSH hbrPedzel = CreateSolidBrush(RGB(255, 0, 0));
SelectObject (hdcKontekst, hbrBrush);

Następnie rysujemy prostokąt:

Rectangle (hdcKontekst, 20, 20, 70, 70); // 70 = 20 + 50

Windows API 522

Potem możemy już przywrócić poprzedni stan kontekstu, czyli poprzednie pióro i pędzel.
Robimy to oczywiście poprzez RestoreDC():

RestoreDC (hdcKontekst, idStan);

Na koniec nie zapomnijmy jeszcze o zwolnieniu obiektów pióra i pędzla; możemy i
musimy to zrobić. Możemy - bo po przywróceniu stanu kontekstu nie są one z nim
związane. Musimy - bo sami je stworzyliśmy i bez ich zwolnienia doszłoby do wycieku
zasobów. Wywołujemy zatem odpowiednią funkcję:

DeleteObject (hpenPioro);
DeleteObject (hbrPedzel);

Ogólny schemat postępowania w tego rodzaju sytuacjach wygląda więc następująco:

int identyfikator_zapisu = SaveDC(kontekst);
zmiana_stanu_kontekstu_i_rysowanie
RestoreDC (kontekst, identyfikator_zapisu);
[zwolnienie_utworzonych_obiektów]

Ostatni etap zwolnienia wystąpi wówczas, gdy zmiana_stanu_kontekstu pociągała za
sobą utworzenie jakichś obiektów, jak pióra czy pędzle. W innym przypadku nie jest
konieczna, bo i nie ma czego zwalniać.

Prostszy sposób
Możliwości zapisu stanu kontekstu urządzenia używamy zwykle zgodnie z podanym wyżej
schematem. Dlatego też Windows GDI ułatwił nawet jeszcze bardziej wykorzystanie go.

Stos ustawień

Otóż niekoniecznie musimy zapisywać identyfikator zapisu, jaki zwraca SaveDC().
Funkcja ta układ bowiem kolejne stanu kontekstu w stos, przykrywając starsze zapisy
nowszymi. Wszystkie one są jednak dostępne na zwykłych zasadach, jakimi kieruje się
stos, tzn. pobieranie zachowanych stanów powinno się odbywać w kolejności odwrotnej
do ich zapisywania.
Jeżeli więc wywołamy SaveDC() np. trzy razy po sobie, to następujące dalej przywołanie
RestoreDC() przywróci najnowszy zapis; kolejne wywołanie - starszy status; trzecie zaś
- najstarszy. Rzadko jednak będziemy potrzebowali aż tylu możliwych stanów, gdyż w
zupełności wystarcza jeden.

Ażeby więc zachować bieżące ustawienia kontekstu bez zbędnych ceregieli, wywołujemy
jednokrotnie SaveDC(), ignorując zwracaną przezeń:

SaveDC (hdcKontekst);

Kiedy zaś pragniemy przywrócić zapisany stan, posługujemy się RestoreDC() w nieco
inny sposób. Nie możemy już podać jej identyfikatora zapisu, bo go nie mamy. Zamiast
tego w drugim parametrze wpisujemy liczbę ujemną określającą, który status, licząc od
góry stosu, chcemy ustawić. -1 przywróci więc pierwszy (szczytowy) stan; -2 - ten
leżący bezpośrednio pod nim; -3 - jeszcze głębszy, itd. Podajemy więc, ile do którego
ostatnich wywołań SaveDC() chcielibyśmy się cofnąć.
Najczęściej chodzi nam wszakże o wywołanie najpóźniejsze, zatem przywrócenie
zapisanego wówczas stanu to użycie poniższej linijki:

RestoreDC (hdcKontekst, -1);

Windows GDI 523

Eliminujemy zatem konieczność posiadania dodatkowej zmiennej oraz potencjalne ryzyko
pomyłki, jeżeli mechanizm zachowywania stanu stosujemu wobec kilku kontekstów
urządzenia.

Przykład

Przykładem wykorzystania funkcji SaveDC() i RestoreDC() może być procedura rysująca
jakiś kształt, który wymaga tymczasowej zmiany pióra, pędzla lub innego obiektu
związanego z kontekstem urządzenia. Oto jest funkcja, która kreśli koło o podanym
kolorze kreski i wypełnienia (a także pozycji i promieniu):

void RysujKolo(HDC hdcKontekst,
 POINT ptPozycja, unsigned uPromien,
 COLORREF clObwod, COLORREF clWnetrze)
{
 // zachowanie bieżącego stanu kontekstu
 SaveDC (hdcKontekst);

 /* ustawienie odpowiedniego pióra i pędzla */

 // stworzenie nowego pióra i ustawienie go w kontekście
 HPEN hpenPioro = CreatePen(PS_SOLID, 1, clObwod);
 SelectObject (hdcKontekst, hpenPioro);

 // stworzenie nowego pędzla i wybranie go
 HBRUSH hbrPedzel = CreateSolidBrush(clWnetrze);
 SelectObject (hdcKontekst, hbrPedzel);

 /* wykreślenie koła */
 unsigned uSrednica = uPromien * 2;
 Ellipse (hdcKontekst,
 ptPozycja.x, ptPozycja.y,
 ptPozycja.x + uSrednica, ptPozycja.y + uSrednica);

 /* czynności końcowe */

 // przywrócenie początkowego stanu kontekstu urządzenia
 RestoreDC (hdcKontekst);

 // usunięcie utworzonego pióra i pędzla
 DeleteObject (hpenPioro);
 DeleteObject (hbrPedzel);
}

Dzięki zapisowi stanów nie musimy osobno troszczyć się o zachowanie oryginalnego pióra
i pędzla. Im więcej parametrów kontekstu zmieniamy, tym bardziej będziemy to
doceniać.

Wszystkie potrzebne wiadomości na temat użytych tu funkcji GDI odnoszących się piór i
pędzli oraz rysujących figury geometryczne uzyskasz w następnym podrozdziale. Nawet
teraz nie powinieneś mieć jednak zbyt dużych kłopotów z wywnioskowaniem ich działania
na podstawie składni wywołań.

Windows API 524

Zwalnianie kontekstu
Jak niemal wszystko w programowaniu, także kontekst urządzenia wymaga poprawnego
posprzątania, gdy już nie jest potrzebny. Po użyciu kontekst należy więc zwolnić
(ang. release).

Sposoby zwalniania kontekstów
W jaki sposób trzeba uczynić? Właściwa droga zależy od źródła pozyskania danego
kontekstu, przy czym mamy trzy możliwe metody. Zawsze należy wybierać właściwą w
danym przypadku!

Tymczasowy kontekst w obsłudze WM_PAINT

Najczęstszym powodem pobrania kontekstu urządzenia jest obsługa komunikatu
WM_PAINT. Uzyskany wtedy kontekst jest związany z obszarem klienta okna, które ulega
oświeżaniu.

Nie jest to obiekt długo żyjący. Powstaje w wyniku wywołania funkcji BeginPaint(),
która mówi systemowi, że oto rozpoczyna się odrysowywanie okna. Kontekst istnieje
tylko podczas trwania tej czynności, a jak wiemy, kończymy ją funkcją EndPaint(). Ona
też zwalnia kontekst urządzenia:

case WM_PAINT:
{
 HDC hdcKontekst;
 PAINTSTRUCT ps;

 hdcKontekst = BeginPaint(hWnd, &ps);
 // tutaj rysujemy, odświeżając okno
 EndPaint (hWnd, &ps);

 // !! W tym miejscu hdcKontekst jest już niepoprawnym uchwytem
 // do kontekstu urządzenia !!
}

Musimy pamiętać, że za wywołaniem EndPaint() kontekst pobrany z BeginPaint() jest
już nieważny. Łatwo to przeoczyć, ponieważ uchwytu do tego kontekstu nie podajemy
do EndPaint() bezpośrednio. Jest on jednak polem struktury PAINTSTRUCT, której
wskaźnik przekazujemy w drugim parametrze funkcji.

Zapamiętajmy zatem (a raczej przypomnijmy sobie), że:

Kontekst urządzenia uzyskany w BeginPaint() jest zwalniany poprzez funkcję
EndPaint(). Te dwie funkcję wyznaczają także proces odświeżania okna w reakcji na
komunikat WM_PAINT. Wspomniany kontekst możemy wykorzystywać wyłącznie w
ramach tego procesu.

Konteksty związane z oknem

Poza kodem obsługi WM_PAINT także możemy pobrac kontekst urządzenia związany z
oknem. Jak powiedzieliśmy wcześniej, funkcja GetDC() pobiera kontekst pokrywający
obszar klienta okna, natomiast GetWindowDC() - całe okno.

W ogromnej większości przypadków oba te konteksty wymagają zwolnienia. Odpowiada
za to funkcja ReleaseDC():

ReleaseDC (hWnd, hdcKontekst);

Windows GDI 525

Musimy jej przekazać dwa parametry: pierwszym jest uchwyt okna, od którego
pobraliśmy kontekst; drugim - uchwyt samego kontekstu. Funkcja zwalni wówczas
zasoby stworzone wraz z kontekstem urządzenia, łącznie z nim samym.

Teoretycznie istnieją dwie sytuacje, w których zwolnienie kontekstu pobranego przez
GetDC() (lecz nie przez GetWindowDC()!) nie jest niezbędne. Sytaucje te zachodzą, gdy
klasa okna, od którego pobieramy kontekst, ma ustawiony styl CS_OWNDC lub
CS_CLASSDC. Wówczas bowiem kontekst urządzenia, jaki pobieramy, istnieje przez cały
czas istnienia okna i nie jest specjalnie tworzony dla nas.
Jednak nawet w tych szczególnych przypadkach użycie ReleaseDC() nie jest błędem.
Funkcja ta zignoruje po prostu każdy prywatny (CS_OWNDC) lub klasowy (CS_CLASSDC)
kontekst okna, który jej przekażemy i nie zrobi z nim absolutnie nic.

Możemy więc zapamiętać ogólna i prostą zasadę:

Konteksty urządzenia związane z oknem, czyli pobrane przez GetDC(), GetDCEx() i
GetWindowDC(), powinny być po użyciu bezwzględnie zwalniane funkcją ReleaseDC().

W przypadku kontekstu ekranu pobranego przez GetDC(NULL) zwolnienie odbywa się
także poprzez ReleaseDC(), ale z uchwytem okna (pierwszym parametrem) ustawionym
na zero - czyli właśnie NULL.

Pozostałe rodzaje kontekstów

A co z innymi rodzajami kontekstów - tymi stworzonymi przez CreateDC() czy
CreateCompatibleDC()?… Otóż ich usunięcie przebiega chyba najprościej, bo ogranicza
się przekazania ich - i tylko ich - do funkcji DeleteDC():

DeleteDC (hdcKontekst);

Ta bez zbędnych pytań usunie podany jej kontekst, zwalniając wszystkie powiązane z
nim zasoby.

Jako ostatnią zasadę pamiętajmy zatem, że:

Niezwiązane z oknami konteksty urządzeń należy zwalniań poprzez DeleteDC().

O zwalnianiu obiektów powiązanych
Trzeba nam wiedzieć, że z każdym kontekstem urządzenia w Windows GDI jest
związanych kilka obiektów pomocnicznych. Wspomniałem o nich podczas pobieżnej
prezentacji atrybutów kontekstu, ale powtórzę listę ich wszystkich.
Tak więc kontekst urządzenia jest przez cały czas swego istnienia powiązany jest z
jednym i tylko jednym obiektem:

 pióra
 pędzla
 czcionki
 bitmapy
 regionu przycinania

Każdy z tych obiektów możemy aczkolwiek podmienić141, posługując się na przykład
funkcją SelectObject(). Więcej informacji na temat uzyskasz w następnych
podrozdziałach.

141 Pewnym wyjątkiem jest bitmapa, których podmiana jest możliwa tylko dla kontekstu pamięciowego. Z
pozostałymi typami kontekstów bitmapy są związane na stałe.

Windows API 526

Teraz skupimy się tylko na tym, jak zmiana powyższych obiektów wpływa na sposób
zwalniania kontekstu urządzenia. Wpływ ten jest bowiem bardzo znaczący.

Porzucony obiekt nie ginie

Koniecznie musimy zdawać sobie sprawę, że ową piątkę obiektów kontekst posiada
zawsze, nawet tuż po swoim powstaniu. Jeżeli więc zmienimy któryś, to nie wypełnimy
żadnej luki, ale zamienimy miejscami dwa obiekty. Do kontekstu trafi ten wybrany przez
nas, my natomiast otrzymamy poprzedni obiekt. Będziemy odtąd odpowiedzialni za jego
zwolnienie.

Dlatego też kategorycznie niepoprawnym postepowaniem jest np. wybranie dla kontekstu
nowego pióra w ten oto sposób:

HPEN hpenNiebieskiePioro = CreatePen(PS_SOLID, 1, RGB(0, 0, 255));
SelectObject (hdcKontekst, hpenNiebieskiePioro); // ŹLE!!! (zazwyczaj)

Błędem jest tu zignorowanie wartości zwracanej przez SelectObject(). Jest nią tutaj
uchwyt do starego pióra kontekstu, który powinien być zachowany; samo pióro
przechodzi teraz pod naszą kuratelę i dlatego musimy znać jego uchwyt, aby móc je
zwolnić, jeżeli nie jest już potrzebne.
Prawidłowe wybranie nowego pióra powinno więc wyglądać tak:

HPEN hpenStarePioro = (HPEN) SelectObject(hdcKontekst,
 hpenNiebieskiePioro);

Możliwe też (a nawet bardzo częste), że stare pióro nie jest nam potrzebne już w tej
chwili - bo przecież wybieramy nowe. W takim przypadku możemy od razu pozbyć się
kłopotu, wykorzystując poniższą - dość zaskakującą, ale całkowicie poprawną -
konstrukcję:

DeleteObject (SelectObject(hdcKontekst, hpenNiebieskiePioro));

Przekazujemy tu po prostu wynik funkcji SelectObject(), czyli uchwyt do starego pióra,
do funkcji DeleteObject(), która je natychmiast usunie. Nie potrzebujemy wtedy
pośrednictwa dodatkowej zmiennej.

Obiekty powiązane znikają razem ze swoim kontekstem

Wielu programistów inaczej podchodzi do przedstawionej tu kwestii. Zamiast pozbywać
się starego obiektu wziętego z kontekstu urządzenia (jak to czyni ostatni wiersz kodu w
poprzednim punkcie), zostawiają to samej bibliotece GDI. Zachowują więc te oryginalne
obiekty, a gdy przychodzi czas usunięcia kontekstu, umieszczają je w nim z powrotem.
Następnie zwalniają kontekst, a potem (lub ewentualnie przed zwolnieniem kontekstu)
usuwają swoje własne obiekty, stworzone na początku.
Na przykładzie naszych operacji z piórem wyglądałoby to tak:

// stworzenie własnego pióra i wybranie go (z zachowaniem oryginalnego)
HPEN hpenNiebieskiePioro = CreatePen(PS_SOLID, 1, RGB(0, 0, 255));
HPEN hpenStarePioro = (HPEN) SelectObject(hdcKontekst,
 hpenNiebieskiePioro);

// (rysowanie...)

// przywrócenie starego pióra i usunięcie kontekstu
SelectObject (hdcKontekst, hpenStarePioro);
DeleteDC (hdcKontekst); // lub ReleaseDC(), ewentualnie EndPaint()...

// usunięcie własnego pióra

Windows GDI 527

DeleteObject (hpenNiebieskiePioro);

Nie usuwamy tutaj jawnie oryginalnego pióra kontekstu urządzenia, lecz pozwalamy to
zrobić bibliotece GDI. I ona to robi - w chwili usunięcia kontekstu, ponieważ:

Wszystkie pięć obiektów powiązanych z kontekstem urządzenia jest niszczonych
w momencie jego zwalniania.

Który sposób jest lepszy: natychmiastowe niszczenie nieużywanych obiektów czy też
przywracanie ich do kontekstu i zwalnianie tylko tych własnych? Ciężko odpowiedzieć na
to pytanie. I w jednym, i w drugim przypadku musimy zwolnić któryś z obiektów - nasz
lub oryginalny obiekt kontekstu, więc nie wygląda na to, iż między obiema metodami
była jakaś istotna różnica.
Można jeszcze argumentować, że sposób pokazany przed chwilą jest bardziej przejrzysty,
ponieważ dokładnie widać czas życia naszych obiektów. Poza tym zwalniamy tutaj tylko
twory, które sami wykreowaliśmy. Tworzą się więc „bloki” kodu, ograniczone funkcjami
CreatePen() i podobnymi oraz funkcją DeleteObject(); wewnątrz tych bloków istnieją
nasze obiekty. Nieco łatwiej więc śledzić czas ich życia, a przy większej liczbie zapobiegać
wyciekom zasobów.

No tak, ale większa ilość zmienianych obiektów implikuje konieczność istnienia coraz
większej liczby zmiennych. Jeżeli na przykład oprócz pióra podmienialibyśmy także
pędzel i czcionkę, to potrzebowalibyśmy w sumie sześciu uchwytów, chociaż
tworzylibyśmy tylko trzy obiekty.
Ale i na to jest rada. Przypomnijmy sobie mechanizm zapisu stanów kontekstu z
poprzedniego paragrafu - jest on dokładnie tym, czego potrzebujemy. Zachowując
początkowy stan kontekstu i przywracając go tuż przed usunięciem, unikamy
konieczności deklarowania dodatkowych zmiennych. Zaprezentowany uprzednio kod
może więc wyglądać tak:

// zapisanie stanu kontekstu
SaveDC (hdcKontekst);

// stworzenie własnego pióra i wybranie go (z zachowaniem oryginalnego)
HPEN hpenNiebieskiePioro = CreatePen(PS_SOLID, 1, RGB(0, 0, 255));
SelectObject(hdcKontekst, hpenNiebieskiePioro); // teraz tak możemy

// (rysowanie...)

// przywrócenie zapisanego stanu i usunięcie kontekstu
RestoreDC (hdcKontekst, -1);
DeleteDC (hdcKontekst);

// usunięcie własnego pióra
DeleteObject (hpenNiebieskiePioro);

Jak widać, nie potrzebujemy już zmiennej hpenStarePioro. Możemy też bezpiecznie
zignorować rezultat funkcji SelectObject(), bo i tak jest on zapisany razem z fotografią
statusu dokonaną przez SaveDC(). Pamiętajmy aczkolwiek, że w innym przypadku byłoby
to niepoprawne - zwracałem na to uwagę wcześniej.

Niewybrane obiekty także należy zwolnić

Gdy usuwamy kontekst urządzenia, tak jak w przykładzie powyżej, zajmie się on
wszystkimi posiadanymi obiektami, czyli także je zniszczy. Pozostałe obiekty, nienależące
już do niego, nie ucierpią jednak w ogóle. U nas takim obiektem jest
hpenNiebieskiePioro; musimy zatem usunąć je samodzielnie:

Windows API 528

DeleteObject (hpenNiebieskiePioro);

Jest to logiczne, bo w końcu sami to pióro stworzyliśmy.

Zachowaj zatem w swojej pamięci, iż:

Należy zwalniać wszystkie obiekty, które nie były powiązane z kontekstem
urządzenia w chwili jego niszczenia. W przeciwnym wypadku dojdzie do
niebezpiecznego wycieku zasobów systemowych.

GDI w skrócie
Poznaliśmy już podstawowe pojęcia Windows GDI, czyli kontekst urządzenia oraz potok
graficzny. Zanim jednak przejdziemy do szczegółowego omówienia poszczególnych części
tej obszernej biblioteki, spójrzmy na nią z ogólniejszego punktu widzenia.

Podstawowym założeniem GDI, którym wionie niemal z każdego jej kąta, jest
uniwersalność. Korzystając z tej biblioteki nie odwołujemy się bezpośrednio do sprzetu,
takiego jak monitor czy drukarka. Zamiast tego, wykorzystujemy pewien poziom
abstrakcji, jakim jest kontekst urządzenia. Ogromną większość funkcji graficznych
wykonujemy w stosunku do takich właśnie kontekstów. Dzięki temu nie musimy
interesować się tym, w jaki sposób wyniki naszej pracy są ostatecznie prezentowane. W
tym jest bowiem rola biblioteki Windows GDI, która odpowiednio współpracuje ze
sterownikami sprzętu.
Drugim ważnym aspektem GDI jest jej elastyczność oraz bardzo duże możliwości.
Istnieje naprawdę niewiele operacji na grafice dwuwymiarowej, które nie zostały
zaimplementowane w tej bibliotece. Co więcej, te które zostały w niej zawarte (a jest ich
mnóstwo), zakodowano w sposób niezwykle łatwo poddający się zamierzeniom
programisty. W GDI prawie nic nie jest niezmienne, zmodyfikować możemy wszystko:
styl i kolor rysowanych linii, sposób wypełniania zamkniętych powierzchni, czcionkę
używaną do pisania tekstu, kolor i wielkość znaków, ich nachylenie do poziomu czy
choćby obszar, w którym dokonuje się rysowanie (może on mieć najróżniejsze kształty),
a także mnóstwo innych parametrów. Bardzo rzadko będziemy więc napotykać na istotne
ograniczenia w możliwościach biblioteki Windows GDI.

„Skoro tak”, odpowiesz, „to gdzie tu jest haczyk?… Przecież nie może być aż tak
pięknie!” Chciałbym powiedzieć, że jesteś pesymistą, ale niestety muszę stwierdzić, że
jesteś raczej realistą. Faktycznie jest pewien kruczek, i to z gatunku tych kruczków, które
programiści gier „lubią” najbardziej. Tak jest, zgadza się - to wydajność. Windows GDI
nie jest szczególnie szybkie, jeżeli chodzi o wyświetlanie dynamicznie zmieniających się
obrazów. Została ona bowiem głównie do prezentacji statycznych rysunków, nie radzi
sobie z ruchem czy animacją.
Zupełnie źle jednak nie jest. Nie ma przeciwwskazań, ażeby skorzystać z GDI do
napisania np. gry logicznej, karcianej, strategicznej turówki czy nawet zręcznościowego
Ponga albo wręcz prostej gry platformowej. Nie należy jednak oczekiwać, że biblioteka ta
sprawi się wystarczająco dobrze w najeżonej efektami graficznymi kosmicznej strzelance,
a już na pewno polegnie, jeżeli spróbowałoby się symulować przy jej pomocy rendering
grafiki 3D (co zresztą nie ma zbytniego sensu w obliczu istnienia wyspecjalizowanych
API). Niezależność od sprzętu, uniwersalność i elastyczność odbijają się wtedy czkawką,
stają się niepotrzebnych balastem na drodze do osiągnięcia dużej szybkości działania.

Już we wstępie do tego rozdziału napisałem jednak, że nie powinniśmy zarzucać sensu
nauki biblioteki GDI. Nie wykorzystamy jej wprawdzie jako głównego „silnika” naszych
gier, ale wypełnimy lukę, jaką niewątpliwie zostawia DirectX. Pozwólmy GDI wykazać się
tym, w czym jest niezrównana: w generowaniu nieruchomych obrazów
dwuwymiarowych. DirectX nie jest biegły w tej sztuce, więc GDI może pełnić nieodzownie

Windows GDI 529

ważną rolę pomocniczą. Dotyczy to w szczególności tekstur - jednego z fundamentów
grafiki 3D.
Kontynuujmy zatem poznawanie Windows GDI, przypatrując się teraz głębiej strukturze
tego narzędzia.

Składniki interfejsu GDI
GDI jest bardzo dużą biblioteką, zawierającą wiele funkcji i struktur danych. Naturalnie
więc dzielą się one pomiędzy składniki, jakie można wyodrębnić w interfejsie GDI.

Konteksty urządzeń
Kontekst urządzenia jest podstawą biblioteki GDI. Uchwyt do niego jest najważniejszą
daną, jaką musi posiadać program, aby móc korzystać z funkcji rysujących. Bez
kontekstu urządzenia nie można właściwie w żaden sposób korzystać z Windows GDI.

Jak pokazałem w poprzedniej sekcji, możliwe jest uzyskanie kontekstu z bardzo wielu
źródeł. Do najważniejszych należą okna Windows oraz wyjściowe urządzenia graficzne,
jak monitor i drukarka.
Z każdym kontekstem związanych jest pięć obiektów, niezbędnych dla jego
funkcjonowania. Korzystanie z GDI sprowadza się do kontrolowania tych obiektów, a
także do rysowania w kontekście urządzenia za pomocą prymitywów.

Prymitywy
Typy grafik, jakie można rysować w ramach kontekstu urządzenia w Windows GDI,
nazywamy dość dziwną nazwą prymitywów (ang. primitives). Dzielą się one na kilka
kategorii:

 figury geometryczne - są to czysto wektorowe prymitywy, opisane przez
równania matematyczne. Można wśród nich wyróżnić jeszcze dwie podgrupy:

 krzywe otwarte - należą do nich linie proste, łamane, łuki okręgów oraz
krzywe Béziera. Wszystkie one są kreślone za pomocą pióra aktualnie
wybranego w kontekście urządzenia

 krzywe zamknięte to prostokąty (z ostrymi lub zaokrąglonymi rogami)
oraz elipsy, a także szczególne przypadki tych figury, czyli kwadraty i koła.
GDI rysuje ich obramowania przy pomocy wybranego pióra, natomiast
wnętrza są wypełniane pędzlem należącym do kontekstu urządzenia

 bitmapy - to prostokątne tablice bitów, zawierające dane o kolorowych pikselach
urządzenia. Są one używane do prezentacji skomplikowanych obrazów
rastrowych, jakich nie dałoby się zapisać w postaci wektorowej. Bitmapa jest
ponadto czymś w rodzaju płótna, na którym pojawiają się efekty działania funkcji
rysunkowych; każdy kontekst urządzenia ma na własność taką właśnie bitmapę,
której zawartość jest najczęściej prezentowana na ekranie

 tekst jest najbardziej skomplikowanym prymitywem, ale też najważniejszym
(jako że analfabeci są nadal w mniejszości ;D). GDI zapewnia tutaj pełne wsparcie
dla czcionek systemowych, w tym także dla czcionek TrueType, które moga być
dowolnie skalowane. Możliwe jest również stosowanie dowolnego formatowania
tekstu (jak pogrubienie, pochylenie, kursywa czy kolor) oraz rysowanie znaków
przy użyciu piór i pędzli

Poznanie biblioteki GDI to w gruncie rzeczy nauka posługiwania się tymi trzema
rodzajami prymitywów. Toteż omówimy sobie dokładnie każdy z nich już w kolejnym
podrozdziale.

Pozostałe składniki
Oprócz wymienionych wyżej prymitywywów, w Windows GDI możemy też znaleźć kilka
innych aspektów grafiki: Oto i one:

Windows API 530

 regiony - nazywamy nimi dowolne kombinacje figur zamkniętych. Regionów
będziemy używać do kreślenia obramowań, wypełniania ich, a także do
przycinania rysunków

 ścieżki (ang. paths) to połączenia kilku krzywych otwartych. Kontekst urządzenia
może w danej chwili przechowywać tylko jedną ścieżkę, dla której możliwe do
wykonania są operacje wykreślenia piórem, wypełnienia pędzlem oraz konwersji
na region.
Nie będziemy się bliżej zajmować ścieżkami, więc jeżeli chciałbyś samodzielnie
dowiedzieć się czegoś o nich, zajrzyj do MSDN

 metapliki (ang. metafiles) są zapisem poleceń dla Windows GDI w postaci pliku
dyskowego. Pliki takie mają rozszerzenie .wmf (zwykłe metapliki) lub .emf
(rozszerzone metapliki) i mogą być odczytywane i zapisywane przez bibliotekę
GDI.
Jeżeli chcesz dowiedzieć się więcej na ich temat, zajrzyj do opisu w MSDN. W tym
kursie nie będziemy bowiem zajmować się metaplikami

 palety kolorów (ang. color palettes) są już mocno przestarzałą częścią GDI,
reliktem z czasów, gdy monitory mogły wyświetlać najwyżej 256 kolorów. Paleta
określała wówczas zestaw 236 dowolnych barw, z jakich mogły korzystać obrazy.
Obecnie, w czasach niepodzielnego panowania trybu True Color palety są już
zupełnie nieprzydatne

Z powyższych zagadnień obszernie omówimy tylko pierwsze z nich, czyli regiony. Po
informacje na temat reszty możesz udać się do dokumentacji MSDN, jezeli tego
potrzebujesz.

Obiekty
Oprócz właściwego rysowania, praca z Windows GDI polega także na manipulowaniu
różnego rodzaju obiektami pomocniczymi - mniej lub bardziej istotnymi. Oto ich
wyszczególnienie:

 konteksty urządzenia - o nich powiedziałem już tak dużo, że chyba nie mam już
nic do dodania :) Jak echo powtórzę tylko, że to najważniejsze i kluczowe obiekty
Windows GDI

 pióra definiują styl, kolor, grubość i inne cechy linii, którą GDI używa do
zakreślania obwodów figur zamkniętych, wyrysowywania krzywych otwartych oraz
wyznaczania ścieżek.
Prawie wszystko na temat piór powiemy sobie przy opisywaniu prymitywów figur
geometrycznych, jako że w ich towarzystwie są on najpowszechniej stosowane

 pędzle określają sposób wypełniania zamkniętych powierzchni. Możliwe jest ich
pokrywanie jednolitym kolorem, jednym z ustalonych deseni, jak również wybraną
bitmapą.
O pędzlach napiszę więcej również przy okazji omawiania figur geometrycznych

 bitmapy przechowują rastrową postać obrazków. Każdy kontekst urządzenia jest
związany z dokładnie jedną bitmapą, na której wygląd wpływają wywoływane
funkcje GDI.
Więcej wiadomości o bitmapach znajduje się w poświęconej im sekcji następnego
podrozdziału

 czcionki regulują krój pisma w wypisywanym tekście. Określają one nie tylko
nazwę fizycznie istniejącej na dysku czcionki (np. Arial czy Times New Roman),
ale też jej dodatkowe atrybuty, jak pogrubienie czy podkreślenie.
Tworzenie obiektów czcionek i ich wykorzystanie będzie tematem sekcji
poświęconej tekstowi w następnym podrozdziale

 regiony mogą wpływać na zmianę obszaru rysowania, a także służyć do
wykonywania innych czynności graficznych. Są to zespoły połączonych,
zamkniętych figur geometryczny, takich jak prostokąty i elipsy.
Regionom, a zwłaszcza ich roli w przycinaniu, jest poświęcony osobny podrozdział

Windows GDI 531

Każdy z tych typów obiektów poznamy bliżej przy omawianiu prymitywywów, na
rysowanie których mają one wpływ. Regionom poświęcimy osobną część naszej uwagi,
natomiast o kontekstach urządzeń mamy już całkowicie wystarczające wiadomości i
więcej już ich nam nie trzeba ;)

Funkcje
Ogromną część Windows GDI stanowi kilkaset (!) różnorodnych funkcji graficznych i
pokrewnych. To oczywiste, że fizycznie niemożliwe jest dogłębne omówienie ani nawet
wyliczenie ich wszystkich; jest to zresztą niepotrzebne, skoro ich dokładne opisy znajdują
się w dokumentacji MSDN.
W tej sekcji wyróżnię więc tylko kilka(naście) kategorii, na które można podzielić funkcje
Windows GDI. Podam też nazwy najważniejszych procedur, które spełniają konkretne
zadania - tak, abyś samodzielnie poszukać informacji o nich, czy to w dalszej części tego
rozdziału, czy to w dokumentacji.

Jeżeli masz dobre IDE, jak np. Visual C++ .NET, to poniższe opisy funkcji mogą być
całkiem wystarczające do ich użytkowania. Kiedy bowiem napiszesz nazwę którejś z nich
w oknie edytora kodu i otworzysz nawias, otrzymasz listę jej parametrów, z nazwami i
typami każdego z nich. To często wystarcza do wydedukowania prawidłowego działania
funkcji.

Obejrzyjmy więc ten skromny katalog funkcji GDI.

Zarządzanie kontekstem urządzenia
Wokół kontekstów urządzenia wszystko tu się kręci, zatem zaczniemy od funkcji
umożliwiających zarządzanie tymi obiektami.

Tworzenie kontekstu

Za tworzenie kontekstu urządzenia i zwracanie uchwytu do niego odpowiadają takie oto
funkcje:

 dla kontekstów pochodzących od okien:
 BeginPaint() pobiera uchwyt do tymczasowego kontekstu urządzenia,

istniejącego na czas obsługi komunikatu WM_PAINT. Kontekst ten jest
zwalniany przez wywołanie EndPaint()

 GetDC() zwraca kontekst urządzenia wnętrza okna. Jeżeli w stylu klasy
okna nie są podane flagi: CS_OWNDC lub CS_CLASSDC, nietrwały kontekst
urządzenia jest specjalnie tworzony i po użyciu powinien być zwolniony za
pomocą ReleaseDC()

 GetWindowDC() podaje nam kontekst urządzenia związany z całym oknem,
a więc także z jego obszarem pozaklienckiem. Musi on być zawsze
zwolniony przez ReleaseDC()

 GetDCEx() zachowuje się jak jedna z trzech poprzednich funkcji (zależnie
od podanej kombinacji flag), a także udostępnia pewne dodatkowe
możliwości

 dla kontekstów tworzonych dla dowolnych urządzeń
 CreateDC() tworzy kontekst dla podanego urzadzenia
 CreateIC() tworzy kontekst informacyjny, który może być użyty wyłącznie

do pobrania informacji o urządzeniu, lecz nie do rysowania
 CreateCompatibleDC() kreuje pamięciowy kontekst urządzenia, kompatybilny z

podanym

Pobieranie informacji o urządzeniu

Mając już konteksty urządzenia (zwykłu lub informacyjny), możemy pokusić się o
pobranie jakichś informacji o związanym z nim sprzęcie. Czynią to poniższe funkcje:

Windows API 532

 GetDeviceCaps() służy do uzyskania specyficznych informacji o urządzeniu
 DeviceCapabilities() podaje dane na temat drukarki, jeżeli posiadamy jej

kontekst urządzenia

Kontrola atrybutów kontekstu

Za zmianę i pozyskanie wartości kilkunastu atrybutów kontekstu urządzenia służy kilka
poniższych funkcji:

 za zarządzanie obiektami kontekstu odpowiadają dwie funkcje:
 SelectObject() ustawia nowe pióro, pędzel, bitmapę, czcionkę lub region

przycinania, zwracając jednocześnie uchwyt do starego obiektu
 GetCurrentObject() zwraca uchwyt do obiektu określonego rodzaju, który

jesy aktualnie powiązany z podanym kontekstem urządzenia
 GetStockObject() pobiera jeden z przechowywanych wewnętrznie

obiektów GDI
 za ustawianie parametrów potoku graficznego odpowiadają następujące funkcje:

 SetMapMode() ustawia tryb mapowania, czyli wielkość jednostek logicznej
oraz kierunek osi układu współrzędnych płaszczyzny świata (strony)

 kadr na płaszczyźnie świata (strony) kontrolują funkcje:
 SetWindowOrgEx() i GetWindowOrgEx() odpowiedzialne są za

ustawianie i pobieranie pozycji kadru
 SetWindowExtEx() i GetWindowExtEx() zarządzają rozciągłością osi

kadru
 wziernik na płaszczyźnie urządzenia jest pod opieką funkcji:

 SetViewportOrgEx() i GetViewportOrgEx(), które dbają o jego
położenie

 SetViewportExtEx() i GetViewportExtEx(), zarządzających jego
rozciągłością

 z piórem w kontekście urządzenia radzą sobie poniższe funkcje:
 pozycja pióra na bitmapie kontekstu urządzenia to domena funkcji:

 MoveToEx() - przesuwa ona pióro do podanej pozycji
 GetCurrentPositionEx() - zwraca aktualną pozycję pióra

 SetROP2() i GetROP2() kontrolują tryb rysowania piórem
 SetBrushOrgEx() i GetBrushOrgEx() zarządzają punktem zaczepienia pędzla
 SetStretchBltMode() i GetStretchBltMode() modyfikują zachowanie funkcji
StretchBlt() przy kopiowaniu bitmapy do podanego kontekstu urządzenia

 ustawienia związane z tekstem są zasługą funkcji:
 SetTextColor() i GetTextColor(), które ustawiają i pobierają kolor

tekstu
 SetBkColor() i GetBkColor(), kontrolujących kolor tła tekstu
 SetBkMode() i GetBkMode(), zmieniających tryb wypełnienia tła tekstu

(przezroczysty lub nie)
 SetTextCharacterExtra() i GetTextCharacterExtra(), zawiadujących

odstępami między znakami tekstu
 region przycinania pozostaje pod władzą funkcji:

 z których niektóre go modyfikują:
 SelectClipRgn() ustawia region przycinania równie dobrze jak
SelectObject()

 ExtSelectClipRgn() umożliwia kombinację nowego regionu
przycinania z już obowiązującym

 IntersectClipRect() dodaje do regionu podany prostokąt
 ExcludeClipRect() wyklucza z regionu dany prostokąt
 OffsetClipRgn() przesuwa region przycinania o podany wektor
 SelectClipPath() łączy aktualną ścieżkę kontekstu urządzenia z

jego regionem przycinania
 a niektóre służą do pobierania regionu przycinania:

Windows GDI 533

 GetClipRgn() pobiera ów region
 GetRandomRgn() pobiera kopię regionu przycinania
 GetClipBox() pobiera koordynaty najmniejszego prostokątu

otaczającego region przycinania

Zapisywanie i odtwarzanie kontekstu urządzenia

W tej kategorii są tylko dwie znane funkcje:
 SaveDC() zapisuje stan kontekstu urządzenia, tj. wszystkich jego atrybutów
 RestoreDC() odtwarza zapisany wcześniej stan

Zwalnianie kontekstu urządzenia

Utworzony kontekst trzeba prędzej czy później zwolnieć (raczej prędzej niż później).
Mamy wtedy do wyboru takie oto funkcje:

 EndPaint(), która kończy odświeżanie zawartości okna rozpoczęte przez
BeginPaint() w reakcji na komunikat WM_PAINT

 ReleaseDC() zwalnia kontekst urządzenia związany z oknem (stworzony przez
GetDC(), GetDCEx() lub GetWindowDC())

 DeleteDC() usuwa wszystkie pozostałe rodzaje kontekstów (w szczególności te
utworzone przez CreateDC(), CreateIC() i CreateComaptibleDC())

Tworzenie obiektów GDI
Zanim pokażę funkcję odpowiedzialne za tworzenie poszczególnych typów obiektów GDI,
podejdę do zagadnienia wpierw „od tyłu”. Przedtem jak stworzymy jakikolwiek obiekt,
musimy bowiem wiedzeć, w jaki sposób bo potem zniszczyć. Służy do tego funkcja:

 DeleteObject(), która usuwa obiekt pióra, pędzla, bitmapy, czcionki, regionu lub
palety

Dalej patrzmy już na funkcje kreujące obiekty.

Tworzenie piór

Do utworzenia pióra można w GDI wykorzystać funkcje:
 CreatePen() tworzy pióro o podanym stylu, grubości i kolorze linii
 CreatePenIndirect() ma te same możliwości co CreatePen(), ale przyjmuje

jeden parametr (w postaci struktury LOGPEN) zamiast trzech
 ExtCreatePen() pozwala stworzyć pióro kreślące linie pokryte deseniem lub

bitmapą, czyli mające właściwości pędzla

Tworzenie pędzli

Za tworzenie pędzli odpowiadają poniższe funkcje:
 CreateSolidBrush() tworzy pędzel malujący jednolitym kolorem
 CreateHatchBrush() stwarza pędzel posługujący się dwukolorowym deseniem
 CreatePatternBrush() kreuje pędzel wypełniający figury kopiami bitmapy
 CreateBrushIndirect() tworzy pędzel na podstawie podanej struktury LOGBRUSH

Tworzenie bitmap

Do stworzenia obiektu bitmapy można wykorzystać funkcje:
 CreateBitmap(), tworzącą bitmapę o podanych wymiarach, głębi kolorów i

ewentualnie zawartości
 CreateBitmapIndirect(), działającą tak jak CreateBitmap(), lecz przyjmującą

jako parametr strukturę typu BITMAP
 CreateCompatibleBitmap(), stwarzającą bitmapę kompatybilną z danym

kontekstem urządzenia i mającą podane wymiary
 LoadImage() (zastępującą starszą, lecz nadal działającą funkcję LoadBitmap()),

która potrafi wczytać bitmapę z pliku dyskowego

Windows API 534

Tworzenie obiektów czcionek

Aby utworzyć obiekt czcionki, należy użyć jednej z tych oto funkcji:
 CreateFont() tworzy obiekt czcionki o podanym kroju i stylu pisma
 CreateFontIndirect() działa jak CreateFont(), lecz przyjmuje parametry w

formie struktury LOGFONT
 CreateFontIndirectEx() tworzy czcionkę na podstawie przekazanej struktury
ENUMLOGFONTEXDV

Tworzenie regionów

Funkcji tworzących regiony także mamy kilka:
 są wśród nich funkcje stwarzające proste regiony:

 na przykład prostokątne:
 CreateRectRgn() tworzy prostokątny region
 CreateRectRgnIndirect() działa jak CreateRectRgn(), lecz

przyjmuje jeden parametr typu RECT
 CreateRoundRectRgn() tworzy region w kształcie prostokąta z

zaokrąglonymi rogami
 a także takie w kształcie wielokątów:

 CreatePolygonRgn() kreuje region w formie wielokąta
 CreatePolyPolygonRgn() stwarza region złożony z kilku

wielokątów
 ewentualnie także w formie elips:

 CreateEllipticRgn() tworzy region w kształcie elipsy
 CreateEllipticRgnIndirect() działa jak CreateEllipticRgn(),

ale żąda struktury typu RECT
 CombineRgn() łączy dwa regiony w jeden, posługując się podanym trybem

kombinacji

Rysowanie prymitywów
Popatrzmy teraz na liste funkcji GDI rysujących prymitywy.

Figury geometryczne

Za kreślenie figur geometrycznych są odpowiedzialne poniższe funkcje:
 punkty i linie rysują takie oto funkcje:

 za zaznaczanie punktów odpowiadają procedury:
 SetPixel() zaznacza podanym kolorem punkt na powierzchni

urządzenia
 SetPixelV() używa do tego najbliższej aproksymacji podanego

koloru
 GetPixel() pobiera kolor podanego punktu

 linie proste rysują funkcje:
 LineTo() kresli prostą od aktualnej pozycji pióra do podanego

punktu
 PolylineTo() kreśli łamaną od bieżącej pozycji pióra przez podane

punkty
 Polyline() rysuje łamaną zaczynając od podanego punktu przez

kolejne podane
 PolyPolyline() wykreśla kilka łamanych naraz

 krzywe otwarte są domeną takich funkcji:
 AngleArc() rysuje prostą od bieżącego położenia pióra do podanej

punktu, a następnie łuk - wycinek obwodu elipsy
 ArcTo() rysuje wycinek obwodu elipsy, poczynając od pozycji pióra
 Arc() kreśli łuk w dowolnym miejscu

Windows GDI 535

 PolyBezierTo() rysuje krzywą Béziera począwszy od aktualnego
miejsca pióra

 PolyBezier() kreśli krzywą Béziera w dowolnym miejscu
 figury zamknięte są rysowane przez te oto funkcje:

 wielokątami zajmują się:
 Rectangle() - rysuje prostokąt
 FillRect() wypełnia prostokąt podanym pędzlem
 FrameRect() kreśli obramowanie prostokąta przy pomocy pędzla
 InvertRect() odwraca kolory (za pomocą bitowej negacja) w

podanym prostokącie
 krzywe zamknięte to zadania funkcji:

 Ellipse() rysuje elipsę (także koło)
 Pie() rysuje wycinek elipsy (koła)
 Chord() rysuje odcinek elipsy (koła)

 RoundRect() rysuje prostokąt z zaokrąglonymi rogami

Bitmapy

Za wyświetlanie bitmap (a raczej zawartości innych kontekstów urządzeń) odpowiadają
funkcje:

 BitBlt(), która dokonuje dosłownego przekopiowania pikseli z jednego kontekstu
urządzenia do drugiego, używając podanego sposobu łączenia kolorów

 TransparentBlt(), dokonująca kopiowania z możliwością wybrania koloru
przezroczystego

 StretchBlt(), potrafiąca kopiować obrazy z ich jednoczesnym skalowaniem

Tekst

Wypisywanie tekstu w kontekście urządzenia to zadanie dla poniższych funkcji:
 oto funkcje piszące tekst w określonej pozycji:

 TextOut() dokonuje prostego wypisania tekstu w podanym miejscu
 ExtTextOut() potrafi jeszcze dokonać np. przycinania do prostokąta
 TabbedTextOut() pozwala na wyrównywanie tekstu do podanych

tabulatorów
 są też funkcje rozmieszczające tekst w podanym prostokącie:

 DrawText() rysuje tekst wyrównany do krawędzi lub środka danego
prostokąta

 DrawTextEx() umożliwia jeszcze określenie marginesów poprzez strukturę
DRAWTEXTPARAMS

Regiony
Mamy jeszcze kilka funkcji związanych z regionami GDI.

Rysowanie z użyciem regionów

Regiony mogą służyć do rysowania za pośrednictwem tych funkcji:
 PaintRgn() wypełnia region pędzlem wybranym w kontekście urządzenia
 FillRgn() wypełnia region podanym pędzlem
 FrameRgn() kreśli obramowanie wokół regionu przy użyciu podanego pędzla
 InvertRgn() odwraca kolory (jak InvertRect()) w obszarze regionu

Regiony i okna

Do łączenia regionów i okien służą funkcje:
 SetWindowRgn() ustawia nowy region, wyznaczający kształt okna
 GetWindowRgn() pobiera region okna

Windows API 536

Zakańczamy już ten przydługi wstęp do opisu biblioteki Windows GDI. W następnym
podrozdziale zajmiemy się już konkretami, czyli rysowaniem prymitywów. Wreszcie więc
ujrzymy cokolowiek na naszych ekranach :)

Prymitywy
To, czym się teraz będzię zajmowac, dla wielu programistów (głównie niezbyt
zaawansowanych) jest niemal tożsame z całą biblioteką GDI. Jak wiemy, nie jest to
prawda, jednak nie da się ukryć, że prymitywy graficzne są jej najważniejszą częścią. To
przecież naturalne, że narzędzie graficzne oceniamy przede wszystkim po tym, co
możemy przy jego pomocy rysować. Bogate możliwości wyświetlania kształtów
graficznych są więc niezwykle ważne.

Window GDI jest pod tym względem bardzo rozwiniętą biblioteką, mogącą zarówno
kreślić zgeometryzowane kształty figur, jak również rastrowe bitmapy czy wreszcie
napisy tekstowe. Dla każdego z tych prymitywów istnieje poza tym wiele opcji
regulujących ich prezencję.
Niniejszy podrozdział poświęcimy tym strategicznym elementom GDI, jakimi są
prymitywy. Omówimy tu osobno figury geometryczne, bitmapy oraz tekst.

Figury geometryczne
Najbardziej wektorowy charakter ze wszystkich prymitywów w Windows GDI zachowują
figury geometryczne. Są one całkowicie niewrażliwe na skalowanie czy przesunięcie,
zatem mogą być rysowane w dowolnym rozmiarach i w dowolnych miejscu.
W matematyce figury na płaszczyźnie są opisane odpowiednimi równaniami, ale nie
musimy ich znać, aby rysować takie kształty. Biblioteka GDI zawiera sporo funkcji
wyręczających nas w tym zadaniu - wiele z nich poznamy w tej sekcji.

Zanim jednak to się stanie, musimy sobie powiedzieć co nieco o dwóch ważnych
obiektach, które wiążą się z kwestią rysowania figur geometrycznych w Windows GDI.
Tymi obiektami są pióra i pędzle.

Pióro
GDI pozwala na rysowanie linii prostych oraz krzywych. Takie linie mogą mieć określone
atrybuty, jak na przykład kolor. Decyduje o nich obiekt kontekstu urządzenia zwany
piórem.

Pióro (ang. pen) kontroluje właściwości rysowanych linii: ich grubość, kolor
(ewentualnie deseń) oraz styl.

Pióra są w GDI reprezentowane poprzez uchwyty typu HPEN.

Chcąc zatem rysować różne typy linii, musimy odpowiednio zmodyfikować właściwości
pióra. Jest ich niewiele, więc w GDI najczęściej będziemy po prostu tworzy nowe, swoje
własne pióro i wybierać je dla danego kontekstu urządzenia. Po tym wszystkie linie będą
kreślone przy użyciu tego właśnie nowowybranego pióra.

Korzystanie z piór
Typowa kolejność kroków przy korzystaniu z własnego pióra sprowadza się zatem do:

 stworzenia pióra
 wybrania go w używanym kontekście urządzenia

Windows GDI 537

 narysowania figur
 odłożenia pióra z kontekstu, czyli wybranie w nim poprzednio ustawionego pióra
 usunięcia pióra

Wyjaśnimy sobie tutaj każdy z tych kroków, oczywiście z wyjątkiem samego rysowania
figur, gdyż to jest tematem prawie całej pozostałej części sekcji.

Tworzenie pióra

Do utworzenia nowego pióra możemy wykorzystać funkcję CreatePen() i tak też
będziemy czynić najczęściej. Oto prototyp tej funkcji:

HPEN CreatePen(int fnPenStyle,
 int nWidth,
 COLORREF crColor);

Umożliwia ona stworzenie pióra kreślącego linie o podanej grubości, kolorze i stylu. Te
cechy pióra wyznaczają trzy parametry funkcji:

typ parametr opis

fnPenStyle Ten parametr okresla styl pióra, tj. rysowanych przy jego
pomocy linii. Możliwe wartości ujmuje następna tabelka.

int
nWidth

Tutaj podajemy grubość linii pióra w jednostkach logicznych.
Jeżeli chcemy użyć innego stylu pióra niż domyślny jednolity
(PS_SOLID, ewentualnie także PS_INSIDEFRAME), to najlepiej

podać tu 0, gdyż jeśli szerokość linii przekroczy jedną jednostkę
urządzenia (zwykle piksel), inny styl niż

PS_SOLID/PS_INSIDEFRAME nie będzie mógł być zastosowany i
zostanie wybrany PS_SOLID. W przypadku podania zera grubość

linii wyniesie natomiast jeden piksel i wszystko będzie w
porzadku, niezależnie od wartości fnPenStyle.

COLORREF crColor W tym parametrze określamy kolor linii rysowanych przez
pióro.

Tabela 61. Parametry funkcji CreatePen()

Czym jest styl pióra?… To po prostu pewien sposób na okreslenie ciągłości linii. GDI
udostępnia kilka takich styli, przedstawia je poniższa tabelka:

flaga styl linia
PS_NULL brak linii
PS_SOLID linia ciągła

PS_DASH linia przerywana (kreski)

PS_DOT linia kropkowana

PS_DASHDOT kreska-kropka

PS_DASHDOTDOT kreska-kropka-kropka

PS_INSIDEFRAME linia ciągła

Tabela 62. Style zwykłych piór w Windows GDI

Ostatni styl PS_INSIDEFRAME wygląda jak pierwszy, ale jest między nimi pewna różnica.
Uwidacznia się ona przy obrysowywaniu regionów: PS_INSIDEFRAME generuje ramkę
zawierającą się w całości wewnątrz regionu, zaś PS_SOLID - na zewnątrz.

Popatrzmy teraz na przykłady wykorzystania funkcji CreatePen() do tworzenia piór:

// tworzy pióro rysujące grubą czarną kreską

Windows API 538

HPEN hpenCzarnyFlamaster = CreatePen(PS_SOLID, 5, 0x0);

// pióro kreślone najcieńszą możliwą, czerwoną linię
HPEN hpenCienkaCzerwonaLinia = CreatePen(PS_SOLID, 0, RGB(255, 0, 0));

// bardzo gruba linia w kolorze zielonym
HPEN hpenPasZieleni = CreatePen(PS_SOLID, 10, RGB(0, 255, 0));

// wykropkowana linia w kolorze magenty
HPEN hpenKarmazynoweKropki = CreatePen(PS_DOT, 0, RGB(255, 0, 255));

// normalna niebieska kreska
HPEN hpenAtrament = CreatePen(PS_SOLID, 1, RGB(0, 0, 255));

Jak widać, utworzenie własnego pióra jest bardzo proste.

Identycznie do CreatePen() działa funkcja CreatePenIndirect(). Zamiast trzech
parametrów przyjmuje ona jedną strukturę LOGPEN, zawierają pola odpowiadające tym
parametrom. Funkcja ta może być użyteczna, jeżeli np. chcemy zapisać nasze pióra w
pliku na dysku.

Wiązanie pióra z kontekstem urządzenia

Samo istnienie pióra nic nam jeszcze nie daje. Musimy je bowiem związać z kontekstem
urządzenia.

Możemy to zrobić przy pomocy funkcji SelectObject(). Trzeba jednak pamiętać, aby
zająć się odpowiednio starym piórem, oryginalnie wybranym w kontekście urządzenia.
Należy bowiem zadbać o jego zwolnienie; jest to, jak wiemy, możliwe na trzy sposoby:

 poprzez natychmiastowe usunięcie starego pióra funkcją DeleteObject()
 poprzez zachowanie uchwytu do starego pióra w osobnej zmiennej i przywrócenie

go do kontekstu przed jego usunięciem
 przez zapisanie stanu kontekstu (SaveDC()) i przywrócenie go (RestoreDC()) tuż

przed kresem jego życia

Wszystkie te trzy drogi były prezentowane w paragrafie poświęconym zwalnianiu
kontekstu urządzenia. Tutaj więc pokażę tylko najczęściej stosowaną - zachowanie
starego w dodatkowej zmiennej:

HPEN hpenZoltePioro = CreatePen(PS_SOLID, 2, RGB(255, 255, 0));
HPEN hpenStarePioro = (HPEN) SelectObject(hdcKontekst, hpenZoltePioro);

Po wybraniu pióra możemy już rysować przy jego pomocy dowolne figury geometryczne.

Odkładanie i zwalnianie pióra

Gdy zakończymy już pracę z piórem, powinniśmy je zwolnić. Jak już powiedziałem,
zwolnienie może odbywać się wraz z niszczeniem kontekstu urządzenia lub też (częściej)
być prowokowane jawnie funkcją DeleteObject().

Ten drugi przypadek ukazuje ten kod. Jest to „druga połowa” listingu z poprzedniego
punktu:

SelectObject (hdcKontekst, hpenStarePioro);
DeleteDC (hdcKontekst); // tu jest usuwane pióro hpenStarePioro
DeleteObject (hpenZoltePioro); // tu jest usuwane pióro hpenZoltePioro

Możliwe jest rzecz jasna, abyś stosował inne drogi (np. z SaveDC() i RestoreDC()), jeżeli
uznasz je za wygodniejsze. Ważne jest jednak, by żadne pióro nie zostało „zgubione”, a

Windows GDI 539

wszystkie obiekty zwolnione. W przeciwnym wypadku dojdzie do niebezpieczenego
wycieku zasobów.

Elastyczne pióro
Częsta wymiana obiektu pióra w kontekście urządzenia może nie być zbyt efektywna.
Jednocześnie zmiana koloru rysowanej linii jest czynnością bardzo często, a ta, jak
wiemy, wymaga zmiany obiektu pióra… A może niekoniecznie?

Począwszy od Windows 2000 możliwe jest wykorzystanie tzw. elastycznego pióra. Jest
to pióro rysujące cienką linię ciągłą. Kolor tej linii może być zmieniany bez konieczności
wybierania nowego obiektu.
Zobaczmy zatem, jak wykorzystać elastyczne pióro.

Wybieranie elastycznego pióra

Na początek musimy poinformować GDI, że będziemy korzystać z tego specjalnego
rodzaju pióra. Uchwyt do niego można pozyskać, wywołując funkcję GetStockObject() z
parametrem DC_PEN; wybranie elastycznego pióra w kontekście urządzenia najlepiej
zrealizować więc w jednym wywołaniu:

DeleteObject (SelectObject(hdcKontekst, GetStockObject(DC_PEN)));

Robimy tu jednocześnie aż trzy rzeczy: pobieramy uchwyt do elastycznego pióra
(GetStockObject()), ustawiamy je w kontekście urządzenia (SelectObject()), a na
koniec usuwamy obiekt starego pióra (DeleteObject()).

Ten - wydawałoby się, nieco zakręcony sposób - jest najwłaściwszy. Elastyczne pióro nie
wymaga bowiem jawnego usunięcia142, więc jeśli zachowalibyśmy uchwyt do starego
pióra, a po zakończeniu pracy z powrotem umieścili je w kontekście, tylko dodalibyśmy
sobie większego zachodu. Lepiej będzie, jeżeli od razu pozbędziemy się niepotrzebnego,
oryginalnego pióra; później nie będziemy już musieli martwić się o żadne inne.
Jeżeli jednak kontekst urządzenia miał wcześniej ustawione nasze własne pióro, wtedy
trzeba naturalnie rozważyć, czy chcemy je teraz usunąć. Zwykle nie chcemy.

Zmiana koloru pióra

Kiedy wybraliśmy już elastyczne pióro w kontekście urządzenia, możemy kontrolować
jego kolor. Robimy to poprzez funkcję SetDCPenColor(). Poniższa linijka kodu ustawia
przykładowo kolor pióra na morski:

SetDCPenColor (hdcKontekst, RGB(0, 255, 255));

Zmieniając kolory elastycznego pióra możemy łatwo narysować np. kwadrat o bokach w
czterech barwach:

void Kwadrat4Kolorowy(HDC hdcKontekst, POINT ptPozycja, unsigned uBok,
 COLORREF aKolory[4])
{
 // zapisanie ustawień kontekstu
 SaveDC (hdcKontekst);

 /* narysowanie kwadratu */

 // ustawienie elastycznego pióra
 SelectObject (hdcKontekst, GetStockObject(DC_PEN));

142 Podobnie zresztą jak każdy obiekt uzyskany funkcją GetStockObject().

Windows API 540

 // pomocnicza tablica stałych, opisujących kierunki boków
 // (kwadrat rysujemy od lewego górnego rogu zgodnie ze wsk. zegara)
 const POINT BOKI[4] = { {1, 0}, {0, 1}, {-1, 0}, {0, -1} };

 // ustawimy się w podanej pozycji (lewy górny róg kwadratu)
 MoveToEx (hdcKontekst, ptPozycja.x, ptPozycja.y, NULL);

 // rysujemy kolejne boki
 POINT ptPozycjaPiora;
 for (unsigned i = 0; i < 4; ++i)
 {
 // ustawiamy kolor pióra na kolejny z podanych
 SetDCPenColor (hdcKontekst, aKolory[i]);

 // pobieramy aktualną pozycję pióra
 GetCurrentPositionEx (hdcKontekst, &ptPozycjaPiora);

 // kreślimy linię w odpowiednim kierunku; uzyskujemy go,
 // mnożąc długość boków przez wspołrzędne wektorów zapisane
 // w tablicy BOKI. W ten sposób dowiadujemy się, o ile
 // powinniśmy się przesunąć
 LineTo (hdcKontekst,
 ptPozycjaPiora.x + BOKI[i].x * uBok,
 ptPozycjaPiora.y + BOKI[i].y * uBok);
 }

 /* przywracamy oryginalny stan kontekstu */
 RestoreDC (hdcKontekst, -1);
}

SetDCPenColor() zapobiega tutaj konieczności utworzenia, przechowywania i zniszczenia
czterech piór w kontekście z urządzenia. Piór, które różnią się tylko kolorem; w takich
sytuacjach znacznie lepiej jest użyć elastycznego pióra.

Właściwości pióra w kontekście urządzenia
Z obecnością pióra w kontekście urządzenia związane są dwie jego właściwości. Wpływają
one na rysowane figury. Tymi atrybutami kontekstu są aktualna pozycja pióra oraz tryb
rysowania.

Aktualna pozycja

Nie zdziwiłbym się, jeżeli przynajmniej niektórzy z obecnych tu czytelników mieli
styczność z tak zwanym ‘językiem programowania’ o nazwie LOGO. Jeżeli nawet nie
zaczynali od niego swoich koderskich doświadczeń, to jest całkiem prawdopodobne, że
byli nim męczeni w szkole.
Nie będę jednak rozwodził się tutaj nad kwestią, jak koszmarnym programem (bo
językiem nie mogę tego nazwać…) jest LOGO, bo zajęłoby to resztę miejsce
przeznaczonego na ten kurs ;D Chcę tylko wspomnieć o czymś takim jak żółw. Tak więc
żółw w LOGO to taki rodzaj kursora, który mógł być sterowany instrukcyjnie i rysował
przeróżne figury geometryczne. Zajmował on pewną pozycję na ekranie i można go było
skierować w inną; po drodze zostawiał za sobą ślad w postaci linii.

Jak to się ma do GDI?… Otóż, żółw z LOGO ma sporo wspólnego z piórami w Windows
GDI - nie wszystko wprawdzie, ale przynajmniej jedna jego właściwość jest dla nas teraz
istotna. Tą właściwością jest pozycja.
Pióro w GDI także zajmuje określoną pozycję na bitmapie kontekstu urządzenia. Niektóre
funkcje rysujące, takie jak LineTo(), korzystają z niej, rozpoczynając z tego miejsca

Windows GDI 541

rysowanie figur. Po ich wykreśleniu pozycja pióra ulega zmianie: zatrzymuje się ono na
przeciwległym końcu narysowanej krzywej. W ten sposób sterujemy piórem podobnie jak
żółwiem.

Przesunięcie pióra może się też odbywać bez zostawiania jakichkolwiek „śladów”. Służy
do tego funkcja MoveToEx():

BOOL MoveToEx(HDC hdc,
 int X,
 int Y,
 LPPOINT lpPoint);

Byłbym bardzo zawiedziony, gdybyś z jej prototypu nie wydedukował znaczenia
parametrów… Myślę więc, że poradziłeś sobie z tym :) Powiem jedynie, że wskaźnik do
struktury POINT, jakiego funkcja żąda w ostatnim parametrze, może być ustawiony na
NULL. W takiej sytuacji nie otrzymamy poprzednich współrzędnych pióra - zazwyczaj i tak
nie są nam one potrzebne.

Jeżeli jednak zdarzyłaby się taka okoliczność, można się jeszcze salwować funkcją
GetCurrentPositionEx():

BOOL GetCurrentPositionEx(HDC hdc, LPPOINT lpPoint);

Przy okazji rysowania czterokolorowego kwadratu, mogłeś zobaczyć, że bywa ona
przydatna.

Tryb rysowania

Rysując linie proste, krzywe, obramowania figur i inne kształty, pióro domyslnie
zastępuje już istniejące piksele w kontekście urządzenia. Te standardowe zachowanie
możemy zmienić - służy do tego funkcja SetROP2():

int SetROP2(HDC hdc,
 int fnDrawMode);

ROP jest tu skrótem od raster operation, czyli ‘operacji rastrowej’, zaś 2 oznacza ilość
argumentów tej operacji. Owymi dwiema danymi są tutaj:

 istniejący w kontekście urządzenia kolor, zwany kolorem ekranowym (oznaczę go
tutaj clScreen)

 kolor pióra (clPen)

Operacja rastrowa definiuje sposób połączenia tych dwóch kolorów wejściowych w jeden
kolor wynikowy. Barwa ta pozostanie na pikselu w kontekście urządzenia.

Windows GDI oferuje kilka możliwych operacji rastrowych. Wszystkie one są działaniami
na bitach kanałów RGB, więc w tabeli są one zapisane przy użyciu obecnych w C++
operatorów bitowych143:

flaga operacji kolor wynikowy
R2_BLACK czarny

R2_NOTMERGEPEN ~(clPen | clScreen)
R2_MASKNOTPEN clScreen & ~clPen
R2_NOTCOPYPEN ~clPen

143 Dla przypomnienia: & to koniunkcja bitowa (daje 1 tylko dla dwóch jedynek), | to alternatywa (daje 0 tylko
dla dwóch zer), ^ jest różnicą symetryczną (daje 1 dla różnych bitów), zaś ~ to negacja, zmieniająca 1 w 0 i
odwrotnie.

Windows API 542

flaga operacji kolor wynikowy
R2_MASKPENNOT clPen & ~clScreen

R2_NOT ~clScreen
R2_XORPEN clPen ^ clScreen

R2_NOTMASKPEN ~(clPen & clScreen)
R2_MASKPEN clPen & clScreen
R2_NOTXORPEN ~(clPen ^ clScreen)

R2_NOP clScreen
R2_MERGENOTPEN clScreen | ~clPen
R2_COPYPEN clPen

R2_MERGEPENNOT clPen | ~clScreen
R2_MERGEPEN clPen | clScreen
R2_WHITE biały

Tabela 63. Stałe binarnych operacji rastrowych w Windows GDI

Poszczególne operacje możesz wypróbować empirycznie, jeśli chcesz. Rzadko jednak
będziesz musiał korzystać z innego trybu rysowania niż domyślny R2_COPYPEN.

Pędzel
Jeśli chodzi o rysowanie figur geometrycznych w Windows, to wraz z piórem w parze
idzie tu zawsze pędzel.

Pędzel (ang. brush) decyduje o sposobie wypełniania zamkniętych powierzchni.

Typem uchwytu do pędzla jest HBRUSH.

Wypełnienie pędzlem jest stosowane dla wszystkich figur zamkniętych, jakie rysujemy w
kontekście urządzenia. Należą do nich na przykład prostokąty i okręgi.
Innym, bardzo ważnym zastosowaniem pędzla jest też pokrywanie jakimś wzorem lub
kolorem wnętrza okna. Pędzel był pierwszym obiektem GDI, z jakim w ogóle mieliśmy do
czynienia. Spotkaliśmy go bowiem już przy rejestrowaniu klasy okna, gdzie pole
WNDCLASS[EX]::hbrBackground musiało zawierać nic innego, jak tylko uchwyt do pędzla
malującego obszar klienta okna.

Obecnie jednak skoncetrujemy się głównie na zastosowani pędzli w działaniach
rysunkowych biblioteki Windows GDI. Powiemy więc sobie, jak się je tworzy i korzysta z
nich.

Korzystanie z pędzli
Z pędzli korzystamy identycznie jak z piór. Także tutaj występuje więc ich tworzenie,
wybieranie, odkładanie i zwalnianie.

Tworzenie pędzla

Windows GDI oferuje pędzle malujące powierzchnie aż na trzy sposoby. Mogą być one
wypełniane:

 jednolitym kolorem (ang. solid color)
 dwukolorowym deseniem (ang. hatch)
 kafelkowaną bitmapą (ang. pattern)

W związku z tym mamy trzy podstawowe funkcje tworzące obiekty pędzli.

Pierwszą z nich jest CreateSoildBrush(), najprostsza z nich wszystkich:

HBRUSH CreateSolidBrush(COLORREF crColor);

Windows GDI 543

Wynikiem jest działania jest pędzel oferujący wypełnienie całkowicie jednolitym kolorem.
Wartość tej barwy podajemy oczywiście w jednym parametrze funkcji, crColor.

Innym rodzajem wypełnienia jest deseń. Pędzel, który będzie je stosował, należy
stworzyć funkcją CreateHatchBrush():

HBRUSH CreateHatchBrush(int fnStyle,
 COLORREF clrref);

Parametr fnStyle określa w niej rodzaj deseniu, jakim będzie się posługiwał nasz pędzel.
Możliwych jest sześć rodzajów, przedstawia je poniższa tabelka:

stała nazwa deseniu deseń
HS_HORIZONTAL poziomy
HS_VERTICAL pionowy
HS_CROSS siatka

HS_FDIAGONAL ukośny w dół
HS_BDIAGONAL ukośny w górę
HS_DIAGCROSS kratka

Tabela 64. Wzory deseni dla pędzli Windows GDI

Nie możemy niestety uzupełniać tego zestawu o własne desenie. Powyższa szóstka jest
chyba jednak wystarczająca do większości potrzeb.
Można zauważyć, że deseń jest rysowany dwoma kolorami. Pierwszy jest nazywany
kolorem pierwszoplanowym (ang. foreground color) - w tabeli jest to kolor czarny.
Drugi kolor jest drugoplanowym albo kolorem tła (ang. background color). Obie te
barwy możemy ustalić, chociaż tylko kolor pierwszoplanowy jest własnością samego
pędzla - podajemy go bowiem w parametrze clrref. Kolor tła jest natomiast atrybutem
kontekstu urządzenia i możemy go zmienić funkcją SetBkColor():

COLORREF SetBkColor(HDC hdc, COLORREF crColor);

Jak się później przekonamy, wpływa on nie tylko na wypełnianie deseniowymi pędzlami,
ale też na wypisywanie tekstu.

Ostatni rodzaj pędzla potrafi zamalowywać powierzchnie sąsiadującymi kopiami bitmap;
nazywamy to często kafelkowaniem. Utworzenie pędzla tego typu wymaga wywołania
funkcji CreatePatternBrush():

BRUSH CreatePatternBrush(HBITMAP hbmp);

Ta zaś wymaga tylko jednego parametru: jest to uchwyt do obiektu bitmapy, która
będzie służyć za „kafelek”. O tworzeniu bitmap bedziemy wiele mówić w poświęconej im
sekcji, na razie więc powiem tylko, że obrazek do kafelkowania może być wzięty zarówno
z pliku, jak i stworzony programowo. Nie ma też ograniczeń, co do rodzaju bitmapy:
dozwolony jest obrazek rastrowy typu DIB (bitmapa niezależna od urządzenia), jak i
normalna bitmapa, zapisywana w plikach z rozszerzeniem .bmp.
Jest jednak wymagane, aby podana bitmapa istniała przez cały czas istnienia pędzla.
Nie powinniśmy bowiem usuwać żadnej bitmapy, która jest związana z jakimkolwiek
pędzlem (podobnie jak nie możemy usuwać pędzla, pióra czy innego obiektu związanego
z kontekstem urządzenia).

Wybieranie pędzla

Jeśli chcemy wykorzystać pędzel, musimy wybrać go w swoim kontekście urządzenia.
Operacja ta wygląda dokładnie identycznie jak wiązanie pióra. W jej przypadku także
musimy więc pamiętać o tym, aby zapisać stary pędzel kontekstu:

Windows API 544

HBRUSH hbrZielonaSiatka = CreateHatchBrush(HS_DIAGCROSS, 0x0000ff00));
HBRUSH hbrStaryPedzel = (HBRUSH) SelectObject(hdcKontekst,
 hbrZielonaSiatka);

Jak tego dokonamy, nie ma znaczenia. Tutaj pokazuję najczęstszą metodę z deklaracją
osobnej zmiennej, ale równie dobrze możemy użyć mechanizmu zapisywania stanu
kontekstu.

Zwalnianie pędzla

Po użyciu pędzel należy odłożyć, a następnie usunąć. Ponownie wygląda to w zasadzie
tak samo, jak dla piór:

SelectObject (hdcKontekst, hbrStaryPedzel);
DeleteDC (hdcKontekst); // usunięcie pędzla hbrStaryPedzel
DeleteObject (hbrZielonaSiatka); // usunięcie pędzla hbrZielonaSiatka

Ważne, aby zarówno stary, jak i nasz własny pędzel zostały usunięte. Sposób, w jaki to
się dokona nie jest już tak istotny dla biblioteki GDI, więc mamy tutaj pełną swobodę
wyboru.

Wiedzmy też, że gdy usuwamy pędzel kafelkujący bitmapowy wzór, to zwolnieniu
podlega sam obiekt pędzla i tylko on. Całkowicie bez szwanku wychodzi z tego bitmapa.
Tak więc jeśli nie potrzebujemy jej już dłużej, powinniśmy usunąć wykorzystywaną
bitmapę poprzez oddzielne wywołanie DeleteObject().

Elastyczny pędzel
Odpowiednikiem elastycznego pióra w obiektach pędzli jest elastyczny pędzel. Potrafi
on malować kształty jednolitym kolorem, którego odcień można swobodnie i wygodnie
zmieniać. Jest to więc użyteczne, gdy musimy wyrysować wiele figur o zmieniających się
kolorach.

Elastyczny pędzel, tak samo jak i pióro, są dostępne od Windows 2000 wzwyż.

Wybór elastycznego pędzla

Uzyskanie uchwyt do elastycznego pędzla oznacza wywołanie funkcji GetStockObject()
z parametrem DC_BRUSH. Jeżeli zaś chcemy ustawić ten pędzel w kontekście urządzenia,
to oczywiście podajemy go do SelectObject():

SelectObject (hdcKontekst, GetStockObject(DC_BRUSH));

Nic nie stoi też na przeszkodzie, aby jednocześnie usunąć poprzedni pędzel kontekstu.
Musimy tylko (tak samo jak przy elastycznym piórze) objąć przywołanie SelectObject()
funkcją DeleteObject().

Zmiana koloru pędzla

Kolor elastycznego pędzla leży pod kontrolą funkcji SetDCBrushColor(). Używamy jej
identycznie jak SetDCPenColor(), tzn. podajemy uchwyt kontekstu urządzenia oraz
nowy kolor, np. tak:

// zmiana koloru elastycznego pędzla na szary
SetDCBrushColor (hdcKontekst, RGB(128, 128, 128));

Ilustracją dla elastycznego pędzla niech będzie poniższy, całkiem efektowny program. Nie
robi on niczego konkretnego, ale prezentuje prosty fajerwerk graficzny:

Windows GDI 545

// RandomRects - inwazja losowych prostokątów

#include <string>
#include <ctime>
#define _WIN32_WINNT 0x500 // aby działał elastyczny pędzel
#define WIN32_LEAN_AND_MEAN
#include <windows.h>

// nazwa klasy okna
std::string g_strKlasaOkna = "od0dogk_Window";

// dane okna
HDC g_hdcOkno; // uchwyt kontekstu urządzenia okna

// pomocnicza funkcja zwracająca liczbę losową z podanego zakresu ------

int Random(int nMin, int nMax)
 { return rand() % (nMax - nMin + 1) + nMin; }

// ------------------ procedura zdarzeniowa okna ------------------------

LRESULT CALLBACK WindowEventProc(HWND hWnd, UINT uMsg, WPARAM wParam,
LPARAM lParam)
{
 switch (uMsg)
 {
 case WM_TIMER:
 {
 // pobieramy obszar klienta
 RECT rcObszarKlienta;
 GetClientRect (hWnd, &rcObszarKlienta);

 // generujemy współrzędne nowego prostokąta;
 // prawą i dolną krawędź dobieramy tak,
 // aby zawsze była położona miedzy lewą/górną krawędzią
 // prostok. i prawą/dolną krawędzią obszaru klienta okna
 RECT rcProstokat;
 rcProstokat.left = Random(0, rcObszarKlienta.right);
 rcProstokat.right = Random(rcProstokat.left,
 rcObszarKlienta.right);
 rcProstokat.top = Random(0, rcObszarKlienta.bottom);
 rcProstokat.bottom = Random(rcProstokat.top,
 rcObszarKlienta.bottom);

 // ustawiamy losowy kolor pędzla
 SetDCBrushColor (g_hdcOkno,
 RGB(Random(0, 255),
 Random(0, 255),
 Random(0, 255)));

 // rysujemy prostokąt
 Rectangle (g_hdcOkno, rcProstokat.left, rcProstokat.top,
 rcProstokat.right, rcProstokat.bottom);

 return 0;
 }

 case WM_DESTROY:

Windows API 546

 // kończymy program
 PostQuitMessage (0);
 return 0;
 }

 return DefWindowProc(hWnd, uMsg, wParam, lParam);
}

// -----------------------funkcja WinMain() ----------------------------

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE, LPSTR, int nCmdShow)
{
 /* rejestrujemy klasę okna */

 WNDCLASSEX KlasaOkna;

 // wypełniamy strukturę WNDCLASSEX
 ZeroMemory (&KlasaOkna, sizeof(WNDCLASSEX));
 KlasaOkna.cbSize = sizeof(WNDCLASSEX);
 KlasaOkna.hInstance = hInstance;
 KlasaOkna.lpfnWndProc = WindowEventProc;
 KlasaOkna.lpszClassName = g_strKlasaOkna.c_str();
 KlasaOkna.hCursor = LoadCursor(NULL, IDC_ARROW);
 KlasaOkna.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 KlasaOkna.hbrBackground = (HBRUSH) GetStockObject(WHITE_BRUSH);
 KlasaOkna.style = CS_OWNDC // własny kontekst urządzenia okna
 | CS_HREDRAW | CS_VREDRAW;

 // rejestrujemy klasę okna
 RegisterClassEx (&KlasaOkna);

 /* tworzymy okno */

 HWND hOkno;
 // (darujemy sobie wywołanie CreateWindowEx())

 // pokazujemy nasze okno
 ShowWindow (hOkno, nCmdShow);

 /* przygotowujemy się do rysowania prostokątów */

 // pobieramy uchwyt do kontekstu urządzenia obszaru klienta okna
 g_hdcOkno = GetDC(hOkno);

 // ustawiamy mu elastyczny pędzel
 DeleteObject (SelectObject(g_hdcOkno, GetStockObject(DC_BRUSH)));

 // tworzymy stoper, aby generował zdarzenie WM_TIMER
 // co ćwierć sekundy
 SetTimer (hOkno, 1, 250 /* milisekund */, NULL);

 // inicjujemy generator liczb pseudolosowych
 srand (static_cast<unsigned>(time(NULL)));

 /* pętla komunikatów */

 MSG msgKomunikat;

Windows GDI 547

 while (GetMessage(&msgKomunikat, NULL, 0, 0))
 {
 TranslateMessage (&msgKomunikat);
 DispatchMessage (&msgKomunikat);
 }

 // zwracamy kod wyjścia
 return static_cast<int>(msgKomunikat.wParam);
}

Gdy uruchomimy ten program, zobaczymy prostokąty o losowych wymiarach, wypełnione
losowym kolorem i pojawiające się w losowych miejscach. Jednym słowem: całkowity
chaos :)

Screen 68. Efekt losowych prostokątów

Właśnie ze względu na tę przypadkowość, elastyczny pędzel sprawdza się tu dobrze.
Gdybyśmy bowiem dla każdego prostokąta generowali odrębny obiekt pędzla z innym
kolorem, mogłoby to nawet w widoczny sposób zaważyć na wydajności.

W tym programie przykładowym użyłem stopera (ang. timer), o którym jeszcze nie
mówiliśmy i omówimy w jednym z przyszłych rozdziałów. Jeżeli chcesz, możesz o tym
poczytać w MSDN, bo jest w gruncie rzeczy bardzo łatwe zagadnienie. Stoper wysyła po
prostu komunikat WM_TIMER do okna programu w określonych odstępach czasu - u nas
jest to 250 milisekund, czyli ćwierć sekundy. Aplikacja może zaś reagować na to
zdarzenie i wykonywać jakieś cykliczne akcje, jak np. mało sensowne rysowanie
prostokątów :)

Wypełnianie obszaru rysunku
W powyższym przykładzie użyłem prostokątów wypełnionych kolorami. W zasadzie
jednak nie trzeba nawet rysować żadnych figur, aby móc skorzystać z pędzla. Potrafi on
bowiem wykonać czynność znaną dobrze z programów graficznych - wypełnienie
obszaru (ang. flood fill, dosłownie ‘wypełnienie powodziowe’, co można też tłumaczyć
jako ‘wylanie farby’).

Jak działa wypełnienie obszaru, możesz się przekonać, uruchamiając choćby program
Paint, wybierając narzędzie Wypełnienie kolorem i klikając w dowolne miejsce obrazka.
Zobaczysz zwykle, że spory obszar rysunku został pokryty nowym kolorem. Technicznie
rzecz biorąc, Wypełnianie kolorem działa w ten sposób, iż zastępuje barwy wszystkich
pikseli, które sąsiadują z tym klikniętym i mają taką samą barwę jak on. Tych pikseli

Windows API 548

może być bardzo dużo, a wtedy nowy kolor „rozlewa” się na znacznym fragmencie
bitmapy. Stąd też wzięła się angielska nazwa tego rodzaju wypełniania.

Biblioteka Windows GDI jest mądrzejsza niż Paint, bo oferuje nie tyle wypełnianie jakimś
kolororem, ale każdym możliwym rodzajem pędzla (w tym także jednolicie kolorującym).
Ponadto udostępnia też dodatkowy sposób wyznaczania obszaru, na który zostanie
„wylana farba”.
Za czynność wypełniania odpowiada funkcja ExtFloodFill():

BOOL ExtFloodFill(HDC hdc,
 int nXStart,
 int nYStart,
 COLORREF crColor,
 UINT fuFillType);

Jeśli chodzi o jej parametry, to ich znaczenie jest raczej nietrudne do zrozumienia. hdc to
kontekst urządzenia, w którym będzie grasować wypełnienie. Liczby nXStart i nYStart
są współrzednymi punktu, z którego efekt weźmie swój początek; w programach
graficznych jest to ten punkt, w który klikamy myszą. Kolor crColor może mieć dwa
znaczenia, w zależności od typu wypełniania, podanego w fuFillType.

ExtFloodFill() obsługuje dwa typy wypełniania pędzlem, które rozróżnia za pomocą
wartości parametru fuFillType:

 FLOODFILESURFACE jest znanym nam sposobem, polegającym na wypełnianiu
wszystkich pikseli, które sąsiadują z tym „klikniętym” i mają ten sam kolor. Polega
to po prostu na zastąpieniu pewnego obszaru, wypełnionego danym kolorem,
obszarem pokrytym wzorem pędzla:

Rysunek 17. Wypełnienie funkcją ExtFloodFill() w trybie FLOODFILLSURFACE

Przy taki trzybie wypełnienia, wartość parametru crColor musi zgadzać się w z
kolorem w punkcji o podanych współrzędnych nXStart i nYStart. Najlepiej więc
pobrać go stamtąd i napisać np. taką funkcję:

BOOL Fill(HDC hdc, int nX, int nY)
{
 return ExtFloodFill(hdc, nX, nY,
 GetPixel(hdc, nX, nY), FLOODFILLSURFACE);
}

Funkcją GetPixel() pobieramy kolor piksela o podanych współrzędnych

 FLOODFILLBORDER to drugi sposób wypełniania. W tym ustawieniu działa ona

właściwie odwrotnie niż poprzednim: kiedy tam kolor podany w crColor był
swego rodzaju warunkiem kontynowania wypełniania, tutaj jest on kryterium jego

Windows GDI 549

zakończenia. Mówiąc prostej, w tym trybie funkcja ExtFloodFill() radośnie
maluje pędzlem cały rysunek aż do napotkania obramowania w kolorze crColor:

Rysunek 18. Wypełnienie funkcją ExtFloodFill() w trybie FLOODFILLBORDER

Wtedy kończy ona swe działanie. Jego wynikiem jest wypełnienie pędzlem całego
obszaru, znajdującego się wewnątrz obramowania w kolorze crColor. Na rysunku
powyżej jest to kolor czerwony

Używając ExtFloodFill() musimy dbać o to, aby warunki działania tej funkcji były
spełnione. Znaczy to na przykład, że przy stosowaniu trybu FLOODFILLSURFACE kolor
piksela o współrzednych nXStart i nYStart powinien rzeczywiście być równy crColor.
Dla FLOODFILLBORDER musi być z kolei odwrotnie: piksel ten nie może mieć koloru
podanego w czwartym parametrze, bo w tej sytuacji funkcja nie będzie miała czego
wypełniać.

Pamiętajmy też, że funkcja poszukuje dokładnego dopasowania koloru podanego w
crColor. Jeśli więc podamy jej barwę RGB(34, 56, 178), to RGB(34, 57, 178) będzie
uznana za całkowicie inny kolor, mimo że optyczna różnica między nimi jest zasadzie
żadna. Może to powodować powstawanie niewypełnionych „dziur” lub przeciwnie,
wypełnionych „plam”, których wcale nie chcieliśmy pokrywać pędzlem.

Kwestia ta w programach graficznych nieco lepszych od Painta nosi nazwę tolerancji
koloru i jest zwykle ustawialna. Nie tylko można podać jej liczbową wartość (zazwyczaj
od 0 do 255 - im więcej, tym większa tolerancja zmiany koloru), ale także sposób, w jaki
kolory są dopasowywane do tego poszukiwanego. Możliwe jest nie tylko porównywanie
kanałów RGB, czyli ilości czerwieni, zieleni i błękitu, ale też konfrontacja odcienia,
jasności, optycznego wrażenia koloru czy też wartości kanałów barw podstawowych w
innych systemach, np. CMYK.
Niestety, w przypadku ExtFloodFill() tolerancja wynosi zawsze 0 i nie da się jej
ustawić. Można co najwyżej napisać własną funkcję…

Punkty i linie
Wykreślanie figur zamkniętych zaczniemy od punktów, linii prostych i krzywych. Nie są to
zamknięte kształty, więc za ich wygląd odpowiada wyłącznie pióro. Współpracę pióra i
pędzla zobaczymy dopiero przy takich figurach jak prostokąty czy elipsy.

Na razie jednak nie zajmiemy się nimi, lecz poprzestaniemy na rysowaniu punktów,
odcinków, łamanych oraz linii krzywych.

Zaznaczanie punktu
Pomyślmy sobie: po co nam w zasadzie taka rozbudowana biblioteka graficzna jak
Windows GDI? Przecież większość jej czynności sprowadza się do stawiania kolorowych

Windows API 550

pikseli na bitmapach. Mając funkcję od tego, moglibyśmy teoretycznie obyć się bez całej
reszty procedur i interfejsów!…

Cóż, teoria teorią, ale praktyka uczy, że lepiej nie wyważać otwartych drzwi. Jest prawie
pewne, że wszystkie funkcje rysujące GDI zostały napisane tak szybko, jak to tylko było
możliwe. Istnieje więc bardzo niewielkie prawdopodobieństwo, że moglibyśmy napisać
lepsze wersje algorytmów kreślących np. linie czy prostokąty. Takie operacje są zresztą
nierzadko optymalizowane sprzętowo, a z kartą graficzną naprawdę nie radzę się
ścigać :)
Poza tym, czy aby na pewno chcielibyśmy pisać wszystko sami?… Oczywiście, że nie! W
końcu po to ktoś wymyśla, projektuje i implementuje takie biblioteki jak Windows GDI,
aby ułatwić innym programistom wykonywanie powtarzalnych czynności. Rysowanie
skomplikowanych figur geometrycznych czy grafiki w ogóle jest taką właśnie czynnością.
Mamy więc interfejs GDI, który radzi sobie z nim; zapewniam cię, że nauka posługiwania
się nim jest przynajmniej o kilka rzędów wielkości łatwiejsza od samodzielnego pisania
podobnego kodu.

A jednak czasami trudno obyć się bez bezpośredniej modyfikacji pikseli. To wszakże nie
problem, jako że GDI udostępnia i taką działaność graficzną. Zobaczmy więc, jak się ona
odbywa.

Ustawienie piksela na określony kolor

A zatem - aby ustawić piksel o znanej współrzędnej na żądany kolor, wywołujemy
funkcję o wiele mówiącej nazwie SetPixel():

COLORREF SetPixel(HDC hdc,
 int X,
 int Y,
 COLORREF crColor);

Cóż można o niej powiedzieć? Właściwie sposób jej użycia jednoznacznie wynika z
prototypu. Napiszę więc tylko, że wartością zwracaną przez funkcję jest kolor, na który
piksel został ustawiony. Barwa ta może się różnić od parametru crColor, jeśli kontekst
urządzenia nie obsługuje pełnego spektrum 24-bitowych kolorów RGB.

Nieco szybciej

Zazwyczaj nie potrzebujemy informacji, jaką zwraca SetPixel(). W takim wypadku
możemy użyć jej wydajniejszej wersji, SetPixelV():

BOOL SetPixelV(HDC hdc,
 int X,
 int Y,
 COLORREF crColor);

Różnica jest zwykle niewielka, ale zawsze lepiej używać wydajniejszego kodu -
szczególnie jeśli nie wiąże się to z żadnymi niedogodnościami.

Przykład szumu

Spytasz może: „Jak szybkie jest takie ustawianie pikseli, jezeli musielibyśmy zapełnić
nimi np. cały ekran?” Myślę, że dobrze jest przekonać się o tym samemu. Przedstawię
prosty program symulujący zachowanie się… telewizora odłączonego od anteny :)
Oto najważniejszy fragment kodu tego programu:

// DeadTV - efekt zepsutego telewizora ;)

// zmienność efektu
// (liczba pikseli zmienianych z każdym przebiegiem)

Windows GDI 551

const unsigned ZMIENNOSC = 2500;

// --------- funkcja wykonywana w każdym przebiegu efektu ---------------
void Pracuj()
{
 POINT ptPiksel;
 BYTE byOdcien;

 // wybieramy pewną ilość pikseli i zmieniamy ich kolory
 for (unsigned i = 0; i < ZMIENNOSC; ++i)
 {
 // losujemy współrzędne zmienianego piksela
 ptPiksel.x = rand() % g_rcObszarKlienta.right;
 ptPiksel.y = rand() % g_rcObszarKlienta.bottom;

 // losujemy odcień szarości
 byOdcien = rand() % 256;

 // zmieniamy piksel
 SetPixelV (g_hdcOkno, ptPiksel.x, ptPiksel.y,
 RGB(byOdcien, byOdcien, byOdcien));
 }
}

Jego ciągłe wykonywanie się powoduje powstanie efektu charakterystycznego szumu:

Screen 69. Efekt jednorodnego szumu

Im większa częstość zmiany pikseli, tym bardziej program upodabnia się prawdziwego
„śniegu” w telewizorze. A ponieważ w tym przykładzie zastosowałem nie stoper, lecz
pętlę komunikatów z PeekMessage(), efekt wykonuje się tak szybko, na ile pozwalają mu
możliwości komputera.
Nie wiem oczywiście, jak wygląda on na twoim sprzęcie, lecz bardzo prawdopodobne, że
dosyć niewiele brakuje mu do doskonałości. Biblioteka GDI wydajnościowo sprawdza tu
się zatem całkiem dobrze, a musisz wiedzieć, że ustawianie kolorów pojedynczych pikseli
jest newralgicznym punktem każdego interfejsu graficznego.

Windows API 552

Linie proste
Teraz przyszedł na najprotsze krzywe, czyli krzywe, które są… proste :) Zobaczymy tutaj,
jak można wykreślać odcinki oraz łamane. Figury te są rysowane przy pomocy pióra
wybranego w kontekście urządzenia, zatem zmiana ich koloru czy szerokości linii odbywa
się poprzez podmianę obiektu pióra. Jak to zrobić, pisałem w odpowiednim paragrafie
poświęconym piórom.

Kreślenie odcinka

Za najprostsze narysowanie odcinka od jednego punktu do drugiego odpowiada w GDI
funkcja LineTo():

BOOL LineTo(HDC hdc,
 int X,
 int Y);

„Hmm… Tu jest chyba za mało parametrów!…” Faktycznie, można tu podać współrzędne
tylko jednego punktu - punktu końcowego. Po narysowaniu odcinka pióro zostaje w
nim umieszczone. Swój początek linia bierze natomiast z aktualnej pozycji pióra. Jeżeli
więc chcielibyśmy rozpocząć rysowanie odcinka od ustalonego miejsca, wpierw musimy
jeszcze skorzystać z funkcji MoveToEx().

Możemy aczkolwiek napisać sobie taką funkcję, która potrafi kreślić linie o określonym
początku i końca. Prawdopodobnie będzie ona wyglądała tak:

BOOL Line(HDC hdcKontekst, POINT ptStart, POINT ptKoniec)
{
 POINT ptPoprzedniaPozycja;

 // przesuwamy pióro do ptStart, zapisując jego poprzednią pozycję
 if (!MoveToEx(hdcKontekst, ptStart.x, ptStart.y,
 &ptPoprzedniaPozycja))
 return FALSE;

 // kreślimy linię do ptKoniec
 if (!LineTo(hdcKontekst, ptKoniec.x, ptKoniec.y))
 return FALSE;

 // przywracamy oryginalną pozycję pióra
 MoveToEx (hdcKontekst, ptPoprzedniaPozycja.x, ptPoprzedniaPozycja.y,
 NULL);

 // zwracamy TRUE
 return TRUE;
}

Pamiętajmy, że wymaga ona łącznie trzech operacji, więc jeśli jest to możliwe, lepiej
stosuj wbudowaną funkcję LineTo().

Rysowanie łamanej

Co się stanie, gdy parokrotnie wywołamy funkcję LineTo()?… Nic strasznego: zwyczajnie
wyrysujemy kilka odcinków połączonych ze sobą tak, że koniec jednego jest jednocześnie
początkiem następnego. Innymi słowy, narysujemy łamaną.

W GDI można oczywiście stosować i ten sposób, ale mamy przecież funkcje Polyline() i
PolylineTo():

HDC Polyline[To](HDC hdc,

Windows GDI 553

 CONST POINT* lppt,
 int cPoints);

Wskaźnik, którego obie funkcje żądają w drugim parametrze, jest tablicą elementów typu
POINT - czyli współrzędnych punktów. Liczbę elementów tej tablicy określamy w ostatnim
parametrze, cPoints.
Do funkcji Polyline() i PolylineTo() musimy tą drogą przekazać co najmniej dwa
punkty. Funkcje korzystają z nich, rysując linię łamaną: rozpoczynają od pierwszego
punktu, ustawiając w nim pióro; dalej prowadzą linie do kolejnych miejsc opisanych
koordynatami elementów tablicy, aż narysują wszystkie odcinki. Nietrudno wyliczyć, że
będzie to łącznie cPoints - 1 kresek.

Teraz pewnie zapytasz, czym różnią się obydwie funkcje. I bardzo słusznie, go w ten
sposób dojdziemy do ogólniejszej, a ważnej i przydatnej zasady. Otóż PolylineTo()
zachowuje się dokładnie tak samo jak ciąg poleceń:

MoveToEx (hdc, lppt[0].x, lppt[0].y, NULL);
LineTo (hdc, lppt[1].x, lppt[1].y, NULL);
LineTo (hdc, lppt[2].x, lppt[2].y, NULL);
...
LineTo (hdc, lppt[cPoints - 1].x, lppt[cPoints - 1].y, NULL);

Natomiast Polyline() można przedstawić jako:

POINT ptPos;
MoveToEx (hdc, lppt[0].x, lppt[0].y, &ptPos);

LineTo (hdc, lppt[1].x, lppt[1].y, NULL);
LineTo (hdc, lppt[2].x, lppt[2].y, NULL);
...
LineTo (hdc, lppt[cPoints - 1].x, lppt[cPoints - 1].y, NULL);

MoveToEx (hdc, ptPos.x, ptPos.y, NULL);

Jestem przekonany, że dostrzegasz różnicę - zwłaszcza, jeżeli przypomnisz sobie
zaprezentowaną wcześniej funkcję Line().
Powiedzmy jednak jasno, o co chodzi. Mianowicie, PolylineTo() kończy rysowanie,
zostawiając pióro w pozycji ostatniego punktu - ma zatem wpływ na jeden z atrybutów
kontekstu urządzenia. Z kolei Polyline() jest kulturalniejsza: po zakończonym
rysowaniu przywraca pióro do pierwotnej pozycji tak, że wydaje nam się, iż nie zostało
ono w ogóle poruszone.

Oczywiście nie należy mówić, że druga z funkcji jest „grzeczniejsza” niż pierwsza. Dla nas
ważne jest, że obie takie funkcje istnieją i zawsze można wybierać wariant bardziej
pasujący w danej chwili.
Co więcej, wyłaniającą się tu zasadę można uogólnić dla wszystkich funkcji rysujących
krzywe otwarte. Brzmi ona:

Funkcje o nazwach zakończonych na To zmieniają pozycję pióra, ustawiając je w
miejscu, gdzie skończyły rysowanie.

Podwójne wersje procedur istnieją również dla łuków elips oraz krzywych Béziera.
Poznamy je wszystkie za momencik.

Do wykreślania łamanych można jeszcze wykorzystać funkcję PolyPolyline(). Potrafi
narysować kilka łamanych za jednym „zamachem” wirtualnego pióra. Trudno wprawdzie
znaleźć ku temu jakieś konkretne zastosowanie nawet przy dużej dozie entuzjazmu, ale

Windows API 554

przyjrzenie się opisowi tej funkcji w MSDN może być ciekawe. Jest on bowiem ideowo
bardzo podobny do metod interfejsu DirectX, renderujących trójwymiarowe prymitywy.
Tam nieustannie używa się tablic punktów oraz innych tablic liczb, opisujących te
pierwsze - tak jak w PolyPolyline().

Krzywe otwarte
Chcąc narysować krzywą, moglibyśmy spróbować jej przybliżeniu odpowiednio krótkimi
odcinami łamanej. To oczywiste, że nie odcinków tych nie możemy skracać w
nieskończoność, ale przecież nie ma takie potrzeby, ponieważ rozdzielczość każdego
urządzenia, a tym bardziej monitora, jest skończona.

Windows GDI posiada aczkolwiek bardziej wyspecjalizowane funkcje rysujące krzywe
otwarte. Radzą sobie one z łukami elips oraz z krzywymi Béziera.

Łuki

Są dwie funkcje, które rysują łuki elips: Arc() i ArcTo(). Różnica między nimi sprowadza
się tylko do tego, iż ArcTo() uaktualnia pozycję pióra, ustawiając je na końcu łuku;
Arc() tego nie robi.

Prototyp obu funkcji wygląda tak:

BOOL Arc[To](HDC hdc,
 int nLeftRect,
 int nTopRect,
 int nRightRect,
 int nBottomRect,
 int nXStartArc,
 int nYStartArc,
 int nXEndArc,
 int nYEndArc);

Niestety, oczy cię nie mylą: oto skromne dziewięć parametrów. Byłoby trudno dociec ich
znaczenia z samego tylko nagłówka funkcji, ale pewnie i opis słowny niewiele tu pomoże.
Najlepszy będzie rysunek, który podpowie znaczenie wszystkich argumentów:

Rysunek 19. Znaczenie parametrów funkcji Arc() i ArcTo()

Windows GDI 555

Zastosowane tu podejście jest dość ciekawe: łuk definiowany jest przez całą elipsę, do
której należy, oraz tzw. punkt początkowy (o współrzędnych nXStartArc i nYStartArc) i
końcowy (nXEndArc i nYEndArc). Wraz z środkiem elipsy wyznaczają one dwa odcinki, a
miejscach, gdzie te odcinki przecinają się z tą elipsą, rozpoczyna się i kończy łuk. Jak
można zauważyć, jest on kreślony w kierunku przeciwnym do ruchu wskazówek
zegara (ang. counterclockwise).
Co do samej elipsy, to jest ona wyznaczona przez otaczający ją najmniejszy prostokąt.
Kolejne parametry - nLeftRect, nTopRect, nRightRect i nBottomRect - są
odpowiednikami pól struktury RECT. Jak przekładają się one na kształt owalu, widać na
rysunku; o wykreślaniu elipsy będziemy zresztą mówić w akapicie poświęconym figurom
zamkniętym.

Zauważmy, że punkty początkowe i końcowe łuku nie muszą koniecznie leżeć na samej
elipsie - Windows nie wymaga aż takiej precyzji. Mogą być one umieszczone w dowolnej
odległości na zewnątrz elipsy.
Nie da się jednak ukryć, że ten sposób określania kawałka obwodu owalu jest kłopotliwy.
Wygodniej byłoby podawać go jako zakres kątów. Nic aczkolwiek nie stoi na
przeszkodzie, aby napisać procedurę, która będzie spełniała to żądanie:

#include <cmath>

void EllipticArc(HDC hdcKontekst,
 RECT rcElipsa, float fStart, float fKoniec)
{
 // obliczamy środek elipsy
 POINT ptSrodek;
 ptSrodek.x = rcElipsa.left + (rcElipsa.right - rcElipsa.left) / 2;
 ptSrodek.y = rcElipsa.top + (rcElipsa.bottom - rcElipsa.top) / 2;

 // wyliczamy długośc promienia wodzącego, który będzie odległością
 // punktu początkowego i końcowego od środka elipsy
 // promień ten musi być dłuższy niż każdy z "boków" elipsy
 int nPromien = max(rcElipsa.right - rcElipsa.left,
 rcElipsa.bottom - rcElipsa.top);

 // wyznaczamy punkty początkowe i końcowe łuku
 // za pomocą funkcji trygonometrycznych
 POINT ptPoczatek = { ptSrodek.x + nPromien * cos(fStart),
 ptSrodek.y - nPromien * sin(fStart) };
 POINT ptKoniec = { ptSrodek.x + nPromien * cos(fKoniec),
 ptSrodek.y - nPromien * sin(fKoniec) };

 // wreszcie kreślimy łuk
 Arc (hdcKontekst,
 rcElipsa.left, rcElipsa.top, rcElipsa.right, rcElipsa.bottom,
 ptPoczatek.x, ptPoczatek.y, ptKoniec.x, ptKoniec.y);
}

Używając tej funkcji należy tylko pamiętać, że względu na pewne własności funkcji sinus i
cosinus, kąt 0 odnosi się do najbardziej wysuniętej w prawo części elipsy. No i nie
zapominajmy, że kąty podajemy zawsze w radianiach.

Krzywe Béziera

Ten rodzaj krzywych nie jest tak powszechnie znany jak inne, ale w grafice
komputerowej mają one bardzo duże znaczenie.

Krzywe Béziera wzięły swoją nazwę od nazwiska Pierre’a Béziera, francuskiego
matematyka pracującego w firmie Renault. W latach 60. ubiegłego wieku opracował on
ten ciekawy rodzaj krzywych, które stały mu sie potem pomocne w projektowaniu

Windows API 556

karoserii samochodowych. Później znalazły zastosowanie także w grafie komputerowej,
na przykład do opisywania kształtów czcionek proporcjonalnych.

Krzywa Béziera jest wyznaczona przez co najmniej trzy punkty:

 jeden punkt początkowy
 jeden punkt końcowy
 przynajmniej jeden punkt kontrolony

Punkty kontrolne definiują krzywiznę figury: odcinki łączące je punktem początkowym i
końcowym potrafią „wyciągać” lub „ściskać” krzywą. Ważnym faktem jest, że krzywa
Béziera nigdy nie przechodzi przez punkty kontrolne.

Rysunek 20. Krzywa Béziera z dwoma punktami kontrolnymi

Windows GDI rysuje tylko krzywe wyznaczone przez swoje dwa punkty kontrolne.
Łącznie zatem potrzebuje do tego czterech punktów, wraz z początkowym i końcowym.
Takie krzywe Béziera nazywamy krzywymi trzeciego stopnia ze względu na stopień
wielomianów w opisujących je równaniach.

Równania opisujące taką krzywą wyglądają mniej więcej tak:

() () ()
() () ()

1 2

1 2

2 33 2

2 33 2

() 3 1 3 1 1

() 3 1 3 1 1

p k k k

p k k k

x t t x t t x t t x t x

y t t y t t y t t y t y

= ⋅ + − + − + −

= ⋅ + − + − + −

W tych wzorach współrzędne (),p px y i (),k kx y oznaczają punkty: początkowy i

końcowy, zaś ()1 1
,k kx y i ()2 2

,k kx y są punktami kontrolnymi. Parametr t powinien

przebiegać po wartościach od 0 do 1 (0;1t∈); wartość 0 da w wyniku punkt

początkowy, 1 - końcowy, a liczby pośrednie pozwalają wyliczyć inne punkty należące do
krzywej.
Można zauważyć, że równania dla osi X i Y różnią się tylko tym, że wykorzystujemy w
nich inne współrzędne punktów krzywej. To duża zaleta, bo łatwo możemy dodać trzeci
wzór, opisujący współrzędną Z, i kreślić krzywe Béziera w przestrzeni trójwymiarowej.

Windows GDI 557

Dla dowolnej liczby punktów kontrolnych równanie krzywej jest trochę bardziej
skomplikowane:

()
0

() 1
n

n kk
k

k

n
t t t p

k
−

=

⎛ ⎞
Β = ⋅ − ⋅⎜ ⎟

⎝ ⎠
∑

G G

Opisuje ono krzywą Béziera wyznaczoną przez (n+1) punktów, czyli przez jeden
początkowy (0pG), jeden końcowy (npG) i (n-1) punktów kontrolnych (1, , np pG G…).

Koordynaty punktów zapisałem jako wektory, więc równanie działa niezależnie od liczby
wymiarów144: aby uzyskać wzory dla każdej osi układu współrzędnych, wystarczy zamiast

kpG wstawić odpowiednie współrzędne punktów (kx , ky i ewentualnie kz).

Do narysowania krzywej można się posłużyć funkcjami PolyBezier() oraz
PolyBezierTo(). Różnica między nimi polega oczywiście na tym, że PolyBezierTo()
uaktualnia pozycję pióra. Oprócz tego funkcja ta traktuje aktualną pozycję pióra jako
punkt początkowy krzywej.
Oto prototyp obydwu funkcji:

BOOL PolyBezier[To](HDC hdc,
 CONST POINT* lppt,
 DWORD cCount);

Żądają one tablicy punktów wyznaczających krzywą - podajemy ją w parametrze lppt,
zaś ilość punktów cCount. Ilość ta powinna wynosi co najmniej 4 w funkcji PolyBezier()
i 3 w PolyBezierTo(), aby funkcja mogła wyrysować co najmniej jedną figurę.
PolyBezier[To]() potrafi bowiem rysować więcej takich krzywych. Są one wtedy
połączone ze sobą tak, że punkt końcowy jednej z nich jest jednocześnie punktem
początkowym drugiej. Na każdą następną krzywą potrzeba więc już tylko 3 punktów -
dwóch kontrolnych i końcowych. Chcąc np. wykreślić cztery połaczone krzywe Béziera
trzeciego stopnia, musimy użyć 13 punktów dla funkcji PolyBezier() lub 12 dla
PolyBezierTo().

Połączenie między tak narysowanymi krzywymi może być „kanciate”. Jeżeli chcemy, aby
było gładkie, to musimy pamiętać, żeby dwa punkty sąsiadujące z punktem połączenia
były współliniowe. Tzn. chodzi o to, aby drugi punkt kontrolny pierwszej krzywej, punkt
połączenia oraz pierwszy punkt kontrolny drugiej krzywej leżały na jednej prostej.
W tym celu możemy wyliczyć pozycję pierwszego punktu kontrolnego drugiej krzywej
posługując się równaniem:

()1 1k k k kp p p p+ −= + −
G G G G

kpG reprezentuje w nim współrzędne punktu wspólnego dla obu krzywych, zaś indeksy

przy wektorach odnoszą się do numerów elementów tablicy przekazywanej do funkcji
PolyBezier[To]().

Krzywe Béziera są bardzo użyteczne, gdyż za ich pomocą można narysowac niemal każdą
możliwą krzywiznę. Figury te nie są jednak odpowiednie do rysowania łuków elips czy
kół, jako że żadna krzywa Béziera nie będzie dokładnie wyznaczała okręgu.

144 Aczkolwiek krzywe Béziera istnieją w przestrzeni co najwyżej trójwymiarowej.

Windows API 558

Jeśli sposób, w jaki punkty kontrolne określają kształt krzywej Béziera sprawia ci kłopot,
możesz pobawić się w ich rysowanie w programie Paint. Narzędzie Krzywa, w które jest
on wyposażony, to nic innego jak właśnie krzywa Béziera.
Przyjrzyj się także przykładowemu programowi Bezier - nie tylko w działaniu, ale i od
strony kodu.

Figury zamknięte
Przyszedł czas na rozpoczecie rysowania figur zamkniętych. Są one zwykle tym, co
rozumiemy pod pojęciem ‘figura geometryczna’. Najprostszymi figurami są prostokąty i
elipsy.

Windows GDI rysuje takie figury z użyciem zarówno pióro, jak i pędzla. Pióro służy mu do
zaznaczenia obwodu figury, natomiast pędzel jest używany do wypełnienia wnętrza.
Możliwe jest aczkolwiek pozostawienie wnętrza w nienaruszonym stanie - należy po
prostu wybrać odpowiedni pędzel:

HBRUSH hbrStary = (HBRUSH) SelectObject(hdcKontekst,
 GetStockObject(NULL_BRUSH));

W niniejszym paragrafie zajmiemy się więc głównie funkcjami Windows GDI, rysującymi
kształty o obramowaniu kreślonym piórem oraz wnętrzu wypełnionym pędzlem.
Podzielimy je sobie na funkcje odnoszące się do wielokątów i do elips lub ich fragmentów.

Wielokąty
Z geometrycznego puntku widzenia wielokąt jest to łamana zamknięta, czyli taka, której
początek pokrywa się z końcem. Wynika stąd, że w GDI moglibyśmy rysować wielokąty
za pomocą funkcji Polyline[To](). Takie figury miałyby wtedy nienaruszone wnętrze,
nietknięte żadnym pędzlem.
Jeżeli jednak chcemy zastosować wypełnienie, wtedy odpowiedniejszą funkcją jest
Polygon(). Omówimy ją za chwilę.

Najpierw bowiem zajmiemy się szczególnym, chyba najważniejszym rodzajem
wielokątów - prostokątami.

Prostokąt

Z prostokątami znamy się już dosyć długo, od kiedy poznaliśmy strukturę RECT i
dowiedzieliśmy się, że przy jej pomocy Windows określa te figury na ekranie. Przypomnę
tylko, że pola tej struktury - left, top, right i bottom - są współrzędnymi czterech
krawędzi prostokąta. Jesli zgrupujemy je w pary, to otrzymamy też pozycję lewego
górnego oraz prawego dolnego wierzchołka prostokąta.

Także w GDI prostokąty są reprezentowane w ten sposób. Weźmy na przykład funkcję
Rectangle():

BOOL Rectangle(HDC hdc,
 int nLeftRect,
 int nTopRect,
 int nRightRect,
 int nBottomRect);

Jej cztery parametry dokładnie odpowiadają polom struktury RECT. Sama funkcja rysuje
prostokąt o podanej charakterystyce za pomocą aktualnego pióra, zaś wypełnia go przy
pomocy bieżącego pędzla.
Rectangle() przyjmuje łącznie cztery parametry, choć mógłaby dwa - wtedy opis
prostokąta byłby zapisany w strukturze RECT. Nic jednak nie stoi na przeszkodzie, aby

Windows GDI 559

napisać sobie pasujące nam funkcje. Przy okazji także tą, która rysować będzie prostokąt
o podanej pozycji i wymiarach:

BOOL Rectangle(HDC hdc, RECT rc)
 { return Rectangle(hdc, rc.left, rc.top, rc.right, rc.bottom; }

BOOL Rectangle(HDC hdc, POINT pos, SIZE size)
 { return Rectangle(hdc, pos.x, pos.y,
 pos.x + size.cx, pos.y + size.cy); }

Być może znalazłyby się one w samej bibliotece Windows GDI, gdyby tylko język C, w
którym została ona napisana, dopuszczał przeciążanie funkcji.

Stosując Rectangle() musimy pamiętać, że jeżeli nasze pióro nie ma stylu
PS_INSIDEFRAME, a jego linia jest grubsza niż 1 piksel, wtedy część obramowania może
„wystawać” poza zakres określony przez parametry funkcji.

Inną funkcją rysującą prostokąty jest FillRect():

BOOL FillRect(HDC hdc,
 CONST RECT* lprc,
 HBRUSH hbr);

Ona z kolei potrzebuje wskaźnika do struktury RECT. Oprócz tego różni się ona tym, że w
ogóle nie bierze pod uwagę obecnych w kontekście obiektów pióra i pędzla. Ignoruje
pióro - gdyż go zwyczajnie nie używa, nie rysuje obramowania figury; pędzel natomiast
podajemy jako dodatkowy parametr funkcji. Funkcja wypełnia nim wskazany obszar i na
tym kończy się jej rola.

Niemal identyczny prototyp posiada funkcja FrameRect():

int FrameRect(HDC hdc,
 CONST RECT* lprc,
 HBRUSH hbr);

Funkcja żąda tu uchwytu do pędzla, ale nie stosuje go do wypełniania. Otóz, ona maluje
nim nie wnętrze, lecz obramowanie prostokąta. Innymi słowy, pędzel działa tu trochę
jak pióro. Nie możemy jednak liczyć na jakieś oszałamijące efekty deseniowego
obramowania prostokątów, gdyż rysowana krawędź ma grubość tylko 1 jednostki
logicznej. Najlepiej więc stosowac tutaj wyłącznie pędzle o jednolitym kolorze.

Operację zupełnie innego rodzaju przeprowadza funkcja InvertRect():

BOOL InvertRect(HDC hdc,
 CONST RECT* lprc);

W zasadzie trudno powiedzieć, aby wykonywała ona jakiekolwiek rysowanie. Funkcja ta
bierze podany jej prostokąt, odczytuje zawarte w nim piksele, a następnie odwraca ich
kolory i zapisuje z powrotem. Odwrócenie oznacza tu operacji negacji bitowej (NOT, w
C++ operator ~) na liczbowej reprezentacji kanłów RGB tych kolorów. Przykładowo, jezeli
mieliśmy prostokąt, gdzie jakiś fragment był koloru białego, inny żółtego, a jeszcze inny
niebieskiego, to po zastosowaniu InvertRect() kolory zmienią się na (odpowiednio):
czarny, niebieski i żółty.
InvertRect() przypomina więc zrobienie negatywu fotografii.

Chcąc zobaczyć przykłady rysowania prostokątów, wróć do programu RandomRects,
prezentowanego podczas omawiania pędzli.

Windows API 560

Dowolny wielokąt

Do narysowania wielokąta o liczbie boków mniejszej lub większej od 4 możesz posłużyć
się funkcją Polygon():

BOOL Polygon(HDC hdc,
 CONST POINT* lpPoints,
 int nCount);

Funkcja ta wygląda podobnie jak Polyline() - też potrzebuje do szczęścia tablicy
punktów, którą podajemy w drugim parametrze, jej wielkość zaś w trzecim. W tym
przypadku są to jednak wierzchołki wielokąta, które są łączone linią wyrysowaną przez
pióro. Nie musimy aczkolwiek podawać dwa razy pierwszego wierzchołka, bo figura
zostanie zamknięta automatycznie. Następnie jest ona wypełniana przez aktualny pędzel.

Przy wypełnianiu wielokątów, których boki się przecinają, liczy się także tryb wypełniania,
ustawiany funkcją SetPolyFillMode().

Przykładowo, narysowanie pewnego prostokątnego trójkąta oznacza wywołanie:

POINT aTrojkat[] = { { 100, 100 }, { 100, 200 }, { 200, 200 } };
Polygon (hdc, aTrojkat, 3);

Przy pomocy Polygon() można też napisać funkcje rysujące bardziej konkretne rodzaje
wielokątów. Oto np. procedura rysowania trojkąta foremnego:

BOOL RegularTriangle(HDC hdc, POINT ptPozycja, unsigned uBok)
{
 /* tworzymy tablicę punktów */

 POINT aTrojkat[3];

 // obliczamy wysokość
 unsigned uWysokosc = static_cast<unsigned>(uBok * sqrtf(3) / 2);

 // pierwszy wierzchołek - lewy dolny
 aTrojkat[0].x = ptPozycja.x;
 aTrojkat[0].y = ptPozycja.y + uWysokosc;

 // drugi wierzchołek - prawy dolny
 aTrojkat[1].x = ptPozycja.x + uBok;
 aTrojkat[1].y = aTrojkat[0].y;

 // trzeci wierzchołek - górny
 aTrojkat[2].x = ptPozycja.x + uBok / 2;
 aTrojkat[2].y = ptPozycja.y;

 /* rysujemy trójkat */
 return Polygon(hdc, aTrojkat, 3);
}

Polygon() może też służyć do przybliżonego rysowania zamkniętych krzywych
wypełnionych, podobnie jak Polyline() potrafi przybliżać krzywe otwarte.

Windows GDI 561

Elipsy i koła
Elipsa to drugi ważny rodzaj figury geometrycznej. GDI potrafi rysować go w całości, jak
również kreślić i wypełniać wycinki oraz odcinki elips. Przypatrzmy się więc funkcjom,
które to potrafią.

Elipsa

W potocznym rozumieniu elipsa to takie „ściśnięte koło”. Nie jest to wcale złe określenie.
Przypomnijmy sobie, że koło może być wpisane w kwadrat. Wobec tego elipsa może być
wpisana w prostokąt. Nawet więcej - w jeden i w dokładnie jeden prostokąt. Łatwy z
tego wynika wniosek: elipsę możemy w wygodny sposób określić, podając
charakterystykę najmniejszego prostokąta, który może ją otoczyć.
Tak też czynimy, wywołując funkcję Ellipse():

BOOL Ellipse(HDC hdc,
 int nLeftRect,
 int nTopRect,
 int nRightRect,
 int nBottomRect);

Ma ona identyczny prototyp, co Rectangle(). Tutaj współrzędne prostokąta oznaczają
jednak nie sam wielokąt, ale granice, w których jest wrysowywana elipsa:

Rysunek 21. Znaczenie parametrów funkcji Ellipse()

Długości dwóch promieni elipsy będą wynosiły (nRightRect - nLeftRect) / 2 oraz
(nBottomRect - nTopRect) / 2. Jeśli chcemy narysować okrąg, to musimy naturalnie
zadbać, aaby były one równe. Przekazany do funkcji okrąg musi więc być kwadratem.

Wycinek elipsy

Wycinkiem elipsy nazywamy jej część ograniczoną dwoma promieniami, biegnącymi od
środka do krawędzi figury. Wygląda ona troche jak kawałek tortu - tym smaczniejszy, im
bardziej elipsa jest okrągła :)

Do rysowania wycinka elipsy służy w Windows GDI funkcja o nazwie Pie(), zatem
porównaniu do tortu nie jest wcale takie odległe145. Oto prototyp tej funkcji:

BOOL Pie(HDC hdc,

145 pie po angielsku oznacza ‘szarlotkę’.

Windows API 562

 int nLeftRect,
 int nTopRect,
 int nRightRect,
 int nBottomRect,
 int nXRadial1,
 int nYRadial1,
 int nXRadial2,
 int nYRadial2);

Wygląda on podobnie do nagłówka Arc[To]() i, jak się pewnie domyślasz, nie jest to
przypadek. Pie() określa wycinek elipsy w bardzo podobny sposób, jak wspomiane
funkcje definiują łuk. Spójrz zresztą na poniższy rysunek:

Rysunek 22. Znaczenie parametrów funkcji Pie()

Kierunek zakreślania wycinka elipsy jest tu, tak samo jest w Arc[To](), przeciwny do
ruchu wskazówek. Punkty wyznaczające fragment elipsy również nie muszą na niej leżeć.

Odcinek elipsy

Ostatnią figurą z gatunku elips i okolic jest odcinek elipsy. Jest to figura geometryczna,
będącą częścią wspólną elipsy i połpłaszczyzny. Mówiąc jaśniej, jeżeli przetniemy naszą
elipsę linią prostą, to dwie figury, jakie przy okazji powstaną, będą niczym innym jak
właśnie odcinkami elipsy.

Za rysowanie tego rodzaju kształtów odpowiada w Windows GDI funkcja o nazwie
Chord() (‘cięciwa’). Popatrzmy na jej, znajomy już pewnie, prototyp:

BOOL Chord(HDC hdc,
 int nLeftRect,
 int nTopRect,
 int nRightRect,
 int nBottomRect,
 int nXRadial1,
 int nYRadial1,
 int nXRadial2,
 int nYRadial2);

Windows GDI 563

Znowu mamy dziewięć znajomych argumentów, określających całą elipsę oraz wycinek
jej okręgu. Ich znaczenie tradycyjnie przestudiujemy na rysunku:

Rysunek 23. Znaczenie parametrów funkcji Chord()

Zasady znane z Arc[To]() stosują się także i tutaj.

Zaokrąglony prostokąt
Patrząc na tytuł tego akapitu możesz być trochę zdezorientowany. Jak prostokąt, który
nawet z nazwy ma proste kąty, może być zaokrąglony?… Cóż, to pewna nieścisłość, bo
faktycznie chodzi o prostokąt z zaokrąglonymi rogami, ale powszechnie przyjęło się,
by o tej figurze mówić właśnie ‘zaokrąglony prostokąt’. Zapewne wynika to z tłumaczenia
angielskiego terminu rounded rectangle.

W GDI tego typu figurę można narysować, stosując przeznaczoną do tego funkcję
RoundRect():

BOOL Rectangle(HDC hdc,
 int nLeftRect,
 int nTopRect,
 int nRightRect,
 int nBottomRect,
 int nWidth,
 int nHeight);

Jej pierwszych pięć parametrów z pewnością wygląda znajomo, bo pochodzi z funkcji
Rectangle(). Ostatnie dwa muszą więc mieć wpływ na nową cechę prostokąta, czyli
zaokrąglenie jego rogów - i rzeczywiście tak jest. Parametry nWidth i nHeight określają
bowiem szerokość i wysokość elipsy, która wyznacza krągłość rogów. Innymi słowy, jest
to pozioma i pionowa średnica tejże elipsy lub jeszcze inaczej - wymiary prostokąta
okalającego tę elipsę.

No dobrze, ale czym właściwie jest ta elipsa?… Odpowiedzią na to pytanie będzie kolejny
rysunek, obrazujący znaczenie wszystkich parametrów funkcji RoundRect(). Oto i ten
szkic:

Windows API 564

Rysunek 24. Znaczenie parametrów funkcji RoundRect()

Na rysunku widać, że zaokrąglenie rogów jest precyzowane poprzez małą elipsę.
Parametry nWidth i nHeight są jej wymiarami - w praktyce równymi, gdyż symetryczne
naroża wyglądają zwykle najlepiej.

Bitmapy
Duża część pracy z grafiką związana jest z obróbką gotowych bitmap. Używając
wykonanych wcześniej obrazków nie musimy dbać o ręczne generowanie każdego
szczegółu wyglądu obrazka. Wiele elementów graficznych, pochodzących zwłaszcza z
realnego świata, nie da się efektywnie zamodelować przy pomocy obiektów wektorowych.
Bitmapy stają się wówczas niezbędne.

Windows GDI posiada kilka sposobów manipulacji bitmapami jako całością. Umożliwia
między innymi wczytywanie ich z plików, kopiowanie do wybranego kontekstu
urządzenia, skalowanie czy wyświetlanie z przezroczystością.
Jest to możliwe przy pomocy obiektów bitmap, którymi zarządzamy poprzez uchwyty
typu HBITMAP.

Zarządzanie bitmapą
Z bitmapami obchodzimy się podobnie jak z innymi obiektami GDI: tworzymy je,
podpinamy do kontekstu urządzenia, wykonujemy pożądane operacje, a wreszcie
zwalniamy, odzyskując zasoby. Popatrzymy teraz na każdy z tych etapów.

Tworzenie obiektu bitmapy
Obiekt bitmapy możemy stworzyć, opierając się na pliku, na kontekście urządzenia lub
też samodzielnie podać jej wszystkie parametry. Poznamy tutaj każdy z tych trzech
sposobów.

Odczytanie z pliku

Znamy już funkcję, która potrafi wczytywać obrazki z plików. Jest to LoadImage():

HANDLE LoadImage(HINSTANCE hInstance,
 LPCTSTR lpszName,
 UINT uType,
 int cxDesired,
 int cyDesired,
 UINT fuLoad);

Windows GDI 565

Zgodnie z obietnicą, omówimy ją sobie dokładnie w tym momencie. Zajmijmy się więc jej
parametrami - pomocą będzie tu tradycyjna tabelka:

typ parametr opis

HINSTANCE hInstance

Jeżeli chcemy wczytać obrazek z zasobów zawartych w pliku
EXE, podajemy tutaj uchwyt instancji programu. Jeżeli

natomiast zależy nam na załadowaniu obrazku z pliku na dysku
(względnie skorzystanie z obrazu systemowego), wpisujemy tu
NULL. My będziemy na razie tak właśnie robić, jako że jeszcze

nie umiemy posługiwać się zasobami Windows.

LPCTSTR lpszName

Tutaj podajemy jedną z trzech informacji:
 identyfikator zasobu, jeżeli w hInstance podaliśmy

wartość inną niż NULL
 stałą określającą obrazek systemowy, jeżeli chcemy

takowy wczytać
 nazwę pliku, skąd chcemy wczytać obrazek

Nas będzie naturalnie interesować ostatnia opcja.

UINT uType

Podajemy tu typ wczytywanego obrazka. Kiedy chcieliśmy
pobrać ikonę lub kursor, był to IMAGE_ICON lub IMAGE_CURSOR.

Teraz chcemy wczytywać bitmapy, więc wpisujemy tu
IMAGE_BITMAP.

int cxDesired
cyDesired

Gdybyśmy zajmowali się ładowaniem ikony lub kursora,
wpisalibyśmy tu jego pożądane rozmiary. Ponieważ jednak
chodzi nam o bitmapę, możemy zignorować te parametry i

wpisać w nich zera - nie są one brane pod uwagę, jeżeli uType
ma wartość IMAGE_BITMAP.

UINT fuLoad To zaś są flagi wczytywania obrazka, czyli dodatkowe opcje.

Tabela 65. Parametry funkcji LoadImage()

Jeżeli chodzi o ostatni parametr, to dozwolone są między innymi takie oto flagi:

flaga opis

LR_CREATEDIBSECTION

Zachowuje oryginalne kolory bitmapy i nie dostosowuje ich do
głębi kolorów ekranu. Tę flagę trzeba podać, jeżeli chcemy
wczytać bitmapę z zapisanym kanałem alfa (z 32-bitowym

formatem koloru).

LR_MONOCHROME Redukuje liczbę kolorów bitmapy do monochromatyczności, czyli
czerni i bieli.

LR_LOADFROMFILE Flaga ta określa, iż chcemy wczytać bitmapę z pliku.

Tabela 66. Flagi bitowe funkcji LoadImage()

Nas najbardziej interesuje LR_LOADFROMFILE. Przy jej pomocy możemy bowiem bez
problemu odczytać obrazek rastrowy zapisany w pliku, a następnie używać go w
operacjach graficznych. LoadImage() obsługuje formaty BMP oraz DIB.
Przykładowe użycie tej funkcji może być następujące:

HBITMAP hbmpBitmapa = (HBITMAP) LoadImage(NULL, "obrazek.bmp", 0, 0,
 LR_LOADFROMFILE);

Rzutowanie na HBITMAP jest tu konieczne, bo LoadImage() ogólny uchwyt typu HANDLE.
Jest on dla uchwytów tym, czy void* dla wskaźników. Musimy zatem zastosować
konwersję, aby przypisać wartość do zmiennej hbmpBitmapa.

Windows API 566

Nazwa pliku, jaką podajemy do funkcji LoadImage(), jest relatywna do katalogu
programu. Najlepiej więc wpisywać pełną ścieżkę do pliku graficznego.

W taki oto sposób stajemy się posiadaczami uchwytu do obiektu bitmapy wczytanej z
pliku na dysku.

Dopasowanie do kontekstu

Czasem warto jest zacząć od zera. Jeżeli nie chcemy opierać się na istniejącym pliku
graficznym przy tworzeniu obiektu bitmapy, to oczywiście nie musimy tego robić.
Powinniśmy jednak wiedzieć, z jakim kontekstem urządzenia ma współpracować nasza, z
początku pusta, bitmapa. Dzięki temu będziemy mogli ją w przyszlości podpiąć pod ten
lub kompatybilny z nim kontekst lub chociażby mieć pewność zgodności kolorów przy
wyświetlaniu bitmapy w tym kontekście.

Kiedy już wiemy, gdzie będziemy pracować, pozostaje nam wywołać funkcję
CreateCompatibleBitmap():

HBITMAP CreateCompatibleBitmap(HDC hdc,
 int nWidth,
 int nHeight);

Podajemy jej uchwyt kontekstu urządzenia, który ma być kompatybilny z tworzoną
bitmapą. Musimy tutaj koniecznie pamiętać, aby był to kontekst inny niż pamięciowy.
Najlepiej niech to będzie taki kontekst, w którym chcielibyśmy tak stworzoną bitmapę
wyświetlić - a więc związany np. z ekranem lub obszarem klienta okna.
Oprócz tego dostarczamy też wymiary nowej bitmapy.

Tak utworzona bitmapa jest pusta, więc wydaje się to mało przydatne rozwiązanie.
Jednak, jak się niedługo przekonamy, możliwe jest rysowanie po takiej bitmapie przy
użyciu pamięciowego kontekstu urządzenia. Zatem nie jest to wcale takie nieużyteczne,
jakby się mogło wydawać.

Dowolny format

Dla porządku podam jeszcze prototyp funkcji CreateBitmap():

HBITMAP CreateBitmap(int nWidth,
 int nHeight,
 UINT cPlanes,
 UINT cBitsPerPel,
 CONST VOID* lpvBits);

Funkcja ta służy do stworzenia bitmapy od podstaw, tj. z podaniem jej wszystkich
parametrów. Oto i one:

typ parametry opis

int nWidth
nHeight Wpisujemy tu wymiary bitmapy w pikselach.

cPlanes

Ten parametr to liczba tzw. płatów koloru (ang. color
planes). Wartość ta wywodzi z zamierzchłych czasów kart
graficznych w rodzaju EGA i została zachowana wyłacznie

celem kompatybilności wstecz. Obecnie wpisujemy tu
zawsze 1.

UINT

cBitsPerPel
Głębia koloru, czyli ilość bitów przypadających na jeden
piksel. Zwykle jest to 8, 16 lub 24. Można też wpisać 32 -

wówczas będziemy mieli bitmapę z miejscem na kanał alfa.

CONST VOID* lpvBits Można tu podać zawartość bitmapy w postaci ciągu
bitów. Ciąg ten powinien zawierać reprezentacje kolejnych

Windows GDI 567

typ parametry opis
pikseli bitmapy, poczynając od jej lewego górnego rogu i

posuwając się rzędami.
Jeżeli nie chcemy inicjować nowej bitmapy żadną

zawartością, wtedy w tym parametrze należy wpisać
wartość NULL.

Tabela 67. Parametry funkcji CreateBitmap()

CreateBitmap() używamy zwykle wtedy, gdy chcemy utworzyć obiekt bitmapy mając już
jej pamięciową reprezentację w postaci tablicy. Taka tablica może np. poprzez własny
algorytm wczytujący (ang. loader) obrazek w jakimś szczególnym formacie pliku.
Inne przypadki korzystania z tej funkcji co raczej rzadkie.

Pamięciowy kontekst urządzenia
Wczytanie bitmapy to dopiero pierwszy krok do jej wykorzystania. Tak naprawdę aby
zrobić z nią cokolwiek konkretnego, musimy ją związać z kontekstem urządzenia.

Ale co to znaczy - związać bitmapę z kontekstem urządzenia? Przecież obrazek to nie jest
pióro ani pędzel, w jaki sposób miałby on pomagać w rysowaniu, którym zajmuje się
kontekst?…
A jednak pomaga on, a właściwie to je nawet umożliwia. Żeby to zrozumieć musimy
sobie uświadomić, że to, na czym rysujemy poprzez kontekst urzadzenia, to tak
naprawdę nic innego jak właśnie bitmapa. Ekran jest jedną wielką bitmapą, podobnie
jak wszystkie jego części (np. okno), od których możemy uzyskać konteksty urządzeń.
Bitmapę związaną z kontekstem urządzenia nazywamy płótnem (ang. canvas).

Powiązanie bitmapy z kontekstem urządzenia jest więc zamianą płótna. To trochę tak,
jakbyśmy zdjęli jeden obraz ze sztalugi malarskiej i położyli inny, który w szczególności
może być pustym płótnem. Po zamianie wszystkie następne czynności rysunkowe będą
skutkowały malowaniem po nowej bitmapie kontekstu urządzenia.
Jednak nie wszystkim kontekstom urządzenia możemy swobodnie zabierać płótna.
Właściwie to większości z nich nie możemy tego zrobić, ponieważ bitmapy, do których się
one odnoszą, należą do systemu operacyjnego, a ten zadecydował, iż będą one na stale
przybite do swoich sztalug - kontekstów. Dzieje się tak, bo konteksty fizycznie
odpowiadają np. fragmentom ekranu monitora, a tej przynależności nie możemy zmienić
- przecież nie odbierzemy pecetowi monitora, prawda? :)

Ale jak w takim razie uzyskać niezależny kontekst urządzenia, który moglibyśmy związać
z naszą bitmapą?… Otóż musimy go sobie stworzyć i wiemy już, jak to zrobić. Środkiem
do osiągnięcia celu jest bowiem pamięciowy kontekst urządzenia (ang. memory
device context).

Aby móc wykonywać na bitmapie operacje graficzne, powinniśmy powiązać ją z
pamięciowym kontekstem urządzenia.

Powinniśmy tworzyć go dla każdej bitmapy, którą zamierzamy kopiować, wyświetlać na
ekranie czy też po której chcemy rysować. Jest to związane ze specyfiką niektórych
operacji w Windows GDI, które działają tylko w odniesieniu do kontekstów urządzeń, a
nie bitmap jako takich. Poznamy je całkiem niedługo.
Najpierw zobaczmy, jak poprawnie stworzyć pamięciowy kontekst urządzenia i podpiąć
pod niego bitmapę.

Windows API 568

Utworzenie kontekstu

Pamięciowego kontekstu urządzenia nie tworzy się od podstaw, lecz tylko przy pomocy
innego, już istniejącego kontekstu. Nowy kontekst będzie z nim kompatybilny, tzn.
możliwe będzie przeprowadzanie operacji graficznych między nim, a starym kontekstem.

Do utworzenia pamięciowego kontekstu urządzenia posługujemy się funkcją
CreateCompatibleDC():

HDC CreateCompatibleDC(HDC hdc);

Podajemy jej oczywiście uchwyt do kontekstu urządzenia, z którym nasz nowy kontekst
ma być kompatybilny. Może to być hdc pozyskany na przykład od okna czy też całego
ekranu - w tym drugim przypadku możliwe jest podanie NULL jako parametru.

Utworzenie pamięciowego kontekstu wygląda więc mniej więcej tak:

HDC hdcPamiec = CreateCompatibleDC(hdcKontekst);

Istniejący uchwyt hdcKontekst musi się odnosić do kontekstu urządzenia, które potrafi
wykonywac działania na grafice rastrowej - czyli np. do monitora.

Powiązanie bitmapy z kontekstem

Ostatnim etapem sztuki jest powiązanie naszej bitmapy (załózmy na razie, że wczytanej
z pliku) z nowostworzonym, pamięciowym kontekstem urządzenia. Jest to bardzo proste,
należy jedynie wywołać funkcję SelectObject() w znany nam doskonale sposób:

HBITMAP hbmpStaraBitmapa = (HBITMAP) SelectObject (hdcPamiec,
 hbmpBitmapa);

W zmiennej hbmpStaraBitmapa zapisujemy uchwyt do starej bitmapy - w przypadku
pamięciowego kontekstu jest to zawsze monochromatyczny obrazek o wymiarach
1×1 piksela. Zapisujemy jego uchwyt, ponieważ tak samo jak pióro czy pędzel bitmapa
nie może być pozostawiona sama sobie. Wtedy bowiem nastąpiłby wyciek pamięci.
Oczywiście możliwe jest zastosowanie innej metody postepowania z nieużywanymi
obiektami, takiej jak natychmiastowe usunięcie bitmapy (opakowanie wywołania
SelectObject() w DeleteObject()) lub skorzystanie z zapisu stanów kontekstu przez
SaveDC().

W sumie, przygotowanie bitmapy do pracy z GDI wygląda następująco:

// 1. wczytanie bitmapy
HBITMAP hbmpBitmapa = (HBITMAP) LoadImage(NULL, "bitmapa.bmp", 0, 0,
 LR_LOADFROMFILE);

// 2. stworzenie pamięciowego kontekstu urządzenia
// (tutaj będzie on kompatybilny z ekranem)
HDC hdcPamiec = CreateCompatibleDC(NULL);

// 3. wybranie wczytanej bitmapy w kontekście pamięciowym
HBITMAP hbmpStara = (HBITMAP) SelectObject(hdcPamiec, hbmpBitmapa);

Po wykonaniu tych czynności możemy stosować takie funkcje jak BitBlt() czy
StretchBlt(), aby np. wyświetlić zawartość bitmapy hbmpBitmapa wewnątrz obszaru
klienta okna. O tych funkcjach powiemy sobie wszystko w następnym paragrafie.

Muszę jeszcze wspomnieć o sytuacji, gdy naszej bitmapy nie chcemy wczytać z pliku.
Możemy mianowicie stworzyć sobie pustą bitmapę, związać ją z pamięciowym

Windows GDI 569

kontekstem urządzenia, wykonywać na niej wybrane operacje graficzne i wyświetlić
dopiero wtedy, gdy będzie już gotowa.
W takim wypadku musimy sobie stworzyć nowy obiekt bitmapy przy pomocy funkcji
CreateCompatibleBitmap(). Do funkcji tej podajemy m.in. uchwyt kontekstu
urzadzenia, z którym bitmapa będzie kompatybilna. Z tego kontekstu obrazek pobierze
ustawienia głębi kolorów, czyli ilość bitów przypadającą na jeden piksel.
Poprawne zastosowanie wspomnianej funkcji do stworzenia pustej bitmapy oraz
powiązanie jej z pamięciowym kontekstem urządzenia wygląda tak:

// (zakładamy, że w hdcKontekst mamy pewien kontekst, np. od okna)

// tworzymy kontekst pamięciowy
HDC hdcPamiec = CreateCompatibleDC(hdcKontekst);

// tworzymy pustą bitmapę dla tego kontekstu, o wymiarach 100×100
HBITMAP hbmpBitmapa = CreateCompatibleBitmap(hdcKontekst, 100, 100);

// wiążemy nową bitmapę z kontekstem pamięciowym, zachowując
// jednocześnie uchwyt do starej (czarno-biała, 1×1 piksel)
HBITMAP hbmpStara = (HBITMAP) SelectObject(hdcPamiec, hbmpBitmapa);

Koniecznie zwróćmy uwagę na linijkę tworzącą bitmapę:

HBITMAP hbmpBitmapa = CreateCompatibleBitmap(hdcKontekst, 100, 100);

Widać, że do funkcji CreateCompatibleBitmap() nie podajemy uchwytu do
kontekstu pamięciowego. Zamiast tego przekazujemy jej oryginalny kontekst
hdcKontekst, a więc ten, który posłużył nam do stworzenia pamięciowego hdcPamiec.
Dlaczego właśnie tak? Przypomnij sobie, co przed chwilą mówiłem na temat początkowej
bitmapy w kontekście pamięciowym. Jest to czarno-biały obrazek wielkości 1 piksela.
Rozmiar nie jest tu akurat ważny, ale głębia kolorów - jak najbardziej. W pierwotnej
bitmapie pamięciowego kontekstu obejmuje ona tylko dwa kolory, jest 1-bitowa. Jeżeli
więc posłużymy się tym kontekstem do utworzenia kompatybilnej bitmapy, jej głębia
kolorów będzie z tym zgodna - ergo: nowa bitmapa również będzie monochromatyczna.
Nie wydaje mi się, aby o to właśnie nam chodziło. Chcielibyśmy raczej, by nasz obrazek
mógł zawierać tyle kolorów, ile potrafi wyświetlić ekran monitora. Dlatego też do
CreateCompatibleBitmap() powinniśmy podać uchwyt kontekstu odnoszącego się do
monitora właśnie, nie zaś do kontekstu pamięciowego.
Zapamiętaj zatem, że:

Tworząc pustą bitmapę dla pamięciowego kontekstu urządzenia, do funkcji
CreateCompatibleBitmap() musisz przekazać oryginalny hdc - ten, na podstawie
którego stworzyłeś kontekst pamięciowy. W przeciwnym wypadku powstała bitmapa
będzie monochromatyczna.

Zwalnianie bitmapy
Bitmapą należy się odpowiednio zająć, gdy już nie jest nam potrzebna. Kolejność i
charakter czynności następujących w tym procesie jest w zasadzie odwrotna do tych,
jakie podejmujemy podczas przygotowywania bitmapy do pracy. Musimy więc najpierw
pozbyć się pamięciowego kontekstu urządzenia (jeżeli takowy stwarzaliśmy, zwykle tak),
a następnie usunąć też sam obiekt bitmapy.

Usuwanie kontekstu pamięciowego

Przez usunięciem kontekstu pamięciowego postępujemy podobnie, jak przez zwalnianie
każdego innego kontekstu. Przywracamy więc jego obiekty do stanu początkowego - w

Windows API 570

tym przypadku jedynym takim obiektem jest monochromatyczne płótno 1×1. Wybieramy
je w kontekście pamięciowym:

SelectObject (hdcPamiec, hbmpStara);

Naturalnie, jeżeli nie zachowaliśmy uchwytu do starej bitmapy, lecz usunęliśmy ją od
razu, nie będziemy mieli co przywracać, zatem ten etap pominiemy. Możemy od razu
przejść do usunięcia samego kontekstu.

Zwolnienie kontekstu pamięciowego jest proste i oznacza tylko wywołanie funkcji
DeleteDC():

DeleteDC (hdcPamiec);

Razem z kontekstem zostaje też usunięte jego płótno, czyli najczęściej ta mała
monochromatyczna bitmapa. Możliwe jest aczkolwiek, że ta bitmapa została usunięta już
wcześniej, przy wybieraniu dla kontekstu nowego płótna. Wtedy razem z usunięciem
pamięciowego hdc ginie też jego bitmapa. W takiej sytuacji nie jest konieczne jej
oddzielne zwalnianie, opisane w następnym punkcie.

Usuwanie obiektu bitmapy

Na sam koniec pozbywamy się właściwego obiektu bitmapy. Wywołujemy
DeleteObject(), usuwając go z pamięci:

DeleteObject (hbmpBitmapa);

Nie jest to koniecznie, jeżeli nasz bitmapa zginęła razem z kontekstem pamięciowym.
Mówiłem jednak już kilka razy, że dla przejrzystości kodu lepiej jest, aby obiekty
tworzone przez nas były też przez nas usuwane, a te pochodzące od GDI - zwalniane
przez samą bibliotekę GDI.

Posługiwanie się bitmapą
Między stworzeniem a zwolnieniem obiektu wypadałoby wykonać na nim jakieś sensowne
czynności. Tym właśnie zajmiemy się w niniejszym paragrafie: zobaczymy, cóż takiego
możemy zrobić z posiadaną bitmapą.

Wyświetlanie bitmapy
Chyba najlogiczniejszą czynnością, którą możemy wykonać przy użyciu bitmapy, jest jej
wyświetlenie. Oznacza to prezentację zawartości obrazka w wybranym kontekście
urządzenia, związanym z fizycznym urządzeniem - zwykle monitorem.
Na tej, w gruncie rzeczy prostej, czynności opiera się mnóstwo aplikacji, z grami na
czele. Pokazywanie dwuwymiarowych obrazków (tzw. sprite’ów) jest w nich bowiem
podstawowym sposobem tworzenia oprawy graficznej.

Zobaczmy więc, jak realizować to ważne zadanie w Windows GDI. Poznamy zaraz trzy
sposoby (czy może raczej tryby) prezentacji bitmapy w kontekście urządzenia
rastrowego.

Dosłowne kopiowanie

Wyświetlenie bitmapy w innym kontekście urządzenia niż pamięciowy wymaga pewnej
formy przekopiowania pikseli. Mówimy, że należy zastosować transfer bloku bitów
(ang. bit-block transfer), co oznaczamy angielskim skrótem bitblt (czytaj [bit blit])

Taką też nazwę ma funkcja Windows GDI, która wykonuje transfer - BitBlt(). Oto jej
prototyp:

Windows GDI 571

BOOL BitBlt(HDC hdcDest,
 int nXDest,
 int nYDest,
 int nWidth,
 int nHeight,
 HDC hdcSrc,
 int nXSrc,
 int nYSrc,
 DWORD dwRop);

Wydaje się może, iż to skomplikowana funkcja, ale w rzeczywistości wcale tak nie jest.
Przekazujemy jej raczej niezbędne dane - przede wszystkim uchwyty do dwóch
kontekstów urządzenia. Pierwszy z nich, hdcDest, określa cel transferu bitów; jest to ten
kontekst, w którym pojawi się wyświetlana przez nas bitmapa. Z kolei zatem drugi
uchwyt, hdcSrc, musi być źródłem kopiowanych pikseli.
Następne parametry - nWidth i nHeight - są rozmiarami kopiowanego prostokąta. Mówią
one po prostu, jak duży jest kopiowany fragment płótna. Jego wielkość jest w BitBlt()
identyczna zarówno dla kontekstu źródłowego i docelowego.
Ostatnie dwie pary parametrów są współrzędnymi lewego górnego wierzchołka
kopiowanego prostokąta. nXDest i nYDest są docelowymi koordynatami w kontekście
hdcDest, zaś nXSrc i nYSrc to współrzędne źródłowego kawałka bitmapy z kontekstu
hdcSrc.
Rolę każdego z tych parametrów najłatwiej prześledzić na rysunku:

Rysunek 25. Kopiowanie (fragmentu) bitmapy poprzez funkcję BitBlt()

Wszystko jasne? To świetnie, bo teraz będzie najcięższy orzech do zgryzienia :) Ale
spokojnie, nie będzie aż tak źle. Parametr dwRop, bo o nim mowa, nie jest wcale taki
trudny do zrozumienia.

Określa on operację rastrową przeprowadzaną podczas łączenia prostokąta źródłowego z
docelowym. Z takimi operacjami spoktaliśmy się już przy okazji piór i funkcji SetROP2().
Tutaj także mamy do wyboru kilkanaście znaczników, których działanie przedstawia
poniższa tabela. Użyto w nich trzech oznaczeń dla argumentów operacji (dlatego
nazywamy ją ternarną):

 clSrc - kolor ze źródłowego kontekstu urządzenia
 clDest - kolor z docelowego kontekstu urządzenia

Windows API 572

 clDestBrush - kolor pędzla docelowego kontekstu urządzenia

flaga operacji kolor wynikowy
BLACKNESS czarny
DSTINVERT ~clDest
MERGECOPY clSrc & clDestBrush
MERGEPAINT ~clSrc | clDest
NOTSRCCOPY ~clSrc
NOTSRCERASE ~(clSrc | clDest)
PATCOPY clDestBrush
PATINVERT clDestBrush ^ clDest
PATPAINT (clDestBrush | ~clSrc) | clDest
SRCAND clSrc & clDest
SRCCOPY clSrc
SRCERASE clSrc & ~clDest
SRCINVERT clSrc ^ clDest
SRCPAINT clSrc | clDest
WHITENESS biały

Tabela 68. Stałe ternarnych operacji rastrowych w Windows GDI

Zdecydowanie najczęściej używa się SRCCOPY, jako że zazwyczaj chodzi nam o dosłowne
przekopiowanie bitmapy z hdcSrc do hdcDest. Inne znaczniki mogą być przydatne np.
wtedy, gdy chcemy wyświetlić bitmapę z nieregularnym kształtem, którego tło ma być
przezroczyste.

Na koniec omawiania tej funkcji zobaczmy konkretny przykład jej wykorzystania - czyli
wyświetlenie bitmapy wczytanej z pliku w kontekście urządzenia:

// zakładamy, ze posiadamy kontekst hdcKontekst, np. od okna

// wczytujemy bitmapę
HBITMAP hbmpBitmapa = (HBITMAP) LoadImage(NULL, "bitmapa.bmp", 0, 0,
 LR_LOADFROMFILE);

// tworzymy dla niej kontekst pamięciowy i wiążemy ją z nim
HDC hdcPamiec = CreateCompatibleDC(hdcKontekst)
HBITMAP hbmpStara = (HBITMAP) SelectObject(hdcPamiec, hbmpBitmapa);

// pobieramy wymiary bitmapy (potrzebne do jej skopiowania);
// będą one zawarte w polach bmWidth i bmHeight poniższej struktury
BITMAP Bitmapa;
GetObject (hbmpBitmapa, sizeof(BITMAP), &Bitmapa);

// dokonujemy transferu pikseli, czyli wyświetlamy bitmapę
// w punkcie (nX, nY) kontekstu hdcKontekst
BitBlt (hdcKontekst, nX, nY, Bitmapa.bmWidth, Bitmapa.bmHeight,
 hdcPamiec, 0, 0, SRCCOPY);

// zwalniamy kontekst pamięciowy, przywracając mu wpierw starą bitmapę
SelectObject (hdcPamiec, hbmpStara);
DeleteDC (hdcPamiec);

// zwalniamy obiekt bitmapy
DeleteObject (hbmpBitmapa);

Przy okazji możesz tu zobaczyć, w jaki sposób pobiera się wymiary bitmapy o znanym
uchwycie.

Windows GDI 573

Rozciąganie obrazka

BitBlt() gwarantuje, że prostokąt wzięty z kontekstu źródłowego będzie w
niezmienionej postaci zmiksowany146 z tej samej wielkości prostokątem w kontekście
docelowym. Windows pozwala też na transfer fragmentu bitmapy z jego jednoczesnym
skalowaniem - dokonuje tego funkcja StretchBlt() (czytaj [strecz blit]):

BOOL StretchBlt(HDC hdcDest,
 int nXOriginDest,
 int nYOriginDest,
 int nWidthDest,
 int nHeightDest,
 HDC hdcSrc,
 int nXOriginSrc,
 int nYOriginSrc,
 int nWidthSrc,
 int nHeightSrc,
 DWORD dwRop);

Jej prototyp jest podobny do BitBlt(), ale posiada on dwie pary parametrów
określających wymiary kopiowanego prostokąta. nWidthSrc i nHeightSrc określają więc
jego rozmiar w kontekście źródłowym (hdcSrc), zaś nWidthDest i nHeightDest - w
kontekście docelowym (hdcDest). Pozostałe współrzędne mają takie samo znaczenie jak
w BitBlt(), tzn. określają pozycję kopiowanego i docelowego prostokąta.
W tym przypadku dobry rysunek może być nawet bardziej pomocny niż wcześniej.
Popatrz zatem na nastepujący szkic:

Rysunek 26. Kopiowanie (fragmentu) bitmapy poprzez funkcję StretchBlt()

Widzimy na nim, że bitmapa pobrana z kontekstu źródłowego ulega przeskalowaniu -
zmieniają się jej rozmiary. Nie byłoby w tym nic złego, gdyby nie to, że mamy przecież
do czynienia z obrazkami rastrowymi. Takie rysunku „nie wiedzą”, jak się zachować w
sytuacji, gdy zmieniana jest ich wielkość: mają bowiem zapisany określony zestaw
pikseli, który jest właściwie interpretowany tylko w swej oryginalnej rozdzielczości. Kiedy
chcemy zmienić rozmiary obrazka rastrowego, mogą pojawić się problemy.
Dlatego z funkcji StretchBlt() należy korzystać rozsądnie. Rzadko, jeżeli w ogóle,
powinno się zwiększać rozmiary bitmapy - zazwyczaj bowiem powoduje to powstanie
niezbyt miłej dla oka „pikselozy”. Zmniejszanie obrazka jest bezpieczniejsze, o ile
pamiętamy o zachowaniu jego oryginalnego aspektu - znaczy to, że stosunek szerokości

146 Zgodnie z podaną w dwRop operacją rastrową.

Windows API 574

do wysokości w źródłowym i docelowym prostokącie powinien być taki sam, jeżeli
chcemy otrzymać zadowalający rezultat.

Sposób, w jaki StretchBlt() zmienia rozmiary obrazów, można kontrolować funkcją
SetStretchBlitMode(). Poczytaj o niej w MSDN.

Nie mogę też nie wspomnieć o jeszcze jednej, mało przyjemnej cesze funkcji
StretchBlt(). Otóż jest ona w większości wypadków żałośnie wolna, o wiele wolniejsza
niż BitBlt(). Jest to spowodowane tym, iż skalowanie rastrowego obrazka wymaga
sporo zasobów obliczeniowych komputera - niestety, jak już mówiłem, rezultaty i tak nie
są zbyt dobre.
Oczywiście szybkość StretchBlt() nie ma zbyt wielkiego znaczenia w aplikacjach
użytkowych. Jeśli jednak chcielibyśmy przy pomocy GDI napisać jakąkolwiek grę czy
prezentację multimedialną (co jest jak najbardziej możliwe), wtedy StretchBlt() może
być głównym winowajcą niezadowalającej szybkości działania.

Chcąc zobaczyć przykład wykorzystania funkcji StretchBlt(), zerknij na program
Magnifier dołączony do kursu. Jest to ekranowa lupa, dokonująca powiększenia
wybranego kursorem fragmentu pulpitu.

Przezroczyste wyświetlanie

Zarówno BitBlt(), jak i StretchBlt() mają pewien duży mankament: obie funkcje
potrafią wyświetlać wyłącznie prostokątne fragmenty bitmap. To niewystaczające, jeżeli
chcemy prezentować obrazki o nieregularnych kształtach. Przykładowo, chcąc wyświetlić
obrazek piłki, nie otrzymamy okrągłego zestawu pikseli, lecz prostokąt obejmujący także
oryginalne tło bitmapy. Najczęściej nie pasuje ono do tła okna i wtedy zaczynają się
problemy.

Z początku radzono sobie z nimi w dość pokrętny sposób. Przygotowywano bowiem po
dwie bitmapy tego samego rozmiaru dla każdego sprite’a u nieregularnych kształtach:

 pierwszym był właściwy obrazek. Musiał on koniecznie posiadać czarne tło, gdyż w
procesie wyświetlania wszystkie czarne piksele były traktowane jako
przezroczyste

 drugą bitmapą była tzw. maska. Był to monochromatyczny zestaw pikseli: czarne
punkty znajdowały się w miejscach odpowiadających właściwemu obrazkowi (czyli
np. piłce), natomiast białymi pikselami wypełniano tło (które na właściwym
obrazku było czarne)

Mając tak spreparowany obrazek oraz jego maskę, wyświetlanie częściowo
przezroczystego kształtu odbywało się dwuetapowo:

1. Najpierw wykonywano BitBlt() dla maski obrazu, posługując się znacznikiem
SRCAND. Powodowało to zaczernienie na ekranie wszystkich pikseli, które w masce
były czarne. W miejscu, gdzie miał pojawić się sprite, powstawała „czarna dziura”.

2. Następnie przywoływano BitBlt() dla właściwego obrazu, tym razem z operacją
rastrową SRCPAINT. Wówczas czarne piksele tła obrazka nie zmieniały istniejących
pikseli na docelowym kontekście urządzenia. Interesująca nas część bitmapy
zostawała natomiast przekopiowana w miejsce „czarnej dziury”, zasłaniając ją
całkowicie.

Widać, że ten sposób jest co najmniej mocno kombinowany. Na szczęście od czasu
wydania Windows 98 nie jesteśmy zmuszeni do wykonywania takich dziwacznych
operacji. GDI wzbogaciło się bowiem o niezwykle przydatną funkcję TransparentBlt()
(czytaj [transparent blit]):

BOOL TransparentBlt(HDC hdcDest,
 int nXOriginDest,

Windows GDI 575

 int nYOriginDest,
 int nWidthDest,
 int nHeightDest,
 HDC hdcSrc,
 int nXOriginSrc,
 int nYOriginSrc,
 int nWidthSrc,
 int nHeightSrc,
 COLORREF crTransparent);

Aby z niej skorzystać, w ustawieniach linkera musisz dodać bibliotekę msimg32.lib do
listy linkowanych modułów.
W Visual Studio .NET otwórz zakładkę Solution Explorer, kliknij prawym przyciskiem
myszy na nazwę swojego projektu i wybierz Properties z menu podręcznego. Przejdź do
zakładki Linker|Input i wpisz nazwę biblioteki w polu Additional Dependencies
(oddzielając ją średnikiem od ewentualnych innych nazw).

Jej prototyp jest podobny do StretchBlt(), skąd wynika, że funkcja ta również
obsługuje skalowanie obrazka. W większości przypadków nie jest to jednak potrzebne.
O wiele ważniejszy jest tutaj ostatni parametr, crTransparent. Zastępuje on kod
operacji rastrowej, ponieważ w TransparentBlt() jest to zawsze SRCCOPY.
Nie jest to jednak dokładnie to samo kopiowanie, co w Bit/StretchBlt(). Ów ostatni
parametr pozwala nam podać kolor, który w źródłowym kontekście urządzenia będzie
traktowany jako przezroczysty. Innymi słowy, jeżeli TransparentBlt() spotka piksel
tego koloru w źródłowym prostokącie, to nie przekopiuje go - zupełnie tak, jakby był on
właśnie przezroczysty.

Oto więc mamy sposób na proste wyświetlanie obrazów o nieprostokątnych kształtach.
Wystarczy zaznaczyć w ich bitmapach piksele tła tym samym kolorem, a przy prezentacji
podać jego wartość do TransparentBlt(). Tą drogą otrzymamy na ekranie wyłącznie
pożądadny kształt sprite’a.
Możemy nawet uwolnić się od konieczności pamiętania koloru, który ma być
przezroczysty. Z dużą dozą prawdopodobieństwa można bowiem przyjąć, że tym kolorem
jest barwa pierwszego piksela bitmapy - czyli tego o współrzędnych (0, 0). Możliwe jest
wówczas napisanie prostej funkcji, dokonującej prezentacji częściowo przezroczystego
obrazu:

BOOL ShowSprite(HDC hdcDest, int nXDest, int nYDest,
 HDC hdcSprite, int nWidth, int nHeight)
{
 return TransparentBlt(hdcDest, nXDest, nYDest, nWidth, nHeight,
 hdcSprite, 0, 0, nWidth, nHeight,
 GetPixel(hdcSprite, 0, 0));
}

TransparentBlt() nie oferuje nic więcej poza wykluczeniem jednego koloru z
kopiowania. Jest to zwykle wystarczające, choć nie zawsze. Chcąc uzyskać bardziej
wyrafinowane efekty, musimy sięgnąć po inne środki…

Ciekawostka: łączenie alfa

Generalnie Windows GDI jest przygotowana do pracy z bitmapami o 24-bitowym
formacie koloru. Biblioteka posiada jednak ograniczone wsparcie dla kanału alfa w postaci
np. funkcji AlphaBlend(). Oprócz tego GDI potrafi też wczytywać bitmapy z 32-bitowym
formatem pikseli - czyni to funkcja LoadImage(), której podamy flagę
LR_CREATEDIBSECTION. Ewentualnie można się też posłużyć funkcją CreateBitmap(),
jeżeli napisaliśmy własny loader bitmap z zachowanym kanałem alfa - wtedy w

Windows API 576

parametrze cBitsPerPel należy podać wartość 32, a w lpvBits wskaźnik do odczytanej
samodzielnie tablicy bitów.

Zajmijmy się jednak samą kwestią wyświetlania bitmap z kanałem alfa. W GDI istnieje
przeznaczona do tego funkcja AlphaBlend(). Ma ona prototyp podobny w swej postaci
do znanej z operacji na bitmapach 24-bitowych funkcji TransparentBlt() - jest ona
bowiem jakby lepszą wersją tej funkcji. Oto i jej deklaracja:

BOOL AlphaBlend(HDC hdcDest,
 int nXOriginDest,
 int nYOriginDest,
 int nWidthDest,
 int nHeightDest,
 HDC hdcSrc,
 int nXOriginSrc,
 int nYOriginSrc,
 int nWidthSrc,
 int nHeightSrc,
 BLENDFUNCTION blendFunction);

Również podajemy tutaj pozycję i wymiary źródłowego i docelowego prostokąta. Wynika
stąd, że AlphaBlend() obsługuje także skalowanie kopiowanego obrazka w docelowym
kontekście urządzenia.
Oprócz znanych parametrów mamy jeszcze jeden, będą strukturą typu BLENDFUNCTION:

struct BLENDFUNCTION
{
 BYTE BlendOp;
 BYTE BlendFlags;
 BYTE SourceConstantAlpha;
 BYTE AlphaFormat;
};

Mimo że widzimy tu cztery pola, swoboda wypełniania tej struktury jest praktycznie
żadna, jako że trzy z nich muszą mieć jedynie słuszne wartości domyślne, a czwarte
(SourceConstantAlpha) daje sensowny efekt alpha blendingu pikseli też tylko przy
jednej określonej wartości.
Wszystkie te poprawne wartości przedstawia tabela:

pole wartość
BlendOp AC_SRC_OVER

BlendFlags 0
SourceConstantAlpha 255

AlphaFormat AC_SRC_ALPHA

Tabela 69. Właściwe wartości pól struktury BLENDFUNCTION

Poprawne wywołanie funkcji AlphaBlend() wygląda więc na przykład tak:

const BLENDFUNCTION BF = { AC_SRC_OVER, 0, 255, AC_SRC_ALPHA };
AlphaBlend (hdcEkran, 0, 0, 100, 100,
 hdcPamiec, 0, 0, 100, 100, BF);

Niestety, efekty zastosowania tej funkcji nie są zwykle zadowolające - wynikowy obrazek
ma zazwyczaj zbyt duży kontrast. Procedura używa bowiem do blendingu tradycyjnego
wzoru:

i i () i1s dC C Cα α= ⋅ + −

Windows GDI 577

gdzie α to oczywiście wartość kanału alfa obrazka źródłowego, a iC , i sC i i dC to kolory:
wynikowy, źródłowy oraz istniejący na obrazku docelowym. Wszystkie kanały RGB oraz
alfa muszą tu być znormalizowane, tzn. mieścić się w przedziale wartości od 0 do 1.

Chcąc znormalizować bajtową reprezentację koloru, powinniśmy wartość każdego
kanału podzielić zmiennoprzecinkowo przez 255.

Jak widać, równanie interpoluje kolory w sposób liniowy, więc efekty mogą być nieco
„poszarpane”. Dlatego też lepiej użyć przybliżenia kwadratowego:

i i () i2 2
1s dC C Cα α= ⋅ + − ⋅ .

Jeżeli zaś chcemy zastosować taki blending w praktyce, to piszemy np. taką funkcję:

// makro wyłuskujące wartość kanału alfa z piksela ARGB
#define GetAValue(argb) (BYTE)((argb) >> 24)

// struktura zawierająca znormalizowane wartości ARGB
struct ARGB { float a, r, g, b; };

// --- funkcja wykonująca łączenie alfa z interpolacją kwadratową --------

void AlphaBlending(HDC hdcSrc, POINT ptSrc,
 HDC hdcDest, POINT ptDest, SIZE cSize)
{
 COLORREF clSrc, clDest, clResult;
 ARGB argbSrc, argbDest, argbResult = { 255, 0, 0, 0 };

 // kopiujemy piksel po pikselu
 for (unsigned i = 0; i <= cSize.cx; ++i)
 for (unsigned j = 0; j <= cSize.cy; ++j)
 {
 /* pobieramy kolory i normalizujemy je */

 // obrazek źródłowy
 clSrc = GetPixel(hdcSrc, ptSrc.x + i, ptSrc.y + j);
 argbSrc.a = GetAValue(clSrc) / 255.0f;
 argbSrc.r = GetRValue(clSrc) / 255.0f;
 argbSrc.g = GetGValue(clSrc) / 255.0f;
 argbSrc.b = GetBValue(clSrc) / 255.0f;

 // obrazek docelowy
 clDest = GetPixel(hdcDest, ptDest.x + i, ptDest.y + j);
 argbDest.a = GetAValue(clDest) / 255.0f;
 argbDest.r = GetRValue(clDest) / 255.0f;
 argbDest.g = GetGValue(clDest) / 255.0f;
 argbDest.b = GetBValue(clDest) / 255.0f;

 /* wyliczamy kolor wynikowy */

 // kanał czerwony
 argbResult.r = sqrtf(argbSrc.a * argbSrc.r * argbSrc.r
 + (1 - argbSrc.a)
 * argbDest.r * argbDest.r);

 // kanał zielony

Windows API 578

 argbResult.g = sqrtf(argbSrc.a * argbSrc.g * argbSrc.g
 + (1 - argbSrc.a)
 * argbDest.g * argbDest.g);

 // kanał czerwony
 argbResult.b = sqrtf(argbSrc.a * argbSrc.b * argbSrc.b
 + (1 - argbSrc.a)
 * argbDest.b * argbDest.b);

 // przeliczamy na format 0..255
 clResult = RGB(argbResult.r * 255,
 argbResult.g * 255,
 argbResult.b * 255);

 /* ustawiamy kolor piksela w obrazku docelowym */
 SetPixelV (hdcDest, clResult);
 }
}

Ponieważ jednak są to działania na pojedynczych pikselach, nie należy oczekiwać wielkiej
szybkości. Zawsze efektywniejsze będą sprzetowe wspomagania łączenia alfa w
nowoczesnych kartach graficznych, których jednak nie obsługuje GDI. Aby stosować
wydajny alpha blending, trzeba użyć lepszej biblioteki graficznej, jak np. DirectX.

Rysowanie po bitmapie
Prezentacja gotowej bitmapy nie jest jedyną czynnością, jaką możemy wykonać na
obrazie rastrowym w Windows GDI. Zupełnie poprawne jest przecież zwyczajne
rysowanie po powierzchni tejże bitmapy przy pomocy wszystkich znanych funkcji
interfejsu graficznego.

Dlaczego tak można? Przypomnijmy sobie, że podczas przygotowywania bitmapy
tworzymy dla niej osobny (pamięciowy) kontekst urządzenia. Następnie wiążemy ją z
tym kontekstem, wobec czego nasza bitmapa staje się dla niego płótnem. Zaś płótno,
jak wiemy, jest tym miejscem, gdzie wysiłki rysunkowe poczynione w kontekście
urządzenia dają widoczny skutek. Wynika stąd, że:

Rysowanie w pamięciowym kontekście urządzenia powoduje modyfikację
bitmapy, którą z nim związaliśmy.

Nie widzimy rzecz jasna bezpośrednich efektów funkcji graficznych wywoływanych dla
pamięciowego kontekstu. Jest tak, bo kontekst ten z samej nazwy nie możetego
zapewnić: jest on tylko pomocniczym tworem rezydującym w pamięci operacyjnej, nie
odnosi się do żadnego fizycznego urządzenia.
Tym niemniej potrafilibyśmy zobaczyć efekty swej pracy - wystarczy tylko skorzystać z
poznanych w poprzednim akapicie technik transferu bitów między kontekstami. Stosując
BitBlt(), StretchBlt() czy TransparentBlt() możemy zaprezentować użytkownikowi
dynamicznie wygenerowaną bitmapę w identyczny sposób, w jaki pokazujemy obrazek
wczytany z pliku i pozostawiony bez zmian. Daje to spore możliwości tworzenia
elementów grafiki w czasie działania programu, a następnie ich wielokrotnego
wykorzystywania.

Tekst
Geometria geometrią, bitmapy też są ważne, ale żadna biblioteka graficzna nie może
obyć się bez choćby prostych możliwości wyświetlania tekstu. Potencjał Windows GDI jest
w tym względzie więcej niż duży: interfejs ten pozwala nie tylko na wielorakie

Windows GDI 579

wypisywanie łańcuchów znaków, ale też na szeroko zakrojoną zmianę jego rozmiaru czy
wyglądu. Obsługuje bowiem formatowanie za pomocą czcionek (ang. fonts).

W tej sekcji przyjrzymy się obu tym kwestiom wykorzystania tekstu w GDI. Zobaczymy
więc, jak prezentować napisy w kontekście urządzenia oraz w jaki sposób pracować z
czcionkami.

Wypisywanie tekstu
Pisanie tekstu na ekranie jest czynnością tak starą, jak samo programowanie. Pierwszy
program, jaki był zaprezentowany w tym kursie, robił nic innego jak właśnie wypisywanie
tekstu przy pomocy strumienia wyjścia. Podobnie, pierwsza aplikacja dla Windows
również pokazywała nam komunikat, tyle że korzystała z funkcji WinAPI - MessageBox().
Można więc powiedzieć, że znowu zataczamy koło i wracamy do zagadnienia omówionego
już wielokrotnie. Ale są to tylko pozory: używanie std::cout czy MessageBox() nie może
się bowiem równać z mechanizmami GDI służącymi do wyświetlania tekstu. Dla nich
napis jest bowiem kolejnym prymitywem, na którym można wykonywać wszlkiego typu
operacje graficzne. Zmiana położenia, koloru czy wreszcie czcionki jest tu całkiem
naturalna, podczas gdy w stosowanych przez nas dotąd narzędziach tekstowych -
zupełnie niemożliwa.

Windows GDI pozwala zatem na znacznie bardziej elastyczne posługiwanie się tekstem.
Poznawanie możliwości biblioteki w tym zakresie musimy jednak zacząć od podstaw.
Zobaczymy najpierw, w jaki sposób wypisuje się tekst w domyślnych ustawieniach, a
dopiero potem zajmiemy się zmianą jego parametrów - z czcionką na czele.

Proste wyświetlanie
Być może pamiętasz funkcję TextOut(), której użyłem kiedyś jako przykładu podczas
omawiania odświeżania okna. Jeśli nie, nic straconego - teraz właśnie przypomnimy ją
sobie i opiszemy dokładniej.

Istnieją też funkcje: TabbedTextOut() oraz ExtTextOut(). Pierwsza z nich pozwala
wypisać tekst z uwzględnieniem pozycji zdefiniowanych tabulatorów, zaś druga potrafi
m.in. zmienić odległości między znakami napisu.

Funkcja TextOut()

Rozpoczniemy oczywiście od prototypu:

BOOL TextOut(HDC hdc,
 int nXStart,
 int nYStart,
 LPCTSTR lpString,
 int cbString);

Kolejne parametry nie powinni ci chyba sprawić kłopotu. hdc to kontekst urządzenia, w
którym zostanie wypisany wypisany tekst. Napis podajemy w parametrze lpString -
zwróć uwagę, że nie musi to być łańcuch znaków w stylu C (zakończony zerem),
ponieważ funkcja chce jeszcze jego długości (liczby znaków) w parametrze cbString.
Dlatego też jeżeli używamy łańcuchów std::string, to nie ma znaczenia, czy
skorzystamy z ich metod c_str() czy data(). W innych funkcjach WinAPI trzeba zawsze
stosować tę pierwszą.

Pozycja tekstu

Dwa pozostałe parametry, nXStart i nYStart, określają pozycję tekstu (punkt
referencyjny) w bitmapie kontekstu urządzenia. Interpretacja tych wartości może być

Windows API 580

różna; domyślnie oznaczają one współrzędne lewego górnego rogu najmniejszej obwiedni
tekstu. Można to aczkolwiek zmienić przy pomocy funkcji SetTextAlign():

UINT SetTextAlign(HDC hdc, UINT fMode);

Dopuszcza ona kilka rodzajów flag, określających odpowiednie położenie punktu
referencyjnego w stosunku do prostokąta otaczającego tekst. Jeden ich rodzaj
manipuluje tymże punktem w poziomie, drugi w pionie; trzeci rodzaj mówi jeszcze, czy
aktualna pozycja pióra ma się przesunąć w punkt referencyjny (nXStart, nYStart) po
wywołaniu TextOut(). Do funkcji możemy podać co najwyżej jedną flagę każdego
rodzaju.
Wszystkie te flagi funkcji SetTextAlign() podaje poniższa tabela (podkreśleniem
zaznaczyłem wartości domyślne):

rodzaj flag flaga znaczenie
TA_LEFT punkt referencyjny po lewej stronie tekstu
TA_CENTER punkt referencyjny na środku tekstu

pozycja pozioma
punktu referencyjnego TA_RIGHT punkt referencyjny po prawej stronie tekstu

TA_TOP punkt referencyjny na górze tekstu
TA_BASELINE punkt referencyjny na linii bazowej147 tekstu

pozycja pionowa
punktu referencyjnego TA_BOTTOM punkt referencyjny na dole tekstu

TA_UPDATECP pozycja jest brana pod uwagę i uaktualniana aktualizacja
położenia pióra TA_NOUPDATECP pozycja pióra nie jest brana pod uwagę

Tabela 70. Flagi bitowe funkcji SetAlignText()

Flaga TA_UPDATECP sprawia, że funkcja TextOut() ignoruje parametry nXStart i
nYStart, a zamiast tego wypisuje tekst w punkcie referencyjnym bieżącej pozycji pióra.
Może też jego położenie: przy TA_LEFT ustawi je po prawej stronie tekstu, a przy
TA_RIGHT - po lewej.

Przykład wykorzystania TextOut()

Funkcję TextOut() wykorzystywaliśmy już parę razy, ale nie zaszkodzi przypomnieć jej
zastosowania:

std::string strTekst = "Hello world!";

// wypisanie tekstu w lewym górnym rogu np. okna
TextOut (hdc, 0, 0, strTekst.c_str(), strTekst.length());

// pokazanie tekstu w prawym dolnym rogu ekranu
HDC hdcEkran = GetDC(NULL);
SetTextAlign (hdcEkran, TA_RIGHT | TA_BOTTOM);
TextOut (hdcEkran,
 GetSystemMetrics(SM_CXSCREEN), GetSystemMetrics(SM_CYSCREEN),
 strTekst.c_str(), strTekst.length());
ReleaseDC (NULL, hdcEkran);

Szczególnie drugi przykład jest interesujący. Użyte w nim wywołania funkcji
GetSystemMetrics() zwracają wymiary ekranu, czyli rozdzielczość monitora.

Bardziej wyrafinowany sposób
Nieco większą kontrolę nad wypisywaniem tekstu oferuje funkcja DrawText():

147 Linia bazowa jest linią, poniżej której leżą „ogonki” od liter ‘p’, ‘y’, itd. Można ją utożsamiać z pionowym
środkiem tekstu, choć trochę obniżonym.

Windows GDI 581

int DrawText(HDC hdc,
 LPCTSTR lpString,
 int nCount,
 LPRECT lpRect,
 UINT uFormat);

Od razu spostrzeżemy, że w nie ma w niej parametrów odpowiedzialnych bezpośrednio
za pozycję wypisywanego tekstu. Zamiast tego mamy prostokąt lpRect, który,
najogólniej mówiąc, otacza tekst i pozwala na jego wyrównywanie do swoich krawędzi.
Za to wyrównywanie, a także za kilka innych opcji, odpowiada parametr uFormat. Może
on przyjmować zestaw paru flag bitowych. Nie podam ich wszystkich tutaj, ale opiszę
kilka kwestii z nimi związanych.
Co do znaczenia pozostałych parametrów nie mam nic odkrywczego do powiedzenia.
lpString to tekst, który wypisujemy, nCount jest jego długością, a hdc oznacza
docelowy kontekst urządzenia.

Bardziej zaawansowana wersja tej funkcji nosi nazwę DrawTextEx(). Potrafi ona nie tylko
ustawiać tabulatory, ale też określać marginesy. Znajdźmy jeszcze parę podobnych
funkcji, a będziemy bez problemu napisać własny edytor tekstu ;-)

Wymiary prostokąta okalającego

W najprostszym przypadku możemy przyjąć, że pola left i top prostokąta lpRect
oznaczają lewy górny róg obramowania napisu. Mogłyby one być odpowiednikiem
parametrów nXStart i nYStart funkcji TextOut().

Mogłyby - ale nie do końca. DrawText() bierze bowiem pod uwagę cały podany jej
prostokąt, sprawdzając, czy tekst zmieści się w nim całkowicie. Jeżeli tak nie będzie, jego
„wystająca” część zostanie przycięta, zatem liczba faktycznie wypisanych znaków (wynik
funkcji) będzie mniejsza od długości napisu.
Możemy zmienić to domyślne zachowanie: wystarczy podać flagę DT_NOCLIP w
parametrze uFormat. Przycinanie nie będzie wówczas dokonywane, a ponadto sama
czynność rysowania tekstu przebiegnie szybciej.

Alternatywnie, możemy zapytać funkcję DrawText() o prawidłowe wymiary prostokąta.
Aby to uczynić, należy podać jej flagę DT_CALCRECT. Takie wywołanie jest odrobinę
mylące, ponieważ obecność tej flagi powoduje, że nie jest dokonywane żadne
wypisywanie tekstu. Funkcja oblicza po prostu wymiary prostokąta dla tekstu i zapisuje w
strukturze o wskaźniku lpRect.
Dopiero następne wywołanie funkcji powinno dokonać wyrysowania tekstu - w nim nie
dołączamy już flagi DT_CALCRECT do ostatniego parametru.

Wyrównanie tekstu

„A w zasadzie to po co mi ten cały prostokąt lpRect?…” Słuszna uwaga. Ów prostokąt
jest jednak bardzo przydatny w momencie, gdy chcemy wyrównać tekst do krawędzi
jakiegoś prostokątnego zakresu rysunku. Może to być chociażby prostokąt obszaru
klienta okna albo też figura narysowana przed chwilą za pomocą funkcji Rectangle().

O czymkolwiek byśmy nie mówili, wyrównanie tekstu do brzegów (lub środka) prostokąta
jest nadzwyczaj proste. Kontroluje je zbiór sześciu flag - po trzy na rozmieszczenie w
pionie i poziomie. Przedstawia je ta oto tabelka (podkreślenie oznacza flagę domyślną):

kierunek flaga wyrównanie
DT_LEFT do lewej krawędzi
DT_CENTER do poziomego środka poziomy
DT_RIGHT do prawej krawędzi

Windows API 582

kierunek flaga wyrównanie
DT_TOP do górnej krawędzi

DT_VCENTER do pionowego środka pionowy
DT_BOTTOM do dolnej krawędzi

Tabela 71. Flagi wyrównania tekstu funkcji DrawText()

Musimy aczkolwiek wiedzieć, że zastosowanie wyrównania pionowego innego niż DT_TOP
wymaga podania jeszcze flagi DT_SINGLELINE. W takim wypadku wypisywany tekst nie
może być podzielony na wiersze.

Ilustracją skutków zastosowania każdej z 9 możliwych kombinacji tych flag jest poniższy
rysunek:

Rysunek 27. Wyrównanie tekstu w prostokącie funkcji DrawText()

Można na nim łatwo zauważyć, że funkcja DrawText() potrafi wyrównywać tekst
podobnie, jak czynią to zaawansowane edytory tekstu w komórkach tabel.

Dzielenie na wiersze

Przewaga DrawText() ujawnia się także w tym, iż funkcja ta potrafi dzielić wyświetlany
tekst na wiersze. Jeżeli nie podamy jej flagi DT_SINGLELINE, to złamie ona nasz napis na
znakach powrotu karetki ('\r', kod 0x0D) oraz końca linii ('\n', kod 0x0A). Niepodanie
flagi DT_SINGLELINE wyklucza aczkolwiek użycie wyrównania w pionie innego niż DT_TOP.

DrawText() potrafi jednak więcej. Nie tylko interpretuje odpowiednio ustalone przez nas
miejsca łamania wierszy, ale też potrafi samodzielnie zająć się podziałem na linijki.
Podając jej znacznik DT_WORDBREAK sprawimy, że zostanie od podzielony tak, aby żaden
wyraz nie przekraczał prawej krawędzi prostokąta lpRect. Jezeli miałoby się tak stać,
kłopotliwe słowo zostanie w całości przeniesione do nowej linijki. Miejmy na uwadze, że
powoduje to zwykle rozrost tekstu w pionie.
Przy obecnej fladze DT_WORDBREAK nadal możemy też wstawić ręczny podział linijki:
należy wtedy użyć kombinacji dwóch wspomnianych wcześniej znaków podziału (czyli
sekwencji "\r\n").

Windows GDI 583

Nie trzeba chyba dodawać, że flagi DT_SINGLELINE i DT_WORDBREAK wzajemnie się
wykluczają i nie mogą wystąpić jednocześnie.

Ustawienia tekstu
Teraz wiemy już całkiem sporo na temat metod wypisywania tekstu i ta wiedza nam
chyba wystarczy. Zajmijmy się więc zmianą wyglądu wyświetlanych liter. Na początek
poznamy te ustawienia tekstu, które nie wymagają użycia obiektów czcionek. Jest to:
kolor tekstu, ustawienia tła oraz odstępy międzyznakowe.

Kolor

W większości aplikacji Windows posługujących się tekstem jego kolor wybieramy często
w tym samym oknie, co czionkę. W GDI kolor tekstu jest jedną kwestią zupełnie odrębną
od obiektu czcionki. Kontroluje go bowiem ustawienie kontekstu urządzenia, a te można
zmieniać poprzez funkcję SetTextColor():

COLORREF SetTextColor(HDC hdc, COLORREF crColor);

W parametrze crColor podajemy rzecz jasną nową barwę tekstu. Wpłynie ona na
wszystkie następujące dalej w kodzie wywołania funkcji TextOut(), DrawText(), itp.
Stary kolor otrzymujemy jako wynik wywołania SetTextColor().

Tło

Jeżeli próbowałeś wypisać jakiś tekst w oknie o domyślnym kolorze (COLOR_WINDOW), na
pewno zorientowałeś się, że jest on otoczony białym prostokątem. Biel jest domyślnym
kolorem tła w Windows GDI, który możemy oczywiście zmienić. Służy do tego funkcja
SetBkColor():

COLORREF SetBkColor(HDC hdc, COLORREF crColor);

Dziala ona analogicznie jak SetTextColor(). W opisanej przed chwilą wywołalibyśmy ją
zapewne w takiej formie:

SetBkColor (hdcOkno, GetSysColor(COLOR_WINDOW));

W ten sposób ustawilibyśmy kolor tła tekstu na zgodny z kolorem okien Windows - białe
tło pod napisem zniknęłoby148.

Lepiej jednak nie polegać na dopasowywaniu kolorów, szczególnie że zupełnie nie
sprawdza się przy pisaniu po niejednolitej powierzchni. W takim wypadku rozsądniejsze
jest uczynienie tła całkowicie przezroczystym. Pozwala na to funkcja SetBkMode():

int SetBkMode(HDC hdc, int iBkMode);

Możemy jej podać jedną z dwóch stałych. Domyślna OPAQUE czyni tło widocznym i
powoduje jego zamalowanie przy pomocy koloru tła. Druga możliwość to TRANSPARENT -
w tym ustawieniu tło nie jest wyświetlane i zwykle jest to bardziej pasująca nam
ewentualność.

Ustawienia tła modyfikowane przez SetBkColor() i SetBkMode() mają wpływ nie tylko
na tekst, lecz także na wypełnianie przerw pomiędzy liniami w niektórych stylach piór
oraz na tło pędzli deseniowych.

148 Do pełni szczęścia musielibyśmy jeszcze odrysowywać okno w reakcji na komunikat WM_SYSCOLORCHANGE.

Windows API 584

Odstępy między znakami

Ostatnim ustawieniem tekstu są odstępy między poszczególnymi znakami
prezentowanych napisów. Standardowo Windows GDI nie wstawia żadnego dodatkowego
odstępu, poza tym zdefiniowanym w aktualnej czcionce. Możemy to jednak zmienić za
pomocą funkcji SetTextCharacterExtra():

int SetTextCharacterExtra(HDC hdc, int nCharExtra);

Zważmy, że pomimo typu drugiego parametru (int), nadmiarowy odstęp pomiędzy
znakami może być tylko większy niż domyślne zero. Jeżeli podamy tutaj liczbę ujemną
(chcąc zapewne ścisnąć litery napisu), Windows zastosuje bezwzględną wartość
przekazanego argumentu. Dziwne, ale prawdziwe.

Czcionki
Zaawansowane opcje formatowania tekstu są związane przede wszystkim z czcionkami.
Windows GDI zawiera mnóstwo możliwości kontroli tego aspektu tekstu; zajmiemy się
nimi w tym rozdziale.

Typy czcionek
Zanim przejdziemy do praktycznego wykorzystywania różnych czcionek, powinniśmy
dokładnie wiedzieć, o czym mówimy. Odpowiedzmy więc sobie na pytanie: Czym jest
czcionka?

Czcionka (ang. font) jest elektroniczną postacią pisma, czyli zestawem obrazków
(glifów) reprezentujących poszczególne znaki.

Czcionki (zwane też krojami pisma) decydują więc o kształcie liter i cyfr, zatem w
największym stopniu wpływają na ich wygląd. Wybór odpowiedniej czcionki jest bardzo
ważny dla czytelności dokumentu czy nawet zwykłego komunikatu na ekranie.

Jezeli chodzi o podział komputerowych czcionek, to można wśród nich wyróżnić:

 czcionki zawierające zestawy znaków alfanumerycznych, wśród których mamy:
 czcionki imitujące druk, czyli naśladujące tradycyjne czcionki zecerskie.

Wśród nich możemy jeszcze rozgraniczyć:
 czcionki szeryfowe (franc. serif) - w tych krojach skrajne punkty

liter są zakończone małymi, prostopadłymi liniami -
tzw. szeryfami. W dłuższym tekście szeryfy wyznaczają bazową
linię pismę, co niektórzy uważają za ułatwienie w czytaniu.
Przykładami znanych czcionek szeryfowych są: Times New Roman,
Garamond, Courier New, Sylfaen, Batang

 czcionki bezszeryfowe (franc. sans serif) nie posiadają szeryfów.
Linie znaków kończą się w nich swobodnie.
Do najbardziej znanych czcionek tego rodzaju należą: Tahoma,
Verdana, Trebuchet, Arial

 czcionki naśladujące pismo odręczne. Litery w tych czcionkach są
wyposażone w różne „zawijasy”, imitujące naturalne pismo ręczne. Często
też występują w nich tzw. ligatury, czyli często występujące połączenia
dwóch znaków, zapisane inaczej niż dwa osobne glify (np. ‘ff’, ‘ffl’, ‘ffi’, a w
polskim ‘łł’).
Przykładami takich czcionek są: Inkburrow, Airstream, Galileo, Dymaxion Script,
Monotype Corsiva, Aristorcrat

 czcionki zawierają litery i cyfry o specjalnych, celowo wykonanych
kształtach. Mogą one naśladować litery ze znaków popularnych marek
(np. Coca Cola czy Disney) lub też być całkowici oryginalnymi dziełami

Windows GDI 585

Takimi czcionkami są np.: First Order, CNN, Pepsi, Deltafonte,
Nasalization, Walt Disney Script, Xephyr

 czcionki bez znaków alfanumerycznych, wśród których mamy:
 czcionki zawierające różne, często używane symbole, jak choćby litery

greckie czy symbole matematyczne.
Najbardziej znaną czcionką tego typu jest Symbol (Σψµβολ)

 czcionki, które posiadają zbiór różnych obrazków, używanych najczęściej w
celach zdobniczych.
Do najpopularniejszych czcionek z tej grupy należą trzy kroje Wingdings
(, :05JG05JV �, :LQJGLQJV �) oraz Webdings
()

Powyższy podział jest w wielu miejscach tożsamy z powszechnym terminem rodziny
czcionki (ang. font family).

Z punktu widzenia intensywnego użytkownika czcionek ważny jest jednak inny podział,
związany z podatnością znaków na skalowanie. Chodzi tu o wyróżnienie krojów
proporcjonalnych i nieproporcjonalnych.

Proporcjonalne

Czcionki proporcjonalne charakteryzują się tym, że ich znaki są opisane jako rysunki
wektorowe. Nie zawierają więc map bitowych dla poszczególnych glifów, lecz figury
geometryczne i równania matematyczne, które je definiują.

Zalety takiego podejścia wydają się oczywiste: podobnie jak grafika wektorowa, czcionki
proporcjonalne mogą być skalowane do dowolnych rozmiarów bez widocznej utraty
jakości. Bez problemy można nimi pisać tekst zarówno w rozmiarze 10, jak i 72 punktów.
Co więcej, wyglądają one identycznie w wydruku mozaikowym, jak i na ekranie monitora.

Wśród czcionek proporcjonalnych najpopularniejsze są czcionki TrueType (opisywane
krzywami Béziera) oraz Type 1.

Pewnym rodzajem fontów proporcjonalnych są czcionki kreskowe (ang. stroke fonts). Ich
znaki składają się wyłącznie z linii prostych, poprawdzonych między skończoną liczbą
punktów. Takie czcionki teoretycznie moga być także skalowane do dowolnych
rozmiarów, jednak przy małych wielkościach ich czytelność jest niewielka, a przy
większych widać „kanciatość” krawędzi znaków.
Czcionki kreskowe są używane głównie przez drukarki wektorowe, tj. plotery.

Nieproporcjonalne

Historycznie pierwszym rodzajem czcionek są fonty nieproporcjonalne. Stanowiły one
zestawy kilkudziesięciu małych bitmap (stąd inna nazwa - czcionki bitmapowe),
odpowiadających danemu stylowi pisma i jego wielkości. Takie czcionki występowały
często w wielu kopiach, gdyż musiały zapewniać oddzielne glify dla każdego rozmiaru
znaków.
Można oczywiście uzyskać wielkości liter nieuwzględnione przez twórcę czcionki rastrowej
(kolejna nazwa tych fontów :D), ale będzie to operacja rozciągania bitmapy, co jak
wiemy, zwykle nie daje zadowalających rezultatów. Dlatego też czcionki
nieproporcjonalne wychodzą z użycia, znajdując wykorzystanie chyba tylko w konsolach
tekstowych.

Praca z czcionkami GDI
W Windows GDI czcionkami posługujemy się dokładnie tak, jak piórami czy pędzlami.
Najpierw więc tworzymy obiekt czcionki, wybieramy go w kontekście urządzenia,
wykonujemy działania graficzne (tutaj: wypisywanie tekstu), a następnie zwalniamy
obiekt.

Windows API 586

Obiektom czcionek odpowiadają uchwyty typu HFONT.

W tym akapicie przyjrzymy się każdej z tych czynności, koncentrując największą uwagę
na tworzeniu fontu.

Tworzenie obiektu czcionki

Utworzenie obiektu czcionki (tzw. czcionki logicznej, ang. logical font) zajmie nam
raczej dużo miejsca. Będzie tak choćby ze względu na prototyp funkcji CreateFont(),
która służy do wykonania tego zadania:

HFONT CreateFont(int nHeight,
 int nWidth,
 int nEscapement,
 int nOrientation,
 int fnWeight,
 DWORD fdwItalic,
 DWORD fdwUnderline,
 DWORD fdwStrikeOut,
 DWORD fdwCharset,
 DWORD fdwOutputPrecision,
 DWORD fdwClipPrecision,
 DWORD fdwQuality,
 DWORD fdwPitchAndFamily,
 LPCTSTR lpszFace);

Możesz przecierać oczy, możesz wyglądać za okno, możesz się uszczypnąć lub zrobić
cokolwiek innego, ale ten prototyp nie zniknie, bo on wcale nie jest sennym
koszmarem :D Naprawdę funkcja ta ma aż czternaście parametrów - to prawdopodobnie
jedna z rekordzistek w Windows API pod tym względem.

Cóż więc począć z taką gigantyczną funkcją?… Mogę cię tylko pocieszyć tym, iż
zdecydowana większość parametrów da się ustawić na sensowne wartości domyślne,
prawidłowe w większości przypadków. W praktyce więc najlepiej będzie opakować
funkcję CreateFont() w coś bardziej dla nas przyjaznego: własną funkcję czy nawet
klasę.
Abyś jednak mógł to uczynić, powinieneś przynajmniej spojrzeć na znaczenie wszystkich
parametrów oryginalnej funkcji. W tym przypadku stosowana tabelka będzie wyjątkowo
pomocna:

typ parametry opis

int nHeight

Podajemy tu wysokość znaków w tworzonej czcionce
logicznej. Miara ta nie jest jednak wyrażona w
punktach typograficznych, ale w jednostkach

logicznych - przy najczęstszym trybie mapowania
MM_TEXT oznacza to wysokość w pikselach.

nHeight jest liczbą typu int, ponieważ może być

zarówno dodatnią, jak i ujemną wartością:
 wartość dodatnia oznacza, że podajemy

wysokość tzw. komórki znaku (ang. character
cell); jest to prostokąt, w którym twórca

czcionki zmiecił wszystkie znaki kroju
 wartość ujemna wskazuje, że bezwzględna
liczba oznacza wysokość rzeczywistego znaku,
zwykle mniejszą niż wysokość jego komórki
 zero oznacza przyjęcie przez Windows

Windows GDI 587

typ parametry opis
domyślnej wysokości czcionki

Ponieważ wielkość w jednotkach logicznych czy nawet

w pikselach nie jest czasami tym, o co nam chodzi przy
używaniu czcionki, cytuję za MSDN formułę

pozwalającą przeliczać żądaną wysokość znaku w
punktach na piksele (wymagany tryb mapowania

MM_TEXT):

nHeight = -MulDiv(nPunkty,
GetDeviceCaps(hdc, LOGPIXELSY), 72);

Zauważmy jednak, że jeśli chcemy posługiwać fontem
w celach bardziej graficznych, wtedy wysokość podana

w pikselach nie jest wcale złym rozwiązaniem.

int nWidth

Możemy tutaj podać przeciętną szerokość znaków
tworzonego stylu pisma. W większości przypadków nie

należy tutaj zdawać się na własną intuicję lub
przypadek, ponieważ źle dobrana wartość zaburza

aspekt znaków (chyba że jest to celowe).
Dlatego też najlepiej wpisać tu 0, zostawiając kwestię

szerokości znaków samemu systemowi GDI.

int nEscapement

nEscapement określa kąt nachylenia między bazową
linią pisma a dodatnią osią X. Podajemy go, uwaga,
w dziesiątych częściach stopnia (!) - oznacza to np., iż

wartość 900 spowoduje pisanie tekstu w kierunku
pionowym w górę.

int nOrientation

nOrientation jest podobny do poprzedniego
parametru z tym, że określa kąt nachylenia

poszczególnych znaków. Używa przy tym tej samej
miary, czyli 1/10 stopnia.

W kompatybilnym trybie grafiki (czyli zdecydowanie
najczęściej, bo domyślnie) wartości nEscapement i

nOrientation powinny być równe.

Zwykle zarówno w nEscapement, jak i w nOrientation
podajemy 0, co oznacza pisanie tekstu w poziomie.

int fnWeight

W tym parametrze podajemy pogrubienie czcionki.
Dozwolone są tu wartości od 0 do 1000, przy czym

większe liczby oznaczają grubsze pismo.

Najczęściej stosuje się tu jednak wartość 400 (lub stałe
FW_NORMAL/FW_REGULAR), oznaczającą normalną

czcionkę, lub 700 (względnie FW_BOLD), odpowiadającej
zwykłemu pogrubieniu. Powód jest prosty: w

przypadku czcionek TrueType pogrubienie nie może być
aplikowane dowolnie, gdyż każdy jego stopień wymaga
dodatkowego fontu. Zatem podawanie wartości innych

niż 400 lub 700 będzie zaokrąglane do najbliższych
możliwych do zrealizowania.

Podanie zera powoduje stworzenia czcionki o normalnej

grubości pisma.

Windows API 588

typ parametry opis

DWORD
fdwItalic

fdwUnderline
fdwStrikeOut

Oto są trzy wartości BOOLowskie, określające
dodatkowe efekty dla czcionki. Jest to odpowiednio:
kursywa (italik), podkreślenie i przekreślenie. Podanie

w tych parametrach TRUE powoduje zastosowanie
efektu, FALSE da przeciwny efekt.

DWORD fdwCharset

Definiuje zestaw znaków (ang. charset), z jakiego
chcemy korzystać. Najczęściej wykorzystywanymi

wartościami są tu:
 ANSI_CHARSET - oryginalny zestaw znaków ANSI

 OEM_CHARSET - zestaw zależny od systemu
operacyjnego

 SYMBOL_CHARSET - zestaw symboli
 DEFAULT_CHARSET - domyślny zestaw znaków,

zwykle ANSI

Chcąc używać polskich liter diakrytycznych, należy
skorzystać z zestawu EASTEUROPE_CHARSET.

DWORD fdwOutputPrecision

Ten parametr określa, jak bardzo serio funkcja
CreateFont() ma traktować podane jej w nHeight,

nWidth, nEscapement, nOrientation oraz
fdwPitchAndFamily dane. Wiadomo, że ścisłe

dopasowanie się do tych parametrów może albo być
niemożliwe, albo powodować duże zniekształcenia

wyglądu znaków.

W praktyce ten parametr określa, czy chcemy
korzystać z czcionek TrueType, czy też nie. Ponieważ
trudno nie chcieć z nich korzystać, więc w tym polu

wpisuje się zwykle OUT_TT_PRECIS.

DWORD fdwClipPrecision

Tutaj podajemy funkcji, w jaki sposób tworzona
czcionka ma ulegać przycinaniu (np. w funkcji

DrawText()). Zwykle nie ma to szczególnego znaczenie
i dletego stosujemy tutaj stałą CLIP_DEFAULT_PRECIS.

DWORD fdwQuality

fdwQuality specyfikuje pożądaną jakość czcionki.
Można tutaj określić, czy na przykład chcemy

skorzystać z mechanizmu wygładzania krawędzi
(ang. antialiasing) - wtedy podajemy stałą

ANTIALIASED_QUALITY.

To pole ma również znaczenie przy możliwym
skalowaniu czcionek rastrowych. Podając tu
DRAFT_QUALITY pozwalamy na tę operację, co

aczkolwiek nie musi wyglądać zbyt dobrze.
PROOF_QUALITY zapobiega takiemu skalowaniu, więc
tekst pisany fontem bitmapowym może być mniejszy

niż zalłożony.

Ponieważ jednak obecnie mamy do czynienia głównie z
czcionkami TrueType, parametr ten nie ma zbyt
wielkiego znaczenia. Zazwyczaj podajemy w nim
DEFAULT_QUALITY. Wartość leży w połowie drogi

między ścisłym dopasowywaniem się do parametrów
funkcji (DRAFT_QUALITY), a w miarę dobrym wyglądem

tekstu (PROOF_QUALITY) przu użyciu czcionek

Windows GDI 589

typ parametry opis
rastrowych. Dla fontów proporcjonalnych wartość w
fdwQuality zdaje się w ogóle nie mieć żadnego

znaczenia.

DWORD fdwPitchAndFamily

To pole to modelowy przykład oszczędności w
przekazywaniu informacji… a może tylko rozpaczliwa

próba uczynienia prototypu funkcji CreateFont()
mniej odstręczającym?…

Niezależnie od tego, jak jest naprawdę, pole
fdwPitchAndFamily stało się zbiorem dwóch

informacji. Łączymy je za pomocą alternatywy bitowej,
czyli operatora |.

Pierwszą daną jest tzw. skok (ang. pitch) czcionki.
Określa on, czy szerokość znaków czcionki jest stała

(FIXED_PITCH) - jak to jest np. w foncie Courier New -
czy też zmienna (VARIABLE_PITCH) - w większości
czcionek. Najczęściej stosujemy tu trzecią wartość

DEFAULT_PITCH, co oznacza słuszny brak
zainteresowania tym problemem.

Druga wartość precyzuje rodzinę czcionki (ang. font
family). Rozsądną domyślną wartością, z jakiej zwykle

korzystamy, jest tu FF_DONTCARE.

LPCTSTR lpszFace

Dopiero na ostatku mamy ten parametr, który
wydawałby się najważniejszy. W lpszFace podajemy

bowiem nazwę czcionki, której logiczny obiekt
chcemy stworzyć.

Możliwe jest jednak pominięcie tego parametru i

podanie w nim NULL. CreateFont() wykorzysta wtedy
wartości nadane pozostałym parametrom i wykorzysta

pierwszą napotkaną w systemie czcionkę, która im
odpowiada.

Tabela 72. Parametry funkcji CreateFont()

Wyjaśnienie ostatniego parametru funkcji - lpszFace - tłumaczy ogólną ilość parametrów
CreateFont(). Większość z nich jest bowiem przygotowana na okoliczność nieobecności
w systemie czcionki o nazwie podanej na końcu. W takiej sytuacji dokonana zostanie
próba wybrania alternatywnego fontu, najbardziej pasującego do pokaźnej liczby danych
przekazanych funkcji.
Takie zachowanie rzadko jest pożądane, bowiem nawet najlepsze dopasowanie wykonane
przez komputer nie będzie równało się z oceną estetyczną dokonaną przez grafiką czy
choćby programistę. Dlatego też lepiej jest zadbać o to, aby CreateFont() na pewno
znalazła czcionkę, której nazwę podajemy jej w lpszFace. Można to uczynić dwojako:

 korzystając tylko z tych krojów pisma, które są standardowo dostępne w
Windows. Mamy wtedy gwarancję, że na każdym systemie użytkownika będą one
obecne.
Do standardowych fontów należą: Arial, Courier New, Times New Roman
(wszystkie z wariantami Bold i Italic), Symbol, Fixedsys, System, Terminal,
Courier, MS Serif, MS Sans Serif i Small Fonts. Tylko pierwsze cztery są
czcionkami TrueType

 dołączając do programu każdą użytą, niestandardową czcionkę i dbając o to, aby
trafiła ona do katalogu Fonts w Windows. Zwykle oznacza to konieczność
zapewnienia aplikacji programu instalacyjnego

Windows API 590

Niezależnie od tego, który sposób wybierzemy, możemy zignorować znaczenie większości
parametrów CreateFont(). A ponieważ twórcy Windows API wykazali się zdolnościami
profetycznymi i przewidzieli, że tak postapimy, przygotowali dla nas ułatwienie.
Tym udogodnieniem jest funkcja CreateFontIndirect() i struktura LOGFONT, na którą
wskaźnik jako jedyny parametr przyjmuje owa funkcja. Pola struktury odpowiadają
natomiast parametrom CreateFont(). W połączeniu z faktem, że większość
wspomnianych wartości domyślnych dla parametrów wyraża się zerami, otrzymujemy
prosty sposób tworzenia czcionek. Wystarczy bowiem:

 zadeklarować i wyzerować (ZeroMemory()) strukturę typu LOGFONT
 wypełnić tych kilka pól, które nas interesują
 wywołać funkcję CreateFontIndirect(), podając jej adres struktury

Opierając się na tym, możemy łatwo napisać prostszą wersję funkcji do tworzenia
logicznych fontów:

HFONT CreateLogFont(HDC hdcKontekst,
 const std::string& strNazwa, unsigned uWysPunkty,
 bool bPogrubienie = false,
 bool bKursywa = false,
 bool bPodkreslenie = false,
 bool bPrzekreslenie = false)
{
 if (strNazwa.empty() || strNazwa.size() > 31 || uWysPunkty == 0)
 return NULL;

 /* tworzymy czcionkę */

 // deklarujemy i zerujemy strukturę LOGFONT
 LOGFONT Font;
 ZeroMemory (&Font, sizeof(LOGFONT));

 // wypełniamy strukturę LOGFONT
 CopyMemory (Font.lfFaceName, strNazwa.c_str(), strNazwa.size() + 1);
 Font.lfCharSet = DEFAULT_CHARSET;
 Font.lfHeight = -MulDiv(uWysPunkty,
 GetDeviceCaps(hdcKontekst, LOGPIXELSY), 72);
 Font.lfWeight = (bPogrubienie ? FW_BOLD : FW_NORMAL);
 Font.lfItalic = bKursywa;
 Font.lfUnderline = bPodkreslenie;
 Font.lfStrikeOut = bPrzekreslenie;

 // wywołujemy funkcję CreateFontIndirect()
 return CreateFontIndirect(&Font);
}

Patrząc na jej prototyp stwierdzimy, że obsługuje ona tylko podstawowe efekty tekstowe.
Są one jednak w wielu przypadkach wystarczające. Chcąc osiągnąć bardziej
skomplikowane ustawienia, musimy sami pobawić się z funkcją
CreateFont[Indirect]().

Wybieranie czcionki dla kontekstu urządzenia

Przy wiązaniu gotowej czcionki logicznej z kontekstem urządzenia powtarza się ten sam
schemat, który przerabialiśmy już dla piór, pędzli i płócien.

Wybieramy więc font w kontekście urządzenia, zachowując jednocześnie starą czcionkę:

HFONT hfntVerdana = CreateLogFont(hdcKontekst, "Verdana", 10);

Windows GDI 591

HFONT hfntStara = (HFONT) SelectObject(hdcKontekst, hfntVerdana);

Wszelkie inne sposoby - vide usunięcie poprzedniej czcionki lub zachowanie stanu
kontekstu - są naturalnie również poprawne.

Zwalnianie obiektu czcionki

Zwalnianie czcionki po użyciu nie przynosi żadnych niespodzianek. Ponownie musimy
zatroszczyć się o to, aby zarówno nasza, jak i oryginalna czcionka kontekstu została
usunięta podczas zwalniania kontekstu urządzenia.

Muszę tu wyjaśnić możliwe nieporozumienie. Otóż „usuwanie czcionki”, o jakim mówi ten
punkt, nie ma nic wspólnego z fizyczną eksterminacją pliku .ttf lub .fon, gdzie fizyczne
czcionki rezydują na dysku. Usunięcie czcionki jest tu tylko usunięciem jej reprezentacji
w postaci obiektu Windows GDI - rzeczywisty krój pisma pozostaje nienaruszony.
Podobna uwaga może też dotyczyć bitmap GDI.

Kod usuwający czcionkę stworzoną i wybraną w poprzednim punkcie może więc wyglądać
tak:

SelectObject (hdcKontekst, hfntStara);
DeleteObject (hfntVerdana);

Jeżeli po nim nastąpi usunięcie kontekstu, to oczywiście czcionka z uchwytem w
hfntStara także zostanie zwolniona.

Przypomnieniem tej wielokrotnie przypominanej drogi zakończymy ten obszerny
podrozdział. Omówiłem w nim wszystkie podstawowe prymitywy Windows GDI, których
możesz użyć do prezentacji wszelkiego rodzaju grafiki w systemie Windows. Zajęliśmy się
więc figurami geometrycznymi, bitmapami rastrowymi oraz tekstem i czcionkami.

Na prymitywach nie kończy się wszakże biblioteka GDI. Większość z pozostałych jej
możliwości nie jest jednak na tyle ważna i interesujące, by poświęcać im miejsce w tym
kursie - który nie jest, bądź co bądź, kursem samego tylko Windows API czy GDI.
Istnieje aczkolwiek jeden mechanizm wart bliższego poznania - to regiony. Przybliżymy
je sobie w następnym podrozdziale.

Regiony i przycinanie
Regiony są elementem GDI kontrolującym obszar rysowania oraz umożliwiającym
wykonywanie niektórych operacji graficznych.

Region jest zespołem figur zamkniętych: prostokątów, wielokątów i elips.

W Windows GDI regionom odpowiadają uchwyty typu HRGN. W niniejszym podrozdziale
zobaczymy, jak można tworzyć regiony i do czego się one przydają.

Tworzenie regionów
Proces tworzenia regionu zależy od tego, jak bardzo ma on być skomplikowany. Dla
prostych obiektów ogranicza się to do wywołania jednej funkcji, bardziej złożone regiony
wymagają nieco więcej pracy związanej z łączeniem regionów elementarnych.

Windows API 592

Tutaj zobaczymy zarówno kreowanie najprotszych, jak i nieco bardziej pokrętnych
regionów.

Proste regiony
Najprostszy region składa się z pojedynczej figury zamkniętej. Jego utworzenie oznacza
wywołanie jednej funkcji, bardzo podobnej do tej, która rysuje ową figurę w kontekście
urządzenia.

Prostokątny region
Typowym przedstawicielem regionów jest wariant prostokątny. Za jego utworzenie
odpowiada funkcja CreateRectRgn():

HRGN CreateRectRgn(int nLeftRect,
 int nTopRect,
 int nRightRect,
 int nBottomRect);

Inną możliwością jest też CreateRectRgnIndirect():

HRGN CreateRectRgnIndirect(CONST RECT* lprc);

Jak widać, obie funkcje przyjmują te same dane, z tym że jedna pobiera je jako cztery
parametry, a druga w postaci struktury RECT.
Wynikiem jest oczywiście uchwyt do regionu w kształcie prostokąta o podanych
wymiarach.

Eliptyczny region
Niemal identycznie wyglądają funkcje tworzące regiony eliptyczne:

HRGN CreateEllipticRgn(int nLeftRect,
 int nTopRect,
 int nRightRect,
 int nBottomRect);

HRGN CreateEllipticRgnIndirect(CONST RECT* lprc);

Podajemy do nich prostokąt okalający elipsę, której kształt przyjmie region. Jest ten sam
mechanizm, jaki mogliśmy zaobserować w funkcji Ellipse(); przypomnij sobie działanie
tej funkcji, jeżeli go nie pamiętasz.

Wielokątny region
Region w kształcie dowolnego wielokątu jest także możliwy do stworzenia. Wystarczy
posłużyć się funkcją CreatePolygonRgn():

HRGN CreatePolygonRgn(CONST POINT* lppt,
 int cPoints,
 int fnPolyFillMode);

Jej parametry są niemal identyczne jak w funkcji Polygon(). Ostatni argument
fnPolyFillMode określa tryb wypełniania wielokątów, jaki będzie użyty do stworzenia
regionu. Obowiązują tu te same dwie stałe, jak w przypadku analogicznego trybu -
atrybutu kontekstu urządzenia. Tak więc wartość ALTERNATE powoduje, że części
wielokąta powstałe z przecięcia się jego boków będą wypełniane na przemian, zaś
WINDING gwarantuje, że region będzie składał się z całkowicie zamkniętej figury, bez
żadnych „dziur”.

Windows GDI 593

Łączenie regionów
Tworzenie prostych regionów nei byłoby niczym nadzwyczajnym, gdyby nie to, że
możemy je ze sobą łączyć (ang. combine). To łączenie regionów jest najważniejszą i
najpotężniejszą ich cechą.

Do łączenia używamy funkcji CombineRgn():

int CombineRgn(HRGN hrgnDest,
 HRGN hrgnSrc1,
 HRGN hrgnSrc2,
 int fnCombineMode);

Tworzy ona kombinację regionów hrgnSrc1 i hrgnSrc2, zapisując ją w regionie
hrgnDest. Region ten musi więc istnieć, ale sposób jego utworzenia nie ma znaczenia,
gdyż i tak zostanie on zastąpiony przez połączenie hrgnSrc1 i hrgnSrc2.
W jaki sposób regiony są łączone? O tym decyduje czwarty parametr funkcji -
fnCombineMode. Określa on operację na regionach hrgnSrc1 i hrgnSrc2, w wyniku której
powstanie docelowy region hrgnDest. Możliwe działania ujmuje tabelka:

stała nazwa operacji wynik operacji
RGN_AND iloczyn (część wspólna) hrgnSrc1 ∩ hrgnSrc2
RGN_OR suma hrgnSrc1 ∪ hrgnSrc2
RGN_DIFF różnica hrgnSrc1 - hrgnSrc2
RGN_XOR różnica symetryczna hrgnSrc1 ⊕ hrgnSrc2
RGN_COPY kopia hrgnSrc1

Tabela 73. Stałe operacji łączenia regionów funkcji CombineRgn()

Potencjalne operacje najlepiej jednak prześledzić na rysunku, np. takim:

Rysunek 28. Łączenie regionów różnymi operacjami przy pomocy funkcji CombineRgn()

Widzimy na nim, że skomplikowane regiony możemy łatwo składać z prostszych, a
ponadto mamy pełną kontrolę nad procesem ich łączenia.

Windows API 594

Zajmijmy się jeszcze wartością zwracaną przez CombineRgn(). Oto są możliwe jej
rezultaty:

stała znaczenie
NULLREGION powstały region jest pusty
SIMPLEREGION wynikowy region ma kształt prostokąta
COMPLEXREGION powstał region o skomplikowanym kształcie

ERROR wystąpił błąd

Tabela 74. Możliwe wyniki zwracane przez funkcję CombineRgn()

Informują one nie tylko o powodzeniu lub niepowodzeniu operacji kombinowania, ale też
dają pewne pojęcie na temat jej rezultatu.

Wykorzystanie regionów
Skoro wiemy już, jak tworzyć regiony, dowiedzmy się, do czego możemy je wykorzystać.
W tej sekcji zobaczysz zastosowania regionów w rysowaniu, przycinaniu oraz zmianie
kształtu okien.

Rysowanie z pomocą regionu
Jako zbiory figur zamkniętych, regiony mogą być w rysowaniu. Możliwe jest ich
wykorzystanie na kilka sposobów.

Wypełnianie pędzlem
Najprostszą czynnością jest wypełnienie obszaru regionu pędzlem, czyli pozostawienie
przezeń pewnego rodzaju śladu na bitmapie kontekstu urządzenia.

Operację tę można przeprowadzić na przykład za pomocą funkcji PaintRgn():

BOOL PaintRgn(HDC hdc, HRGN hrgn);

Używa ona pędzla aktualnie wybranego w kontekście hdc to wypełnienia obszaru, jaki
wyznacza region o podanym uchwycie hrgn. Przyjmuje też, że współrzędne regionu są
wyrażone w jednostkach logicznych.

Podobną funkcją jest FillRgn():

BOOL FillRgn(HDC hdc,
 HRGN hrgn,
 HBRUSH hbr);

Widać w niej podobieństwo do FillRect(), lecz ma ona nieco większe możliwości,
ponieważ używa regionów, nie zaś prostokątów. FillRgn() także wypełnia region
pewnym pędzlem, z tym że pozwala na podanie w trzecim parametrze. Pędzel ten nie
musi być więc wybrany w kontekście urządzenia hdc. Ponownie, funkcja uznaje, że
koordynaty regionu zą zapisane w postaci jednostek logicznych.

Obrysowywanie
Regiony mają też funkcję będącą odpowiednikiem FrameRect() - jest to FrameRgn():

BOOL FrameRgn(HDC hdc,
 HRGN hrgn
 HBRUSH hbr,
 int nWidth,

Windows GDI 595

 int nHeight);

Dokonuje ona obrysowywania krawędzi regionu, używając do tego pędzla podanego w
parametrze hbr. Dwa ostatnie argumenty, nWidth i nHeight, oznaczają natomiast
szerokość i wysokość linii obramowania.

Oto przykład, jak można narysować obramowanie regionu składającego się z dwóch
prostopadłych elips:

/* utworzenie regionu */

// regiony elementarne
HRGN hrgnElipsa1 = CreateEllipticRgn(0, 30, 90, 60);
HRGN hrgnElipsa2 = CreateEllipticRgn(30, 0, 60, 90);

// kombinacja regionów
HRGN hrgnRegion = CreateRectRgn(0, 0, 0, 0);
CombineRgn (hrgnRegion, hrgnElipsa1, hrgnElipsa2, RGN_OR);

// usunięcie regionów elementarnych
DeleteObject (hrgnElipsa1);
DeleteObject (hrgnElipsa2);

/* obramowanie */

// stworzenie pędzla malującego na zielono
HBRUSH hbrPedzel = CreateSolidBrush(RGB(0, 255, 0));

// wykonanie obramowania
FrameRgn (hdcKontekst, hrgnRegion, hbrPedzel, 5, 5);

/* porządki */

// usunięcie pędzla
DeleteObject (hbrPedzel);

// usunięcie regionu
DeleteObject (hrgnRegion);

Wynikiem wykonania powyższego kodu (przy założeniu, że hdcKontekst jest uchwytem
kontekstu wnętrza okna) będzie poniższy obrazek:

Screen 70. Obramowanie regionu

Inwersja kolorów
Ostatnią operacją z gatunku rysunkowych jest inwersja pikseli kontekstu urządzenia we
wnętrzu regionu. Wykonuje ją funkcja InvertRgn():

BOOL InvertRgn(HDC hdc, HRGN hrgn);

Windows API 596

Inwersja oznacza negację bitową wartości koloru, tak samo jak w funkcji InvertRect().
Kolor biały staje się więc czarnym, zielony - karmazynowym, itd.

Użycie regionu do przycinania
Innym zastosowaniem regionów w GDI jest ich użycie do przycinania.

Przycinanie (ang. clipping) zapewnia, że zostaną wyświetlone tylko te piksele płótna
kontekstu urządzenia, które leżą wewnątrz ustalonego regionu - nazywamy go
regionem przycinania (ang. clipping region).

Region przycinania jest własnością kontekstu urządzenia, podobnie jak pióro, pędzel,
płótno i czcionka. Możemy go pobierać i ustawiać, aby kontrolować wyniki pokazywane
na ekranie.

Początkowo region przycinania obejmuje oczywiście cały obszar rysowania kontekstu
urządzenia.

Ustawienie nowego regionu przebiega jednak nieco inaczej niż podobne postepowanie z
innymi obiektami GDI. Wygląda bowiem np. tak:

SelectObject (hdcKontekst, hrgnRegion);

Zignorowanie rezultatu funkcji SelectObject() jest tu jak najbardziej możliwe, gdyż nie
jest nim wcale uchwyt do starego regionu. Kontekst urządzenia nie wykorzystuje bowiem
obiektu hrgnRegion w sposób bezpośredni, lecz tworzy jego kopię. Ta kopia jest w
całkowitej władzy kontekstu urządzenia - kontekst sam ją zwalnia, gdy nie jest już
potrzebna, a dzieje się to choćby wtedy, kiedy ustawiamy inny region przycinania.
Dlatego też możemy bezpiecznie zignorować wartość zwróconą przez SelectObject().
Faktycznie nie jest to żaden uchwyt, lecz jedna ze stałych, będących rezultatami
CombineRgn().
Innym sposobem ustawienienia regionu przycinania jest funkcja SelectClipRgn():

SelectClipRgn (hdcKontekst, hrgnRegion);

Do niej także stosuje się reguła kopiowania regionu i możliwego zingorowania wartości
zwracanej.

A co ze zwalnianiem regionów?… Kod dla tego zadania jest skromniejszy, ponieważ nie
mamy żadnego „oryginalnego regionu przycinania”, który należałoby przywrócić
kontekstowi urządzenia przed jego zwolnieniem. Naszym zadaniem jest tylko usunięcie
tego regionu, który sami stworzyliśmy:

DeleteObject (hrgnRegion);

Można to zrobić zarówno przed, jak i po usunięcie kontekstu urządzenia.

Zmiana kształtu okna
Jedną z bardziej interesujących opcji wykorzystania regionu jest użycie go zmiany
kształtu okna. Mówiąc „kształt”, mam na myśli ten obszar okna, który jest rysowany i
zasłania okna leżące niżej w porządku Z.

Ustawianie regionu okna
Chcąc zmienić kształt okna, ustawiamy jego region przy pomocy SetWindowRgn():

Windows GDI 597

int SetWindowRgn(HWND hWnd,
 HRGN hRgn,
 BOOL bRedraw;

Trzeci parametr funkcji informuje Windows, czy po ustawieniu regionu ma dokonać
odrysowania okna. Prawie zawsze chcemy tego, toteż ustawiamy ten parametr na TRUE.

Musimy wiedzieć, że po wywołaniu SetWindowRgn() region podany w hRgn staje się
własnością systemu Windows. Zatem:

Nie powinniśmy nic robić z regionem, którego uchwyt przekazaliśmy do funkcji
SetWindowRgn().

Nie musi nawet dbać o jego usunięcie, zajmie się tym system operacyjny podczas
niszczenia okna.

Koordynaty regionu okna są liczone względem połozenia okna, nie zaś względem jego
obszaru klienta. Jest tak, bo region obejmuje swoim zasięgiem nie tylko wnętrze okna,
ale też jego obszar pozakliencki.

Pobieranie regionu okna
Dla porządku zerknijmy jeszcze na funkcję pobierającą region okna, GetWindowRgn():

int GetWindowRgn(HWND hWnd, HRGN hRgn);

Zapisuje ona kopię regionu, zastępując nią region o podanym uchwycie hRgn. Tak więc
żeby wywołać tę funkcję, musimy już posiadać jakiś region - możemy go stworzyć
podobnie jak region docelowy dla CombineRgn(), tzn. tak:

HRGN hrgnRegion = CreateRectRgn(0, 0, 0, 0);

Sposób nie ma żadnego znaczenia, ponieważ region i tak zostanie zastąpiony po
wywołaniu GetWindowRgn().

Na tym zakończymy nasze spotkanie z regionami. Pozostałe funkcje, które ich dotyczą,
związane są głównie z obiektami ścieżek, a tych zdecydowałem się nie omawiać.
Naturalnie, jeżeli ten temat interesuje cię bardziej, możesz zawsze zajrzeć do stosownych
źródeł, na przykład MSDN.

Podsumowanie
Biblioteka Windows GDI jest doprawdy ogromna. Nawet ten, rozpuchnięty do granic
możliwości rozdział nie opisuje wszystkich jej elementów. Pozwala jednak poznać te
zagadnienia, które są chyba niezbędne do stosowania interfejsu GDI w swoich
programach.

Czego zatem zdołałeś się dowiedzieć?…
Najpierw zaprezentowałem ci podstawowe kwestie związane ze współczesną grafiką
komputerową. Poznaliśmy więc jej rodzaje, systemy zapisu kolorów oraz typy
najważniejszych urządzeń graficznych.

Windows API 598

Dalej przedstawiłem fundamenty biblioteki Windows GDI: potok graficzny oraz kontekst
urządzenia. W tym podrozdziale zrobiliśmy też krótką wycieczkę po wszystkich
elementach interfejsu.
Potem już na poważnie zajęliśmy się samym GDI. Omówiłem po kolei trzy rodzaje
prymitywów graficznych: figury geometryczne, bitmapy i tekst. Mogłeś się dowiedzieć, w
jaki sposób korzystać z tego bogactwa narzędzi do tworzenia aplikacji wyposażonych w
grafikę.
Na koniec przyswoiłeś sobie umiejętność korzystania z regionów w celu rysowania oraz
przycinania.

Na tym etapie twoja nauka GDI może się rzecz jasna skończyć i nie będzie to wielką
stratą. Chcąc jednak tworzyć bardziej zaawansowany programy dla Windows, będziesz
prędzej czy później zmuszony poznać ten interfejs dokładnie. Ponieważ wykracza to poza
zagadnienie programowania gier, nie znajdzie sobie miejsca w tym kursie…

Pytania i zadania
Wielki rozdział wymaga równie wielkiej pracy domowej, prawda? ;) Oto więc są zestawy
pytań i ćwiczeń do wykonania dla ciebie.

Pytania
1. Wymień dwa rodzaje grafiki komputerowej. Czym charakteryzuje się każdy z

nich?
2. Z jakich barw podstawowych korzysta system RGB, a z jakich CMYK?
3. Za co odpowiada kanał alfa w systemie RGB?
4. Ile kolorów wyświetla monitor w trybie True Color? Ilu bitów używa wtedy do

zapisu pojedynczego piksela w pamięci graficznej?
5. Czym jest rasteryzacja i dlaczego jest ona konieczna?
6. Wymień dwa typy monitorów komputerowych.
7. O czym mówi rozdzielczość obrazu?
8. Co składa się na tryb graficzny, w jakim pracuje monitor?
9. Podaj trzy najpopularniejsze typy drukarek mozaikowych.
10. W jakich dwóch trybach rysowania pracuje Windows GDI?
11. Co określa tryb mapowania?
12. Skąd możemy wziąć kontekst urządzenia przeznaczony do pracy z oknem?
13. Jakie rodzaje prymitywów graficznych oferuje GDI?
14. Jakimi obiektami posługuje się GDI?
15. Co charakteryzuje pióro? Jak je tworzymy?
16. Jakimi sposobami można stworzyć pędzel?
17. Jak działa wypełnianie pędzlem?
18. Jakie rodzaje krzywych otwartych i figur zamkniętych możemy rysować przy

pomocy funkcji Windows GDI?
19. Co, oprócz obiektu bitmapy, jest potrzebne do prezentacji obrazka rastrowego w

wybranym kontekście urządzenia?
20. Jak można wyświetlić sprite bez tła otaczającego jego bitmapę?
21. Podaj dwie funkcje służące do wypisywania tekstu.
22. W jaki sposób zmieniamy kolor tekstu, wyświetlanego w kontekście urządzenia?
23. Jakie dwie funkcje służą do tworzenia czcionek logicznych? Dlaczego żądają tak

dużo informacji, które niekoniecznie muszą być przez nie wykorzystywane?
24. Czym są regiony i do czego można je wykorzystać?

Ćwiczenia
1. Zmodyfikuj szkicownik z poprzedniego rozdziału (przykład Scribble) tak, aby:

a) klawiszami 1-9 z klawiatury alfanumerycznej można było wybierać kolor
rysowanych linii.

Windows GDI 599

b) klawiszami strzałek w lewo i w prawo możliwy był wybór stylu linii
c) klawiszami strzałek w górę i w dół możliwe było okreslenie grubości linii

2. Stwórz program, który po kliknięciu we wnętrze okna zmienia jego kolor na
losowy.

3. (Trudniejsze) Pobaw się w symulację znanego z LOGO żółwia w Windows. Stwórz
klasę CTurtle, która będzie reprezentowała ów zacny rodzaj kursora. Określ jej
pola i metody. Projektując klasę, pamiętaj, że:
a) żółw porusza się zawsze naprzód w ustalonym kierunku. Kształt żółwia na

ekranie (zwykle trójkąt) odpowiada temu kierunkowi
b) kierunek można zmieniać, każąc żółwiowi obrócić się w jego lewą lub prawą

stronę o określoną liczbę stopni
c) możliwe jest także polecenie żółwiowi, aby poszedł do określonego punktu. Po

jego wykonaniu żółw zachowuje obrany kierunek ruchu
d) żółw może poruszać się, rysując lub nie rysując linii, w zależności od

aktualnego ustawienia (domyślnie linie są rysowane)
Pomyśl też o jakiej formie interakcji z obiektem żółwia. Proponuję jeden z dwóch
sposobów:
a) wykorzystanie klawiatury. Niech klawisze strzałek w lewo i prawo powodują

obrót w tych kierunkach w jakimś sensownym tempie. Strzałka w górę niech
skutkuje ruchem żółwia naprzód, a Spacja włączeniem lub wyłączeniem
rysowania. Kliknięcie myszą powinno umiejscawiać żółwia w klikniętym
punkcie

b) (Trudne) dodanie do programu pola tekstowego, przeznaczonego na
wpisywanie poleceń sterujących (zatwierdzanych klawiszem Enter):
1) fwd odległość - ruch naprzód o podaną odległość
2) rotl kąt - obrót w lewo o podany kąt (w stopniach)
3) rotr kąt - obrót w prawo o podany kąt (w stopniach)
4) draw on/off - włączenie/wyłączenie rysowania
5) goto x,y - wysłanie żółwia w określone miejsce

2. (Bardzo trudne) Rozbuduj przykład Bezier tak, aby możliwe było dodawanie i
usuwanie punktów kontrolnych krzywej. Niech kliknięcie prawym przyciskiem
myszy powoduje te działania: dodanie punktu, jeżeli kliknięto w wolne miejsce,
lub usunięcie punktu, jeżeli kliknięto w już istniejący.

3. (Trudniejsze) Napisz funkcje Pentagon() i Hexagon(), rysujące pięciokąt i
sześciokąt foremny.

4. Poszerz funkcjonalność procedury EllipticArc(), zaprezentowanej przy
omawianiu łuków elips. Niech nowa funkcja potrafi rysować zarówno łuki, jak też
wycinki i odcinki elipsy. Zastanów się, jaki mechanizm rozróżniania tych trzech
czynności będzie najlepszy.

5. Stwórz klasę ułatwiającą posługiwanie się bitmapami w Windows GDI. Klasa ta
powinna ukrywać wszystkie szczegóły związane z wczytywaniem i zwalnianiem
bitmap, a na zewnątrz powinna udostępniać:
a) metodę pozwalającą wczytać bitmapę z pliku
b) metodę umożliwiającą stworzenie pustej bitmapy o podanych wymiarach
c) uchwyt do pamięciowego kontekstu urządzenia, aby możliwe było używanie go

w dowolnych operacjach graficznych
d) wymiary bitmapy

4. Napisz program wypisujący tekst w środku obszaru klienta okna o zmiennym
rozmiarze.

5. (Trudne) Stwórz aplikację pokazującą ten sam napis przy użyciu 5 czcionek
wybranych losowo spośród wszystkich obecnych w systemie.

6. Utwórz okno w kształcie koła, w którym narysujesz koncentryczne, żółto-czerwone
kręgi, przypominające tarczę strzelecką.
(Trudne) Zapewnij możliwość przesuwania okna poprzez przeciągania za jego
obszar klienta (czy raczej to, co z niego zostanie…).

Windows API 600

7. (Bardzo trudne) Wypisz na Pulpicie tekst, który będzie można przesuwać,
przeciągając go myszą.

