REPREZENTACJA DANYCH W
PAMIECI

Jest 10 rodzajow ludzi -

Adam Sawicki ,Regedit” - ci, ktérzy rozumiejq kod dwdjkowy
sawickiap@poczta.onet.pl i ci, ktorzy go nie rozumieja.

hakerskie ujecie socjologii

W tym dodatku mowa bedzie o sprawach, ktore majg miejsce w komputerze praktycznie
na najnizszym mozliwym poziomie. Bedziemy sie zajmmowali zerami i jedynkami. Poznamy
takze sposdb, w jaki komputer zapisuje w pamieci wszelkie informacje.

Wbrew temu, co mogtoby sie wydawac, wiadomosci tego rodzaju nie sg bezuzyteczne.
Majq one ogromne zastosowanie w praktyce programistycznej. Dlatego radze podejs¢ do
tej lektury powaznie i postarac sie zrozumie¢ opisane tu, miejscami niestety nietatwe
informacije.

Pamietaj: Wszystko wydaje sie trudne, dopdéki nie stanie sie proste!

Algebra Boole’a

Wbrew groznie brzmigcej nazwie, zaczniemy od rzeczy catkiem prostej. Poznamy
podstawowe, teoretyczne zasady operowania na zerach i jedynkach, zwane algebrg
Boole’a lub logikg dwuwartosciowa.

Boole George (1815-1864), logik i matematyk angielski, od 1849 profesor matematyki
w Queen's College w Cork (Irlandia), cztonek Towarzystwa Krdlewskiego (Royal Society)
w Londynie. Zajmowat sie logikg formalna, rachunkiem prawdopodobiefstwa, opracowat
algebre dla zbioru dwuelementowego (algebra Boole'a). Gtéwne dzieto - An Investigation
of The Laws of Thought (1854).%”

Algebra Boole’a postuguje sie jedynie dwiema mozliwymi cyframi. Przyjeto sie zapisywac
je jako 0 i 1. Mozna tez wyobrazi¢ je sobie jako dwa przeciwne stany — prawda (ang.
true) i fatsz (ang. false), stan wysoki (ang. high — w skrocie H) i niski (ang. low - w
skrocie L), gruby i chudy, yin i yang czy cokolwiek innego :)

Dziatania
Na tych dwoch dostepnych liczbach definiuje sie kilka podstawowych dziatan.

Negacja

Jest to dziatanie jednoargumentowe oznaczane symbolem ~ (tzw. tylda - czyli taki
wezyk pisany nieco u goéry :) Bywa tez oznaczane przez takie cos$: — lub przez pisany za

9 Zrddto: http://wiem.onet.pl/

332

negowanym wyrazeniem apostrof: *. Moznaby je poréwnac znanej z normalnej
matematyki zamiany liczby na przeciwng za pomocg poprzedzajgcego znaku minus -. Tak
jak liczba -5 jest przeciwna, do liczby 5, tak ~x oznacza stan przeciwny do stanu
oznaczonego przez X. Poniewaz w logice dwuwartosciowej wartosci sg tylko... dwie,
nietrudno jest wypisac tabelke dla tego dziatania:

x | ~x
0 1
1 0

Tabela 13. Wartosci logiczne negacji

Jak wida¢, zanegowanie wartosci powoduje jej zamiane na wartos¢ przeciwng, czyli drugq
sposréd dwoch mozliwych.

Mozna jeszcze doda¢, ze negacja nazywana bywa tez przeczeniem, a jej stownym
odpowiednikiem jest stowo ,nie” (ang. not). Jesli gtebiej zastanowisz sie nad tym,
wszystko okaze sie... logiczne! Stan, ktory nie jest zerem - to jedynka. Stan, ktéry nie
jest jedynka - to zero :D

Koniunkcja

Przed nami kolejne dziatanie kryjace sie pod tajemniczg nazwaq. Jest to dziatanie
dwuargumentowe, ktére mozna poréwnac znanego nam mnozenia. Symbolizuje go taki
oto dziwny znaczek przypominajacy daszek: A.

Mnozac jakakolwiek liczbe przez 0, otrzymujemy 0. Z kolei 1*1 daje w wyniku 1.
Identycznie wynika iloczyn wartosci Boole’owskich. Skonstruujmy wiec tabelke:

X y |xay
0 0 0
0 1 0
1 0 0
1 1 1

Tabela 14. Wartosci logiczne koniunkcji

Koniunkcja bywa tez nazywana iloczynem, a odpowiadajgcym jej stowem jest ,i".
Faktycznie mozemy zauwazy¢, ze aby dziatanie dato w wyniku jedynke, jedynka muszq
by¢ obydwa argumenty dziatania: pierwszy i drugi.

Alternatywa

Skoro jest mnozenie, powinno by¢ tez dodawanie. Pan Boole o nim nie zapomniat, wiec
mamy kolejne dziatanie. Jego symbol jest przeciwny do symbolu koniunkcji (odwrécony
daszek) i wyglada tak: v.

Tylko dodawanie dwdch zer daje w wyniku zero. Jesli cho¢ jednym ze sktadnikéw jest
jedynka, wynikiem dodawania jest liczba wieksza od zera - 1 albo 2. Poniewaz dwojka w
algebrze Boole’a nie wystepuje, zamienia sie na... nie nie! Nie ,zawija sie” z powrotem na
zero, ale zostaje jakby , obcieta” do jedynki.

Tabelka bedzie wiec wygladata tak:

R =X=] L
= OO
=] BN

333

Tabela 15. Wartosci logiczne alternatywy

Stéwkiem odpowiadajgacym alternatywie jest ,lub”. Widzimy, ze wynikiem dziatania jest
1, jesli wartos¢ 1 ma przynajmniej jeden sposréd argumentdéw dziatania — pierwszy lub
drugi. A wiec wszystko sie zgadza.

ROznica symetryczna

Dziatanie to jest czesto pomijane w podrecznikach logiki. Tymczasem jego znacznie z
punktu widzenia programisty jest ogromne. Jak bardzo - to okaze sie pdzniej.

Na razie zajmijmy sie jego zdefiniowaniem. Aby sporzadzi¢ tabelke, przyda sie angielska
nazwa tej operacji. Brzmi ona exclusive or (w skrécie xor) - co oznacza ,wytacznie lub”.
Aby w wyniku otrzymac 1, jedynka musi by¢ koniecznie tylko pierwszy lub tylko drugi
argument tego dziatania, nie zaden ani nie obydwa.

| xo y

== O OlX
OO
or ~ o|d

Tabela 16. Wartosci logiczne réznicy symetrycznej

To by byto na tyle, jesli chodzi o operacje logiczne konieczne do wprowadzenia cie w
Swiat komputerowych bitéw. Aby jednak twoja wiedza z dziedziny zwanej logikg (tak,
tak! — na pierwszym roku informatyki jest osobny przedmiot o takiej nazwie, na ktéorym
uczg wiasnie tego! :) byla petna, opisze jeszcze szybciutko pozostate dwa dziatania.

Ekwiwalencja

Ekwiwalencja to inaczej rownowaznosc i odpowiada jej nieco przydiugie stwierdzenie o
tresci: ,wtedy i tylko wtedy, gdy”. Daje ono w wyniku jedynke wtedy i tylko wtedy, gdy
obydwa argumenty sg takie same. Mozna wiec utozsamiac to dziatanie z réwnoscia.
Symbolizuje go taka zwrécona w obydwie strony strzatka: <.

x | v |xeoy
0 0 1
0 1 0
1 0 0
1 1 1

Tabela 17. Wartosci logiczne ekwiwalencji
Implikacja

To zdecydowanie najbardziej zakrecone i najtrudniejsze do zapamietania dziatanie
logiczne. Cieszmy sie wiec, ze programista raczej nie musi go pamietac :)

Inna nazwa implikacji to wynikanie, a odpowiadajace mu stwierdzenie brzmi: ,jezeli ..., to
...". Oznaczane jest strzatkg skierowang w prawo: =. Oto jego tabelka:

x | v |x=y
0 0 1
0 1 1
1 0 0
1 1 1

Tabela 18. Wartosci logiczne implikacji

334

Logicznego wyjasnienia takiej a nie innej postaci tej tabelki nawet nie bede prébowat sie
podjac®®. Przejdzmy teraz lepiej do dalszej czesci logiki, by jak najszybciej mie¢ jq juz za
sobq :)

Aksjomaty

Poznamy teraz kilka prostych wzordow, ktore ukazg nam podstawowe zaleznosci pomiedzy
poznanymi dziataniami logicznymi.

Przemiennos¢

avb=bva

Dodawanie tez jest przemienne - jak w matematyce.
anb=bnaa

Mnozenie tez jest przemienne.

tgcznosé

(@avb)vc=av(bvc)

Dodawanie jest taczne - jak w matematyce.
(@ab)ac=an(bac)

Mnozenie tez jest fgczne.

Rozdzielnosc¢

an(bvco=(aanb)v(anrc
Mnozenie jest rozdzielne wzgledem dodawania.
av(bac=(avb)a(ave)
Dodawanie tez jest rozdzielne wzgledem mnozenia — a w normalnej matematyce nie!!!

Identycznosc¢
av0=a
avli=1
an0=0
anl=a

To wynika bezposrednio z tabelek.

Dopetnienie
av~a=1
an~a=0

Bo jeden z argumentow zawsze bedzie przeciwny do drugiego.

Prawa De Morgana

~(@vb)=~ana~b
~(@Ab)=~ava~b

Logika w programowaniu

Uff... Pora wrdci¢ do sedna sprawy, czyli do programowania. Tutaj czesto zachodzi
potrzeba reprezentowania jednego z dwdch stanow. Przykladowo zmienna Blad w stanie

% Moze niestusznie, gdyz wyjasnienie jest dos¢ proste. Implikacja ilustruje wynikanie jednych faktdw z drugich,
a takie rozumowanie jest stuszne zawsze, z wyjatkiem sytuacji, gdy ze stwierdzenia prawidziwego
wyprowadzamy stwierdzenie fatszywe. Odpowiada to trzeciemu wierszowi tabelki. [przypis: Xion]

335

1 oznaczataby fakt wystgpienia btedu, a w stanie 0 fakt jego niewystgpnienia - czyli ze
wszystko jest w porzadku.

Typ logiczny

Typem danych w C++ reprezentujgcym wartosci logiczne jest bool. Dwa stany
reprezentowane sg za$ przez specjalne stowa kluczowe - true oraz false. Mozna tez
uzywac identyfikatoréw TRUE i FALSE pisanych duzymi literami.

Dla przyktadu wezmy linijke kodu, ktory tworzy wspomniang zmienng i wstepnie ja
inicjalizuje:

bool Blad = false;
Wyrazenia logiczne

Oprécz bezposrednich wartosci true oraz false, wartosci typu bool zwracane sg takze
przez operatory poréwnania takie, jak == (réwny), != (rézny), < (mniejszy), >= (wiekszy
lub réwny) itp.

Kazda okazja jest dobra, aby po raz kolejny przestrzec przez typowym btedem, na ktory
(niestety?) w catej swej zachwalanej przez wielu elastycznosci pozwala jezyk C++.
Chodzi o roznice pomiedzy operatorem przypisania =, a operatorem poréwnania
(réwnosci) ==. Ten pierwszy takze zostanie zawsze zaakceptowany w miejscu drugiego,
ale z pewnosciq spowoduje inny (czyli nieprawidtowy) efekt.

Uwazaj na to!

Wartosc¢ innego typu - np. liczba - takze moze zosta¢ potraktowana jako wartosc
logiczna. Przyjete zostanie wowczas 0 (fatsz), jesli wartosc jest zerowa (np. liczbg jest 0)
oraz prawda w kazdym innym wypadku.

Ta cecha jezyka C++ jest catkiem przydatna, poniewaz pozwala sprawdzac , niezerowos$¢”
zmiennych (szczegdlnie wskaznikéw) bez postugiwania sie operatorem poréwnania, np.:

if (Zmienna)
std::cout << "Zmienna jest niezerowa';

Operatory logiczne

Poznane na poczatku dziatania algebry Boole’a majg, jak mozna sie domyslaé, swoje
odpowiedniki w jezyku programowania. W C++ sg to symbole odpowiednio:

» | — negacja - przeczenie - ,nie” (jednoargumentowy)
» && - koniunkcja - iloczyn - ,i” (dwuargumentowy)
> || - alternatywa - suma - ,lub” (dwuargumentowy)

Najtatwiej zrozumiec istote dziatania tych operatoréw zapamietujac ich stowne
odpowiedniki (te w cudzystowach). Rozwazmy przykitad:

int Liczba = 7;
void* Wskaznik = 0
|

bool Wartosc = ((Wskaznik) || (Liczba == 6)) && false;

Wskaznik jest zerowy, a wiec jego wartoscig logiczng jest false. Po zanegowaniu
zmienia sie w true. Zmienna Liczba nie jest rowna 6, a wiec wartoscig poréwnania
bedzie false. true lub false daje true, true i false daje w koncu false. Zmienna
Wartosc zostanie wiec ostatecznie zainicjalizowana wartoscig false.

Postaraj sie przeanalizowac to jeszcze raz, dokfadnie, i w petni wszystko zrozumiec.

336

Systemy liczbowe

Odkad wynaleziono pieniadze i koto, ludzie zaczeli kreci¢ interesy :) Rownie dawno temu
ludzie zaczeli liczyé. Policzy¢ trzeba byto nie tylko pienigdze, ale np. upolowane mamuty i
inne mniejsze albo wieksze rzeczy.

Liczby trzeba byto jakos zapisywac. Powstaty wiec rézne sposoby na to. Na co dzien
postugujemy sie systemem dziesietnym oraz cyframi arabskimi. Jednak znamy tez np.
cyfry rzymskie. Takze podziat na 10, 100 czy 1000 czesci nie jest wcale tak oczywisty,
jak mogtoby sie wydawac patrzac na jednostki miar takie, jak kilometr, centymetr czy
kilogram. Doba ma przeciez 24 godziny, a godzina 60 sekund.

To wszystko sg pozostatosci po przesziosci, ktore uswiadamiajg nam wzglednos¢ naszego
sposobu liczenia i mozliwo$¢ tworzenia nieskonczenie wielu réznych, nowych sposobow
zapisywania liczb.

Teoria

Poznamy teraz rézne systemy liczbowe oraz nauczymy sie zapisywac liczby w dowolnym
z nich i zamienia¢ miedzy nimi.
Na poczatek porcja nieco ciezkostrawnej teorii, ktdrg jednak trzeba jakos$ przetrawic :)

Wstep

Zastanéwmy sie przez chwile, w jaki sposob zapisywane sg liczby. Dowolnie duzg liczbe
jestesmy w stanie zapisa¢ za pomoca pewnej ilosci cyfr, ktorych mamy do dyspozycji
dziesie¢: 0, 1, 2, 3,4, 5, 6, 7, 8 9. Stad nazwa naszego systemu — system dziesietny.

Jednak cyfra cyfrze nieréwna. Na przyktad w liczbie 123, cyfra 1 ma inne znaczenie niz
cyfra 2 czy 3. Ta pierwsza nazwana bywa cyfra setek, druga - cyfrg dziesigtek, ostatnia
zas - cyfrg jednosci.

Skad te nazwy? Zauwazmy, ze 1, 10, 100 itd. to kolejne potegi liczby 10 - ktoéra jest
podstawg naszego systemu dziesietnego.

10°=1
10' = 10
102 = 100
10% = 1000
itd.

System pozycyjny to taki, w ktdrym znaczenie znakoéw zalezy od ich pozycji.
System wagowy to taki, w ktérym kazdej pozycji cyfry przypisana jest inna waga.

Wynika z tego, ze nasze uzywane na co dzien cyfry arabskie w systemie dziesietnym sq
systemem pozycyjnym wagowym. Cyfry rzymskie sg wytgcznie systemem pozycyjnym,
bo poszczegdlne pozycje cyfr nie majg w nim przypisanych na state wag, takich jak 1,
10, 100 itd.

Zostawmy juz cyfry rzymskie w spokoju i zajmijmy sie normalnymi cyframi arabskimi.
Pomysimy co by byto, gdyby do zapisywania liczb uzywac innej ilosci cyfr — np. tylko
pieciu? Za ich pomocg takze datoby sie zapisa¢ dowolng liczbe. Rodzi sie jednak pytanie:
jakie bytyby to cyfry?

7 W systemach o podstawie N mniejszej niz 10 uzywamy N pierwszych cyfr, tzn. cyfr od 0
do (N-1) wiacznie. Np. w systemie siddemkowym uzywaliby$my siedmiu cyfr: 0, 1, 2, 3,
4,5i6.

337

Kiedy zabraknie cyfr, stosuje sie kolejne litery alfabetu. Moga by¢ mate albo duze, ale
chyba lepiej wygladajgq duze. Np. w systemie trzynastkowym uzywaliby$my znakow: O, 1,
2,3,4,5,6,7,8,9, A, BiCiwszystkie je nazywalibysmy cyframi.

Wzor

A teraz uwaga, bo bedzie straszny wzér ;)
Pokaze nam on, w jaki sposdb ,zbudowana jest” kazda liczba w dowolnym systemie.

L:Zn:al.N"

mneC m<0,n=0, m<n

L to nasza liczba.

N to podstawa systemu (np. 10 dla systemu dziesietnego).

m to indeks ostatniej cyfry (tej z prawej strony), albo inaczej méwiac liczba przeciwna do
ilosci cyfr po przecinku, np. w liczbie 1984.0415 m=-4.

n to indeks pierwszej cyfry (tej z lewej strony), albo inaczej mowigc ilos¢ cyfr przed
przecinkiem pomniejszona o 1, np. w liczbie 1984.0415 n=3.

Wynika z tego, ze pierwsza cyfra przed przecinkiem ma indeks 0, poprzednie cyfry majq
kolejne indeksy dodatnie, a cyfry po przecinku majg kolejne indeksy ujemne
numerowane w drugg strone.

i to indeksy kolejnych cyfr.

a; to kolejne cyfry w naszej liczbie.

Przyktad

Zanim jednak pokaze przyktad, musisz wiedzieC jeszcze jedng wazng rzecz. Otéz musimy
nauczy¢ sie oznaczania, w jakim systemie zakodowana (czyli zapisana) jest dana liczba.
Inaczej nie wiedzielibySmy np., czy liczba 320 zapisana jest w systemie czworkowym,
pigtkowym czy moze dziewigtkowym.

Dlatego wprowadzmy nastepujgce oznaczenie: Przyjmujemy, ze system, w jakim
zakodowana jest liczba, zapisywali bedziemy w indeksie dolnym za nawiasem, w ktory
ujeta jest dana liczba, np. (320)s. Jesli liczba wystepuje bez nawiasu i indeksu umawiamy
sie, ze zakodowana jest w naszym normalnym systemie dziesietnym.

Mozemy juz przystapi¢ do przeliczenia liczby z jakiego$ systemu na system dziesietny.
Wezmy liczbe (320)s. Rozwijajac jg wg przedstawionego wyzej wzoru mamy:

(320)s = 3*%5% + 2*¥5' + 0*5° = 3*¥25 + 2*5 + 0*1 =75+ 10 + 0 = 85

Okazuje sie, ze liczba (320)s zapisana w systemie pigtkowym przyjmuje w systemie
dziesietnym postac liczby 85.

Nie mniej wazne od zapisywania jest odpowiednie czytanie liczb. Liczby w systemie
innym niz dziesietny nie wolno czytac¢ tak, jak np. ,trzysta dwadziescia”! Nalezy méwic
zawsze ,trzy, dwa, zero”.

Dlaczego? Zauwaz, co oznaczajg tamte stowa. , Trzysta dwadziescia” to ,trzy setki” i
~dwie dziesigtki”. NieSwiadomie méwimy wiec w ten sposdb o cyfrze setek i cyfrze
dziesigtek, a te kolejne potegi dziesigtki sg wagami kolejnych cyfr jedynie w systemie
dziesietnym.

338

Patrzac na powyzszy przyktad mozna przy okazji wysnué wniosek, ze w systemie
pigtkowym mamy do czynienia z ,,cyfrg dwudziestek pigtek”, ,cyfrg pigqtek” i ,cyfra
jednosci”, a wczesniej zapewne z ,,cyfrg sto dwudziestek piatek” (bo 5° = 125).

By¢ moze zwrocite$ uwage na prawidlowos¢, ze do zapisania tej samej liczby w systemie
0 nizszej podstawie (mniejszej ilosci dostepnych cyfr) potrzeba wiecej cyfr.

Cwiczenia
Poczgwszy od tego miejsca zamieszczat bede zadania do samodzielnego wykonania wraz
z odpowiedziami w przypisie. Mocno zalecam wykonanie przynajmniej niektorych z nich,

poniewaz pozwolg ci one lepiej zrozumiec istote sprawy oraz wycwiczy¢ umiejetnosci
potrzebne do zrozumienia dalszej partii materiatu.

Zadanie 1°°
Rozkoduj do systemu dziesietnego liczby:

1. (13),
2. (666),
3. (666)1;
4. (ABBA.1):;
Praktyka

Jesli po tych teoretycznych rozwazaniach nie bardzo potrafisz wyobrazi¢ sobie to
wszystko, nie martw sie. Wiasnie teraz jest czas i miejsce, by sprébowacé wyjasnic
systemy liczbowe troche bardziej ,topatologicznie”.

Wyobraz sobie mechaniczny licznik, np. gazu, pradu, wody, kilometréw lub jakikolwiek
inny, ktéry masz w domu albo w samochodzie.

(8]
1 56 QA
2 7 B
3 8 0]
A 9 1
5 A 2

Rysunek 6. Liczba jako mechaniczny licznik z tarczami.

Licznik taki skfada sie z kilku tarcz, ktore mogq sie obracacé. Na ich obwodzie napisane sg
kolejne cyfry. Granice miedzy cyfrg ostatnig a pierwsza zaznaczytem na rysunku
niebieska linig (jaki system liczbowy przedstawia rysunek?),

Zasada dziatania licznika jest nastepujaca: Krecimy za szarg korbke powodujac obracanie
sie ostatniej tarczy (tej po prawej stronie). Tarcza pokazuje kolejne cyfry. Kiedy dojdzie
do ostatniej i zostanie po raz kolejny obrécona, pokazywata bedzie z powrotem pierwsza
cyfre (czyli 0). Dodatkowo spowoduje wtedy przekrecenie nastepnej tarczy o jedng cyfre
do przodu.

Nietrudno wyobrazi¢ sobie co bedzie, kiedy ta druga tarcza osiggnie ostatnig cyfre. Po
nastepnym obroceniu pokaze 0 oraz spowoduje zwiekszenie o jedng pozycje tarczy

9 1) 1%¥71 + 3%7% = 1*¥7 + 3%1 =7 + 1 = 8; 2) 6%¥72 + 6*7' + 6%7° = 294 + 42 + 6 = 342; 3) 6%¥11% + 6*11!
+ 6*%11° = 726 + 66 + 6 = 798; 4) 10%13° + 11*13% + 11*13' + 10*13° + 1*13™ = 23982.0769...
100 cyframi sg znaki od 0 do B, cyfr jest wobec tego 12, a wiec chodzi o system dwunastkowy.

339

trzeciej. Ogoélnie mozna powiedzie¢, ze kazdy petny obrét tarczy poprzedniej powoduje na
koniec obrdcenie tarczy nastepnej (na lewo od niej) o jedng pozycje.

Dlatego w systemie dziesietnym po liczbie 9 nastepuje liczba 10, a po liczbie 99
wystepuje liczba 100.

Cwiczenia
Zadanie 2%

Wyprowadz tabelke kilku kolejnych liczb systemu trojkowego poczawszy od 0 korzystajac
z wyobrazenia liczby jako licznika z tarczami.

Kodowanie liczb catkowitych

Potrafimy juz rozkodowac liczbe zapisang w dowolnym systemie na system dziesietny.
Pora nauczy¢ sie kodowac¢ liczbe dziesietng w dowolnym innym systemie.

Nie boj sie, nie bedzie kolejnego strasznego wzoru :) Takie przeliczanie to czysta
praktyka i doskonata zabawa. A wigec zaczynamy!

Reszta z dzielenia

Do zabawy potrzebny bedzie kalkulator oraz przypomnienie pewnego dawno
zapomnianego drobiazgu matematycznego. Zanim jeszcze poznaliSmy w szkole
podstawowej utamki, dzielenie liczb wykonywalismy ,pod kreske”. Nad liczbg dzielong
zostawat wynik dzielenia, a na dole otrzymywali$my co$, co nazywato sie reszta.

Wiasnie owa reszta z dzielenia jest czyms, co tutaj i w wielu innych zagadnieniach
programistycznych zajmuje bardzo wazne miejsce. Przypomnijmy sobie wiec, jak to
byto...

10:3 = 3.3333..., ale réwnie dobrze 3 i reszty 1

Dlaczego wtasnie 1?

Po pierwsze dlatego, ze kiedy pomnozymy wynik dzielenia przez dzielnik, iloczyn bedzie
sie roznit od liczby dzielonej wtasnie o reszte (3*3 + 1 = 10).

Po drugie, poniewaz w liczbie 10 trdjka ,miesci sie” 3 razy i zostaje jeszcze liczba 1.

Takie dzielenie z obcieciem reszty nazywane bywa dzieleniem catkowitym, a dziatanie
dajace w wyniku sama reszte z dzielenia (z pominieciem wtasciwego ilorazu) - resztg z
dzielenia albo modulo.

W C++ do dzielenia catkowitego stuzy ten sam operator, co do dzielenia liczb
rzeczywistych: /. Dziata on jako operator dzielenia catkowitego wtedy, kiedy obydwa
argumenty dziatania sq typu catkowitego.

Reszta z dzielenia to dziatanie zdefiniowane tylko dla liczb catkowitych, ktéremu
odpowiada w C++ operator %.

Zadanie 3'%°
Uzywajac kalkulatora oblicz, ile bedzie wynosita reszta z dzielenia:

1. 100:10
2. 113:20
3. 512:65

101 postepne cyfry to 0, 1 oraz 2. Po przejéciu od 2 do 0 poprzednia cyfra zwieksza sie o jeden. 0, 1, 2, 10, 11,
12, 20, 21, 22, 100, 101, 102, 110, 111, 112, 120, 121, 122, 200 itd.

102 wskazéwka: wykonaj dzielenie, wynik z obcieta cze$cig utamkowa pomndz przez dzielnik i odejmij ten
iloczyn od liczby dzielonej. 1) 0; 2) 13; 3) 57; 4) 1

340

4. 666:7
Popracuj nad metodg obliczania tej reszty i sprobuj zauwazy¢ pewne prawidtowosci
zachodzgce w tym ciekawym dziafaniu.

Sposob postepowania

OK, pora teraz przej$¢ do sedna sprawy. Naszym zadaniem bedzie zakodowanie liczby
1984 w systemie siddemkowym, czyli znalezienie niewiadomej x w ponizszym réwnaniu:

1984 = (x);

Algorytm postepowania jest bardzo prosty. Dzielimy liczbe przez podstawe systemu,
nastepnie jako nowg liczbe pod spodem zapisujemy wynik, a po prawej stronie
zapisujemy reszte z dzielenia. Powtarzamy tg czynno$¢ do momentu, kiedy jako wynik z
dzielenia otrzymamy 0.

1984 : 7|3
283 :7|3
40 : 715
5:71]5

0

Tabela 19. Kodowanie liczby catkowitej w systemie si6demkowym.

Postaraj sie dobrze zrozumiec tg tabelke. Zwrd¢ tez uwage na ostatnig operacje. 5 da sie
podzieli¢ przez 7. Wtedy reszta wynosi 5, a wynikiem jest 0, co dopiero konczy
obliczenia.

Teraz spisujemy cyfry w kolejnosci od dotu do géry i mamy gotowy wynik :DD
1984 = (5533),

Prawda, ze to proste?

Moze zdazytes$ juz zwroci¢ uwage na fakt, ze reszta z dzielenia nigdy nie bedzie wieksza
niz liczba, przez ktérg dzielisz. Np. reszta z dzielenia przez 5 wynosi zawsze 0, 1, 2, 3 lub
4. Méwigc ogodlnie: x % n=0, 1, .., n-1.

Dzieki temu reszty z dzielenia przez podstawe systemu mozemy uzywac jako cyfry w tym
systemie.

Cwiczenia
Zadanie 4%
Zakoduj:
1. liczbe 13 w systemie czworkowym
2. liczbe 64 w systemie jedenastkowym

3. liczbe 666 w systemie dziewigtkowym
4. liczbe (FF);7 w systemie trojkowym

Kodowanie utamkow

Potrafimy juz kodowac liczby catkowite. Pora na opanowanie umiejetnosci kodowania
utamkow.

103 4 (31),; 2. (509)11; 3. (820)s; 4. (FF)y, = 270 = (101000);

341

Algorytm postepowania jest bardzo podobny do zamiany liczb catkowitych. Tym razem
jednak mnozymy liczbe przez podstawe systemu, jako nowa liczbe pod spodem
zapisujemy czes¢ utamkowg otrzymanego iloczynu (0.costam), natomiast czes¢ catkowitg
(to, co w wyniku otrzymanym po pomnozeniu stato przed przecinkiem) zapisujemy po
prawej stronie.

Zakodujmy tym razem liczbe 0.0415 w systemie dwudziestkowym!

0.0415 * 20| 0
0.83 * 20| G (16)
0.6 * 20|C (12)
0.0

Tabela 20. Kodowanie ulamka w systemie dwudziestkowym.

Uwaga! Podczas kodowania utamkdéw otrzymane cyfry spisujemy, odwrotnie niz w
przypadku liczb catkowitych, od goéry do dotu!

A wiec 0.0415 = (0.0GC)so.

Tym razem obliczenia zakonczyty sie otrzymaniem po przecinku wyniku 0 (czyli
otrzymaniem liczby catkowitej). Jednak nie zawsze musi tak by¢. Okazuje sie, ze liczba
posiadajaca w pewnym systemie skonczone rozwiniecie (skonczong ilo$¢ cyfr po
przecinku potrzebng do doktadnego zapisania tej liczby) w innym systemie moze miec
rozwiniecie nieskonczone. Otrzymywalibysmy wtedy coraz to inne wyniki mnozenia (a
moze te same? wowczas mielibySmy do czynienia z utamkiem okresowym) i w koncu
musielibysmy ograniczy¢ sie do pewnej ustalonej ilosci cyfr po przecinku, zeby nie
zaliczy¢ sie na $mier¢ :)

Czy potrafisz znalez¢ przynajmniej ogdlny sposéb szacowania, czy utamek bedzie miat w
danym systemie skorficzone rozwiniecie?

Cwiczenia
Zadanie 5
Zakoduj:

1. liczbe 0.3333 w systemie trojkowym

2. liczbe 0.12 w systemie pigtkowym

3. liczbe 0.777 w systemie pietnastkowym

4. liczbe 123.456 w systemie 6semkowym
Przelicz jedng z tych liczb z powrotem na system dziesietny i sprawdz, jak duza
niedoktadnos$¢ powstata w zwigzku z obcieciem jej zakodowanej postaci do skoriczonej
ilosci cyfr po przecinku.

Algorytm Hornera - dla leniwych

Jesli wykonates$ zadanie 5 (a na pewno wykonate$s - w koricu jeste$ pilnym uczniem,
ktéry chce zosta¢ dobrym koderem :) doszedtes pewnie do wniosku, ze zakodowac trzeba
byto osobno czes¢ catkowity i cze$¢ utamkowa liczby z podpunktu 4. Czy nie istnieje
prostszy sposob?

Okazuje sie, ze tak - nazywa sie on algorytmem Hornera. Pozwala on za jednym
zamachem zakodowac liczbe rzeczywistg posiadajacg zarowno czesc catkowitg, jak i
utamkowa.

104 9(0.222222...)3; 2. (0.03)s; 3. (0.B9E959...):s; 4. (173.351361...)s

342

Jest tylko jedno ograniczenie. Trzeba z gory okresli¢ ilos¢ cyfr, na jakiej maksymalnie
kodowali bedziemy czesé¢ utamkowag — czyli ilos¢ cyfr po przecinku.

Mato brakowato, a zapomniatbym dodac jedng bardzo wazng, chociaz moze oczywistg
rzecz. W kazdej liczbie zapisanej w kazdym systemie mozemy dopisywac dowolng ilo$¢
zer do czesci catkowitej (przed przecinkiem) po lewej stronie i do czesci utamkowej (po
przecinku) po prawej stronie, co nie zmieni nam wartosci tej liczby. Np.:

12.34 = 00012.3400
(2010.012); = (002010.012000);

Zakodujemy teraz liczbe 1984.0415 w systemie siédemkowym. Sposob postepowania
jest nastepujacy:

Przyjmujemy doktfadnos$¢ do 6 cyfr po przecinku. Nastepnie mnozymy naszg kodowang
cyfre przez podstawe systemu podniesiong do potegi takiej, ile cyfr ustalilismy.

1984.0415 * 7° = 1984.0415 * 117 649 = 233 420 498.5
Uff... Tylko spokojnie, nie ma sie czego bac¢. Kalkulator jest po naszej stronie :))

Wyszto co$ wielkiego. Co dalej? Najpierw zauwazmy, ze otrzymana liczba zawiera czes$¢
utamkowa. Niby nie ma w tym niczego nadzwyczajnego, ale tkwi w tym fakcie pewien
szczegodt. Otdz obecnos¢é w tym iloczynie czesci utamkowej informuje nas, ze danej liczby
nie bedzie sie dato zakodowac z wybrang doktadnoscig precyzyjnie — zostanie ona obcieta
do wybranej ilosci cyfr po przecinku.

Po przyjeciu tej informacji do wiadomosci zaokraglamy wynik do liczby catkowitej, a
nastepnie kodujemy ja w wybranym systemie tak, jak koduje sie zwyczajne liczby
catkowite. Zatem do dziefa!

233 420 499 :
33 345 785 :
4 763 683 :
680 526 :

97 218 :

13 888 :

1984 :

283 :

40 :

5:

ONNNNNNNNNN
0UVTWWONORKPMDN

Tabela 21. Kodowanie liczby algorytmem Hornera.

Nie takie to straszne, jak mogtoby sie wydawac. Spisujemy teraz cyfry od dotu do gory,
tak jak podczas kodowania liczb catkowitych. Otrzymujemy takie co$: 5533020144,

Na koniec, zgodnie ze wstepnym zatozeniem, oddzielamy ostatnie 6 cyfr przecinkiem.
Ostateczny wynik wyglada tak:

1984.0415 = (5533.020144),
Cwiczenia

Pozostaje nam juz tylko przecwiczyc¢ przeliczanie liczb algorytmem Hornera...

343

Zadanie 6%
Zakoduj uzywajac algorytmu Hornera:

1. liczbe 11.2222 w systemie trojkowym

2. liczbe 10.5 w systemie pigtkowym

3. liczbe 0.0016 w systemie szesnastkowym

4. liczbe 2048.128 w systemie dziewigtkowym
Przelicz jedng z tych liczb z powrotem na system dziesietny i sprawdz, jak duza
niedoktadnos$¢ powstata w zwigzku z obcieciem jej zakodowanej postaci do skoriczonej
ilosci cyfr po przecinku.

Podsumowanie

W ten oto sposob konczymy podrozdziat poswiecony systemom liczbowym i przeliczaniu
liczb. Mam nadzieje, ze cho¢ troche pocwiczytes takie przeliczanie, posiadtes umiejetnosci
zamiany wszelkich liczb — matych i duzych - miedzy dowolnymi systemami oraz dobrze
sie przy tym bawites.

To byta taka mata odskocznia od spraw Scisle zwigzanych z komputerem. W nastepnym
podrozdziale juz do nich wrécimy.

Zanim jednak to nastgpi, radze rozwigzac na koniec kilka zadan, ktore sprawdzg twojg

wiedze i umiejetnosci nabyte podczas lektury tego podrozdziatu.

Zadanie 7%

1. Wyprowadz tabelke dwudziestu pierwszych liczb systemu jedenastkowego.

2. Rozkoduj do systemu dziesietnego liczbe (GG.AG);s.

3. Ile bedzie wynosita reszta z dzielenia 5555 : 66 ?

4. Zakoduj dowolng metoda liczbe 2003.1214 w systemie czworkowym z
doktadnoscig do 10 cyfr po przecinku i rozkoduj jg z powrotem na system
dziesietny. Czy zostata zachowana doktadnos$c¢? Po czym to mozna stwierdzié?

System binarny

Rozpoczynajac kolejny podrozdziat wracamy do tematu komputerdéw i programowania.
Jak zapewne wiesz, komputer postuguje sie systemem dwoéjkowym, czyli binarnym.
Do zapisywania wszelkich informacji uzywa wiec tylko dwéch cyfr: 0i 1.

Poznawszy teorie dowolnych systeméw liczbowych, skupimy sie teraz na tych naprawde
waznych z naszego punktu widzenia.

Zanim jednak to nastgpi, tym razem wyjatkowo — juz na wstepie — proponuje
rozwigzanie kilku zadan. Pozwolg nam one troche ,wczu¢ sie w klimat” :)

Zadanie 8%/
1. Wyprowadz tabelke kilku pierwszych liczb systemu dwdjkowego.
2. Ile bedzie wynosita reszta z dzielenia 25 : 2 ? Jaki jest prosty sposdb na
wyznaczanie takiej reszty?
3. Zakoduj liczbe 128 w systemie dwdjkowym.
4. Rozkoduj liczbe (010101100.1100),

1051, (102.0200...)3; 2. (20.2223...)s; 3. (0.0069...)1¢; 4. (2725.1133...)9

% 1)0,1,2,3,4,5,6,7,8,9,A,10, 11, 12, 13, 14, 15, 16, 17, 18; 2) 288+16+0.5555...4+0.0493 =
304.6048; 3) 11; 4) (133103.0133011001),; doktadnos¢ zostata zachowana

%71y 0,1, 10, 11, 100, 101, 110, 111, 1000, 1001 itd.; 2) 25%2=1, Sprawdzamy, czy liczba jest parzysta. 3)
10000000; 4) 172.75, zera na poczatku i na koncu sg dla zmyty :)

344

Teoria

Na poczatek, jak zwykle, musze podac troche teorii. Na szczescie tym razem nie bedzie
wzorow. W zamian proponuje zapoznanie sie z definicjami kilku (bardziej lub mniej
zwigzanych z omawianym tematem) pojec. Chciatbym, zebys$ poznat ich znaczenie i
nauczyt sie je rozrézniaé, poniewaz bardzo czesto sq one mylone albo uzywane
niepoprawnie.

Informacja - to konstatacja stanu rzeczy, wiadomos¢, powiadamianie spoteczenstwa w
sposob zobiektywizowany za pomoca srodkdw masowego przekazu albo (co dla nas
najbardziej odpowiednie) obiekt abstrakcyjny, ktory w postaci zakodowanej moze by¢
przechowywany, przesytany, przetwarzany i uzyty do sterowania.

Dane - to informacje wyrazone w pewnym jezyku. W informatyce sg obiektami, na
ktérych operujg programy.

W praktyce informacje mozna zdefiniowa¢ jako dane wraz ze sposobem ich
interpretowania. Pojecia te dotyczg nie tylko komputerow. Kiedy urzednik przeglada
tabelki z liczbami mowimy, ze przeglada jakies$,dane liczbowe”. Tymczasem dla niego te
liczby niosg pewne ,informacje”.

»~Dane” jest wiec pojeciem ogdlniejszym, ktéry obejmuje informacje bez znanego lub
istotnego w danym kontekscie znaczenia ich tresci. Niniejszy tekst niesie pewne
informacje, ale kiedy nagrasz go na CD-ROM posrod innych plikéw powiesz, ze jest tam
~tyle a tyle megabajtéw danych”.

Kodowanie - to zapisywanie informacji w okreslony sposob.
Szyfrowanie - to kodowanie informacji w taki sposdb, aby byty nieczytelne dla oséb
niepowotanych, a wiec utajnione.

Szyfrowanie jest wiec tylko specjalnym rodzajem kodowania. Kodowaniem mozemy
nazwac kazde zapisywanie informacji w jakiej$ postaci, choc¢by tekstu w jezyku polskim.
Kazdy sposob zapisu mozemy nazwacé kodem. MieliSmy juz do czynienia z kodowaniem
liczb w réznych systemach (czyli inaczej ich zapisywaniem) i bynajmniej nie robilismy
tego po to, aby kodowane liczby staty sie nieczytelne :)

Szum to sygnat, ktéry nie niesie zadnych informacji.

Krotka podrdz w czasie

PrzenieSmy sie teraz na chwile do przesztosci celem zrozumienia, dlaczego wtasnie taki, a
nie inny system liczbowy jest podstawg catej informatyki.

Dawno, dawno temu odkryto elektrycznos¢ i zaczeto budowac rézne urzadzenia. Prad
ptynat sobie w przewodach - raz to mniejszy, innym razem wiekszy — przenoszgc sygnaty
radiowe, dzwiekowe czy obraz telewizyjny. Takie urzadzenia nazywamy analogowymi.

Az tu nagle staneto przed maszynami trudne zadanie wykonywania obliczen. Szybko
okazato sie, ze w matematyce nie moze byc¢ (tak jak jest np. w radiu) zadnych szumow
ani trzaskéw. Liczby sg liczbami i musza pozosta¢ dokfadne.

Dlatego kto$ kiedys$ wpadt na genialny pomyst, by w kazdej chwili w przewodzie mégt by¢
przenoszony tylko jeden z dwdch mozliwych standw: prad nie ptynie albo ptynie pewien z
gory ustalony, nie ma napiecia albo jest pewne okreslone napiecie, napiecie jest dodatnie
albo ujemne itp. Te dwa stany mozna reprezentowac przez dwie cyfry systemu
binarnego: 0 oraz 1. Tak powstaty urzadzenia cyfrowe.

345

Czesto dopiero zmiana stanu jest informacja. Np. podczas budowy cyfrowego urzadzenia
elektronicznego mozna przyjac taki kod, ze stan identyczny z poprzednim oznacza 0, a
stan odwrotny do poprzedniego oznacza 1.

No dobrze, ale wtasciwie co takiego genialnego jest w ograniczeniu sie tylko do dwdch
standéw i dlaczego wybrano wtasnie dwa, a nie np. trzy albo dziesie¢? Dzieki temu
osiggnieto m.in. dwie istotne cechy urzadzen cyfrowych:

> Prostota - elementy wykonujace operacje numeryczne na dwoch mozliwych
stanach budowac jest najprosciej.

> Wiernos¢ kopii - przesytanie oraz kopiowanie danych nie powoduje utraty
jakosci (w przypadku sygnatow, np. dzwieku) ani doktadnosci (w przypadku liczb).

System binarny

Jesli wykonates ostatnie zadanie zauwazyte$s moze, ze operowanie na liczbach w systemie
dwdjkowym jest duzo prostsze, niz w wypadku innych systeméw.
Aby jeszcze lepiej pokazac ten fakt, wykonajmy razem dwa przeksztatcenia.

Zakodujemy w systemie binarnym liczbe 1984.

1984 :
992 .
496 :
248 :
124 .

62 :
31 :
15 :
7
3:
1:

HHEHRFRRFHEOOOOOO

ONNNNNNNNNNN

Tabela 22. Kodowanie liczby w systemie binarnym.

A wiec 1984 = (11111000000),.

Jest przy tym troche wiecej pisania, ale za to przy odrobinie wprawy dzielenie dowolnie
duzych liczb przez 2 mozna wykonywaé w pamieci, a o reszcie z tego dzielenia (réwnej
zawsze 0 albo 1) $Swiadczy parzystos¢ dzielonej liczby.

Teraz rozkodujmy liczbe (1011.0101),.

22+2'+2°+224+2%=8+2+1+0.5+ 0.0625 = 11.5625
Jak wida¢, nie trzeba pisac przed kazdg rozpisywang cyfrg odpowiednio 0* lub 1*.
Wystarczy tylko spisac te potegi dwojki, ktorym odpowiada cyfra 1 i poming¢ te, ktérym

odpowiada cyfra 0.

Zadanie 9'%
1. Zakoduj liczbe 255 w systemie dwdjkowym.
2. Zakoduj liczbe 0.5 w systemie dwdjkowym.

108 1) (11111111); 2) (0.1)y; 3) 83; 4) 60

346

3. Rozkoduj liczbe (01010011),.
4. Rozkoduj liczbe (111100),.
Czy potrafisz wykonywac¢ wiekszos¢ potrzebnych operacji w pamieci?

Dodawanie i odejmowanie

Czeka nas teraz kolejna powtdrka z pierwszych klas szkoty podstawowej. Przypomnimy
sobie bardzo doktadnie, jak wykonywato sie dodawanie i odejmowanie ,,pod kreske”.
Przypomnienie zrobimy na normalnych liczbach w systemie dziesietnym, by nastepnie
nauczyc sie tych samych operacji dla liczb binarnych.

Dodawanie i odejmowanie liczb dziesietnych

Jako pierwsze wykonajmy proste dodawanie dwodch liczb: 163 + 82 = 245,

1 6 3
+ 8 2
=|2 4 5
Tabela 23. Dodawanie pod kreske.

Zaczynajac od prawej strony dodajemy 3+2=5. Nastepnie dodajemy 6+8=14. Wystepuje
tu tzw. przepetnienie. W takiej sytuacji jako wynik danej kolumny zapisujemy ostatnig
cyfre sumy (czyli 4), a poprzednig przenosimy na kolejng kolumne na lewo. Stad 1+1=2.

Teraz zajmiemy sie rzeczg troche trudniejszg - odejmowaniem. Odejmiemy 701326 -
29254 = 672072.

7 0 1 3 2 6

- 2 9 2 5 4

=l6 7 2 0 7 2
Tabela 24. Odejmowanie pod kreske.

Znowu zaczynajac od prawej strony odejmujemy 6-4=2. Potem prébujemy odja¢ 2-5.
Poniewaz nie da sie wykonac tego na liczbach dodatnich, dokonujemy tzw. pozyczki -
pozyczamy jednostke z liczby nastepnej (3 zamieni sie w 2). Ta jednostka po przejsciu do
naszej kolumny zamienia sie w dziesigtke (to chyba oczywiste, dlaczego wtasnie
dziesigtka? :) i stad 10+2-5 = 12-5 = 7. Z tréjki po pozyczeniu zostata dwdjka, a 2-2=0.

Dalej sytuacja jest jeszcze bardziej skomplikowana. Znowu musimy dokonaé pozyczki, bo
nie da sie odja¢ 1-9. Tym razem jednak nie ma od kogo pozyczy¢ w nastepnej kolumnie
- stoi tam 0! Pozyczamy wiec od stojgcej dwie kolumny dalej siodemki. Pozyczona
jednostka zamienia sie w poprzedniej kolumnie (tej nad zerem) w dziesigtke. Z tej
dziesigtki dalej pozyczamy jednostke, ktéra zamienia sie w kolejng dziesigtke. Z siodemki
zostata wiec széstka, zamiast zera jest dziewie¢, a my mozemy wreszcie policzy¢ 11-
9=2.

Dalej jest juz prosto, o ile pamietamy, co gdzie zostato. 9-2=7, a 6-0=0.

Mam nadzieje, ze przypomniates sobie sposdéb wykonywania dodawania i odejmowania
pod kreske oraz w petni rozumiesz, jak to sie robi. Szczegdlnie duzo trudnosci sprawiajq
pozyczki podczas odejmowania, dlatego na to szczegdlnie uczulam.

Dodawanie i odejmowanie liczb binarnych

Pora przejs$¢ na system dwéjkowy. Dodawali bedziemy zera i jedynki, ale 1+1=2. Jak tg
dwojke zapisywac? Zapisywac nigdzie jej nie trzeba. Ona bedzie wystepowata tylko w

347

pozyczkach i przeniesieniach, a jej kodowanie jako 2 Iub jako (10), to kwestia mato
wazna.

Od tej chwili darujemy sobie czasami zapisywanie liczb w nawiasach i z indeksem
pamietajac, ze zajmujemy sie systemem dwojkowym.

Dodajmy dwie liczby binarne: 101011 + 01000 = 110011.

1 0 1 0 1
+|] 0 1 0 O

=1 1 0 0 1

Tabela 25. Dodawanie liczb binarnych.

W zasadzie nie ma tutaj zadnej wielkiej filozofii. 1+0=1, 0+0=0. Dopiero w trzeciej (od
prawej strony) kolumnie wystepuje przeniesienie: 1+1=2, czyli (10),. Dlatego w tej
kolumnie zapisujemy 0, a w nastepnej 1. W koncu 1 + domysine 0 = 1.

Z odejmowaniem tez jest podobnie. Odejmijmy 1001011 - 010110 = 110101.
0 1 1
1 1 0
= 11 0 1 0 1

Tabela 26. Odejmowanie liczb binarnych.

Po kolei: 1-0=1, 1-1=0. Dalej nie mozemy odja¢ 0-1, dokonujemy wiec pozyczki
sgsiedniej jedynki. Tam zostaje zero, a pozyczona jedynka zamienia sie na (no -
zgadnij! :) dwdjke. Stad 2-1=1. Z jedynki w czwartej kolumnie zostato zero. 0-0=0.

Dalej znowu musimy pozyczy¢. Poniewaz obok nie ma nikogo sktonnego do wypozyczenia
potrzebnej nam jedynki, szukamy nieco dalej. Tamta jedynka z ostatniej kolumny
pozycza nam swojq jedyna jedynke zostawiajac sobie zero. Jedynka przechodzi do
kolumny przedostatniej stajac sie dwdjka, z ktérej dalej pozyczamy jedynke. W kolumnie
przedostatniej zostaje jedynka, a my mozemy wreszcie odjac¢ 2-1=1.

Pamietajgc o tym, co zostato w dwdch ostatnich kolumnach, korczymy dziatanie
wykonujac 1-0=1 oraz 0 - domys$ine 0 = 0, ktoérego tez nie musimy zapisac.

W ten oto sposob opanowalismy umiejetnos¢ wykonywania podstawowych operacji
arytmetycznych na liczbach dwéjkowych, czyli na tych stynnych komputerowych zerach i
jedynkach :)

Teraz, jak sie zapewne domyslasz, pora na...

Cwiczenia
Zadanie 10'%°
Oblicz:
1. 111 + 111
2. 11001010 + 10101100
3. 111111 - 1101
4, 10000 - 1101

Zamien liczby z jednego z podpunktéw na dziesietne i sprawdz, czy otrzymates
prawidtowy wynik.

109 1) Wskazéwka: 3=(11),, 1110; 2) 101110110; 3) 110010; 4) 11

348

System dsemkowy i szesnastkowy

W catej swej ,fajnosci” system binarny ma jedng wielkg wade, ktérg z catg pewnoscig
zdazytes juz zauwazyc¢. Mianowicie liczby w tym systemie sg po prostu dtugie. Do
zapisania kazdej liczby potrzeba wielu cyfr — duzo wiecej, niz w systemach o wiekszej
podstawie.

W sumie nie ma w tym niczego dziwnego — w koncu to jest system o najmniejszej
mozliwej podstawie. Czy nie da sie jednak czegos$ na to poradzic¢?

Rozwigzaniem sg dwa inne systemy liczbowe, ktére rowniez majg duze znaczenie w
informatyce. Sg to system dsemkowy oraz przede wszystkim system szesnastkowy.

Dlaczego wtasnie one sg takie wazne? Nietrudno zauwazy¢, ze 8 i 16 to odpowiednio
trzecia i czwarta potega dwdjki. Co z tego wynika?

Okazuje sig, ze kazdym trzem cyfrom systemu binarnego odpowiada jedna cyfra systemu
o0semkowego, a kazdym czterem cyfrom systemu binarnego odpowiada jedna cyfra
systemu szesnastkowego.

System dziesietny oraz wiekszos$¢ pozostatych nie posiada tej cennej wtasciwosci.
Zapewne dlatego, ze ich podstawy nie s potegami dwajki.

Dzieki temu mozna sporzadzic¢ tabelke wszystkich cyfr danego systemu i ich binarnych
odpowiednikéw oraz uzywac jej do prostej zamiany dowolnie dtugich liczb! Utworzenie
takiej tabelki z pewnoscig nie sprawitoby ci problemu. Oto ona:

0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

Tabela 27. Binarne odpowiedniki cyfr szesnastkowych.

Mozemy teraz przeliczy¢ liczbe 00110101 na system szesnastkowy. W tym celu
grupujemy cyfry po cztery, a nastepnie korzystajac z tabelki zamieniamy je na cyfry
szesnastkowe.

00110101 = 0111 0101 = (75)s¢
A teraz odwrotnie:
(ABCD);¢ = 1010 1011 1100 1101 = 1010101111001101

Bardzo proste! Rodzi sie tylko jednak pytanie: czy musisz tg tabelke zna¢ na pamiec?
W zasadzie wypadatoby znaé, ale w rzeczywistosci nie trzeba jej wkuwac.

Jesli pilnie rozwigzywate$ wszystkie powyzsze zadania, powiniene$ umiec szybko
wyprowadzi¢ sobie kazdg potrzebng liczbe liczac po kolei liczby dwdjkowe. Spdjrz jeszcze
raz na te zera i jedynki w powyzszej tabelce i sprébuj zauwazy¢ pewne prawidtowosci w
ich rozktadzie. Kazdy moze znalez¢ swdj sposob na jej zapamietanie.

7 Z czasem nabedziesz wprawy i wiekszo$¢ operacji wykonasz zawsze w pamieci. Pomoze
w tym pamietanie wag kolejnych cyfr w systemie binarnym. Oczywiscie — znajomos¢ na

349

pamiec kolejnych poteg dwadjki jest obowiazkowa dla kazdego programisty!!!

Oto najwazniejsze z nich (tych wiekszych nie musisz wkuwac, ale przynajmniej sie z nimi
Lopatrz” :)

1,2,4,8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 itd.

21 = 32 768 (ok. trzydziesci dwa tysigce)

2 = 65 536 (ok. szescédziesiat piec tysiecy)

231 = 2 147 483 648 (ok. dwa miliardy)

232 = 4 294 967 296 (ok. cztery miliardy)

Ja wcale nie przesadzam. Te potegi dwodjki i system szesnastkowy sg naprawde az tak
wazne w informatyce i jako programista, nawet uzywajacy jezykow najwyzszego
poziomu, musisz sprawnie sie nimi postugiwac!

Na zakonczenie wspomne jeszcze o przyktadowych zastosowaniach:

> Do zapisywania kolorow w Win32API i DirectX uzywa sie liczb szesnastkowych.

> Do zapisywania adreséw komdrek pamieci uzywa sie liczb szesnastkowych.

> Do zapisywania atrybutow plikdw w systemie Linux i na serwerach FTP uzywa sie
liczb é6semkowych.

...oraz wymienie kilka waznych wartosci dla 8-cyfrowych liczb binarnych, a takze ich
odpowiedniki dziesietne i szesnastkowe (takze wypadatoby sie ich nauczy¢ :/)

> 00000000 = (00)3 = O

> 01000000 = (40);s = 64
> 01111111 = (7F)s = 127
> 10000000 = (80);5 = 128
> 11000000 = (C0);6 = 192
>

11111111 = (FF)46 = 256

System dwadjkowy to, jak juz wiesz, inaczej system binarny (w skrocie bin).
System 6semkowy to inaczej system oktalny (w skrocie oct).

Nasz normalny system dziesietny to inaczej system decymalny (w skrocie dec).
System szesnastkowy to inaczej system heksadecymalny (w skrocie hex).

Zadanie 11
1. Wyprowadz na kartce 16 pierwszych liczb binarnych.
2. Dopisz do nich odpowiadajqce cyfry szesnastkowe.
3. Postaraj sie wypisa¢ z pamieci jak najwiecej kolejnych poteg dwojki.
4. Podziel 256:2, 256:4, 256:8 itp. Wyniki zamien na liczby binarne i szesnastkowe.
5. Zastanow sie, jak do zapisywania jakich informacji wystarczy, a dla jakich za mata
jest liczba binarna 8-, 16-, 32-cyfrowa?

Zadanie 12'1°
Zamien:

1. liczbe (776)s na system binarny

2. liczbe (BO1A)i¢ na system binarny

3. liczbe 11010010110 na system szesnastkowy

4. liczbe 205 na system binarny, 6semkowy i szesnastkowy
Zastandéw sie jeszcze raz nad metodami, ktérych uzytes. Jak wiele operacji udato ci sie
przeprowadzi¢ w pamieci? Jak szybko dokonujesz przeksztatcen? Czego powinienes
jeszcze sie douczy¢?

1101) 111 111 110; 2) 1011 0000 0001 1010; 3) Wskazdwka: liczbe trzeba uzupetnié z lewej strony zerem.
(696)16; 4) 11001101 = (315)s = (CD)16

350

Bonus

Na zakonczenie bedzie maty bonus. Pokaze teraz jeszcze jeden, by¢ moze najprostszy
sposob przeliczania liczb dwdjkowych na dziesietne w obydwie strony.

Kazdag liczbe mozna w doktadnie jeden sposdb przedstawi¢ jako kombinacje wag cyfr
danego systemu (tutaj — dwdjkowego) pomnozonych przez cyfre (u nas to nie ma
znaczenia - cyfrg jest 0 albo 1).

Przyktadowo liczbe 205 z poprzedniego zadania mozna zamieni¢ w taki sposob:

> W liczbie 205 liczba 128 (waga 6smej cyfry) miesci sie raz. Piszemy wobec tego 1.
205-128=77.

W liczbie 77 liczba 64 (waga sidédmej cyfry) miesci sie raz. Piszemy 1. 77-64=13.
W liczbie 13 liczba 32 (waga kolejnej cyfry) nie miesci sie ani razu. Piszemy 0.
Liczba 16 tez sie w niej nie miesci — piszemy kolejne 0.

Liczba 8 miesci sie raz - piszemy jedynke. 13-8=5.

W liczbie 5 liczba 4 (waga trzeciej cyfry) miesci sie raz. Piszemy 1. 5-4=1.

W liczbie 1 liczba 2 (waga drugiej cyfry) nie miesci sie. Piszemy zero.

Wreszcie zostaje nam jedynka (waga pierwszej cyfry), ktéra miesci sie w liczbie 1
doktadnie 1 raz - piszemy konczacyg jedynke.

VVVVYVVYYYVY

W ten sposdb otrzymujemy: 205 = 11001101.

W drugaq strone tez mozemy fatwo przelicza¢. Warunkiem jest znajomos$¢ poteg dwajki.
Widzac liczbe 11010011, sumujemy wagi tych cyfr, przy ktérych stoi jedynka. Zreszta...
chyba byta juz o tym mowa kilka stron wczesniej :)

1+2+16+64 + 128 =211

Zadanie 13'"!
Ktora potegq dwdjki jest liczba:

1. 16
2. 64
3. 256
4, 1024

Czy potrafisz poda¢ odpowiedzi od razu?

Jednostki informacji

Komputer przechowuje dane w postaci liczb binarnych. Zachodzi potrzeba mierzenia ilosci
tych danych. Powstaty w tym celu specjalne jednostki. Zacznijmy ich omawianie od
poczatku.

Pojedyncza cyfra systemu dwdjkowego - mogaca przechowywac informacje o jednym z
dwoch mozliwych standéw - przyjmujgca wartosci oznaczane jako 0 albo 1, bedaca
najmniejszq i niepodzielng jednostka informacji cyfrowej — to bit.

1 b (mata litera ,b") /bit/

Jeden bit wystarczy do zapisania np. informacji o ptci osoby w bazie danych. Przyktadowo
0 mogtoby oznaczac¢ kobiete, a 1 mezczyzne (tylko bez obrazy, mite panie ;) To jednak
stanowczo za mato do zapisywania wiekszosci spotykanych informacji.

1111)4; 2) 6; 3) 8; 4) 10

351

Bity grupuje sie. 8 bitow tworzy bajt. Bajt jest podstawowg jednostka informacji

cyfrowej.

1B = 8 b (duze ,B") /bajt/

Jak nietrudno obliczy¢, jeden bajt moze znajdowa¢ sie w jednym z 28=256 stanéw. To
wystarczajgco duzo, by zapamieta¢ np. wiek osoby w bazie danych. Nikt raczej nie
dozywa wieku wiekszego, niz 255 lat :)

To réwniez wystarczajgco duzo, by kazdemu stanowi (zamiast liczby) przyporzadkowacd
pewien znak. Oprocz duzych i matych liter, cyfr, znakdw przestankowych, wszystkich
znakow alfanumerycznych znajdujacych sie na klawiaturze, kilku znakéow sterujacych i

innych znalaztoby sie jeszcze miejsce dla réoznych dziwnych symboli.

Podobnie jak w wypadku jednostek fizycznych, mozemy tworzy¢ wielokrotnosci jednostek

informaciji.

Mate przypomnienie z fizyki:

podwielokrotnosc | przedrostek | symbol | wielokrotnosc¢ | przedrostek | symbol
10718 atto a 10! deka da
10%° femto f 10? hekto h
10712 piko p 10° kilo k
107° nano n 10° mega M
10 mikro mn 10° giga G
107 mili m 10*? tera T
102 centy c 10%° peta P
101! decy d 1018 eksa E

Tabela 28. Podwielokrotnosci i wielokrotnosci jednostek podstawowych.

Poniewaz bit jest niepodzielny, nie istniejg podwielokrotnosci jednostek informacji.
Istniejg jednak wielokrotnosci.

Tkwi tu jednak pewna roznica. Wielokrotnosci jednostek w fizyce sg potegami dziesigtki
(wybieranymi, dla wiekszych wielokrotnosci, co 3). Oczywiscie ma to zwigzek z podstawg
naszego systemu. Czy w informatyce nie powinni$my zatem bra¢ poteg dwéjki?

Faktycznie, w powszechnym uzyciu sg wielokrotnosci jednostek informacji bedace
potegami dwdjki. Pewng analogie do wielokrotnosci jednostek fizycznych pozwala
zachowaé wiadciwos$é mowiaca, ze 2% = 1024 ~ 1000.

1 kB = 219 B = 1024 B ~ tysiac (mate ,k”) /kilobajt/

1 MB = 2%°B = 1024 kB = 1048576 B ~ milion (duze ,M”) /megabajt/

1 GB = 23°B = 1024 MB = 1073741824 B ~ miliard (duze ,G") /gigabajt/

1TB =2%B = 1024 GB = 1099511627776 B ~ bilion (duze ,T") /terabajt/

1 PB =2"B = 1024 GB = 1125899906842624 B ~ biliard (duze ,P") /petabajt/
1 EB =25 B = 1024 PB = 1152921504606846976 B ~ trylion (duze ,E”)
/eksabajt/

VVVYVVYYVY

Pojawia sie teraz pytanie: ,Jak duzo to jest?”. Sprébuje na nie odpowiedzie¢ podajac
typowe rozmiary kilku przyktadowych rodzajow danych:

> Tekst - zaleznie od dtugosci jeden dokument zajmuje kilkadziesiat lub kilkaset
kB.

> Grafika - zaleznie od wielkosci i formatu zapisu jeden obrazek zajmuje
kilkadziesigt lub kilkaset kB, a nawet ponad 1 MB.

352

> Muzyka - zaleznie od diugosci jeden utwér zajmuje kilka MB. Jedna minuta
muzyki w formacie MP3 to ok. 1 MB.

> Programy — w zaleznosci od wielkosci petne wersje programéw zajmujg od kilku
do kilkuset MB.

> Film - w zaleznosci od dtugosci i jakosci kodowania jeden film zajmuje od kilkuset
MB do ponad 1 GB.

Podam tez pojemnosci przyktadowych nos$nikéw danych:

> Dyskietka 3.5"” - 1.44 MB

> Pamiec typu flash - zaleznie od ceny kilkadziesigt lub kilkaset MB, a nawet
ponad 1 GB

> CD-ROM - 650 lub 700 MB

> DVD-ROM - w zaleznosci od rodzaju od kilku do kilkunastu GB.

> Dysk twardy - kilkadziesiat lub ponad 100 GB.

> Wszystkie dane udostepniane w sieci P2P - kilka PB.

Idealisci chcieli wylansowac¢ nowe nazwy dla wielokrotnosci bajta - ,kibibajt”, ,mebibajt”,
»gibibajt”, ,tebibajt” itd. oraz oznaczenia KiB, MiB, GiB itd., natomiast przez kilobajt,
megabaijt, gigabaijt itd. chcieli oznacza¢ wielokrotnosci bedgce potegami dziesiatki, nie
dwojki — tak jak jest w fizyce.

Przyzwyczajenia wziety jednak gére nad teoriami i oprocz nielicznych programow, ktére
nazywajg jednostki informacji w ten oryginalny sposéb, wszyscy moéwig i piszg o
kilobajtach i megabajtach majac na mysli potegi dwéjki.

Niektérzy oznaczajq kilobajty przez duze K. Ma to podkresla¢ inne znaczenie tej
wielokrotnosci, niz tradycyjnego ,kilo”. Nie ma chyba jednak uzasadnienia dla takiego
wybidrczego odrdzniania i dlatego osobiscie zalecatbym uzywanie normalnych kilobajtow
przez mate ,k”, a takze megabajtow, gigabajtow itd. jako poteg dwojki.

Trzeba pamietaé, ze 1024 to nie jest 1000 i nie zawsze mozna poming¢ tg na pozér
niewielkg roznice. Przyktadowo uzbierawszy 700000000 B danych chcemy nagrac¢ CD-
ROM. Tymczasem w rzeczywistosci jest to tylko 667 MB i zmieszczg sie nam na ptycie
jeszcze 33 MB!

Dlatego trzeba uwazac na tq rdéznice i zawsze pamietac, w jakiej wielokrotnosci wyrazony
jest rozmiar danych. Jesli uzywasz Total Commandera i pokazuje on wielkos¢ plikow w
bajtach, zawsze kliknij prawym klawiszem na plik i wybierz Wfasciwosci, aby zobaczy¢
jego faktyczny rozmiar w odpowiedniej wielokrotnosci.

Uwazaj tez na wielkosci podawane przez réznych autoréw i producentéw, np. rozmiary
plikéw czy pojemnosci dyskéw twardych. Niektérzy cwaniacy podajg liczbe miliardéw
bajtéow, zamiast prawdziwych gigabajtow.

Oprocz rozmiaru danych mozna jeszcze mierzy¢ szybkos¢ ich przesytania (np. przez
Internet). Wielkos¢ takg wyrazamy w kilobajtach lub tez w kilobitach na sekunde, co
zapisujemy odpowiednio jako: kBps lub kB/s oraz kbps lub kb/s.

1 kB/s = 8 kbps

Zadanie 14
1. Sprawdz, jak duzy jest katalog gtdwny twojego systemu operacyjnego.
2. Sprawdz, jak duze roznice wystepujg w wielkosciach katalogow z réznymi
zainstalowanymi programami.
3. Jaki duzy jest katalog z twoimi dokumentami?
4. Jak duze sg pojedyncze pliki r6znego rodzaju w katalogu z twoimi dokumentami?

353

5. Sprébuj policzy¢, ile danych mniej wiecej posiadasz zgromadzonych na wszystkich
CD-ROMach? W jakiej wielokrotnosci wyrazisz tg wielkos¢?

6. Ile mogtyby zajmowac wszystkie napisane przez ciebie programy zebrane w
jednym miejscu?

7. Przemysl: Czy rozmiar danych zawsze idzie w parze z ich wartoscig materialng
albo moralng? Jesli nie, to co o nim decyduje?

Liczby naturalne

Zaczynamy nareszcie omawianie spraw prawdziwie komputerowych. Rozpoczniemy od
dokfadnego opisania sposobu, w jaki komputer przechowuje w pamieci najprostsze
mozliwe liczby - liczby naturalne.

Liczby naturalne, jak pamietamy ze szkoty, to liczby catkowite nieujemne, a wiec 0, 1, 2,
3,4,5,6, .., 100 itd.

Reprezentacja liczby naturalnej

W sposobie przechowywania liczby naturalnej w pamieci komputera nie ma zadnej
wielkiej filozofii. Przechowywana jest doktadnie tak, jak zapisalibysmy ja w systemie
dwojkowym. Kazdy bit stanowi pojedynczg cyfre w tym systemie.

Poswiecajgc na przechowywanie liczby okreslong ilo$¢ miejsca w pamieci ograniczamy
zakres, jaki moze przyjmowac ta liczba. Jest to inaczej ilos¢ mozliwych kombinacji bitow.
Przyktadowo dla 1 bajta (8 bitdw) mozliwych liczb bedzie:

28 = 256
Przyjmujac za pierwszg liczbe 0, otrzymujemy zakres od 0 do 255. Zakresem jest wiec
zawsze liczba mozliwych kombinacji bitow (czyli 2 do potegi rownej liczbie bitow)

pomniejszona o jeden.

Mozna wyrysowac tabelke z bitami i odpowiadajacymi im wagami. Wszystko to wyglada
dokfadnie tak samo, jak podczas omawiania zwyklych liczb binarnych.

bit | 7 |6 | s5]4a]3]2]1]0
waga |128| 64 [32]|16| 8 | 4 | 2 | 1

Tabela 29. Budowa liczby naturailnej.

Kolejne bity ponumerowatem (od 0) jedynie dla czytelnosci. Wagi sq, jak wida¢,
kolejnymi potegami dwajki.

Przyktadowo liczbe 00110001 mozemy rozkodowac sumujac wagi tych bitéw, ktérym
odpowiada jedynka.

32+16+1=49
Aby zakodowac liczbe wybieramy te wagi, ktérych suma bedzie rowna danej liczbie.

55=32+16+4+2+1=00110111

354

Zadanie 1512
1. Ilu bitdw potrzeba do zapisywania liczb z zakresu 0...65535?
2. Rozkoduj jednobajtowa liczbe 11111111.
3. Zakoduj liczbe 257 na 10 bitach. Czy ten przyktad jest dla ciebie prosty?
4, TIlu bajtéw potrzeba do zapisywania liczb z zakresu 239...255?

Liczby naturalne w programowaniu

Poznamy teraz praktyczne sposoby implementacji liczb naturalnych w jezyku C++.

Typy liczb naturalnych

Przyjeto nazwy na kilka typowych rodzajéw liczb naturalnych réznigcych sie iloscig
wykorzystywanych bajtow (i co za tym idzie — zakresem). Majg one swoje odpowiedniki
posrod typdw danych w jezyku C++. Kazdy z nich ma po dwie nazwy - jedng
standardowg i drugq (krotsza) zadeklarowang w plikach nagtéwkowych Windows.

Po pierwsze, mamy jeden bajt (ang. byte), czyli 8 bitdw. Odpowiada mu typ unsigned
char, albo inaczej BYTE. Jego zakres to 0...255.

Po drugie, moze by¢ typ dwubajtowy, czyli 16-bitowy. Dwa bajty nazywane sg stowem
(ang. word). Stad nazwy typdw: unsigned short albo WORD. Zakres takiej liczby to
0...65 535 (65 tysiecy).

Dalej mamy liczbe 32-bitowq, czyli zajmujacq 4 bajty pamieci. Nazywana bywa ona
podwdjnym stowem (ang. double word). Odpowiadajace typy w jezyku C++ to unsigned
long oraz DWORD. Zakres wynosi 0...4 294 967 295 (4 miliardy).

Jest tez typ, ktorego rozmiar zalezy od tego, czy uzywany kompilator jest 16-, czy 32-
bitowy. Nazywa sie unsigned int albo UINT. W praktyce jednak kompilatory we
wspotczesnych systemach operacyjnych (w tym Windows i Linux) sq 32-bitowe, a wiec
UINT jest tak naprawde tozsamy z DWORD — ich rozmiary w pamieci i zakresy sg
jednakowe.

Od czasu do czasu styszy sie gtosy, jakoby pojecie ,stowa” (ang. word) oznaczato ten
wiasnie rozmiar zalezny od platformy. W rzeczywistosci jednak okreslenie to pozostato
synonimem dwoch bajtéow (16 bitéw).

To jeszcze nie koniec. Dla tych, ktdrym nie wystarcza zakres 4 miliardéw, Microsoft
przygotowat w swoim kompilatorze dodatkowy typ: unsigned inté64. Jak sama nazwa
wskazuje, liczby tego typu zajmuja 64 bity, czyli 8 bajtéw. Ich zakres to 0...18 446 744
073 709 551 615 (18 trylionéw).

Dodatkowe stowo unsigned przed kazdym z typow oznacza ,bez znaku” i ma podkreslac,
ze chodzi nam o liczby naturalne (zawsze dodatnie). O liczbach ze znakiem (+ lub -),
czyli o liczbach catkowitych, bedzie mowa w nastepnym podrozdziale.

To nie pomytka, ze typ char wystepuje tu w roli typu liczbowego. Mimo docelowego
przeznaczenia do przechowywania znakow tekstowych jest to wtasciwy typ liczby 8-
bitowej, jako ze C++ nie wprowadza rozrdéznienia pomiedzy taka liczbg a znakiem.
Bedzie o tym mowa doktadnie w ostatnim podrozdziale.

112 1) 16b; 2) 255; 3) 0100000001; 4) Potrzebujemy 255-239=16 rdéznych kombinacji; 16=2*; potrzeba wiec
4b = 0.5B; nikt nie powiedziat, ze zakres musi by¢ od zera, ani ze nie mozna mdwic o potowie bajta :P

355

Zapisywanie wartosci liczb naturalnych

Po zdefiniowaniu zmiennej danego typu, wczesniej czy pdzniej nalezatoby przypisac jej
konkretng wartosc¢ liczbowa. Jezyk C++ pozwala na zapisywanie wartosci (sg to tzw.
state dostowne) w trzech systemach. Nie ma posrdd nich systemu binarnego - liczby w
tym systemie bytyby zbyt dtugie, a my przeciez znamy inne, fajniejsze systemy :)

Mozna napisac liczbe naturalng ot tak po prostu. Zostanie ona potraktowana dostownie
jako liczba w systemie dziesietnym i zadziata dla kazdego z wyzej wymienionych typow, o
ile nie przekracza jego zakresu.

BYTE nl = 255;
WORD n2 = 7;
DWORD n3 = 0O;

Jesli zapisywana liczbe poprzedzimy zerem, zostanie potraktowana jako liczba w
systemie 6semkowym, np.:

BYTE nl = 0377;
WORD n2 = 07;
DWORD n3 = 00;

Z kolei aby zapisa¢ liczbe w naszym upragnionym i najpozyteczniejszym systemie
szesnastkowym ;) nalezy poprzedzic¢ jg znakami 0x (zero i iks). Wtedy juz mozna jej
dalszg czes$¢ zaczynac od dowolnej liczby zer bez zadnych konsekwencji. Litery A...F
stosowane w roli cyfr mogq by¢ zaréwno duze, jak i mate.

BYTE nl OxFF;
WORD n2 = 0x07;
DWORD n3 = 0x0;

Na to poprzedzanie liczby zerem trzeba uwazac. Czasami chciatoby sie wyrownac liczby
roznej dtugosci do jednej kolumny. Pamietaj, by zawsze wstawia¢ w wolnych miejscach
spacje, a nie zera. Inaczej liczba zostanie potraktowana jako zapisana w systemie
6semkowym i moze miec inng niz oczekiwana wartosc!

Mozna tez dodac na koncu liczby duzag litere L, by wymusié typ long oraz u, by podkresli¢
brak znaku (czyli ze jest to liczba naturalna, a nie ogdlnie catkowita). Potaczenie tych
dwoch liter — czyli dodanie na koncu liczby uL, wymusza jej potraktowanie jako wartosci
typu unsigned long. W praktyce rzadko (jesli w ogole) zachodzi potrzeba uzywania tych
przyrostkow.

W przypadku takich przyrostkow wyjatkowo nie ma znaczenia wielkos¢ liter.

Dziatania na liczbach naturalnych

Liczby naturalne mozna dodawac (+), odejmowac (-), mnozy¢ (*) i dzieli¢ (/). Operator
dzielenia zastosowany na dwéch liczbach naturalnych da wynik réwniez naturalny, a
reszta z dzielenia zostanie obcieta.

Zadanie 16'**
Jakie wartosci bedg miaty zmienne po zainicjalizowaniu:

BYTE nl = 2+2%*2;

W) =24 (2%2)=244=6;n2=(FF)is/ (F)is+2=255/15+2=17+ 2 =19; n3 = 10 + (10)s + (10)1s
+ (10)1s =10+ 8+ 16 + 16 = 50; n4 = [(A)1s/ (2)s + 100] * (3)s = (10/2 + 100) *3 = (5 + 100) * 3 =
105 * 3 = 315 > 255, Btad: liczba poza zakresem!

356

WORD n2 = 0xff / OxOF + 2;
DWORD n3 10 + 010 + 0x10 + 0x010;
BYTE n4 (0x0A / 02 + 100) * 03;

Reszta z dzielenia

Skoro dzielenie w zbiorze liczb naturalnych obcina reszte, potrzebne jest dziatanie
zwracajace tg reszte. Dziatanie takie istnieje i oznacza sie je w C++ symbolem procenta:
$. Dzieki swoim ciekawym cechom oraz ogromnemu zastosowaniu w programowaniu
zastuguje na poswiecenie mu osobnego punktu.

Wstepne wiadomosci o reszcie z dzielenia byly juz wprowadzone wczesniej. Teraz
zajmiemy sie nim jeszcze bardziej szczegdétowo. Mozemy nawet sporzadzi¢ wykres tej
funkcji:

Wykres 3. Wykres funkcji naturalnejy = x % 5

Z rysunku mozna wywnioskowac¢, ze funkcja f(x) = x % c jest okresowa o okresie c i
przyjmuje kolejne wartosci naturalne z zakresu 0...c-1.

Zliczanie

Mozna to wykorzystac przy wielu okazjach. Jedng z najczesciej spotykanych jest
wszelkiego rodzaju zliczanie. Wyobraz sobie, ze pewien licznik odlicza w gdre zwiekszajac
wartos$¢ pewnej zmiennej L o jeden. Jesli chcesz, by jakas akcja byta wykonywana tylko
co szosty cykl licznika, napisz:

if (L % 6 == 0)
RobCos () ;

W taki wypadku pierwsze wywotanie funkcji nastgpi juz na samym poczatku - kiedy
zmienna L jest rowna 0. Mozesz to zmieni¢ porownujac otrzymanag reszte z dzielenia z
wartosciaq wiekszg od zera, np.:

if (L % 6 == 1)
RobCos () ;

Wtedy funkcja RobCos () wykona siedlan =1, 7, 13, 19, 25 itd.

Losowanie liczb naturalnych

Reszta z dzielenia moze przydac sie takze do generowania liczb pseudolosowych. Stuzaca
do tego funkcja rand () ma taka niemitq ceche, ze zawsze zwraca liczbe naturalng z
zakresu 0..RAND MAX. Wartos¢ tej statej wynosi u mnie 0x7£ff.

Jak wobec tego wylosowac liczbe naturalng z innego zakresu?

Wystarczy w tym celu wykorzysta¢ wiasciwos¢ operatora $ mowiaca o ,zawijaniu sie” jej
wykresu po osiggnieciu warto$ci maksymalnej. Mozemy skonstruowac takg funkcje:

357

// Losuje liczbe z zakresu 0...max-1
inline UINT my rand(UINT max)
{

[

return rand() % max;

}

Warto zauwazy¢, ze tylko dla stosunkowo matych wartosci maksymalnych
prawdopodobienstwo rozktadu wartosci losowanych bedzie w miare rownomierne.

Tak naprawde, dziatanie ¢ nie jest niezbedne. Mozna je sobie skonstruowac za pomocg
wyrazenia: (x -y *(x / y).
/ jest tutaj dzieleniem catkowitym.

Operatory bitowe

Oprocz operacji na pojedynczych wartosciach logicznych, dziatania z algebry Boole’a
maja w jezyku C++ takze inne odpowiedniki. Sq nimi operatory bitowe - takie, ktore
wykonujg podang operacje logiczng na wszystkich odpowiadajacych sobie bitach
podanych wartosci.

Najlepiej bedzie pokazac to na przyktadzie. Pierwszym operatorem bitowym, jaki
poznamy, bedzie operator negacji bitowej oznaczany symbolem ~ (tzw. tylda).

~(00100111) = 11011000

lo o 1 0 0 1 1 1
~|1 1 0 1 1 0 0 O

Tabela 30. Przykiad negacji bitowej.

Jak wida¢, kazdy z bitéw zostat zanegowany.

Operatorami dwuargumentowymi sg operator sumy bitowej (alternatywy) oznaczany za

pomocq | (taka pionowa kreska) oraz operator iloczynu bitowego (koniunkcji) oznaczany
jako &. Wykonywane przez nie operacje na poszczegolnych bitach sg analogiczne, jak w

algebrze Boole'a.

00100111 | 11001010 = 11101111

001 00 1 1 1
I]1 1 0 0 1 0 1 0
=1 1 1 0 1 1 1 1

Tabela 31. Przykiad sumy bitowej.

00100111 & 11001010 = 00000010

0 01 0 0 1 1 1
&1 1 0 0 1 0 1 O

=0 0 0 0 0 0O 1 O
Tabela 32. Przyktad iloczynu bitowego.

Istniejq jeszcze operatory przesuniecia bitowego. Ich uzycie umozliwia przesuniecie catej
wartosci o okreslong liczbe bitéw w lewo lub w prawo. Powstate po przesunieciu miejsce
jest wypetnione zerami. Bity ,wypychane” poza komédrke pamieci sq bezpowrotnie
tracone.

358

Przyktad:
00000101 << 4 = 01010000

Operatory przesuniecia bitowego majg ogromne zastosowanie do konstruowania wartosci
z kilku elementéw, np.:

(1<<3)|(0<<2)|(0<<1)|(1<<0)=(1<<3)|]1=1000]1=1001

Nie wolno pomyli¢ operatoréw bitowych z odpowiadajacymi im operatorami logicznymi.
Trzeba uwazac na tg roéznice tym bardziej, ze sq one podobne w zapisie i tatwo tutaj o
pomytke. Tymczasem wartosci takich wyrazen bedq zupetnie rézne od oczekiwanych.

,Lub”: | - bitowe, || - logiczne
,I": & - bitowe, && - logiczne

|| i && operujg na catych liczbach, a | i & na pojedynczych bitach.

Zadanie 17"
Oblicz i podaj wynik w systemie binarnym, dziesietnym oraz szesnastkowym:
1. O0x0f | 99

2. (05 << 4) / 4

3. 010 & 0Ox10 & 10

4. ((0x0f << 3) | (0xf0 >> 4) - 100) * (257 & 24)
Xor

Pozostat nam do omdwienia jeszcze jeden operator bitowy — operator réznicy
symetrycznej zwany tez ,xor” (ang. exclusive or — wytgcznie lub). Jego wynikiem jest w
danym bicie jedynka wtedy i tylko wtedy, kiedy doktadnie jeden z poréwnywanych bitow
jest 1 — nie zaden ani nie obydwa.

Oznacza sie go w C++ symbolem ~ (ptaszek). Nalezy zapamietac¢, ze ten znak to wiasnie
xor, a nie, jak to sie czasami oznacza, podnoszenie liczby do potegi. W C++ nie ma
operatora potegowania.

Co takiego daje nam ten operator? Nie bytoby w nim niczego uzytecznego, gdyby nie
niezwykte wtasciwosci dziatania, ktére on wykonuje. Oprécz tego, ze (podobnie jak
wszystkie pozostate operatory bitowe) jest ono przemienne, dla kazdych x i y zachodzi
takze wtasnosc¢:

XAy Ny =X

Innymi stowy, po dwukrotnym ,przexorowaniu” liczby przez ta samaq wartos$c
otrzymujemy dang liczbe wyjsciowa.

Szyfrowanie

Mozna pokusic¢ sie o napisanie na tej podstawie prostego algorytmu szyfrujacego. Zasada
jego dziatania bedzie nastepujaca:

114 1) 1111 | 1100011 = 1101111 = (111);0 = OX6F; 2) (101 << 4) /4 = 1010000/ 4 = 80/ 4 = 20 = Ox14 =
10100; 3) 1000 & 10000 & 1010 = 0; 4) ((1111 << 3) | (11110000 >> 4) - 100) * (100000001 & 11000) =
(1111000 | 1111 - 100) * 0 = 0

359

=X X X X X X X X X X

Tabela 33. Szyfrowanie za pomoca xor.

Kazdg komorka tabeli jest tym razem znak, a wiec caty bajt. Wykonujac xor kazdego
znaku przez hasto otrzymujemy pewien szyfrogram, czyli znaki oznaczone tutaj przez
XXXXXXXXXX.

LJakies_cos” ~ ,Nic” = XXXXXXXXXX

Hasto zostaje ,,zawiniete”, czyli powtdrzone wiele razy. Takie powtdrzenie mozna
zaimplementowac¢ (jak mam nadzieje juz sie domyslasz) za pomocg operatora reszty z
dzielenia. Oto funkcja:

std::string SzyfrowanieXor (std::string a Text, std::string a Haslo)
{
std::string Wynik;
for (size t i = 0; i < a Text.size(); i++)
Wynik += a Text[i] ”~ a Haslo[i % a Haslo.size()];
return Wynik;

}

Najciekawsze w tym wszystkim jest to, ze ta sama funkcja stuzy do szyfrowania i
deszyfrowania tekstu (lub, odpowiednio, zaszyfrowanego tekstu) przez podane hasto.
Wynika to oczywiscie z wtasnosci, ktorg zaprezentowatem na poczatku.

X X X X X X X X X X
AIN i ¢ N i ¢ N i ¢ N
=|J a k i e § _ c o ¢

Tabela 34. Deszyfrowanie za pomoca xor.

XXXXXXXXXX A, Nic” = ,Jakie$_cos”

Suma kontrolna

Drugim ciekawym zastosowaniem rdznicy symetrycznej jest obliczanie sum kontrolnych,
czyli wartosci skojarzonych z pewnymi danymi i pozwalajacych zweryfikowac ich
poprawnosc.

Na przyktad jesli piszesz program do kompresji, mozesz w swoim formacie pliku
przewidzie¢ miejsce na sume kontrolng obliczong z kompresowanych danych. Podczas
dekompresji obliczysz sume jeszcze raz i jesli nie zgodzi sie z tg zapisang, to znaczy ze
dane zostaty uszkodzone. Nalezy wtedy wyswietli¢ bad.

Aby obliczy¢ jednobajtowg sume kontrolng, wystarczy ,, przexorowac” wszystkie bajty
danych. Oto przyktadowa funkcja:

BYTE SumaKontrolna(void* a Dane, size t a Rozmiar)
{
BYTE Suma = 0;
for (size t i = 0; i1 < a Rozmiar; i++)
Suma = Suma " static cast<BYTE*>(a Dane) [1];
return Suma;

Przedstawione metody szyfrowania i obliczania sumy kontrolnej nie sg najlepsze czy
najbezpieczniejsze. W powszechnym uzyciu sg duzo lepsze, ale i bardziej skomplikowane.
Wszystko zalezy od tego, do jakiego zastosowania potrzebujesz danego algorytmu oraz

360

czy masz ochote na napisanie go samemu :)
Te przyktady miaty tylko pokazac zastosowanie operatora .

Flagi bitowe

Mimo matych mozliwosci, czasami potrzebne jest przechowywanie danych na jednym
bicie - czyli wartosci logicznej typu prawda/fatsz. Do operowania na pojedynczej wartosci
tego rodzaju doskonale nadaje sie typ logiczny.

Gorzej, kiedy zachodzi potrzeba utworzenia, przestania czy wykorzystania catego zestawu
takich flag bitowych. Operowanie na osobnych zmiennych typu bool nie bytoby ani
wygodne, ani oszczedne. Dlatego do takich zastosowan wykorzystuje sie pojedyncze bity
liczb naturalnych.

Nauczmy sie operacji na takich flagach bitowych!

Zanim jednak przejdziemy do omawiania tematu, pokaze popularny przyktad uzycia
takich flag. Majq one zastosowanie chociazby w jednym z parametréw znanej wszystkim
funkcji MessageBox () :

MessageBox (0, "Hello world!", "App", MB OK | MB ICONEXCLAMATION) ;

Jako ostatniego parametru powyzsza funkcja oczekuje zestawu informacji réznego
rodzaju, m.in. jakie chcemy mie¢ przyciski i jakg ikonke w tworzonym okienku z
komunikatem. Chociaz niektére mozliwosci wykluczajg sie (trzeba podac tylko jedng z
nich), to wszystko sg wartosci logiczne w rodzaju tak/nie.

Zastanéwmy sie, jak takie flagi skonstruowac. Z powyzszego przykfadu widac juz, ze ich
uzycie polega na potaczeniu wybranych flag operatorem bitowym ,lub”. Mozna sie
domysla¢, ze kazda z takich flag to stata o nazwie rozpoczynajacej sie od tego samego
przedrostka i o takiej wartosci, w ktérej jedynka jest tylko jeden bit - w kazdej z nich
inny.

Mozemy juz sprobowac zadeklarowac sobie jakies przyktadowe flagi:

const DWORD BLE FLAGAl = 0x00000001uL;
const DWORD BLE_FLAGAZ 0x00000002ulL;
const DWORD BLE FLAGA3 = 0x00000004uL;
const DWORD BLE FLAGA4 0x00000008ulL;
const DWORD BLE_FLAGA5 = 0x00000010uL;

Wartosci trzeba tak dobraé, aby po przeliczeniu na system binarny odpowiadaty
jedynkom w kolejnych bitach liczby (czyli kolejne potegi dwojki).

Przypisanie wartosci:
DWORD dwWartosc = BLE FLAGAl | BLE FLAGA4;
...zainicjalizuje zmienng dwWartosc wartosciq:

0001 | 1000 = 1001 = 9

Jednak nie wartos¢ liczbowa jest tutaj istotna, ale wiasnie kombinacja pojedynczych
bitéw. Dzieki takiemu podejsciu mozesz ,upychac” wiele informacji typu logicznego (do
32) w pojedynczej 32-bitowej liczbie naturalnej.

Teraz trzeba jako$ odczytywac tak upakowane bity. Postuzymy sie w tym celu drugim
operatorem bitowym - ,,i”. Filtrujac za jego pomocg kombinacje flag bitowych przez

361

pojedynczg flage otrzymujemy, zaleznie od wartosci sprawdzanego bitu w tej wartosci —
tq flage lub 0.

if ((dwWartosc & BLE FLAGA4) == BLE FLAGA4)

std::cout << "Flaga 4 jest ustawiona." << std::endl;
else

std::cout << "Flaga 4 nie jest ustawiona." << std::endl;

Jak wida¢, nie jest to trudne. Ma za to ogromne zastosowanie w programowaniu i jest

wykorzystywane w réznych API. Dlatego trzeba temat flag bitowych dobrze zrozumiec i
nauczyc sie ich uzywac.

Liczby catkowite

NauczyliSmy sie wszystkiego o programowaniu liczb naturalnych. Pora rozszerzy¢ zakres
naszego zainteresowania. Zajmiemy sie teraz liczbami catkowitymi, ktdre, jak pamietamy
ze szkoty, moga by¢ ujemne albo dodatnie, np.: -1000, -21, -5, 0, 3, 10, 25 itp.

Wypadatoby zacza¢ od opisania sposobu, w jaki komputer przechowuje tego rodzaju
liczby w pamieci. Zastandwmy sie, jak mégtby on to robic...

Bit znaku

Pierwsze, co przychodzi do gtowy, to zarezerwowanie jednego sposrdéd bitéw liczby na
przechowywanie informacji o znaku.

bit | 7 |e6|5]|4]3]2]1]0
waga | znak |64 32|16 8 4] 21

Tabela 35. Budowa liczby catkowitej z bitem znaku.

Przyktadowo mozna sie umowié, ze wartos¢ siddmego bitu 0 oznacza znak ,+”, a 1
oznacza znak ,-". Moglibysmy wtedy zapisywac liczby w taki sposob:

01010011 = 83
11001101 = -77

Niestety, w przedstawiony sposob nie koduje sie liczb catkowitych. Rozwigzanie to jest
zte, poniewaz:

00000000 =0
10000000 = -0

Jak wida¢, dwie mozliwe kombinacje bitow odpowiadajg tej samej wartosci liczbowej. Jest
to ogromna wada z dwdch zasadniczych powodow:

1. Jeden z mozliwych standw marnowatby sie.
2. Zachodzitaby konieczno$¢ uwzgledniania tej niejednoznacznej wartosci w
obliczeniach.

Dlatego prawdziwy sposdb reprezentaciji liczb catkowitych w pamieci komputera jest inny.
Jego nazwa to:

362

Kod uzupetnien

Wiasciwie, jego petna nazwa to ,kod uzupetnien do dwdch”, a jego oznaczeniem jest
»,U2". Kod ten opiera sie na bardzo ciekawym pomysle. Przyjrzyj sie wagom, jakie
przypisuje sie poszczegdélnym bitom liczby catkowitej w tym kodzie:

bit | 7 |6 |5]|4]3]2]1]0
waga | -128 |64 32|16 8| 4] 2| 1

Tabela 36. Budowa liczby catkowitej w kodzie uzupeinien U2.

Jak widac¢, waga ostatniego bitu jest ujemna. Aby w petni rozgryz¢ istote sprawy musimy
przypomniec sobie, ze liczby w kodzie opisanym takimi wagami liczyto sie sumujac wagi
bitéw, ktorym odpowiadata binarna jedynka. Popatrzmy na przyktady:

(00000000);, = 0

(01010101)y, =64+ 16 +4+ 1 =85
(11110000)y, = -128 + 64 + 32 + 16 = -16
(11000011)y, =-128+ 64 +2+ 1 =-61

W taki sposob da sie zakodowac¢ kazdg liczbe z dopuszczalnego zakresu. Ano wiasnie...
Jaki jest zakres liczb w kodzie U2?

Aby odpowiedzie¢ na to pytanie, sprobujmy znalez¢é najmniejszg i najwiekszg liczbe, jakg
da sie zakodowac w ten sposob. Bedg to odpowiednio:

(10000000),, = -128
(01111111),, = 127

Tak wiec dopuszczalny zakres to -128...127.

Odwrotny kod uzupetnien

Mozna tez wymysli¢ sobie kod uzupetnien o wszystkich wagach ujemnych, a ostatniej
dodatniej.

bit | 7|1 6 | 5] 4| 3] 2]1]0
waga |128|-64 |-32|-16| -8 | -4 | -2 | -1

Tabela 37. Inny kod uzupeinien.

Jak mozna zauwazy¢, jego zakresem bedzie -127...128. Liczby zapisane w takim kodzie
uzupetnien sg oczywiscie niekompatybilne z liczbami zapisanymi w tym pierwszym.

Prawdziwym kodem U2 - tym stosowanym w komputerze - jest ten pierwszy, w ktorym
wszystkie wagi sq dodatnie, ostatnia jest ujemna, a zakres jest na minusie o jeden
wiekszy niz na plusie.

Zadanie 18'"°
Zaprojektuj kod uzupetnien o podanym zakresie. Ile bitéw potrzeba? Narysuj do kazdego
tabelke z wagami.

1. -16..15

2. -15..16

3. -1024...1023

115 1) 5p, -16,8,4,2,1; 2) 5b, 16,-8,-4,-2,-1; 3) 11b, -1024,512,256,128,64,32,16,8,4,2,1

363

Kodowanie liczb w U2

Aby zapisac¢ liczbe w kodzie uzupetnien wpisujemy jedynki w bitach o takich wagach, aby
ich suma byta rowna danej liczbie. Przypomnijmy tabelke z kodem, ktérego bedziemy
uzywali:

bit | 7 |6 |5]|4]3]2]1]0
waga | -128 |64 32|16 8| 4] 2| 1

Tabela 38. Kod U2, ktérego uzywamy.
Przyktady kodowania liczb:

33 =32 + 1 =(00100001),
115=64+32+ 16 + 2 + 1 = (01110011),;,

Liczby ujemne zapisuje sie analogicznie. Trzeba tylko ustawic¢ ostatni bit na 1 (aby w
ogole otrzymac liczbe ujemng) a nastepnie wybierac takie bity dodatnie, ktére zwiekszg
nam warto$¢ do pozadanej.

-44 = -128 + 64 + 16 + 4 = (11010100).,
2=-128+64+32+16+8+4+2 = (11111110)y,

Teraz twoja kolej :)

Zadanie 19''°
Zapisz w powyzszym kodzie U2 liczby:

1. 120
2. -120
3. -1
4. 64

Dodawanie i odejmowanie w U2

Tutaj bedzie niespodzianka. Okazuje sie, ze mimo swojej nieco dziwnej budowy liczby w
kodzie uzupetnien dodaje sie i odejmuje doktadnie tak samo, jak zwykie liczby binarne!
Trzeba przy tym jednak ignorowac wszelkie pozyczki oraz przepetnienia poza zakres.

Rozpatrzmy przyktady:

0 1. 0 01 0 1
1 1 1 1 1 0 1
0

0

1
lo 1 0 0 0 1 0 1

U2.

Tabela 39. Dodawanie liczb w kodzie

+

tatwo zauwazy¢, ze nastgpito tutaj przepetnienie. Jak sie jednak okazuje, mimo tego
otrzymany wynik jest poprawny!

74+ (-5)=74-5=69
Teraz zobaczmy, jak wyglada odejmowanie:

lo 1 0o 01 0 1 0

11691 (01111000)y,; 2. (10001000)yz; 3. (11111111)y,; 4. (01000000)y;

364

-1 1 1 11 0 1 1
=0 1 0 0 1 1 1 1

Tabela 40. Odejmowanie w kodzie U2.

Trzeba byto dokonaé pozyczki od nieistniejgcej jedynki. Mimo tego udato sie poprawnie
obliczy¢:

74— (-5)=75+5=79

Jasne jest, ze nie zawsze wynik bedzie poprawny. Obliczana liczba moze sie znalez¢ poza
zakresem i wtedy otrzymamy btedny wynik.

Zadanie 20"’
Oblicz za pomocg kodu uzupetnien:

1. 242
2. -6+ (-6)

3. 127 + (-127)
4. 10 - 20

Odwracanie liczby

Oprécz dodawania i odejmowania, z liczbg catkowitg mozna zrobié jeszcze jedng rzecz -
mozna jg odwroci¢. Odwrdcenie to inaczej zmiana znaku. Liczbg odwrotng do 6 jest liczba
-6, a liczbg odwrotng do -6 jest liczba 6. Odwracanie nazywamy zanegowaniem.

Aby odwrdci¢ liczbe zapisang w kodzie U2, trzeba wykona¢ dwie czynnosci:

1. Zanegowac wszystkie bity liczby (negacja bitowa).
2. Do wyniku doda¢ 1 (normalne dodawanie pod kreske).

Oto przyktad odwracania liczby -78:

|1t o0 1 1. 0 0 1 0
~[0 1 0 0 1 1 0 1

Tabela 41. Odwracanie liczby - etap 1 z 2 (odwracanie bitow)

01 00 1 1 0 1
+/0 0 0 00O 0 0 1
=0 1 o 0o 1 1 1 0

Tabela 42. Odwracanie liczby - etap 2 z 2 (dodawanie jedynki)

Jak fatwo policzy¢, wyszto 78.

Ta mozliwos$¢ odwracania to dobra wiadomos¢. Jesli nie radzisz sobie z kodowaniem liczb
ujemnych poprzez gromadzenie potrzebnych wag, mozesz normalnie zakodowac liczbe
dodatnia, a nastepnie jg odwrdcic!

117 1. (00000010)y2+(00000010),2=(00000100))uz; 2. (11111010)y2+(11111010)y2=(11110100)2; 3.
(01111111)y,+(10000001)y,=(00000000)y,; 4. (00001010)y,-(00010100)y,=(11110110)y,

365

Liczby catkowite w programowaniu

Nadeszta pora na poznanie praktycznej implementacji liczb catkowitych w jezyku C++.
Oto przeglad dostepnych typow danych:

» Typ jednobajtowy (8-bitowy) to signed char, albo po prostu char. Jego zakres to
-128...127.

> Typ dwubajtowy (16-bitowy) to short. Jego zakres to -32 768...32 767 (£32
tysigce).

> Typ czterobajtowy (32-bitowy) nazywa sie long. Jego zakresem sg liczby -
2 147 483 648...2 147 483 647 (+2 miliardy).

> Dodatkowym o$miobajtowym (64-bitowym) typem jest int64 o zakresie -
9 223 372 036 854 775 808...9 223 372 036 854 775 807 (9 tryliondw).

> Typem o ditugosci zaleznej od uzywanego kompilatora jest typ int. W praktyce w
systemach Windows i Linux jest on rownowazny typowi 32-bitowemu. To wtasnie
tego typu uzywa sie najczesciej jako zwyczajnego typu dla liczb catkowitych.

W rzeczywistosci mozliwych nazw typéw jest duzo wiecej. Po stowie short i long mozna
postawiC int, a przez analogie to typu int64 pozostate majg takze nazwy: ints,
__intl6i __ int32. Analogicznie do typédw naturalnych, przed kazdym z przedstawionych
mozna tez postawic stowo signed.

Pozostat do omédwienia juz tylko sposdb zapisywania liczb catkowitych. Jednakze
praktycznie nie ma tu czego opisywac. Liczbe mozna poprzedzi¢ znakiem + lub -. Znak +
znaczy tyle samo, co gdyby go tam w ogdle nie byto - sygnalizuje, ze liczba jest
dodatnia.

Liczby rzeczywiste

Wiemy juz bardzo duzo o tym, jak komputer radzi sobie z dodatnimi i ujemnymi liczbami
catkowitymi. Jednak to nie wystarczy. W obliczeniach zachodzi czasami potrzeba
postuzenia sie liczbami posiadajagcymi cze$¢ utamkowa. Takie liczby nazywamy liczbami
rzeczywistymi.

Moéwigc Scislej, liczby rzeczywiste to wszystkie liczby potozone na osi liczbowej. Takze te,
ktérych nie umiemy doktadnie zapisaé, np. ludolfina (znana jako =), liczba Nepera (znana
jako e) czy pierwiastek z dwoch (takie liczby nazywamy niewymiernymi).

Jak mozna przypuszczac, komputer nie postuguje sie zawsze precyzyjnymi liczbami
wykonujgc operacje na nich tak jak uczen na matematyce, np.:

107+13 10 13

T
3 3 3

Niektore zaawansowane programy matematyczne to potrafig. Jednak normalnie
komputer postuguje sie konkretnymi wartosciami liczbowymi i na nich wykonuje
obliczenia tak, jak my robimy to na lekcjach fizyki. Z koniecznosci liczby te majg
doktadnos$¢ ograniczong do pewnej ilo$ci miejsc po przecinku. Liczby niewymierne (jak
wspomniana n czy €) sg reprezentowane przez wartosci przyblizone, np.:

107 +13 10-3.14+13 134+13 264
3 3 3 3

8.8

366

Kod statoprzecinkowy

Zastanéwmy sie, w jaki sposdb komputer mogtby przechowywaé w pamieci liczby
rzeczywiste. Aby znalez¢ odpowiedz na to pytanie przyjrzyjmy sie blizej metodzie, jakiej
my uzywamy na co dzien.

Zapisujac liczbe rzeczywista, piszemy np. tak:
1984.0415

Kilka cyfr tworzy normalng czes¢ catkowitg liczby, dalej wystepuje przecinek (albo - jak
to jest w programowaniu - kropka) i wreszcie kolejne cyfry, ktore tworzg czesc
utamkowaq. Cata liczba zapisana jest w naszym normalnym systemie dziesietnym.

Gdyby tak zapisywac liczby w taki sam sposob, ale w systemie binarnym, mozna bytoby
bezposrednio przechowywac je w pamieci komputera! Po prostu — pewna ilo$¢ bitow
uznawana byfaby za cyfry dwojkowe przed przecinkiem, a pozostate bity za cyfry po
przecinku.

Taki kod - z umieszczonym na state przecinkiem - to kod staloprzecinkowy albo
statopozycyjny.

Dla przyktadu rozwazmy liczbe zapisang w kodzie 16-bitowym. Darujemy sobie doktadne
rozpisanie sposobu jej rozkodowania, bo nie jest to tutaj najwazniejsze.

(11111111.11111111) = 255 + 255/256 = 255.99609375

Musisz wiedzie¢, ze w taki sposdb nie koduje sie w komputerze liczb rzeczywistych. Kod
statoprzecinkowy ma wiele wad:

> malty zakres liczb mozliwych do zakodowania
> mata dokfadnos$¢ (precyzja) czesci utamkowej
> trudny do oszacowania btad obliczen

Mata powtorka z fizyki

Skoro taki sposéb jest nienajlepszy - to jak wyglada ten lepszy? Niestety sprawa, do
ktérej zmierzamy, jest dos¢ skomplikowana. Do jej zrozumienia potrzebna bedzie cata
wiedza opisana powyzej (w tym kodowanie liczb naturalnych i kodowanie liczb
catkowitych w kodzie uzupetnien). Zanim przejdziemy do sedna sprawy, musimy tez po
raz kolejny zrobi¢ matg powtdrke ze szkolnej wiedzy.

Przypomnijmy sobie, w jaki sposob zapisuje sie liczby na przedmiocie najblizszym
naszym aktualnym rozwazaniom - czyli na fizyce. Liczby moga by¢ dokfadne, np. 100 m.
Mogaq byc¢ tez przyblizone do kilku miejsc po przecinku, np. 0.3333 A.

Czesto zdarza sig, ze liczba jest bardzo duza albo bardzo mata. Stosuje sie w takim
wypadku odpowiednie przedrostki wielokrotnosci, ktére powtdrzyliSmy juz sobie
niedawno. Przykiady: 22 uF, 3 km.

Do obliczen trzeba jednak sprowadzi¢ wielkosci do jednostek podstawowych. Mozna
wtedy napisac tak: 0.000022 F, 3000 m, ale do wyrazania liczb bardzo duzych i bardzo
matych uzywa sie na lekcjach fizyki takiego zapisu:

22*%10° F, 3*10° m

367

Przeanalizujmy to dokfadnie. Liczba zapisana w taki sposéb sktada sie z dwoch czesci.
Pierwszg jest ,liczba wtasciwa”, a drugq liczba 10 podniesione do jakiejs potegi.
Nietrudno zauwazy¢, ze potega -6 odpowiada przedrostkowi mikro (n), a potega 3
odpowiada przedrostkowi kilo (k). Dziesigtka to, jak mozna sie domysli¢, po prostu
podstawa naszego systemu.

Tak naprawde, liczba przed znakiem mnozenia to kodowana liczba po tzw. normalizacji.
Np.:

123000000 = 1.23*10°

Umawiamy sie, ze znormalizowana liczba musi mie¢ jedng cyfre przed przecinkiem i
pozostate po przecinku. W tym celu przesuwamy przecinek o odpowiednig liczbe
miejsc w prawo albo w lewo. Ta liczba miejsc, o jakie przesuneliémy przecinek, to jest
wiasnie wyktadnik potegi.

W przypadku przesuwania przecinka w lewo potega jest (jak widac¢) dodatnia, a w
wypadku przesuwania przecinka w prawo bytaby ujemna.

Na zakonczenie tej powtorki zobaczmy jeszcze, jak mozna rozkodowac tak zapisang
liczbe. Jako przyktad wezmy: 4.79%10°°.

Mozna ja zwyczajnie wyliczy¢:
4.79%10° = 4.79%1/10° = 4.79%0.00001 = 0.0000479
ale mozna tez po prostu przesunac przecinek o 5 pozycji w lewo:

000004.79 > 00000.479 > 0000.0479 > 000.00479 > 00.000479 > 0.0000479

Kod zmiennoprzecinkowy FP2

Zostawmy juz ten niekoderski system dziesigtkowy i wro¢my do naszego ulubionego
zapisu binarnego :) Mozna wyobrazi¢ sobie przeniesienie wszystkiego, co zostato
napisane wyzej, bezposrednio z systemu dziesietnego na binarny. Jedynga réznicg bedzie
liczba 2 zamiast 10 jako podstawa potegi.

No to teraz, niestety, zobaczymy kolejny przerazajacy wzoér :0
L=(-1) -m-N°¢

N to podstawa systemu liczbowego.
s to bit znaku.
» 0 oznacza znak +, bo (-1)°=1
» 1 oznacza znak -, bo (-1)* = -1
c (cecha) to wyktadnik potegi, czyli informacja, o ile miejsc przesuwamy przecinek. Moze
by¢ dodatnia albo ujemna. Jest zapisana w kodzie uzupetnien U2.
m (mantysa) to znormalizowana liczba, zapisana jako binarna liczba naturalna.

Taki kod z cechg i mantysa, to kod zmiennoprzecinkowy albo zmiennopozycyjny
(jego oznaczeniem jest FP2 - od ang. floating point). Jego nazwa wzieta sie stad, ze
cecha moze przesuwac przecinek mantysy. Pozwala to na zapisywanie bardzo duzych i
bardzo matych liczb.

To wtasnie w taki sposéb komputer koduje liczby rzeczywiste!

368

Oprécz dwdch nowopoznanych stdwek - ,mantysa” i ,cecha” - pokazany wzér razem z
objasnieniem powinien nam pomoc w zakodowaniu i rozkodowaniu przyktadowej liczby.
Do liczby zapisanej w kodzie FP2 zawsze trzeba podac, ile bitdw zajetych jest przez
mantyse, a ile przez ceche. Oto budowa przyktadowego kodu FP2:

znak cecha mantysa
bit 15 | 14 |13|12|11]|]10] 9 | 8 | 7 | 6 | 5|4 | 3|2]|1] 0

waga| s |-16| 8 | 4 | 2 | 1 |2t |22 |23 |2%|2°|2°%|27|2¢8|2°]| 210
Tabela 43. Budowa przykiadowego kodu FP2.

Sprawa wydaje sie bardzo trudna i taka jest w istocie. Ale nie trzeba sie bac¢ na zapas.
Sprobujemy teraz powoli zakodowac¢, a potem rozkodowac liczbe w przedstawionym
systemie, a wszystko stanie sie jasne :)

Kodowanie

Chcemy zapisac liczbe 1984.0415 w kodzie FP2 o budowie przedstawionej w powyzszej
tabelce. W tym celu wykonujemy kolejne kroki:

Po pierwsze, ustalamy znak. Liczba jest dodatnia, a wiec:
s=0

Gdyby byta ujemna, wartoscig bitu bytoby 1, a dalej rozpatrywalibysmy juz liczbe
przeciwng - czyli pozbawiong tego minusa (dodatnia).

Teraz musimy zapisac tg liczbe w normalnym systemie binarnym. Postuzymy sie
poznanym wczesniej algorytmem Hornera. Jako docelowg liczbe bitdw przyjmujemy 11 -
o jeden wiecej, niz moze przechowac¢ mantysa (zaraz sie okaze, dlaczego wiasnie tak).

1984.0415 * 2! = 4 063 316.992 ~ 4 063 317

4 063 317 :
2 031 658 :
1 015 829 :
507 914 :
253 957 :
126 978 :
63 489 :
31 744 :
15872 :

7 936 :
3968 :
1984 :
992 .

496 :

248 :

124 .

62 :

31:

15

7

3:

1:

PHFHEPFFPFRPFRPOOOOOOOOOOHOHOHOR

ONNNNNNNNNNNNNNNNNNNNNDN

369

Tabela 44. Kodowanie liczby algorytmem Hornera.

A wiec mamy:
1984.0415 = 11111000000.00001010101

OK, liczba zostata przeliczona. Teraz mozemy zajac¢ sie wiasciwym kodowaniem w FP2.
Dokonujemy normalizacji — czyli przesuwamy przecinek tak, aby przed przecinkiem
znajdowata sie tylko jedna niezerowa cyfra.

Wychodzi co$ takiego:
1.111100000000001010101
Zauwaz, ze jedyng mozliwg niezerowg cyfrg w systemie dwdjkowym jest 1. Skoro przed

przecinkiem zawsze stoi pojedyncza jedynka, mozemy zapamietac, ze ona tam jest i
oszczedzi¢ jednego bitu nie zapisujac jej. Dlatego jg pogrubitem.

Mozna tez spotkac taki kod, w ktérym wszystkie znaki znajduja sie za przecinkiem - tzn.
przecinek przesuwany jest tak, aby bezposrednio za nim znalazta sie pierwsza jedynka.
Kolejne wagi mantysy miatyby wtedy postaé¢ 272, 273, 2°* itd.

O ile sie nie myle, komputer w rzeczywistosci uzywa jednak tego kodu z jedynka przed
przecinkiem.

Ostatecznie mantyse utworzg kolejne cyfry spisane od przecinka dotad, dokad zmieszcza
sie w przyjetej dtugosci mantysy (u nas 10 bitéw). Gdybysmy mieli mniej cyfr, niz jest
potrzebne, mantyse uzupetnia sie zerami z prawej strony.

m = 1111000000

Teraz zajmiemy sie cecha. Pamietamy, ze przecinek przesuneliSmy o 10 miejsc w lewo.
Jako ceche trzeba wiec bedzie zapisac liczbe 10 w kodzie U2, ktérego budowe mozna
wyczytac z tabelki z budowg kodu zmiennoprzecinkowego, w jakim kodujemy.

Trzeba odrézni¢ ujemng wartos¢ cechy od ujemnej wartos$ci mantysy. Tutaj obydwie te
liczby sq dodatnie, ale réwnie dobrze mogtyby by¢ ujemne. Ujemna mantysa oznacza, ze
kodowana liczba jest ujemna. Ujemna cecha oznacza, ze podczas normalizowania
przesuwamy przecinek w prawo.

Ostatecznie cecha wyglada tak:

¢ = (01010),

Jak wida¢, mantyse zapisuje sie w postaci liczby naturalnej i osobnego bitu znaku, a
ceche za pomocg kodu uzupetnien U2. Co wiecej, na schemacie budowy kodu FP2 wida¢,
ze znak mantysy jest od samej mantysy oddzielony cecha.

Mamy juz wszystkie czesci liczby. Mozemy jgq zapisa¢ w petnej okazatosci:
1984.0415 = (0 01010 1111000000)p,

Wiem, wiem, to nie byto proste :) Warto wréci¢ w tej chwili to teorii i do tego
przerazajacego wzoru (moze wyda sie teraz juz odrobine mniej straszny?), a potem
jeszcze raz doktadnie przeanalizowaé powyzszy sposéb kodowania liczby.

370

Dekodowanie

Rozkodujemy teraz tg liczbe z powrotem. Postuzy do tego przedstawiony niedawno wzér.
Rozpatrujgc kolejne elementy, otrzymujemy:

s = 0, a wiec mamy: (-1)°
m = 1111000000, a wiec mamy: 2% + 22 + 27 + 2*
c = (01010)y, = 10, a wiec mamy 2*°
Skfadajac to razem zgodnie z wzorem, otrzymujemy do policzenia takie cos:

(1)°* 2%+ 21+ 22+ 27 +2%) %210 =

Pogrubiony sktadnik odpowiada jedynce przed przecinkiem, ktérg zapamietaliSmy i nie
zapisaliSmy w zakodowanej liczbie, oszczedzajac jeden bit. Nie wolno o niej zapomnieé
podczas rozkodowania liczby.

Uwazaj na opuszczenie tego sktadnika - to bardzo czesty btad!!!

Kiedy to policzymy, wyjdzie nam od razu rozkodowana liczba. A wiec do dziefa!
(-1)° = 1, a wiec ten element mozemy pominaé.

Mozna bytoby teraz zmudnie podnosic¢ te dwojki do tych ujemnych poteg, ale jest lepsze
wyjscie. Mozemy do kazdego z wyktadnikdédw poteg w nawiasie doda¢ wyktadnik tej potegi
za nawiasem. Ostatecznie mozna liczy¢ dalej tak:

210 4+ 29 4+ 28 + 27 4+ 2% = 1024 + 512 + 256 + 128 + 64 = 1984

Wyszto mniej wiecej tyle, ile powinno byto wyjs¢. Ale chyba czegos$ tu brakuje :)
Czyzby$smy o czyms$ zapomnieli? Moze nie zrobiliSmy czegos$ waznego i dlatego obcieto
nam czes$¢ utamkowa liczby?

Oto6z nie! Wszystko jest OK. Po prostu zakodowanie liczby w takim a nie innym systemie
FP2, za pomocg okreslonej ilosci bitdw przeznaczonych na ceche i na mantyse
spowodowato ograniczenie dokfadnosci do ilus miejsc po przecinku (tym juz
przesunietym). Stad utrata dalszej czesci liczby.

. Po gtebszym zastanowieniu mozna wywnioskowa¢, ze precyzja liczby zalezy od ilosci
nakéw przeznaczonych na mantyse, a zakres liczby od ilo$ci znakdw przeznaczonych na
eche.

Wartosci specjalne

Standard kodu FP2 przewiduje dodatkowo wartosci specjalne:

1. Maksymalna wartos¢ cechy przy zerowej wartosci mantysy daje w zaleznosci od
bitu znaku mantysy warto$¢ zwang -INF lub +INF (oznaczajgcg odpowiednio -« i
+o0).

2. Maksymalna wartos¢ cechy przy jakiejkolwiek niezerowej wartosci mantysy to
tzw. NaN (ang. Not a Number), czyli wartos¢, ktdra nie jest poprawng liczba.

Cwiczenia

Cate to kodowanie liczb rzeczywistych wyglada na bardzo trudne i niewdzieczne.
Zapewniam cie jednak, ze przy odpowiednim podejsciu moze by¢ naprawde doskonatg,

371

zabawa!

Osobiscie lubie czasem zakodowac sobie jakas liczbe w jakim$ wymyslonym kodzie FP2,

potem jg rozkodowacd i zobaczy¢, co z niej zostato :D

Zadanie 21''®

1. Rozkoduj liczbe (1 11111 1111111111)p,.

2. Zakoduj liczbe 9999 w kodzie FP2.

3. Zakoduj liczbe w -0.2 w kodzie FP2 w 3 bitach cechy i 4 bitach mantysy.

4. Zakoduj w kodzie FP2 liczbe 0.333333..., potem jg rozkoduj i na podstawie wyniku
oszacuj doktadnos¢ uzywanego w tym dokumencie 16-bitowego formatu.

Liczby rzeczywiste w programowaniu

Tradycyjnie juz, poznawszy szczegdty przechowywania danych na poziomie pojedynczych
bitéw, przechodzimy do omawiania rzeczy praktycznych.

Typy zmiennoprzecinkowe

Najpierw poznamy typy danych, ktére pozwalajg programowac operacje na liczbach
zmiennoprzecinkowych.

Pierwszym z typow zmiennoprzecinkowych w C++ jest typ float. Zajmuje 32 bity (4
bajty), z ktérych na ceche przeznaczonych jest 8, a na mantyse 23. Jego zakres wynosi -
1.175494351*107%8...3.402823466*10°%, a jego dokfadno$¢ to 6...7 znaczacych cyfr.
Nazywany bywa typem zmiennoprzecinkowym o pojedynczej precyzji. To wtasnie on jest
uzywany najczesciej — jego precyzja wystarcza do zdecydowanej wiekszosci zastosowan.

Kolejnym typem jest double. Zmienne tego typu zajmujg 64 bity (8 bajtow). Cecha
zajmuje 11 bitédw, a mantysa 52. Jego zakres wynosi 2.2250738585072014*10°

308 1.7976931348623158*10°°8, jego doktadnos¢ to 15...16 cyfr. Nazywany bywa (jak
sama jego angielska nazwa wskazuje :) typem o podwadjnej precyzji.

Wprowadzone przeze mnie w tym tekscie pojecia liczb naturalnych, catkowitych czy
rzeczywistych sg zaczerpniete z matematyki. W praktyce do nazywania typéw danych
programista postuguje sie nazwami: liczby catkowite bez znaku, liczby catkowite ze
znakiem (x-bitowe) oraz liczby zmiennoprzecinkowe (pojedynczej lub podwdjnej
precyzji).

Zapisywanie wartosci zmiennoprzecinkowych

Domyslnie catkowita wartos¢ liczbowa traktowana jest jako wartos¢ jednego z typéw
catkowitych. W praktyce czesto kompilator ,domysla sie”, ze chodzi o typ
zmiennoprzecinkowy i nie zgtasza ostrzezenia. Zawsze warto jednak podkresli¢ typ.

Aby pokaza¢ wszelkie mozliwe sposoby zapisu liczb zmiennoprzecinkowych, najlepiej
bedzie rozpatrzy¢ przyktadowy kod:

float a = 2; // 1
float b = 2.; // 2
float ¢ = 2.0; // 3
float x = 2.0f; // 4
float y = -10.5; // 5

181, —(1+2+4+8+16+32+64+128+256+512+1024)/2048 = -2036/2048 = -0.9941...; 2. (0 01101
0011100001)rp; 3. (1 101 1001)spz; 4. (0 11110 0101010101)p2 = (1+4+16+64+256+1024)/4096 =
1365/4069 = 0.33325...; doktadnos¢ wynosi w tym przypadku ok. 3 cyfr dziesietnych po przecinku.

372

float z = -5.2e-3; // 6

1. Tutaj podana zostaje wartosc catkowita, ktéra przy mniejszym lub wiekszym
protescie kompilatora zostanie automatycznie potraktowana jako
zmiennoprzecinkowa.

2. Mozna zapisac kropke nie wpisujgc po niej kolejnych cyfr. Przyznasz chyba
jednak, ze nienajlepiej to wyglada? :)

3. Liczbe mozna wpisa¢ normalnie jako czes¢ przed przecinkiem, kropke (ktéra, jak
pamietamy, w programowaniu robi za przecinek :) oraz cyfry po przecinku.

4. Wartos¢ zawierajgca przecinek domysinie traktowana jest jako stata dostowna
typu double. Aby wymusi¢ potraktowanie jej jako wartos¢ typu float, nalezy
postawi¢ na jej koncu literke f£.

5. Tutaj nie ma niczego nowego. Chciatem tylko pokaza¢ przez to, ze liczba moze
by¢ ujemna, a po przecinku mogg znajdowac sie cyfry inne niz zero (co, mam
nadzieje, wydaje sie oczywiste :)

6. To jest alternatywny sposdb zapisu liczb zmiennoprzecinkowych — wygodny, jesli
chodzi o liczby bardzo duze oraz bardzo mate. Nazywa sie to notacja naukowa
(ang. scientific notation) i polega na tym, ze piszemy mantyse, dalej literke e oraz
ceche.

Pozostannmy jeszcze przez chwile przy ostatnim przyktadzie. Litera e nie ma niczego
wspolnego ze statg rowna 2.72... To tylko takie oznaczenie (ktére pochodzi od ang.
exponent, czyli wyktadnik), a caty ten zapis znaczy tyle co:

-5.2 * 10 = -0.0052

Wartos¢ zapisana w notacji naukowej domyslinie jest typu double i podczas pokazanego
wyzej przypisania kompilator zgtosi ostrzezenie. Nic nie stoi jednak na przeszkodzie, zeby
na koncu tak zapisanej wartosci takze postawi¢ magiczna literke £ :)

Ogodlnie warto, abys$ wypracowat sobie (z uwzglednieniem natury uzywanego przez ciebie
kompilatora i jego ostrzezen) standard dotyczacy zaznaczania lub nie zaznaczania typu
przy statych dostownych za pomocg przyrostkow u, L czy £. Ja osobiscie stosuje tylko £.

Operatory zmiennoprzecinkowe

Liczby rzeczywiste, podobnie jak catkowite, mozna dodawac¢, odejmowac, mnozyc¢ i
dzieli¢. Nie wymaga to chyba dtuzszego komentarza... A moze jednak? :) Okazuje sie, ze
jest o czym pisac.

Po pierwsze: do liczb rzeczywistych nie da sie stosowac operatora reszty z dzielenia 2.

P drugie, operator dzielenia / wykonuje dzielenie rzeczywiste wtedy, kiedy przynajmniej
jeden z jego argumentow jest rzeczywisty. Jego rezultatem jest wtedy takze liczba
rzeczywista. W przeciwnym wypadku dokonuje dzielenia catkowitego z obcieciem reszty i
jego wynik jest takze catkowity.

float a = 10 / 3;
float b 10.0f£ / 3;
float ¢ = 10.0f / 3.0f;

W przedstawionym przyktadzie zmienna b i ¢ bedzie przechowywata wartos¢ 3.3333...,
natomiast wartoscig zmiennej a bedzie liczba 3. W jej przypadku nastgpito dzielenie
catkowite oraz konwersja zwréconej wartosci catkowitej na liczbe zmiennoprzecinkowa.

373

Jak wida¢, nalezy zawsze bardzo uwazac na typ argumentéw bioracych udziat w
dzieleniu. Przy okazji uczulam tez na mozliwo$¢ wystapienia btedu dzielenia przez 0.
Przed nig takze trzeba sie zabezpieczac.

Funkcje matematyczne

Skoro juz jesteSmy przy liczbach rzeczywistych, pozwole sobie opisa¢ kilka funkcji
matematycznych. By¢ moze nie wszystkie sg ci znane i nie wszystkich bedziesz czesto
uzywat. Zapewniam jednak, ze wiekszos$¢ z nich wypada znac i jest naprawde uzyteczna
W programowaniu.

Do potegowania nie ma w jezyku C++ (podobnie jak w wiekszosci jezykow
programowania) operatora takiego, jak do dodawania czy mnozenia. Podnoszenie do
kwadratu mozna sobie fatwo zrobi¢ piszac (x*x). Analogicznie szescian (trzecia potega)
to bedzie: (x*x*x). Do podnoszenia liczby do dowolnej potegi rzeczywistej stuzy funkcja

pow (X, VY).

Pierwiastek kwadratowy oblicza funkcja sqrt (x). Dowolny inny mozna sobie zrobic
piszac pow (x, 1.0/y).

Wartosé¢ bezwzgledna (modut) z liczby x oblicza funkcja fabs (x) . Istnieje tez jej
odpowiednik do liczb catkowitych: abs (n).

Nie wszystkie funkcje trygonometryczne reprezentowane sg w C++ przez funkcje o
takich samych nazwach, jak nazwy tych funkcji w matematyce. Sinus oblicza funkcja
sin(x), @ cosinus: cos (x). Tangens, ktory oznacza sie przez tg, obliczany jest przez
funkcje tan (x). Cotangensa w ogdle nie ma, ale znajac podstawowe wzory
trygonometryczne mozna go tatwo wyliczy¢ w taki sposdb: (1.0/tan(x)). Trzeba tylko
uwazac, zeby nie wykonac dzielenia przez 0.

Funkcje cyklometryczne wygladajg w C++ podobnie do trygonometrycznych. Sg to
odpowiednio funkcje: asin (x), acos (x) i atan (x). Arcus cotangensa znowuz nie ma, ale
mozna go wyliczy¢ za pomoca wyrazenia: (M PI/2.0-atan(x)).

Jeszcze jedng grupg podobnych funkcji sg funkcje hiperboliczne. Odpowiadajg im w
C++ odpowiednio: sinh (x), cosh(x) i tanh (x). Cotangensa hiperbolicznego nie ma, a
wyliczy¢ go mozna ze wzoru: ((exp (x)+exp (-x))/ (exp (x) —exp (-x))).

Do obliczania logarytmoéw stuzy kilka funkcji roznigcych sie podstawa. 10910 (x) oblicza
logarytm dziesietny (o podstawie 10), a 1og(x) oblicza logarytm naturalny (o podstawie
e).

Warto jeszcze wspomniec¢ o funkcji exp (x) podnoszacej statg e do podanej potegi (jest to
funkcja tzw. eksponencjalna). Oczywiscie réznych funkcji matematycznych jest duzo
wiecej. Po szczegoty odsytam do opisu bibliotek cmath oraz math.h w dokumentacji.

Wszystkie opisane tu funkcje pochodza z biblioteki math.h. Musisz jg wtaczy¢ do modutu,
w ktérym uzywasz tych funkcji.

Przedstawione funkcje operujg na liczbach typu double. Kazda ma jednak swoj
odpowiednik dla typu float, ktérego nazwa konczy sie na ,f”, np.: sinf (x), LoglOf (x).

374

State liczbowe

Od czasu do czasu zachodzi potrzeba uzycia w pisanym programie jednej z ,magicznych”
liczb, jak liczba = czy e. Mozna je sobie zdefiniowa¢ samemu, ale okazuje sie, ze sg one
wpisane takze do standardowych nagtowkow.

Biblioteka math.h zawiera wiele uzytecznych statych, w tym state o nazwach M PI i M E.

Jesli uzywasz DirectX i wigczasz do kodu nagtdéwek rozszerzenia D3DX, masz tez do
dyspozycji statg typu £loat 0 nazwie D3DX PI.

Losowanie liczb

Podobnie jak przy okazji omawiania liczb naturalnych, takze teraz zastanowimy sie nad
otrzymywaniem liczb pseudolosowych za pomoca niezbyt wygodnej funkcji rand () . Moje
rozwigzanie wyglada tak:

inline float myrandf ()

{
return static cast<float>(rand()) / static cast<float>(RAND MAX) ;

}

Przedstawiona funkcja zwraca losowg liczbe z zakresu 0.0...1.0 wiacznie dzielgc
otrzymana liczbe catkowitg przez jej maksymalny zakres.

Konwersja z liczbami catkowitymi

Czasami trzeba zamienic liczbe rzeczywistg na catkowitg lub odwrotnie. Oczywiscie
podczas konwersji z liczby zmiennoprzecinkowej na catkowitg reszta zostaje obcieta.

Kompilator potrafi przeprowadzi¢ takg konwersje automatycznie.

float £ 10.5f%;
int i =
f = 1;

£;

Wyswietla jednak przy tym ostrzezenia, ze moze zosta¢ utracona doktadnos$é. Zeby
oszczedzi¢ sobie czytania, lepiej stosowac operatory rzutowania, np.:

float £ = 10.5f;
int 1 = static cast<int>(f);
f = static cast<float>(i);

Znaki

Rozpoczynamy ostatni podrozdziat. Zajmiemy sie w nim sposobem, w jaki komputer
przechowuje w pamieci tekst.

Chociaz komputery zostaty stworzone do liczenia, od zawsze postugiwaty sie tekstem. Nie
chodzi tylko o mozliwos¢ pisania na komputerze wypracowan i referatéw :) Jeszcze zanim
pojawity sie pierwsze systemy okienkowe, ludzie wydawali komputerom polecenia za
pomoca konsoli — czyli tekstowego wiersza polecen.

Na rozgrzewke proponuje wykonanie nastepujacego ciekawego zadanka:

375

Zadanie 22'*°

1. Przyjrzyj sie uwaznie klawiaturze i popatrz na znaki, ktdre mozesz za jej pomocg
wprowadzad. Jakich symboli brakuje, a przydatyby sie? Ktére znaki sg
niepotrzebne i rzadko ich uzywasz?

2. Zdobadz i obejrzyj tablice znakéw ASCII. Ktére z tych znakéw rozpoznajesz jako
mozliwe do wpisania z klawiatury? Ktore ci sie podobajg? Ktére uwazasz za
bezuzyteczne?

3. Zaprojektuj wtasng tablice znakdow skfadajaca sie z 64 pozycji (tablica 8x8). Ktore
znaki wybierzesz uwazajac je za najistotniejsze i dlaczego? Ilu bitéw potrzeba do
zapisania jednego takiego znaku?

ASCII

Aby zakodowac tekst, trzeba kazdej mozliwej kombinacji bitdw przyporzadkowaé pewien
znak. Najpopularniejszym standardem kodowania znakow jest kod ASCII. Jeden znak w
tym kodzie zajmuje 1 bajt (8 bitow). Standard ten obowigzuje juz od czaséw systemu
DOS az po dzis dzien.

Tak naprawde, sam standard ASCII wykorzystuje 7 bitdow. Oznacza to, ze dostepnych
jest 128 roznych kombinacji bitéw, czyli mozna zapisa¢ 128 réznych znakéw. Czy to
duzo, czy mato? To zalezy do czego... Taka ilo$¢ spokojnie wystarczyta, by pierwszym 32
znakom (odpowiadajacym zakodowanym w systemie binarnym liczbom naturalnym
0...31) przypisa¢ pewne specjalne kody sterujgce, a dalej zmiesci¢ cyfry, mate i duze
litery alfabetu facinskiego oraz wszystkie znaki znajdujace sie na klawiaturze.

Na przyktad:

» 32 = 0x20 = 040 oznacza spacje

» 43 = 0x2B = 053 oznacza znak ,+”
» 57 = 0x39 = 071 oznacza cyfre ,9”
» 97 = 0x61 = 0141 oznacza litere ,a”

Posréd znakow ASCII wydzielong grupe stanowig tzw. biate znaki (ang. whitespace) albo
inaczej odstepy. Sq one uznawane za znaki oddzielajace pewne czesci tekstu. Nalezg do
nich 4 znaki: spacja (kod 32), tabulacja (kod 9), koniec wiersza (kod 10) oraz powrot
karetki (kod 13).

W wielu jezykach (w tym w jezykach programowania, np. C++ czy Pascal oraz w
jezykach opisu, np. HTML czy XML) fakt, jakie spos$rdd tych znakdéw wystapig, w jakiej
ilosci i w jakiej kolejnosci, nie ma znaczenia - kazda taka sekwencja traktowana jest jako
pojedynczy odstep. To dzieki temu mozemy robi¢ wciecia w kodzie i swobodnie go
rozmieszczac (zauwaz, ze wciecie to znak konca wiersza plus pewna liczba spacji lub
tabulacji).

Znaki konca wiersza

Poswiecenia dodatkowej uwagi wymaga temat znakdw uznawanych za koniec wiersza
(linii) w tekscie. Panujg w tej kwestii dwa rozne standardy. W Windows koniec wiersza

119 1) Jakiej dziedziny dotycza znaki, ktére chetnie by$ dodat? Czy sa to symbole matematyczne? A moze jakie$
inne? Jak mozna sobie bez nich poradzi¢? 2) Tablice znakéw ASCII tatwo znajdziesz w Internecie, choc¢by pod
adresem http://www.asciitable.com/. Czesto byta tez publikowana na koncu starszych ksigzek o
programowaniu, np. o Turbo Pascalu. 3) Zapewne znalaztoby sie w niej miejsce dla duzych liter alfabetu,
polskich liter, cyfr, spacji (odstepu), podstawowych znakéw przestankowych i kilku innych symboli. Potrzeba
6b.

376

zaznacza sie sekwencjg dwoch znakéw CR (kod 13) i LF (kod 10). W Linux natomiast
samym znakiem LF (kod 10).

Z kompatybilnoscig miedzy tymi formatami bywa réznie. W Linux podwdjny koniec
wiersza najczesciej zinterpretowany zostanie prawidtowo, o ile wiersz moze konczyc¢ sie
odstepem i ten odstep zostanie zignorowany.

Notatnik Windows nie odczyta poprawnie dokumentu zapisanego ze znakami konca
wiersza w stylu linuxowym. Na prawidtowe jego wyswietlenie mozesz za to liczy¢ w
programie Lister wbudowanym w Total Commander.

Aby edytowac i zapisywac¢ pod Windows dokumenty ze znakami konca wiersza w stylu
linuxowym, mozesz uzy¢ jednego z tekstowych edytoréw HTML, np. HomeSite lub
Pajaczek. Trzeba tylko uaktywnic¢ specjalng opcje w konfiguracji. Nazywa sie ona
najczesciej zapisywaniem znakow konca wiersza w stylu Unix.

Extended ASCII

256 mozliwych kombinacji bitdw w jednym bajcie to jednak za mato, by zapisac¢ znaki

rrrrr

(nie mowigc juz o zupetnie innych alfabetach, jak cyrylica czy znaki chinskie).

Dlatego dodatkowe 128 znakdw powstate po uzyciu ésmego bitu nie jest ujednolicone.
Stworzonych zostato wiele tzw. stron kodowych (ang. codepage) uzywajacych tych
dodatkowych znakéw do kodowania liter alfabetéw narodowych, a przy tym réznych
symboli graficznych i innych bardziej lub mniej przydatnych.

Jest z tym niestety duzo problemoéw. Nawet dla samego jezyka polskiego powstato kilka
koddéw. Obecnie uzywane sg dwa:

1. IS0O-8859-2 (Latin-2)
2. Windows-1250

Ten drugi jest przez wielu potepiany za to, ze zostat wylansowany przez Microsoft. W
praktyce jednak to wtasnie jego uzywa system Windows, a wielu miejscach Internetu jest
on nie mniej popularny, niz ten pierwszy.

W wielu zastosowaniach, szczegdlnie w Internecie (WWW, e-mail) w nagtéwku
zapisywana jest nazwa standardu kodowania uzytego w danym dokumencie. Pozwala to
zminimalizowaé problemy wynikajace z catego tego bataganu.

Aby sprawdzi¢, czy prawidtowo dziatajg w jakims$ programie, systemie czy gdziekolwiek
indziej polskie litery, wpisuje sie zazwyczaj utarty tekst: ,Zazoét¢ gesla jazn”. Choc nie
ma on wiekszego sensu, ma to do siebie, ze bedgc poprawnym gramatycznie zdaniem
zawiera w sobie wszystkie polskie literki.

Unikod

Rozwdj Internetu stworzyt konieczno$¢ wynalezienia lepszego sposobu kodowania
znakow, niz wystuzony juz kod ASCII. Nawet ze swoimi stronami kodowymi ten ostatni
ma wiele ograniczen i sprawia wiele problemodw. Nie mozna chociazby zapisac tekstu w
kilku réznych jezykach w jednym dokumencie.

Pomyslano wiec tak: Wtasciwie, skoro dzisiejsze dyski majg pojemnosci mierzone w
gigabajtach, a obrazki i filmy zajmujq o cate rzedy wielkosci wiecej miejsca niz tekst, po

377

co nadal ograniczac sie do jednego bajta na znak? Dlaczego nie utworzy¢ kodu, w ktérym
jeden znak zajmowatby, powiedzmy, 2 bajty?

Tak powstat Unikod (ang. Unicode, w skrécie UCS). Warto zdac sobie sprawe z faktu, ze
juz za pomoca 2 bajtéw mozna zakodowaé 2 = 65536 réznych znakéw! Dlatego w
unikodzie znalazto sie miejsce dla wszelkich uzytecznych i uzywanych na $wiecie liter,
symboli i znakéw, a po upowszechnieniu sie tego standardu nasze dzieci beda juz tylko
od nas styszaty historie, jakie to kiedys byty problemy w komputerze z kodowaniem
znakow :)

Najpopularniejszymi odmianami unikodu sg UTF-8 i UTF-16. W tej pierwszej znak moze
miec¢ rézng dtugosc. Pierwsze 128 znakow pokrywa sie z tablicg ASCII i jest zapisywana
za pomocg jednego bajta, natomiast znaki dodatkowe (np. polskie literki) sq zapisywane
za pomocg specjalnych kilkubajtowych sekwencji. Z kolei UTF-16 okresla standard, w
ktorym kazdy znak zajmuje 2 bajty.

Nie bedziemy sie tutaj doktadnie zajmowali unikodem. Moze w nastepnym wydaniu tego
tekstu... Tymczasem musisz wiedzie¢, ze juz dzi$ wiele programoéw i systemow
operacyjnych uzywa go jako standardowego sposobu kodowania znakow, a
programowania z uzyciem unikodu warto sie nauczyc.

Po szczegdty odsytam do samego Zzrédia - na strone http://www.unicode.org/.

Znaki w programowaniu

Juz po raz ostatni wracamy do kodu, by kréotko omoéwic¢ sposéb obchodzenia sie ze
znakami w jezyku C++ w Swietle przedstawionych wyzej faktow. Zaczniemy, jak zwykle,
od opisania typow danych.

Pomijajac kwestie unikodu typ jest wtasciwie jeden. Nazywa sie on char. Mozna tez
uzywac zdefiniowanej w nagtéwkach Windows nazwy CHAR. Zmienne tego typu
reprezentujg pojedynczy znak w kodzie ASCII i zajmujg 1 bajt (8 bitow).

Pojedyncze znaki zapisuje sie w C++ w apostrofach, np.:
char ¢ = '"A";

tancuch znakdéw (ang. string) — inaczej po prostu tekst — reprezentuje w programowaniu
tablica znakow lub wskaznik do takiej tablicy. tancuchy zapisuje sie w cudzystowach.
Przyjeto sie, ze automatycznie (w sposoéb niewidoczny dla programisty) koniec tancucha
oznaczany jest znakiem o kodzie 0.

char strl[] = "Zazot¢ gesla jJazn';
char* str2 = strl;
std::cout << str2 << std::endl;

Wykonanie powyzszego kodu pokazuje nam, ze konsola Windows uzywa innej strony
kodowej (takiej pokutujacej jeszcze z czaséw DOS), niz normalne okienka (Windows-
1250).

Poniewaz deklarowanie dostatecznie duzych tablic i dbanie o ich dtugos¢ nie nalezy do
zajec¢ przyjemnych, a dynamiczna alokacja pamieci i zonglowanie wskaznikami do
bezpiecznych, tworcy jezykédw programowania starajq sie zapewnia¢ mozliwos¢
wygodniejszego operowania na tancuchach. W C++ w sktad biblioteki standardowej STL
wchodzi zdefiniowany w nagtéwku string typ std: :string. Uzywa sie go catkiem
wygodnie, np.:

http://www.unicode.org/

378

std::string str = "Blad: Nie wykryto klawiatury!\n";
str += "Nacisénij [ESC], aby wyjsc.";
MessageBox (0, str.c str(), "Biad", MB OK | MB ICONERRCR) ;

Jak wida¢, tancuchy mozna swobodnie przypisywac i mozna do nich dopisywac kolejne
czesci. Obiekt str sam zajmuje sie dtugoscig tekstu i jego przechowywaniem w pamieci.

Jego funkcja c_str () zwraca wskaznik uzyteczny wszedzie tam, gdzie funkcje (np. te z
Win32API) oczekujg tanicucha typu char=*. Jest on na tyle inteligentny, ze nie musisz
zajmowac sie jego zwalnianiem.

Niektorzy twierdzg, ze uzywanie takich automatycznych narzedzi spowalnia dziatanie
programu i dlatego jest niedobre. Moim zdaniem nawet jesli istnieje przez to jakas utrata
szybkosci, chcac pisa¢ duze, powazne aplikacje trzeba zapomnie¢ o zajmowaniu sie
szczegdtami tak elementarnych rzeczy jak operacje na tancuchach.

Przy okazji widac tutaj takze uzycie jednego ze znakow specjalnych. Znaki takie
wprowadza sie w C++ w postaci ukosnika \ oraz odpowiedniej sekwencji (najczesciej
jednego znaku). Oto ich lista:

\### — znak ASCII o kodzie podanym w miejscu ,###” w systemie 6semkowym
\x## - znak ASCII o kodzie podanym w miejscu ,##” w systemie szesnastkowym

» \b - cofacz (ang. backspace)

» \f - nowa strona (ang. form feed)

» \n - nowa linia (ang. new line)

> \r - powrdt karetki (ang. carriage return)
> \t - tabulator poziomy (ang. tabulator)

» \v - tabulator pionowy (ang. vertical tabulator)
> \a - sygnat dzwiekowy (ang. alarm)

> \\ - ukosnik (ang. backslash)

» \’ - apostrof

> \" - cudzystéw

» \0 - znak o kodzie 0 (NULL)

» \? - pytajnik

>

>

Znaki a liczby

Jesli czytates uwaznie pamietasz zapewne, ze char to typ znakowy i jednoczesnie typ
reprezentujacy 8-bitowa liczbe catkowita. Jakie sg tego konsekwencje? Mozna sie
domyslac¢, ze zapisany w apostrofach znak to nic innego, jak liczba odpowiadajgca jego
kodowi.

Aby lepiej zilustrowaé ten fakt, popatrz na kod zamieniajgcy cyfre zapisang jako znak
ASCII na odpowiadajacq jej wartosc liczbowa:

char Cyfra = '7";
int Liczba = Cyfra - '0';
std::cout << "Liczba wynosi: " << Liczba << std::endl;

W rozwigzaniu tym wykorzystatem fakt, ze cyfry umieszczone sgq w tablicy ASCII kolejno
od 0 do 9. Jednakze cyfrze 0 wcale nie odpowiada kod 0, tylko jaki$ tam inny... Dlatego
od kodu cyfry zapisanej w zmiennej odjatem kod cyfry 0 i tak otrzymatem szukang
wartosc liczbowa.

Mam nadzieje, ze rozumiesz, skad to sie wzieto?

379

Maty bonus

Na zakonczenie tego ostatniego podrozdziatu bedzie maty bonus. Oto krétka, 3-linijkowa
funkcja w C++:

f(){int k;float 1i,3j,r,x,y=-16;while (puts(""),y++<15) for (x
=0;x++<79;putchar (" .:—;!/>) | &IHE*#" [k&l15])) for (i=k=r=0;
J=r*r-1i*i-2+4x/25,1i=2*r*i+y/10,j*j+i*i<ll&&k++<111;r=7) ;}

Pochodzi ona ze wstepu do ksigzki pt. Peretki programowania gier, tom 3. Skopiuj ja do
programu, wtgcz nagtdwek cstdio i zobacz, jaki bedzie efekt :)

Podsumowanie

Tak oto dobiegta konca nasza podrdz przez bity i bajty. PoznaliSmy sposdb, w jaki
komputer reprezentuje dane na najnizszym poziomie, gromadzi je, zapisuje w pamieci,
przesyta oraz przetwarza. To jest wtasnie istota informatyki!

Wiem, ze reczne przeliczanie liczb na system siddemkowy i wiele innych rzeczy nie bedzie
potrzebne w praktyce programistycznej. Mysle jednak, ze dla prawdziwego pasjonata
programowania takie wiadomosci wydajg sie po prostu ciekawe. Pamietaj: brak
koniecznosci zajmowania sie pewnymi sprawami niskiego poziomu nie zwalnia od ich
znajomosci i rozumienia!

