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Znane są tysiące sposobów zabijania czasu, 
ale nikt nie wie, jak go wskrzesić. 

Albert Einstein 
 
Komputery w powszechnym mniemaniu uchodzą za uosobienie szybkości. Nierzadko 
przecież zdarza się słyszeć, że oto pokonana została kolejna bariera prędkości obliczeń, a 
nowo zbudowany superkomputer w sekundę poradzi sobie z zadaniem, z którym cała 
ludzkość musiałaby się biedzić przez setki milionów lat. W takich sytuacjach laicy czasem 
zadają sobie pytanie, czy istnieją jeszcze dla komputerów jakieś niewykonalne zadania, 
których nie rozwiązałyby w mgnieniu oka. Wydawałoby się, że takich wyzwań już nie ma. 
 
Nasz entuzjazm dla osiągnięć techniki musi jednak przygasnąć, jeżeli przydarzy nam się 
typowa przecież sytuacja, gdy musimy oczekiwać na uruchomienie programu na swym 
osobistym komputerze. Albo na wyszukanie określonych plików na jego dysku twardym. 
Albo na ściągnięcie kilkumegabajtowego pliku przez zapchane łącze internetowe. Albo na 
wyrenderowanie gotowej sceny w aplikacji do modelowania 3D. Albo…, albo… - przykłady 
można mnożyć w nieskończoność. Zatem nasze komputery nie są wcale takie szybkie. 
Czy można coś na to poradzić?… 
 
Intuicja podpowiada nam, że tak. Faktycznie - możemy przecież zakupić szybszy dysk 
twardy, zafundować sobie lepsze połączenie z Internetem, wymienić procesor na nowszy, 
postarać się o lepszą kartę graficzną, i tak dalej. Wszystko to możemy zrobić my - 
użytkownicy, podażąjąc trasą niekończącego się wyścigu technologicznego. 
A co mogą zrobić twórcy aplikacji, czyli programiści? Przecież on nich również zależy 
szybkość działania ich produktów: nawet najszybszy dysk twardy będzie bowiem 
pracował nieefektywnie, jeżeli zainstaluje się na nim mało wydajny system plików; 
najlepsza karta graficzna może sobie nie poradzić z rysowaniem świata gry 
trójwymiarowej, jeśli będzie zmuszona do jego całościowego przetwarzania dla każdej 
wygenerowanej klatki; wreszcie, nawet najnowszy procesor może się ugiąć się pod 
ciężarem skomplikowanych operacji na ogromnym zbiorze danych. Dlatego programiści 
muszą dbać o odpowiednią optymalizację działania swoich wytworów, a szczególnie 
tych ich części, które są najintensywniej wykorzystywane przez użytkowników. 
 
Optymalizacja jest aczkolwiek trudnym zadaniem, które można wykonywać na wielu 
płaszczyznach. Możliwe jest optymalizowanie projektu aplikacji, określającego jej 
nadrzędną strukturę - jak choćby klasy i ich składowe. Źle zaprojektowany program ma 
bowiem wszelkie szanse, by działać jeśli nie całkiem niepoprawanie, to „przynajmniej” 
bardzo nieefektywnie. 
Drugą stroną optymalizacji jest dobieranie odpowiednio szybkich algorytmów do 
realizacji chociaż tych najbardziej newralgicznych zadań. Efektywny algorytm może 
bowiem skrócić czas ich wykonywania setki, tysiące, a nawet miliony (!) razy, produkując 
jednocześnie identyczne wyniki. 
 



OK, być może w tej chwili nieco przesadzam. Nie ulega jednak wątpliwości, że dla 
każdego niemal zadania istnieją algorytmy lepsze i gorsze, działające szybciej i wolniej, 
krótsze i dłuższe w zapisie oraz łatwiejsze i trudniejsze w implementacji - a wszystkie 
one są tak samo poprawne w sensie generowanych rezultatów. 
Dla wygody programistów najważniejsze byłoby zapewne kryterium prostoty, jednak nie 
zapominajmy, że aplikacje tworzymy raczej dla użytkowników innych niż my sami. 
Smutną prawdą jest fakt, że takich „postronnych” osób niewiele interesują upodobania 
autora programu czy nawet jakość produktu z punktu widzenia inżynierii 
oprogramowania; dla nich ważniejsze jest bowiem to, co mogą zobaczyć i odczuć 
bezpośrednio: wygodny interfejs użytkownika, rozbudowane możliwości czy nareszcie 
szybkość działania. 
 
W interesie popularności naszych dzieł leży więc (między innymi) wybór odpowiednio 
efektywnych algorytmów, poprzez które aplikacje będą realizowały swoje cele. Jak 
jednak ocenić, który algorytm jest szybszy? Czy istnieją ścisłe kryteria wyznaczania 
sprawności danego algorytmu?… 
Są to bardzo słuszne i ważne pytania, na które postaram się tutaj odpowiedzieć. 

Złożoność obliczeniowa 
Kiedy mamy na myśli efektywność wykonania jakiegoś zadania, łatwo możemy 
posługiwać się miarą czasową. Zrobienie czegoś w 10 minut jest bardziej efektywne niż 
zrobienie tego samego w kwadrans, nie mówiąc już o półgodzinnej czy godzinnej pracy. 
Czy jednak podobne kryterium może się stosować do algorytmów? 
 
Wyobraźmy sobie, że mamy do wyboru dwa algorytmy realizujące ten sam cel i 
produkujące identyczne wyniki, ale napisane przez dwie różne osoby. Jedna z tych osób 
twierdzi, że jej algorytm jest szybki, bo wykonał się w 41 sekund; druga utrzymuje, że 
jej algorytmowi zajęło to tylko 29 sekund. Czy znaczy to bynajmniej, że ten drugi sposób 
jest szybszy?… 
Otóż niezupełnie, bowiem niemal na pewno obie osoby uruchamiały swoje algorytmy w 
różnych warunkach. Aby więc obiektywnie porównywać ich sprawność, należałoby te 
warunki znać - tzn. wiedzieć: 

 Jakie komputery zostały użyte w przeprowadzonych próbach? 
 Jakie procesory posiadały? 
 Pod kontrolą jakich systemów operacyjnych pracowały? 
 Czy napisane programy działały w trybie wyłączności, a jeśli nie, to jaki miały 

priorytet? 
 W jakich językach zostały napisane oba programy? 
 Jakich kompilatorów użyto do ich skompilowania? 
 Czy w owych kompilatorach były włączone opcje optymalizacji? 
 itp. itd. 

 
Jak widać, potrzebnych informacji jest całe mnóstwo, zaś nawet posiadanie ich 
wszystkich nie upewnia nas, że czegoś nie przeoczyliśmy. Poza tym mając tak szeroki 
zasób wiadomości, porównywanie sprawności obu algorytmów wcale nie staje się 
prostsze, a w praktyce jest prawie niemożliwe. 
 
Do całego problemu trzeba zatem podejść zupełnie inaczej. Przede wszystkim należy 
uświadomić sobie, że algorytm to nie jest skompilowany i funkcjonujący program (lub 
jego część), lecz pewien przepis, ogólny ciąg kroków. Co najważniejsze, jest on 
niezależny od wszystkich warunków „technicznych”, wymienionych powyżej - nawet od 
kompilatora i języka programowania. Ten sam algorytm może być przecież zapisany w 
każdym niemal języku; popatrzmy chociażby na kod poszukujący danego elementu 
tablicy jednowymiarowej, zapisany w czterech językach programowania: 



 
// C(++) 
int Szukaj(const int* pTablica, unsigned uRozmiar, int nSzukany) 
{ 
 for (int i = 0; i < uRozmiar; ++i) 
  if (pTablica[i] == nSzukany) 
   return i; 
 
 return -1; 
} 
 
// Object Pascal (Delphi) 
function Szukaj(const ATablica : array of Integer; ASzukany : Integer) 
 : Integer; 
var 
 i : Integer; 
begin 
 for i := 0 to Length(ATablica) - 1 do 
 begin 
  if ATablica[i] = ASzukany then 
  begin 
   Result := i; 
   Exit; 
  end; 
 end; 
 
 Result := -1; 
end; 
 
' Visual Basic 
Function Szukaj(Tablica() As Integer, Szukany As Integer) As Integer 
 Dim i As Integer 
 
 For i = 0 To Len(Tablica) - 1 
  If Tablica(i) = Szukany Then 
   Szukaj = i 
   Exit Function 
  End If 
 Next i 
 
 Szukaj = -1 
End Function 
 
// PHP 
function Szukaj($aTablica, $nSzukany) 
{ 
 foreach ($aTablica as $idxIndeks => $nWartosc) 
  if ($nWartosc === $nSzukany) 
   return $idxIndeks; 
 
 return -1; 
} 

 
Możliwe jest nawet więcej: algorytm można przecież zapisać, nie używając do tego 
żadnego języka programowania, lecz posługując się tylko pseudokodem: 
 

Funkcja Szukaj(Tablica[] :int, Szukany :int) :int 
 i :int 
 
 Dla Każdego i := Indeks(Tablica) Wykonaj 
  Jeżeli Tablica[i] = Szukany To 



   Zwróć i 
  Koniec 
 Koniec 
 
 Zwróć -1 
Koniec 

 
W takim wypadku wszelkie rzeczywiste miary, dotyczące faktycznego czasu wykonywania 
algorytmu tracą jakikolwiek sens. Potrzebujemy zatem takiego oszacowania, które 
pozwoli wyznaczyć efektywność algorytmu nie tylko bez jego kompilacji i uruchamiania, 
ale nawet bez zapisywania go w żadnym istniejącym języku programowania. Miara 
efektywności powinna bowiem dotyczyć tylko abstrakcyjnego ciągu kroków, jakim jest 
każdy algorytm. 
 
Dla zapewnienia ścisłości i wygody czytelników, a także swojej własnej, wszystkie użyte 
dalej algorytmy będę jednak zapisywał w języku C++. 

Klasa algorytmu 
Zdecydowaliśmy więc, że nie będziemy się zajmować rzeczywistym czasem działania 
algorytmu na jakimś komputerze, lecz ilością elementarnych kroków, jakie musi on 
wykonać, aby wywiązać się ze zleconego mu zadania. Za elementarny krok uważamy 
natomiast pojedynczą, prostą instrukcję; przyjęło się zresztą, iż w analizie sprawności 
algorytmów bierze się pod uwagę głównie instrukcje porównania, ewentualnie 
przypisania. 
 
Teraz trzeba sobie zadać pytanie: czy ilość owych elementarnych kroków będzie w 
każdym przypadku taka sama? Nietrudno domyślić się, że nie. Algorytmy tworzymy 
przecież po to, aby operowały one na nieznanych z góry danych, zatem pracochłonność 
wykonania czynności algorytmu może ściśle zależeć od tych danych. Dokładniej - może 
ona zależeć od rozmiaru wejściowych parametrów algorytmu. 
Pojęcie rozmiaru jest tu użyte bardzo ogólnie, a jego dokładne znaczenie jest 
nierozerwalnie związane z konkretnym zagadnieniem, czyli rozważanym algorytmem. Dla 
przykładowej procedury przeszukiwania tablicy rozmiarem danych będzie oczywiście ilość 
elementów tej tablicy; przy sprawdzaniu, czy podana liczba jest pierwsza, decydującą 
rolę odegra ona sama; podczas znajdowania pozycji jednego napisu wewnątrz innego 
rozmiar danych jest wypadkową długości zarówno przedmiotu, jak i zakresu poszukiwań; 
i tak dalej. Można więc stwierdzić, że: 
 
W analizie efektywności algorytmów rozmiar danych jest tą wielkością opisującą 
wejściowe dane dla algorytmu, która najbardziej wpływa na ilość kroków podjętych 
przy rozwiązywaniu problemu. 
 
Czas wykonywania algorytmu, liczony liczbą elementarnych kroków, najczęściej nie 
będzie więc wielkością stałą, lecz funkcją rozmiaru danych wejściowych - funkcją w 
rozumieniu matematycznym. Szacowanie efektywności algorytmu polega zatem na 
znalezieniu owej funkcji i tym się właśnie teraz zajmiemy. 

Znajdujemy złożoność praktyczną 
Jako przykład weźmiemy sobie stosunkowo prosty algorytm sortowania, znany jako 
sortowanie przez wstawianie (ang. insertion sort). Być może znasz sposób jego 
działania - a jeśli tak, to zapewne wiesz również, że charaktertyzuje się on nieszczególną 
efektywnością. Skądkolwiek czerpiesz tą wiedzę, możesz ją teraz zweryfikować. 



Przykład: sortowanie przez wstawianie 
Najpierw powiedzmy sobie coś o samym algorytmie. Sortowanie przez wstawianie jest 
prostym sposobem na uporządkowanie tablicy dowolnych elementów. Oczywistym 
warunkiem jest istnienie jakiegoś kryterium możliwego uporządkowania (tzw. porządku 
liniowego) wśród elementów tablicy. W praktycznej sytuacji mogą to być złożone zasady 
- szczególnie jeśli sortujemy np. rekordy w bazie danych - ale dla nas nie ma to żadnego 
znaczenia. Liczy się sama możliwość ustalenia, który element jest mniejszy, a który 
większy; dlatego też celem pominięcia takich „technicznych” szczegółów będziemy 
zajmowali się wyłącznie sortowaniem liczb całkowitych typu int. Przy użyciu własnych 
typów danych i przeciążania operatorów można zresztą w niemal automatyczny sposób 
uzyskać algorytm dla dowolnego rodzaju elementów. 
 
Spójrzmy więc na ową procedurę, sortującą tablicę o podanym rozmiarze: 
 

void InsertionSort(const int* aTablica, unsigned uRozmiar) 
{ 
 unsigned i, j; 
 int nElement; 
 
 // pętla zewnętrzna, wybierająca po kolei każdy element 
 // (począwszy od drugiego, czyli tego o indeksie 1) 
 for (i = 1; i < uRozmiar; ++i) 
 { 
  nElement = aTablica[i]; 
 
  // pętla wewnętrzna ma za zadanie stworzyć miejsce dla 
  // naszego elementu 
  for (j = i - 1; 
   i >= 0 && aTablica[j] > nElement; --j) 
   // czyni to, przesuwając elementy do przodu 
   aTablica[j + 1] = aTablica[j]; 
 
  // a gdy ono już jest, trzeba zapisać element na tym miejscu 
  aTablica[j + 1] = nElement; 
 } 
} 

 
Zasada jej działania jest prosta. Zewnętrzna pętla for przebiega po wszystkich 
elementach tablicy, natomiast wewnętrzna zajmuje się szukaniem (albo raczej 
tworzeniem) właściwego miejsca dla aktualnego elementu. Robi to, przesuwając w stronę 
końca tablicy wszystkie liczby, które są większe od tej rozważanej (czyli nElement). Na 
powstały w ten sposób wakat wstawiana jest rzeczona liczba, a wówczas zewnętrzna 
pętla zajmuje się kolejnym elementem. Ten jest znowu porównywany z poprzedzającymi 
go liczbami, wstawiany na odpowiednie miejsce… i tak dalej, aż do końca tablicy. 

Ustalamy reguły 
Spróbujmy teraz zająć się sednem sprawy, czyli przybliżeniem czasu działania algorytmu. 
Jak wspominałem na początku, interesować nas będzie czas wyrażony w postaci liczby 
elementarnych kroków wykonanych przez procedurę. 
 
Co można rozumieć przez to pojęcie? Na zwyczajnym komputerze, dokonującym naraz co 
najwyżej jednej czynności, za elementarny krok wygodnie jest przyjmować pojedynczą 
instrukcję - zwykle wiersz kodu. Trzeba jednak uważać (zwłaszcza w językach wysokiego 
poziomu), by nie robić tego bezmyślnie. Wywołania funkcji nie można bowiem traktować 
jako jeden krok, bo jej wykonanie zajmuje w rzeczywistości więcej pracy. 
Najrozsądniej jest zatem uważać za pojedyncze kroki najprostsze instrukcje. Należą do 
nich głównie przypisania oraz porównania. Dla uproszczenia można jednocześnie 



założyć, że obie te operacje zajmują tyle samo czasu - wówczas nie będzie potrzeby ich 
rozróżniania. 
 
Drugą ważną kwestią jest sprecyzowanie, czym jest dla nas rozmiar danych wejściowych. 
Myślę, że w tym przypadku trudno o jakiekolwiek wątpliwości. Skoro przedmiotem 
naszych zainteresowań jest tablica, logicznym określeniem rozmiaru danych jest wielkość 
tej tablicy. Ściślej mówiąc, będzie to liczba jej elementów, a więc wartość zmiennej 
uRozmiar. Dalej będziemy ją oznaczać w skrócie jako n. 
 
Celem naszych poszukiwań jest wobec tego odszukanie funkcji f(n), której wartości 
byłyby ilościami kroków algorytmu potrzebnych do posortowania n-elementowej tablicy. 
Możemy teraz głęboko odetchnąć i zabrać się do pracy… 

Przyglądamy się algorytmowi 
Zanim ustalimy ilość kroków algorytmu w zależności od rozmiaru danych, musimy 
wyróżnić te instrukcje, których wykonanie będziemy uważać za jeden krok. Zgodnie z 
ustaleniem z poprzedniego paragrafu, będą to: 

 instrukcja inicjująca licznik (i = 1) na początku zewnętrznej pętli for 
 sprawdzenie wartości tegoż licznika (i < uRozmiar) na początku każdego cyklu 

zewnętrznej pętli for 
 przypisanie nElement = aTablica[i] w zewnętrznej pętli 
 instrukcja inicjująca licznik (j = i - 1) na początku wewnętrznej pętli for 
 instrukcja sprawdzające wartość tego licznika (i >= 0 && aTablica[j] > 
nElement) na początku każdego cyklu wewnętrznej pętli for (właściwie mamy 
tutaj dwa porównania, ale dla uproszczenia potraktujemy to jako jedną instrukcję) 

 przypisanie aTablica[j + 1] = aTablica[j] w wewnętrznej pętli 
 dekrementacja licznika (--j) pod koniec cyklu wewnętrznej pętli 
 przypisanie aTablica[j + 1] = nElement w zewnętrznej pętli 
 inkrementacja licznika (++i) pod koniec cyklu zewnętrznej pętli 

 
Zakładamy, że pojedyncze wykonanie każdej z tych instrukcji trwa taki sam okres czasu, 
a koszt wykonania możemy oznaczyć po prostu jako 1. Pozostaje jeszcze kwestia 
ustalenia, jak często (w zależności od n) wykonuje się każda instrukcja. 
 
Nie byłoby to bardzo trudne, gdyby pewna kwestia, której, jak się zdaje, nie sposób 
obejść. Chodzi o mianowicie o wewnętrzną pętlę: nie możemy bowiem dokładnie ustalić 
liczby jej cykli, bowiem nie zależy ona tylko od wielkości tablicy. Przeciwnie, przy 
szukaniu miejsca dla i-tego elementu liczy się każdy z poprzedzających go i - 1 
elementów tejże tablicy. Aby ustalić ustalić dokładną ilość wykonanych przypisań 
aTablica[j + 1] = nElement trzebaby zatem… samodzielnie ją policzyć! To 
zdecydowanie niepraktyczne - cóż więc z tym zrobić? 
Otóż na razie odłożymy sobie ten problem na półkę. Wprowadzimy po prostu dodatkowy 
symbol ti na oznaczenie liczby sprawdzeń warunku wewnętrznej pętli for w zależności 
od wartości i. Później zastanowimy się, jak możnaby tę dodatkową zmienną usunąć. 

Funkcja złożoności 
Teraz należy ponownie przyjrzeć się procedurze InsertionSort() i oznaczyć łączny 
koszt z instrukcji spośród tych z listy podanej powyżej. Pamiętając o parametrach n i ti, 
możemy to uczynić w ten sposób: 
 

void InsertionSort(const int* aTablica, unsigned uRozmiar) 
{ 
 // (wszystkie nieważne szczegóły pominięto) 
 
 for (i = 1; // 1 



 i < uRozmiar; // n 
 ++i) // n - 1 
 { 
 nElement = aTablica[i]; // n - 1 
 
 for (j = i - 1; // n -1 

 i >= 0 && aTablica[j] > nElement; // 
2

n
ii

t
=∑  

 --j) // 
( )2

1n
ii

t
=

−∑  

 aTablica[j + 1] = aTablica[j]; // 
( )2

1n
ii

t
=

−∑  
 
 aTablica[j + 1] = nElement; // n - 1 
 } 
} 

 
Koniecznie przeanalizuj ten przykład, aby zrozumieć, dlaczego koszty tych instrukcji są 
właśnie takie. Przy liczeniu cyklów pętli warto pamiętać, że wartość zmiennej uRozmiar 
to nic innego, jak nasze n. 
 
W tym momencie z łatwością możemy już przedstawić sumaryczny koszt całego 
algorytmu. Dodając do siebie koszty wykonania poszczególnych instrukcji otrzymamy 
ostatecznie1: 
 

( )
2

4 2 2
n

i
i

T n n t
=

= − + ∑  

 
Ta funkcja T(n) nosi nazwę złożoności praktycznej algorytmu. 
 
Zlożoność praktyczna jest funkcją, która dla podanego rozmiaru danych wyznacza 
dokładną liczbę elementarnych kroków potrzebnych do wykonania danego algorytmu. 

Popadamy w pesymizm 
Nasza funkcja wygląda stosunkowo zgrabnie, ale ma jeden mankament: jest zależna nie 
tylko od n, ale też od ti, czyli od faktycznego rozmieszczenia danych (elementów 
sortowanej tablicy). Wynika stąd, że nawet dla tablic tego samego rozmiaru czasy 
wykonania procedury InsertionSort() mogą się różnić. Obiecałem ci, że pozbędziemy 
się tego zgrzytu, więc pora to zrobić. 
 
W praktycznych zastosowaniach każdy algorytm jest wywoływany wielokrotnie, 
najczęściej dla różnych danych. Dla każdego zestawu istnieje oczywiście jego własna 
wartość T(n), zależna od n oraz od współczynników t2, t3, …, tn. Pomyślmy jednak, czy 
ma ona jakiś praktyczny sens?… Potencjalnych zestawów danych jest nieskończenie 
wiele, więc interesowanie się złożonością algorytmu dla każdego z nich raczej mija się z 
celem. 
Zamiast tego lepiej jest postawić na jakieś uogólnione przypadki, dla których wartości 
T(n) będą charakterystyczne. Dlatego też w algorytmice rozważa się trzy takie warianty: 

 przypadek optymistyczny, który oznacza najmniejszą liczbę wykonanych kroków 
 przypadek średni, oznaczający złożoność algorytmu dla typowego zestawu 

danych 
 przypadek pesymistyczny, odnoszący się do zestawu danych powodującego 

najdłuższy czas wykonania 
 

                                                 
1 Tzn. po dokonaniu kilku przekształceń upraszczających sumy. 



W każdym z nim zakładamy, że n jest takie samo (bo nadal chcemy, by od niego zależała 
złożoność), jednak wybranie któregoś przypadku determinuje wartości ti. Innymi słowy, 
czynimy wówczas pewne (rozsądne) założenia o rozmieszczeniu danych wejściowych. W 
naszym przypadku chodzi o układ liczb w sortowanej tablicy. 
 
Zacznijmy zatem od przypadku optymistycznego. Dla sortowania będzie nim fakt, iż 
podana tablica jest już rzeczywiście posortowana na samym początku - a zatem 
wykonanie algorytmu jest zbędne. Wszystkie elementy są na właściwych miejscach, a 
więc liczba sprawdzeń ti będzie równa 1 przy każdym obrocie zewnętrznej pętli. Wówczas 
funkcja złożoności przedstawia się następująco: 
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co po uproszczeniu daje nam: 
 

( ) 6 4T n n= −  

 
W najlepszym przypadku złożoność jest więc funkcją liniową względem n, czyli jest 
proporcjonalna do rozmiaru danych. 
 
Taki skrajny przypadek jest bardzo rzadki. Na drugim końcu leży wariant wybitnie 
pesymistyczny, zakładający maksymalny koszt wykonania algorytmu. W tym przypadku 
podana tablica jest posortowana, ale… w odwrotnym porządku! Wtedy też wszystkie 
elementy muszą być kolejno posyłane na początek tablicy: i-ty element przemieści się 
więc o i - 1 miejsc do tyłu w każdym obrocie zewnętrznej pętli. Wniosek: ti = i dla 
każdego i = 2, 3, …, n. Funkcja T(n) będzie zatem wyglądała tak: 
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Występująca tu suma nie jest już tak banalna jak w przypadku optymistycznym, Do jej 
przepisania w bardziej przystępnej postaci najlepiej posłużyć się znanym ci, mam 
nadzieję, wzorem na sumę najprostszego ciągu arytmetycznego: 
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A ponieważ my liczymy sumę od 2, finalnie (po kilku przekształceniach, które 
matematycy określiliby jako „trywialne”) funkcja T(n) przyjmie postać: 
 

( ) 2 5T n n n= +  

 
W tym przypadku jest to więc funkcja kwadratowa. Czas wykonania algorytmu rośnie 
więc znacznie szybciej w miarę wzrostu rozmiaru danych. 
 
Tak jest w przypadku najgorszym. Możesz się zdziwić, ale to właśnie tę sytuację 
powinniśmy przede wszystkim rozpatrywać, gdy mamy na celu określenie efektywności 
algorytmu! Są ku temu co najmniej trzy powody: 

 Przypadek pesymistyczny jest tak zły, że już gorszy być nie może. Wyznaczanie 
złożoności w tym właśnie przypadku daje nam więc górne ograniczenie na czas 
działania algorytmu. Innymi słowy, wiemy na pewno, jakiej magicznej granicy 
czasu wykonania nasza procedura nigdy nie przekroczy. Taka informacja jest 



wbrew pozorom znacznie cenniejsza niż średni czas działania: jeśli bowiem 
przypadek pesymistyczny bardzo odbiega od średniego, to możemy być 
nieprzyjemnie zaskoczeni, gdy akurat na niego natrafimy. Pół biedy, jeżeli 
wyłapiemy ten fakt podczas testowania programu. O wiele gorzej, jeżeli 
spowoduje to irytację końcowego użytkownika, który zlecając programowi 
rutynową czynność stwierdzi nagle, że wykonuje się ona dwie minuty zamiast 
czterech sekund. Tłumaczenie się zgubnym wpływem faz Księżyca może wtedy nie 
być wystarczające… 

 Z drugiej strony przypadek pesymistyczny ma tendencję do częstego 
występowania. Być może niekoniecznie dotyczy to sortowania, ale objawia się 
regularnie podczas wielu powszechnych operacji, jak np. wyszukiwania. Całkiem 
prawdopodobna jest przecież próba wyszukania w bazie danych rekordu, który nie 
istnieje - a to jest właśnie przypadkiem pesymistycznym. 

 Wreszcie, wariant malkontencki jest zwykle podobny do przypadku średniego. 
Weźmy choćby nasze sortowanie: w przypadku średnim liczba przestawień 
elementów tablicy dokonywanych w i-tym obrocie pętli to ti = i / 2. Jeśli masz na 
to ochotę, możesz zapisać funkcję T(n) dla tego właśnie przypadku; po 
uproszczeniu zawartej w niej sumy otrzymasz ponownie funkcję kwadratową. 

Znajdujemy złożoność teoretyczną 
„Zaraz”, możesz jednak zaprotestować. „W przypadku średnim będzie to jednak inna 
funkcja kwadratowa, przyjmująca mniejsze wartości dla tych samych n!” Nie mogę się z 
tobą nie zgodzić, bo byłby to zamach na podstawy matematyki. Mogę jednak zadać 
prowokujące pytanie: A jakie to ma znaczenie? 
 
I spieszę jednocześnie z odpowiedzią, że wcale nie takie duże! Weźmy sobie choćby 
sytuację, w której sortujemy 1000-elementową tablicę (dość skromny przypadek, 
nawiasem mówiąc), a więc n = 1000. Ponieważ zaś T(n) jest funkcją kwadratową, należy 
oczekiwać, że liczba elementarnych kroków algorytmu będzie się dla różnych rozkładów 
danych wahać w okolicach miliona. Czy jednak ma znaczenie dokładna liczba operacji 
podstawowych? Czy zrobi to jakąś istotną różnicę, gdy algorytm wykona w jednym 
przypadku milion i pięć tysięcy, a w drugim milion i pięćdziesiąt tysięcy instrukcji?… 
Nawet nie trzeba liczyć, jakiego rzędu jest to różnica (podpowiedź: to są promile) - 
możesz empirycznie się przekonać, że dla dzisiejszych komputerów to kwestia 
mikrosekund. 
Naturalnie, można się upierać, że te szczegóły mają znaczenie. Jeśli na przykład 
współczynnik przy n w T(n) wynosiłby kilka setek, to w ostatecznym rozrachunku miałoby 
to spory wpływ na czas wykonania. Musisz jednak uświadomić sobie, że takie założenia to 
droga donikąd. Wystarczy wziąć bowiem większe n - powiedzmy 10000, znów nie jest to 
jeszcze bardzo dużo - by wykazać praktyczną identyczność obu pozornie różnych 
złożoności (średniej i optymistycznej). 

Kluczowa cecha algorytmu 
Te obserwacje pozwalają nam na uczynienie ostatniego kroku w analizie efektywności 
algorytmów. Możemy teraz określać ich złożoność teoretyczną. 
 
Złożoność teoretyczna (zwana też klasą algorytmu) określa, jak silnie zależą od 
siebie: rozmiar danych i czas wykonania algorytmu - przy założeniu, że ten pierwszy 
wzrasta nieograniczenie. 
 
Wielkość ta, podana przy opisie konkretnego algorytmu, jest jak CV kandydata o pracę. 
Patrząc na nią i porównując z innymi rozwiązania dla tego samego zadania możemy 
łatwiej zdecydować, który algorytm będzie dla nas najodpowiedniejszy. Złożoność 
teoretyczna jest bowiem uniwersalną miarą efektywności. 



Notacja 
Skoro jest ona tak ważna, powinniśmy nauczyć się nią posługiwać. Na szczęście nie jest 
to trudne i nie wymaga nawet znajomości matematycznych podstaw, kryjących się za 
stosowaną notacją. 
 
Wróćmy więc do analizowanego przez cały czas algorytmu InsertionSort() i jego 
funkcji złożoności T(n). Od jakiegoś czas podkreślałem usilnie fakt, że jest to funkcja 
kwadratowa względem n; jednocześnie przekonywałem, że tak naprawdę nie warto 
wnikać, jak dokładnie ta funkcja wygląda. 
Takie podejście jest właśnie istotą określania złożoności teoretycznej. Bierzemy po prostu 
pod uwagę ten składnik, który ma w ostatecznym rozrachunku największy wpływ na 
wartość T(n). W naszym przypadku jest to n2, gdyż to on czyni ją funkcją kwadratową. 
Przy użyciu standardowego sposobu zapisu wyrażamy to tak, iż: złożoność algorytmu 
InsertionSort() jest rzędu Θ(n2). Bardziej sformalizowane stwierdzenie to po prostu: 
 

( ) ( )2T n n= Θ  

 
Mówi ono dokładnie to, że funkcja T(n) jest funkcją kwadratową względem n. Wiemy 
rzecz jasna, że T(n) określa nam także liczbę elementarnych instrukcji wykonywanych 
podczas sortowania przez wstawianie tablicy n-elementowej. Notacja Θ(n2) mówi więc 
również o tym, iż ilość tych kroków jest proporcjonalna do kwadratu rozmiaru 
sortowanej tablicy. 

Asymptotyczność 
Jak widzimy, podanie złożoności teoretycznej wskazuje jedynie, jak bardzo czas 
wykonania algorytmu zależy od rozmiaru danych. Takie uproszczenie jest uzasadnienie z 
jednego powodu. Zakładamy mianowicie, że tenże rozmiar jest duży - właściwie można 
by nawet powiedzieć, że dąży do nieskończoności. Z tego powodu zapis Θ(n2) (i jeszcze 
kilka podobnych) określa się jako notację asymptotyczną. 
 
Mimo że w toku analizy złożoności przemyciłem już kilka argumentów popierających takie 
podejście, może ono nadal wydawać ci się nadużyciem. Dlaczego więc mielibyśmy 
stosować taką nieprecyzyjną specyfikację efektywności?… Powodów jest kilka: 

 Założenie, że rozmiar danych dąży do nieskończoności (albo, łagodniej mówiąc, 
jest bardzo duży) nie jest wcale tak niedorzeczne, jak na pierwszy rzut oka 
mogłoby się wydawać. Przykład z sortowaniem tysiąca czy dziesięciu tysięcy liczb 
jest raczej regułą niż wyjątkiem. Podobnie często spotkać się można z 
wyszukiwaniem w zbiorze danych liczącym miliony rekordów czy odczytywaniem 
bajtów spośród wielu miliardów zmagazynowanych na dysku twardym. Sytuacja, 
gdy informacji do przetworzenia jest bardzo dużo nie należy zatem wyjątków. 
Warto zresztą przypomnieć, że właśnie konieczność obróbki wielkich porcji danych 
była jedną z przyczyn powstania komputerów… 

 Analiza algorytmów celem znalezienia ich złożoności praktycznej najczęściej 
prowadzi do uzależnienia jej nie tylko od rozmiaru zestawu danych, ale także od 
innych jego cech. W przypadku sortowania wprowadziliśmy na przykład 
współczynnik ti, który w prosty sposób charakteryzował stopień uporządkowania 
tablicy. Mieliśmy przy tym szczęście, gdyż występował on jedynie w jednym 
miejscu; ponadto, po przyjęciu założeń co do rozważanego przypadku można było 
to pojedyncze wystąpienie zredukować jedynie przy pomocy raczej prostych 
operacji na sumach. W wielu często stosowanych algorytmach nie jest jednak tak 
różowo. Doprowadzenie funkcji T(n) do sensownej postaci (bez dodatkowych 
parametrów) może być niekiedy wręcz niemożliwe. Znacznie częściej i łatwiej 
można natomiast podać asymptotyczne oszacowanie na T(n) - czyli znaleźć 
złożoność teoretyczną algorytmu. 



 Jak będziesz się mógł dowiedzieć, czytając dalej ten rozdział, określenie klasy 
algorytmu jest częstokroć możliwe wręcz „na oko” - jedynie poprzez uważne 
przyjrzenie się danemu przepisowi. Wówczas nie tylko nie ma potrzeby 
dokonywania jakichś skomplikowanych operacji algebraicznych, ale także 
oznaczania elementarnych instrukcji w procedurze i zapisywania złożoności 
praktycznej. Łatwość uzyskania klasy algorytmu jest więc kolejnym argumentem 
przemawiającym za jej stosowaniem. 

 I wreszcie ostatni powód, należący do kategorii faktów dokonanych. Otóż 
złożoność teoretyczna jest powszechnie przyjętym sposobem określania 
efektywności algorytmach. Oczywiście, w opisach dość często można natrafić na 
uwagi mówiące o tym, jak dane rozwiązania sprawdza się w praktyce w 
porównaniu z innymi, o tej samej klasie. Nie zmienia to jednak faktu, iż klasa 
algorytmu jest najważniejszym czynnikiem determinującym jego rzeczywisty 
czasy wykonania - ważniejszym od szczegółów technicznych. 

 
Nasze dalsze poszukiwania będą więc koncentrowały się właśnie na tym pojęciu. W 
następnej sekcji postaram się przedstawić w miarę przystępny sposób tę porcję 
matematyki, która kryje się za notacją asymptotyczną. Natomiast reszta rozdziału to 
kilka wskazówek, mających na celu pomoc w znajdowaniu złożoności obliczeniowej 
algorytmów w typowych sytuacjach (najczęściej bez uciekania się do skomplikowanego 
aparatu matematycznego). 

Notacje asymptotyczne 
W tej sekcji powiemy sobie więcej o tym niezbyt oczywistym przy pierwszym kontakcie 
sposobie wyrażania efektywności algorytmów - czyli o notacjach asymptotycznych. 
 
Mówiłem już wcześniej, że w tym kontekście przymiotnik ‘asymptotyczny’ oznacza, że 
interesujemy się sytuacjami, gdy rozmiar danych algorytmu rośnie nieograniczenie. 
Stanowi to matematyczne uogólnienie najczęściej spotykanym w prawdziwym życiu 
przypadków, gdy zestaw danych dla algorytmu jest faktycznie bardzo duży. 
Założenie o dążeniu do nieskończonoci pozwala jednak na dokonanie kilku znaczących 
uproszczeń. Pokazałem pod koniec poprzedniej sekcji, że polegają one na: 

 pominięciu wszystkich składników funkcji oprócz tego, który ma największy wpływ 
na jej wartość (a więc rośnie najszybciej) 

 pominięciu wszelkich stałych współczynników 
 
Na tej podstawie mogliśmy więc stwierdzić, że asymptotyczny czas działania algorytmu 
sortowania przez wstawianie wynosi Θ(n2), gdzie n jest wielkością sortowanej tablicy. 
Teraz wyjaśnimy sobie dokładnie, co ten zapis oznacza, a także wprowadzimy dwie inne, 
podobne notacje. Omówimy sobie też własności tych notacji, które zdecydowanie 
ułatwiają określanie klasy algorytmu w praktycznych sytuacjach. 

Trzy ważne definicje 
Na początku warto uściślić pewien fakt, który niektórych zapewne zbytnio nie wzruszy, 
ale wielu może co najmniej zdegustować. Otóż notacje asymptotyczne są szeroko 
stosowane przede wszystkim w informatyce, lecz jako samo pojęcie mają korzenie 
zdecydowanie matematyczne. Dlatego też przy ich omawianiu należy posługiwać się 
terminami wziętymi z dziedziny królowej nauk - przede wszystkim pojęciem funkcji. 
 
Algebraiczne pojęcie funkcji jest, mam nadzieję, wszystkim doskonale znane, choć 
głównie pod postacią funkcji określonych na liczbach rzeczywistych. Nas będą tutaj 
bardziej interesowały funkcje zdefiniowane dla zbioru liczb naturalnych 

{ }0,1, 2,3, 4,=` … . Powód jest oczywisty: parametry określające egzemplarze problemów 



dla algorytmów (jak choćby tablice do posortowania) są niemal wyłącznie liczbami 
naturalnymi. 
 
Teoretycznie nic nie stoi na przeszkodzie, aby podane niżej definicje stosować także dla 
funkcji liczb rzeczywistych, ale wtedy trudniej o algorytmiczny sens takich pojęć. 
 
W tym paragrafie zdefiniujemy sobie zatem trzy notacje asymptotyczne, używane w 
odniesieniu do funkcji liczb naturalnych. Jakkolwiek sam fakt takiego matematycznego 
postawienia sprawy może juz z miejsca być odstręczający, definicje te nie są wcale takie 
trudne do zrozumienia. W praktyce stosuje się je całkiem intuicyjnie. 
 
Ponieważ w kwestii definiowania notacji asymptotycznych panuje pewien rozgardiasz 
(wspomnę o nim pod koniec), musiałem zdecydować się na jakiś wybór, który byłby 
jednocześnie prosty i użyteczny. Posłużyłem się więc definicjami z powszechnie uznanej 
książki na temat algorytmiki: Wprowadzeniu do algorytmów Thomasa H. Cormena i 
współautorów. One z kolei są wprost bazowane na absolutnej klasyce literatury 
informatycznej, czyli Sztuce programowania Donalda E. Knutha. 

Dokładne oszacowanie (notacja Θ) 
Zacznijmy od używanego już przez nas symbolu Θ, wykorzystywanego w zapisie Θ(n2). 
Ogólnie jest to notacja postaci Θ(f(n)), co czytamy ‘wielkie theta od f od n’. Z wyglądu 
zdaje się więc, że mamy do czynienia z „funkcją określoną na innej funkcji” albo z 
funkcjami zagnieżdżonymi. Naprawdę jest to coś ciekawszego; mamy bowiem do 
czynienia ze zbiorem funkcji określonym mniej więcej tak: 
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Zbiór funkcji może być dziwnym tworem, jeśli dotąd byłeś przyzwyczajony wyłącznie do 
zbiorów liczbowych czy punktów na płaszczyźnie albo w przestrzeni. W matematyce 
elementami zbiorów mogą być jednak obiekty dowolnego rodzaju (nawet inne zbiory), 
więc nic nie stoi na przeszkodzie, abyśmy połączyli  w zbiór Θ(f(n)) funkcje spełniające 
wyżej wymieniony warunek. 
 
W zwięzłym, dosłownym zapisie matematycznym powyższa definicja wygląda 
następująco: 
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Cóż jednak ten warunek praktycznie oznacza?... Dowolna funkcja g(n) należy do zbioru 
Θ(f(n)) wyłącznie wtedy, gdy możemy sobie znaleźć trzy wymienione w definicji liczby c1, 
c2, n0, dla których g(n) jest „wstawiona między” funkcje c1f(n) i c2f(n). Ten aspekt 
najłatwiej zrozumieć, patrząc na wykresy wszystkich trzech funkcji: od pewnego 
momentu (n0) funkcja g(n) leży w całości w obrębie „nożyc” tworzonych przez wykresy 
c1f(n) i c2f(n): 
 



 
Wykres 1. Graficzna interpretacja faktu, iż g(n) należy do Θ(f(n)) 

 
Oznacza to także, że dla n ≥ n0 funkcja g(n) jest równa f(n) z dokładnością do stałej 
czynnika (wartości obu funkcji są do siebie proporcjonalne). Mówimy też, że: 
 
Jeśli g(n) należy do Θ(f(n)), to f(n) jest asymptotycznie dokładnym oszacowaniem 
dla f(n). 
 
Zwrot ‘dokładne oszacowanie’ wydaje się mieć cechy jakiegoś dziwnego paradoksu, 
jednak ma on sens. Jak się bowiem przekonamy, notacja Θ ma charakter podobny do 
(względnej) równości obu funkcji - a przynajmniej takiej równości, na którą możemy 
sobie pozwolić w analizie algorytmów. 
 
Korzystając z podanej definicji możnaby uzasadnić, że znaleziona przez nas funkcja T(n) 
= n2 + 5n rzeczywiście jest rzędu Θ(n2). Aby uczynić, należy po prostu znaleźć trzy 
dodatnie stałe c1, c2, n0 tak, aby spełniona była nierówność: 
 

2 2 2
1 25c n n n c n≤ + ≤  

 
Nie jest to bardzo skomplikowane - wystarczy podzielić wszystko przez n2 i rozwiązać 
obie nierówności przy założeniu, że n ≥ 0. W typowych przypadkach nie musimy jednak 
tego robić. W zupełności zadowolić się można nieformalną metodą z poprzedniej sekcji: 
trzeba po prostu brać pod uwagę tylko najbardziej znaczacy składnik i pominąć 
wszelkie współczynniki stałe. 
 
Łatwo można więc zrozumieć, dlaczego każdy wielomian stopnia d jest funkcją rzędu 
Θ(nd) - po prostu bierzemy pod uwagę tylko jego najwyższą potęgę i nie przejmujemy się 
stałymi współczynnikami. Szczególnym przypadkiem jest d = 0; wtedy mamy do 
czynienia ze stałą - funkcją rzędu Θ(n0), czyli po prostu Θ(1). Taki zapis oznacza więc, że 
mamy na myśli dowolną liczbę, która jest stała i niezależna od parametru funkcji2. 

                                                 
2 Trochę nieścisłe jst używanie Θ(1), bo wtedy faktycznie nie wiemy, co jest tym parametrem funkcji, od 
którego Θ(1) jest niezależne. Generalnie jednak użycie tego symbolu w równaniach nie powoduje 
niejednoznaczności, jeśli wiemy, co w takim równaniu jest zmienną niezależną. 



Ograniczenie górne (notacja Ο) 
Druga z notacji jest jakby „górną połową” pierwszej. Napisanie Ο(f(n)), co czytamy jako 
‘wielkie Ο od f o n’3, oznacza mianowicie zbiór: 
 

( )( ) ( )
( ) ( )

0

0

: istnieją liczby , 0, takie że

0 dla wszystkich

g n c n
O f n

g n cf n n n

⎧ ⎫>⎪ ⎪= ⎨ ⎬
≤ ≤ ≥⎪ ⎪⎩ ⎭

 

 
Wszystkie należące do niego funkcje mają więc tę własność, że f(n) ogranicza je od góry. 
Jeżeli zatem g(n) należy do Ο(f(n)), to przy dążeniu n do nieskończoności wartości g(n) 
są mniejsze od f(n) co najmniej o stały czynnik (a nawet bardziej). Znowuż najlepiej 
widać to na wykresie. Mamy mianowicie już tylko jedno „ostrze nożyczek” - to górne, 
reprezentujące f(n). Od pewnego miejsca (n0) wykres obrazujący cg(n) cały czas 
znajduje się więc pod nim. Odpowiada to temu, iż g(n) jest asymptotycznie mniejsze 
od f(n): 
 

 
Wykres 2. Graficzna interpretacja faktu, że g(n) należy do Ο(f(n)) 

 
Można też powiedzieć, że f(n) jest asymptotycznym ograniczeniem górnym dla g(n). 
Mając informacje o funkcji wyrażone w postaci notacji Ο wiemy zatem tylko tyle (albo aż 
tyle), że funkcja na pewno nie przekroczy tej podanej wraz z zapisem Ο(f(n)) - choćby 
argument n był maksymalnie duży. 
 
Przekładając to na analizę algorytmów możemy powiedzieć, że znając asymptotyczne 
ograniczenie górne wiemy, że dany algorytm nie będzie się wykonywał dłużej. Jeśli zaś 
informacja ta dotyczy przypadku pesymistycznego, mamy całkowitą pewność, że jest to 
maksymalny czas działania procedury w zależności od rozmiaru danych. 
Jak się wkrótce przekonamy, wyznaczenie takiego zgrubnego oszacowania dla algorytmu 
jest zwykle całkiem proste. W kolejnym podrozdziale zajmiemy się kilkoma technikami 
dokonywania tego. 

                                                 
3 Symbol Ο nie jest tutaj zwykłą, wielką literą O, lecz grecką literą omikron. Naturalnie, jeśli nie dysponujemy 
akurat czcionką z greckim alfabetem, posłużenie się łacińskim O nie jest żadnym kardynalnym błędem. 



Ograniczenie dolne (notacja Ω) 
Jak nietrudno się domyślić, ostatnia notacja jest „dolną połową” pierwszej. Zapis Ω(f(n)) 
czytamy ‘wielkie omega od f od n’, a symbolizuje on ostatni już dzisiaj zbiór funkcji: 
 

( )( ) ( )
( ) ( )

0

0

: istnieją liczby , 0, takie że

0 dla wszystkich

g n c n
f n

cf n g n n n

⎧ ⎫>⎪ ⎪Ω = ⎨ ⎬
≤ ≤ ≥⎪ ⎪⎩ ⎭

 

 
Podobnie jak w przypadku Ο(f(n)), funkcje należące do Ω(f(n)) są ograniczone tylko z 
jednej strony. Tutaj jest to limit dolny, a zatem jeśli g(n) należy do Ω(f(n)), to znaczy to, 
że jest ona asymptotycznie większa od f(n). Od pewnego miejsca n0 wykres cg(n) leży 
więc w całości ponad wykresem f(n): 
 

 
Wykres 3. Graficzna interpretacja faktu, iż g(n) należy do Ω(f(n)) 

 
Łatwo zgadnąć, że mówimy wtedy, iż f(n) jest asymptotycznym ograniczeniem 
dolnym dla g(n). Jeżeli więc f(n) wyraża czas wykonania algorytmu w przypadku 
optymistycznym, to wiemy na pewno, że lepszych wyników ten algorytm już nie osiągnie 
- nawet dla najbardziej korzystnych danych. 
 
Obie połówki notacji Θ możemy teraz połączyć w całość. Mianowicie: 
 
Jeżeli g(n) należy zarówno do Ω(f(n)), jak i do Ο(f(n)), to z pewnością należy także do 
Θ(f(n)). 
 
Inaczej mówiąc, wyznaczenie identycznych asymptotycznych ograniczeń z góry i z dołu 
dla danej funkcji pozwala nam na automatyczne ustalenie jej oszacowania. Często w ten 
właśnie sposób można określić dokładnie klasę algorytmu. 

Nieco zamieszania 
Jako konstrukcje matematyczne notacje asymptotyczne muszą być ścisłe. Życie 
wprowadza aczkolwiek nieco bałaganu w ten wyidealizowany obraz. Stosowanie tych 
notacji wymaga więc jeszcze dwóch uwag na ten temat. 



Notacja Θ a Ο 

Jest całkiem prawdopodobne, że z symbolem Ο(f(n)) zetknąłeś się już wcześniej. Jeśli 
tak, to zapewne był on używany w niezupełnie poprawnym kontekście. Ograniczenie 
górne jest bowiem często stosowane zamiast dokładnego oszacowania, czyli Θ(f(n)). 
Takie określanie klasy algorytmu jest mało precyzyjne. Weźmy na przykład nasze 
sortowanie przez wstawianie: ponieważ możemy powiedzieć o nim, że jest klasy Ο(n2), to 
z pełną powagą można również twierdzić, że należy ono także do klasy Ο(n5) czy nawet 
O(2n)! 
 
Praktyczny sens takich stwierdzeń jest żaden; porównać to można to „precyzyjnego” 
określania liczby 5 jako „z pewnością mniejszej od miliona”, podczas gdy faktycznie nie 
osiąga nie ona nawet dziesiątki. Oczywiście, nikt poważny nie stosuje notacji Ο w ten 
sposób, bo to prowadziłoby jedynie do nieporozumień. Podkreślam jednak, że jest to 
całkiem poprawne, acz nonsensowne. 
Dlatego też we wiarygodnych źródłach wiedzy na temat algorytmów bacznie przestrzega 
się pola zastosowań trzech notacji asymptotycznych. W dalszej części tego rozdziału 
również będę konsekwentnie rozróżniał zapis Θ(f(n)) i Ο(f(n)), aby nie doprowadzać do 
błędów. 

Równość?… 

Jak podkreślałem przy definicjach, wszystkie trzy symbole asymptotyczne są zbiorami - 
dokładniej mówiąc, zbiorami funkcji. Właściwie więc oznaczenie przynależności do 
jednego z tych zbiorów powinno się zapisywać np. tak: 
 

( ) ( )( )g n f n∈Θ  

 
Oznacza to, że funkcja g(n) należy do zbioru Θ(f(n)) albo że po prostu jest ona tego 
samego rzędu co f(n). Bardzo często spotyka się jednak zapis w formie równości: 
 

( ) ( )( )g n f n= Θ  

 
Pozornie jest on niepoprawny, bo występuje tu swoista „niezgodność typów”: po lewej 
stronie mamy pojedynczą funkcję, a po prawej cały zbiór. Możliwość występowania 
notacji asymptotycznych w takich równaniach jest jednak bardzo cenna; pozwala ona 
mianowicie na ukrycie nieistotnych szczegółów. Każde wystąpienie symbolu Θ, Ο lub Ω w 
równaniu trzeba po prostu interpretować jako odpowiednią funkcję należącą do 
podanego zbioru. Odpowiednią - to znaczy wybraną tak, aby cała równość była spełniona. 
 
Oczywiście nie zawsze dokładnie wiadomo, o jaką funkcję chodzi. W takich jednak 
przypadkach jest to zwykle nieistotne. Przykładowo, podanie złożoności algorytmu jako: 
 

( ) ( )25T n n n= +Θ  

 
znaczy dokładnie tyle, że oprócz składnika 5n2 występuje jeszcze jakiś bliżej nieokreślony 
składnik liniowy. Nie ma on jednakże znaczenia, bowiem funkcja kwadratowa dominuje 
tutaj zdecydowanie. T(n) jest więc rzedu Θ(n2). 

Własności notacji asymptotycznych 
Podanie kilku definicji, jakkolwiek niezbędne, nie daje nam wszystkiego. Pomówmy więc 
sobie o kilku ważnych cechach wprowadzonych właśnie notacji asymptotycznych. 



Działania na anonimowych funkcjach 
Jak zaprezentowałem przed chwilą, notacje te mogą występować w zwyczajnych 
równaniach. Reprezentuje one wtedy anonimowe, bliżej nieokreślone funkcje, które 
spełniają warunki podane w definicji danej notacji. Przy użyciu anonimowych funkcji 
często upraszcza się wyrażanie i wyznaczanie złożoności algorytmów. 
 
Aby jednak posługiwać się tymi przydatnymi tworami, powinniśmy poznać ich kilka cech 
praktycznych. Oto lista paru własności notacji asymptotycznych; występuje na niej 
wyłącznie notacja Θ, ale wszystkie właśności z powodzeniem odnosza się także do dwóch 
pozostałych symboli. Spójrzmy więc na to zestawienie: 

 ( )( ) ( )( )c f n f n⋅Θ ≡ Θ , gdzie c jest stałą. 

Wyjaśnienie tej zaskakującej właściwości pochłaniania czynników stałych jest w 
gruncie rzeczy proste. Funkcje należące do Θ(f(n)) różnią się od siebie odmienne 
właśnie dlatego, że ich wartości różnią się o stały czynnik. Czynnik ten może być 
dowolny, zatem pomnożenie go przez następny stałą w niczym „nie umniejsza 
jego dowolności”. Wynikowy zbiór funkcji jest więc nadal taki sam. 

 ( )( ) ( )( ) ( )( )f n f n f nΘ +Θ ≡ Θ  

Ta własność jest również nietypowa, bo zupełnie nie przystaje do znanych nam 
zasad arytmetyki na liczbach. Można ją jednak wyjaśnić, odwołując się do 
poprzedniej cechy. Θ(f(n)) + Θ(f(n)) to inaczej 2Θ(f(n)), a ponieważ notacje 
asymptotyczne pochłaniają czynniki stałe, ostatecznie suma jest równa Θ(f(n)). 
Identycznie jest dla każdej innej, skończonej liczby składników. 

 ( )( )( ) ( )( )f n f nΘ Θ ≡ Θ  

Jak wspominałem na początku, wystąpienie notacji asymptotycznej należy 
traktować jako anonimową funkcję. Wewnętrzne Θ(f(n)) reprezentuje więc pewną 
funkcję; „potraktowanie” jej po raz drugi symbolem Θ daje nam nadal to samo. 

 ( )( ) ( )( ) ( ) ( )( )f n g n f n g nΘ ⋅Θ ≡ Θ ⋅  

Swoistą rozdzielność względem mnożenia można wytłumaczyć faktem, że notacja 
asymptotyczna ukrywa w sobie zawsze pewną stałą. Pomnożenie ich przez siebie 
także daje stałą o identycznym znaczeniu, wobec czego zachodzi powyższa 
własność. 

 
Oczywiście we wszystkich przypadkach możnaby podać formalne dowody tych i jeszcze 
kilku innych własności, ale to raczej mija się z celem -w końcu nie jest to podręcznik 
algebry. Najważniejsze jest, aby móc stosować powyższe cechy notacji w praktyce. W 
dalszej części rozdziału będziemy się do nich często odwoływać. 

Porównywanie funkcji 
Dla rozluźnienia po tej pokaźnej dawce formalnej matematyki czas na porcję bardziej 
intuicyjnego podejścia. Okazuje się, że notacje asymptotyczne wprowadzają coś w 
rodzaju kryteriów „porównywania funkcji”. Relacje te działają podobnie do porównań 
dwóch liczb rzeczywistych. Tę paralelę ilustruje poniższa tabelka: 
 

relacja między funkcjami „odpowiednik” liczbowy 

( ) ( )( )g n O f n=  f g≥  

( ) ( )( )g n f n= Θ  f g=  

( ) ( )( )g n f n= Ω  f g≤  

Tabela 1. Analogia między notacjami asymptotycznymi a relacjami między liczbami rzeczywistymi 

 



Istnieją też notacje „odpowiadające” niewystępującym to porównaniom f > g i f < g. Są 
one zapisywane jako g(n) = ο(f(n)) oraz g(n) = ω(f(n)). Ponieważ używa się ich raczej 
rzadko, nie wprowadzam ich definicji. Zainteresowani mogą rzecz jasna sięgnąć do 
bardziej fachowej literatury, wymienionej na początku tej sekcji. 
 
Analogia ta ma swoje matematyczne uzasadnienie we własnościach notacji 
asymptotycznych, jak zwrotność czy przechodniość. Myślę, że nie ma sensu wymieniać 
ich wszystkich, gdyż o wiele lepiej będzie, jeśli zapamiętasz takie właśnie intuicyjne 
odwołanie do zwykłych liczb. Gdy tak uczynisz, posługiwanie się tymi notacjami będzie o 
wiele łatwiejsze. 

Uwagi na temat złożoności 
Gdy wiemy już, czym jest złożoność obliczeniowa oraz znamy sposoby jej wyrażania, 
zastanówmy się, co ona właściwie oznacza. W tej sekcji porównamy sobie typowe 
przykłady klas złożoności algorytmów oraz najbardziej znane rozwiązania, które mają 
takie właśnie złożoności czasowe. Myślę, że pozwoli to uświadomić sobie, że 
wprowadzone wcześniej pojęcia nie są jakimś abstrakcyjnym pomysłem natury wyłącznie 
matematycznej. 

Porównanie różnych typów złożoności obliczeniowej 
W algorytmice przewija się głównie kilka funkcji, które asymptotycznie określają 
złożoność obliczeniową wielu algorytmów. Do tych najczęściej spotykanych funkcji 
należą: 

 ( )1Θ , gdy czas wykonania algorytmu jest stały i niezależny od rozmiaru danych 

wejściowych (złożoność stała) 
 ( )log nΘ , kiedy czas ten rośnie logarytmiczne wraz ze wzrostem wielkości danych 

(złożoność logarytmiczna). Logarytm jest niemal zawsze o podstawie 2 (w 
przypadku notacji asymptotycznych nie ma to aczkolwiek znaczenia, bowiem 
podstawa logarytmu może być zmieniona poprzez pomnożenie przez czynnik 
stały) 

 ( )nΘ  - czas działania jest proporcjonalny do rozmiaru danych wejściowych 

(złożoność liniowa) 

 ( )logn nΘ  - złożoność jest iloczynem funkcji liniowej i logarytmicznej 

 ( )2nΘ  - liczba instrukcji algorytmu rośnie proporcjonalnie do kwadratu rozmiaru 

danych wejściowych (złożoność kwadratowa) 

 ( )2nΘ  - czas wykonania rośnie wykładniczo względem rozmiaru danych 

(złożoność wykładnicza) 

 ( )!nΘ  - złożoność jest wyrażona za pomocą silnii (iloczynu wszystkich liczb 

naturalnych od 1 do n) 
 
Złożoności te zostały uszeregowane według wzrastającego czasu wykonania. Aby 
uświadomić sobie, jak bardzo klasy te różnią się od siebie, popatrzmy na poniższą 
tabelkę obrazującą czasy działania algorytmów o różnych złożonościach. Przyjęto w niej, 
że pojedyncza instrukcja wykonuje się jedną nanosekundę, czyli że algorytm jest 
wykonywany na komputerze działającym z częstotliwością 1 gigaherca: 
 
n  

T(n)  
10 20 50 100 200 1000 

log n 3,32 ns 4,23 ns 5,64 ns 6,64 ns 7,64 ns 9,97 ns 



n 10 ns 20 ns 50 ns 100 ns 200 ns 1000 μs 
n log n 33,21 ns 86,44 ns 282,2 ns 664,4 ns 1,53 μs 9,97 μs 

n2 100 ns 400 ns 2,5 μs 10 μs 40 μs 1 ms 
2n 1 μs 1,05 ms 13 dni 4·1013 lat 5,1·1043 lat 3,4·10284 lat 
n! 3,6 ms 77 lat 9,6·1044 lat 3·10141 lat 2,5·10358 lat 1.27·102551 lat 

Tabela 2. Przykładowe czasy działania algorytmów o różnych złożonościach dla wybranych 
rozmiarów danych 

 
Różnice pomiędzy poszczególnymi wyrazami tabeli są, jak widać, gigantyczne. O ile w 
przypadku czterech pierwszych wierszy wzrost czasu działania algorytmu jest dla 
człowieka właściwie niezauważalny, o tyle dwie ostatnie funkcje złożoności osiągają wręcz 
niewyobrażalne wartości. 
Dość powiedzieć, że wykonanie algorytmu o złożoności 2n dla danych o rozmiarze 100 
zabierze czas ponadtysiąckrotnie dłuższy od szacowanego wieku Wszechświata! Dla n 
równego 200 jest z kolei bardzo prawdopodobne, że protony składające się na nasz 
komputer rozpadną się, zanim zdołamy doczekać się wyniku4. Kolejne czasy dla 
złożoności 2n, a zwłaszcza n!, są nie tylko kwintyliony razy większe niż nawet najbardziej 
optymistyczne szacunki co do długości dalszego życia kosmosu, ale wręcz nie mają 
żadnego wyobrażalnego przybliżenia. 
 
Ten zdumiewający rozziew pomiędzy tymi dwoma typami złożoności spowodował, że 
często mówi się o algorytmach działających w czasie (pod)wielomianowym oraz 
ponadwielomianowym. W praktyce podział ten jest tożsamy z wyróżnieniem procedur 
wykonalnych w rozsądnym czasie oraz takich, które z praktycznego punktu widzenia nie 
zakończą się nigdy. Zdecydowana większość problemów może być na szczęście 
rozwiązana w czasie wielomianowym lub lepszym. Niemniej istnieje cały szereg zadań, 
dla których nie są znane tak efektywne rozwiązania; ponieważ wiele z nich ma pewną 
ciekawą własność, wspomnimy sobie o nich w następnym paragrafie. 

Przykłady algorytmów 
Teraz masz już pewnie pojęcie, co tak naprawdę kryję się pod poszczególnymi typami 
złożoności obliczeniowej. Prawdopodobnie jednak nadal zastanawiasz się, jak wielkości 
odnoszą się do algorytmów faktycznie wykorzystywanych w programach. Spójrz więc na 
poniższe zestawienie, w którym umieściłem wiele typowych przykładów dla różnych 
złożoności obliczeniowych: 
 
złożoność nazwa algorytmu znaczenie n uwagi 

instrukcja 
programu 

wszystkie pojedyncze instrukcje 
programów traktuje się tak, 

jakby ich wykonanie zajmowało 
stały czas ( )1Θ  

operacje na 
stosach i kolejkach 

— 
stosy i kolejki to elementarne 

struktury danych w 
programowaniu 

( )1O  
wyszukiwanie w 

tablicy z 
haszowaniem 

— 

haszowanie to specjalny sposób 
indeksowania elementów 
tablicy przy pomocy ich 

wartości 

bisekcja 
liczba 

przeszukiwanych 
danych 

algorytm bisekcji służy do 
wyszukiwania określonego 

elementu w posortowanym 
zestawie danych 

( )log nΘ  

wyszukiwanie w liczba węzłów w drzewo wyszukiwań binarnych 

                                                 
4 Według fizyków czas życia protonu to 1035 lat. 



złożoność nazwa algorytmu znaczenie n uwagi 
drzewie BST drzewie (BST) jest specjalną strukturą 

danych, nastawioną na szybkie 
wstawianie, usuwanie i 

wyszukiwanie elementów 

( )logO n  algorytm Euklidesa 
jedna z podanych 

liczb 

słynny algorytm służy do 
obliczania największego 

wspólnego dzielnika dwóch 
podanych liczb całkowitych 

przeszukiwanie 
liniowe 

liczba 
przeszukiwanych 

elementów 

wyszukiwanie liniowe to po 
prostu przeglądnięcie całego 
ciągu nieposortowanych 

danych w poszukiwaniu 
określonego elementu 

sortowanie przez 
zliczanie i 
pozycyjne 

liczba sortowanych 
elementów i/lub ich 
możliwych wartości 

ten rodzaj sortowania nie 
opiera się na porównywaniu 

elementów, więc nie jest 
uniwersalny 

wyszukiwanie 
wzorca metodą 

KMP 

długość 
przeszukiwanego 

tekstu 

algorytm Knutha-Morrisa-Pratta 
jest sposobem na 

przeszukiwanie tekstów 

( )nΘ  

operacje na 
wielomianach (z 

wyjątkiem 
mnożenia i 
dzielenia) 

stopień wielomianu 

dodawanie, odejmowanie, 
obliczanie, różniczkowanie i 

całkowanie wielomianów można 
wykonywać w czasie liniowym, 

jeżeli przechowujemy ich 
współczynniki 

wyznaczanie 
statystyk 

pozycyjnych 
liczba elementów 

statystyka pozycyjna to 
„miejsce” danego elementu w 
posortowanym ciągu - tutaj 
ustalane bez wykonywania 

sortowania 
( )O n  

przeszukiwanie 
grafu 

ilość wierzchołków 
i/lub krawędzi grafu 

przeszukiwanie to 
przechodzenie po wszystkich 

wierzchołkach grafu 

algorytm 
sortowania oparty 
na porównaniach 

liczba sortowanych 
elementów 

żaden algorytm sortowania, 
które opiera się na 

porównywaniu elementów, nie 
może działać lepiej ( )logn nΩ  

znajdowanie 
najmniejszej 

otoczki wypukłej 
liczba punktów 

otoczka wypukła to wielokąt, 
otaczający całkowicie podany 

zbiór punktów 
sortowanie przez 

scalanie 
(mergesort) lub 

kopcowanie 
(heapsort) 

liczba sortowanych 
elementów 

w praktyce lepsze bywa 
sortowanie szybkie (quicksort), 

choć jego pesymistyczna 

złożoność to ( )2nΘ  
( )logn nΘ  

przemyślne 
mnożenie 

wielomianów 
stopień wielomianu 

algorytm tego mnożenia jest 
dość skomplikowany, bo 

wykorzystuje szybką 
transformatę Fouriera 

(ang. Fast Fourier Transform) 

( )logO n n  
znajdowanie 

najmniej odległych 
punktów 

liczba wszystkich 
punktów 

większość czasu tego algorytmu 
zajmuje posortowanie punktów 

( )2nΘ  
sortowanie przez 

wstawianie 
liczba sortowanych 

elementów 
sprawdzają się doskonale dla 

niewielu elementów 



złożoność nazwa algorytmu znaczenie n uwagi 
(insertion sort) i 

bąbelkowe (bubble 
sort) 

(kikudziesięciu, kilkuset) 

proste mnożenie 
wielomianów 

stopień wielomianu 
odpowiednie dla wielomianów o 

niewielkich stopniach 
znalezienie 

najkrótszej ścieżki 
w grafie 

liczba wierzchołków 
i/lub krawędzi grafu 

krawędzi w grafie mogą być z 
wagami lub bez wag 

( )2O n  
naiwny algorytm 

wyszukiwania 
wzorca 

średnia długości 
wzorca i tekstu 

naiwny algorytm przegląda po 
prostu tekst znak po znaku 

( )3nΘ  naturalny algorytm 
mnożenia macierzy 

rozmiar macierzy 
kwadratowej 

wystarczający w ogromnej 
większości przypadków 

( )2nΩ  

„naiwne” szukanie 
zmiennych 

spełniających 
formułę logiczną 

liczba zmiennych w 
formule 

sprawdzanie spełnialności 
formuły logicznej jest użyteczne 

np. w optymalizacjach 
czynionych przez kompilatory 

„naiwne” 
rozstrzyganie o 
istnieniu cyklu 

Hamiltona 

liczba wierzchołków 
grafu 

cykl Hamiltona to sposób na 
przejście wszystkich 
wierzchołków grafu, 

odwiedziwszy każdy dokładnie 
jeden raz ( )!nΩ  

„naiwne” 
rozwiązanie 
problemu 

komiwojażera 

liczba miast do 
odwiedzenia 

problem komiwojażera polega 
na wyznaczeniu takiej trasy 
przejazdu między miastami, 

która jest nie dłuższa od 
podanej 

Tabela 3. Przykłady algorytmów o różnych złożonościach obliczeniowych 

 
Można zauważyć, że wiele pozornie trudnych problemów daje się rozwiązać w 
stosunkowo dobrym czasie przy pomocy odpowiedniego algorytmu. Z drugiej strony, 
sporo zdawałoby się prostych zadań jest obecnie wykonalna jedynie w czasie 
ponadwielomianowym. 
 
Powyższa tabelka ilustruje też, jak ogromna jest liczba różnych zastosowań dla 
algorytmów. Z oczywistych względów nie ma tu miejsca na szczegółowe omawianie 
każdego z tych rozwiązań oraz ich zastosowań. Jeżeli cię to interesuje, powinieneś 
sięgnąć do literatury poświęconej wyłącznie tym zagadnieniom. 

Słówko o NP-zupełności 
Podział problemów na rozwiązywalne w czasie wielomianym i ponadwielomianowym 
odpowiada wyróżnieniu wśród nich tych „łatwych” i „trudnych”. Możnaby oczywiście 
uważać problem o złożoności Θ(n100) za w praktyce trudny, ale prawdopodobnie nie 
istnieją żadne algorytmy o podobnej charakterystyce. Nawet gdyby były one 
rozwiązaniami jakichś ważnych problemów, znaleziono by dla nich efektywniejsze 
odpowiedniki. Jak bowiem wynika z kilkudziesięcioletniego istnienia nauki zwanej 
algorytmiką, obniżanie złożoności wielomianowej jest nieporównywalnie łatwiejsze od 
pozbycia się zależności np. wykładniczej. 
Niestety, dla wielu problemów nie znamy efektywnych algorytmów, działających w czasie 
wielomianowym. Spora część z tych problemów ma przy tym wyjątkowo intrygujące 
właściwości. Dodatkowo komplikują one odpowiedź na pytanie, czy owe efektywne 
algorytmy istnieją. Myślę, że warto o tym powiedzieć trochę szerzej. 
 



Zacznijmy od zaprezentowania powszechnie stosowanego podziału problemów 
algorytmicznych na tzw. klasy. Otóż wyróżnia się generalnie dwie takie wielkie klasy: 

 klasa P zawiera te problemy, które możemy rozstrzygnąć (rozwiązać) w czasie 
co najwyżej wielomianowym. Zdecydowana większość zagadnień należy do tej 
właśnie klasy - jak choćby wszystkie zaprezentowane w tabeli z poprzedniego 
paragrafu, oprócz (najprawdopodobniej) trzech ostatnich 

 klasa NP obejmuje te problemy, których rozwiązania moglibyśmy sprawdzić w 
czasie wielomianowym. Prościej mówiąc, jeśli mielibyśmy dane opisujące 
konkretną sytuację problemową oraz „podarowane” skądś rozwiązanie, to 
moglibyśmy w efektywny sposób sprawdzić, czy to rozwiązanie jest faktycznie 
poprawne. Do klasy NP należą wszystkie problemy ze wspomnianej tabeli 

 
Może to być zaskakujące, ale właściwie jedyne, co wiemy na pewno na temat relacji 
pomiędzy tymi dwoma klasami, jest to, iż P ⊂ NP. Nietrudno zresztą uzasadnić, dlaczego: 
jeśli bowiem potrafimy rozwiązać jakiś problem w czasie wielomianowym, tym bardziej 
potrafimy go sprawdzić w takim czasie. 
Od ponad trzydziestu lat otwarta pozostaje natomiast kwestia równości lub nierówności 
obu tych klas. Jeżeli P = NP, wówczas niemal każdy praktyczny problem byłby do 
rozwiązania w czasie wielomianowym; prawdopodobnie więc całkiem szybko znajdywano 
by dlań efektywne algorytmy. Większość informatyków sądzi jednak, że rzeczywistość nie 
jest taka różowa, a P ≠ NP. Jest ku temu jedna poważna przesłanka… 
 
Jest nią istnienie podklasy problemów nazywanych NP-zupełnymi (w skrócie NPC, NPC 
⊂ NP). Ich wyjątkowość zawiera się w dwóch cechach. 
Po pierwsze, są to najtrudniejsze problemy w obrębie klasy NP. Oznacza to, że każdy 
problem NP-zupełny jest przynajmniej tak trudny, jak dowolny inny problem z klasy NP. 
Druga właściwość jest znacznie bardziej intrygująca. Otóż udowodniono, że każdy 
problem z klasy NP może zostać zredukowany w czasie wielomianowym w dowolny 
problem NP-zupełny. 
Praktyczna konsekwencja tych faktów jest już być może znana tym, którzy umieją czytać 
uważnie między wierszami. Wynika z nich mianowicie to, iż kategoryczne orzeczenie w 
sprawie jednego jedynego problemu NP-zupełnego będzie rzutować na całą olbrzymią 
klasę NP. Jeżeli znajdziemy wielomianowy algorytm dla jakiegoś problemu NPC, wówczas 
będzie to oznaczało, że takie algorytmy istnieją dla każdego problemu z klasy NP; 
okaże się więc, że P = NP. Analogicznie, udowodnienie że jakiś problem NP-zupełny nie 
posiada rozwiązania wielomianowego będzie sygnałem, że P ≠ NP. 
 
Jak już mówiłem, obecnie większość informatyków skłania się ku tezie, że żaden 
efektywny algorytm dla problemu NP-zupełnego nie istnieje. Argumentują to faktem, iż 
poszukiwania takich algorytmów były przeprowadzane przez wiele lat na całym świecie i 
zawsze kończyły się niepowodzeniem. Podobnie jednak było z próbami udowodnienia, że 
takie algorytmy nie istnieją. W sumie więc to powszechne przekonanie o niemożliwości 
istnienia wielomianowych rozwiązań dla problemów NPC opiera się raczej na intuicji niż 
racjonalnych podstawach. Jak zatem rzekł Eistein, zawsze może się znaleźć jakiś „nieuk”, 
który nie wie, że to jest niemożliwe, i… zrobić to. 
 
Jeśli zachęca cię perspektywa rozstrzygnięcia trzydziestoletniego sporu5, zapewne 
chciałbyś chociaż zobaczyć przykłady problemów NP-zupełnych. Jest ich całe mnóstwo; 
przykładowe trzy zajmują ostatnie wiersza tabeli złożoności. Spośród nich szczególnie 
interesujący jest problem komiwojażera - z oczywistych względów praktycznych. 

                                                 
5 A przy okazji zgarnięcia okrągłego miliona dolarów. Rozstrzygnięcie związku między P a NP jest bowiem 
jednym z siedmiu tzw. Milienijnych Problemów, ogłoszonych przez Clay Mathematics Institute w 2000 roku. Na 
stronie internetowej Instytutu możesz poczytać o szczegółach problemu „P vs NP”. 



W poszukiwaniu złożoności obliczeniowej 
W drugim podrozdziale zajmiemy się znajdowaniem złożoności obliczeniowej algorytmów 
na konkretnych przykładach. Zobaczymy więc, jak poszczególne elementy algorytmów 
wpływają na ich efektywność oraz jak należy łączyć te wyniki w całość. 

Podstawowe zasady 
Zaczniemy właśnie od tego łączenia. Musimy bowiem poznać dwie zasady, które 
umożliwią nam określenie złożoności całego algorytmu w sytuacji, gdy znamy te dane 
jego poszczególnych „kawałków”. 

Prawo dodawania 
Najbardziej typową sytuacją w programowaniu jest występowanie po sobie kilku 
instrukcji. W ogólnym przypadku chodzi nam o fragmenty kodu, z których każdy ma 
swoją określoną złożoność. Oto przykład: 
 

int nZmienna = 5; // Θ(1) 
nZmienna += 4;  // Θ(1) 

 
Pytanie naturalnie brzmi: Jaką złożoność ma podany fragment jako całość? Nic 
prostszego - wystarczy dodać złożoności cząstkowe: 
 

( ) ( ) ( ) ( )1 1 2 1 1Θ +Θ = Θ = Θ  

 
Reguły dodawania notacji asymptotycznych mogą nadal wydawać ci się dziwne, ale 
przecież powyższy wynik można łatwo uzasadnić intuicyjnie. Pojedyncza instrukcja 
wykonuje się w czasie stałym, zatem stała liczba takich instrukcji także będzie 
wykonywać się w czasie stałym. 
Podobnie byłoby, gdyby instrukcja nie była elementarnym krokiem, lecz np. wywołaniem 
funkcji o jakiejś złożoności: 
 

FunkcjaA(); // Θ(n) 
FunkcjaB(); // Θ(n) 

 
Na mocy reguł dodawania złożoność powyższego kawałka kodu jest więc rzędu Θ(n). 
 
Ciekawiej sprawa wygląda, gdy instrukcje mają różne złożoności - jak na przykład tutaj: 
 

FunkcjaC(); // Θ(n) 
FunkcjaD(); // Θ(n2) 

 
Nadal jednak możemy tutaj korzystać z zasad dodawania notacji - jeżeli oczywiście 
będziemy pamiętać o kilku innych własnościach. Zobaczmy więc: 
 

( ) ( ) ( ) ( )2 2 2n n n n nΘ +Θ = Θ + = Θ  

 
Najprościej sformułować tutaj zasadę, iż „silniejszy wygrywa”. Największa złożoność w 
danym fragmencie kodu dominuje w nim - podobnie jak największy składnik funkcji 
decyduje o jej asymptotycznej złożoności (jak w równaniu powyżej). Możemy więc 
mówić, iż: 
 
Algorytm ma taką złożoność, jak jego najbardziej czasochłonny fragment. 



 
W dalszym ciągu podrozdziału zobaczysz wręcz, że wyznaczenie złożoności całego 
algorytmu bardzo często będzie ograniczało się jedynie do określenia jej dla najbardziej 
czasochłonnego elementu. Złożoność pozostałych fragmentów kodu będzie miała bowiem 
nikłe znaczenie. 

Prawo mnożenia 
Druga zasada jest stosowana w nieco innej sytuacji. Przypuśćmy, że znamy złożoność 
jakiegoś fragmentu kodu i wiemy też, jak często (w funkcji rozmiaru danych) będzie się 
on wykonywał. Takie przypadku występują w pętlach oraz przy wykorzystaniu rekurencji. 
Oto przykład: 
 

// (wiemy, że poniższa instrukcja wykonuje się Θ(n) razy) 
FunkcjaE(); // Θ(log n) 

 
Mamy tu więc funkcję o złożoności Θ(logn), o której wiemy, że wykona się Θ(n) razy (bo 
np. jej wywołanie jest wewnątrz pętli wykonującej n cykli). Jaka będzie złożoność całej 
takiej sekwencji?… Jak wskazuje na to nazwa paragrafu, obie wielkości należy 
pomnożyć: 
 

( ) ( ) ( )log logn n n nΘ ⋅Θ = Θ  

 
Jest to zresztą zgodne z intuicją - to samo zrobilibyśmy, działając na liczbach. Pamiętając 
rzecz jasna o wprowadzonych w poprzednim podrozdziale zasadach mnożenia notacji 
asymptotycznych, otrzymujemy ostateczenie wynik Θ(nlogn). 
 
Zasada mnożenia jest szczególnie ważna i często stosowana w przypadku pętli. 
Generalnie jednak można ją wykorzystywać w każdym przypadku, gdy instrukcja jest w 
algorytmie wykonywana określoną ilość razy. 

Pętle 
Pętle są jednym z głównych elementów konstrukcyjnych dla procedur. Ogromna 
większość algorytmów opiera się na jednej lub kilku pętlach - występujących po sobie 
i/lub zagnieżdżonych. Należałoby zatem wiedzieć, jak w prosty sposób określić złożoność 
takich konstrukcji. Na całe szczęście taki prosty sposób istnieje. 

Ilość cykli w pętli 
Pierwszą rzeczą, jaką trzeba zrobić, jest określenie ilości cykli pętli jako funkcji rozmiaru 
danych dla algorytmu. A mówiąc prościej: należy ustalić, ile razy dana pętla się wykonuje 
i wyrazić tę wartość w zależności od n. Często jest to zadaniem bardzo prostym; 
przykładowo, jeśli w naszym algorytmie rozmiarem danych jest liczba elementów tablicy, 
to naturalne jest, iż pętla: 
 

for (unsigned i = 0; i < aTablica.length(); ++i) 
 // ... 
 

wykona się właśnie n razy, bo tyle jest elementów tablicy. Zwróćmy też uwagę, że 
dokładna ilość cykli nie jest potrzebna, bo, jak wiemy, interesuje nas tylko wielkość 
asymptotyczna. Nie ma więc znaczenie, czy licznik inicjujemy na 0, 1 czy 2 - pętla i tak 
wykona się Ο(n) razy. Prawdopodobnie ma ona zatem złożoność liniową (co jeszcze 
sprawdzimy w przyszłym paragrafie). 
 



Niekiedy nie można dokładnie określić liczby cykli. Tak było choćby w przykładzie z 
algorytmem sortowania przez wstawianie. Wiemy jednak, co trzeba zrobić w takiej 
sytuacji. Musimy wykazać się pesymistycznym podejściem do życia i założyć, że liczba 
obrotów pętli będzie największa. W większości przypadków będzie to (asymptotyczną) 
prawdą, lecz uzyskane w ten sposób ograniczenie Ο(n) jest zawsze prawdziwe. 

Złożoność 
Wiedząc to, jesteśmy już tylko o krok od określenia złożoności dla dowolnych pętli - a 
przynajmniej tych, których liczba cykli jest proporcjonalna do n. W tym celu musimy 
jeszcze wiedzieć, ile wysiłku zajmuje wykonanie pojedynczego cyklu; innymi słowy: co 
kryje się pod wykomentowanym wielokropkiem w przykładzie z poprzedniego 
paragrafu?… 
W ogólnym przypadku tego nie wiemy, więc złożoność jednego cyklu oznaczymy sobie po 
prostu jako Ο(f(n)). Jeżeli natomiast tych cykli jest w sumie Ο(n) (co ustaliśmy kilka 
chwil temu), to na mocy prawa mnożenia złożoność całej pętli wynosi: 
 

( ) ( )( ) ( )( )O n O f n O n f n⋅ = ⋅  

 
Taki ogólny rezultat jest pożyteczny, ale warto przyjrzeć się też bardziej 
wyspecjalizowanym. 
 
Jeśli f(n) = Ο(1), to jeden cykl pętli zajmuje czas stały. To bardzo typowa sytuacja - 
występuje chociażby w algorytmie wyszukiwania liniowego, gdy po kolei przeglądamy 
wszystkie elementy tablicy. Naturalnie, złożoność pętli jest wtedy rzędu Ο(n). 
 
Najbardziej interesujący jest jednak przypadek, gdy pętle są zagnieżdżone. Oto całkiem 
typowy przykład: 
 

for (unsigned i = 0; i < aTablica.length(); ++i) 
 for (unsigned j = i; j < aTablica.length(); ++j) 
  // ... (ale wiemy, że to Ο(1)) 

 
Idąc „od środka” możemy określić złożoność wewnętrznej pętli jako Ο(n): cykl o stałym 
czasie jest bowiem wykonywany dla (w najgorszym przypadku) wszystkich elementów 
tablicy wielkości n. Jednocześnie to Ο(n) jest czasem wykonania cyklu dla zewnętrznej 
pętli; ona również wykonuje Ο(n) obrotów. W sumie więc mamy Ο(n) cykli po Ο(n) cykli 
po Ο(1) instrukcji, co daje w rezultacie złożoność kwadratową: 
 

( ) ( ) ( ) ( ) ( )21O n O n O O n n O n⋅ ⋅ = ⋅ =  

 
Wreszcie, ogólnijmy wynik na przypadek dowolnego zagnieżdżenia pętli6: 
 

for (/* ... */)   // Ο(n) 
 for (/* ... */)   // Ο(n) 
  for (/* ... */)  // Ο(n) 
  // ...   // itd. 
     // (pojedynczy cykl o złożoności Ο(1)) 

 
Gdy więc mamy więc mamy k poziomów zagnieżdżenia, to złożoność tego potworka 
będzie wyrażała się mniej więcej tak: 
 

                                                 
6 Wszędzie używam pętli for, ale rzecz jasna wszystko dotyczy dowolnych pętli. Mam nadzieję, że było to 
oczywiste od samego początku… 
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I to jest w zasadzie najważniejszy wniosek z całej tej zabawy. Widząc (zagnieżdżoną) 
pętlę będziesz mógł teraz szybko określić jej złożoność. I tak dla pojedynczej iteracji k = 
1, więc klasą jest Ο(n); dla dwóch poziomów jest to Ο(n2), i tak dalej. Zapamiętajmy 
więc, że: 
 
k-krotnie zagnieżdżona pętla, której „najbardziej wewnętrzny” cykl wykonuje się w 
czasie stałym, ma złożoność ograniczoną z góry przez Ο(nk). 
 
Nie można oczywiście stosować tego prawa bezmyślnie do każdej pętli. Jeśli dana iteracja 
nie wykonuje się w czasie proporcjonalnym do liczby elementów (choćby w przypadku 
pesymistycznym), wówczas nie należy korzystać z tego twierdzenia. Takie przypadki są 
aczkolwiek niezbyt częste. 

Rekurencja 
Oto drugie ważne narzędzie w rękach projektanta algorytmów. Tytułowa rekurencja 
(ang, recurrency), bo o niej mowa, zwana jest też czasem rekursją albo nieco myląco - 
wywołaniem zagnieżdżonym. Ogólnie rzecz ujmując jest to sytuacja, gdy dana procedura 
w określonych okolicznościach wywołuje samą siebie. To zastrzeżenie jest ważne, aby 
rekurencja była poprawna - to znaczy nie prowadziła do nieskończonego ciągu wywołań 
funkcji. Sytuacja taka jest w pewnym stopniu podobna do nieskończonej pętli, tyle że 
łatwiej wykrywalna. „Kręcąca” się w nieskończoność pętla wizualnie zawiesza program, 
natomiast niewłaściwa rekurencja powoduje przepełnienie stosu (ang. stack overflow). 
W zależności od stosowanego języka czy platformy sprzetowej powoduje to restart 
systemu, awaryjne zakończenie programu albo wyjątek czasu wykonania. 
 
Zdania co do przydatności rekurencji w konstruowaniu algorytmów są wysoce podzielone. 
Można spotkać się z twierdzeniem, że jest to wręcz naturalna metoda ich tworzenia; z 
drugiej strony wiele jej bardziej skomplikowanych zastosowań jest bardzo wymyślnych i 
wcale nie oczywistych. 
Ponieważ jednak mamy się skoncentrować na analizie efektywności algorytmów 
rekurencyjnych, zostawmy kwestie jakkolwiek rozumianej „słuszności” czy „naturalności” 
użycia rekurencji. W tej sekcji spotkasz więc zarówno wiele procedur, które ewidentnie 
proszą się o odpowiedniki iteracyjne (będzie tak zwłaszcza na początku), jak i nieco 
bardziej wyrafinowane przypadki - szczególnie związane z techniką zwaną „dziel i 
zwyciężaj”. W każdym przypadku będziemy jednak zainteresowani głównie klasą danego 
algorytmu i sposobem na jej proste i szybkie znalezienie. 

Ogólne metody 
Na początek zajmiemy się najprostszymi (i trochę sztucznymi) przykładami użycia 
rekurencji. Dwie opisane tu techniki mogą jednakże pomóc w znalezieniu złożoności wielu 
rzeczywistych algorytmów - a przynajmniej dostarczyć w tym zadaniu pewnych 
wskazówek. 

Rozpisywanie 
Pisząc ten akapit miałem spore problemy z wyborem algorytmu, który stosowałby 
rekurencję w odpowiednio prosty sposób, a jednocześnie nie narzucał od razu 
równoważnego (i najczęściej lepszego) rozwiązania z użyciem pętli. Moje poszukiwania 
nie zostały niestety uwieńczone sukcesem i mogę z dużą dozą prawdopodobieństwa 
stwierdzić, że każdy możliwy tutaj przykład byłby równie naciągany. Celem przebrnięcia 



przez ten akapit musisz więc to zignorować i potraktować po prostu jako rozgrzewkę 
przed bardziej uzasadnionymi przypadkami rekurencji. 

Najprostsza rekurencja 

Przykładem będzie znowu przeszukiwanie jednowymiarowej tablicy. Jest to czynność tak 
powszechna, znana i prosta, że z pewnością każdy początkujący programista 
zaznajomiony z konstrukcją pętli zakodowałby z łatwością (albo zajrzał na początek tego 
rozdziału). Ażeby więc wywrócić do góry nogami tę oczywistość, zaproponujemy 
rozwiązanie rekurencyjne. Dla danej tablicy wygląda ono tak: 

 weź jej pierwszy niesprawdzony element i porównaj z szukanym. Jeśli porównanie 
się powiedzie (wartości są równe), zwróć indeks znalezionego elementu i zakończ 
procedurę 

 gdy natomiast test okaże się nietrafiony, zastosuj identyczną procedurę dla tablicy 
złożonej ze wszystkich elementów tuż za tym przed chwilą sprawdzonym 

 jeśli przeszukiwana tablica jest pusta, zwróć informację o nieznalezieniu elementu 
 
Opis ten przekłada się prosto na kod C++, realizujący wyszukiwanie określonej liczby w 
tablicy int[]: 
 

int Szukaj(const int* pTablica, int nSzukany, unsigned uRozmiar, 
unsigned uIndeks = 0) 
{ 
 // jeśli dotarliśmy do końca tablicy, zwróć -1 
 if (uIndeks >= uRozmiar) return -1; 
 
 // sprawdź, czy pierwszy niesprawdzony element jest równy szukanemu 
 if (pTablica[uIndeks] == nSzukany) 
  return uIndeks; 
 else 
  // jeśli nie jest, wywołaj rekurencyjnie procedurę 
  // dla tablicy pomniejszonej o tej element 
  return Szukaj(pTablica, nSzukany, uRozmiar, uIndeks + 1); 
} 

 
Jeśli wcześniej nie miałes zbyt intensywnego kontaktu z rekurencją, może on wydawać 
się nieco dezorientujący. Łatwo jednak sprawdzić, że działa on identycznie z wersją 
iteracyjną. Widać nawet zupełnie oczywiste analogie, jak np. parametr uIndeks jako 
odpowiednik licznika pętli. Można też zauważyć, że program ten jest pisany niejako „od 
tyłu” w tym sensie, że najpierw umieszczamy kod sprawdzający przypadek specjalny - 
brak elementu. Teraz jest to jednak warunek przerwania rekurencji (tzw. warunek 
terminalny), który musi zostać sprawdzony, zanim zrobimy cokolwiek innego. W każdej 
procedurze rekurencyjnej jest to część nieodzowna! 

Analiza 

Naturalne pytanie brzmi teraz: co z pesymistyczną złożonością powyższego algorytmu? 
W przypadku wersji iteracyjnej można bardzo łatwo (stosując wskazówki z poprzedniej 
sekcji o pętlach) wyznaczyć ją na Θ(n). A jak jest tutaj?… Aby się o tym przekonać, 
zastosujemy „tradycyjne” rozwiązanie, czyli znajdziemy funkcję T(n). 
 
Rekurencja w naszej procedurze polega na wywoływaniu jej dla coraz mniejszych tablic: 
z każdym jej poziomem przeglądana tablica jest mniejsza o jeden element. Funkcja T(n) 
będzie więc także rekurencyjna: jej wartość dla n będzie zależna od wartości n-1. W 
jaki sposób? 
Spójrzmy na ciało procedury. W każdym poziomie rekurencji, oprócz kolejnego 
wywołania rekursywnego, dokonywane są jeszcze dwa porównania: sprawdzenie 
rozmiaru tablicy i aktualnego elementu. Ponieważ wspomniane wywołanie pracuje już na 
tablicy mniejszej o jeden element, funkcja T(n) będzie się więc na razie przedstawiać 
następująco: 
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Nie możemy jednak zapomnieć o warunku terminalnym. U nas zachodzi on wtedy, gdy 
algorytm, że podana mu tablica jest pusta. Rozważamy przypadek pesymistyczny (brak 
szukanego elementu), zatem taka sytuacja z pewnością zajdzie. Odpowiada ona sytuacji, 
gdy n = 0; wówczas procedura dokonuje jednego porównania i natychmiast kończy się. 
Ostatecznie więc funkcja złożoności z uwzględnieniem koniecznego warunku wygląda w 
ten sposób: 
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Jest ona rekurencyjna, zatem nie pozwala na bezpośrednie określenie klasy algorytmu. 
Musimy więc doprowadzić ją do sensowniejszej postaci. 

Rozwiązanie rekurencji 

Prostym sposobem, który niestety działa raczej rzadko, jest rozpisanie powyższej funkcji 
od wartości n aż do zera: 
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Dodając stronami te równania otrzymamy jedno bardzo rozbudowane, które na szczęście 
będziemy mogli zaraz uprościć: 
 

( ) ( ) ( ) ( )( ) ( )( )1 0 1 2 2 2 1T n T n T T n T n+ − + + = − + + − + +… …  

 
Należy w tym celu zauważyć, że: 

 po prawej stronie mamy n składników zawierających dwójki, więc dodanie tych 
dwójek da nam wyniku po prostu 2n 

 składniki od T(n-1) do T(0) występują w sumie po obu stronach równania. 
Wszystkie więc mogą być natychmiast zredukowane 

 
W wyniku tych operacji po lewej stronie zostaje nam jedynie T(n), zaś po prawej - 
nierekurencyjna postać tej funkcji: 
 

( ) 2 1T n n= +  

 
Teraz już rzecz jasna nie ma żadnych kłopotów z określeniem klasy algorytmu. Jak 
można było się spodziewać i co wykazaliśmy przed chwilą, jest ona również rzędu Θ(n). 
Postać rekurencyjna wyszukiwania wydaje się więc nie różnić od wersji iteracyjnej7. 

                                                 
7 W praktyce jest inaczej. Wersja rekurencyjna wymaga dużo dodatkowej pamięci dla stosu, co ostatecznie 
bardzo spowalnia jej wykonywanie. Istnieje też ryzyko przepełnienia stosu, co naturalnie nie występuje w 



Drzewo rekursji 
Metoda polegająca na rozpisaniu i dodaniu do siebie stronami ciągu równań jest prosta i 
prowadzi do dokładnego rozwiązania (czyli wyznaczenia nierekurencyjnej postaci funkcji). 
Jak już jednak wspomniałem, można ją stosować rzadko, właściwie tylko w wyjątkowych 
sytuacjach. Gdyby np. zamiast T(n-1) umieścić w funkcji 2T(n-1), sposób ten 
doprowadziłby raczej do jeszcze większego skomplikowania całej sprawy. 
 
Bardziej efektywna i mająca szersze pole zastosowań metoda nie zapewnia dokładnego 
rozwiązania, lecz przecież dla znalezienia klasy algorytmu nie jest ono potrzebne. Metodę 
tę zaprezentuję na ponownie banalnym przykładzie. 

Słynny ciąg 

Jednym z bardziej znanych dziwolągów matematycznych (rozsławionym przez autorów 
powieści sensacyjnych ze względu na swoje kryptograficzne właściwości) jest ciąg 
Fibonacciego. Jego cechą szczególną jest to, że każdy wyraz powstaje przez 
zsumowanie dwóch poprzednich: 
 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ... 
 
Twór ten ma też mnóstwo innych cech, jak np. zdolność do opisywania wzrostu populacji 
królików oraz fraktalne rozmieszczenie zer i jedynek w binarnej reprezentacji swoich 
wyrazów. Dla nas ciąg ten będzie ważny ze względu na rekurencyjny algorytm obliczania 
jego n-tego wyrazu. Bezpośrednio z faktu, że jest on sumą dwóch go poprzedzających 
(oraz tego, że dwa początkowe wyrazy ciągu to jedynki), wynika taki oto wzór: 
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Możesz powiedzieć, że nazywanie go ‘algorytmem’ jest lekką przesadą. Tym niemniej 
przekłada się on na odpowiednią funkcję: 
 

unsigned Fib(unsigned n) 
{ 
 if (n <= 2) return 1; 
 else return Fib(n - 1) + Fib(n - 2); 
} 

 
Jak widać, występują tu dwa wywołania rekurencyjne, obliczające dwa wyrazy ciągu 
poprzedzające ten żądany. Wynikają one rzecz jasna wprost z wzoru zaprezentowanego 
wyżej. 

Analiza 

Niniejszy algorytm (mimo wszystko pozostanę przy tym określeniu…) jest krótki i prosty. 
Intuicyjnie wydawałoby się więc, że jego złożoność jest niewielka. Prawda okaże się co 
najmniej zaskakująca… No, ale nie uprzedzajmy faktów. 
 
Zacznijmy od zapisania złożoności praktycznej T(n). Dla n = 1 lub 2 funkcja dokonuje 
tylko jednego porównania, po czym od razu zwraca wynik; są to terminalne przypadki dla 
rekurencji. W innych przypadkach oprócz rzeczonego porównania następują też dwa 
dalsze wywołania rekurencyjne. W sumie więc funkcja T(n) wyglądać będzie tak: 
 

                                                                                                                                                         
przypadku pętli. Widać zatem, że w tym przypadku wersja algorytmu z wykorzystaniem pętli jest o wiele 
lepsza. 
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Jak można się było spodziewać, jest to znowu funkcja rekurencyjna. Aby określić jej 
klasę musimy zatem spróbować doprowadzić ją do bardziej przejrzystej postaci. 

Rozwiązanie rekurencji 

Zastosowanie metody rozpisywania, choć wydaje się logiczne, nie doprowadzi niestety do 
rozwiązania. Nie ma bowiem szans na takie zredukowanie równania, aby pozostał jedynie 
T(n) i składniki nierekurencyjne. W tym przypadku trzeba wykazać się nieco innym 
podejściem do sprawy. 
 
Pierwsza obserwacja polega na zauważeniu, że wartość T(n) składa się z trzech 
składników, z których jeden jest stały, czyli znany nam, natomiast pozostałe dwa są 
wywołaniami rekurencyjnymi o takich samych właściwościach. Oznacza to, że one 
również składają się z trzech składników, z których dwa są rekurencyjne, itd. 
Pomysł polega na zbudowaniu drzewka, którego węzły reprezentowałyby znane znam, 
stałe składniki, zaś krawędzie (gałęzie) - wywołania rekurencyjne. Na początku takie 
drzewo wyglądałoby dość skromnie: 
 

 
Schemat 1. Drzewo rekursji dla złożoności praktycznej ciągu Fibonacciego - etap pierwszy 

 
Nietrudno je jednak rozbudować. Ukryte za wielokropkami poddrzewa tworzymy 
bowiem… rekurencyjnie - z tym, że teraz T(n-1) lub T(n-2) pełnią rolę T(n): 
 

 
Schemat 2. Drzewo rekursji dla złożoności praktycznej ciągu Fibonacciego - etap drugi 

 
W podobny sposób budujemy drzewko, aż dojdziemy do liści, czyli węzłów na końcach 
wywołań T(2) lub T(1). Po zsumowaniu wartości we wszystkich węzłach drzewa 
otrzymamy liczbę kroków algorytmu potrzebnych do obliczenia n-tej liczby Fibonacciego. 
Stąd już bardzo blisko do określenia klasy tego algorytmu. 
 



 
Schemat 3. Gotowe drzewo rekursji dla złożoności praktycznej ciągu Fibonacciego  

 
W naszym przypadku w węzłach mamy wyłącznie jedynki, zatem problem sprowadza się 
do określenia ich ilości. W tym celu wyobraźmy sobie, jak wygląda drzewko dla wartości 
T(3) - jest to pierwsza wartość, dla której występują składniki rekurencyjne. Drzewo 
będzie miało wyłącznie jedno rozgałęzienie, wysokość 1 i dwa poziomy. Generalnie 
można stwierdzić, że dla danego n drzewo T(n) ma wysokość n-2 oraz n-1 poziomów. 
A ile jest węzłów na każdym poziomie?… Na pierwszym mamy oczywiście jeden korzeń; 
na drugim są już dwa węzły, odpowiadające dwóm wywołaniom rekurencyjnym. Od 
każdego z nich odchodzą po dwie krawędzie, zatem na trzecim poziomie mamy cztery 
węzły, i tak dalej - schodząc niżej, (zazwyczaj) podwajamy ilość węzłów. A ponieważ 
liczba poziomów drzewa wynosi n-1, na ostatnim poziomie będzie więc mniej więcej 2n-1 
liści, zaś na i-tym - około 2i-1 węzłów. 
 
Nie możemy dokładnie określić tych wartości, gdyż drzewo nie zawsze jest 
zrównoważone. Z grubsza rzecz biorąc znaczy to, że najniższy poziom nie zawsze zawiera 
wszystkie liście drzewa. Przykładem może być np. drzewko dla T(4). Liczba liści różni się 
jednak co najwyżej o stałą, zatem nie wpływa to na złożoność asymptotyczną. 
 
By uzyskać przybliżoną ilość węzłów w drzewie należy oczywiście zsumować ich ilości na 
wszystkich n-1 poziomach: 
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Otrzymujemy funkcję wykładniczą względem n. Możemy zatem stwierdzić, że złożoność 
rekurencyjnego algorytmu dla ciągu Fibonacciego to aż Ο(2n). 

Post scriptum: algorytm iteracyjny dla ciągu Fibonacciego 

Rekurencyjna procedura obliczania ciągu jest więc skrajnie nieefektywna. W sumie nie 
jest to powód do jakiegoś szczególnego zmartwienia, bo jest spora szansa, że ów ciąg nie 
będzie ci nigdy do niczego potrzebny. Jeśli jednak zdarzy się inaczej, to zdecydowanie 
powinieneś wtedy poszukać innego rozwiązania. 



 
Problem z rekurencją polega tutaj na tym, iż większość wyrazów jest obliczana 
wielokrotnie, przez co mnóstwo czasu procesora po prostu się marnuje. Procedura ta jest 
po prostu mało inteligentna. W takich wypadkach stosuje się technikę zwaną 
programowaniem dynamicznym, która generalnie jest troszkę skomplikowana. W tym 
przypadku wystarczy jednak wykazać się tylko odrobiną sprytu: po co za każdym razem 
liczyć każdy wyraz od początku, skoro można zapisywać wyniki pośrednie? Nie będzie to 
zużywało wiele pamięci, gdyż musimy znać jedynie dwa poprzedzające wyrazy. 
Iteracyjny algorytm obliczania ciągu Fibonacciego może więc wyglądać tak: 
 

unsigned Fib(unsigned n) 
{ 
 unsigned uFib, uFib1, uFib2; 
 
 // warunki brzegowe 
 uFib = uFib1 = uFib2 = 1; 
 
 // liczymy po kolei wyrazy aż do żądanego 
 for (unsigned i = 3; i <= n; ++i) 
 { 
  // "przewijamy" dwa wyrazy poprzedzające 
  uFib2 = uFib1; 
  uFib1 = uFib; 
 
  // obliczamy nowy wyraz 
  uFib = uFib1 + uFib2; 
 } 
 
 // zwracamy wynik 
 return uFib; 
} 

 
Różnica jest kolosalna. Z pobieżnego rzutu oka na pętlę w powyższej funkcji wynika 
bowiem, że jest ona rzędu zaledwie Ο(n)! Wersja iteracyjna pozwala więc zejść ze 
złożoności wykładniczej do liniowej. 

Rekurencja w technice „dziel i zwyciężaj” 
Jeżeli nie miałeś wcześniej do czynienia z algorytmami rekurencyjnymi, to poprzednim 
paragrafem mogłem cię do nich „nieco” zniechęcić. Nie powinieneś jednak brać ich sobie 
za bardzo do serca. W rzeczy samej rekurencja nie jest wcale takim diabłem, jakim to 
trochę niechcący przedstawiłem ją wcześniej. Co ważniejsze, istnieje wiele problemów, 
dla których tylko algorytmy oparte na rekursji dają efektywne albo wręcz jedyne 
poprawne rozwiązanie. 
 
Pokaźną grupę stanowią tutaj operacje na strukturach danych, które same w sobie mają 
naturę rekurencyjną. Przykładem mogą być grafy i drzewa, a praktycznym 
zastosowaniem - chociażby wyszukiwanie pliku o określonej nazwie w rozległym drzewie 
katalogów dyskowych. 
Na rekurencji jest też oparta bardzo skuteczna i ogólna metoda projektowania 
algorytmów, znana jako „dziel i zwyciężaj” (ang. divide & conquer). Jej idea polega na 
podziale zadania na mniejsze i kontynuowanie tego procesu aż do momentu uzyskania 
problemu elementarnego, który potrafimy rozwiązać bezpośrednio. W sumie algorytm 
korzystający z tej metody składa się z trzech części: 

 podzielenia problemu na mniejsze fragmenty (podproblemy) 
 rozwiązania podproblemów poprzez dalszy, rekurencyjny podział - aż dojdziemy 

do przypadku elementarnego, „niepodzielnego” 
 złączenia rozwiązań podproblemów w jedno rozwiązanie całego problemu 

 



Opis ten może brzmi nieco zawile, lecz sama idea kryjąca się za nim jest w gruncie 
rzeczy bardzo prosta. Jak to czesto bywa, najlepiej zobaczyć ją na przykładzie. Ponownie 
pozwolę sobie na wykorzystanie w tym celu sortowania, jako że czynność ta jest dla 
komputerów zapewne tak samo naturalna, jak dla nas oddychanie czy jedzenie. Na 
początku rozdziału poznaliśmy prosty algorytm zajmujący się tym zadaniem i w chwilę 
potem określiliśmy jego złożoność jako Θ(n2). Przy użyciu techniki „dziel i zwyciężaj” 
można ten czas obniżyć do Θ(nlogn), co jest czasem optymalnym (najmniejszym z 
możliwych) dla sortowania przez porównywanie. Oczywiście nas będzie również żywo 
interesowało to, jak tę złożoność wyznaczyć; tym także zajmiemy się za chwilę. 

Przykład: sortowanie przez scalanie 
Wpierw czas na obiecany przykład. Algorytmów sortowania skonstruowanych w oparciu o 
technikę „dziel i zwyciężaj” jest przynajmniej kilka, a my nie będziemy tutaj poznawać 
ich wszystkich, bo w końcu nie jest to książka o algorytmach jako takich, tylko rozdział 
poświęcony analizie ich złożoności. Zobaczymy więc jeden z nich, nazywany 
sortowaniem przez scalanie albo złączanie (ang. mergesort). Ma on tę zaletę, że jest 
całkiem prosty, a ponadto dobrze ilustruje sposoby na określanie złoźoności algorytmów 
opartych o „dziel i zwyciężaj”. 
 
Zaatakowanie od razu kodem źródłowym byłoby pewnie nieco odstraszające, zatem 
najpierw pomówmy sobie, jak ten algorytm działa. Danymi wejściowymi jest naturalnie 
tablica liczb (lub dowolnych elementów, które można sortować, porównując ze sobą) o 
rozmiarze n. Dla takiej tablicy wykonywane są trzy poniższe kroki: 

 dziel: tablica jest dzielona na pół, czyli na dwie podtablice o rozmiarze n/2 
 zwyciężaj: każda podtablica jest sortowana poprzez rekurencyjne wywołanie 

algorytmu - z wyjątkiem tej o rozmiarze 1, którą siłą rzeczy jest od razu 
posortowana 

 połącz: posortowane podtablice są następnie łączone w jedną posortowaną tablicę 
 
Na pierwszy rzut oka działanie algorytmu może wydawać irracjonalne. Cóż nam z bowiem 
z samego rekurencyjnego dzielenia tablic na coraz mniejsze?… Oczywiście nic, jednak 
cała praca, dzięki której algorytm działa, jest wykonywana w kroku trzecim. Stąd właśnie 
wzięła się nazwa sortowania przez scalanie: łączenie posortowanych podtablic jest 
bowiem „punktem ciężkości” algorytmu - to jemu zawdzięczamy jego poprawność. 
 
Z kolei drugi popularny algorytm sortowania - zwany tendencyjnie sortowaniem 
szybkim (ang. quicksort), choć bardziej odpowiednia nazwa to sortowanie przez podział 
- kładzie nacisk na krok pierwszy. Tam sposób podziału jest sprawą kluczową, natomiast 
operacja łączenia w ogóle nie jest potrzebna. 
 
W sortowaniu przez scalanie to łączenie zajmuje więc najwięcej czasu i miejsca w kodzie 
źródłowym. Spójrzmy więc teraz, jak to wszystko wygląda: 
 

// sortowanie przez scalanie 
// parametry uMinIndex i uMaxIndex wyznaczają aktualnie sortowaną 
// podtablicę 
void MergeSort(const int* aTablica, unsigned uRozmiar, 
 unsigned uMinIndex = 0, 
 unsigned uMaxIndex = uRozmiar - 1) 
{ 
 // najpierw sprawdzamy, czy podana tablica ma co najmniej 
 // dwa elementy; jeżeli nie, jest to przypadek elementarny, 
 // kończacy rekurencję 
 if (uMinIndex >= uMaxIndex) return; 
 
 
 /* krok 1: dziel */ 



 
 // punkt podziału wyznaczamy w połowie tablicy 
 unsigned uPunktPodzialu = (uMinIndex + uMaxIndex) / 2; 
 
 
 /* krok 2: zwyciężaj */ 
 
 // wywołujemy rekurencyjnie procedurę dla obu połówek tablicy 
 MergeSort (aTablica, uRozmiar, uMinIndex, uPunktPodzialu); 
 MergeSort (aTablica, uRozmiar, uPunktPodzialu + 1, uMaxIndex); 
 
 
 /* krok 3: połącz */ 
 
 // obliczamy rozmiary obu podtablic 
 unsigned uRozmiarLewej = uPunktPodzialu - uMinIndex + 1; 
 unsigned uRozmiarPrawej = uMaxIndex - uPunktPodzialu; 
 
 // tworzymy pomocniczne tablice (o jeden element większe) 
 int[] aLewa = new int [uRozmiarLewej + 1]; 
 int[] aPrawa = new int [uRozmiarPrawej + 1]; 
 
 // wypełniamy je zawartością odpowiednich połówek 
 // (uwaga: w prawdziwej implementacji używamy nie pętli, 
 //  lecz funkcji w rodzaju memcpy()) 
 for (unsigned i = 0; i < uRozmiarLewej; ++i) 
  aLewa[i] = aTablica[uMinIndex + i]; 
 for (unsigned i = 0; i < uRozmiarPrawej; ++i) 
  aPrawa[i] = aTablica[uPunktPodzialu + 1 + i]; 
 
 // dodajemy też wartowników na końcach: elementy większe od 
 // dowolnego innego 
 aLewa[uRozmiarLewej] = aPrawa[uRozmiarPrawej] = MAX_INT; 
 
 // następnie bierzemy elementy raz z jednej, raz z drugiej 
 // tablicy (zawsze mniejszy) i wstawiamy do oryginalnej 
 unsigned i = 0, j = 0; 
 for (unsigned k = uMinIndex; k <= uMaxIndex; ++k) 
  // porównujemy elementy z obu tablic 
  if (aLewa[i] <= aPrawa[j]) 
  { 
   // lewa mniejsza; wstawiamy element, inkrem. i 
   aTablica[k] = aLewa[i]; 
   ++i; 
  } 
  else 
  { 
   // prawa mniejsza; wstawiamy element, inkrem. j 
   aTablica[k] = aPrawa[j]; 
   ++j 
  } 
 
 // na koniec pozbywamy się niepotrzebnych już tablic pomocniczych 
 delete[] aLewa; 
 delete[] aPrawa; 
} 

 
Tablicę dzielimy więc na pół i każdą połówkę sortujemy rekurencyjnie. Łączenie, większa 
część procedury, odbywa się natomiast w pewien sprytny sposób. Polega ono mianowicie 
na kolejnym sprawdzaniu elementów z obu podtablic i wybieraniu większego. Po 
opróżnieniu którejś podtablicy dodawana jest następnie cała zawartość drugiej. Dzięki 



obecności wartowników na końcach, za wszystko odpowiada ostatnia pętla. Inna metoda 
polega na ręcznym sprawdzaniu, czy któraś z podtablic jest pusta; wtedy potrzebne są 
jeszcze dwie pętle (z których wykonuje się tylko jedna), które „opróżniają” drugą 
połówkę. 

Analiza 
Sortowanie przez scalanie wyglądać może na o wiele bardziej skomplikowane niż to przez 
wstawianie. Gra jest jednak warta świeczki - zyskiem jest wzrost efektywności całej 
procedury. Zajmijmy się zatem jej wyznaczeniem, czyli znalezieniem klasy algorytmu 
mergesort. 
 
Procedura MergeSort() jest rekurencyjna, zatem analizę możemy podzielić na dwie 
części. Pierwsze zadanie to wyznaczenie złożoności pojedynczego wywołania funkcji. 
Drugi etap to ustalenie, jaki koszt wnosi tutaj rekurencja. Połączenie tych dwóch 
rezultatów da nam w wyniku klasę algorytmu. 

Analiza algorytmu łączenia 

W przypadku sortowania przez scalanie owo scalanie jest główną częścią każdego 
wywołania procedury. Najpierw zatem zajmiemy się właśnie tym fragmentem sortowania. 
 
Sam algorytm łączenia (rozpoczynający się w kodzie źródłowym o komentarza „krok 3”) 
nie jest rekurecyjny. Jak można stwierdzić pobieżnym rzutem oka, jego istotę stanowią 
przede wszystkim pętle. Najważniejsza jest ostatnia, przebiegająca po całej sortowanej w 
danym momencie podtablicy (po wszystkich indeksach od uMinIndex do uMaxIndex). 
Wykonuje więc ona n cykli, gdzie n jest równe uMaxIndex - uMinIndex + 1. Jej 
złożoność jest liniowa - Θ(n). 
Reszta algorytmu nie przekracza tej klasy. Wypełnienie wartościami dwóch pomocniczych 
tablic aLewa i aPrawa także wymaga liczby instrukcji proporcjonalnej do n. Jeśli zaś 
założymy, że operacje alokacji pamięci i jej zwalniania są wykonywane w czasie stałym 
(co jest rozsądne dla niemal wszystkich komputerów), to ze strony złożoności algorytmu 
łączenia podtablic nie spotkają nas już żadne niespodzianki. 
 
Ostatecznie więc jest on rzędu Θ(n). 

Złożoność teoretyczna 

Wiemy teraz, jak efektywne jest zrealizowanie pojedynczego wywołania rekurencyjnego 
w sortowaniu mergesort. Nie wiemy jednak, ile takich wywołań rzeczywiście występuje i 
jak bardzo wielkość ta zależy od n - rozmiaru sortowanej tablicy. Ażeby to oszacować, 
musimy przyjrzeć się zastosowanej rekursji i w ten sposób wyznaczyć funkcję złożoności 
dla całego algorytmu. 
 
Zobaczmy więc, jak mergesort wywołuje sam siebie. Z opisu podanego w poprzednim 
paragrafie powinieneś jeszcze pamiętać, że istotą jest tu podział tablicy na dwie połowy. I 
tak się faktycznie dzieje: wyznaczany jest po prostu graniczny „indeks połówkowy”, 
wedle którego dokonywany jest podział (przechowuje go zmienna uPunktPodziału). 
A gdy dokonało się dzielenie, czas na zwycięstwo. Obie podtablice są więc sortowane 
poprzez ten sam algorytm mergesort - z tą różnicą, że jest on wywoływany dla każdej z 
nich osobno. Rekurencyjne wywołania procedury operują już zatem na tablicach o 
rozmiarze nie n, lecz mniej więcej8 n/2. 
 

                                                 
8 Żaden element nie może rzecz jasna zostać zgubiony. W rzeczywistości pierwsza rekurencja zajmuje się więc 
podtablicą o rozmiarze 2n⎢ ⎥⎣ ⎦  (połowa liczby elementów zaokrąglona w doł), zaś druga - o rozmiarze 2n⎡ ⎤⎢ ⎥  

(połowa liczby element zaokrąglona w górę). Dla analizy algorytmu jest to jednak szczegół techniczny, bo skoro 
wszystkie elementy i tak są brane pod uwagę, możemy swobodnie założyć, że obie połówki mają po prostu n/2 
elementów. 



Wartość T(n) złożoności praktycznej jest więc budowana przez wartości T(n/2), 
reprezentujące rekurencję dla tablic połówkowych, oraz złożoność procesu łączenia - 
Θ(n). W sumie wynosi ona zatem: 
 

( ) ( ) ( )2 2T n T n n= +Θ  

 
Należy jeszcze uwzględnić przypadek elementarny - jest nim tablica składająca się tylko z 
jednego elementu. Naturalnie jest on posortowana, toteż do algorytmu należy jedynie 
stwierdzenie tego faktu. Jest to wykonywane w czasie stałym - Θ(1). 
 
Finalna postać zależności T(n) jest więc następująca: 
 

( ) ( )
( ) ( )

1 dla 1
2 2 dla 1

n
T n

T n n n
⎧ Θ ≤⎪= ⎨ +Θ >⎪⎩

 

 
Teraz pozostaje nam „tylko” jej rozwiązanie, czyli wyznaczenie T(n) jako funkcji 
nierekurencyjnej. W następnym paragrafie zajmiemy się tym głównym punktem 
programu. 
 
Jeżeli posługiwanie się notacjami asymptotycznymi w równaniach sprawia ci jeszcze 
kłopot, to możesz przyjąć, że pod Θ(1) kryje się c, zaś pod Θ(n) - dn, gdzie c i d są 
dowolnymi stałymi. Ja jednak będę stosował ten zapis jako wygodniejszy i podkreślający 
fakt, że zależy nam wyznaczeniu złożoności asymptotycznej bez wdawania się w zbędne 
szczegóły. Właściwie więc notację Θ należałoby tu traktować jako pewne uproszczenie! 

Rozwiązanie rekurencji 
Już pierwszy rzut oka na równanie 
 

( ) ( ) ( )2 2T n T n n= +Θ  

 
utwierdza nas w przekonaniu, że różni się ono trochę od tych, którymi zajmowaliśmy się 
dotąd. Pomijając występowanie więcej niż jednego składnika rekurencyjnego (z czym 
nauczyliśmy sobie jakoś radzić), zamieszanie wprowadza z pewnością n/2 jako jego 
argument. 
Dzielenie rozmiaru danych na połowę lub dowolną inną liczbę części jest jednak (jak 
nawet sama nazwa wskazuje) nieodłącznym elementem techniki „dziel i zwyciężaj”. Gdy 
więc poznamy sposób na rozwikłanie powyższej funkcji jest wielce prawdopodobne, że 
analogiczne metody dadzą się zastosować dla przynajmniej większości algorytmów 
stosując ww. technikę. W tym paragrafie pokażę kilka takich sposobów. 
 
Na początek jednakowoż wypadałoby podjąć wyzwanie i oszacować powyższą funkcję 
T(n) dla sortowania przez scalanie. Mimo pozornej trudności zadanie to może okazać się 
całkiem łatwe… 

Jeszcze raz drzewko 

Oczywiście metoda rozpisywania na pewno nie zda tu egzaminu, gdyż czynnik 2 przy 
T(n/2) znakomicie uniemożliwia zredukowanie wszystkich składników poza T(n). 
Poradziliśmy już sobie jednak w takiej sytuacji: pomocą okazało się zilustrowanie 
rekurencji za pomocą poglądowego drzewka. 
 
Spróbujmy więc wykorzystać tę metodę także i tutaj. Przypomnijmy, że drzewko jest 
skonstruowane wedle trzech reguł: 

 każdy jego węzeł odpowiada nierekurencyjnej część równania - tej, którą znamy 
bezpośrednio, niezawierającej dalszych wywołań T(...) 



 krawędź (gałąź) drzewa wychodząca z danego węzła reprezentuje wywołania 
rekurencyjne 

 liście drzewa odpowiadają przypadkom elementarnym, kończącym rekurencję 
 
Jak to wygląda u nas?… Składnikiem nierekurencyjnym w T(n) jest Θ(n) - przypomnijmy, 
że jest to synonim dowolnej funkcji liniowej. Pojawi się on więc w korzeniu i 
wewnętrznych węzłach drzewa. Z kolei krawędzie są modelem przywołań rekurencyjnych. 
Od korzenia odchodzą więc dwie gałęzie T(n/2), na drugim poziomie - T(n/4), potem 
T(n/8), itd. Wreszcie, drzewo kończy się na przypadkach elementarnych, gdy n nie 
można już podzielić na dwa. W liściach znajdzie się więc Θ(1). 
 
Opierając się na tych spostrzeżeniach możemy zasadzić drzewko: 
 

 
Schemat 4. Drzewo rekursji dla złożoności teoretycznej sortowania przez scalanie - etap pierwszy 

 
Pod wielokropkami kryją się oczywiście rekurencyjne poddrzewa. Gdy więc nasze 
drzewko urośnie nieco bardziej, wyglądać będzie mniej więcej tak: 
 

 
Schemat 5. Drzewo rekursji dla złożoności teoretycznej sortowania przez scalanie - etap drugi 

 
Jak widzimy, kolejne wywołania są przeprowadzane dla coraz mniejszych wartości n - 
połówek, połówek połówek, połówek ćwierci, itd. W wyniku tego podziału dojdziemy w 
końcu do przypadku elementarnego n = 1. Wtedy też drzewko kończy się, a w liściu 
pozostaje jedynie składnik Θ(1). 
 
Aby dzielenie przez 2 zredukowało w końcu n do samej jedynki, wartość n musi być 
oczywiście potęgą dwójki. Możemy bez przeszkód przyjąć takie założenie, gdyż nie 
wpływa ono na asymptotyczną złożoność algorytmu mergesort. Dla n nie będących 
potęgą dwójki drzewko nie będzie po prostu zrównoważone, czyli niektóre jego gałęzie 
będą kończyły się liśćmi wcześniej niż inne. Nie wpłynie to jednak na oszacowanie ilości 
węzłów w drzewie. 
 
W pełni rozwnięte drzewo rekursji wygląda więc następująco: 
 



 
Schemat 6. Gotowe drzewo rekursji dla złożoności teoretycznej sortowania przez scalanie 

 
Może dziwić użycie wyrażeń w formie Θ(n/2) lub Θ(n/4), lecz ma to swoje uzasadnienie. 
Po zsumowaniu kosztów na każdym poziomie musimy bowiem otrzymać Θ(n), gdyż 
algorytm zajmuje się zawsze wszystkimi n elementami tablicy. 
 
Na połączenie drzewka i notacji asymptotycznych trzeba więc nieco uważać. Generalnie 
jednak w rzeczywistej analizie algorytmów „dziel i zwyciężaj” w ogóle nie stosuje się 
drzew, lecz metody opisane w następnych akapitach. Dlatego też próba rozwiązania 
rekurencji za pomocą powyższego drzewka musi być traktowana trochę nieformalnie. 
 
Powyższy fakt daje nam niespodziewanie cenną informację: dla każdego poziomu rekursji 
wykonywanych jest zawsze Θ(n) instrukcji. Celem oszacowania całkowitej złożoności 
musimy więc tylko znależć wysokość drzewka, a następnie pomnożyć tę wielkość przez 
Θ(n). 
Ile poziomów rekursji występuje tutaj?… Odpowiedź jest prosta: tyle, ażeby z n „zejść” w 
końcu do 1 poprzez ciągłe dzielenie przez dwa (i zaokrąglanie w dół). A ponieważ każdy 
węzeł zajmuje się wartością dwa razy mniejszą niż węzeł nadrzędny (co odpowiada 
podziałowi tablicy na pół), więc na i-tym poziomie wartość ta wyniesie n/2i-1. Jeśli zatem 
oznaczymy szukaną ilość poziomów jako p, to 
 

1 1
2 p

n
− =  

 
bo na ostatnim poziomie mamy już do czynienia jedynie z 1-elementową tablicą. Stąd 
można bez problemu wyznaczyć owe p: 
 

2log 1p n= +  

 
Liczba poziomów drzewa zależy więc logarytmicznie od rozmiaru danych, czyli jest rzędu 
Θ(logn). Wiemy również, że wykonanie każdego poziomu zajmuje czas Θ(n). Mnożąc obie 
wartości otrzymujemy całkowitą złożoność algorytmu: 
 



( ) ( ) ( )log logn n n nΘ ⋅Θ = Θ  

 
Jest ona znacznie lepsza od Θ(n2) sortowania przez wstawianie. Przykładowo 
posortowanie 1000 elementów zajmuje tamtą metodą około milion instrukcji, zaś 
sortowanie przez scalanie mniej więcej sto razy mniej. Tak efektywnośc ma jednak swoją 
cenę. Algorytm sortowania przez scalanie jest bardziej skomplikowany, podobnie jak 
„intuicyjna” analiza jego złożoności. 

Metoda rekurencji uniwersalnej 

Za pomocą umiejętnie użytego drzewka można rozwiązać prawie każdy problem analizy 
algorytmu typu „dziel i zwyciężaj”. Dość często jest to jednak pracochłonne, wymaga też 
wyjątkowej uwagi i zwracania uwagi na takie niuanse, jak poprawne użycie notacji 
asymptotycznej. 
Z drzewkami i rekurencją dawno temu walczyli już matematycy, a owocem ich pracy jest 
bardzo skuteczna metoda rekurencji uniwersalnej. Jej nazwa wskazuje, że można ją 
stosować do bardzo szerokiego zakresu funkcji i tak jest w istocie. Zaletą tej metody jest 
ponadto szybkość i względna łatwość stosowania. Nie potrzebujemy bowiem ani 
rozpisywania funkcji w szereg równań, ani rysowania drzewka. Wszystko, co jest 
potrzebne, to rodzaj „ściągi” pozwalającej na bezpośrednie określenie rozwiązania. 
 
Zanim przedstawię tę metodę muszę jeszcze dokładnie określić zakres jej stosowalności. 
Otóż przy jej pomocy możemy w miarę prosty sposób określać klasę funkcji T(n) 
występującej w równaniu postaci: 
 

( ) ( ) ( )T n aT n b f n= +  

 
Współczynniki a i b są tu dowolnymi stałymi, zaś f(n) - dowolną funkcją, określającą 
nierekurencyjną część równania (czyli nie zawierającą dalszych wywołań T(...)). Dla 
przykładu, nasze równanie określające złożoność sortowania przez scalanie ma 
współczynniki a i b równe 2, zaś f(n) jest dowolną funkcję liniową. 
Ponadto musimy oczywiście założyć, że rekurencja kiedyś się kończy, czyli dla 
wystarczającą małej wartości n określona jest terminalna stała. 
 
W jaki sposób wygląda teraz zastosowanie metody rekurencji uniwersalnej? Składa się 
ono z dwóch kroków: 

 najpierw należy obliczyć funkcję ( ) logb ag n n=  

 następnie należy porównać ją z funkcją f(n) i na tej podstawie określić 
rozwiązanie 

 
Pierwszy krok jest oczywiście bardzo prosty, szczególnie jeśli dysponujemy kalkulatorem 
czy innym urządzeniem liczącym. Dla, na przykład, sortowania przez scalanie 
wspomnianą funkcją będzie: 
 

( ) 2log 2 1g n n n n= = =  

 
Podobnie jest dla dowolnych innych wartości a i b. To zdecydowanie prostszy krok tej 
metody. 
 
Drugi krok polega na wyborze jednej z trzech możliwych rozwiązań w zależności od 
wyniku porównania funkcji g(n) i f(n). Gdy mówimy o porównywaniu funkcji, mamy 
oczywiście na myśli ich relacje wyrażone za pomocą poznanych notacji asymptotycznych: 
Ω, Θ i Ο. W tym przypadku również tak jest. 
W metodzie rekurencji uniwersalnej mamy więc trzy przypadki, które przedstawia 
poniższa tabela: 



 
relacja między g(n) i f(n) rozwiązanie 

g(n) jest wielomianowo większa od f(n) ( ) ( )( ) ( )logb aT n g n n= Θ = Θ  

g(n) jest asymptotycznie równa f(n) ( ) ( )( ) ( )loglog logb aT n g n n n n= Θ ⋅ = Θ ⋅  

g(n) jest wielomianowo mniejsza od f(n) ( ) ( )( )T n f n= Θ  

Tabela 4. Trzy możliwe przypadki w metodzie rekurencji uniwersalnej 

 
Należy po prostu stwierdzić, który z nich zachodzi, a potem bezpośrednio odczytać 
rozwiązanie… Cóż, łatwiej powiedzieć, ale pewnie trudniej zrobić. Wyjaśnienia wymaga na 
pewno określenie, że funkcja jest „wielomianowo” większa lub mniejsza od innej. 
Stwierdzenie to oznacza mianowicie, że obie funkcje muszą różnić się od siebie 
przynajmniej o czynnik wielomianowy - tzn. o nk, gdzie k jest dowolną liczbą dodatnią. 
Weźmy np. f(n) = Θ(nlogn) i g(n) = Θ(n2). Tutaj wiadomo rzecz jasna, że g(n) jest 
większa od f(n), jednak nie jest ona wielomianowo większa. Różnica między obiema 
funkcjami sprowadza się bowiem do czynnika logarytmicznego - logn - który jest 
mniejszy niż wielomianowy. W takiej sytuacji jak powyższa nie moglibyśmy niestety 
zastosować metody rekurencji uniwersalnej; wariant ten niejako „wpada w lukę” 
pomiędzy przypadkami 1 i 2. 
 
Na szczęście w większości równań obie funkcje spełniają któryś z trzech warunków. Dla 
naszego sortowania zachodzi na przykład przypadek drugi, gdyż zarówno f(n), jak i g(n) 
są sobie asymptotycznie równe: obie to funkcje liniowe. Wynika stąd natychmiast, że 
T(n) jest rzędu Θ(g(n) logn), czyli Θ(nlogn). Uzyskaliśmy więc taki sam wynik jak przy 
zastosowaniu drzewka, jednak metoda rekurencji uniwersalnej jest zwykle o wiele 
szybsza i wygodniejsza. 

Ciekawostka: twierdzenie o rekurencji uniwersalnej 

Cała ta metoda opiera się na matematycznym twierdzeniu o rekurencji uniwersalnej. 
Jego treść jest zgodna z informacjami z poprzedniego akapitu, aczkolwiek formalny język 
matematyki czyni ją nieco precyzyjniejszą. Naturalnie nie ma najmniejszej potrzeby, 
abyś znał je na pamięć; wystarczy tylko byś wiedział, gdzie możesz je znaleźć i jak je 
zastosować. 
 
Oto więc rzeczone twierdzenie9: 
 
Niech a ≥ 1 i b > 1 będą stałymi, f(n) dowolną funkcją, zaś T(n) zdefiniowane dla 
nieujemnych liczb całkowitych poprzez rekurencję: 
 

( ) ( ) ( )T n aT n b f n= +  

 
Wówczas T(n) możemy asymptotycznie oszacować w następujący sposób: 

1. Jeśli ( ) ( )logb af n O n ε−=  dla pewnej stałej ε > 0, to ( ) ( )logb aT n n= Θ  

2. Jeśli ( ) ( )logb af n n= Θ , to ( ) ( )log logb aT n n n= Θ  

3. Jeśli ( ) ( )logb af n n ε+= Ω  dla pewnej stałej ε > 0, to ( ) ( )( )T n f n= Θ  

 

                                                 
9 Cytowane za Wprowadzeniem do algorytmów Thomasa H. Cormena. Pominąłem jedynie tzw. warunek 
regularności w trzecim przypadku, gdyż jest on spełniony dla wszystkich rozsądnych funkcji pojawiających się w 
analizie algorytmów. 



Najprawdopodobniej stwierdzisz, że wygląda ono dość upiornie. Generalnie jednak jest to 
dokładnie to samo zestawienie trzech możliwych przypadków, podanych w tabeli z 
poprzedniego akapitu. Można jeszcze zwrócić uwagę, jak została zapisana relacja 
wielomianowa: poprzez wprowadzenie stałej ε > 0 do wykładnika n w funkcji 

( ) logb ag n n= . 

Podsumowanie 
Analiza efektywności algorytmów może nie wydwać się wdzięcznym ani prostym 
zadaniem. Przynajmniej podstawowa jej znajomość jest jednak konieczna, aby móc pisać 
programy, które nie będą działały ślamazarnie nawet na najszybszych komputerach. 
Ponadto całkiem często okazuje się, że niemożność określenia złożoności własnego 
algorytmu staje się silną przesłanką za tym, iż jest on błędny lub w najlepszym wypadku 
mało wydajny. 
 
W tym rozdziale mogłeś więc poznać garść wiedzy na temat tego ważnego zagadnienia, 
jakim jest wyznaczanie szybkości algorytmów. Najpierw więc zastanowiliśmy się, w jaki 
sposób można rozsądnie wyrażać efektywność danego algorytmu i jakich miar można 
użyć do porównywania wydajności procedur. Zwróciłem wówczas uwagę, że przyglądanie 
się wszelkim sprawom „technicznym” prowadzi zwykle donikąd. 
Potem poznaliśmy najbardziej rozpowszechnioną metodę wyrażania sprawności 
algorytmów, czyli złożoność teoretyczną. Ku radości nielicznych i narzekaniu większości 
zagłebiliśmy się też w matematyczną stronę tego zagadnienia, a mianowicie notacje 
asymptotyczne. 
Było to jednak konieczne, abyśmy mogli przejśc do zasadniczej treści rozdziału. W 
drugiej jego części przedstawiłem więc typowe techniki służące znajdowaniu złożoności 
różnych algorytmów. Sporo uwagi poświęciliśmy pętlom, które występują w prawie 
każdej procedurze. Ponadto zajęliśmy się także programami rekurencyjnymi, które 
wprawdzie nie występują już często, jednak są o wiele oporniejsze w analizie. Tutaj także 
wymagana była porcja matematyki „wyższej”, czego ukoronowaniem była metoda 
rekurencji uniwersalnej. 
 
Zapewne zdajesz sobie sprawę, że podane przeze mnie wskazówki absolutnie nie 
wyczerpują tematu badania efektywności algorytmów. Istnieje mnóstwo źródeł 
opisujących tę tematykę, z których największe znaczenie mają pozycje książkowe 
poświęcone algorytmice. 

Pytania i zadania 
Dla utrwalenia zdobytych wiadomości i umiejętności zalecane jest wykonanie poniższych 
ćwiczeń i odpowiedz na pytania. Powodzenia! 

Pytania 
1. Dlaczego podanie czasu wykonania procedury niewiele mówi o jej faktycznej 

efektywności? 
2. Czym jest rozmiar danych algorytmu? Podaj kilka typowych przykładów. 
3. Jakie instrukcje zwykle uważamy za elementarne? 
4. Co to jest złożoność praktyczna algorytmu? 
5. Jakie trzy przypadki działania można rozważać dla każdego algorytmu? Który z 

nich najbardziej się liczy i dlaczego? 
6. Czym jest złożoność teoretyczna (klasa) algorytmu? 
7. Dlaczego przy podawaniu klasy algorytmu stosujemy notacje asymptotyczne? 



8. Jakie złożoności mają algorytmy, o których możemy powiedzieć, że są 
„efektywne”? 

9. Jakie dwie szczególne cechy mają problemy NP-zupełne? 
10. Jakie dwie ogólne zasady mają zastosowanie przy wyznaczaniu klasy algorytmów? 
11. Jaką złożoność ma k-krotnie zagnieżdżona pętla przebiegająca po wszystkich 

wartościach n cyklami o stałym czasie? 
12. Czym jest rekurencja? 
13. Jakie dwie metody możemy spróbować zastosować do oszacowania prostych 

funkcji rekurencyjnych? 
14. Na czym polega technika projektowania algorytmów znana jako „dziel i 

zwyciężaj”? 
15. Jakie dwa sposoby można zastosować do szacowania efektywności algorytmów 

wykorzystujących tę technikę? 
16. Co to znaczy, że jedna funkcja jest wielomianowo większa od drugiej? 

Ćwiczenia 
1. Podaj jakie czynniki techniczne, oprócz tych wymienionych na początku 

pierwszego podrozdziału, mogłyby jeszcze wpływać na szybkość wykonywania się 
algorytmu w rzeczywistym programie. 

2. Udowodnij, że ( )( ) ( )( ) ( )( )O f n f n f n∩Ω = Θ . 

3. Znajdź najmniejszą wartość n, dla której algorytm o złożoności praktycznej n16 
byłby mimo wszystko szybszy od tego o złożoności 2n. 

4. Algorytm wyszukiwania binarnego służy do wyszukiwania podanej wartości w 
posortowanej tablicy. Działa on w ten sposób, że dla podanej tablicy porównuje 
szukany element z jej elementem środkowym i zależnie od wyniku wywołuje 
rekurencyjnie sam siebie dla lewej lub prawej połowy. Określ klasę tego 
algorytmu (dowolną metodą); być może koniecznie będzie zapisanie go w postaci 
(pseudo)kodu. 
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