
B
ANALIZA SPRAWNOŚCI

ALGORYTMÓW

Znane są tysiące sposobów zabijania czasu,
ale nikt nie wie, jak go wskrzesić.

Albert Einstein

Komputery w powszechnym mniemaniu uchodzą za uosobienie szybkości. Nierzadko
przecież zdarza się słyszeć, że oto pokonana została kolejna bariera prędkości obliczeń, a
nowo zbudowany superkomputer w sekundę poradzi sobie z zadaniem, z którym cała
ludzkość musiałaby się biedzić przez setki milionów lat. W takich sytuacjach laicy czasem
zadają sobie pytanie, czy istnieją jeszcze dla komputerów jakieś niewykonalne zadania,
których nie rozwiązałyby w mgnieniu oka. Wydawałoby się, że takich wyzwań już nie ma.

Nasz entuzjazm dla osiągnięć techniki musi jednak przygasnąć, jeżeli przydarzy nam się
typowa przecież sytuacja, gdy musimy oczekiwać na uruchomienie programu na swym
osobistym komputerze. Albo na wyszukanie określonych plików na jego dysku twardym.
Albo na ściągnięcie kilkumegabajtowego pliku przez zapchane łącze internetowe. Albo na
wyrenderowanie gotowej sceny w aplikacji do modelowania 3D. Albo…, albo… - przykłady
można mnożyć w nieskończoność. Zatem nasze komputery nie są wcale takie szybkie.
Czy można coś na to poradzić?…

Intuicja podpowiada nam, że tak. Faktycznie - możemy przecież zakupić szybszy dysk
twardy, zafundować sobie lepsze połączenie z Internetem, wymienić procesor na nowszy,
postarać się o lepszą kartę graficzną, i tak dalej. Wszystko to możemy zrobić my -
użytkownicy, podażąjąc trasą niekończącego się wyścigu technologicznego.
A co mogą zrobić twórcy aplikacji, czyli programiści? Przecież on nich również zależy
szybkość działania ich produktów: nawet najszybszy dysk twardy będzie bowiem
pracował nieefektywnie, jeżeli zainstaluje się na nim mało wydajny system plików;
najlepsza karta graficzna może sobie nie poradzić z rysowaniem świata gry
trójwymiarowej, jeśli będzie zmuszona do jego całościowego przetwarzania dla każdej
wygenerowanej klatki; wreszcie, nawet najnowszy procesor może się ugiąć się pod
ciężarem skomplikowanych operacji na ogromnym zbiorze danych. Dlatego programiści
muszą dbać o odpowiednią optymalizację działania swoich wytworów, a szczególnie
tych ich części, które są najintensywniej wykorzystywane przez użytkowników.

Optymalizacja jest aczkolwiek trudnym zadaniem, które można wykonywać na wielu
płaszczyznach. Możliwe jest optymalizowanie projektu aplikacji, określającego jej
nadrzędną strukturę - jak choćby klasy i ich składowe. Źle zaprojektowany program ma
bowiem wszelkie szanse, by działać jeśli nie całkiem niepoprawanie, to „przynajmniej”
bardzo nieefektywnie.
Drugą stroną optymalizacji jest dobieranie odpowiednio szybkich algorytmów do
realizacji chociaż tych najbardziej newralgicznych zadań. Efektywny algorytm może
bowiem skrócić czas ich wykonywania setki, tysiące, a nawet miliony (!) razy, produkując
jednocześnie identyczne wyniki.

OK, być może w tej chwili nieco przesadzam. Nie ulega jednak wątpliwości, że dla
każdego niemal zadania istnieją algorytmy lepsze i gorsze, działające szybciej i wolniej,
krótsze i dłuższe w zapisie oraz łatwiejsze i trudniejsze w implementacji - a wszystkie
one są tak samo poprawne w sensie generowanych rezultatów.
Dla wygody programistów najważniejsze byłoby zapewne kryterium prostoty, jednak nie
zapominajmy, że aplikacje tworzymy raczej dla użytkowników innych niż my sami.
Smutną prawdą jest fakt, że takich „postronnych” osób niewiele interesują upodobania
autora programu czy nawet jakość produktu z punktu widzenia inżynierii
oprogramowania; dla nich ważniejsze jest bowiem to, co mogą zobaczyć i odczuć
bezpośrednio: wygodny interfejs użytkownika, rozbudowane możliwości czy nareszcie
szybkość działania.

W interesie popularności naszych dzieł leży więc (między innymi) wybór odpowiednio
efektywnych algorytmów, poprzez które aplikacje będą realizowały swoje cele. Jak
jednak ocenić, który algorytm jest szybszy? Czy istnieją ścisłe kryteria wyznaczania
sprawności danego algorytmu?…
Są to bardzo słuszne i ważne pytania, na które postaram się tutaj odpowiedzieć.

Złożoność obliczeniowa
Kiedy mamy na myśli efektywność wykonania jakiegoś zadania, łatwo możemy
posługiwać się miarą czasową. Zrobienie czegoś w 10 minut jest bardziej efektywne niż
zrobienie tego samego w kwadrans, nie mówiąc już o półgodzinnej czy godzinnej pracy.
Czy jednak podobne kryterium może się stosować do algorytmów?

Wyobraźmy sobie, że mamy do wyboru dwa algorytmy realizujące ten sam cel i
produkujące identyczne wyniki, ale napisane przez dwie różne osoby. Jedna z tych osób
twierdzi, że jej algorytm jest szybki, bo wykonał się w 41 sekund; druga utrzymuje, że
jej algorytmowi zajęło to tylko 29 sekund. Czy znaczy to bynajmniej, że ten drugi sposób
jest szybszy?…
Otóż niezupełnie, bowiem niemal na pewno obie osoby uruchamiały swoje algorytmy w
różnych warunkach. Aby więc obiektywnie porównywać ich sprawność, należałoby te
warunki znać - tzn. wiedzieć:

 Jakie komputery zostały użyte w przeprowadzonych próbach?
 Jakie procesory posiadały?
 Pod kontrolą jakich systemów operacyjnych pracowały?
 Czy napisane programy działały w trybie wyłączności, a jeśli nie, to jaki miały

priorytet?
 W jakich językach zostały napisane oba programy?
 Jakich kompilatorów użyto do ich skompilowania?
 Czy w owych kompilatorach były włączone opcje optymalizacji?
 itp. itd.

Jak widać, potrzebnych informacji jest całe mnóstwo, zaś nawet posiadanie ich
wszystkich nie upewnia nas, że czegoś nie przeoczyliśmy. Poza tym mając tak szeroki
zasób wiadomości, porównywanie sprawności obu algorytmów wcale nie staje się
prostsze, a w praktyce jest prawie niemożliwe.

Do całego problemu trzeba zatem podejść zupełnie inaczej. Przede wszystkim należy
uświadomić sobie, że algorytm to nie jest skompilowany i funkcjonujący program (lub
jego część), lecz pewien przepis, ogólny ciąg kroków. Co najważniejsze, jest on
niezależny od wszystkich warunków „technicznych”, wymienionych powyżej - nawet od
kompilatora i języka programowania. Ten sam algorytm może być przecież zapisany w
każdym niemal języku; popatrzmy chociażby na kod poszukujący danego elementu
tablicy jednowymiarowej, zapisany w czterech językach programowania:

// C(++)
int Szukaj(const int* pTablica, unsigned uRozmiar, int nSzukany)
{
 for (int i = 0; i < uRozmiar; ++i)
 if (pTablica[i] == nSzukany)
 return i;

 return -1;
}

// Object Pascal (Delphi)
function Szukaj(const ATablica : array of Integer; ASzukany : Integer)
 : Integer;
var
 i : Integer;
begin
 for i := 0 to Length(ATablica) - 1 do
 begin
 if ATablica[i] = ASzukany then
 begin
 Result := i;
 Exit;
 end;
 end;

 Result := -1;
end;

' Visual Basic
Function Szukaj(Tablica() As Integer, Szukany As Integer) As Integer
 Dim i As Integer

 For i = 0 To Len(Tablica) - 1
 If Tablica(i) = Szukany Then
 Szukaj = i
 Exit Function
 End If
 Next i

 Szukaj = -1
End Function

// PHP
function Szukaj($aTablica, $nSzukany)
{
 foreach ($aTablica as $idxIndeks => $nWartosc)
 if ($nWartosc === $nSzukany)
 return $idxIndeks;

 return -1;
}

Możliwe jest nawet więcej: algorytm można przecież zapisać, nie używając do tego
żadnego języka programowania, lecz posługując się tylko pseudokodem:

Funkcja Szukaj(Tablica[] :int, Szukany :int) :int
 i :int

 Dla Każdego i := Indeks(Tablica) Wykonaj
 Jeżeli Tablica[i] = Szukany To

 Zwróć i
 Koniec
 Koniec

 Zwróć -1
Koniec

W takim wypadku wszelkie rzeczywiste miary, dotyczące faktycznego czasu wykonywania
algorytmu tracą jakikolwiek sens. Potrzebujemy zatem takiego oszacowania, które
pozwoli wyznaczyć efektywność algorytmu nie tylko bez jego kompilacji i uruchamiania,
ale nawet bez zapisywania go w żadnym istniejącym języku programowania. Miara
efektywności powinna bowiem dotyczyć tylko abstrakcyjnego ciągu kroków, jakim jest
każdy algorytm.

Dla zapewnienia ścisłości i wygody czytelników, a także swojej własnej, wszystkie użyte
dalej algorytmy będę jednak zapisywał w języku C++.

Klasa algorytmu
Zdecydowaliśmy więc, że nie będziemy się zajmować rzeczywistym czasem działania
algorytmu na jakimś komputerze, lecz ilością elementarnych kroków, jakie musi on
wykonać, aby wywiązać się ze zleconego mu zadania. Za elementarny krok uważamy
natomiast pojedynczą, prostą instrukcję; przyjęło się zresztą, iż w analizie sprawności
algorytmów bierze się pod uwagę głównie instrukcje porównania, ewentualnie
przypisania.

Teraz trzeba sobie zadać pytanie: czy ilość owych elementarnych kroków będzie w
każdym przypadku taka sama? Nietrudno domyślić się, że nie. Algorytmy tworzymy
przecież po to, aby operowały one na nieznanych z góry danych, zatem pracochłonność
wykonania czynności algorytmu może ściśle zależeć od tych danych. Dokładniej - może
ona zależeć od rozmiaru wejściowych parametrów algorytmu.
Pojęcie rozmiaru jest tu użyte bardzo ogólnie, a jego dokładne znaczenie jest
nierozerwalnie związane z konkretnym zagadnieniem, czyli rozważanym algorytmem. Dla
przykładowej procedury przeszukiwania tablicy rozmiarem danych będzie oczywiście ilość
elementów tej tablicy; przy sprawdzaniu, czy podana liczba jest pierwsza, decydującą
rolę odegra ona sama; podczas znajdowania pozycji jednego napisu wewnątrz innego
rozmiar danych jest wypadkową długości zarówno przedmiotu, jak i zakresu poszukiwań;
i tak dalej. Można więc stwierdzić, że:

W analizie efektywności algorytmów rozmiar danych jest tą wielkością opisującą
wejściowe dane dla algorytmu, która najbardziej wpływa na ilość kroków podjętych
przy rozwiązywaniu problemu.

Czas wykonywania algorytmu, liczony liczbą elementarnych kroków, najczęściej nie
będzie więc wielkością stałą, lecz funkcją rozmiaru danych wejściowych - funkcją w
rozumieniu matematycznym. Szacowanie efektywności algorytmu polega zatem na
znalezieniu owej funkcji i tym się właśnie teraz zajmiemy.

Znajdujemy złożoność praktyczną
Jako przykład weźmiemy sobie stosunkowo prosty algorytm sortowania, znany jako
sortowanie przez wstawianie (ang. insertion sort). Być może znasz sposób jego
działania - a jeśli tak, to zapewne wiesz również, że charaktertyzuje się on nieszczególną
efektywnością. Skądkolwiek czerpiesz tą wiedzę, możesz ją teraz zweryfikować.

Przykład: sortowanie przez wstawianie
Najpierw powiedzmy sobie coś o samym algorytmie. Sortowanie przez wstawianie jest
prostym sposobem na uporządkowanie tablicy dowolnych elementów. Oczywistym
warunkiem jest istnienie jakiegoś kryterium możliwego uporządkowania (tzw. porządku
liniowego) wśród elementów tablicy. W praktycznej sytuacji mogą to być złożone zasady
- szczególnie jeśli sortujemy np. rekordy w bazie danych - ale dla nas nie ma to żadnego
znaczenia. Liczy się sama możliwość ustalenia, który element jest mniejszy, a który
większy; dlatego też celem pominięcia takich „technicznych” szczegółów będziemy
zajmowali się wyłącznie sortowaniem liczb całkowitych typu int. Przy użyciu własnych
typów danych i przeciążania operatorów można zresztą w niemal automatyczny sposób
uzyskać algorytm dla dowolnego rodzaju elementów.

Spójrzmy więc na ową procedurę, sortującą tablicę o podanym rozmiarze:

void InsertionSort(const int* aTablica, unsigned uRozmiar)
{
 unsigned i, j;
 int nElement;

 // pętla zewnętrzna, wybierająca po kolei każdy element
 // (począwszy od drugiego, czyli tego o indeksie 1)
 for (i = 1; i < uRozmiar; ++i)
 {
 nElement = aTablica[i];

 // pętla wewnętrzna ma za zadanie stworzyć miejsce dla
 // naszego elementu
 for (j = i - 1;
 i >= 0 && aTablica[j] > nElement; --j)
 // czyni to, przesuwając elementy do przodu
 aTablica[j + 1] = aTablica[j];

 // a gdy ono już jest, trzeba zapisać element na tym miejscu
 aTablica[j + 1] = nElement;
 }
}

Zasada jej działania jest prosta. Zewnętrzna pętla for przebiega po wszystkich
elementach tablicy, natomiast wewnętrzna zajmuje się szukaniem (albo raczej
tworzeniem) właściwego miejsca dla aktualnego elementu. Robi to, przesuwając w stronę
końca tablicy wszystkie liczby, które są większe od tej rozważanej (czyli nElement). Na
powstały w ten sposób wakat wstawiana jest rzeczona liczba, a wówczas zewnętrzna
pętla zajmuje się kolejnym elementem. Ten jest znowu porównywany z poprzedzającymi
go liczbami, wstawiany na odpowiednie miejsce… i tak dalej, aż do końca tablicy.

Ustalamy reguły
Spróbujmy teraz zająć się sednem sprawy, czyli przybliżeniem czasu działania algorytmu.
Jak wspominałem na początku, interesować nas będzie czas wyrażony w postaci liczby
elementarnych kroków wykonanych przez procedurę.

Co można rozumieć przez to pojęcie? Na zwyczajnym komputerze, dokonującym naraz co
najwyżej jednej czynności, za elementarny krok wygodnie jest przyjmować pojedynczą
instrukcję - zwykle wiersz kodu. Trzeba jednak uważać (zwłaszcza w językach wysokiego
poziomu), by nie robić tego bezmyślnie. Wywołania funkcji nie można bowiem traktować
jako jeden krok, bo jej wykonanie zajmuje w rzeczywistości więcej pracy.
Najrozsądniej jest zatem uważać za pojedyncze kroki najprostsze instrukcje. Należą do
nich głównie przypisania oraz porównania. Dla uproszczenia można jednocześnie

założyć, że obie te operacje zajmują tyle samo czasu - wówczas nie będzie potrzeby ich
rozróżniania.

Drugą ważną kwestią jest sprecyzowanie, czym jest dla nas rozmiar danych wejściowych.
Myślę, że w tym przypadku trudno o jakiekolwiek wątpliwości. Skoro przedmiotem
naszych zainteresowań jest tablica, logicznym określeniem rozmiaru danych jest wielkość
tej tablicy. Ściślej mówiąc, będzie to liczba jej elementów, a więc wartość zmiennej
uRozmiar. Dalej będziemy ją oznaczać w skrócie jako n.

Celem naszych poszukiwań jest wobec tego odszukanie funkcji f(n), której wartości
byłyby ilościami kroków algorytmu potrzebnych do posortowania n-elementowej tablicy.
Możemy teraz głęboko odetchnąć i zabrać się do pracy…

Przyglądamy się algorytmowi
Zanim ustalimy ilość kroków algorytmu w zależności od rozmiaru danych, musimy
wyróżnić te instrukcje, których wykonanie będziemy uważać za jeden krok. Zgodnie z
ustaleniem z poprzedniego paragrafu, będą to:

 instrukcja inicjująca licznik (i = 1) na początku zewnętrznej pętli for
 sprawdzenie wartości tegoż licznika (i < uRozmiar) na początku każdego cyklu

zewnętrznej pętli for
 przypisanie nElement = aTablica[i] w zewnętrznej pętli
 instrukcja inicjująca licznik (j = i - 1) na początku wewnętrznej pętli for
 instrukcja sprawdzające wartość tego licznika (i >= 0 && aTablica[j] >
nElement) na początku każdego cyklu wewnętrznej pętli for (właściwie mamy
tutaj dwa porównania, ale dla uproszczenia potraktujemy to jako jedną instrukcję)

 przypisanie aTablica[j + 1] = aTablica[j] w wewnętrznej pętli
 dekrementacja licznika (--j) pod koniec cyklu wewnętrznej pętli
 przypisanie aTablica[j + 1] = nElement w zewnętrznej pętli
 inkrementacja licznika (++i) pod koniec cyklu zewnętrznej pętli

Zakładamy, że pojedyncze wykonanie każdej z tych instrukcji trwa taki sam okres czasu,
a koszt wykonania możemy oznaczyć po prostu jako 1. Pozostaje jeszcze kwestia
ustalenia, jak często (w zależności od n) wykonuje się każda instrukcja.

Nie byłoby to bardzo trudne, gdyby pewna kwestia, której, jak się zdaje, nie sposób
obejść. Chodzi o mianowicie o wewnętrzną pętlę: nie możemy bowiem dokładnie ustalić
liczby jej cykli, bowiem nie zależy ona tylko od wielkości tablicy. Przeciwnie, przy
szukaniu miejsca dla i-tego elementu liczy się każdy z poprzedzających go i - 1
elementów tejże tablicy. Aby ustalić ustalić dokładną ilość wykonanych przypisań
aTablica[j + 1] = nElement trzebaby zatem… samodzielnie ją policzyć! To
zdecydowanie niepraktyczne - cóż więc z tym zrobić?
Otóż na razie odłożymy sobie ten problem na półkę. Wprowadzimy po prostu dodatkowy
symbol ti na oznaczenie liczby sprawdzeń warunku wewnętrznej pętli for w zależności
od wartości i. Później zastanowimy się, jak możnaby tę dodatkową zmienną usunąć.

Funkcja złożoności
Teraz należy ponownie przyjrzeć się procedurze InsertionSort() i oznaczyć łączny
koszt z instrukcji spośród tych z listy podanej powyżej. Pamiętając o parametrach n i ti,
możemy to uczynić w ten sposób:

void InsertionSort(const int* aTablica, unsigned uRozmiar)
{
 // (wszystkie nieważne szczegóły pominięto)

 for (i = 1; // 1

 i < uRozmiar; // n
 ++i) // n - 1
 {
 nElement = aTablica[i]; // n - 1

 for (j = i - 1; // n -1

 i >= 0 && aTablica[j] > nElement; //
2

n
ii

t
=∑

 --j) //
()2

1n
ii

t
=

−∑

 aTablica[j + 1] = aTablica[j]; //
()2

1n
ii

t
=

−∑

 aTablica[j + 1] = nElement; // n - 1
 }
}

Koniecznie przeanalizuj ten przykład, aby zrozumieć, dlaczego koszty tych instrukcji są
właśnie takie. Przy liczeniu cyklów pętli warto pamiętać, że wartość zmiennej uRozmiar
to nic innego, jak nasze n.

W tym momencie z łatwością możemy już przedstawić sumaryczny koszt całego
algorytmu. Dodając do siebie koszty wykonania poszczególnych instrukcji otrzymamy
ostatecznie1:

()
2

4 2 2
n

i
i

T n n t
=

= − + ∑

Ta funkcja T(n) nosi nazwę złożoności praktycznej algorytmu.

Zlożoność praktyczna jest funkcją, która dla podanego rozmiaru danych wyznacza
dokładną liczbę elementarnych kroków potrzebnych do wykonania danego algorytmu.

Popadamy w pesymizm
Nasza funkcja wygląda stosunkowo zgrabnie, ale ma jeden mankament: jest zależna nie
tylko od n, ale też od ti, czyli od faktycznego rozmieszczenia danych (elementów
sortowanej tablicy). Wynika stąd, że nawet dla tablic tego samego rozmiaru czasy
wykonania procedury InsertionSort() mogą się różnić. Obiecałem ci, że pozbędziemy
się tego zgrzytu, więc pora to zrobić.

W praktycznych zastosowaniach każdy algorytm jest wywoływany wielokrotnie,
najczęściej dla różnych danych. Dla każdego zestawu istnieje oczywiście jego własna
wartość T(n), zależna od n oraz od współczynników t2, t3, …, tn. Pomyślmy jednak, czy
ma ona jakiś praktyczny sens?… Potencjalnych zestawów danych jest nieskończenie
wiele, więc interesowanie się złożonością algorytmu dla każdego z nich raczej mija się z
celem.
Zamiast tego lepiej jest postawić na jakieś uogólnione przypadki, dla których wartości
T(n) będą charakterystyczne. Dlatego też w algorytmice rozważa się trzy takie warianty:

 przypadek optymistyczny, który oznacza najmniejszą liczbę wykonanych kroków
 przypadek średni, oznaczający złożoność algorytmu dla typowego zestawu

danych
 przypadek pesymistyczny, odnoszący się do zestawu danych powodującego

najdłuższy czas wykonania

1 Tzn. po dokonaniu kilku przekształceń upraszczających sumy.

W każdym z nim zakładamy, że n jest takie samo (bo nadal chcemy, by od niego zależała
złożoność), jednak wybranie któregoś przypadku determinuje wartości ti. Innymi słowy,
czynimy wówczas pewne (rozsądne) założenia o rozmieszczeniu danych wejściowych. W
naszym przypadku chodzi o układ liczb w sortowanej tablicy.

Zacznijmy zatem od przypadku optymistycznego. Dla sortowania będzie nim fakt, iż
podana tablica jest już rzeczywiście posortowana na samym początku - a zatem
wykonanie algorytmu jest zbędne. Wszystkie elementy są na właściwych miejscach, a
więc liczba sprawdzeń ti będzie równa 1 przy każdym obrocie zewnętrznej pętli. Wówczas
funkcja złożoności przedstawia się następująco:

()
2

4 2 2 1
n

i
T n n

=

= − + ∑

co po uproszczeniu daje nam:

() 6 4T n n= −

W najlepszym przypadku złożoność jest więc funkcją liniową względem n, czyli jest
proporcjonalna do rozmiaru danych.

Taki skrajny przypadek jest bardzo rzadki. Na drugim końcu leży wariant wybitnie
pesymistyczny, zakładający maksymalny koszt wykonania algorytmu. W tym przypadku
podana tablica jest posortowana, ale… w odwrotnym porządku! Wtedy też wszystkie
elementy muszą być kolejno posyłane na początek tablicy: i-ty element przemieści się
więc o i - 1 miejsc do tyłu w każdym obrocie zewnętrznej pętli. Wniosek: ti = i dla
każdego i = 2, 3, …, n. Funkcja T(n) będzie zatem wyglądała tak:

()
2

4 2 2
n

i
T n n i

=

= − + ∑

Występująca tu suma nie jest już tak banalna jak w przypadku optymistycznym, Do jej
przepisania w bardziej przystępnej postaci najlepiej posłużyć się znanym ci, mam
nadzieję, wzorem na sumę najprostszego ciągu arytmetycznego:

1

(1)1 2
2

n

k

n nn n
=

+
+ + + = =∑…

A ponieważ my liczymy sumę od 2, finalnie (po kilku przekształceniach, które
matematycy określiliby jako „trywialne”) funkcja T(n) przyjmie postać:

() 2 5T n n n= +

W tym przypadku jest to więc funkcja kwadratowa. Czas wykonania algorytmu rośnie
więc znacznie szybciej w miarę wzrostu rozmiaru danych.

Tak jest w przypadku najgorszym. Możesz się zdziwić, ale to właśnie tę sytuację
powinniśmy przede wszystkim rozpatrywać, gdy mamy na celu określenie efektywności
algorytmu! Są ku temu co najmniej trzy powody:

 Przypadek pesymistyczny jest tak zły, że już gorszy być nie może. Wyznaczanie
złożoności w tym właśnie przypadku daje nam więc górne ograniczenie na czas
działania algorytmu. Innymi słowy, wiemy na pewno, jakiej magicznej granicy
czasu wykonania nasza procedura nigdy nie przekroczy. Taka informacja jest

wbrew pozorom znacznie cenniejsza niż średni czas działania: jeśli bowiem
przypadek pesymistyczny bardzo odbiega od średniego, to możemy być
nieprzyjemnie zaskoczeni, gdy akurat na niego natrafimy. Pół biedy, jeżeli
wyłapiemy ten fakt podczas testowania programu. O wiele gorzej, jeżeli
spowoduje to irytację końcowego użytkownika, który zlecając programowi
rutynową czynność stwierdzi nagle, że wykonuje się ona dwie minuty zamiast
czterech sekund. Tłumaczenie się zgubnym wpływem faz Księżyca może wtedy nie
być wystarczające…

 Z drugiej strony przypadek pesymistyczny ma tendencję do częstego
występowania. Być może niekoniecznie dotyczy to sortowania, ale objawia się
regularnie podczas wielu powszechnych operacji, jak np. wyszukiwania. Całkiem
prawdopodobna jest przecież próba wyszukania w bazie danych rekordu, który nie
istnieje - a to jest właśnie przypadkiem pesymistycznym.

 Wreszcie, wariant malkontencki jest zwykle podobny do przypadku średniego.
Weźmy choćby nasze sortowanie: w przypadku średnim liczba przestawień
elementów tablicy dokonywanych w i-tym obrocie pętli to ti = i / 2. Jeśli masz na
to ochotę, możesz zapisać funkcję T(n) dla tego właśnie przypadku; po
uproszczeniu zawartej w niej sumy otrzymasz ponownie funkcję kwadratową.

Znajdujemy złożoność teoretyczną
„Zaraz”, możesz jednak zaprotestować. „W przypadku średnim będzie to jednak inna
funkcja kwadratowa, przyjmująca mniejsze wartości dla tych samych n!” Nie mogę się z
tobą nie zgodzić, bo byłby to zamach na podstawy matematyki. Mogę jednak zadać
prowokujące pytanie: A jakie to ma znaczenie?

I spieszę jednocześnie z odpowiedzią, że wcale nie takie duże! Weźmy sobie choćby
sytuację, w której sortujemy 1000-elementową tablicę (dość skromny przypadek,
nawiasem mówiąc), a więc n = 1000. Ponieważ zaś T(n) jest funkcją kwadratową, należy
oczekiwać, że liczba elementarnych kroków algorytmu będzie się dla różnych rozkładów
danych wahać w okolicach miliona. Czy jednak ma znaczenie dokładna liczba operacji
podstawowych? Czy zrobi to jakąś istotną różnicę, gdy algorytm wykona w jednym
przypadku milion i pięć tysięcy, a w drugim milion i pięćdziesiąt tysięcy instrukcji?…
Nawet nie trzeba liczyć, jakiego rzędu jest to różnica (podpowiedź: to są promile) -
możesz empirycznie się przekonać, że dla dzisiejszych komputerów to kwestia
mikrosekund.
Naturalnie, można się upierać, że te szczegóły mają znaczenie. Jeśli na przykład
współczynnik przy n w T(n) wynosiłby kilka setek, to w ostatecznym rozrachunku miałoby
to spory wpływ na czas wykonania. Musisz jednak uświadomić sobie, że takie założenia to
droga donikąd. Wystarczy wziąć bowiem większe n - powiedzmy 10000, znów nie jest to
jeszcze bardzo dużo - by wykazać praktyczną identyczność obu pozornie różnych
złożoności (średniej i optymistycznej).

Kluczowa cecha algorytmu
Te obserwacje pozwalają nam na uczynienie ostatniego kroku w analizie efektywności
algorytmów. Możemy teraz określać ich złożoność teoretyczną.

Złożoność teoretyczna (zwana też klasą algorytmu) określa, jak silnie zależą od
siebie: rozmiar danych i czas wykonania algorytmu - przy założeniu, że ten pierwszy
wzrasta nieograniczenie.

Wielkość ta, podana przy opisie konkretnego algorytmu, jest jak CV kandydata o pracę.
Patrząc na nią i porównując z innymi rozwiązania dla tego samego zadania możemy
łatwiej zdecydować, który algorytm będzie dla nas najodpowiedniejszy. Złożoność
teoretyczna jest bowiem uniwersalną miarą efektywności.

Notacja
Skoro jest ona tak ważna, powinniśmy nauczyć się nią posługiwać. Na szczęście nie jest
to trudne i nie wymaga nawet znajomości matematycznych podstaw, kryjących się za
stosowaną notacją.

Wróćmy więc do analizowanego przez cały czas algorytmu InsertionSort() i jego
funkcji złożoności T(n). Od jakiegoś czas podkreślałem usilnie fakt, że jest to funkcja
kwadratowa względem n; jednocześnie przekonywałem, że tak naprawdę nie warto
wnikać, jak dokładnie ta funkcja wygląda.
Takie podejście jest właśnie istotą określania złożoności teoretycznej. Bierzemy po prostu
pod uwagę ten składnik, który ma w ostatecznym rozrachunku największy wpływ na
wartość T(n). W naszym przypadku jest to n2, gdyż to on czyni ją funkcją kwadratową.
Przy użyciu standardowego sposobu zapisu wyrażamy to tak, iż: złożoność algorytmu
InsertionSort() jest rzędu Θ(n2). Bardziej sformalizowane stwierdzenie to po prostu:

() ()2T n n= Θ

Mówi ono dokładnie to, że funkcja T(n) jest funkcją kwadratową względem n. Wiemy
rzecz jasna, że T(n) określa nam także liczbę elementarnych instrukcji wykonywanych
podczas sortowania przez wstawianie tablicy n-elementowej. Notacja Θ(n2) mówi więc
również o tym, iż ilość tych kroków jest proporcjonalna do kwadratu rozmiaru
sortowanej tablicy.

Asymptotyczność
Jak widzimy, podanie złożoności teoretycznej wskazuje jedynie, jak bardzo czas
wykonania algorytmu zależy od rozmiaru danych. Takie uproszczenie jest uzasadnienie z
jednego powodu. Zakładamy mianowicie, że tenże rozmiar jest duży - właściwie można
by nawet powiedzieć, że dąży do nieskończoności. Z tego powodu zapis Θ(n2) (i jeszcze
kilka podobnych) określa się jako notację asymptotyczną.

Mimo że w toku analizy złożoności przemyciłem już kilka argumentów popierających takie
podejście, może ono nadal wydawać ci się nadużyciem. Dlaczego więc mielibyśmy
stosować taką nieprecyzyjną specyfikację efektywności?… Powodów jest kilka:

 Założenie, że rozmiar danych dąży do nieskończoności (albo, łagodniej mówiąc,
jest bardzo duży) nie jest wcale tak niedorzeczne, jak na pierwszy rzut oka
mogłoby się wydawać. Przykład z sortowaniem tysiąca czy dziesięciu tysięcy liczb
jest raczej regułą niż wyjątkiem. Podobnie często spotkać się można z
wyszukiwaniem w zbiorze danych liczącym miliony rekordów czy odczytywaniem
bajtów spośród wielu miliardów zmagazynowanych na dysku twardym. Sytuacja,
gdy informacji do przetworzenia jest bardzo dużo nie należy zatem wyjątków.
Warto zresztą przypomnieć, że właśnie konieczność obróbki wielkich porcji danych
była jedną z przyczyn powstania komputerów…

 Analiza algorytmów celem znalezienia ich złożoności praktycznej najczęściej
prowadzi do uzależnienia jej nie tylko od rozmiaru zestawu danych, ale także od
innych jego cech. W przypadku sortowania wprowadziliśmy na przykład
współczynnik ti, który w prosty sposób charakteryzował stopień uporządkowania
tablicy. Mieliśmy przy tym szczęście, gdyż występował on jedynie w jednym
miejscu; ponadto, po przyjęciu założeń co do rozważanego przypadku można było
to pojedyncze wystąpienie zredukować jedynie przy pomocy raczej prostych
operacji na sumach. W wielu często stosowanych algorytmach nie jest jednak tak
różowo. Doprowadzenie funkcji T(n) do sensownej postaci (bez dodatkowych
parametrów) może być niekiedy wręcz niemożliwe. Znacznie częściej i łatwiej
można natomiast podać asymptotyczne oszacowanie na T(n) - czyli znaleźć
złożoność teoretyczną algorytmu.

 Jak będziesz się mógł dowiedzieć, czytając dalej ten rozdział, określenie klasy
algorytmu jest częstokroć możliwe wręcz „na oko” - jedynie poprzez uważne
przyjrzenie się danemu przepisowi. Wówczas nie tylko nie ma potrzeby
dokonywania jakichś skomplikowanych operacji algebraicznych, ale także
oznaczania elementarnych instrukcji w procedurze i zapisywania złożoności
praktycznej. Łatwość uzyskania klasy algorytmu jest więc kolejnym argumentem
przemawiającym za jej stosowaniem.

 I wreszcie ostatni powód, należący do kategorii faktów dokonanych. Otóż
złożoność teoretyczna jest powszechnie przyjętym sposobem określania
efektywności algorytmach. Oczywiście, w opisach dość często można natrafić na
uwagi mówiące o tym, jak dane rozwiązania sprawdza się w praktyce w
porównaniu z innymi, o tej samej klasie. Nie zmienia to jednak faktu, iż klasa
algorytmu jest najważniejszym czynnikiem determinującym jego rzeczywisty
czasy wykonania - ważniejszym od szczegółów technicznych.

Nasze dalsze poszukiwania będą więc koncentrowały się właśnie na tym pojęciu. W
następnej sekcji postaram się przedstawić w miarę przystępny sposób tę porcję
matematyki, która kryje się za notacją asymptotyczną. Natomiast reszta rozdziału to
kilka wskazówek, mających na celu pomoc w znajdowaniu złożoności obliczeniowej
algorytmów w typowych sytuacjach (najczęściej bez uciekania się do skomplikowanego
aparatu matematycznego).

Notacje asymptotyczne
W tej sekcji powiemy sobie więcej o tym niezbyt oczywistym przy pierwszym kontakcie
sposobie wyrażania efektywności algorytmów - czyli o notacjach asymptotycznych.

Mówiłem już wcześniej, że w tym kontekście przymiotnik ‘asymptotyczny’ oznacza, że
interesujemy się sytuacjami, gdy rozmiar danych algorytmu rośnie nieograniczenie.
Stanowi to matematyczne uogólnienie najczęściej spotykanym w prawdziwym życiu
przypadków, gdy zestaw danych dla algorytmu jest faktycznie bardzo duży.
Założenie o dążeniu do nieskończonoci pozwala jednak na dokonanie kilku znaczących
uproszczeń. Pokazałem pod koniec poprzedniej sekcji, że polegają one na:

 pominięciu wszystkich składników funkcji oprócz tego, który ma największy wpływ
na jej wartość (a więc rośnie najszybciej)

 pominięciu wszelkich stałych współczynników

Na tej podstawie mogliśmy więc stwierdzić, że asymptotyczny czas działania algorytmu
sortowania przez wstawianie wynosi Θ(n2), gdzie n jest wielkością sortowanej tablicy.
Teraz wyjaśnimy sobie dokładnie, co ten zapis oznacza, a także wprowadzimy dwie inne,
podobne notacje. Omówimy sobie też własności tych notacji, które zdecydowanie
ułatwiają określanie klasy algorytmu w praktycznych sytuacjach.

Trzy ważne definicje
Na początku warto uściślić pewien fakt, który niektórych zapewne zbytnio nie wzruszy,
ale wielu może co najmniej zdegustować. Otóż notacje asymptotyczne są szeroko
stosowane przede wszystkim w informatyce, lecz jako samo pojęcie mają korzenie
zdecydowanie matematyczne. Dlatego też przy ich omawianiu należy posługiwać się
terminami wziętymi z dziedziny królowej nauk - przede wszystkim pojęciem funkcji.

Algebraiczne pojęcie funkcji jest, mam nadzieję, wszystkim doskonale znane, choć
głównie pod postacią funkcji określonych na liczbach rzeczywistych. Nas będą tutaj
bardziej interesowały funkcje zdefiniowane dla zbioru liczb naturalnych

{ }0,1, 2,3, 4,=` … . Powód jest oczywisty: parametry określające egzemplarze problemów

dla algorytmów (jak choćby tablice do posortowania) są niemal wyłącznie liczbami
naturalnymi.

Teoretycznie nic nie stoi na przeszkodzie, aby podane niżej definicje stosować także dla
funkcji liczb rzeczywistych, ale wtedy trudniej o algorytmiczny sens takich pojęć.

W tym paragrafie zdefiniujemy sobie zatem trzy notacje asymptotyczne, używane w
odniesieniu do funkcji liczb naturalnych. Jakkolwiek sam fakt takiego matematycznego
postawienia sprawy może juz z miejsca być odstręczający, definicje te nie są wcale takie
trudne do zrozumienia. W praktyce stosuje się je całkiem intuicyjnie.

Ponieważ w kwestii definiowania notacji asymptotycznych panuje pewien rozgardiasz
(wspomnę o nim pod koniec), musiałem zdecydować się na jakiś wybór, który byłby
jednocześnie prosty i użyteczny. Posłużyłem się więc definicjami z powszechnie uznanej
książki na temat algorytmiki: Wprowadzeniu do algorytmów Thomasa H. Cormena i
współautorów. One z kolei są wprost bazowane na absolutnej klasyce literatury
informatycznej, czyli Sztuce programowania Donalda E. Knutha.

Dokładne oszacowanie (notacja Θ)
Zacznijmy od używanego już przez nas symbolu Θ, wykorzystywanego w zapisie Θ(n2).
Ogólnie jest to notacja postaci Θ(f(n)), co czytamy ‘wielkie theta od f od n’. Z wyglądu
zdaje się więc, że mamy do czynienia z „funkcją określoną na innej funkcji” albo z
funkcjami zagnieżdżonymi. Naprawdę jest to coś ciekawszego; mamy bowiem do
czynienia ze zbiorem funkcji określonym mniej więcej tak:

()() ()
() () ()

1 2 0

1 2 0

: istnieją liczby , , 0, takie że

0 dla wszystkich

g n c c n
f n

c f n g n c f n n n

⎧ ⎫>⎪ ⎪Θ = ⎨ ⎬
≤ ≤ ≤ ≥⎪ ⎪⎩ ⎭

Zbiór funkcji może być dziwnym tworem, jeśli dotąd byłeś przyzwyczajony wyłącznie do
zbiorów liczbowych czy punktów na płaszczyźnie albo w przestrzeni. W matematyce
elementami zbiorów mogą być jednak obiekty dowolnego rodzaju (nawet inne zbiory),
więc nic nie stoi na przeszkodzie, abyśmy połączyli w zbiór Θ(f(n)) funkcje spełniające
wyżej wymieniony warunek.

W zwięzłym, dosłownym zapisie matematycznym powyższa definicja wygląda
następująco:

()() () () () (){ }1 2 0 0 1 2: , , 0f n g n c c n n n c f n g n c f n+Θ = ∃ ∈ ∀ ≥ ≤ ≤ ≤`

Cóż jednak ten warunek praktycznie oznacza?... Dowolna funkcja g(n) należy do zbioru
Θ(f(n)) wyłącznie wtedy, gdy możemy sobie znaleźć trzy wymienione w definicji liczby c1,
c2, n0, dla których g(n) jest „wstawiona między” funkcje c1f(n) i c2f(n). Ten aspekt
najłatwiej zrozumieć, patrząc na wykresy wszystkich trzech funkcji: od pewnego
momentu (n0) funkcja g(n) leży w całości w obrębie „nożyc” tworzonych przez wykresy
c1f(n) i c2f(n):

Wykres 1. Graficzna interpretacja faktu, iż g(n) należy do Θ(f(n))

Oznacza to także, że dla n ≥ n0 funkcja g(n) jest równa f(n) z dokładnością do stałej
czynnika (wartości obu funkcji są do siebie proporcjonalne). Mówimy też, że:

Jeśli g(n) należy do Θ(f(n)), to f(n) jest asymptotycznie dokładnym oszacowaniem
dla f(n).

Zwrot ‘dokładne oszacowanie’ wydaje się mieć cechy jakiegoś dziwnego paradoksu,
jednak ma on sens. Jak się bowiem przekonamy, notacja Θ ma charakter podobny do
(względnej) równości obu funkcji - a przynajmniej takiej równości, na którą możemy
sobie pozwolić w analizie algorytmów.

Korzystając z podanej definicji możnaby uzasadnić, że znaleziona przez nas funkcja T(n)
= n2 + 5n rzeczywiście jest rzędu Θ(n2). Aby uczynić, należy po prostu znaleźć trzy
dodatnie stałe c1, c2, n0 tak, aby spełniona była nierówność:

2 2 2
1 25c n n n c n≤ + ≤

Nie jest to bardzo skomplikowane - wystarczy podzielić wszystko przez n2 i rozwiązać
obie nierówności przy założeniu, że n ≥ 0. W typowych przypadkach nie musimy jednak
tego robić. W zupełności zadowolić się można nieformalną metodą z poprzedniej sekcji:
trzeba po prostu brać pod uwagę tylko najbardziej znaczacy składnik i pominąć
wszelkie współczynniki stałe.

Łatwo można więc zrozumieć, dlaczego każdy wielomian stopnia d jest funkcją rzędu
Θ(nd) - po prostu bierzemy pod uwagę tylko jego najwyższą potęgę i nie przejmujemy się
stałymi współczynnikami. Szczególnym przypadkiem jest d = 0; wtedy mamy do
czynienia ze stałą - funkcją rzędu Θ(n0), czyli po prostu Θ(1). Taki zapis oznacza więc, że
mamy na myśli dowolną liczbę, która jest stała i niezależna od parametru funkcji2.

2 Trochę nieścisłe jst używanie Θ(1), bo wtedy faktycznie nie wiemy, co jest tym parametrem funkcji, od
którego Θ(1) jest niezależne. Generalnie jednak użycie tego symbolu w równaniach nie powoduje
niejednoznaczności, jeśli wiemy, co w takim równaniu jest zmienną niezależną.

Ograniczenie górne (notacja Ο)
Druga z notacji jest jakby „górną połową” pierwszej. Napisanie Ο(f(n)), co czytamy jako
‘wielkie Ο od f o n’3, oznacza mianowicie zbiór:

()() ()
() ()

0

0

: istnieją liczby , 0, takie że

0 dla wszystkich

g n c n
O f n

g n cf n n n

⎧ ⎫>⎪ ⎪= ⎨ ⎬
≤ ≤ ≥⎪ ⎪⎩ ⎭

Wszystkie należące do niego funkcje mają więc tę własność, że f(n) ogranicza je od góry.
Jeżeli zatem g(n) należy do Ο(f(n)), to przy dążeniu n do nieskończoności wartości g(n)
są mniejsze od f(n) co najmniej o stały czynnik (a nawet bardziej). Znowuż najlepiej
widać to na wykresie. Mamy mianowicie już tylko jedno „ostrze nożyczek” - to górne,
reprezentujące f(n). Od pewnego miejsca (n0) wykres obrazujący cg(n) cały czas
znajduje się więc pod nim. Odpowiada to temu, iż g(n) jest asymptotycznie mniejsze
od f(n):

Wykres 2. Graficzna interpretacja faktu, że g(n) należy do Ο(f(n))

Można też powiedzieć, że f(n) jest asymptotycznym ograniczeniem górnym dla g(n).
Mając informacje o funkcji wyrażone w postaci notacji Ο wiemy zatem tylko tyle (albo aż
tyle), że funkcja na pewno nie przekroczy tej podanej wraz z zapisem Ο(f(n)) - choćby
argument n był maksymalnie duży.

Przekładając to na analizę algorytmów możemy powiedzieć, że znając asymptotyczne
ograniczenie górne wiemy, że dany algorytm nie będzie się wykonywał dłużej. Jeśli zaś
informacja ta dotyczy przypadku pesymistycznego, mamy całkowitą pewność, że jest to
maksymalny czas działania procedury w zależności od rozmiaru danych.
Jak się wkrótce przekonamy, wyznaczenie takiego zgrubnego oszacowania dla algorytmu
jest zwykle całkiem proste. W kolejnym podrozdziale zajmiemy się kilkoma technikami
dokonywania tego.

3 Symbol Ο nie jest tutaj zwykłą, wielką literą O, lecz grecką literą omikron. Naturalnie, jeśli nie dysponujemy
akurat czcionką z greckim alfabetem, posłużenie się łacińskim O nie jest żadnym kardynalnym błędem.

Ograniczenie dolne (notacja Ω)
Jak nietrudno się domyślić, ostatnia notacja jest „dolną połową” pierwszej. Zapis Ω(f(n))
czytamy ‘wielkie omega od f od n’, a symbolizuje on ostatni już dzisiaj zbiór funkcji:

()() ()
() ()

0

0

: istnieją liczby , 0, takie że

0 dla wszystkich

g n c n
f n

cf n g n n n

⎧ ⎫>⎪ ⎪Ω = ⎨ ⎬
≤ ≤ ≥⎪ ⎪⎩ ⎭

Podobnie jak w przypadku Ο(f(n)), funkcje należące do Ω(f(n)) są ograniczone tylko z
jednej strony. Tutaj jest to limit dolny, a zatem jeśli g(n) należy do Ω(f(n)), to znaczy to,
że jest ona asymptotycznie większa od f(n). Od pewnego miejsca n0 wykres cg(n) leży
więc w całości ponad wykresem f(n):

Wykres 3. Graficzna interpretacja faktu, iż g(n) należy do Ω(f(n))

Łatwo zgadnąć, że mówimy wtedy, iż f(n) jest asymptotycznym ograniczeniem
dolnym dla g(n). Jeżeli więc f(n) wyraża czas wykonania algorytmu w przypadku
optymistycznym, to wiemy na pewno, że lepszych wyników ten algorytm już nie osiągnie
- nawet dla najbardziej korzystnych danych.

Obie połówki notacji Θ możemy teraz połączyć w całość. Mianowicie:

Jeżeli g(n) należy zarówno do Ω(f(n)), jak i do Ο(f(n)), to z pewnością należy także do
Θ(f(n)).

Inaczej mówiąc, wyznaczenie identycznych asymptotycznych ograniczeń z góry i z dołu
dla danej funkcji pozwala nam na automatyczne ustalenie jej oszacowania. Często w ten
właśnie sposób można określić dokładnie klasę algorytmu.

Nieco zamieszania
Jako konstrukcje matematyczne notacje asymptotyczne muszą być ścisłe. Życie
wprowadza aczkolwiek nieco bałaganu w ten wyidealizowany obraz. Stosowanie tych
notacji wymaga więc jeszcze dwóch uwag na ten temat.

Notacja Θ a Ο

Jest całkiem prawdopodobne, że z symbolem Ο(f(n)) zetknąłeś się już wcześniej. Jeśli
tak, to zapewne był on używany w niezupełnie poprawnym kontekście. Ograniczenie
górne jest bowiem często stosowane zamiast dokładnego oszacowania, czyli Θ(f(n)).
Takie określanie klasy algorytmu jest mało precyzyjne. Weźmy na przykład nasze
sortowanie przez wstawianie: ponieważ możemy powiedzieć o nim, że jest klasy Ο(n2), to
z pełną powagą można również twierdzić, że należy ono także do klasy Ο(n5) czy nawet
O(2n)!

Praktyczny sens takich stwierdzeń jest żaden; porównać to można to „precyzyjnego”
określania liczby 5 jako „z pewnością mniejszej od miliona”, podczas gdy faktycznie nie
osiąga nie ona nawet dziesiątki. Oczywiście, nikt poważny nie stosuje notacji Ο w ten
sposób, bo to prowadziłoby jedynie do nieporozumień. Podkreślam jednak, że jest to
całkiem poprawne, acz nonsensowne.
Dlatego też we wiarygodnych źródłach wiedzy na temat algorytmów bacznie przestrzega
się pola zastosowań trzech notacji asymptotycznych. W dalszej części tego rozdziału
również będę konsekwentnie rozróżniał zapis Θ(f(n)) i Ο(f(n)), aby nie doprowadzać do
błędów.

Równość?…

Jak podkreślałem przy definicjach, wszystkie trzy symbole asymptotyczne są zbiorami -
dokładniej mówiąc, zbiorami funkcji. Właściwie więc oznaczenie przynależności do
jednego z tych zbiorów powinno się zapisywać np. tak:

() ()()g n f n∈Θ

Oznacza to, że funkcja g(n) należy do zbioru Θ(f(n)) albo że po prostu jest ona tego
samego rzędu co f(n). Bardzo często spotyka się jednak zapis w formie równości:

() ()()g n f n= Θ

Pozornie jest on niepoprawny, bo występuje tu swoista „niezgodność typów”: po lewej
stronie mamy pojedynczą funkcję, a po prawej cały zbiór. Możliwość występowania
notacji asymptotycznych w takich równaniach jest jednak bardzo cenna; pozwala ona
mianowicie na ukrycie nieistotnych szczegółów. Każde wystąpienie symbolu Θ, Ο lub Ω w
równaniu trzeba po prostu interpretować jako odpowiednią funkcję należącą do
podanego zbioru. Odpowiednią - to znaczy wybraną tak, aby cała równość była spełniona.

Oczywiście nie zawsze dokładnie wiadomo, o jaką funkcję chodzi. W takich jednak
przypadkach jest to zwykle nieistotne. Przykładowo, podanie złożoności algorytmu jako:

() ()25T n n n= +Θ

znaczy dokładnie tyle, że oprócz składnika 5n2 występuje jeszcze jakiś bliżej nieokreślony
składnik liniowy. Nie ma on jednakże znaczenia, bowiem funkcja kwadratowa dominuje
tutaj zdecydowanie. T(n) jest więc rzedu Θ(n2).

Własności notacji asymptotycznych
Podanie kilku definicji, jakkolwiek niezbędne, nie daje nam wszystkiego. Pomówmy więc
sobie o kilku ważnych cechach wprowadzonych właśnie notacji asymptotycznych.

Działania na anonimowych funkcjach
Jak zaprezentowałem przed chwilą, notacje te mogą występować w zwyczajnych
równaniach. Reprezentuje one wtedy anonimowe, bliżej nieokreślone funkcje, które
spełniają warunki podane w definicji danej notacji. Przy użyciu anonimowych funkcji
często upraszcza się wyrażanie i wyznaczanie złożoności algorytmów.

Aby jednak posługiwać się tymi przydatnymi tworami, powinniśmy poznać ich kilka cech
praktycznych. Oto lista paru własności notacji asymptotycznych; występuje na niej
wyłącznie notacja Θ, ale wszystkie właśności z powodzeniem odnosza się także do dwóch
pozostałych symboli. Spójrzmy więc na to zestawienie:

 ()() ()()c f n f n⋅Θ ≡ Θ , gdzie c jest stałą.

Wyjaśnienie tej zaskakującej właściwości pochłaniania czynników stałych jest w
gruncie rzeczy proste. Funkcje należące do Θ(f(n)) różnią się od siebie odmienne
właśnie dlatego, że ich wartości różnią się o stały czynnik. Czynnik ten może być
dowolny, zatem pomnożenie go przez następny stałą w niczym „nie umniejsza
jego dowolności”. Wynikowy zbiór funkcji jest więc nadal taki sam.

 ()() ()() ()()f n f n f nΘ +Θ ≡ Θ

Ta własność jest również nietypowa, bo zupełnie nie przystaje do znanych nam
zasad arytmetyki na liczbach. Można ją jednak wyjaśnić, odwołując się do
poprzedniej cechy. Θ(f(n)) + Θ(f(n)) to inaczej 2Θ(f(n)), a ponieważ notacje
asymptotyczne pochłaniają czynniki stałe, ostatecznie suma jest równa Θ(f(n)).
Identycznie jest dla każdej innej, skończonej liczby składników.

 ()()() ()()f n f nΘ Θ ≡ Θ

Jak wspominałem na początku, wystąpienie notacji asymptotycznej należy
traktować jako anonimową funkcję. Wewnętrzne Θ(f(n)) reprezentuje więc pewną
funkcję; „potraktowanie” jej po raz drugi symbolem Θ daje nam nadal to samo.

 ()() ()() () ()()f n g n f n g nΘ ⋅Θ ≡ Θ ⋅

Swoistą rozdzielność względem mnożenia można wytłumaczyć faktem, że notacja
asymptotyczna ukrywa w sobie zawsze pewną stałą. Pomnożenie ich przez siebie
także daje stałą o identycznym znaczeniu, wobec czego zachodzi powyższa
własność.

Oczywiście we wszystkich przypadkach możnaby podać formalne dowody tych i jeszcze
kilku innych własności, ale to raczej mija się z celem -w końcu nie jest to podręcznik
algebry. Najważniejsze jest, aby móc stosować powyższe cechy notacji w praktyce. W
dalszej części rozdziału będziemy się do nich często odwoływać.

Porównywanie funkcji
Dla rozluźnienia po tej pokaźnej dawce formalnej matematyki czas na porcję bardziej
intuicyjnego podejścia. Okazuje się, że notacje asymptotyczne wprowadzają coś w
rodzaju kryteriów „porównywania funkcji”. Relacje te działają podobnie do porównań
dwóch liczb rzeczywistych. Tę paralelę ilustruje poniższa tabelka:

relacja między funkcjami „odpowiednik” liczbowy

() ()()g n O f n= f g≥

() ()()g n f n= Θ f g=

() ()()g n f n= Ω f g≤

Tabela 1. Analogia między notacjami asymptotycznymi a relacjami między liczbami rzeczywistymi

Istnieją też notacje „odpowiadające” niewystępującym to porównaniom f > g i f < g. Są
one zapisywane jako g(n) = ο(f(n)) oraz g(n) = ω(f(n)). Ponieważ używa się ich raczej
rzadko, nie wprowadzam ich definicji. Zainteresowani mogą rzecz jasna sięgnąć do
bardziej fachowej literatury, wymienionej na początku tej sekcji.

Analogia ta ma swoje matematyczne uzasadnienie we własnościach notacji
asymptotycznych, jak zwrotność czy przechodniość. Myślę, że nie ma sensu wymieniać
ich wszystkich, gdyż o wiele lepiej będzie, jeśli zapamiętasz takie właśnie intuicyjne
odwołanie do zwykłych liczb. Gdy tak uczynisz, posługiwanie się tymi notacjami będzie o
wiele łatwiejsze.

Uwagi na temat złożoności
Gdy wiemy już, czym jest złożoność obliczeniowa oraz znamy sposoby jej wyrażania,
zastanówmy się, co ona właściwie oznacza. W tej sekcji porównamy sobie typowe
przykłady klas złożoności algorytmów oraz najbardziej znane rozwiązania, które mają
takie właśnie złożoności czasowe. Myślę, że pozwoli to uświadomić sobie, że
wprowadzone wcześniej pojęcia nie są jakimś abstrakcyjnym pomysłem natury wyłącznie
matematycznej.

Porównanie różnych typów złożoności obliczeniowej
W algorytmice przewija się głównie kilka funkcji, które asymptotycznie określają
złożoność obliczeniową wielu algorytmów. Do tych najczęściej spotykanych funkcji
należą:

 ()1Θ , gdy czas wykonania algorytmu jest stały i niezależny od rozmiaru danych

wejściowych (złożoność stała)
 ()log nΘ , kiedy czas ten rośnie logarytmiczne wraz ze wzrostem wielkości danych

(złożoność logarytmiczna). Logarytm jest niemal zawsze o podstawie 2 (w
przypadku notacji asymptotycznych nie ma to aczkolwiek znaczenia, bowiem
podstawa logarytmu może być zmieniona poprzez pomnożenie przez czynnik
stały)

 ()nΘ - czas działania jest proporcjonalny do rozmiaru danych wejściowych

(złożoność liniowa)

 ()logn nΘ - złożoność jest iloczynem funkcji liniowej i logarytmicznej

 ()2nΘ - liczba instrukcji algorytmu rośnie proporcjonalnie do kwadratu rozmiaru

danych wejściowych (złożoność kwadratowa)

 ()2nΘ - czas wykonania rośnie wykładniczo względem rozmiaru danych

(złożoność wykładnicza)

 ()!nΘ - złożoność jest wyrażona za pomocą silnii (iloczynu wszystkich liczb

naturalnych od 1 do n)

Złożoności te zostały uszeregowane według wzrastającego czasu wykonania. Aby
uświadomić sobie, jak bardzo klasy te różnią się od siebie, popatrzmy na poniższą
tabelkę obrazującą czasy działania algorytmów o różnych złożonościach. Przyjęto w niej,
że pojedyncza instrukcja wykonuje się jedną nanosekundę, czyli że algorytm jest
wykonywany na komputerze działającym z częstotliwością 1 gigaherca:

n

T(n)
10 20 50 100 200 1000

log n 3,32 ns 4,23 ns 5,64 ns 6,64 ns 7,64 ns 9,97 ns

n 10 ns 20 ns 50 ns 100 ns 200 ns 1000 μs
n log n 33,21 ns 86,44 ns 282,2 ns 664,4 ns 1,53 μs 9,97 μs

n2 100 ns 400 ns 2,5 μs 10 μs 40 μs 1 ms
2n 1 μs 1,05 ms 13 dni 4·1013 lat 5,1·1043 lat 3,4·10284 lat
n! 3,6 ms 77 lat 9,6·1044 lat 3·10141 lat 2,5·10358 lat 1.27·102551 lat

Tabela 2. Przykładowe czasy działania algorytmów o różnych złożonościach dla wybranych
rozmiarów danych

Różnice pomiędzy poszczególnymi wyrazami tabeli są, jak widać, gigantyczne. O ile w
przypadku czterech pierwszych wierszy wzrost czasu działania algorytmu jest dla
człowieka właściwie niezauważalny, o tyle dwie ostatnie funkcje złożoności osiągają wręcz
niewyobrażalne wartości.
Dość powiedzieć, że wykonanie algorytmu o złożoności 2n dla danych o rozmiarze 100
zabierze czas ponadtysiąckrotnie dłuższy od szacowanego wieku Wszechświata! Dla n
równego 200 jest z kolei bardzo prawdopodobne, że protony składające się na nasz
komputer rozpadną się, zanim zdołamy doczekać się wyniku4. Kolejne czasy dla
złożoności 2n, a zwłaszcza n!, są nie tylko kwintyliony razy większe niż nawet najbardziej
optymistyczne szacunki co do długości dalszego życia kosmosu, ale wręcz nie mają
żadnego wyobrażalnego przybliżenia.

Ten zdumiewający rozziew pomiędzy tymi dwoma typami złożoności spowodował, że
często mówi się o algorytmach działających w czasie (pod)wielomianowym oraz
ponadwielomianowym. W praktyce podział ten jest tożsamy z wyróżnieniem procedur
wykonalnych w rozsądnym czasie oraz takich, które z praktycznego punktu widzenia nie
zakończą się nigdy. Zdecydowana większość problemów może być na szczęście
rozwiązana w czasie wielomianowym lub lepszym. Niemniej istnieje cały szereg zadań,
dla których nie są znane tak efektywne rozwiązania; ponieważ wiele z nich ma pewną
ciekawą własność, wspomnimy sobie o nich w następnym paragrafie.

Przykłady algorytmów
Teraz masz już pewnie pojęcie, co tak naprawdę kryję się pod poszczególnymi typami
złożoności obliczeniowej. Prawdopodobnie jednak nadal zastanawiasz się, jak wielkości
odnoszą się do algorytmów faktycznie wykorzystywanych w programach. Spójrz więc na
poniższe zestawienie, w którym umieściłem wiele typowych przykładów dla różnych
złożoności obliczeniowych:

złożoność nazwa algorytmu znaczenie n uwagi

instrukcja
programu

wszystkie pojedyncze instrukcje
programów traktuje się tak,

jakby ich wykonanie zajmowało
stały czas ()1Θ

operacje na
stosach i kolejkach

—
stosy i kolejki to elementarne

struktury danych w
programowaniu

()1O
wyszukiwanie w

tablicy z
haszowaniem

—

haszowanie to specjalny sposób
indeksowania elementów
tablicy przy pomocy ich

wartości

bisekcja
liczba

przeszukiwanych
danych

algorytm bisekcji służy do
wyszukiwania określonego

elementu w posortowanym
zestawie danych

()log nΘ

wyszukiwanie w liczba węzłów w drzewo wyszukiwań binarnych

4 Według fizyków czas życia protonu to 1035 lat.

złożoność nazwa algorytmu znaczenie n uwagi
drzewie BST drzewie (BST) jest specjalną strukturą

danych, nastawioną na szybkie
wstawianie, usuwanie i

wyszukiwanie elementów

()logO n algorytm Euklidesa
jedna z podanych

liczb

słynny algorytm służy do
obliczania największego

wspólnego dzielnika dwóch
podanych liczb całkowitych

przeszukiwanie
liniowe

liczba
przeszukiwanych

elementów

wyszukiwanie liniowe to po
prostu przeglądnięcie całego
ciągu nieposortowanych

danych w poszukiwaniu
określonego elementu

sortowanie przez
zliczanie i
pozycyjne

liczba sortowanych
elementów i/lub ich
możliwych wartości

ten rodzaj sortowania nie
opiera się na porównywaniu

elementów, więc nie jest
uniwersalny

wyszukiwanie
wzorca metodą

KMP

długość
przeszukiwanego

tekstu

algorytm Knutha-Morrisa-Pratta
jest sposobem na

przeszukiwanie tekstów

()nΘ

operacje na
wielomianach (z

wyjątkiem
mnożenia i
dzielenia)

stopień wielomianu

dodawanie, odejmowanie,
obliczanie, różniczkowanie i

całkowanie wielomianów można
wykonywać w czasie liniowym,

jeżeli przechowujemy ich
współczynniki

wyznaczanie
statystyk

pozycyjnych
liczba elementów

statystyka pozycyjna to
„miejsce” danego elementu w
posortowanym ciągu - tutaj
ustalane bez wykonywania

sortowania
()O n

przeszukiwanie
grafu

ilość wierzchołków
i/lub krawędzi grafu

przeszukiwanie to
przechodzenie po wszystkich

wierzchołkach grafu

algorytm
sortowania oparty
na porównaniach

liczba sortowanych
elementów

żaden algorytm sortowania,
które opiera się na

porównywaniu elementów, nie
może działać lepiej ()logn nΩ

znajdowanie
najmniejszej

otoczki wypukłej
liczba punktów

otoczka wypukła to wielokąt,
otaczający całkowicie podany

zbiór punktów
sortowanie przez

scalanie
(mergesort) lub

kopcowanie
(heapsort)

liczba sortowanych
elementów

w praktyce lepsze bywa
sortowanie szybkie (quicksort),

choć jego pesymistyczna

złożoność to ()2nΘ
()logn nΘ

przemyślne
mnożenie

wielomianów
stopień wielomianu

algorytm tego mnożenia jest
dość skomplikowany, bo

wykorzystuje szybką
transformatę Fouriera

(ang. Fast Fourier Transform)

()logO n n
znajdowanie

najmniej odległych
punktów

liczba wszystkich
punktów

większość czasu tego algorytmu
zajmuje posortowanie punktów

()2nΘ
sortowanie przez

wstawianie
liczba sortowanych

elementów
sprawdzają się doskonale dla

niewielu elementów

złożoność nazwa algorytmu znaczenie n uwagi
(insertion sort) i

bąbelkowe (bubble
sort)

(kikudziesięciu, kilkuset)

proste mnożenie
wielomianów

stopień wielomianu
odpowiednie dla wielomianów o

niewielkich stopniach
znalezienie

najkrótszej ścieżki
w grafie

liczba wierzchołków
i/lub krawędzi grafu

krawędzi w grafie mogą być z
wagami lub bez wag

()2O n
naiwny algorytm

wyszukiwania
wzorca

średnia długości
wzorca i tekstu

naiwny algorytm przegląda po
prostu tekst znak po znaku

()3nΘ naturalny algorytm
mnożenia macierzy

rozmiar macierzy
kwadratowej

wystarczający w ogromnej
większości przypadków

()2nΩ

„naiwne” szukanie
zmiennych

spełniających
formułę logiczną

liczba zmiennych w
formule

sprawdzanie spełnialności
formuły logicznej jest użyteczne

np. w optymalizacjach
czynionych przez kompilatory

„naiwne”
rozstrzyganie o
istnieniu cyklu

Hamiltona

liczba wierzchołków
grafu

cykl Hamiltona to sposób na
przejście wszystkich
wierzchołków grafu,

odwiedziwszy każdy dokładnie
jeden raz ()!nΩ

„naiwne”
rozwiązanie
problemu

komiwojażera

liczba miast do
odwiedzenia

problem komiwojażera polega
na wyznaczeniu takiej trasy
przejazdu między miastami,

która jest nie dłuższa od
podanej

Tabela 3. Przykłady algorytmów o różnych złożonościach obliczeniowych

Można zauważyć, że wiele pozornie trudnych problemów daje się rozwiązać w
stosunkowo dobrym czasie przy pomocy odpowiedniego algorytmu. Z drugiej strony,
sporo zdawałoby się prostych zadań jest obecnie wykonalna jedynie w czasie
ponadwielomianowym.

Powyższa tabelka ilustruje też, jak ogromna jest liczba różnych zastosowań dla
algorytmów. Z oczywistych względów nie ma tu miejsca na szczegółowe omawianie
każdego z tych rozwiązań oraz ich zastosowań. Jeżeli cię to interesuje, powinieneś
sięgnąć do literatury poświęconej wyłącznie tym zagadnieniom.

Słówko o NP-zupełności
Podział problemów na rozwiązywalne w czasie wielomianym i ponadwielomianowym
odpowiada wyróżnieniu wśród nich tych „łatwych” i „trudnych”. Możnaby oczywiście
uważać problem o złożoności Θ(n100) za w praktyce trudny, ale prawdopodobnie nie
istnieją żadne algorytmy o podobnej charakterystyce. Nawet gdyby były one
rozwiązaniami jakichś ważnych problemów, znaleziono by dla nich efektywniejsze
odpowiedniki. Jak bowiem wynika z kilkudziesięcioletniego istnienia nauki zwanej
algorytmiką, obniżanie złożoności wielomianowej jest nieporównywalnie łatwiejsze od
pozbycia się zależności np. wykładniczej.
Niestety, dla wielu problemów nie znamy efektywnych algorytmów, działających w czasie
wielomianowym. Spora część z tych problemów ma przy tym wyjątkowo intrygujące
właściwości. Dodatkowo komplikują one odpowiedź na pytanie, czy owe efektywne
algorytmy istnieją. Myślę, że warto o tym powiedzieć trochę szerzej.

Zacznijmy od zaprezentowania powszechnie stosowanego podziału problemów
algorytmicznych na tzw. klasy. Otóż wyróżnia się generalnie dwie takie wielkie klasy:

 klasa P zawiera te problemy, które możemy rozstrzygnąć (rozwiązać) w czasie
co najwyżej wielomianowym. Zdecydowana większość zagadnień należy do tej
właśnie klasy - jak choćby wszystkie zaprezentowane w tabeli z poprzedniego
paragrafu, oprócz (najprawdopodobniej) trzech ostatnich

 klasa NP obejmuje te problemy, których rozwiązania moglibyśmy sprawdzić w
czasie wielomianowym. Prościej mówiąc, jeśli mielibyśmy dane opisujące
konkretną sytuację problemową oraz „podarowane” skądś rozwiązanie, to
moglibyśmy w efektywny sposób sprawdzić, czy to rozwiązanie jest faktycznie
poprawne. Do klasy NP należą wszystkie problemy ze wspomnianej tabeli

Może to być zaskakujące, ale właściwie jedyne, co wiemy na pewno na temat relacji
pomiędzy tymi dwoma klasami, jest to, iż P ⊂ NP. Nietrudno zresztą uzasadnić, dlaczego:
jeśli bowiem potrafimy rozwiązać jakiś problem w czasie wielomianowym, tym bardziej
potrafimy go sprawdzić w takim czasie.
Od ponad trzydziestu lat otwarta pozostaje natomiast kwestia równości lub nierówności
obu tych klas. Jeżeli P = NP, wówczas niemal każdy praktyczny problem byłby do
rozwiązania w czasie wielomianowym; prawdopodobnie więc całkiem szybko znajdywano
by dlań efektywne algorytmy. Większość informatyków sądzi jednak, że rzeczywistość nie
jest taka różowa, a P ≠ NP. Jest ku temu jedna poważna przesłanka…

Jest nią istnienie podklasy problemów nazywanych NP-zupełnymi (w skrócie NPC, NPC
⊂ NP). Ich wyjątkowość zawiera się w dwóch cechach.
Po pierwsze, są to najtrudniejsze problemy w obrębie klasy NP. Oznacza to, że każdy
problem NP-zupełny jest przynajmniej tak trudny, jak dowolny inny problem z klasy NP.
Druga właściwość jest znacznie bardziej intrygująca. Otóż udowodniono, że każdy
problem z klasy NP może zostać zredukowany w czasie wielomianowym w dowolny
problem NP-zupełny.
Praktyczna konsekwencja tych faktów jest już być może znana tym, którzy umieją czytać
uważnie między wierszami. Wynika z nich mianowicie to, iż kategoryczne orzeczenie w
sprawie jednego jedynego problemu NP-zupełnego będzie rzutować na całą olbrzymią
klasę NP. Jeżeli znajdziemy wielomianowy algorytm dla jakiegoś problemu NPC, wówczas
będzie to oznaczało, że takie algorytmy istnieją dla każdego problemu z klasy NP;
okaże się więc, że P = NP. Analogicznie, udowodnienie że jakiś problem NP-zupełny nie
posiada rozwiązania wielomianowego będzie sygnałem, że P ≠ NP.

Jak już mówiłem, obecnie większość informatyków skłania się ku tezie, że żaden
efektywny algorytm dla problemu NP-zupełnego nie istnieje. Argumentują to faktem, iż
poszukiwania takich algorytmów były przeprowadzane przez wiele lat na całym świecie i
zawsze kończyły się niepowodzeniem. Podobnie jednak było z próbami udowodnienia, że
takie algorytmy nie istnieją. W sumie więc to powszechne przekonanie o niemożliwości
istnienia wielomianowych rozwiązań dla problemów NPC opiera się raczej na intuicji niż
racjonalnych podstawach. Jak zatem rzekł Eistein, zawsze może się znaleźć jakiś „nieuk”,
który nie wie, że to jest niemożliwe, i… zrobić to.

Jeśli zachęca cię perspektywa rozstrzygnięcia trzydziestoletniego sporu5, zapewne
chciałbyś chociaż zobaczyć przykłady problemów NP-zupełnych. Jest ich całe mnóstwo;
przykładowe trzy zajmują ostatnie wiersza tabeli złożoności. Spośród nich szczególnie
interesujący jest problem komiwojażera - z oczywistych względów praktycznych.

5 A przy okazji zgarnięcia okrągłego miliona dolarów. Rozstrzygnięcie związku między P a NP jest bowiem
jednym z siedmiu tzw. Milienijnych Problemów, ogłoszonych przez Clay Mathematics Institute w 2000 roku. Na
stronie internetowej Instytutu możesz poczytać o szczegółach problemu „P vs NP”.

W poszukiwaniu złożoności obliczeniowej
W drugim podrozdziale zajmiemy się znajdowaniem złożoności obliczeniowej algorytmów
na konkretnych przykładach. Zobaczymy więc, jak poszczególne elementy algorytmów
wpływają na ich efektywność oraz jak należy łączyć te wyniki w całość.

Podstawowe zasady
Zaczniemy właśnie od tego łączenia. Musimy bowiem poznać dwie zasady, które
umożliwią nam określenie złożoności całego algorytmu w sytuacji, gdy znamy te dane
jego poszczególnych „kawałków”.

Prawo dodawania
Najbardziej typową sytuacją w programowaniu jest występowanie po sobie kilku
instrukcji. W ogólnym przypadku chodzi nam o fragmenty kodu, z których każdy ma
swoją określoną złożoność. Oto przykład:

int nZmienna = 5; // Θ(1)
nZmienna += 4; // Θ(1)

Pytanie naturalnie brzmi: Jaką złożoność ma podany fragment jako całość? Nic
prostszego - wystarczy dodać złożoności cząstkowe:

() () () ()1 1 2 1 1Θ +Θ = Θ = Θ

Reguły dodawania notacji asymptotycznych mogą nadal wydawać ci się dziwne, ale
przecież powyższy wynik można łatwo uzasadnić intuicyjnie. Pojedyncza instrukcja
wykonuje się w czasie stałym, zatem stała liczba takich instrukcji także będzie
wykonywać się w czasie stałym.
Podobnie byłoby, gdyby instrukcja nie była elementarnym krokiem, lecz np. wywołaniem
funkcji o jakiejś złożoności:

FunkcjaA(); // Θ(n)
FunkcjaB(); // Θ(n)

Na mocy reguł dodawania złożoność powyższego kawałka kodu jest więc rzędu Θ(n).

Ciekawiej sprawa wygląda, gdy instrukcje mają różne złożoności - jak na przykład tutaj:

FunkcjaC(); // Θ(n)
FunkcjaD(); // Θ(n2)

Nadal jednak możemy tutaj korzystać z zasad dodawania notacji - jeżeli oczywiście
będziemy pamiętać o kilku innych własnościach. Zobaczmy więc:

() () () ()2 2 2n n n n nΘ +Θ = Θ + = Θ

Najprościej sformułować tutaj zasadę, iż „silniejszy wygrywa”. Największa złożoność w
danym fragmencie kodu dominuje w nim - podobnie jak największy składnik funkcji
decyduje o jej asymptotycznej złożoności (jak w równaniu powyżej). Możemy więc
mówić, iż:

Algorytm ma taką złożoność, jak jego najbardziej czasochłonny fragment.

W dalszym ciągu podrozdziału zobaczysz wręcz, że wyznaczenie złożoności całego
algorytmu bardzo często będzie ograniczało się jedynie do określenia jej dla najbardziej
czasochłonnego elementu. Złożoność pozostałych fragmentów kodu będzie miała bowiem
nikłe znaczenie.

Prawo mnożenia
Druga zasada jest stosowana w nieco innej sytuacji. Przypuśćmy, że znamy złożoność
jakiegoś fragmentu kodu i wiemy też, jak często (w funkcji rozmiaru danych) będzie się
on wykonywał. Takie przypadku występują w pętlach oraz przy wykorzystaniu rekurencji.
Oto przykład:

// (wiemy, że poniższa instrukcja wykonuje się Θ(n) razy)
FunkcjaE(); // Θ(log n)

Mamy tu więc funkcję o złożoności Θ(logn), o której wiemy, że wykona się Θ(n) razy (bo
np. jej wywołanie jest wewnątrz pętli wykonującej n cykli). Jaka będzie złożoność całej
takiej sekwencji?… Jak wskazuje na to nazwa paragrafu, obie wielkości należy
pomnożyć:

() () ()log logn n n nΘ ⋅Θ = Θ

Jest to zresztą zgodne z intuicją - to samo zrobilibyśmy, działając na liczbach. Pamiętając
rzecz jasna o wprowadzonych w poprzednim podrozdziale zasadach mnożenia notacji
asymptotycznych, otrzymujemy ostateczenie wynik Θ(nlogn).

Zasada mnożenia jest szczególnie ważna i często stosowana w przypadku pętli.
Generalnie jednak można ją wykorzystywać w każdym przypadku, gdy instrukcja jest w
algorytmie wykonywana określoną ilość razy.

Pętle
Pętle są jednym z głównych elementów konstrukcyjnych dla procedur. Ogromna
większość algorytmów opiera się na jednej lub kilku pętlach - występujących po sobie
i/lub zagnieżdżonych. Należałoby zatem wiedzieć, jak w prosty sposób określić złożoność
takich konstrukcji. Na całe szczęście taki prosty sposób istnieje.

Ilość cykli w pętli
Pierwszą rzeczą, jaką trzeba zrobić, jest określenie ilości cykli pętli jako funkcji rozmiaru
danych dla algorytmu. A mówiąc prościej: należy ustalić, ile razy dana pętla się wykonuje
i wyrazić tę wartość w zależności od n. Często jest to zadaniem bardzo prostym;
przykładowo, jeśli w naszym algorytmie rozmiarem danych jest liczba elementów tablicy,
to naturalne jest, iż pętla:

for (unsigned i = 0; i < aTablica.length(); ++i)
 // ...

wykona się właśnie n razy, bo tyle jest elementów tablicy. Zwróćmy też uwagę, że
dokładna ilość cykli nie jest potrzebna, bo, jak wiemy, interesuje nas tylko wielkość
asymptotyczna. Nie ma więc znaczenie, czy licznik inicjujemy na 0, 1 czy 2 - pętla i tak
wykona się Ο(n) razy. Prawdopodobnie ma ona zatem złożoność liniową (co jeszcze
sprawdzimy w przyszłym paragrafie).

Niekiedy nie można dokładnie określić liczby cykli. Tak było choćby w przykładzie z
algorytmem sortowania przez wstawianie. Wiemy jednak, co trzeba zrobić w takiej
sytuacji. Musimy wykazać się pesymistycznym podejściem do życia i założyć, że liczba
obrotów pętli będzie największa. W większości przypadków będzie to (asymptotyczną)
prawdą, lecz uzyskane w ten sposób ograniczenie Ο(n) jest zawsze prawdziwe.

Złożoność
Wiedząc to, jesteśmy już tylko o krok od określenia złożoności dla dowolnych pętli - a
przynajmniej tych, których liczba cykli jest proporcjonalna do n. W tym celu musimy
jeszcze wiedzieć, ile wysiłku zajmuje wykonanie pojedynczego cyklu; innymi słowy: co
kryje się pod wykomentowanym wielokropkiem w przykładzie z poprzedniego
paragrafu?…
W ogólnym przypadku tego nie wiemy, więc złożoność jednego cyklu oznaczymy sobie po
prostu jako Ο(f(n)). Jeżeli natomiast tych cykli jest w sumie Ο(n) (co ustaliśmy kilka
chwil temu), to na mocy prawa mnożenia złożoność całej pętli wynosi:

() ()() ()()O n O f n O n f n⋅ = ⋅

Taki ogólny rezultat jest pożyteczny, ale warto przyjrzeć się też bardziej
wyspecjalizowanym.

Jeśli f(n) = Ο(1), to jeden cykl pętli zajmuje czas stały. To bardzo typowa sytuacja -
występuje chociażby w algorytmie wyszukiwania liniowego, gdy po kolei przeglądamy
wszystkie elementy tablicy. Naturalnie, złożoność pętli jest wtedy rzędu Ο(n).

Najbardziej interesujący jest jednak przypadek, gdy pętle są zagnieżdżone. Oto całkiem
typowy przykład:

for (unsigned i = 0; i < aTablica.length(); ++i)
 for (unsigned j = i; j < aTablica.length(); ++j)
 // ... (ale wiemy, że to Ο(1))

Idąc „od środka” możemy określić złożoność wewnętrznej pętli jako Ο(n): cykl o stałym
czasie jest bowiem wykonywany dla (w najgorszym przypadku) wszystkich elementów
tablicy wielkości n. Jednocześnie to Ο(n) jest czasem wykonania cyklu dla zewnętrznej
pętli; ona również wykonuje Ο(n) obrotów. W sumie więc mamy Ο(n) cykli po Ο(n) cykli
po Ο(1) instrukcji, co daje w rezultacie złożoność kwadratową:

() () () () ()21O n O n O O n n O n⋅ ⋅ = ⋅ =

Wreszcie, ogólnijmy wynik na przypadek dowolnego zagnieżdżenia pętli6:

for (/* ... */) // Ο(n)
 for (/* ... */) // Ο(n)
 for (/* ... */) // Ο(n)
 // ... // itd.
 // (pojedynczy cykl o złożoności Ο(1))

Gdy więc mamy więc mamy k poziomów zagnieżdżenia, to złożoność tego potworka
będzie wyrażała się mniej więcej tak:

6 Wszędzie używam pętli for, ale rzecz jasna wszystko dotyczy dowolnych pętli. Mam nadzieję, że było to
oczywiste od samego początku…

() () () () ()
1

czynników

1
k

k

i
k

O n O n O n O O n O n
=

⎛ ⎞
⋅ ⋅ ⋅ ⋅ = =⎜ ⎟

⎝ ⎠
∏…����	���

I to jest w zasadzie najważniejszy wniosek z całej tej zabawy. Widząc (zagnieżdżoną)
pętlę będziesz mógł teraz szybko określić jej złożoność. I tak dla pojedynczej iteracji k =
1, więc klasą jest Ο(n); dla dwóch poziomów jest to Ο(n2), i tak dalej. Zapamiętajmy
więc, że:

k-krotnie zagnieżdżona pętla, której „najbardziej wewnętrzny” cykl wykonuje się w
czasie stałym, ma złożoność ograniczoną z góry przez Ο(nk).

Nie można oczywiście stosować tego prawa bezmyślnie do każdej pętli. Jeśli dana iteracja
nie wykonuje się w czasie proporcjonalnym do liczby elementów (choćby w przypadku
pesymistycznym), wówczas nie należy korzystać z tego twierdzenia. Takie przypadki są
aczkolwiek niezbyt częste.

Rekurencja
Oto drugie ważne narzędzie w rękach projektanta algorytmów. Tytułowa rekurencja
(ang, recurrency), bo o niej mowa, zwana jest też czasem rekursją albo nieco myląco -
wywołaniem zagnieżdżonym. Ogólnie rzecz ujmując jest to sytuacja, gdy dana procedura
w określonych okolicznościach wywołuje samą siebie. To zastrzeżenie jest ważne, aby
rekurencja była poprawna - to znaczy nie prowadziła do nieskończonego ciągu wywołań
funkcji. Sytuacja taka jest w pewnym stopniu podobna do nieskończonej pętli, tyle że
łatwiej wykrywalna. „Kręcąca” się w nieskończoność pętla wizualnie zawiesza program,
natomiast niewłaściwa rekurencja powoduje przepełnienie stosu (ang. stack overflow).
W zależności od stosowanego języka czy platformy sprzetowej powoduje to restart
systemu, awaryjne zakończenie programu albo wyjątek czasu wykonania.

Zdania co do przydatności rekurencji w konstruowaniu algorytmów są wysoce podzielone.
Można spotkać się z twierdzeniem, że jest to wręcz naturalna metoda ich tworzenia; z
drugiej strony wiele jej bardziej skomplikowanych zastosowań jest bardzo wymyślnych i
wcale nie oczywistych.
Ponieważ jednak mamy się skoncentrować na analizie efektywności algorytmów
rekurencyjnych, zostawmy kwestie jakkolwiek rozumianej „słuszności” czy „naturalności”
użycia rekurencji. W tej sekcji spotkasz więc zarówno wiele procedur, które ewidentnie
proszą się o odpowiedniki iteracyjne (będzie tak zwłaszcza na początku), jak i nieco
bardziej wyrafinowane przypadki - szczególnie związane z techniką zwaną „dziel i
zwyciężaj”. W każdym przypadku będziemy jednak zainteresowani głównie klasą danego
algorytmu i sposobem na jej proste i szybkie znalezienie.

Ogólne metody
Na początek zajmiemy się najprostszymi (i trochę sztucznymi) przykładami użycia
rekurencji. Dwie opisane tu techniki mogą jednakże pomóc w znalezieniu złożoności wielu
rzeczywistych algorytmów - a przynajmniej dostarczyć w tym zadaniu pewnych
wskazówek.

Rozpisywanie
Pisząc ten akapit miałem spore problemy z wyborem algorytmu, który stosowałby
rekurencję w odpowiednio prosty sposób, a jednocześnie nie narzucał od razu
równoważnego (i najczęściej lepszego) rozwiązania z użyciem pętli. Moje poszukiwania
nie zostały niestety uwieńczone sukcesem i mogę z dużą dozą prawdopodobieństwa
stwierdzić, że każdy możliwy tutaj przykład byłby równie naciągany. Celem przebrnięcia

przez ten akapit musisz więc to zignorować i potraktować po prostu jako rozgrzewkę
przed bardziej uzasadnionymi przypadkami rekurencji.

Najprostsza rekurencja

Przykładem będzie znowu przeszukiwanie jednowymiarowej tablicy. Jest to czynność tak
powszechna, znana i prosta, że z pewnością każdy początkujący programista
zaznajomiony z konstrukcją pętli zakodowałby z łatwością (albo zajrzał na początek tego
rozdziału). Ażeby więc wywrócić do góry nogami tę oczywistość, zaproponujemy
rozwiązanie rekurencyjne. Dla danej tablicy wygląda ono tak:

 weź jej pierwszy niesprawdzony element i porównaj z szukanym. Jeśli porównanie
się powiedzie (wartości są równe), zwróć indeks znalezionego elementu i zakończ
procedurę

 gdy natomiast test okaże się nietrafiony, zastosuj identyczną procedurę dla tablicy
złożonej ze wszystkich elementów tuż za tym przed chwilą sprawdzonym

 jeśli przeszukiwana tablica jest pusta, zwróć informację o nieznalezieniu elementu

Opis ten przekłada się prosto na kod C++, realizujący wyszukiwanie określonej liczby w
tablicy int[]:

int Szukaj(const int* pTablica, int nSzukany, unsigned uRozmiar,
unsigned uIndeks = 0)
{
 // jeśli dotarliśmy do końca tablicy, zwróć -1
 if (uIndeks >= uRozmiar) return -1;

 // sprawdź, czy pierwszy niesprawdzony element jest równy szukanemu
 if (pTablica[uIndeks] == nSzukany)
 return uIndeks;
 else
 // jeśli nie jest, wywołaj rekurencyjnie procedurę
 // dla tablicy pomniejszonej o tej element
 return Szukaj(pTablica, nSzukany, uRozmiar, uIndeks + 1);
}

Jeśli wcześniej nie miałes zbyt intensywnego kontaktu z rekurencją, może on wydawać
się nieco dezorientujący. Łatwo jednak sprawdzić, że działa on identycznie z wersją
iteracyjną. Widać nawet zupełnie oczywiste analogie, jak np. parametr uIndeks jako
odpowiednik licznika pętli. Można też zauważyć, że program ten jest pisany niejako „od
tyłu” w tym sensie, że najpierw umieszczamy kod sprawdzający przypadek specjalny -
brak elementu. Teraz jest to jednak warunek przerwania rekurencji (tzw. warunek
terminalny), który musi zostać sprawdzony, zanim zrobimy cokolwiek innego. W każdej
procedurze rekurencyjnej jest to część nieodzowna!

Analiza

Naturalne pytanie brzmi teraz: co z pesymistyczną złożonością powyższego algorytmu?
W przypadku wersji iteracyjnej można bardzo łatwo (stosując wskazówki z poprzedniej
sekcji o pętlach) wyznaczyć ją na Θ(n). A jak jest tutaj?… Aby się o tym przekonać,
zastosujemy „tradycyjne” rozwiązanie, czyli znajdziemy funkcję T(n).

Rekurencja w naszej procedurze polega na wywoływaniu jej dla coraz mniejszych tablic:
z każdym jej poziomem przeglądana tablica jest mniejsza o jeden element. Funkcja T(n)
będzie więc także rekurencyjna: jej wartość dla n będzie zależna od wartości n-1. W
jaki sposób?
Spójrzmy na ciało procedury. W każdym poziomie rekurencji, oprócz kolejnego
wywołania rekursywnego, dokonywane są jeszcze dwa porównania: sprawdzenie
rozmiaru tablicy i aktualnego elementu. Ponieważ wspomniane wywołanie pracuje już na
tablicy mniejszej o jeden element, funkcja T(n) będzie się więc na razie przedstawiać
następująco:

() ()1 2T n T n= − +

Nie możemy jednak zapomnieć o warunku terminalnym. U nas zachodzi on wtedy, gdy
algorytm, że podana mu tablica jest pusta. Rozważamy przypadek pesymistyczny (brak
szukanego elementu), zatem taka sytuacja z pewnością zajdzie. Odpowiada ona sytuacji,
gdy n = 0; wówczas procedura dokonuje jednego porównania i natychmiast kończy się.
Ostatecznie więc funkcja złożoności z uwzględnieniem koniecznego warunku wygląda w
ten sposób:

() ()
1 dla 0
-1 2 dla 1

n
T n

T n n
=⎧

= ⎨ + ≥⎩

Jest ona rekurencyjna, zatem nie pozwala na bezpośrednie określenie klasy algorytmu.
Musimy więc doprowadzić ją do sensowniejszej postaci.

Rozwiązanie rekurencji

Prostym sposobem, który niestety działa raczej rzadko, jest rozpisanie powyższej funkcji
od wartości n aż do zera:

() ()
() ()
() ()
() ()

() ()
()

1 2
1 2 2
2 3 2
3 4 2

1 0 2
0 1

T n T n
T n T n
T n T n
T n T n

T T
T

= − +
− = − +
− = − +
− = − +

= +
=

#

Dodając stronami te równania otrzymamy jedno bardzo rozbudowane, które na szczęście
będziemy mogli zaraz uprościć:

() () () ()() ()()1 0 1 2 2 2 1T n T n T T n T n+ − + + = − + + − + +… …

Należy w tym celu zauważyć, że:

 po prawej stronie mamy n składników zawierających dwójki, więc dodanie tych
dwójek da nam wyniku po prostu 2n

 składniki od T(n-1) do T(0) występują w sumie po obu stronach równania.
Wszystkie więc mogą być natychmiast zredukowane

W wyniku tych operacji po lewej stronie zostaje nam jedynie T(n), zaś po prawej -
nierekurencyjna postać tej funkcji:

() 2 1T n n= +

Teraz już rzecz jasna nie ma żadnych kłopotów z określeniem klasy algorytmu. Jak
można było się spodziewać i co wykazaliśmy przed chwilą, jest ona również rzędu Θ(n).
Postać rekurencyjna wyszukiwania wydaje się więc nie różnić od wersji iteracyjnej7.

7 W praktyce jest inaczej. Wersja rekurencyjna wymaga dużo dodatkowej pamięci dla stosu, co ostatecznie
bardzo spowalnia jej wykonywanie. Istnieje też ryzyko przepełnienia stosu, co naturalnie nie występuje w

Drzewo rekursji
Metoda polegająca na rozpisaniu i dodaniu do siebie stronami ciągu równań jest prosta i
prowadzi do dokładnego rozwiązania (czyli wyznaczenia nierekurencyjnej postaci funkcji).
Jak już jednak wspomniałem, można ją stosować rzadko, właściwie tylko w wyjątkowych
sytuacjach. Gdyby np. zamiast T(n-1) umieścić w funkcji 2T(n-1), sposób ten
doprowadziłby raczej do jeszcze większego skomplikowania całej sprawy.

Bardziej efektywna i mająca szersze pole zastosowań metoda nie zapewnia dokładnego
rozwiązania, lecz przecież dla znalezienia klasy algorytmu nie jest ono potrzebne. Metodę
tę zaprezentuję na ponownie banalnym przykładzie.

Słynny ciąg

Jednym z bardziej znanych dziwolągów matematycznych (rozsławionym przez autorów
powieści sensacyjnych ze względu na swoje kryptograficzne właściwości) jest ciąg
Fibonacciego. Jego cechą szczególną jest to, że każdy wyraz powstaje przez
zsumowanie dwóch poprzednich:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ...

Twór ten ma też mnóstwo innych cech, jak np. zdolność do opisywania wzrostu populacji
królików oraz fraktalne rozmieszczenie zer i jedynek w binarnej reprezentacji swoich
wyrazów. Dla nas ciąg ten będzie ważny ze względu na rekurencyjny algorytm obliczania
jego n-tego wyrazu. Bezpośrednio z faktu, że jest on sumą dwóch go poprzedzających
(oraz tego, że dwa początkowe wyrazy ciągu to jedynki), wynika taki oto wzór:

{ }
1 2

1 dla 1,2
dla 2n

n n

n
F

F F n− −

⎧ ∈
= ⎨

+ >⎩

Możesz powiedzieć, że nazywanie go ‘algorytmem’ jest lekką przesadą. Tym niemniej
przekłada się on na odpowiednią funkcję:

unsigned Fib(unsigned n)
{
 if (n <= 2) return 1;
 else return Fib(n - 1) + Fib(n - 2);
}

Jak widać, występują tu dwa wywołania rekurencyjne, obliczające dwa wyrazy ciągu
poprzedzające ten żądany. Wynikają one rzecz jasna wprost z wzoru zaprezentowanego
wyżej.

Analiza

Niniejszy algorytm (mimo wszystko pozostanę przy tym określeniu…) jest krótki i prosty.
Intuicyjnie wydawałoby się więc, że jego złożoność jest niewielka. Prawda okaże się co
najmniej zaskakująca… No, ale nie uprzedzajmy faktów.

Zacznijmy od zapisania złożoności praktycznej T(n). Dla n = 1 lub 2 funkcja dokonuje
tylko jednego porównania, po czym od razu zwraca wynik; są to terminalne przypadki dla
rekurencji. W innych przypadkach oprócz rzeczonego porównania następują też dwa
dalsze wywołania rekurencyjne. W sumie więc funkcja T(n) wyglądać będzie tak:

przypadku pętli. Widać zatem, że w tym przypadku wersja algorytmu z wykorzystaniem pętli jest o wiele
lepsza.

() () ()
1 dla 2

1 2 1 dla 2
n

T n
T n T n n

≤⎧
= ⎨ − + − + >⎩

Jak można się było spodziewać, jest to znowu funkcja rekurencyjna. Aby określić jej
klasę musimy zatem spróbować doprowadzić ją do bardziej przejrzystej postaci.

Rozwiązanie rekurencji

Zastosowanie metody rozpisywania, choć wydaje się logiczne, nie doprowadzi niestety do
rozwiązania. Nie ma bowiem szans na takie zredukowanie równania, aby pozostał jedynie
T(n) i składniki nierekurencyjne. W tym przypadku trzeba wykazać się nieco innym
podejściem do sprawy.

Pierwsza obserwacja polega na zauważeniu, że wartość T(n) składa się z trzech
składników, z których jeden jest stały, czyli znany nam, natomiast pozostałe dwa są
wywołaniami rekurencyjnymi o takich samych właściwościach. Oznacza to, że one
również składają się z trzech składników, z których dwa są rekurencyjne, itd.
Pomysł polega na zbudowaniu drzewka, którego węzły reprezentowałyby znane znam,
stałe składniki, zaś krawędzie (gałęzie) - wywołania rekurencyjne. Na początku takie
drzewo wyglądałoby dość skromnie:

Schemat 1. Drzewo rekursji dla złożoności praktycznej ciągu Fibonacciego - etap pierwszy

Nietrudno je jednak rozbudować. Ukryte za wielokropkami poddrzewa tworzymy
bowiem… rekurencyjnie - z tym, że teraz T(n-1) lub T(n-2) pełnią rolę T(n):

Schemat 2. Drzewo rekursji dla złożoności praktycznej ciągu Fibonacciego - etap drugi

W podobny sposób budujemy drzewko, aż dojdziemy do liści, czyli węzłów na końcach
wywołań T(2) lub T(1). Po zsumowaniu wartości we wszystkich węzłach drzewa
otrzymamy liczbę kroków algorytmu potrzebnych do obliczenia n-tej liczby Fibonacciego.
Stąd już bardzo blisko do określenia klasy tego algorytmu.

Schemat 3. Gotowe drzewo rekursji dla złożoności praktycznej ciągu Fibonacciego

W naszym przypadku w węzłach mamy wyłącznie jedynki, zatem problem sprowadza się
do określenia ich ilości. W tym celu wyobraźmy sobie, jak wygląda drzewko dla wartości
T(3) - jest to pierwsza wartość, dla której występują składniki rekurencyjne. Drzewo
będzie miało wyłącznie jedno rozgałęzienie, wysokość 1 i dwa poziomy. Generalnie
można stwierdzić, że dla danego n drzewo T(n) ma wysokość n-2 oraz n-1 poziomów.
A ile jest węzłów na każdym poziomie?… Na pierwszym mamy oczywiście jeden korzeń;
na drugim są już dwa węzły, odpowiadające dwóm wywołaniom rekurencyjnym. Od
każdego z nich odchodzą po dwie krawędzie, zatem na trzecim poziomie mamy cztery
węzły, i tak dalej - schodząc niżej, (zazwyczaj) podwajamy ilość węzłów. A ponieważ
liczba poziomów drzewa wynosi n-1, na ostatnim poziomie będzie więc mniej więcej 2n-1
liści, zaś na i-tym - około 2i-1 węzłów.

Nie możemy dokładnie określić tych wartości, gdyż drzewo nie zawsze jest
zrównoważone. Z grubsza rzecz biorąc znaczy to, że najniższy poziom nie zawsze zawiera
wszystkie liście drzewa. Przykładem może być np. drzewko dla T(4). Liczba liści różni się
jednak co najwyżej o stałą, zatem nie wpływa to na złożoność asymptotyczną.

By uzyskać przybliżoną ilość węzłów w drzewie należy oczywiście zsumować ich ilości na
wszystkich n-1 poziomach:

1
1 1

0 0
1 2 4 8 2 2 2 2 2 2 2

n n
n i i n n n n

i i

−
− +

= =

+ + + + + = = − = − =∑ ∑…

Otrzymujemy funkcję wykładniczą względem n. Możemy zatem stwierdzić, że złożoność
rekurencyjnego algorytmu dla ciągu Fibonacciego to aż Ο(2n).

Post scriptum: algorytm iteracyjny dla ciągu Fibonacciego

Rekurencyjna procedura obliczania ciągu jest więc skrajnie nieefektywna. W sumie nie
jest to powód do jakiegoś szczególnego zmartwienia, bo jest spora szansa, że ów ciąg nie
będzie ci nigdy do niczego potrzebny. Jeśli jednak zdarzy się inaczej, to zdecydowanie
powinieneś wtedy poszukać innego rozwiązania.

Problem z rekurencją polega tutaj na tym, iż większość wyrazów jest obliczana
wielokrotnie, przez co mnóstwo czasu procesora po prostu się marnuje. Procedura ta jest
po prostu mało inteligentna. W takich wypadkach stosuje się technikę zwaną
programowaniem dynamicznym, która generalnie jest troszkę skomplikowana. W tym
przypadku wystarczy jednak wykazać się tylko odrobiną sprytu: po co za każdym razem
liczyć każdy wyraz od początku, skoro można zapisywać wyniki pośrednie? Nie będzie to
zużywało wiele pamięci, gdyż musimy znać jedynie dwa poprzedzające wyrazy.
Iteracyjny algorytm obliczania ciągu Fibonacciego może więc wyglądać tak:

unsigned Fib(unsigned n)
{
 unsigned uFib, uFib1, uFib2;

 // warunki brzegowe
 uFib = uFib1 = uFib2 = 1;

 // liczymy po kolei wyrazy aż do żądanego
 for (unsigned i = 3; i <= n; ++i)
 {
 // "przewijamy" dwa wyrazy poprzedzające
 uFib2 = uFib1;
 uFib1 = uFib;

 // obliczamy nowy wyraz
 uFib = uFib1 + uFib2;
 }

 // zwracamy wynik
 return uFib;
}

Różnica jest kolosalna. Z pobieżnego rzutu oka na pętlę w powyższej funkcji wynika
bowiem, że jest ona rzędu zaledwie Ο(n)! Wersja iteracyjna pozwala więc zejść ze
złożoności wykładniczej do liniowej.

Rekurencja w technice „dziel i zwyciężaj”
Jeżeli nie miałeś wcześniej do czynienia z algorytmami rekurencyjnymi, to poprzednim
paragrafem mogłem cię do nich „nieco” zniechęcić. Nie powinieneś jednak brać ich sobie
za bardzo do serca. W rzeczy samej rekurencja nie jest wcale takim diabłem, jakim to
trochę niechcący przedstawiłem ją wcześniej. Co ważniejsze, istnieje wiele problemów,
dla których tylko algorytmy oparte na rekursji dają efektywne albo wręcz jedyne
poprawne rozwiązanie.

Pokaźną grupę stanowią tutaj operacje na strukturach danych, które same w sobie mają
naturę rekurencyjną. Przykładem mogą być grafy i drzewa, a praktycznym
zastosowaniem - chociażby wyszukiwanie pliku o określonej nazwie w rozległym drzewie
katalogów dyskowych.
Na rekurencji jest też oparta bardzo skuteczna i ogólna metoda projektowania
algorytmów, znana jako „dziel i zwyciężaj” (ang. divide & conquer). Jej idea polega na
podziale zadania na mniejsze i kontynuowanie tego procesu aż do momentu uzyskania
problemu elementarnego, który potrafimy rozwiązać bezpośrednio. W sumie algorytm
korzystający z tej metody składa się z trzech części:

 podzielenia problemu na mniejsze fragmenty (podproblemy)
 rozwiązania podproblemów poprzez dalszy, rekurencyjny podział - aż dojdziemy

do przypadku elementarnego, „niepodzielnego”
 złączenia rozwiązań podproblemów w jedno rozwiązanie całego problemu

Opis ten może brzmi nieco zawile, lecz sama idea kryjąca się za nim jest w gruncie
rzeczy bardzo prosta. Jak to czesto bywa, najlepiej zobaczyć ją na przykładzie. Ponownie
pozwolę sobie na wykorzystanie w tym celu sortowania, jako że czynność ta jest dla
komputerów zapewne tak samo naturalna, jak dla nas oddychanie czy jedzenie. Na
początku rozdziału poznaliśmy prosty algorytm zajmujący się tym zadaniem i w chwilę
potem określiliśmy jego złożoność jako Θ(n2). Przy użyciu techniki „dziel i zwyciężaj”
można ten czas obniżyć do Θ(nlogn), co jest czasem optymalnym (najmniejszym z
możliwych) dla sortowania przez porównywanie. Oczywiście nas będzie również żywo
interesowało to, jak tę złożoność wyznaczyć; tym także zajmiemy się za chwilę.

Przykład: sortowanie przez scalanie
Wpierw czas na obiecany przykład. Algorytmów sortowania skonstruowanych w oparciu o
technikę „dziel i zwyciężaj” jest przynajmniej kilka, a my nie będziemy tutaj poznawać
ich wszystkich, bo w końcu nie jest to książka o algorytmach jako takich, tylko rozdział
poświęcony analizie ich złożoności. Zobaczymy więc jeden z nich, nazywany
sortowaniem przez scalanie albo złączanie (ang. mergesort). Ma on tę zaletę, że jest
całkiem prosty, a ponadto dobrze ilustruje sposoby na określanie złoźoności algorytmów
opartych o „dziel i zwyciężaj”.

Zaatakowanie od razu kodem źródłowym byłoby pewnie nieco odstraszające, zatem
najpierw pomówmy sobie, jak ten algorytm działa. Danymi wejściowymi jest naturalnie
tablica liczb (lub dowolnych elementów, które można sortować, porównując ze sobą) o
rozmiarze n. Dla takiej tablicy wykonywane są trzy poniższe kroki:

 dziel: tablica jest dzielona na pół, czyli na dwie podtablice o rozmiarze n/2
 zwyciężaj: każda podtablica jest sortowana poprzez rekurencyjne wywołanie

algorytmu - z wyjątkiem tej o rozmiarze 1, którą siłą rzeczy jest od razu
posortowana

 połącz: posortowane podtablice są następnie łączone w jedną posortowaną tablicę

Na pierwszy rzut oka działanie algorytmu może wydawać irracjonalne. Cóż nam z bowiem
z samego rekurencyjnego dzielenia tablic na coraz mniejsze?… Oczywiście nic, jednak
cała praca, dzięki której algorytm działa, jest wykonywana w kroku trzecim. Stąd właśnie
wzięła się nazwa sortowania przez scalanie: łączenie posortowanych podtablic jest
bowiem „punktem ciężkości” algorytmu - to jemu zawdzięczamy jego poprawność.

Z kolei drugi popularny algorytm sortowania - zwany tendencyjnie sortowaniem
szybkim (ang. quicksort), choć bardziej odpowiednia nazwa to sortowanie przez podział
- kładzie nacisk na krok pierwszy. Tam sposób podziału jest sprawą kluczową, natomiast
operacja łączenia w ogóle nie jest potrzebna.

W sortowaniu przez scalanie to łączenie zajmuje więc najwięcej czasu i miejsca w kodzie
źródłowym. Spójrzmy więc teraz, jak to wszystko wygląda:

// sortowanie przez scalanie
// parametry uMinIndex i uMaxIndex wyznaczają aktualnie sortowaną
// podtablicę
void MergeSort(const int* aTablica, unsigned uRozmiar,
 unsigned uMinIndex = 0,
 unsigned uMaxIndex = uRozmiar - 1)
{
 // najpierw sprawdzamy, czy podana tablica ma co najmniej
 // dwa elementy; jeżeli nie, jest to przypadek elementarny,
 // kończacy rekurencję
 if (uMinIndex >= uMaxIndex) return;

 /* krok 1: dziel */

 // punkt podziału wyznaczamy w połowie tablicy
 unsigned uPunktPodzialu = (uMinIndex + uMaxIndex) / 2;

 /* krok 2: zwyciężaj */

 // wywołujemy rekurencyjnie procedurę dla obu połówek tablicy
 MergeSort (aTablica, uRozmiar, uMinIndex, uPunktPodzialu);
 MergeSort (aTablica, uRozmiar, uPunktPodzialu + 1, uMaxIndex);

 /* krok 3: połącz */

 // obliczamy rozmiary obu podtablic
 unsigned uRozmiarLewej = uPunktPodzialu - uMinIndex + 1;
 unsigned uRozmiarPrawej = uMaxIndex - uPunktPodzialu;

 // tworzymy pomocniczne tablice (o jeden element większe)
 int[] aLewa = new int [uRozmiarLewej + 1];
 int[] aPrawa = new int [uRozmiarPrawej + 1];

 // wypełniamy je zawartością odpowiednich połówek
 // (uwaga: w prawdziwej implementacji używamy nie pętli,
 // lecz funkcji w rodzaju memcpy())
 for (unsigned i = 0; i < uRozmiarLewej; ++i)
 aLewa[i] = aTablica[uMinIndex + i];
 for (unsigned i = 0; i < uRozmiarPrawej; ++i)
 aPrawa[i] = aTablica[uPunktPodzialu + 1 + i];

 // dodajemy też wartowników na końcach: elementy większe od
 // dowolnego innego
 aLewa[uRozmiarLewej] = aPrawa[uRozmiarPrawej] = MAX_INT;

 // następnie bierzemy elementy raz z jednej, raz z drugiej
 // tablicy (zawsze mniejszy) i wstawiamy do oryginalnej
 unsigned i = 0, j = 0;
 for (unsigned k = uMinIndex; k <= uMaxIndex; ++k)
 // porównujemy elementy z obu tablic
 if (aLewa[i] <= aPrawa[j])
 {
 // lewa mniejsza; wstawiamy element, inkrem. i
 aTablica[k] = aLewa[i];
 ++i;
 }
 else
 {
 // prawa mniejsza; wstawiamy element, inkrem. j
 aTablica[k] = aPrawa[j];
 ++j
 }

 // na koniec pozbywamy się niepotrzebnych już tablic pomocniczych
 delete[] aLewa;
 delete[] aPrawa;
}

Tablicę dzielimy więc na pół i każdą połówkę sortujemy rekurencyjnie. Łączenie, większa
część procedury, odbywa się natomiast w pewien sprytny sposób. Polega ono mianowicie
na kolejnym sprawdzaniu elementów z obu podtablic i wybieraniu większego. Po
opróżnieniu którejś podtablicy dodawana jest następnie cała zawartość drugiej. Dzięki

obecności wartowników na końcach, za wszystko odpowiada ostatnia pętla. Inna metoda
polega na ręcznym sprawdzaniu, czy któraś z podtablic jest pusta; wtedy potrzebne są
jeszcze dwie pętle (z których wykonuje się tylko jedna), które „opróżniają” drugą
połówkę.

Analiza
Sortowanie przez scalanie wyglądać może na o wiele bardziej skomplikowane niż to przez
wstawianie. Gra jest jednak warta świeczki - zyskiem jest wzrost efektywności całej
procedury. Zajmijmy się zatem jej wyznaczeniem, czyli znalezieniem klasy algorytmu
mergesort.

Procedura MergeSort() jest rekurencyjna, zatem analizę możemy podzielić na dwie
części. Pierwsze zadanie to wyznaczenie złożoności pojedynczego wywołania funkcji.
Drugi etap to ustalenie, jaki koszt wnosi tutaj rekurencja. Połączenie tych dwóch
rezultatów da nam w wyniku klasę algorytmu.

Analiza algorytmu łączenia

W przypadku sortowania przez scalanie owo scalanie jest główną częścią każdego
wywołania procedury. Najpierw zatem zajmiemy się właśnie tym fragmentem sortowania.

Sam algorytm łączenia (rozpoczynający się w kodzie źródłowym o komentarza „krok 3”)
nie jest rekurecyjny. Jak można stwierdzić pobieżnym rzutem oka, jego istotę stanowią
przede wszystkim pętle. Najważniejsza jest ostatnia, przebiegająca po całej sortowanej w
danym momencie podtablicy (po wszystkich indeksach od uMinIndex do uMaxIndex).
Wykonuje więc ona n cykli, gdzie n jest równe uMaxIndex - uMinIndex + 1. Jej
złożoność jest liniowa - Θ(n).
Reszta algorytmu nie przekracza tej klasy. Wypełnienie wartościami dwóch pomocniczych
tablic aLewa i aPrawa także wymaga liczby instrukcji proporcjonalnej do n. Jeśli zaś
założymy, że operacje alokacji pamięci i jej zwalniania są wykonywane w czasie stałym
(co jest rozsądne dla niemal wszystkich komputerów), to ze strony złożoności algorytmu
łączenia podtablic nie spotkają nas już żadne niespodzianki.

Ostatecznie więc jest on rzędu Θ(n).

Złożoność teoretyczna

Wiemy teraz, jak efektywne jest zrealizowanie pojedynczego wywołania rekurencyjnego
w sortowaniu mergesort. Nie wiemy jednak, ile takich wywołań rzeczywiście występuje i
jak bardzo wielkość ta zależy od n - rozmiaru sortowanej tablicy. Ażeby to oszacować,
musimy przyjrzeć się zastosowanej rekursji i w ten sposób wyznaczyć funkcję złożoności
dla całego algorytmu.

Zobaczmy więc, jak mergesort wywołuje sam siebie. Z opisu podanego w poprzednim
paragrafie powinieneś jeszcze pamiętać, że istotą jest tu podział tablicy na dwie połowy. I
tak się faktycznie dzieje: wyznaczany jest po prostu graniczny „indeks połówkowy”,
wedle którego dokonywany jest podział (przechowuje go zmienna uPunktPodziału).
A gdy dokonało się dzielenie, czas na zwycięstwo. Obie podtablice są więc sortowane
poprzez ten sam algorytm mergesort - z tą różnicą, że jest on wywoływany dla każdej z
nich osobno. Rekurencyjne wywołania procedury operują już zatem na tablicach o
rozmiarze nie n, lecz mniej więcej8 n/2.

8 Żaden element nie może rzecz jasna zostać zgubiony. W rzeczywistości pierwsza rekurencja zajmuje się więc
podtablicą o rozmiarze 2n⎢ ⎥⎣ ⎦ (połowa liczby elementów zaokrąglona w doł), zaś druga - o rozmiarze 2n⎡ ⎤⎢ ⎥

(połowa liczby element zaokrąglona w górę). Dla analizy algorytmu jest to jednak szczegół techniczny, bo skoro
wszystkie elementy i tak są brane pod uwagę, możemy swobodnie założyć, że obie połówki mają po prostu n/2
elementów.

Wartość T(n) złożoności praktycznej jest więc budowana przez wartości T(n/2),
reprezentujące rekurencję dla tablic połówkowych, oraz złożoność procesu łączenia -
Θ(n). W sumie wynosi ona zatem:

() () ()2 2T n T n n= +Θ

Należy jeszcze uwzględnić przypadek elementarny - jest nim tablica składająca się tylko z
jednego elementu. Naturalnie jest on posortowana, toteż do algorytmu należy jedynie
stwierdzenie tego faktu. Jest to wykonywane w czasie stałym - Θ(1).

Finalna postać zależności T(n) jest więc następująca:

() ()
() ()

1 dla 1
2 2 dla 1

n
T n

T n n n
⎧ Θ ≤⎪= ⎨ +Θ >⎪⎩

Teraz pozostaje nam „tylko” jej rozwiązanie, czyli wyznaczenie T(n) jako funkcji
nierekurencyjnej. W następnym paragrafie zajmiemy się tym głównym punktem
programu.

Jeżeli posługiwanie się notacjami asymptotycznymi w równaniach sprawia ci jeszcze
kłopot, to możesz przyjąć, że pod Θ(1) kryje się c, zaś pod Θ(n) - dn, gdzie c i d są
dowolnymi stałymi. Ja jednak będę stosował ten zapis jako wygodniejszy i podkreślający
fakt, że zależy nam wyznaczeniu złożoności asymptotycznej bez wdawania się w zbędne
szczegóły. Właściwie więc notację Θ należałoby tu traktować jako pewne uproszczenie!

Rozwiązanie rekurencji
Już pierwszy rzut oka na równanie

() () ()2 2T n T n n= +Θ

utwierdza nas w przekonaniu, że różni się ono trochę od tych, którymi zajmowaliśmy się
dotąd. Pomijając występowanie więcej niż jednego składnika rekurencyjnego (z czym
nauczyliśmy sobie jakoś radzić), zamieszanie wprowadza z pewnością n/2 jako jego
argument.
Dzielenie rozmiaru danych na połowę lub dowolną inną liczbę części jest jednak (jak
nawet sama nazwa wskazuje) nieodłącznym elementem techniki „dziel i zwyciężaj”. Gdy
więc poznamy sposób na rozwikłanie powyższej funkcji jest wielce prawdopodobne, że
analogiczne metody dadzą się zastosować dla przynajmniej większości algorytmów
stosując ww. technikę. W tym paragrafie pokażę kilka takich sposobów.

Na początek jednakowoż wypadałoby podjąć wyzwanie i oszacować powyższą funkcję
T(n) dla sortowania przez scalanie. Mimo pozornej trudności zadanie to może okazać się
całkiem łatwe…

Jeszcze raz drzewko

Oczywiście metoda rozpisywania na pewno nie zda tu egzaminu, gdyż czynnik 2 przy
T(n/2) znakomicie uniemożliwia zredukowanie wszystkich składników poza T(n).
Poradziliśmy już sobie jednak w takiej sytuacji: pomocą okazało się zilustrowanie
rekurencji za pomocą poglądowego drzewka.

Spróbujmy więc wykorzystać tę metodę także i tutaj. Przypomnijmy, że drzewko jest
skonstruowane wedle trzech reguł:

 każdy jego węzeł odpowiada nierekurencyjnej część równania - tej, którą znamy
bezpośrednio, niezawierającej dalszych wywołań T(...)

 krawędź (gałąź) drzewa wychodząca z danego węzła reprezentuje wywołania
rekurencyjne

 liście drzewa odpowiadają przypadkom elementarnym, kończącym rekurencję

Jak to wygląda u nas?… Składnikiem nierekurencyjnym w T(n) jest Θ(n) - przypomnijmy,
że jest to synonim dowolnej funkcji liniowej. Pojawi się on więc w korzeniu i
wewnętrznych węzłach drzewa. Z kolei krawędzie są modelem przywołań rekurencyjnych.
Od korzenia odchodzą więc dwie gałęzie T(n/2), na drugim poziomie - T(n/4), potem
T(n/8), itd. Wreszcie, drzewo kończy się na przypadkach elementarnych, gdy n nie
można już podzielić na dwa. W liściach znajdzie się więc Θ(1).

Opierając się na tych spostrzeżeniach możemy zasadzić drzewko:

Schemat 4. Drzewo rekursji dla złożoności teoretycznej sortowania przez scalanie - etap pierwszy

Pod wielokropkami kryją się oczywiście rekurencyjne poddrzewa. Gdy więc nasze
drzewko urośnie nieco bardziej, wyglądać będzie mniej więcej tak:

Schemat 5. Drzewo rekursji dla złożoności teoretycznej sortowania przez scalanie - etap drugi

Jak widzimy, kolejne wywołania są przeprowadzane dla coraz mniejszych wartości n -
połówek, połówek połówek, połówek ćwierci, itd. W wyniku tego podziału dojdziemy w
końcu do przypadku elementarnego n = 1. Wtedy też drzewko kończy się, a w liściu
pozostaje jedynie składnik Θ(1).

Aby dzielenie przez 2 zredukowało w końcu n do samej jedynki, wartość n musi być
oczywiście potęgą dwójki. Możemy bez przeszkód przyjąć takie założenie, gdyż nie
wpływa ono na asymptotyczną złożoność algorytmu mergesort. Dla n nie będących
potęgą dwójki drzewko nie będzie po prostu zrównoważone, czyli niektóre jego gałęzie
będą kończyły się liśćmi wcześniej niż inne. Nie wpłynie to jednak na oszacowanie ilości
węzłów w drzewie.

W pełni rozwnięte drzewo rekursji wygląda więc następująco:

Schemat 6. Gotowe drzewo rekursji dla złożoności teoretycznej sortowania przez scalanie

Może dziwić użycie wyrażeń w formie Θ(n/2) lub Θ(n/4), lecz ma to swoje uzasadnienie.
Po zsumowaniu kosztów na każdym poziomie musimy bowiem otrzymać Θ(n), gdyż
algorytm zajmuje się zawsze wszystkimi n elementami tablicy.

Na połączenie drzewka i notacji asymptotycznych trzeba więc nieco uważać. Generalnie
jednak w rzeczywistej analizie algorytmów „dziel i zwyciężaj” w ogóle nie stosuje się
drzew, lecz metody opisane w następnych akapitach. Dlatego też próba rozwiązania
rekurencji za pomocą powyższego drzewka musi być traktowana trochę nieformalnie.

Powyższy fakt daje nam niespodziewanie cenną informację: dla każdego poziomu rekursji
wykonywanych jest zawsze Θ(n) instrukcji. Celem oszacowania całkowitej złożoności
musimy więc tylko znależć wysokość drzewka, a następnie pomnożyć tę wielkość przez
Θ(n).
Ile poziomów rekursji występuje tutaj?… Odpowiedź jest prosta: tyle, ażeby z n „zejść” w
końcu do 1 poprzez ciągłe dzielenie przez dwa (i zaokrąglanie w dół). A ponieważ każdy
węzeł zajmuje się wartością dwa razy mniejszą niż węzeł nadrzędny (co odpowiada
podziałowi tablicy na pół), więc na i-tym poziomie wartość ta wyniesie n/2i-1. Jeśli zatem
oznaczymy szukaną ilość poziomów jako p, to

1 1
2 p

n
− =

bo na ostatnim poziomie mamy już do czynienia jedynie z 1-elementową tablicą. Stąd
można bez problemu wyznaczyć owe p:

2log 1p n= +

Liczba poziomów drzewa zależy więc logarytmicznie od rozmiaru danych, czyli jest rzędu
Θ(logn). Wiemy również, że wykonanie każdego poziomu zajmuje czas Θ(n). Mnożąc obie
wartości otrzymujemy całkowitą złożoność algorytmu:

() () ()log logn n n nΘ ⋅Θ = Θ

Jest ona znacznie lepsza od Θ(n2) sortowania przez wstawianie. Przykładowo
posortowanie 1000 elementów zajmuje tamtą metodą około milion instrukcji, zaś
sortowanie przez scalanie mniej więcej sto razy mniej. Tak efektywnośc ma jednak swoją
cenę. Algorytm sortowania przez scalanie jest bardziej skomplikowany, podobnie jak
„intuicyjna” analiza jego złożoności.

Metoda rekurencji uniwersalnej

Za pomocą umiejętnie użytego drzewka można rozwiązać prawie każdy problem analizy
algorytmu typu „dziel i zwyciężaj”. Dość często jest to jednak pracochłonne, wymaga też
wyjątkowej uwagi i zwracania uwagi na takie niuanse, jak poprawne użycie notacji
asymptotycznej.
Z drzewkami i rekurencją dawno temu walczyli już matematycy, a owocem ich pracy jest
bardzo skuteczna metoda rekurencji uniwersalnej. Jej nazwa wskazuje, że można ją
stosować do bardzo szerokiego zakresu funkcji i tak jest w istocie. Zaletą tej metody jest
ponadto szybkość i względna łatwość stosowania. Nie potrzebujemy bowiem ani
rozpisywania funkcji w szereg równań, ani rysowania drzewka. Wszystko, co jest
potrzebne, to rodzaj „ściągi” pozwalającej na bezpośrednie określenie rozwiązania.

Zanim przedstawię tę metodę muszę jeszcze dokładnie określić zakres jej stosowalności.
Otóż przy jej pomocy możemy w miarę prosty sposób określać klasę funkcji T(n)
występującej w równaniu postaci:

() () ()T n aT n b f n= +

Współczynniki a i b są tu dowolnymi stałymi, zaś f(n) - dowolną funkcją, określającą
nierekurencyjną część równania (czyli nie zawierającą dalszych wywołań T(...)). Dla
przykładu, nasze równanie określające złożoność sortowania przez scalanie ma
współczynniki a i b równe 2, zaś f(n) jest dowolną funkcję liniową.
Ponadto musimy oczywiście założyć, że rekurencja kiedyś się kończy, czyli dla
wystarczającą małej wartości n określona jest terminalna stała.

W jaki sposób wygląda teraz zastosowanie metody rekurencji uniwersalnej? Składa się
ono z dwóch kroków:

 najpierw należy obliczyć funkcję () logb ag n n=

 następnie należy porównać ją z funkcją f(n) i na tej podstawie określić
rozwiązanie

Pierwszy krok jest oczywiście bardzo prosty, szczególnie jeśli dysponujemy kalkulatorem
czy innym urządzeniem liczącym. Dla, na przykład, sortowania przez scalanie
wspomnianą funkcją będzie:

() 2log 2 1g n n n n= = =

Podobnie jest dla dowolnych innych wartości a i b. To zdecydowanie prostszy krok tej
metody.

Drugi krok polega na wyborze jednej z trzech możliwych rozwiązań w zależności od
wyniku porównania funkcji g(n) i f(n). Gdy mówimy o porównywaniu funkcji, mamy
oczywiście na myśli ich relacje wyrażone za pomocą poznanych notacji asymptotycznych:
Ω, Θ i Ο. W tym przypadku również tak jest.
W metodzie rekurencji uniwersalnej mamy więc trzy przypadki, które przedstawia
poniższa tabela:

relacja między g(n) i f(n) rozwiązanie

g(n) jest wielomianowo większa od f(n) () ()() ()logb aT n g n n= Θ = Θ

g(n) jest asymptotycznie równa f(n) () ()() ()loglog logb aT n g n n n n= Θ ⋅ = Θ ⋅

g(n) jest wielomianowo mniejsza od f(n) () ()()T n f n= Θ

Tabela 4. Trzy możliwe przypadki w metodzie rekurencji uniwersalnej

Należy po prostu stwierdzić, który z nich zachodzi, a potem bezpośrednio odczytać
rozwiązanie… Cóż, łatwiej powiedzieć, ale pewnie trudniej zrobić. Wyjaśnienia wymaga na
pewno określenie, że funkcja jest „wielomianowo” większa lub mniejsza od innej.
Stwierdzenie to oznacza mianowicie, że obie funkcje muszą różnić się od siebie
przynajmniej o czynnik wielomianowy - tzn. o nk, gdzie k jest dowolną liczbą dodatnią.
Weźmy np. f(n) = Θ(nlogn) i g(n) = Θ(n2). Tutaj wiadomo rzecz jasna, że g(n) jest
większa od f(n), jednak nie jest ona wielomianowo większa. Różnica między obiema
funkcjami sprowadza się bowiem do czynnika logarytmicznego - logn - który jest
mniejszy niż wielomianowy. W takiej sytuacji jak powyższa nie moglibyśmy niestety
zastosować metody rekurencji uniwersalnej; wariant ten niejako „wpada w lukę”
pomiędzy przypadkami 1 i 2.

Na szczęście w większości równań obie funkcje spełniają któryś z trzech warunków. Dla
naszego sortowania zachodzi na przykład przypadek drugi, gdyż zarówno f(n), jak i g(n)
są sobie asymptotycznie równe: obie to funkcje liniowe. Wynika stąd natychmiast, że
T(n) jest rzędu Θ(g(n) logn), czyli Θ(nlogn). Uzyskaliśmy więc taki sam wynik jak przy
zastosowaniu drzewka, jednak metoda rekurencji uniwersalnej jest zwykle o wiele
szybsza i wygodniejsza.

Ciekawostka: twierdzenie o rekurencji uniwersalnej

Cała ta metoda opiera się na matematycznym twierdzeniu o rekurencji uniwersalnej.
Jego treść jest zgodna z informacjami z poprzedniego akapitu, aczkolwiek formalny język
matematyki czyni ją nieco precyzyjniejszą. Naturalnie nie ma najmniejszej potrzeby,
abyś znał je na pamięć; wystarczy tylko byś wiedział, gdzie możesz je znaleźć i jak je
zastosować.

Oto więc rzeczone twierdzenie9:

Niech a ≥ 1 i b > 1 będą stałymi, f(n) dowolną funkcją, zaś T(n) zdefiniowane dla
nieujemnych liczb całkowitych poprzez rekurencję:

() () ()T n aT n b f n= +

Wówczas T(n) możemy asymptotycznie oszacować w następujący sposób:

1. Jeśli () ()logb af n O n ε−= dla pewnej stałej ε > 0, to () ()logb aT n n= Θ

2. Jeśli () ()logb af n n= Θ , to () ()log logb aT n n n= Θ

3. Jeśli () ()logb af n n ε+= Ω dla pewnej stałej ε > 0, to () ()()T n f n= Θ

9 Cytowane za Wprowadzeniem do algorytmów Thomasa H. Cormena. Pominąłem jedynie tzw. warunek
regularności w trzecim przypadku, gdyż jest on spełniony dla wszystkich rozsądnych funkcji pojawiających się w
analizie algorytmów.

Najprawdopodobniej stwierdzisz, że wygląda ono dość upiornie. Generalnie jednak jest to
dokładnie to samo zestawienie trzech możliwych przypadków, podanych w tabeli z
poprzedniego akapitu. Można jeszcze zwrócić uwagę, jak została zapisana relacja
wielomianowa: poprzez wprowadzenie stałej ε > 0 do wykładnika n w funkcji

() logb ag n n= .

Podsumowanie
Analiza efektywności algorytmów może nie wydwać się wdzięcznym ani prostym
zadaniem. Przynajmniej podstawowa jej znajomość jest jednak konieczna, aby móc pisać
programy, które nie będą działały ślamazarnie nawet na najszybszych komputerach.
Ponadto całkiem często okazuje się, że niemożność określenia złożoności własnego
algorytmu staje się silną przesłanką za tym, iż jest on błędny lub w najlepszym wypadku
mało wydajny.

W tym rozdziale mogłeś więc poznać garść wiedzy na temat tego ważnego zagadnienia,
jakim jest wyznaczanie szybkości algorytmów. Najpierw więc zastanowiliśmy się, w jaki
sposób można rozsądnie wyrażać efektywność danego algorytmu i jakich miar można
użyć do porównywania wydajności procedur. Zwróciłem wówczas uwagę, że przyglądanie
się wszelkim sprawom „technicznym” prowadzi zwykle donikąd.
Potem poznaliśmy najbardziej rozpowszechnioną metodę wyrażania sprawności
algorytmów, czyli złożoność teoretyczną. Ku radości nielicznych i narzekaniu większości
zagłebiliśmy się też w matematyczną stronę tego zagadnienia, a mianowicie notacje
asymptotyczne.
Było to jednak konieczne, abyśmy mogli przejśc do zasadniczej treści rozdziału. W
drugiej jego części przedstawiłem więc typowe techniki służące znajdowaniu złożoności
różnych algorytmów. Sporo uwagi poświęciliśmy pętlom, które występują w prawie
każdej procedurze. Ponadto zajęliśmy się także programami rekurencyjnymi, które
wprawdzie nie występują już często, jednak są o wiele oporniejsze w analizie. Tutaj także
wymagana była porcja matematyki „wyższej”, czego ukoronowaniem była metoda
rekurencji uniwersalnej.

Zapewne zdajesz sobie sprawę, że podane przeze mnie wskazówki absolutnie nie
wyczerpują tematu badania efektywności algorytmów. Istnieje mnóstwo źródeł
opisujących tę tematykę, z których największe znaczenie mają pozycje książkowe
poświęcone algorytmice.

Pytania i zadania
Dla utrwalenia zdobytych wiadomości i umiejętności zalecane jest wykonanie poniższych
ćwiczeń i odpowiedz na pytania. Powodzenia!

Pytania
1. Dlaczego podanie czasu wykonania procedury niewiele mówi o jej faktycznej

efektywności?
2. Czym jest rozmiar danych algorytmu? Podaj kilka typowych przykładów.
3. Jakie instrukcje zwykle uważamy za elementarne?
4. Co to jest złożoność praktyczna algorytmu?
5. Jakie trzy przypadki działania można rozważać dla każdego algorytmu? Który z

nich najbardziej się liczy i dlaczego?
6. Czym jest złożoność teoretyczna (klasa) algorytmu?
7. Dlaczego przy podawaniu klasy algorytmu stosujemy notacje asymptotyczne?

8. Jakie złożoności mają algorytmy, o których możemy powiedzieć, że są
„efektywne”?

9. Jakie dwie szczególne cechy mają problemy NP-zupełne?
10. Jakie dwie ogólne zasady mają zastosowanie przy wyznaczaniu klasy algorytmów?
11. Jaką złożoność ma k-krotnie zagnieżdżona pętla przebiegająca po wszystkich

wartościach n cyklami o stałym czasie?
12. Czym jest rekurencja?
13. Jakie dwie metody możemy spróbować zastosować do oszacowania prostych

funkcji rekurencyjnych?
14. Na czym polega technika projektowania algorytmów znana jako „dziel i

zwyciężaj”?
15. Jakie dwa sposoby można zastosować do szacowania efektywności algorytmów

wykorzystujących tę technikę?
16. Co to znaczy, że jedna funkcja jest wielomianowo większa od drugiej?

Ćwiczenia
1. Podaj jakie czynniki techniczne, oprócz tych wymienionych na początku

pierwszego podrozdziału, mogłyby jeszcze wpływać na szybkość wykonywania się
algorytmu w rzeczywistym programie.

2. Udowodnij, że ()() ()() ()()O f n f n f n∩Ω = Θ .

3. Znajdź najmniejszą wartość n, dla której algorytm o złożoności praktycznej n16
byłby mimo wszystko szybszy od tego o złożoności 2n.

4. Algorytm wyszukiwania binarnego służy do wyszukiwania podanej wartości w
posortowanej tablicy. Działa on w ten sposób, że dla podanej tablicy porównuje
szukany element z jej elementem środkowym i zależnie od wyniku wywołuje
rekurencyjnie sam siebie dla lewej lub prawej połowy. Określ klasę tego
algorytmu (dowolną metodą); być może koniecznie będzie zapisanie go w postaci
(pseudo)kodu.

	ANALIZA SPRAWNOŚCI ALGORYTMÓW
	Złożoność obliczeniowa
	Klasa algorytmu
	Znajdujemy złożoność praktyczną
	Przykład: sortowanie przez wstawianie
	Ustalamy reguły
	Przyglądamy się algorytmowi
	Funkcja złożoności
	Popadamy w pesymizm

	Znajdujemy złożoność teoretyczną
	Kluczowa cecha algorytmu
	Notacja
	Asymptotyczność

	Notacje asymptotyczne
	Trzy ważne definicje
	Dokładne oszacowanie (notacja ()
	Ograniczenie górne (notacja ()
	Ograniczenie dolne (notacja ()
	Nieco zamieszania
	Notacja (a (
	Równość?…

	Własności notacji asymptotycznych
	Działania na anonimowych funkcjach
	Porównywanie funkcji

	Uwagi na temat złożoności
	Porównanie różnych typów złożoności obliczeniowej
	Przykłady algorytmów
	Słówko o NP-zupełności

	W poszukiwaniu złożoności obliczeniowej
	Podstawowe zasady
	Prawo dodawania
	Prawo mnożenia

	Pętle
	Ilość cykli w pętli
	Złożoność

	Rekurencja
	Ogólne metody
	Rozpisywanie
	Najprostsza rekurencja
	Analiza
	Rozwiązanie rekurencji

	Drzewo rekursji
	Słynny ciąg
	Analiza
	Rozwiązanie rekurencji
	Post scriptum: algorytm iteracyjny dla ciągu Fibonacciego

	Rekurencja w technice „dziel i zwyciężaj”
	Przykład: sortowanie przez scalanie
	Analiza
	Analiza algorytmu łączenia
	Złożoność teoretyczna

	Rozwiązanie rekurencji
	Jeszcze raz drzewko
	Metoda rekurencji uniwersalnej
	Ciekawostka: twierdzenie o rekurencji uniwersalnej

	Podsumowanie
	Pytania i zadania
	Pytania
	Ćwiczenia

