ANALIZA SPRAWNOSCI
ALGORYTMOW

Znane sa tysigce sposobow zabijania czasu,

ale nikt nie wie, jak go wskrzesic.
Albert Einstein

Komputery w powszechnym mniemaniu uchodzg za uosobienie szybkosci. Nierzadko
przeciez zdarza sie stysze¢, ze oto pokonana zostata kolejna bariera predkosci obliczen, a
nowo zbudowany superkomputer w sekunde poradzi sobie z zadaniem, z ktérym cata
ludzko$¢ musiataby sie biedzi¢ przez setki miliondw lat. W takich sytuacjach laicy czasem
zadajg sobie pytanie, czy istniejg jeszcze dla komputerdow jakies niewykonalne zadania,
ktérych nie rozwigzatyby w mgnieniu oka. Wydawaltoby sie, ze takich wyzwan juz nie ma.

Nasz entuzjazm dla osiggnie¢ techniki musi jednak przygasnag, jezeli przydarzy nam sie
typowa przeciez sytuacja, gdy musimy oczekiwaé na uruchomienie programu na swym
osobistym komputerze. Albo na wyszukanie okreslonych plikdw na jego dysku twardym.
Albo na sciggniecie kilkumegabajtowego pliku przez zapchane tacze internetowe. Albo na
wyrenderowanie gotowej sceny w aplikacji do modelowania 3D. Albo..., albo... - przyktady
mozna mnozy¢ w nieskonczonos$¢. Zatem nasze komputery nie sg wcale takie szybkie.
Czy mozna co$ na to poradzic?...

Intuicja podpowiada nam, ze tak. Faktycznie - mozemy przeciez zakupi¢ szybszy dysk
twardy, zafundowa¢ sobie lepsze potaczenie z Internetem, wymienic¢ procesor na nowszy,
postarac sie o lepszg karte graficzng, i tak dalej. Wszystko to mozemy zrobi¢ my -
uzytkownicy, podazajac trasg niekonczacego sie wyscigu technologicznego.

A co mogg zrobi¢ twércy aplikacji, czyli programisci? Przeciez on nich rowniez zalezy
szybkos$c¢ dziatania ich produktow: nawet najszybszy dysk twardy bedzie bowiem
pracowat nieefektywnie, jezeli zainstaluje sie na nim mato wydajny system plikow;
najlepsza karta graficzna moze sobie nie poradzi¢ z rysowaniem $wiata gry
tréjwymiarowej, jesli bedzie zmuszona do jego cato$ciowego przetwarzania dla kazdej
wygenerowanej klatki; wreszcie, nawet najnowszy procesor moze sie ugigc¢ sie pod
ciezarem skomplikowanych operacji na ogromnym zbiorze danych. Dlatego programisci
muszg dbac o odpowiednig optymalizacje dziatania swoich wytwordw, a szczegodlnie
tych ich czesci, ktore sg najintensywniej wykorzystywane przez uzytkownikow.

Optymalizacja jest aczkolwiek trudnym zadaniem, ktére mozna wykonywac na wielu
pfaszczyznach. Mozliwe jest optymalizowanie projektu aplikacji, okreslajacego jej
nadrzedna strukture - jak chocby klasy i ich skladowe. Zle zaprojektowany program ma
bowiem wszelkie szanse, by dziata¢ jesli nie catkiem niepoprawanie, to ,przynajmniej”
bardzo nieefektywnie.

Drugg strong optymalizacji jest dobieranie odpowiednio szybkich algorytmow do
realizacji chociaz tych najbardziej newralgicznych zadan. Efektywny algorytm moze
bowiem skrdci¢ czas ich wykonywania setki, tysigce, a nawet miliony (!) razy, produkujac
jednoczesnie identyczne wyniki.

OK, by¢ moze w tej chwili nieco przesadzam. Nie ulega jednak watpliwosci, ze dla
kazdego niemal zadania istniejg algorytmy lepsze i gorsze, dziatajace szybciej i wolniej,
krétsze i dtuzsze w zapisie oraz tatwiejsze i trudniejsze w implementacji - a wszystkie
one sg tak samo poprawne w sensie generowanych rezultatéw.

Dla wygody programistow najwazniejsze bytoby zapewne kryterium prostoty, jednak nie
zapominajmy, ze aplikacje tworzymy raczej dla uzytkownikéw innych niz my sami.
Smutng prawda jest fakt, ze takich , postronnych” oséb niewiele interesujg upodobania
autora programu czy nawet jakos$¢ produktu z punktu widzenia inzynierii
oprogramowania; dla nich wazniejsze jest bowiem to, co mogq zobaczy¢ i odczu¢
bezposrednio: wygodny interfejs uzytkownika, rozbudowane mozliwosci czy nareszcie
szybkos¢ dziatania.

W interesie popularnosci naszych dziet lezy wiec (miedzy innymi) wybdr odpowiednio
efektywnych algorytmoéw, poprzez ktore aplikacje bedg realizowaty swoje cele. Jak
jednak ocenié, ktory algorytm jest szybszy? Czy istniejg Sciste kryteria wyznaczania
sprawnosci danego algorytmu?...

S3a to bardzo stuszne i wazne pytania, na ktdre postaram sie tutaj odpowiedziec.

Zlozonosc¢ obliczeniowa

Kiedy mamy na mysli efektywnos¢ wykonania jakiegos$ zadania, tatwo mozemy
postugiwac sie miarg czasowaq. Zrobienie czego$s w 10 minut jest bardziej efektywne niz
zrobienie tego samego w kwadrans, nie méwigc juz o pétgodzinnej czy godzinnej pracy.
Czy jednak podobne kryterium moze sie stosowac do algorytmow?

Wyobrazmy sobie, ze mamy do wyboru dwa algorytmy realizujace ten sam cel i
produkujace identyczne wyniki, ale napisane przez dwie rézne osoby. Jedna z tych oséb
twierdzi, ze jej algorytm jest szybki, bo wykonat sie w 41 sekund; druga utrzymuje, ze
jej algorytmowi zajeto to tylko 29 sekund. Czy znaczy to bynajmniej, ze ten drugi sposdb
jest szybszy?...

Otodz niezupetnie, bowiem niemal na pewno obie osoby uruchamiaty swoje algorytmy w
réznych warunkach. Aby wiec obiektywnie porownywac ich sprawnos¢, nalezatoby te
warunki zna¢ - tzn. wiedziec¢:

Jakie komputery zostaty uzyte w przeprowadzonych prébach?

Jakie procesory posiadaty?

Pod kontrolg jakich systemow operacyjnych pracowaty?

Czy napisane programy dziataty w trybie wytacznosci, a jesli nie, to jaki miaty
priorytet?

W jakich jezykach zostaty napisane oba programy?

Jakich kompilatoréw uzyto do ich skompilowania?

Czy w owych kompilatorach byty wigczone opcje optymalizacji?

itp. itd.

VvV VY

YVVVYVYYV

Jak wida¢, potrzebnych informacji jest cate mndstwo, zas nawet posiadanie ich
wszystkich nie upewnia nas, ze czego$ nie przeoczyliSmy. Poza tym majac tak szeroki
zasob wiadomosci, porownywanie sprawnosci obu algorytméw wcale nie staje sie
prostsze, a w praktyce jest prawie niemozliwe.

Do catego problemu trzeba zatem podejs¢ zupetnie inaczej. Przede wszystkim nalezy
uswiadomic¢ sobie, ze algorytm to nie jest skompilowany i funkcjonujacy program (lub
jego czesc), lecz pewien przepis, ogolny ciag krokéw. Co najwazniejsze, jest on
niezalezny od wszystkich warunkéw ,technicznych”, wymienionych powyzej - nawet od
kompilatora i jezyka programowania. Ten sam algorytm moze by¢ przeciez zapisany w
kazdym niemal jezyku; popatrzmy chociazby na kod poszukujgcy danego elementu
tablicy jednowymiarowej, zapisany w czterech jezykach programowania:

// C(++)
int Szukaj (const int* pTablica, unsigned uRozmiar, int nSzukany)
{
for (int i = 0; 1 < uRozmiar; ++i)
if (pTablica[i] == nSzukany)
return i;

return -1;

}

// Object Pascal (Delphi)
function Szukaj(const ATablica : array of Integer; ASzukany : Integer)
Integer;
var
i : Integer;
begin
for i := 0 to Length(ATablica) - 1 do
begin
if ATablica[i] = ASzukany then
begin
Result := i;
Exit;
end;
end;

Result := -1;
end;

' Visual Basic
Function Szukaj (Tablica () As Integer, Szukany As Integer) As Integer
Dim i As Integer

For i = 0 To Len(Tablica) - 1
If Tablica (i) = Szukany Then
Szukaj = 1
Exit Function
End If
Next 1
Szukaj = -1

End Function

// PHP
function Szukaj ($aTablica, $nSzukany)

{
foreach ($aTablica as $idxIndeks => $nWartosc)
if (SnWartosc === $nSzukany)
return $idxIndeks;

return -1;
}

Mozliwe jest nawet wiecej: algorytm mozna przeciez zapisac, nie uzywajac do tego
zadnego jezyka programowania, lecz postugujac sie tylko pseudokodem:

Funkcja Szukaj (Tablica[] :int, Szukany :int) :int
i :int
Dla Kazdego 1 := Indeks(Tablica) Wykonaj

Jezeli Tablical[i] = Szukany To

Zwrde i
Koniec
Koniec

Zwroce -1
Koniec

W takim wypadku wszelkie rzeczywiste miary, dotyczace faktycznego czasu wykonywania
algorytmu traca jakikolwiek sens. Potrzebujemy zatem takiego oszacowania, ktore
pozwoli wyznaczy¢ efektywnos$¢ algorytmu nie tylko bez jego kompilacji i uruchamiania,
ale nawet bez zapisywania go w zadnym istniejgcym jezyku programowania. Miara
efektywnosci powinna bowiem dotyczy¢ tylko abstrakcyjnego ciagu krokéw, jakim jest
kazdy algorytm.

: Dla zapewnienia Scistosci i wygody czytelnikdw, a takze swojej wiasnej, wszystkie uzyte
: dalej algorytmy bede jednak zapisywat w jezyku C++.

Klasa algorytmu

Zdecydowalismy wiec, ze nie bedziemy sie zajmowac rzeczywistym czasem dziatania
algorytmu na jakims$ komputerze, lecz iloécia elementarnych krokow, jakie musi on
wykona¢, aby wywigzad sie ze zleconego mu zadania. Za elementarny krok uwazamy
natomiast pojedyncza, prostg instrukcje; przyjeto sie zresztg, iz w analizie sprawnosci
algorytmow bierze sie pod uwage gtownie instrukcje poréwnania, ewentualnie
przypisania.

Teraz trzeba sobie zadac¢ pytanie: czy ilos¢ owych elementarnych krokéw bedzie w
kazdym przypadku taka sama? Nietrudno domysli¢ sie, ze nie. Algorytmy tworzymy
przeciez po to, aby operowaty one na nieznanych z gory danych, zatem pracochtonnosé
wykonania czynnosci algorytmu moze Scisle zaleze¢ od tych danych. Doktadniej - moze
ona zaleze¢ od rozmiaru wejsciowych parametréw algorytmu.

Pojecie rozmiaru jest tu uzyte bardzo ogdlnie, a jego doktadne znaczenie jest
nierozerwalnie zwigzane z konkretnym zagadnieniem, czyli rozwazanym algorytmem. Dla
przyktadowej procedury przeszukiwania tablicy rozmiarem danych bedzie oczywiscie ilos¢
elementow tej tablicy; przy sprawdzaniu, czy podana liczba jest pierwsza, decydujaca
role odegra ona sama; podczas znajdowania pozycji jednego napisu wewnatrz innego
rozmiar danych jest wypadkowa dtugosci zaréwno przedmiotu, jak i zakresu poszukiwan;
i tak dalej. Mozna wiec stwierdzi¢, ze:

W analizie efektywnosci algorytmoéow rozmiar danych jest tg wielkoscig opisujacq
wejsciowe dane dla algorytmu, ktdra najbardziej wptywa na ilo§¢ krokéw podjetych
przy rozwigzywaniu problemu.

Czas wykonywania algorytmu, liczony liczbg elementarnych krokéw, najczesciej nie
bedzie wiec wielkoscig stata, lecz funkcja rozmiaru danych wejsciowych - funkcjg w
rozumieniu matematycznym. Szacowanie efektywnosci algorytmu polega zatem na
znalezieniu owej funkcji i tym sie wiasnie teraz zajmiemy.

Znajdujemy ztozonos¢ praktyczng

Jako przyktad wezmiemy sobie stosunkowo prosty algorytm sortowania, znany jako
sortowanie przez wstawianie (ang. insertion sort). By¢ moze znasz sposéb jego
dziatania - a jesli tak, to zapewne wiesz rowniez, ze charaktertyzuje sie on nieszczegolng
efektywnoscig. Skadkolwiek czerpiesz tq wiedze, mozesz jg teraz zweryfikowac.

Przyktad: sortowanie przez wstawianie

Najpierw powiedzmy sobie co$ o samym algorytmie. Sortowanie przez wstawianie jest
prostym sposobem na uporzadkowanie tablicy dowolnych elementéw. Oczywistym
warunkiem jest istnienie jakiego$ kryterium mozliwego uporzadkowania (tzw. porzadku
liniowego) wsrdéd elementow tablicy. W praktycznej sytuacji moga to by¢ ztozone zasady
- szczegdlnie jesli sortujemy np. rekordy w bazie danych - ale dla nas nie ma to zadnego
znaczenia. Liczy sie sama mozliwosc¢ ustalenia, ktéry element jest mniejszy, a ktory
wiekszy; dlatego tez celem pominiecia takich ,technicznych” szczegdétéw bedziemy
zajmowali sie wytacznie sortowaniem liczb catkowitych typu int. Przy uzyciu wtasnych
typdw danych i przecigzania operatoréw mozna zresztg w niemal automatyczny sposob
uzyskac algorytm dla dowolnego rodzaju elementow.

Spdjrzmy wiec na owg procedure, sortujgcg tablice o podanym rozmiarze:

void InsertionSort (const int* aTablica, unsigned uRozmiar)

{
unsigned i, Jj;
int nElement;

// petla zewnetrzna, wybierajaca po kolei kazdy element
// (poczawszy od drugiego, czyli tego o indeksie 1)

for (i = 1; 1 < uRozmiar; ++i)

{

nElement = aTablicali];

// petla wewnetrzna ma za zadanie stworzy¢ miejsce dla
// naszego elementu
for (3 =1 - 1;
i >= 0 && aTablica[j] > nElement; --7j)
// czyni to, przesuwajac elementy do przodu
aTablical[j + 1] = aTablicalj];

// a gdy ono juz jest, trzeba zapisaé¢ element na tym miejscu
aTablical[j + 1] = nElement;

}

Zasada jej dziatania jest prosta. Zewnetrzna petla for przebiega po wszystkich
elementach tablicy, natomiast wewnetrzna zajmuje sie szukaniem (albo raczej
tworzeniem) wtasciwego miejsca dla aktualnego elementu. Robi to, przesuwajac w strone
konca tablicy wszystkie liczby, ktore sg wieksze od tej rozwazanej (czyli nElement). Na
powstaty w ten sposob wakat wstawiana jest rzeczona liczba, a wowczas zewnetrzna
petla zajmuje sie kolejnym elementem. Ten jest znowu poréwnywany z poprzedzajgcymi
go liczbami, wstawiany na odpowiednie miejsce... i tak dalej, az do konca tablicy.

Ustalamy reguty

Sprobujmy teraz zajac sie sednem sprawy, czyli przyblizeniem czasu dziatania algorytmu.
Jak wspominatem na poczatku, interesowac nas bedzie czas wyrazony w postaci liczby
elementarnych krokéw wykonanych przez procedure.

Co mozna rozumie¢ przez to pojecie? Na zwyczajnym komputerze, dokonujacym naraz co
najwyzej jednej czynnosci, za elementarny krok wygodnie jest przyjmowac pojedyncza
instrukcje - zwykle wiersz kodu. Trzeba jednak uwazac (zwtaszcza w jezykach wysokiego
poziomu), by nie robi¢ tego bezmysinie. Wywotania funkcji nie mozna bowiem traktowac
jako jeden krok, bo jej wykonanie zajmuje w rzeczywistosci wiecej pracy.

Najrozsadniej jest zatem uwazac za pojedyncze kroki najprostsze instrukcje. Naleza do
nich gtéwnie przypisania oraz porownania. Dla uproszczenia mozna jednoczesnie

zatozy¢, ze obie te operacje zajmuja tyle samo czasu - wéwczas nie bedzie potrzeby ich
rozrdzniania.

Drugg wazng kwestig jest sprecyzowanie, czym jest dla nas rozmiar danych wejsciowych.
Mysle, ze w tym przypadku trudno o jakiekolwiek watpliwosci. Skoro przedmiotem
naszych zainteresowan jest tablica, logicznym okresleniem rozmiaru danych jest wielkos¢
tej tablicy. Sciélej méwiac, bedzie to liczba jej elementéw, a wiec wartoéé zmiennej
uRozmiar. Dalej bedziemy jg oznacza¢ w skrécie jako n.

Celem naszych poszukiwan jest wobec tego odszukanie funkcji f(n), ktorej wartosci
bytyby ilosciami krokéw algorytmu potrzebnych do posortowania n-elementowej tablicy.
Mozemy teraz gteboko odetchnaé i zabra¢ sie do pracy...

Przygladamy sie algorytmowi

Zanim ustalimy ilo$¢ krokéw algorytmu w zaleznosci od rozmiaru danych, musimy
wyroznic te instrukcje, ktorych wykonanie bedziemy uwazac za jeden krok. Zgodnie z
ustaleniem z poprzedniego paragrafu, bedq to:

» instrukcja inicjujgca licznik (i = 1) na poczatku zewnetrznej petli for

» sprawdzenie wartosci tegoz licznika (i < uRozmiar) na poczatku kazdego cyklu
zewnetrznej petli for
przypisanie nElement = aTablical[i] w zewnetrznej petli
instrukcja inicjujaca licznik (§ = i - 1) na poczatku wewnetrznej petli for
instrukcja sprawdzajace wartosc¢ tego licznika (i >= 0 && aTablical[j] >
nElement) na poczatku kazdego cyklu wewnetrznej petli for (wtasciwie mamy
tutaj dwa pordéwnania, ale dla uproszczenia potraktujemy to jako jedng instrukcje)
przypisanie aTablical[j + 1] = aTablical[j] w wewnetrznej petli
dekrementacja licznika (--j) pod koniec cyklu wewnetrznej petli
przypisanie aTablica[j + 1] = nElement w zewnetrznej petli
inkrementacja licznika (++i) pod koniec cyklu zewnetrznej petli

>
>

A%

YV VYV

Zaktadamy, ze pojedyncze wykonanie kazdej z tych instrukcji trwa taki sam okres czasu,
a koszt wykonania mozemy oznaczy¢ po prostu jako 1. Pozostaje jeszcze kwestia
ustalenia, jak czesto (w zaleznosci od n) wykonuje sie kazda instrukcja.

Nie bytoby to bardzo trudne, gdyby pewna kwestia, ktorej, jak sie zdaje, nie sposéb
obejs¢. Chodzi o mianowicie o wewnetrzng petle: nie mozemy bowiem doktadnie ustali¢
liczby jej cykli, bowiem nie zalezy ona tylko od wielkosci tablicy. Przeciwnie, przy
szukaniu miejsca dla i-tego elementu liczy sie kazdy z poprzedzajacych go i - 1
elementow tejze tablicy. Aby ustali¢ ustali¢ doktadng ilo$¢ wykonanych przypisan
aTablica[j + 1] = nElement trzebaby zatem... samodzielnie jg policzy¢! To
zdecydowanie niepraktyczne - céz wiec z tym zrobié?

Otdéz na razie odtozymy sobie ten problem na potke. Wprowadzimy po prostu dodatkowy
symbol t; na oznaczenie liczby sprawdzen warunku wewnetrznej petli for w zaleznosci
od wartosci i. Pézniej zastanowimy sie, jak moznaby te dodatkowg zmienng usunac.

Funkcja ztozonosci

Teraz nalezy ponownie przyjrzec¢ sie procedurze InsertionSort () i oznaczyc¢ taczny
koszt z instrukcji sposrod tych z listy podanej powyzej. Pamietajgc o parametrach ni t;,
mozemy to uczyni¢ w ten sposob:

void InsertionSort (const int* aTablica, unsigned uRozmiar)
{

// (wszystkie niewazne szczegdly pominieto)

for (i = 1; // 1

i < uRozmiar; // n

++1) // n -1

{
nElement = aTablicalil]; // n -1
for (3 = 1 - 1; // n -1

i >= 0 && aTablica[j] > nElement; // 2:
-—9) // Zinzz(ti _1)
2

aTablical[j + 1] = aTablicalj]; //
aTablical[j + 1] = nElement; // n -1

}

Koniecznie przeanalizuj ten przyktad, aby zrozumie¢, dlaczego koszty tych instrukcji sg
wiasnie takie. Przy liczeniu cykléw petli warto pamieta¢, ze wartos¢ zmiennej uRozmiar
to nic innego, jak nasze n.

W tym momencie z tatwoscig mozemy juz przedstawi¢ sumaryczny koszt catego

algorytmu. Dodajac do siebie koszty wykonania poszczegdlnych instrukcji otrzymamy
ostatecznie®:

T(n):4n—2+zzn:ti

i=2

Ta funkcja T(n) nosi nazwe ztozonosci praktycznej algorytmu.

Zlozono$¢ praktyczna jest funkcjg, ktora dla podanego rozmiaru danych wyznacza
doktadna liczbe elementarnych krokéw potrzebnych do wykonania danego algorytmu.

Popadamy w pesymizm

Nasza funkcja wyglada stosunkowo zgrabnie, ale ma jeden mankament: jest zalezna nie
tylko od n, ale tez od t;, czyli od faktycznego rozmieszczenia danych (elementow
sortowanej tablicy). Wynika stad, ze nawet dla tablic tego samego rozmiaru czasy
wykonania procedury InsertionSort () mogaq sie rézni¢. Obiecatem ci, ze pozbedziemy
sie tego zgrzytu, wiec pora to zrobic.

W praktycznych zastosowaniach kazdy algorytm jest wywotywany wielokrotnie,
najczesciej dla réoznych danych. Dla kazdego zestawu istnieje oczywiscie jego wtasna
wartos¢ T(n), zalezna od n oraz od wspoétczynnikdéw &5, ts, ..., t,. Pomysimy jednak, czy
ma ona jaki$ praktyczny sens?... Potencjalnych zestawdw danych jest nieskonczenie
wiele, wiec interesowanie sie ztozonoscig algorytmu dla kazdego z nich raczej mija sie z
celem.
Zamiast tego lepiej jest postawi¢ na jakie$ uogolnione przypadki, dla ktérych wartosci
T(n) bedq charakterystyczne. Dlatego tez w algorytmice rozwaza sie trzy takie warianty:
> przypadek optymistyczny, ktéry oznacza najmniejszg liczbe wykonanych krokdéw
» przypadek sredni, oznaczajacy ztozonos$¢ algorytmu dla typowego zestawu
danych
» przypadek pesymistyczny, odnoszacy sie do zestawu danych powodujgcego
najdtuzszy czas wykonania

1 Tzn. po dokonaniu kilku przeksztatcen upraszczajacych sumy.

W kazdym z nim zakfadamy, ze n jest takie samo (bo nadal chcemy, by od niego zalezata
ztozonos¢), jednak wybranie ktéregos przypadku determinuje wartosci t;.. Innymi stowy,
czynimy wowczas pewne (rozsadne) zatozenia o rozmieszczeniu danych wejsciowych. W
naszym przypadku chodzi o uktad liczb w sortowanej tablicy.

Zacznijmy zatem od przypadku optymistycznego. Dla sortowania bedzie nim fakt, iz
podana tablica jest juz rzeczywiscie posortowana na samym poczatku - a zatem
wykonanie algorytmu jest zbedne. Wszystkie elementy sg na wtasciwych miejscach, a
wiec liczba sprawdzen t; bedzie rowna 1 przy kazdym obrocie zewnetrznej petli. Wéwczas
funkcja ztozonosci przedstawia sie nastepujgco:

T(n)=4n—2+22n:1

i=2
Co po uproszczeniu daje nam:
T(n)=6n-4

W najlepszym przypadku ztozonos¢ jest wiec funkcjg liniowg wzgledem n, czyli jest
proporcjonalna do rozmiaru danych.

Taki skrajny przypadek jest bardzo rzadki. Na drugim koncu lezy wariant wybitnie
pesymistyczny, zakfadajacy maksymalny koszt wykonania algorytmu. W tym przypadku
podana tablica jest posortowana, ale... w odwrotnym porzadku! Wtedy tez wszystkie
elementy muszg by¢ kolejno posytane na poczatek tablicy: i-ty element przemiesci sie
wiec o i - 1 miejsc do tytu w kazdym obrocie zewnetrznej petli. Wniosek: t; = i dla
kazdego i = 2, 3, ..., n. Funkcja T(n) bedzie zatem wygladata tak:

T(n)=4n—2+2zn:i

i=2

Wystepujaca tu suma nie jest juz tak banalna jak w przypadku optymistycznym, Do jej
przepisania w bardziej przystepnej postaci najlepiej postuzy¢ sie znanym ci, mam
nadzieje, wzorem na sume najprostszego ciggu arytmetycznego:

n(n+1)
2

1+2+...4n=>n=
k=1

A poniewaz my liczymy sume od 2, finalnie (po kilku przeksztatceniach, ktore
matematycy okresliliby jako ,trywialne”) funkcja T(n) przyjmie postac:

T(n)=n*+5n

W tym przypadku jest to wiec funkcja kwadratowa. Czas wykonania algorytmu rosnie
wiec znacznie szybciej w miare wzrostu rozmiaru danych.

Tak jest w przypadku najgorszym. Mozesz sie zdziwi¢, ale to wtasnie te sytuacje
powinniSmy przede wszystkim rozpatrywac, gdy mamy na celu okreslenie efektywnosci
algorytmu! Sg ku temu co najmniej trzy powody:

» Przypadek pesymistyczny jest tak zty, ze juz gorszy byc¢ nie moze. Wyznaczanie
ztozonosci w tym wiasnie przypadku daje nam wiec gérne ograniczenie na czas
dziatania algorytmu. Innymi stowy, wiemy na pewno, jakiej magicznej granicy
czasu wykonania nasza procedura nigdy nie przekroczy. Taka informacja jest

wbrew pozorom znacznie cenniejsza niz sredni czas dziatania: jesli bowiem
przypadek pesymistyczny bardzo odbiega od $redniego, to mozemy by¢
nieprzyjemnie zaskoczeni, gdy akurat na niego natrafimy. Pot biedy, jezeli
wytapiemy ten fakt podczas testowania programu. O wiele gorzej, jezeli
spowoduje to irytacje koncowego uzytkownika, ktory zlecajgc programowi
rutynowg czynnos$c¢ stwierdzi nagle, ze wykonuje sie ona dwie minuty zamiast
czterech sekund. Ttumaczenie sie zgubnym wptywem faz Ksiezyca moze wtedy nie
by¢ wystarczajace...

» Z drugiej strony przypadek pesymistyczny ma tendencje do czestego
wystepowania. By¢ moze niekoniecznie dotyczy to sortowania, ale objawia sie
regularnie podczas wielu powszechnych operacji, jak np. wyszukiwania. Catkiem
prawdopodobna jest przeciez proba wyszukania w bazie danych rekordu, ktory nie
istnieje - a to jest witasnie przypadkiem pesymistycznym.

> Wreszcie, wariant malkontencki jest zwykle podobny do przypadku Sredniego.
Wezmy chocby nasze sortowanie: w przypadku srednim liczba przestawien
elementow tablicy dokonywanych w j-tym obrocie petli to t; = i / 2. Jesli masz na
to ochote, mozesz zapisac¢ funkcje T(n) dla tego witasnie przypadku; po
uproszczeniu zawartej w niej sumy otrzymasz ponownie funkcje kwadratowa.

Znajdujemy ztozonos¢ teoretyczng

».Zaraz"”, mozesz jednak zaprotestowac. ,W przypadku $rednim bedzie to jednak inna
funkcja kwadratowa, przyjmujgca mniejsze wartosci dla tych samych n!” Nie moge sie z
tobg nie zgodzi¢, bo bytby to zamach na podstawy matematyki. Moge jednak zadac¢
prowokujgce pytanie: A jakie to ma znaczenie?

I spiesze jednoczesnie z odpowiedzig, ze wcale nie takie duze! Wezmy sobie chocby
sytuacje, w ktdrej sortujemy 1000-elementowgq tablice (do$¢ skromny przypadek,
nawiasem mowigc), a wiec n = 1000. Poniewaz zas$ T(n) jest funkcjg kwadratowg, nalezy
oczekiwag, ze liczba elementarnych krokéw algorytmu bedzie sie dla réznych rozktadéw
danych wahac¢ w okolicach miliona. Czy jednak ma znaczenie doktadna liczba operacji
podstawowych? Czy zrobi to jakas istotng rdoznice, gdy algorytm wykona w jednym
przypadku milion i piec¢ tysiecy, a w drugim milion i piecdziesiat tysiecy instrukcji?...
Nawet nie trzeba liczy¢, jakiego rzedu jest to réznica (podpowiedz: to sq promile) -
mozesz empirycznie sie przekonac, ze dla dzisiejszych komputerdw to kwestia
mikrosekund.

Naturalnie, mozna sie upierac, ze te szczeg6ty majg znaczenie. Jesli na przyktad
wspotczynnik przy n w T(n) wynositby kilka setek, to w ostatecznym rozrachunku miatoby
to spory wptyw na czas wykonania. Musisz jednak uswiadomic¢ sobie, ze takie zatozenia to
droga donikad. Wystarczy wzig¢ bowiem wieksze n - powiedzmy 10000, zndéw nie jest to
jeszcze bardzo duzo - by wykazaé praktyczng identycznos$¢ obu pozornie réznych
ztozonosci (Sredniej i optymistycznej).

Kluczowa cecha algorytmu

Te obserwacje pozwalajg nam na uczynienie ostatniego kroku w analizie efektywnosci
algorytmow. Mozemy teraz okreslac ich ztozonos¢ teoretycznag.

Zlozonosc¢ teoretyczna (zwana tez klasa algorytmu) okresla, jak silnie zalezg od
siebie: rozmiar danych i czas wykonania algorytmu - przy zatozeniu, ze ten pierwszy
wzrasta nieograniczenie.

Wielkos$¢ ta, podana przy opisie konkretnego algorytmu, jest jak CV kandydata o prace.
Patrzac na nig i poréwnujac z innymi rozwigzania dla tego samego zadania mozemy
tatwiej zdecydowad, ktory algorytm bedzie dla nas najodpowiedniejszy. Ztozonos¢
teoretyczna jest bowiem uniwersalng miara efektywnosci.

Notacja

Skoro jest ona tak wazna, powinniSmy nauczyc sie nig postugiwaé. Na szczescie nie jest
to trudne i nie wymaga nawet znajomosci matematycznych podstaw, kryjacych sie za
stosowang notacja.

Wrocmy wiec do analizowanego przez caty czas algorytmu InsertionSort () ijego
funkcji ztozonosci T(n). Od jakiegos czas podkreslatem usilnie fakt, ze jest to funkcja
kwadratowa wzgledem n; jednoczesnie przekonywatem, ze tak naprawde nie warto
wnikac, jak doktadnie ta funkcja wyglada.

Takie podejscie jest wiasnie istotg okreslania ztozonosci teoretycznej. Bierzemy po prostu
pod uwage ten sktadnik, ktéry ma w ostatecznym rozrachunku najwiekszy wplyw na
wartosé T(n). W naszym przypadku jest to n?, gdyz to on czyni ja funkcjq kwadratowa.
Przy uzyciu standardowego sposobu zapisu wyrazamy to tak, iz: ztozonos¢ algorytmu
InsertionSort() jest rzedu ®(n?). Bardziej sformalizowane stwierdzenie to po prostu:

T(n):®(n2)

Mowi ono dokfadnie to, ze funkcja T(n) jest funkcja kwadratowa wzgledem n. Wiemy
rzecz jasna, ze T(n) okresla nam takze liczbe elementarnych instrukcji wykonywanych
podczas sortowania przez wstawianie tablicy n-elementowej. Notacja ©(n?) méwi wiec
rowniez o tym, iz ilos¢ tych krokéw jest proporcjonalna do kwadratu rozmiaru
sortowanej tablicy.

Asymptotycznosé

Jak widzimy, podanie ztozonosci teoretycznej wskazuje jedynie, jak bardzo czas
wykonania algorytmu zalezy od rozmiaru danych. Takie uproszczenie jest uzasadnienie z
jednego powodu. Zaktadamy mianowicie, ze tenze rozmiar jest duzy - wiasciwie mozna
by nawet powiedzieé, ze dazy do nieskoriczonoéci. Z tego powodu zapis ©(n?) (i jeszcze
kilka podobnych) okreéla sie jako notacje asymptotyczng.

Mimo ze w toku analizy ztozonosci przemycitem juz kilka argumentéw popierajacych takie
podejscie, moze ono nadal wydawac ci sie naduzyciem. Dlaczego wiec mielibysmy
stosowac takg nieprecyzyjng specyfikacje efektywnosci?... Powoddéw jest kilka:

» Zatozenie, ze rozmiar danych dazy do nieskonczonosci (albo, tagodniej mowiac,
jest bardzo duzy) nie jest wcale tak niedorzeczne, jak na pierwszy rzut oka
mogtoby sie wydawac. Przyktad z sortowaniem tysigca czy dziesieciu tysiecy liczb
jest raczej regutg niz wyjatkiem. Podobnie czesto spotkac sie mozna z
wyszukiwaniem w zbiorze danych liczagcym miliony rekorddéw czy odczytywaniem
bajtéw sposrdéd wielu miliardow zmagazynowanych na dysku twardym. Sytuacja,
gdy informacji do przetworzenia jest bardzo duzo nie nalezy zatem wyjatkow.
Warto zresztg przypomnieé, ze wtasnie koniecznos$¢ obrobki wielkich porcji danych
byfa jedng z przyczyn powstania komputerow...

> Analiza algorytmow celem znalezienia ich ztozonosci praktycznej najczesciej
prowadzi do uzaleznienia jej nie tylko od rozmiaru zestawu danych, ale takze od
innych jego cech. W przypadku sortowania wprowadziliSmy na przykifad
wspotczynnik t;, ktory w prosty sposéb charakteryzowat stopien uporzadkowania
tablicy. MieliSmy przy tym szczescie, gdyz wystepowat on jedynie w jednym
miejscu; ponadto, po przyjeciu zatozen co do rozwazanego przypadku mozna byto
to pojedyncze wystgpienie zredukowac jedynie przy pomocy raczej prostych
operacji na sumach. W wielu czesto stosowanych algorytmach nie jest jednak tak
rozowo. Doprowadzenie funkcji T(n) do sensownej postaci (bez dodatkowych
parametrow) moze by¢ niekiedy wrecz niemozliwe. Znacznie czesciej i fatwiej
mozna natomiast podaé asymptotyczne oszacowanie na T(n) - czyli znalez¢
ztozonos¢ teoretyczng algorytmu.

> Jak bedziesz sie mogt dowiedzie¢, czytajac dalej ten rozdziat, okreslenie klasy
algorytmu jest czestokro¢ mozliwe wrecz ,na oko” - jedynie poprzez uwazne
przyjrzenie sie danemu przepisowi. Woéwczas nie tylko nie ma potrzeby
dokonywania jakich$ skomplikowanych operacji algebraicznych, ale takze
oznaczania elementarnych instrukcji w procedurze i zapisywania ztozonosci
praktycznej. tatwos¢ uzyskania klasy algorytmu jest wiec kolejnym argumentem
przemawiajgcym za jej stosowaniem.

> I wreszcie ostatni powdd, nalezacy do kategorii faktéow dokonanych. Otéz
ztozonos¢ teoretyczna jest powszechnie przyjetym sposobem okreslania
efektywnosci algorytmach. Oczywiscie, w opisach dos$¢ czesto mozna natrafi¢ na
uwagi méwigce o tym, jak dane rozwigzania sprawdza sie w praktyce w
poréwnaniu z innymi, o tej samej klasie. Nie zmienia to jednak faktu, iz klasa
algorytmu jest najwazniejszym czynnikiem determinujgcym jego rzeczywisty
czasy wykonania - wazniejszym od szczegdtdw technicznych.

Nasze dalsze poszukiwania bedg wiec koncentrowaty sie wiasnie na tym pojeciu. W
nastepnej sekcji postaram sie przedstawi¢ w miare przystepny sposéb te porcje
matematyki, ktdra kryje sie za notacjg asymptotyczng. Natomiast reszta rozdziatu to
kilka wskazowek, majacych na celu pomoc w znajdowaniu ztozonosci obliczeniowej
algorytmoéw w typowych sytuacjach (najczesciej bez uciekania sie do skomplikowanego
aparatu matematycznego).

Notacje asymptotyczne

W tej sekcji powiemy sobie wiecej o tym niezbyt oczywistym przy pierwszym kontakcie
sposobie wyrazania efektywnosci algorytméw - czyli o notacjach asymptotycznych.

Mowitem juz wczesniej, ze w tym kontekscie przymiotnik ‘asymptotyczny’ oznacza, ze
interesujemy sie sytuacjami, gdy rozmiar danych algorytmu rosnie nieograniczenie.
Stanowi to matematyczne uogodlnienie najczesciej spotykanym w prawdziwym zyciu
przypadkow, gdy zestaw danych dla algorytmu jest faktycznie bardzo duzy.
Zatozenie o dazeniu do nieskonczonoci pozwala jednak na dokonanie kilku znaczacych
uproszczen. Pokazatem pod koniec poprzedniej sekcji, ze polegajg one na:

> pominieciu wszystkich sktadnikéw funkcji oprécz tego, ktéry ma najwiekszy wptyw

na jej wartos¢ (a wiec rosnie najszybciej)
» pominieciu wszelkich statych wspdtczynnikow

Na tej podstawie mogliSmy wiec stwierdzi¢, ze asymptotyczny czas dziatania algorytmu
sortowania przez wstawianie wynosi ©(n?), gdzie n jest wielkoscig sortowanej tablicy.
Teraz wyjasnimy sobie doktadnie, co ten zapis oznacza, a takze wprowadzimy dwie inne,
podobne notacje. Omowimy sobie tez wiasnosci tych notacji, ktére zdecydowanie
utatwiajg okreslanie klasy algorytmu w praktycznych sytuacjach.

Trzy wazne definicje

Na poczatku warto uscisli¢ pewien fakt, ktéry niektérych zapewne zbytnio nie wzruszy,
ale wielu moze co najmniej zdegustowac. Otéz notacje asymptotyczne sg szeroko
stosowane przede wszystkim w informatyce, lecz jako samo pojecie majg korzenie
zdecydowanie matematyczne. Dlatego tez przy ich omawianiu nalezy postugiwac sie
terminami wzietymi z dziedziny krolowej nauk - przede wszystkim pojeciem funkcji.

Algebraiczne pojecie funkcji jest, mam nadzieje, wszystkim doskonale znane, cho¢
gtéwnie pod postacig funkcji okreslonych na liczbach rzeczywistych. Nas bedgq tutaj
bardziej interesowaty funkcje zdefiniowane dla zbioru liczb naturalnych

N= {0,1,2,3,4,...} . Powdd jest oczywisty: parametry okreslajace egzemplarze problemoéw

dla algorytméw (jak chocby tablice do posortowania) sg niemal wytgcznie liczbami
naturalnymi.

- Teoretycznie nic nie stoi na przeszkodzie, aby podane nizej definicje stosowac takze dla
- funkcji liczb rzeczywistych, ale wtedy trudniej o algorytmiczny sens takich pojeé.

W tym paragrafie zdefiniujemy sobie zatem trzy notacje asymptotyczne, uzywane w
odniesieniu do funkcji liczb naturalnych. Jakkolwiek sam fakt takiego matematycznego
postawienia sprawy moze juz z miejsca by¢ odstreczajacy, definicje te nie sg wcale takie
trudne do zrozumienia. W praktyce stosuje sie je catkiem intuicyjnie.

Poniewaz w kwestii definiowania notacji asymptotycznych panuje pewien rozgardiasz

| (wspomne o nim pod koniec), musiatem zdecydowac sie na jaki$ wybdr, ktdry bytby

| jednoczesnie prosty i uzyteczny. Postuzytem sie wiec definicjami z powszechnie uznanej
| ksiazki na temat algorytmiki: Wprowadzeniu do algorytmow Thomasa H. Cormena i

| wspotautorow. One z kolei sq wprost bazowane na absolutnej klasyce literatury

: informatycznej, czyli Sztuce programowania Donalda E. Knutha.

Doktadne oszacowanie (notacja ®)

Zacznijmy od uzywanego juz przez nas symbolu ©, wykorzystywanego w zapisie ©(n?).
Ogolnie jest to notacja postaci ®(f(n)), co czytamy ‘wielkie theta od f od n’. Z wygladu
zdaje sie wiec, ze mamy do czynienia z ,funkcjg okreslong na innej funkcji” albo z
funkcjami zagniezdzonymi. Naprawde jest to co$ ciekawszego; mamy bowiem do
czynienia ze zbiorem funkcji okreslonym mniej wiecej tak:

o((n)-|

g(n):istnieja liczby c,,c,,n, >0, takie ze
0<c f(n)<g(n)<c,f(n)dla wszystkichn>n,

Zbidr funkcji moze by¢ dziwnym tworem, jesli dotad bytes przyzwyczajony wytacznie do
zbioréw liczbowych czy punktéw na ptaszczyznie albo w przestrzeni. W matematyce
elementami zbioréw mogg by¢ jednak obiekty dowolnego rodzaju (nawet inne zbiory),
wiec nic nie stoi na przeszkodzie, abysmy potaczyli w zbidor ©(f(n)) funkcje spetniajace
wyzej wymieniony warunek.

W zwieztym, dostownym zapisie matematycznym powyzsza definicja wyglada
nastepujgco:

O(f(n))={g(n):3c,.c,.n,eN*vn=n, 0<cf(n)<g(n)<c,f(n)}

Codz jednak ten warunek praktycznie oznacza?... Dowolna funkcja g(n) nalezy do zbioru
O(f(n)) wytacznie wtedy, gdy mozemy sobie znalez¢ trzy wymienione w definicji liczby ¢y,
Cz, Ny, dla ktérych g(n) jest ,wstawiona miedzy” funkcje cif(n) i c.f(n). Ten aspekt
najtatwiej zrozumiec¢, patrzac na wykresy wszystkich trzech funkcji: od pewnego
momentu (ng) funkcja g(n) lezy w catosci w obrebie ,nozyc” tworzonych przez wykresy
cif(n) i cf(n):

g(n)

c,f(n)

fiy

Wykres 1. Graficzna interpretacja faktu, iz g(n) nalezy do ©(f(n))

Oznacza to takze, ze dla n = ng funkcja g(n) jest réwna f(n) z dokladnoscia do stalej
czynnika (wartosci obu funkcji sg do siebie proporcjonalne). Mowimy tez, ze:

Jesli g(n) nalezy do ®(f(n)), to f(n) jest asymptotycznie doktadnym oszacowaniem
dla f(n).

Zwrot ‘dokfadne oszacowanie’ wydaje sie mieé cechy jakiego$ dziwnego paradoksu,
jednak ma on sens. Jak sie bowiem przekonamy, notacja ® ma charakter podobny do
(wzglednej) rownosci obu funkcji - a przynajmniej takiej rownosci, na ktérg mozemy
sobie pozwoli¢ w analizie algorytmow.

Korzystajac z podanej definicji moznaby uzasadni¢, ze znaleziona przez nas funkcja T(n)
= n? + 5n rzeczywiscie jest rzedu ®(n?). Aby uczynié, nalezy po prostu znalez¢ trzy
dodatnie state ¢y, ¢y, ng tak, aby spetniona byta nieréwnos¢:

¢n’<n’+5n<c,n’

Nie jest to bardzo skomplikowane - wystarczy podzieli¢ wszystko przez n? i rozwigzac
obie nieréwnosci przy zatozeniu, ze n 2 0. W typowych przypadkach nie musimy jednak
tego robi¢. W zupetnosci zadowoli¢ sie mozna nieformalng metodg z poprzedniej sekcji:
trzeba po prostu bra¢ pod uwage tylko najbardziej znaczacy sktadnik i poming¢
wszelkie wspoétczynniki statle.

tatwo mozna wiec zrozumie¢, dlaczego kazdy wielomian stopnia d jest funkcjg rzedu
©(nY) - po prostu bierzemy pod uwage tylko jego najwyzsza potege i nie przejmujemy sie
statymi wspdtczynnikami. Szczegélnym przypadkiem jest d = 0; wtedy mamy do
czynienia ze stalq - funkcja rzedu ©(n°), czyli po prostu ®(1). Taki zapis oznacza wiec, ze
mamy na mysli dowolna liczbe, ktdra jest stata i niezalezna od parametru funkcji’.

2 Troche niesciste jst uzywanie ©(1), bo wtedy faktycznie nie wiemy, co jest tym parametrem funkcji, od
ktorego ©(1) jest niezalezne. Generalnie jednak uzycie tego symbolu w réwnaniach nie powoduje
niejednoznacznosci, jesli wiemy, co w takim réwnaniu jest zmienng niezalezna.

Ograniczenie gorne (notacja O)

Druga z notacji jest jakby ,gorng potowg” pierwszej. Napisanie O(f(n)), co czytamy jako
‘wielkie 0 od f o n"®, oznacza mianowicie zbiér:

O(.)) g(n):istnieja liczby c,n, >0, takie ze
n)) =
(0< g(n)écf (n) dla wszystkich n>n,

Wszystkie nalezace do niego funkcje majg wiec te wiasnosé, ze f(n) ogranicza je od géry.
Jezeli zatem g(n) nalezy do O(f(n)), to przy dazeniu n do nieskoriczonosci wartosci g(n)
sq mniejsze od f(n) co najmniej o staty czynnik (a nawet bardziej). Znowuz najlepiej
widac¢ to na wykresie. Mamy mianowicie juz tylko jedno ,ostrze nozyczek” - to gérne,
reprezentujgce f(n). Od pewnego miejsca (ny) wykres obrazujacy cg(n) caty czas
znajduje sie wiec pod nim. Odpowiada to temu, iz g(n) jest asymptotycznie mniejsze
od f(n):

r 3
cf{m)

=

g

Wykres 2. Graficzna interpretacja faktu, ze g(n) nalezy do O(f(n))

Mozna tez powiedzie¢, ze f(n) jest asymptotycznym ograniczeniem gornym dla g(n).
Majac informacje o funkcji wyrazone w postaci notacji O wiemy zatem tylko tyle (albo az
tyle), ze funkcja na pewno nie przekroczy tej podanej wraz z zapisem O(f(n)) - chocby
argument n byl maksymalnie duzy.

Przekfadajgc to na analize algorytmdéw mozemy powiedzie¢, ze znajac asymptotyczne
ograniczenie goérne wiemy, ze dany algorytm nie bedzie sie wykonywat dtuzej. Jesli zas
informacja ta dotyczy przypadku pesymistycznego, mamy catkowitg pewnos¢, ze jest to
maksymalny czas dziatania procedury w zaleznosci od rozmiaru danych.

Jak sie wkrotce przekonamy, wyznaczenie takiego zgrubnego oszacowania dla algorytmu
jest zwykle catkiem proste. W kolejnym podrozdziale zajmiemy sie kilkoma technikami
dokonywania tego.

3 Symbol O nie jest tutaj zwykta, wielka literg O, lecz grecka literg omikron. Naturalnie, jeéli nie dysponujemy
akurat czcionkg z greckim alfabetem, postuzenie sie tacinskim O nie jest zadnym kardynalnym btedem.

Ograniczenie dolne (notacja Q)

Jak nietrudno sie domysli¢, ostatnia notacja jest ,dolng potowa” pierwszej. Zapis Q(f(n))
czytamy ‘wielkie omega od f od n’, a symbolizuje on ostatni juz dzisiaj zbidor funkcji:

a((v)-|

g(n):istnieja liczby c,n, > 0, takie ze
0 <cf (n)<g(n)dla wszystkich n>n,

Podobnie jak w przypadku O(f(n)), funkcje nalezace do Q(f(n)) sq ograniczone tylko z
jednej strony. Tutaj jest to limit dolny, a zatem jesli g(n) nalezy do Q(f(n)), to znaczy to,
ze jest ona asymptotycznie wieksza od f(n). Od pewnego miejsca no wykres cg(n) lezy
wiec w catosci ponad wykresem f(n):

'y
g(n)

cfin)

=
g

Wykres 3. Graficzna interpretacja faktu, iz g(n) nalezy do Q(f(n))

tatwo zgadnaé, ze méwimy wtedy, iz f(n) jest asymptotycznym ograniczeniem
dolnym dla g(n). Jezeli wiec f(n) wyraza czas wykonania algorytmu w przypadku
optymistycznym, to wiemy na pewno, ze lepszych wynikéw ten algorytm juz nie osiggnie
- nawet dla najbardziej korzystnych danych.

Obie potdéwki notacji ® mozemy teraz potaczy¢ w catos¢. Mianowicie:

Jezeli g(n) nalezy zaréwno do Q(f(n)), jak i do O(f(n)), to z pewnoscig nalezy takze do
e(f(n)).

Inaczej mdéwigc, wyznaczenie identycznych asymptotycznych ograniczen z géry i z dotu
dla danej funkcji pozwala nam na automatyczne ustalenie jej oszacowania. Czesto w ten
wiasnie sposéb mozna okresli¢ dokfadnie klase algorytmu.

Nieco zamieszania

Jako konstrukcje matematyczne notacje asymptotyczne musza by¢ $ciste. Zycie
wprowadza aczkolwiek nieco bataganu w ten wyidealizowany obraz. Stosowanie tych
notacji wymaga wiec jeszcze dwdch uwag na ten temat.

Notacja ® a O

Jest catkiem prawdopodobne, ze z symbolem O(f(n)) zetknates$ sie juz wczesniej. Jesli
tak, to zapewne byt on uzywany w niezupetnie poprawnym konteks$cie. Ograniczenie
gorne jest bowiem czesto stosowane zamiast dokftadnego oszacowania, czyli @(f(n)).
Takie okreslanie klasy algorytmu jest mato precyzyjne. Wezmy na przyktad nasze
sortowanie przez wstawianie: poniewaz mozemy powiedzie¢ o nim, ze jest klasy O(n?), to
z petng powaga mozna réwniez twierdzié, ze nalezy ono takze do klasy O(n’) czy nawet
oM

Praktyczny sens takich stwierdzen jest zaden; poréwnac to mozna to ,precyzyjnego”
okreslania liczby 5 jako ,z pewnoscig mniejszej od miliona”, podczas gdy faktycznie nie
osigga nie ona nawet dziesigtki. Oczywiscie, nikt powazny nie stosuje notacji O w ten
sposéb, bo to prowadzitoby jedynie do nieporozumien. Podkreslam jednak, ze jest to
catkiem poprawne, acz nonsensowne.

Dlatego tez we wiarygodnych zrédfach wiedzy na temat algorytmow bacznie przestrzega
sie pola zastosowan trzech notacji asymptotycznych. W dalszej czesci tego rozdziatu
rowniez bede konsekwentnie rozrézniat zapis ©(f(n)) i O(f(n)), aby nie doprowadzac¢ do
btedéw.

ROwnoscé?...

Jak podkreslatem przy definicjach, wszystkie trzy symbole asymptotyczne sg zbiorami -
dokfadniej mdéwiac, zbiorami funkcji. Wtasciwie wiec oznaczenie przynaleznosci do
jednego z tych zbiorow powinno sie zapisywac np. tak:

a(n)<o(()

Oznacza to, ze funkcja g(n) nalezy do zbioru ©(f(n)) albo ze po prostu jest ona tego
samego rzedu co f(n). Bardzo czesto spotyka sie jednak zapis w formie réwnosci:

g(n)=06(f (n))

Pozornie jest on niepoprawny, bo wystepuje tu swoista ,, niezgodnosc¢ typdw”: po lewej
stronie mamy pojedynczg funkcje, a po prawej caty zbidr. Mozliwo$¢ wystepowania
notacji asymptotycznych w takich rownaniach jest jednak bardzo cenna; pozwala ona
mianowicie na ukrycie nieistotnych szczegoétéw. Kazde wystgpienie symbolu ®, Olub Q w
rownaniu trzeba po prostu interpretowac jako odpowiednia funkcje nalezacg do
podanego zbioru. Odpowiednig - to znaczy wybrang tak, aby cata rownos¢ byta spetniona.

Oczywiscie nie zawsze doktadnie wiadomo, o jakg funkcje chodzi. W takich jednak
przypadkach jest to zwykle nieistotne. Przyktadowo, podanie ztozonosci algorytmu jako:

T(n)=5n*+0(n)

znaczy dokfadnie tyle, ze oprdcz sktadnika 5n% wystepuje jeszcze jaki$ blizej nieokreslony
sktadnik liniowy. Nie ma on jednakze znaczenia, bowiem funkcja kwadratowa dominuje
tutaj zdecydowanie. T(n) jest wiec rzedu ©(n?).

WtasnosSci notacji asymptotycznych

Podanie kilku definicji, jakkolwiek niezbedne, nie daje nam wszystkiego. Poméwmy wiec
sobie o kilku waznych cechach wprowadzonych wtasnie notacji asymptotycznych.

Dziatania na anonimowych funkcjach

Jak zaprezentowatem przed chwilg, notacje te mogg wystepowac¢ w zwyczajnych
rownaniach. Reprezentuje one wtedy anonimowe, blizej nieokreslone funkcje, ktore
spetniajg warunki podane w definicji danej notacji. Przy uzyciu anonimowych funkcji
czesto upraszcza sie wyrazanie i wyznaczanie ztozonosci algorytmow.

Aby jednak postugiwac sie tymi przydatnymi tworami, powinniémy poznac ich kilka cech
praktycznych. Oto lista paru wtasnosci notacji asymptotycznych; wystepuje na niej
wylacznie notacja ©, ale wszystkie wtasnosci z powodzeniem odnosza sie takze do dwdch
pozostatych symboli. Spojrzmy wiec na to zestawienie:

> C-@(f (n))z®(f (n)), gdzie c jest stata.

Wyjasnienie tej zaskakujacej wtasciwosci pochfaniania czynnikdw statych jest w
gruncie rzeczy proste. Funkcje nalezace do @(f(n)) rdznig sie od siebie odmienne
wiasnie dlatego, ze ich wartosci réznig sie o staty czynnik. Czynnik ten moze by¢
dowolny, zatem pomnozenie go przez nastepny statq w niczym ,,nie umniejsza
jego dowolnosci”. Wynikowy zbidr funkcji jest wiec nadal taki sam.

> o(t(n)+0(f (n)=0(f ()

Ta wiasnosc jest réwniez nietypowa, bo zupetnie nie przystaje do znanych nam
zasad arytmetyki na liczbach. Mozna jg jednak wyjasni¢, odwotujac sie do
poprzedniej cechy. ©(f(n)) + ©(f(n)) to inaczej 20(f(n)), a poniewaz notacje
asymptotyczne pochtaniajg czynniki state, ostatecznie suma jest rowna @(f(n)).
Identycznie jest dla kazdej innej, skonczonej liczby sktadnikdéw.

> 0(e(f(n))=06(f(n)
Jak wspominatem na poczatku, wystgpienie notacji asymptotycznej nalezy

traktowac jako anonimowag funkcje. Wewnetrzne @(f(n)) reprezentuje wiec pewng
funkcje; ,potraktowanie” jej po raz drugi symbolem ® daje nam nadal to samo.

-+ o(1 (m)-0(g () =6((n)-g(n)

Swoistg rozdzielno$¢ wzgledem mnozenia mozna wyttumaczy¢ faktem, ze notacja
asymptotyczna ukrywa w sobie zawsze pewng stata. Pomnozenie ich przez siebie
takze daje statg o identycznym znaczeniu, wobec czego zachodzi powyzsza
wiasnosc.

Oczywiscie we wszystkich przypadkach moznaby podac formalne dowody tych i jeszcze
kilku innych wlasnosci, ale to raczej mija sie z celem -w koncu nie jest to podrecznik
algebry. Najwazniejsze jest, aby mdc stosowac powyzsze cechy notacji w praktyce. W
dalszej czesci rozdziatu bedziemy sie do nich czesto odwotywac.

Poréwnywanie funkcji

Dla rozluznienia po tej pokaznej dawce formalnej matematyki czas na porcje bardziej
intuicyjnego podejscia. Okazuje sie, ze notacje asymptotyczne wprowadzajg cos w
rodzaju kryteridw ,poréwnywania funkcji”. Relacje te dziatajg podobnie do poréwnan
dwaéch liczb rzeczywistych. Te paralele ilustruje ponizsza tabelka:

relacja miedzy funkcjami | ,,odpowiednik” liczbowy
g(n)=0(f(n)) f2g
g(n)=6(f(n)) f=g
9(n)=0(1 () f<g

Tabela 1. Analogia miedzy notacjami asymptotycznymi a relacjami miedzy liczbami rzeczywistymi

Istniejq tez notacje ,odpowiadajace” niewystepujacym to poréwnaniom f > gif < g. Sq
one zapisywane jako g(n) = o(f(n)) oraz g(n) = o(f(n)). Poniewaz uzywa sie ich raczej
rzadko, nie wprowadzam ich definicji. Zainteresowani moga rzecz jasna siegna¢ do
bardziej fachowej literatury, wymienionej na poczatku tej sekcji.

Analogia ta ma swoje matematyczne uzasadnienie we wtasnosciach notacji
asymptotycznych, jak zwrotnos$¢ czy przechodniosé. Mysle, ze nie ma sensu wymieniac
ich wszystkich, gdyz o wiele lepiej bedzie, jesli zapamietasz takie wiasnie intuicyjne
odwotanie do zwyktych liczb. Gdy tak uczynisz, postugiwanie sie tymi notacjami bedzie o
wiele fatwiejsze.

Uwagi na temat ztozonosci

Gdy wiemy juz, czym jest ztozonos$c¢ obliczeniowa oraz znamy sposoby jej wyrazania,
zastanéwmy sie, co ona wiasciwie oznacza. W tej sekcji poréwnamy sobie typowe
przyktady klas ztozonosci algorytmow oraz najbardziej znane rozwigzania, ktére maja
takie wiasnie ztozonosci czasowe. Mysle, ze pozwoli to uswiadomic sobie, ze
wprowadzone wczesniej pojecia nie sg jakims$ abstrakcyjnym pomystem natury wytacznie
matematycznej.

Porownanie réznych typow ztozonosci obliczeniowej

W algorytmice przewija sie gtdwnie kilka funkcji, ktdre asymptotycznie okreslajg
ztozono$¢ obliczeniowg wielu algorytmodw. Do tych najczesciej spotykanych funkcji
naleza:

> @(1) , gdy czas wykonania algorytmu jest staty i niezalezny od rozmiaru danych
wejsciowych (ztozonos$¢ stata)
> @(log n), kiedy czas ten rosnie logarytmiczne wraz ze wzrostem wielkosci danych

(ztozonosc¢ logarytmiczna). Logarytm jest niemal zawsze o podstawie 2 (w
przypadku notacji asymptotycznych nie ma to aczkolwiek znaczenia, bowiem
podstawa logarytmu moze by¢ zmieniona poprzez pomnozenie przez czynnik
staty)

> @(n) - czas dziatania jest proporcjonalny do rozmiaru danych wejsciowych
(ztozonosc¢ liniowa)

> @(nlog n) - ztlozonosc¢ jest iloczynem funkcji liniowej i logarytmicznej

> @(nz) - liczba instrukcji algorytmu rosnie proporcjonalnie do kwadratu rozmiaru
danych wejsciowych (ztozonos$¢ kwadratowa)

> @(2”) - czas wykonania rosnie wykfadniczo wzgledem rozmiaru danych
(ztozonos¢ wyktadnicza)

> O(n!) - zlozonos¢ jest wyrazona za pomoca silnii (iloczynu wszystkich liczb
naturalnych od 1 do n)

Ztozonosci te zostaty uszeregowane wedtug wzrastajacego czasu wykonania. Aby
uswiadomic sobie, jak bardzo klasy te rézniq sie od siebie, popatrzmy na ponizszg
tabelke obrazujacg czasy dziatania algorytmow o réznych ztozonosciach. Przyjeto w niej,
ze pojedyncza instrukcja wykonuje sie jedng nanosekunde, czyli ze algorytm jest
wykonywany na komputerze dziatajagcym z czestotliwoscig 1 gigaherca:

n->

T(n) ¥ 10 | 20 | 50 | 100

200 1000

logn | 3,32ns | 423ns | 564ns | 664ns | 7,64 ns | 9,97 ns

n 10 ns 20 ns 50 ns 100 ns 200 ns 1000 ps
nlog n| 33,21 ns | 86,44 ns 282,2 ns 664,4 ns 1,53 pus 9,97 us

n? 100 ns | 400 ns 2,5 s 10 ps 40 ps 1ms

2" 1ps 1,05 ms 13 dni 4-10% lat 5,1-10* lat 3,4:10%* lat

n! 3,6 ms 77 lat | 9,6-10* lat | 3-10**! lat 2,5-10°% |at 1.27-10%%%! |at

Tabela 2. Przykladowe czasy dziatania algorytméw o réznych ztozonosciach dla wybranych

rozmiaréw danych

Rdznice pomiedzy poszczegolnymi wyrazami tabeli sg, jak wida¢, gigantyczne. O ile w
przypadku czterech pierwszych wierszy wzrost czasu dziatania algorytmu jest dla
cztowieka wiasciwie niezauwazalny, o tyle dwie ostatnie funkcje ztozonosci osiggajg wrecz
niewyobrazalne wartosci.
Dos¢ powiedzie¢, ze wykonanie algorytmu o ztozonosci 2" dla danych o rozmiarze 100
zabierze czas ponadtysigckrotnie dtuzszy od szacowanego wieku Wszechswiata! Dla n
rownego 200 jest z kolei bardzo prawdopodobne, ze protony sktfadajgce sie na nasz
komputer rozpadna sie, zanim zdotamy doczekac sie wyniku®. Kolejne czasy dla
ztozonosci 27, a zwtaszcza n!, sg nie tylko kwintyliony razy wieksze niz nawet najbardziej
optymistyczne szacunki co do dtugosci dalszego zycia kosmosu, ale wrecz nie majg
zadnego wyobrazalnego przyblizenia.

Ten zdumiewajacy rozziew pomiedzy tymi dwoma typami ztozonosci spowodowat, ze
czesto mowi sie o algorytmach dziatajacych w czasie (pod)wielomianowym oraz
ponadwielomianowym. W praktyce podziat ten jest tozsamy z wyrdznieniem procedur
wykonalnych w rozsadnym czasie oraz takich, ktére z praktycznego punktu widzenia nie
zakonczg sie nigdy. Zdecydowana wiekszos$¢ problemdw moze by¢ na szczescie
rozwigzana w czasie wielomianowym lub lepszym. Niemniej istnieje caty szereg zadan,
dla ktérych nie sq znane tak efektywne rozwigzania; poniewaz wiele z nich ma pewng
ciekawg witasnos¢, wspomnimy sobie o nich w nastepnym paragrafie.

Przyktady algorytmow

Teraz masz juz pewnie pojecie, co tak naprawde kryje sie pod poszczegdlnymi typami
ztozonosci obliczeniowej. Prawdopodobnie jednak nadal zastanawiasz sie, jak wielkosci
odnosza sie do algorytmoéw faktycznie wykorzystywanych w programach. Spéjrz wiec na
ponizsze zestawienie, w ktéorym umiescitem wiele typowych przyktadéw dla réznych
ztozonosci obliczeniowych:

zfozonos¢é

nazwa algorytmu

zZnaczenie n

uwagi

instrukcja
programu

operacje na
stosach i kolejkach

wszystkie pojedyncze instrukcje
programoéw traktuje sie tak,
jakby ich wykonanie zajmowato
staty czas

stosy i kolejki to elementarne
struktury danych w
programowaniu

wyszukiwanie w

haszowanie to specjalny sposdb
indeksowania elementéw

Ol tablicy z — .)
() haszowayniem tablicy przy pomocy ich
wartosci
liczba algorytm bisekcji stuzy do
bisekcja przeszukiwanych wyszukiwania okreslonego
©(logn) danych elementu w posortowanym

zestawie danych

wyszukiwanie w

liczba weztdw w

drzewo wyszukiwan binarnych

* Wedtug fizykdéw czas zycia protonu to 10% lat.

zfozonos¢é

nazwa algorytmu

zZnaczenie n

uwagi

drzewie BST

drzewie

(BST) jest specjalng strukturg
danych, nastawiong na szybkie
wstawianie, usuwanie i
wyszukiwanie elementow

O(logn)

algorytm Euklidesa

jedna z podanych
liczb

stynny algorytm stuzy do
obliczania najwiekszego

wspolnego dzielnika dwdch

podanych liczb catkowitych

przeszukiwanie
liniowe

liczba
przeszukiwanych
elementow

wyszukiwanie liniowe to po

prostu przegladniecie catego

ciggu nieposortowanych
danych w poszukiwaniu
okreslonego elementu

sortowanie przez
zliczanie i
pozycyjne

liczba sortowanych
elementow i/lub ich
mozliwych wartosci

ten rodzaj sortowania nie
opiera sie na poréwnywaniu
elementow, wiec nie jest
uniwersalny

wyszukiwanie
wzorca metodq
KMP

dtugosc¢
przeszukiwanego
tekstu

algorytm Knutha-Morrisa-Pratta
jest sposobem na
przeszukiwanie tekstéw

operacje na
wielomianach (z
wyjatkiem
mnozenia i
dzielenia)

stopien wielomianu

dodawanie, odejmowanie,
obliczanie, rézniczkowanie i
catkowanie wielomiandéw mozna
wykonywac w czasie liniowym,
jezeli przechowujemy ich
wspotczynniki

wyznaczanie
statystyk
pozycyjnych

liczba elementow

statystyka pozycyjna to
~miejsce” danego elementu w
posortowanym ciggu - tutaj
ustalane bez wykonywania
sortowania

przeszukiwanie
grafu

ilos¢ wierzchotkdw
i/lub krawedzi grafu

przeszukiwanie to
przechodzenie po wszystkich
wierzchotkach grafu

Q(nlogn)

algorytm
sortowania oparty
na poréwnaniach

liczba sortowanych
elementow

zaden algorytm sortowania,
ktore opiera sie na
porownywaniu elementow, nie
moze dziatac lepiej

znajdowanie
najmniejszej
otoczki wypuktej

liczba punktow

otoczka wypukta to wielokat,
otaczajacy catkowicie podany
zbidér punktow

©(nlogn)

sortowanie przez
scalanie
(mergesort) lub
kopcowanie
(heapsort)

liczba sortowanych
elementow

w praktyce lepsze bywa
sortowanie szybkie (quicksort),
cho¢ jego pesymistyczna

ztozonos¢ to @(nz)

przemysine
mnozenie
wielomiandw

stopien wielomianu

algorytm tego mnozenia jest
dos¢ skomplikowany, bo
wykorzystuje szybkg
transformate Fouriera
(ang. Fast Fourier Transform)

znajdowanie
najmniej odlegtych
punktow

liczba wszystkich
punktéw

wiekszos$¢ czasu tego algorytmu
zajmuje posortowanie punktéw

sortowanie przez

liczba sortowanych

sprawdzajg sie doskonale dla

wstawianie

elementow

niewielu elementéow

ztozonos¢ | nazwa algorytmu

zZnaczenie n

uwagi

(insertion sort) i
babelkowe (bubble
sort)

(kikudziesieciu, kilkuset)

proste mnozenie
wielomiandéw

stopien wielomianu

odpowiednie dla wielomiandéw o
niewielkich stopniach

znalezienie) ,
L S liczba wierzchotkéw krawedzi w grafie mogg byc z
najkrotszej sciezki | . . ;
w grafie i/lub krawedzi grafu wagami lub bez wag

naiwny algorytm
wyszukiwania
wzorca

$rednia diugosci
wzorca i tekstu

naiwny algorytm przeglada po
prostu tekst znak po znaku

®(n3) naturalny algorytm rozmiar macierzy wystarczajacy w ogromnej
mnozenia macierzy kwadratowej wiekszosci przypadkéw
,nhaiwne” szukanie sprawdzanie spetnialnosci
Q(zn) zmiennych liczba zmiennych w | formuty logicznej jest uzyteczne
spetniajgcych formule np. w optymalizacjach
formute logiczng czynionych przez kompilatory
. . cykl Hamiltona to sposob na
»~haiwne o, .
. . , . przejscie wszystkich
rozstrzyganie o liczba wierzchotkow . .
R wierzchotkow grafu,
istnieniu cyklu grafu L . .
. odwiedziwszy kazdy doktadnie
Hamiltona .
Q(n!) jeden raz
naiwne” problem komiwojazera polega
i . . . na wyznaczeniu takiej trasy
rozwigzanie liczba miast do - . . !
. . przejazdu miedzy miastami,
problemu odwiedzenia

komiwojazera

ktora jest nie dtuzsza od
podanej

Tabela 3. Przykiady algorytmoéw o réznych ztozonosciach obliczeniowych

Mozna zauwazy¢, ze wiele pozornie trudnych probleméw daje sie rozwigza¢ w
stosunkowo dobrym czasie przy pomocy odpowiedniego algorytmu. Z drugiej strony,
sporo zdawatoby sie prostych zadan jest obecnie wykonalna jedynie w czasie

ponadwielomianowym.

: Powyzsza tabelka ilustruje tez, jak ogromna jest liczba réznych zastosowan dla

| algorytmow. Z oczywistych wzgleddéw nie ma tu miejsca na szczegétowe omawianie
kazdego z tych rozwigzan oraz ich zastosowan. Jezeli cie to interesuje, powinienes
: siegnac do literatury poswieconej wyfgcznie tym zagadnieniom.

Stéwko o NP-zupetnosci

Podziat problemoéw na rozwigzywalne w czasie wielomianym i ponadwielomianowym
odpowiada wyrdznieniu wsrod nich tych ,tatwych” i ,trudnych”. Moznaby oczywiscie
uwazac problem o ztozonoéci ®(n*°) za w praktyce trudny, ale prawdopodobnie nie
istniejg zadne algorytmy o podobnej charakterystyce. Nawet gdyby byty one
rozwigzaniami jakich$ waznych problemoéw, znaleziono by dla nich efektywniejsze
odpowiedniki. Jak bowiem wynika z kilkudziesiecioletniego istnienia nauki zwanej
algorytmika, obnizanie ztozonosci wielomianowej jest nieporownywalnie tatwiejsze od
pozbycia sie zaleznosci np. wyktadniczej.
Niestety, dla wielu problemdw nie znamy efektywnych algorytmodw, dziatajacych w czasie
wielomianowym. Spora czes$¢ z tych problemdw ma przy tym wyjatkowo intrygujace
wiasciwosci. Dodatkowo komplikujg one odpowiedz na pytanie, czy owe efektywne
algorytmy istniejgq. Mysle, ze warto o tym powiedzie¢ troche szerzej.

Zacznijmy od zaprezentowania powszechnie stosowanego podziatu probleméw
algorytmicznych na tzw. klasy. Otéz wyrodznia sie generalnie dwie takie wielkie klasy:
> klasa P zawiera te problemy, ktére mozemy rozstrzygna¢ (rozwigzac¢) w czasie
co najwyzej wielomianowym. Zdecydowana wiekszos$¢ zagadnien nalezy do tej
wiasnie klasy - jak chocby wszystkie zaprezentowane w tabeli z poprzedniego
paragrafu, oprocz (najprawdopodobniej) trzech ostatnich
> klasa NP obejmuje te problemy, ktérych rozwigzania moglibysmy sprawdzié w
czasie wielomianowym. Prosciej mowiac, jesli mielibysmy dane opisujace
konkretng sytuacje problemowg oraz ,podarowane” skad$ rozwigzanie, to
moglibysmy w efektywny sposéb sprawdzié, czy to rozwigzanie jest faktycznie
poprawne. Do klasy NP nalezg wszystkie problemy ze wspomnianej tabeli

Moze to by¢ zaskakujace, ale wtasciwie jedyne, co wiemy na pewno na temat relacji
pomiedzy tymi dwoma klasami, jest to, iz P = NP. Nietrudno zresztg uzasadni¢, dlaczego:
jesli bowiem potrafimy rozwigzac jakis problem w czasie wielomianowym, tym bardziej
potrafimy go sprawdzi¢ w takim czasie.

Od ponad trzydziestu lat otwarta pozostaje natomiast kwestia rownosci lub nieréwnosci
obu tych klas. Jezeli P = NP, wowczas niemal kazdy praktyczny problem bytby do
rozwigzania w czasie wielomianowym; prawdopodobnie wiec catkiem szybko znajdywano
by dlan efektywne algorytmy. Wiekszosc¢ informatykdéw sadzi jednak, ze rzeczywisto$¢ nie
jest taka rézowa, a P # NP. Jest ku temu jedna powazna przestanka...

Jest nig istnienie podklasy problemoéow nazywanych NP-zupelnymi (w skrocie NPC, NPC
c NP). Ich wyjatkowos$¢ zawiera sie w dwdch cechach.

Po pierwsze, sg to najtrudniejsze problemy w obrebie klasy NP. Oznacza to, ze kazdy
problem NP-zupetny jest przynajmniej tak trudny, jak dowolny inny problem z klasy NP.
Druga witasciwosc jest znacznie bardziej intrygujaca. Otéz udowodniono, ze kazdy
problem z klasy NP moze zosta¢ zredukowany w czasie wielomianowym w dowolny
problem NP-zupeiny.

Praktyczna konsekwencja tych faktow jest juz by¢ moze znana tym, ktdrzy umiejg czytac
uwaznie miedzy wierszami. Wynika z nich mianowicie to, iz kategoryczne orzeczenie w
sprawie jednego jedynego problemu NP-zupetnego bedzie rzutowac na catg olbrzymiq
klase NP. Jezeli znajdziemy wielomianowy algorytm dla jakiego$ problemu NPC, wéwczas
bedzie to oznaczato, ze takie algorytmy istniejg dla kazdego problemu z klasy NP;
okaze sie wiec, ze P = NP. Analogicznie, udowodnienie ze jaki$ problem NP-zupetny nie
posiada rozwigzania wielomianowego bedzie sygnatem, ze P # NP.

Jak juz moéwitem, obecnie wiekszos¢ informatykdw skiania sie ku tezie, ze zaden
efektywny algorytm dla problemu NP-zupetnego nie istnieje. Argumentujq to faktem, iz
poszukiwania takich algorytmow byly przeprowadzane przez wiele lat na catym swiecie i
zawsze konczyly sie niepowodzeniem. Podobnie jednak byto z probami udowodnienia, ze
takie algorytmy nie istniejg. W sumie wiec to powszechne przekonanie o niemozliwosci
istnienia wielomianowych rozwigzan dla problemdw NPC opiera sie raczej na intuicji niz
racjonalnych podstawach. Jak zatem rzekt Eistein, zawsze moze sie znalez¢ jakis , nieuk”,
ktory nie wie, ze to jest niemozliwe, i... zrobi¢ to.

Jesli zacheca cie perspektywa rozstrzygniecia trzydziestoletniego sporu®, zapewne
chciatbys$ chociaz zobaczy¢ przyktady problemdéw NP-zupetnych. Jest ich cate mnéstwo;
przyktadowe trzy zajmujg ostatnie wiersza tabeli ztozonosci. Sposrod nich szczegdlnie
interesujacy jest problem komiwojazera - z oczywistych wzgledéw praktycznych.

5 A przy okazji zgarniecia okragtego miliona dolaréw. Rozstrzygniecie zwigzku miedzy P a NP jest bowiem
jednym z siedmiu tzw. Milienijnych Problemoéw, ogtoszonych przez Clay Mathematics Institute w 2000 roku. Na
stronie internetowej Instytutu mozesz poczytac o szczegétach problemu ,P vs NP”.

W poszukiwaniu ztozonosci obliczeniowej

W drugim podrozdziale zajmiemy sie znajdowaniem ztozonosci obliczeniowej algorytmow
na konkretnych przyktadach. Zobaczymy wiec, jak poszczegdlne elementy algorytméw
wptywajq na ich efektywnos$¢ oraz jak nalezy faczyc¢ te wyniki w catosc.

Podstawowe zasady

Zaczniemy wifasnie od tego tgczenia. Musimy bowiem poznaé dwie zasady, ktére
umozliwig nam okreslenie ztozonosci catego algorytmu w sytuacji, gdy znamy te dane
jego poszczegolnych , kawatkow”.

Prawo dodawania

Najbardziej typowq sytuacjg w programowaniu jest wystepowanie po sobie kilku
instrukcji. W ogélnym przypadku chodzi nam o fragmenty kodu, z ktérych kazdy ma
swojg okreslong ztozonos¢. Oto przyktad:

int nZmienna = 5; // O(1)
nZmienna += 4; // ©(1)

Pytanie naturalnie brzmi: Jakg ztozonos$¢ ma podany fragment jako cato$¢? Nic
prostszego - wystarczy doda¢ ztozonosci czastkowe:

0(1)+0(1)=20(1)=06(1)

Reguty dodawania notacji asymptotycznych mogg nadal wydawac ci sie dziwne, ale
przeciez powyzszy wynik mozna fatwo uzasadni¢ intuicyjnie. Pojedyncza instrukcja
wykonuje sie w czasie stalym, zatem stata liczba takich instrukcji takze bedzie
wykonywac sie w czasie statym.

Podobnie bytoby, gdyby instrukcja nie byta elementarnym krokiem, lecz np. wywotaniem
funkcji o jakiej$ ztozonosci:

FunkcjaA() ; // ©(n)
FunkcjaB () ; // ©(n)

Na mocy regut dodawania ztozonos$¢ powyzszego kawatka kodu jest wiec rzedu ©(n).
Ciekawiej sprawa wyglada, gdy instrukcje majg rézne ztozonosci - jak na przyktad tutaj:

FunkcjaC () ; // ©(n)
FunkcjaD () ; // ©(n?)

Nadal jednak mozemy tutaj korzystac¢ z zasad dodawania notacji - jezeli oczywiscie
bedziemy pamietac o kilku innych wtasnosciach. Zobaczmy wiec:

®(n)+6(n*)=0(n+n*)=6(n’)

Najprosciej sformutowac tutaj zasade, iz ,silniejszy wygrywa”. Najwieksza ztozonos¢ w
danym fragmencie kodu dominuje w nim - podobnie jak najwiekszy skfadnik funkcji
decyduje o jej asymptotycznej ztozonosci (jak w réwnaniu powyzej). Mozemy wiec
mowic, iz:

Algorytm ma takg ztozonos¢, jak jego najbardziej czasochtonny fragment.

W dalszym ciagu podrozdziatu zobaczysz wrecz, ze wyznaczenie ztozonosci catego
algorytmu bardzo czesto bedzie ograniczato sie jedynie do okreslenia jej dla najbardziej
czasochtonnego elementu. Ztozonos$¢ pozostatych fragmentow kodu bedzie miata bowiem
nikte znaczenie.

Prawo mnozenia

Druga zasada jest stosowana w nieco innej sytuacji. Przypusé¢my, ze znamy ztozonos$c
jakiegos fragmentu kodu i wiemy tez, jak czesto (w funkcji rozmiaru danych) bedzie sie
on wykonywat. Takie przypadku wystepujg w petlach oraz przy wykorzystaniu rekurencji.
Oto przyktad:

// (wiemy, ze ponizsza instrukcja wykonuje sie O (n) razy)
FunkcjaE () ; // ©(log n)

Mamy tu wiec funkcje o ztozonosci ®(logn), o ktérej wiemy, ze wykona sie ®(n) razy (bo
np. jej wywotanie jest wewnatrz petli wykonujacej n cykli). Jaka bedzie ztozonos$¢ catej
takiej sekwencji?... Jak wskazuje na to nazwa paragrafu, obie wielkosci nalezy
pomnozy¢:

©(n)-O(logn)=©(nlogn)

Jest to zresztg zgodne z intuicjg - to samo zrobiliby$my, dziatajac na liczbach. Pamietajac
rzecz jasna o wprowadzonych w poprzednim podrozdziale zasadach mnozenia notacji
asymptotycznych, otrzymujemy ostateczenie wynik ®(nlogn).

Zasada mnozenia jest szczegdlnie wazna i czesto stosowana w przypadku petli.
Generalnie jednak mozna jg wykorzystywaé¢ w kazdym przypadku, gdy instrukcja jest w
algorytmie wykonywana okreslong ilos¢ razy.

Petle

Petle sq jednym z gtdwnych elementéw konstrukcyjnych dla procedur. Ogromna
wiekszos$¢ algorytmow opiera sie na jednej lub kilku petlach - wystepujacych po sobie
i/lub zagniezdzonych. Nalezatoby zatem wiedzie¢, jak w prosty sposéb okresli¢ ztozonos¢
takich konstrukcji. Na cate szczescie taki prosty sposéb istnieje.

Ilos¢ cykli w petli

Pierwszg rzeczg, jakg trzeba zrobi¢, jest okreslenie ilosci cykli petli jako funkcji rozmiaru
danych dla algorytmu. A moéwigc prosciej: nalezy ustali¢, ile razy dana petla sie wykonuje
i wyrazi¢ te warto$¢ w zaleznosci od n. Czesto jest to zadaniem bardzo prostym;
przyktadowo, jesli w naszym algorytmie rozmiarem danych jest liczba elementéw tablicy,
to naturalne jest, iz petla:

for (unsigned i = 0; 1 < aTablica.length(); ++1i)

/..

wykona sie wtasnie n razy, bo tyle jest elementdw tablicy. Zwréémy tez uwage, ze
doktadna ilos¢ cykli nie jest potrzebna, bo, jak wiemy, interesuje nas tylko wielkos¢
asymptotyczna. Nie ma wiec znaczenie, czy licznik inicjujemy na 0, 1 czy 2 - petla i tak
wykona sie O(n) razy. Prawdopodobnie ma ona zatem ztozonosc liniowg (co jeszcze
sprawdzimy w przysztym paragrafie).

Niekiedy nie mozna doktadnie okresli¢ liczby cykli. Tak byto choéby w przyktadzie z
algorytmem sortowania przez wstawianie. Wiemy jednak, co trzeba zrobi¢ w takiej
sytuacji. Musimy wykazac sie pesymistycznym podejsciem do zycia i zatozy¢, ze liczba
obrotéw petli bedzie najwieksza. W wiekszosci przypadkéw bedzie to (asymptotyczng)
prawda, lecz uzyskane w ten sposob ograniczenie O(n) jest zawsze prawdziwe.

Ztozonosc¢

Wiedzac to, jestesmy juz tylko o krok od okreslenia ztozonosci dla dowolnych petli - a
przynajmniej tych, ktérych liczba cykli jest proporcjonalna do n. W tym celu musimy
jeszcze wiedziec, ile wysitku zajmuje wykonanie pojedynczego cyklu; innymi stowy: co
kryje sie pod wykomentowanym wielokropkiem w przyktadzie z poprzedniego
paragrafu?...

W ogdlnym przypadku tego nie wiemy, wiec ztozonos$¢ jednego cyklu oznaczymy sobie po
prostu jako O(f(n)). Jezeli natomiast tych cykli jest w sumie O(n) (co ustalismy kilka
chwil temu), to na mocy prawa mnozenia ztozonos$¢ catej petli wynosi:

0(n)-0(f (m)=0(n- (n)

Taki ogdlny rezultat jest pozyteczny, ale warto przyjrzec sie tez bardziej
wyspecjalizowanym.

Jesli f(n) = O(1), to jeden cykl petli zajmuje czas staty. To bardzo typowa sytuacja -
wystepuje chociazby w algorytmie wyszukiwania liniowego, gdy po kolei przegladamy
wszystkie elementy tablicy. Naturalnie, ztozonos$¢ petli jest wtedy rzedu O(n).

Najbardziej interesujacy jest jednak przypadek, gdy petle sq zagniezdzone. Oto catkiem
typowy przykifad:

for (unsigned i = 0; i < aTablica.length(); ++1i)
for (unsigned 7 = i; j < aTablica.length(); ++7j)
// ... (ale wiemy, ze to O(1))

Idac ,od srodka” mozemy okresli¢ ztozonos¢é wewnetrznej petli jako O(n): cykl o statym
czasie jest bowiem wykonywany dla (w najgorszym przypadku) wszystkich elementow
tablicy wielkosci n. Jednoczesnie to O(n) jest czasem wykonania cyklu dla zewnetrznej
petli; ona réwniez wykonuje O(n) obrotow. W sumie wiec mamy oO(n) cykli po o(n) cykli
po O(1) instrukcji, co daje w rezultacie ztozonos$¢ kwadratowaq:

O(n)-O(n)-O(l):O(n-n):O(nz)

Wreszcie, ogélnijmy wynik na przypadek dowolnego zagniezdzenia petli®:

for (/* ... */) // O(n)
for (/* ... */) // O (n)
for (/* ... */) // O (n)

/... // itd.

// (pojedynczy cykl o zlozonosci O(1))

Gdy wiec mamy wiec mamy k poziomow zagniezdzenia, to ztozonos¢ tego potworka
bedzie wyrazata sie mniej wiecej tak:

6 Wszedzie uzywam petli for, ale rzecz jasna wszystko dotyczy dowolnych petli. Mam nadzieje, ze byto to
oczywiste od samego poczatku...

k

o(n)-o(n)-...-o(n)-o(l)=0(Hnj=o(nk)

i=1

k czynnikow

I to jest w zasadzie najwazniejszy wniosek z catej tej zabawy. Widzac (zagniezdzonq)
petle bedziesz mdgt teraz szybko okresli¢ jej ztozonosc. I tak dla pojedynczej iteracji k =
1, wiec klasg jest O(n); dla dwdch poziomdw jest to O(n?), i tak dalej. Zapamietajmy
wiec, ze:

k-krotnie zagniezdzona petla, ktérej ,najbardziej wewnetrzny” cykl wykonuje sie w
czasie stalym, ma ztozono$¢ ograniczona z gory przez o(n®).

Nie mozna oczywiscie stosowac tego prawa bezmyslnie do kazdej petli. Jesli dana iteracja
nie wykonuje sie w czasie proporcjonalnym do liczby elementéw (choéby w przypadku
pesymistycznym), wowczas nie nalezy korzystac¢ z tego twierdzenia. Takie przypadki sg
aczkolwiek niezbyt czeste.

Rekurencja

Oto drugie wazne narzedzie w rekach projektanta algorytmoéw. Tytutlowa rekurencja
(ang, recurrency), bo o niej mowa, zwana jest tez czasem rekursjg albo nieco mylaco -
wywotaniem zagniezdzonym. Ogolnie rzecz ujmujac jest to sytuacja, gdy dana procedura
w okreslonych okolicznosciach wywotluje sama siebie. To zastrzezenie jest wazne, aby
rekurencja byfa poprawna - to znaczy nie prowadzita do nieskonczonego ciggu wywotan
funkcji. Sytuacja taka jest w pewnym stopniu podobna do nieskonczonej petli, tyle ze
tatwiej wykrywalna. , Krecaca” sie w nieskornczonos¢ petla wizualnie zawiesza program,
natomiast niewtasciwa rekurencja powoduje przepetnienie stosu (ang. stack overflow).
W zaleznosci od stosowanego jezyka czy platformy sprzetowej powoduje to restart
systemu, awaryjne zakonczenie programu albo wyjatek czasu wykonania.

Zdania co do przydatnosci rekurencji w konstruowaniu algorytmow sg wysoce podzielone.
Mozna spotkac sie z twierdzeniem, ze jest to wrecz naturalna metoda ich tworzenia; z
drugiej strony wiele jej bardziej skomplikowanych zastosowan jest bardzo wymysinych i
wcale nie oczywistych.

Poniewaz jednak mamy sie skoncentrowac na analizie efektywnosci algorytmoéw
rekurencyjnych, zostawmy kwestie jakkolwiek rozumianej ,stusznosci” czy ,naturalnosci”
uzycia rekurencji. W tej sekcji spotkasz wiec zaréwno wiele procedur, ktére ewidentnie
proszg sie o odpowiedniki iteracyjne (bedzie tak zwtaszcza na poczatku), jak i nieco
bardziej wyrafinowane przypadki - szczegdlnie zwigzane z technikg zwang ,dziel i
zwyciezaj”. W kazdym przypadku bedziemy jednak zainteresowani gtéwnie klasg danego
algorytmu i sposobem na jej proste i szybkie znalezienie.

Ogodlne metody

Na poczatek zajmiemy sie najprostszymi (i troche sztucznymi) przyktadami uzycia
rekurencji. Dwie opisane tu techniki moga jednakze pomoc w znalezieniu ztozonosci wielu
rzeczywistych algorytméw - a przynajmniej dostarczy¢ w tym zadaniu pewnych
wskazéwek.

Rozpisywanie

Piszgc ten akapit miatem spore problemy z wyborem algorytmu, ktéry stosowatby
rekurencje w odpowiednio prosty sposob, a jednoczesnie nie narzucat od razu
rownowaznego (i najczesciej lepszego) rozwigzania z uzyciem petli. Moje poszukiwania
nie zostaty niestety uwienczone sukcesem i moge z duzg doza prawdopodobienstwa
stwierdzi¢, ze kazdy mozliwy tutaj przykfad bytby rownie naciggany. Celem przebrniecia

przez ten akapit musisz wiec to zignorowac i potraktowac po prostu jako rozgrzewke
przed bardziej uzasadnionymi przypadkami rekurencji.

Najprostsza rekurencja

Przykfadem bedzie znowu przeszukiwanie jednowymiarowej tablicy. Jest to czynnos¢ tak
powszechna, znana i prosta, ze z pewnoscig kazdy poczatkujacy programista
zaznajomiony z konstrukcjg petli zakodowatby z tatwoscig (albo zajrzat na poczatek tego
rozdziatu). Azeby wiec wywrdéci¢ do géry nogami te oczywisto$¢, zaproponujemy
rozwigzanie rekurencyjne. Dla danej tablicy wyglada ono tak:
> wez jej pierwszy niesprawdzony element i poréwnaj z szukanym. Jesli poréwnanie
sie powiedzie (wartosci sg rowne), zwroc¢ indeks znalezionego elementu i zakonicz
procedure
» gdy natomiast test okaze sie nietrafiony, zastosuj identyczng procedure dla tablicy
ztozonej ze wszystkich elementdw tuz za tym przed chwilg sprawdzonym
> jesli przeszukiwana tablica jest pusta, zwrdc¢ informacje o nieznalezieniu elementu

Opis ten przektada sie prosto na kod C++, realizujacy wyszukiwanie okreslonej liczby w
tablicy int[]:

int Szukaj (const int* pTablica, int nSzukany, unsigned uRozmiar,
unsigned uIndeks = 0)

{
// jes$li dotarlismy do konca tablicy, zwrdé -1
if (uIndeks >= uRozmiar) return -1;

// sprawdz, czy pilerwszy niesprawdzony element jest rdéwny szukanemu
if (pTablica[ulIndeks] == nSzukany)

return ulndeks;
else

// Jjesli nie jest, wywola] rekurencyjnie procedure

// dla tablicy pomniejszonej o tej element

return Szukaj (pTablica, nSzukany, uRozmiar, uIndeks + 1);

}

Jesli wczesniej nie miates zbyt intensywnego kontaktu z rekurencja, moze on wydawac
sie nieco dezorientujacy. tatwo jednak sprawdzié, ze dziata on identycznie z wersjg
iteracyjng. Widac¢ nawet zupetnie oczywiste analogie, jak np. parametr uIndeks jako
odpowiednik licznika petli. Mozna tez zauwazy¢, ze program ten jest pisany niejako ,,od
tytu” w tym sensie, ze najpierw umieszczamy kod sprawdzajacy przypadek specjalny -
brak elementu. Teraz jest to jednak warunek przerwania rekurencji (tzw. warunek
terminalny), ktéry musi zosta¢ sprawdzony, zanim zrobimy cokolwiek innego. W kazdej
procedurze rekurencyjnej jest to cze$¢ nieodzowna!

Analiza

Naturalne pytanie brzmi teraz: co z pesymistyczng ztozonoscig powyzszego algorytmu?
W przypadku wersji iteracyjnej mozna bardzo tatwo (stosujgc wskazéwki z poprzedniej
sekcji o petlach) wyznaczyc¢ jg na ®(n). A jak jest tutaj?... Aby sie o tym przekonag,
zastosujemy ,tradycyjne” rozwigzanie, czyli znajdziemy funkcje T(n).

Rekurencja w naszej procedurze polega na wywotywaniu jej dla coraz mniejszych tablic:
z kazdym jej poziomem przegladana tablica jest mniejsza o jeden element. Funkcja T(n)
bedzie wiec takze rekurencyjna: jej wartos¢ dla n bedzie zalezna od wartosci n-1. W
jaki sposéb?

Spéjrzmy na ciato procedury. W kazdym poziomie rekurencji, oprocz kolejnego
wywotania rekursywnego, dokonywane sg jeszcze dwa poréwnania: sprawdzenie
rozmiaru tablicy i aktualnego elementu. Poniewaz wspomniane wywofanie pracuje juz na
tablicy mniejszej o jeden element, funkcja T(n) bedzie sie wiec na razie przedstawiac
nastepujgco:

T(n)=T(n-1)+2

Nie mozemy jednak zapomnie¢ o warunku terminalnym. U nas zachodzi on wtedy, gdy
algorytm, ze podana mu tablica jest pusta. Rozwazamy przypadek pesymistyczny (brak
szukanego elementu), zatem taka sytuacja z pewnoscig zajdzie. Odpowiada ona sytuacji,
gdy n = 0; wowczas procedura dokonuje jednego poréwnania i natychmiast konczy sie.
Ostatecznie wiec funkcja ztozonosci z uwzglednieniem koniecznego warunku wyglada w
ten sposob:

(= 1 dlan=0
(m)= T(n-1)+2 dlan>1

Jest ona rekurencyjna, zatem nie pozwala na bezposrednie okreslenie klasy algorytmu.
Musimy wiec doprowadzi¢ jg do sensowniejszej postaci.

Rozwigzanie rekurencji

Prostym sposobem, ktéry niestety dziata raczej rzadko, jest rozpisanie powyzszej funkcji
od wartosci n az do zera:

Dodajac stronami te rdwnania otrzymamy jedno bardzo rozbudowane, ktére na szczescie
bedziemy mogli zaraz uproscic:

T(n)+T(n=1)+...+T(0)=(T(n=1)+2)+(T(n-2)+2)...+1

Nalezy w tym celu zauwazy¢, ze:
» po prawej stronie mamy n sktadnikéow zawierajacych dwdéjki, wiec dodanie tych
dwojek da nam wyniku po prostu 2n
> skitadniki od T(n-1) do T(0) wystepujg w sumie po obu stronach réwnania.
Wszystkie wiec mogg by¢ natychmiast zredukowane

W wyniku tych operacji po lewej stronie zostaje nam jedynie T(n), zas po prawej -
nierekurencyjna postac tej funkcji:

T(n)=2n+1
Teraz juz rzecz jasna nie ma zadnych klopotéw z okresleniem klasy algorytmu. Jak

mozna byto sie spodziewac i co wykazaliSmy przed chwilg, jest ona réwniez rzedu 0(n).
Posta¢ rekurencyjna wyszukiwania wydaje sie wiec nie rézni¢ od wersji iteracyjnej’.

7 W praktyce jest inaczej. Wersja rekurencyjna wymaga duzo dodatkowej pamieci dla stosu, co ostatecznie
bardzo spowalnia jej wykonywanie. Istnieje tez ryzyko przepetnienia stosu, co naturalnie nie wystepuje w

Drzewo rekursji

Metoda polegajgca na rozpisaniu i dodaniu do siebie stronami ciggu rownan jest prosta i
prowadzi do doktadnego rozwigzania (czyli wyznaczenia nierekurencyjnej postaci funkcji).
Jak juz jednak wspomniatem, mozna jg stosowac rzadko, wtasciwie tylko w wyjatkowych
sytuacjach. Gdyby np. zamiast T(n-1) umiesci¢ w funkcji 27(n-1), sposéb ten
doprowadzitby raczej do jeszcze wiekszego skomplikowania catej sprawy.

Bardziej efektywna i majaca szersze pole zastosowan metoda nie zapewnia doktadnego
rozwigzania, lecz przeciez dla znalezienia klasy algorytmu nie jest ono potrzebne. Metode
te zaprezentuje na ponownie banalnym przykifadzie.

Stynny cigg

Jednym z bardziej znanych dziwolagéw matematycznych (rozstawionym przez autoréw
powiesci sensacyjnych ze wzgledu na swoje kryptograficzne wtasciwosci) jest ciag
Fibonacciego. Jego cechg szczegdlng jest to, ze kazdy wyraz powstaje przez
zsumowanie dwdch poprzednich:

1,1, 2,3,5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ...

Twor ten ma tez mndstwo innych cech, jak np. zdolno$¢ do opisywania wzrostu populacji
krolikow oraz fraktalne rozmieszczenie zer i jedynek w binarnej reprezentacji swoich
wyrazow. Dla nas ciag ten bedzie wazny ze wzgledu na rekurencyjny algorytm obliczania
jego n-tego wyrazu. Bezposrednio z faktu, ze jest on suma dwdch go poprzedzajacych
(oraz tego, ze dwa poczatkowe wyrazy ciggu to jedynki), wynika taki oto wzor:

F_{ 1 dlane{l,2}

“|F_+F,_, dlan>2

n

Mozesz powiedzie¢, ze nazywanie go ‘algorytmem’ jest lekkg przesadg. Tym niemniej
przektada sie on na odpowiednig funkcje:

unsigned Fib (unsigned n)
{

if (n <= 2) return 1;

else return Fib(n - 1) + Fib(n - 2);
}

Jak wida¢, wystepuja tu dwa wywotania rekurencyjne, obliczajace dwa wyrazy ciggu
poprzedzajace ten zadany. Wynikajg one rzecz jasna wprost z wzoru zaprezentowanego
wyzej.

Analiza

Niniejszy algorytm (mimo wszystko pozostane przy tym okresleniu...) jest krotki i prosty.
Intuicyjnie wydawatoby sie wiec, ze jego ztozonos¢ jest niewielka. Prawda okaze sie co
najmniej zaskakujgca... No, ale nie uprzedzajmy faktow.

Zacznijmy od zapisania ztozonosci praktycznej T(n). Dla n = 1 lub 2 funkcja dokonuje
tylko jednego poréwnania, po czym od razu zwraca wynik; sg to terminalne przypadki dla
rekurencji. W innych przypadkach oprocz rzeczonego poréwnania nastepujg tez dwa
dalsze wywotania rekurencyjne. W sumie wiec funkcja T(n) wyglada¢ bedzie tak:

przypadku petli. Wida¢ zatem, ze w tym przypadku wersja algorytmu z wykorzystaniem petli jest o wiele
lepsza.

T(n)=

1 dlan<2
T(n-1)+T(n-2)+1 dlan>2

Jak mozna sie byto spodziewaé, jest to znowu funkcja rekurencyjna. Aby okresli¢ jej
klase musimy zatem sprobowac doprowadzi¢ jg do bardziej przejrzystej postaci.

Rozwigzanie rekurencji

Zastosowanie metody rozpisywania, cho¢ wydaje sie logiczne, nie doprowadzi niestety do
rozwigzania. Nie ma bowiem szans na takie zredukowanie rownania, aby pozostat jedynie
T(n) i skfadniki nierekurencyjne. W tym przypadku trzeba wykazac sie nieco innym
podejsciem do sprawy.

Pierwsza obserwacja polega na zauwazeniu, ze warto$¢ T(n) sktada sie z trzech
sktadnikéw, z ktérych jeden jest staty, czyli znany nam, natomiast pozostate dwa sg
wywotaniami rekurencyjnymi o takich samych wiasciwosciach. Oznacza to, Ze one
rowniez sktadajq sie z trzech sktadnikéw, z ktérych dwa sg rekurencyjne, itd.

Pomyst polega na zbudowaniu drzewka, ktérego wezty reprezentowatyby znane znam,
state sktadniki, za$ krawedzie (gatezie) - wywotania rekurencyjne. Na poczatku takie
drzewo wygladatoby dos¢ skromnie:

1
Schemat 1. Drzewo rekursji dla ztozonosci praktycznej ciagu Fibonacciego - etap pierwszy

Nietrudno je jednak rozbudowac. Ukryte za wielokropkami poddrzewa tworzymy
bowiem... rekurencyjnie - z tym, ze teraz T(n-1) lub T(n-2) petnig role T(n):

1
1 1
T{f/ N-’*} T(V \.4}

Schemat 2. Drzewo rekursji dla ztozonosci praktycznej ciagu Fibonacciego - etap drugi

W podobny sposéb budujemy drzewko, az dojdziemy do lisci, czyli weztéw na koncach
wywotan T(2) lub T(1). Po zsumowaniu wartosci we wszystkich weztach drzewa
otrzymamy liczbe krokéw algorytmu potrzebnych do obliczenia n-tej liczby Fibonacciego.
Stad juz bardzo blisko do okreslenia klasy tego algorytmu.

Tin-1) (-2
1 1
Tin-2) Tin-3) T(n-3) Tin-4)
1 1 1 1
y v y Ty 9 y v
1 1 1 11 1 1 1

Schemat 3. Gotowe drzewo rekursji dla ztozonosci praktycznej ciagu Fibonacciego

W naszym przypadku w weztach mamy wyiacznie jedynki, zatem problem sprowadza sie
do okreslenia ich ilosci. W tym celu wyobrazmy sobie, jak wyglada drzewko dla wartosci
T(3) - jest to pierwsza wartos¢, dla ktérej wystepujg sktadniki rekurencyjne. Drzewo
bedzie miato wytacznie jedno rozgatezienie, wysokos$¢ 1 i dwa poziomy. Generalnie
mozna stwierdzi¢, ze dla danego n drzewo T(n) ma wysokos$¢ n-2 oraz n-1 poziomdw.

A ile jest weztéw na kazdym poziomie?... Na pierwszym mamy oczywiscie jeden korzen;
na drugim sg juz dwa wezty, odpowiadajace dwdém wywotaniom rekurencyjnym. Od
kazdego z nich odchodzg po dwie krawedzie, zatem na trzecim poziomie mamy cztery
wezty, i tak dalej - schodzac nizej, (zazwyczaj) podwajamy ilo$¢ weztdw. A poniewaz
liczba pozioméw drzewa wynosi n-1, na ostatnim poziomie bedzie wiec mniej wiecej 2"
lidci, zas na i-tym - okoto 2! weztéw.

Nie mozemy doktadnie okresli¢ tych wartosci, gdyz drzewo nie zawsze jest
zrownowazone. Z grubsza rzecz biorgc znaczy to, ze najnizszy poziom nie zawsze zawiera
wszystkie liscie drzewa. Przyktadem moze by¢ np. drzewko dla 7(4). Liczba lisci rézni sie
jednak co najwyzej o statg, zatem nie wptywa to na ztozonos$¢ asymptotyczng.

By uzyskac przyblizong ilo$¢ weztdw w drzewie nalezy oczywiscie zsumowac ich ilosci na
wszystkich n-1 poziomach:

n-1 n_
1424448+, 42" =2 =32 2" =" 2" ="

i=0 i=0

Otrzymujemy funkcje wyktadniczg wzgledem n. Mozemy zatem stwierdzi¢, ze ztozonos$¢
rekurencyjnego algorytmu dla ciggu Fibonacciego to az 0(2").

Post scriptum: algorytm iteracyjny dla ciggu Fibonacciego

Rekurencyjna procedura obliczania ciggu jest wiec skrajnie nieefektywna. W sumie nie
jest to powdd do jakiegos szczegdlnego zmartwienia, bo jest spora szansa, ze éw cigg nie
bedzie ci nigdy do niczego potrzebny. Jesli jednak zdarzy sie inaczej, to zdecydowanie
powinienes wtedy poszukac innego rozwigzania.

Problem z rekurencjg polega tutaj na tym, iz wiekszos¢ wyrazow jest obliczana
wielokrotnie, przez co mnostwo czasu procesora po prostu sie marnuje. Procedura ta jest
po prostu mato inteligentna. W takich wypadkach stosuje sie technike zwang
programowaniem dynamicznym, ktora generalnie jest troszke skomplikowana. W tym
przypadku wystarczy jednak wykazac sie tylko odrobing sprytu: po co za kazdym razem
liczy¢ kazdy wyraz od poczatku, skoro mozna zapisywac wyniki posrednie? Nie bedzie to
zuzywato wiele pamieci, gdyz musimy znac jedynie dwa poprzedzajace wyrazy.
Iteracyjny algorytm obliczania ciggu Fibonacciego moze wiec wygladac tak:

unsigned Fib (unsigned n)

{
unsigned uFib, uFibl, uFib2;

// warunki brzegowe
uFib = uFibl = uFib2 = 1;

// liczymy po koleil wyrazy az do zadanego

for (unsigned i = 3; i <= n; ++1i)

{
// "przewijamy" dwa wyrazy poprzedzajace
uFib2 = uFibl;
uFibl = uFib;

// obliczamy nowy wyraz
uFib = uFibl + uFib2;
}

// zwracamy wynik
return uFib;

}

Rdznica jest kolosalna. Z pobieznego rzutu oka na petle w powyzszej funkcji wynika
bowiem, ze jest ona rzedu zaledwie O(n)! Wersja iteracyjna pozwala wiec zejs¢ ze
ztozonosci wykfadniczej do liniowej.

Rekurencja w technice ,dziel i zwyciezaj”

Jezeli nie miate$ wczesniej do czynienia z algorytmami rekurencyjnymi, to poprzednim
paragrafem mogtem cie do nich ,nieco” zniecheci¢. Nie powinienes$ jednak brac¢ ich sobie
za bardzo do serca. W rzeczy samej rekurencja nie jest wcale takim diabtem, jakim to
troche niechcacy przedstawitem jg wczesniej. Co wazniejsze, istnieje wiele problemow,
dla ktérych tylko algorytmy oparte na rekursji dajq efektywne albo wrecz jedyne
poprawne rozwigzanie.

Pokazng grupe stanowig tutaj operacje na strukturach danych, ktére same w sobie majg
nature rekurencyjng. Przyktadem mogaq by¢ grafy i drzewa, a praktycznym
zastosowaniem - chociazby wyszukiwanie pliku o okreslonej nazwie w rozlegtym drzewie
katalogow dyskowych.
Na rekurencji jest tez oparta bardzo skuteczna i ogdlna metoda projektowania
algorytmow, znana jako ,dziel i zwyciezaj” (ang. divide & conquer). Jej idea polega na
podziale zadania na mniejsze i kontynuowanie tego procesu az do momentu uzyskania
problemu elementarnego, ktéry potrafimy rozwigzac¢ bezposrednio. W sumie algorytm
korzystajacy z tej metody skfada sie z trzech czesci:

» podzielenia problemu na mniejsze fragmenty (podproblemy)

> rozwigzania podproblemoéw poprzez dalszy, rekurencyjny podziat - az dojdziemy

do przypadku elementarnego, ,niepodzielnego”
> ztaczenia rozwigzan podproblemdéw w jedno rozwigzanie catego problemu

Opis ten moze brzmi nieco zawile, lecz sama idea kryjaca sie za nim jest w gruncie
rzeczy bardzo prosta. Jak to czesto bywa, najlepiej zobaczy¢ ja na przyktadzie. Ponownie
pozwole sobie na wykorzystanie w tym celu sortowania, jako ze czynnosc ta jest dla
komputeréw zapewne tak samo naturalna, jak dla nas oddychanie czy jedzenie. Na
poczatku rozdziatu poznaliSmy prosty algorytm zajmujacy sie tym zadaniem i w chwile
potem okreslilismy jego ztozonoé¢ jako ©(n?). Przy uzyciu techniki ,dziel i zwyciezaj”
mozna ten czas obnizy¢ do ®(nlogn), co jest czasem optymalnym (najmniejszym z
mozliwych) dla sortowania przez poréwnywanie. Oczywiscie nas bedzie réwniez zywo
interesowato to, jak te ztozonos$¢ wyznaczy¢; tym takze zajmiemy sie za chwile.

Przyktad: sortowanie przez scalanie

Wpierw czas na obiecany przykfad. Algorytmdw sortowania skonstruowanych w oparciu o
technike ,dziel i zwyciezaj” jest przynajmniej kilka, a my nie bedziemy tutaj poznawac
ich wszystkich, bo w koncu nie jest to ksigzka o algorytmach jako takich, tylko rozdziat
poswiecony analizie ich ztozonosci. Zobaczymy wiec jeden z nich, nazywany
sortowaniem przez scalanie albo zlqczanie (ang. mergesort). Ma on te zalete, ze jest
catkiem prosty, a ponadto dobrze ilustruje sposoby na okreslanie ztozonosci algorytmow
opartych o ,dziel i zwyciezaj”.

Zaatakowanie od razu kodem zrédiowym bytoby pewnie nieco odstraszajace, zatem
najpierw pomowmy sobie, jak ten algorytm dziata. Danymi wejsciowymi jest naturalnie
tablica liczb (lub dowolnych elementéw, ktére mozna sortowac, poréwnujac ze sobg) o
rozmiarze n. Dla takiej tablicy wykonywane sg trzy ponizsze kroki:
> dziel: tablica jest dzielona na pdt, czyli na dwie podtablice o rozmiarze n/2
» zwyciezaj: kazda podtablica jest sortowana poprzez rekurencyjne wywofanie
algorytmu - z wyjatkiem tej o rozmiarze 1, ktorg sitg rzeczy jest od razu
posortowana
» potgcz: posortowane podtablice sq nastepnie taczone w jedng posortowang tablice

Na pierwszy rzut oka dziatanie algorytmu moze wydawac irracjonalne. Céz nam z bowiem
z samego rekurencyjnego dzielenia tablic na coraz mniejsze?... Oczywiscie nic, jednak
cata praca, dzieki ktorej algorytm dziata, jest wykonywana w kroku trzecim. Stad wiasnie
wzieta sie nazwa sortowania przez scalanie: tagczenie posortowanych podtablic jest
bowiem ,punktem ciezkosci” algorytmu - to jemu zawdzieczamy jego poprawnosc.

: Z kolei drugi popularny algorytm sortowania - zwany tendencyjnie sortowaniem

| szybkim (ang. quicksort), cho¢ bardziej odpowiednia nazwa to sortowanie przez podziat
| - ktadzie nacisk na krok pierwszy. Tam sposob podziatu jest sprawa kluczowa, natomiast
i operacja taczenia w ogdle nie jest potrzebna.

W sortowaniu przez scalanie to fqczenie zajmuje wiec najwiecej czasu i miejsca w kodzie
zrédtowym. Spéjrzmy wiec teraz, jak to wszystko wyglada:

// sortowanie przez scalanie
// parametry uMinIndex i uMaxIndex wyznaczaja aktualnie sortowana
// podtablice
void MergeSort (const int* aTablica, unsigned uRozmiar,
unsigned uMinIndex = O,
unsigned uMaxIndex = uRozmiar - 1)

// najpierw sprawdzamy, czy podana tablica ma co najmniej
// dwa elementy; jezeli nie, jest to przypadek elementarny,
// kohczacy rekurencje

if (uMinIndex >= uMaxIndex) return;

/* krok 1: dziel */

// punkt podzialu wyznaczamy w polowie tablicy
unsigned uPunktPodzialu = (uMinIndex + uMaxIndex) / 2;

/* krok 2: zwyciezaj */

// wywolujemy rekurencyjnie procedure dla obu potdwek tablicy
MergeSort (aTablica, uRozmiar, uMinIndex, uPunktPodzialu);
MergeSort (aTablica, uRozmiar, uPunktPodzialu + 1, uMaxIndex);

/* krok 3: polacz */

// obliczamy rozmiary obu podtablic
unsigned uRozmiarLewej = uPunktPodzialu - uMinIndex + 1;
unsigned uRozmiarPrawej = uMaxIndex - uPunktPodzialu;

// tworzymy pomocniczne tablice (o jeden element wieksze)
int[] alewa = new int [uRozmiarLewe]j + 1];
int[] aPrawa = new int [uRozmiarPrawej + 1];

// wypelniamy Jje zawarto$cia odpowiednich poidwek
// (uwaga: w prawdziwej implementacji uzywamy nie petli,
// lecz funkcji w rodzaju memcpy())

for (unsigned i = 0; i < uRozmiarLewe]j; ++1i)
alewa[i] = aTablica[uMinIndex + i];
for (unsigned i = 0; i < uRozmiarPrawe]j; ++1i)

aPrawa[1i] aTablica[uPunktPodzialu + 1 + 1i];

// dodajemy tez wartownikdéw na kohcach: elementy wieksze od
// dowolnego innego

aLewa[uRozmiarLewe]] = aPrawa[uRozmiarPrawej] = MAX INT;

// nastepnie bierzemy elementy raz z jednej, raz z drugie]
// tablicy (zawsze mniejszy) 1 wstawiamy do oryginalnej
unsigned i = 0, j = 0;
for (unsigned k = uMinIndex; k <= uMaxIndex; ++k)

// pordédwnujemy elementy z obu tablic

if (aLewal[i] <= aPrawaljl])

{

// lewa mniejsza; wstawiamy element, inkrem. i

aTablical[k] = alLewali];
++1i;
}
else
{
// prawa mniejsza; wstawiamy element, inkrem. J
aTablicalk] = aPrawal]j];
++3

}

// na koniec pozbywamy sie niepotrzebnych juz tablic pomocniczych
delete[] alewa;
delete[] aPrawa;

Tablice dzielimy wiec na pét i kazdg potdwke sortujemy rekurencyjnie. taczenie, wieksza
czes¢ procedury, odbywa sie natomiast w pewien sprytny sposob. Polega ono mianowicie
na kolejnym sprawdzaniu elementéw z obu podtablic i wybieraniu wiekszego. Po
opréznieniu ktérejs podtablicy dodawana jest nastepnie cata zawarto$c drugiej. Dzieki

obecnosci wartownikéw na koncach, za wszystko odpowiada ostatnia petla. Inna metoda
polega na recznym sprawdzaniu, czy ktoras z podtablic jest pusta; wtedy potrzebne sg
jeszcze dwie petle (z ktérych wykonuje sie tylko jedna), ktore ,,oprozniajq” drugg
potéwke.

Analiza

Sortowanie przez scalanie wyglada¢ moze na o wiele bardziej skomplikowane niz to przez
wstawianie. Gra jest jednak warta swieczki - zyskiem jest wzrost efektywnosci catej
procedury. Zajmijmy sie zatem jej wyznaczeniem, czyli znalezieniem klasy algorytmu
mergesort.

Procedura MergeSort () jest rekurencyjna, zatem analize mozemy podzieli¢ na dwie
czesci. Pierwsze zadanie to wyznaczenie ztozonosci pojedynczego wywotania funkcji.
Drugi etap to ustalenie, jaki koszt wnosi tutaj rekurencja. Potgczenie tych dwdch
rezultatdw da nam w wyniku klase algorytmu.

Analiza algorytmu tgczenia

W przypadku sortowania przez scalanie owo scalanie jest gtdéwng czescig kazdego
wywotania procedury. Najpierw zatem zajmiemy sie wtasnie tym fragmentem sortowania.

Sam algorytm faczenia (rozpoczynajacy sie w kodzie zrodtowym o komentarza ,krok 3")
nie jest rekurecyjny. Jak mozna stwierdzi¢ pobieznym rzutem oka, jego istote stanowig
przede wszystkim petle. Najwazniejsza jest ostatnia, przebiegajaca po catej sortowanej w
danym momencie podtablicy (po wszystkich indeksach od uMinIndex do uMaxIndex).
Wykonuje wiec ona n cykli, gdzie n jest rowne uMaxIndex - uMinIndex + 1. J€j
ztozonos¢ jest liniowa - ©(n).

Reszta algorytmu nie przekracza tej klasy. Wypetnienie wartosciami dwdch pomocniczych
tablic aLewa i aPrawa takze wymaga liczby instrukcji proporcjonalnej do n. Jesli zas
zatozymy, ze operacje alokacji pamieci i jej zwalniania sg wykonywane w czasie statym
(co jest rozsadne dla niemal wszystkich komputeréw), to ze strony ztozonosci algorytmu
tgczenia podtablic nie spotkajg nas juz zadne niespodzianki.

Ostatecznie wiec jest on rzedu 0(n).

Ztozonos¢ teoretyczna

Wiemy teraz, jak efektywne jest zrealizowanie pojedynczego wywotania rekurencyjnego
w sortowaniu mergesort. Nie wiemy jednak, ile takich wywotan rzeczywiscie wystepuje i
jak bardzo wielkos¢ ta zalezy od n - rozmiaru sortowanej tablicy. Azeby to oszacowac,
musimy przyjrzec sie zastosowanej rekursji i w ten sposéb wyznaczyc¢ funkcje ztozonosci
dla catego algorytmu.

Zobaczmy wiec, jak mergesort wywotuje sam siebie. Z opisu podanego w poprzednim
paragrafie powinienes$ jeszcze pamietac, ze istotg jest tu podziat tablicy na dwie potowy. I
tak sie faktycznie dzieje: wyznaczany jest po prostu graniczny ,indeks potéwkowy”,
wedle ktoérego dokonywany jest podziat (przechowuje go zmienna uPunktPodziatu).

A gdy dokonato sie dzielenie, czas na zwyciestwo. Obie podtablice sq wiec sortowane
poprzez ten sam algorytm mergesort - z ta réznicg, ze jest on wywotywany dla kazdej z
nich osobno. Rekurencyjne wywotania procedury operujg juz zatem na tablicach o
rozmiarze nie n, lecz mniej wiecej® n/2.

8 Zaden element nie moze rzecz jasna zosta¢ zgubiony. W rzeczywistosci pierwsza rekurencja zajmuje sie wiec
podtablica o rozmiarze Ln/zJ (potowa liczby elementdw zaokraglona w dot), za$ druga - o rozmiarze (n/2—|

(potowa liczby element zaokraglona w goére). Dla analizy algorytmu jest to jednak szczegédt techniczny, bo skoro
wszystkie elementy i tak sg brane pod uwage, mozemy swobodnie zatozy¢, ze obie potdwki maja po prostu n/2
elementow.

Wartos¢ T(n) ztozonosci praktycznej jest wiec budowana przez wartosci T(n/2),
reprezentujace rekurencje dla tablic potdwkowych, oraz ztozono$¢ procesu faczenia -
©(n). W sumie wynosi ona zatem:

T(n)=2T(n/2)+06(n)

Nalezy jeszcze uwzgledni¢ przypadek elementarny - jest nim tablica sktadajaca sie tylko z
jednego elementu. Naturalnie jest on posortowana, totez do algorytmu nalezy jedynie
stwierdzenie tego faktu. Jest to wykonywane w czasie statym - 0(1).

Finalna posta¢ zaleznosci T(n) jest wiec nastepujaca:

o(1) dlan<l
T(n):{ZT(n/2)+®(n) dlan>1

Teraz pozostaje nam ,tylko” jej rozwigzanie, czyli wyznaczenie T(n) jako funkcji
nierekurencyjnej. W nastepnym paragrafie zajmiemy sie tym gtéwnym punktem
programu.

Jezeli postugiwanie sie notacjami asymptotycznymi w rdwnaniach sprawia ci jeszcze

| ktopot, to mozesz przyja¢, ze pod ©(1) kryje sie ¢, zas pod ©(n) - dn, gdzie c i d sq

| dowolnymi statymi. Ja jednak bede stosowat ten zapis jako wygodniejszy i podkreslajacy
| fakt, ze zalezy nam wyznaczeniu ztozonosci asymptotycznej bez wdawania sie w zbedne
: szczegoty. Wihasciwie wiec notacje ® nalezatoby tu traktowac jako pewne uproszczenie!

Rozwigzanie rekurencji

Juz pierwszy rzut oka na réwnanie
T(n)=2T(n/2)+06(n)

utwierdza nas w przekonaniu, ze rozni sie ono troche od tych, ktérymi zajmowali$my sie
dotad. Pomijajgac wystepowanie wiecej niz jednego sktadnika rekurencyjnego (z czym
nauczyliSmy sobie jako$ radzi¢), zamieszanie wprowadza z pewnoscig n/2 jako jego
argument.

Dzielenie rozmiaru danych na potowe lub dowolng inng liczbe czesci jest jednak (jak
nawet sama nazwa wskazuje) nieodtacznym elementem techniki ,dziel i zwyciezaj”. Gdy
wiec poznamy sposéb na rozwikfanie powyzszej funkcji jest wielce prawdopodobne, ze
analogiczne metody dadzg sie zastosowac dla przynajmniej wiekszosci algorytmow
stosujgc ww. technike. W tym paragrafie pokaze kilka takich sposobow.

Na poczatek jednakowoz wypadatoby podjaé¢ wyzwanie i oszacowac powyzsza funkcje
T(n) dla sortowania przez scalanie. Mimo pozornej trudnosci zadanie to moze okazac sie
catkiem tatwe...

Jeszcze raz drzewko

Oczywiscie metoda rozpisywania na pewno nie zda tu egzaminu, gdyz czynnik 2 przy
T(n/2) znakomicie uniemozliwia zredukowanie wszystkich sktadnikéw poza T(n).
PoradziliSmy juz sobie jednak w takiej sytuacji: pomoca okazato sie zilustrowanie
rekurencji za pomoca pogladowego drzewka.

Sprobujmy wiec wykorzystac te metode takze i tutaj. Przypomnijmy, ze drzewko jest
skonstruowane wedle trzech regut:
> kazdy jego wezet odpowiada nierekurencyjnej czes¢ réwnania - tej, ktdérg znamy
bezposrednio, niezawierajacej dalszych wywotan T(...)

» krawedz (gataz) drzewa wychodzaca z danego wezta reprezentuje wywotania
rekurencyjne
> liscie drzewa odpowiadajg przypadkom elementarnym, kornczacym rekurencje

Jak to wyglada u nas?... Sktadnikiem nierekurencyjnym w T(n) jest ®(n) - przypomnijmy,
ze jest to synonim dowolnej funkcji liniowej. Pojawi sie on wiec w korzeniu i
wewnetrznych weztach drzewa. Z kolei krawedzie sq modelem przywotan rekurencyjnych.
Od korzenia odchodzg wiec dwie gatezie T(n/2), na drugim poziomie - T(n/4), potem
T(n/8), itd. Wreszcie, drzewo konczy sie na przypadkach elementarnych, gdy n nie
mozna juz podzieli¢ na dwa. W lisciach znajdzie sie wiec ®(1).
Opierajac sie na tych spostrzezeniach mozemy zasadzi¢ drzewko:

o(n)

T(n/2) T(nf2)

Schemat 4. Drzewo rekursji dla zlozonosci teoretycznej sortowania przez scalanie - etap pierwszy

Pod wielokropkami kryja sie oczywiscie rekurencyjne poddrzewa. Gdy wiec nasze
drzewko uros$nie nieco bardziej, wyglada¢ bedzie mniej wiecej tak:

O(n)

T(n/2) T(n/2)

O(n/2} O(n/2)

T(n/4) T(n/4) T(n/4}) T(n/4)

Schemat 5. Drzewo rekursji dla ztozonosci teoretycznej sortowania przez scalanie - etap drugi

Jak widzimy, kolejne wywotania sg przeprowadzane dla coraz mniejszych wartosci n -
potéwek, potowek potowek, potéwek ¢wierci, itd. W wyniku tego podziatu dojdziemy w
koncu do przypadku elementarnego n = 1. Wtedy tez drzewko konhczy sie, a w lisciu
pozostaje jedynie sktadnik ©(1).

Aby dzielenie przez 2 zredukowato w koricu n do samej jedynki, warto$¢ n musi by¢
oczywiscie potegg dwdjki. Mozemy bez przeszkdd przyjac takie zatozenie, gdyz nie
wptywa ono na asymptotyczng ztozonos¢ algorytmu mergesort. Dla n nie bedgacych
potegg dwojki drzewko nie bedzie po prostu zrownowazone, czyli niektdre jego gatezie
beda konczyty sie lis¢mi wczesniej niz inne. Nie wptynie to jednak na oszacowanie ilosci
weztébw w drzewie.

W petni rozwniete drzewo rekursji wyglada wiec nastepujaco:

0(n/2)

Q(n/2)

T(n/4) \M T{nV ym
O(n/4) o(n/4) O(n/4) O(n/4)
y Yy v < y

o(1) o(1) o(1) o(1) o(1) O(1) o(1) o(1)

Schemat 6. Gotowe drzewo rekursji dla ztozonos$ci teoretycznej sortowania przez scalanie

Moze dziwic¢ uzycie wyrazen w formie ®(n/2) lub ®(n/4), lecz ma to swoje uzasadnienie.
Po zsumowaniu kosztéw na kazdym poziomie musimy bowiem otrzymac¢ @(n), gdyz
algorytm zajmuje sie zawsze wszystkimi n elementami tablicy.

: Na potaczenie drzewka i notacji asymptotycznych trzeba wiec nieco uwaza¢. Generalnie
| jednak w rzeczywistej analizie algorytmoéw ,dziel i zwyciezaj” w ogdle nie stosuje sie

| drzew, lecz metody opisane w nastepnych akapitach. Dlatego tez proba rozwigzania

i rekurencji za pomocg powyzszego drzewka musi by¢ traktowana troche nieformalnie.

Powyzszy fakt daje nam niespodziewanie cenng informacje: dla kazdego poziomu rekursji
wykonywanych jest zawsze ©(n) instrukcji. Celem oszacowania catkowitej ztozonosci
musimy wiec tylko znalez¢ wysokos$¢ drzewka, a nastepnie pomnozy¢ te wielkos¢ przez
o(n).

Ile poziomdw rekursji wystepuje tutaj?... Odpowiedz jest prosta: tyle, azeby z n ,,zejs¢” w
koncu do 1 poprzez ciggte dzielenie przez dwa (i zaokraglanie w dét). A poniewaz kazdy
wezet zajmuje sie wartoscig dwa razy mniejsza niz wezet nadrzedny (co odpowiada
podziatowi tablicy na pét), wiec na i-tym poziomie wartos¢ ta wyniesie n/2"1. Jesli zatem
oznaczymy szukang ilos¢ pozioméw jako p, to

bo na ostatnim poziomie mamy juz do czynienia jedynie z 1-elementowgq tablicg. Stad
mozna bez problemu wyznaczy¢ owe p:

p=log,n+1
Liczba pozioméw drzewa zalezy wiec logarytmicznie od rozmiaru danych, czyli jest rzedu

®(logn). Wiemy réwniez, ze wykonanie kazdego poziomu zajmuje czas ®(n). Mnozac obie
wartosci otrzymujemy catkowitg ztozonos$¢ algorytmu:

©(logn)-©(n)=©(nlogn)

Jest ona znacznie lepsza od ©(n?) sortowania przez wstawianie. Przyktadowo
posortowanie 1000 elementéw zajmuje tamtg metodg okoto milion instrukcji, zas
sortowanie przez scalanie mniej wiecej sto razy mniej. Tak efektywnosc ma jednak swojq
cene. Algorytm sortowania przez scalanie jest bardziej skomplikowany, podobnie jak
»intuicyjna” analiza jego ztozonosci.

Metoda rekurencji uniwersalnej

Za pomocg umiejetnie uzytego drzewka mozna rozwigza¢ prawie kazdy problem analizy
algorytmu typu ,dziel i zwyciezaj”. Do$c¢ czesto jest to jednak pracochtonne, wymaga tez
wyjatkowej uwagi i zwracania uwagi na takie niuanse, jak poprawne uzycie notacji
asymptotycznej.

Z drzewkami i rekurencjg dawno temu walczyli juz matematycy, a owocem ich pracy jest
bardzo skuteczna metoda rekurencji uniwersalnej. Jej nazwa wskazuje, ze mozna jq
stosowac do bardzo szerokiego zakresu funkcji i tak jest w istocie. Zaletg tej metody jest
ponadto szybkos¢ i wzgledna tatwosc stosowania. Nie potrzebujemy bowiem ani
rozpisywania funkcji w szereg réwnan, ani rysowania drzewka. Wszystko, co jest
potrzebne, to rodzaj ,Sciagi” pozwalajacej na bezposrednie okreslenie rozwigzania.

Zanim przedstawie te metode musze jeszcze dokfadnie okresli¢ zakres jej stosowalnosci.
Otéz przy jej pomocy mozemy w miare prosty sposob okresla¢ klase funkcji T(n)
wystepujacej w rownaniu postaci:

T(n)=aT(n/b)+ f(n)

Wspéitczynniki a i b sg tu dowolnymi statymi, zas f(n) - dowolng funkcja, okreslajaca
nierekurencyjng czes¢ réwnania (czyli nie zawierajacq dalszych wywotan T7(...)). Dla
przyktadu, nasze réwnanie okreslajace ztozonos$¢ sortowania przez scalanie ma
wspétczynniki a i b réwne 2, zas f(n) jest dowolng funkcje liniowa.

Ponadto musimy oczywiscie zatozy¢, ze rekurencja kiedys sie konczy, czyli dla
wystarczajgcg matej wartosci n okreslona jest terminalna stata.

W jaki sposdb wyglada teraz zastosowanie metody rekurencji uniwersalnej? Sktada sie

ono z dwéch krokow:
> najpierw nalezy obliczy¢ funkcje @ (n) =2

» nastepnie nalezy poréwnac¢ jg z funkcjg f(n) i na tej podstawie okresli¢
rozwigzanie

Pierwszy krok jest oczywiscie bardzo prosty, szczegdlnie jesli dysponujemy kalkulatorem
czy innym urzadzeniem liczacym. Dla, na przyktad, sortowania przez scalanie
wspomniang funkcjg bedzie:

1

g(n)=n*®*?=n'=n

Podobnie jest dla dowolnych innych wartosci a i b. To zdecydowanie prostszy krok tej
metody.

Drugi krok polega na wyborze jednej z trzech mozliwych rozwigzan w zaleznosci od
wyniku poréwnania funkcji g(n) i f(n). Gdy méwimy o poréwnywaniu funkcji, mamy
oczywiscie na mysli ich relacje wyrazone za pomocg poznanych notacji asymptotycznych:
Q, ®i 0. W tym przypadku réwniez tak jest.

W metodzie rekurencji uniwersalnej mamy wiec trzy przypadki, ktére przedstawia
ponizsza tabela:

relacja miedzy g(n) i f(n) rozwiazanie
g(n) jest wielomianowo wieksza od f(n) T(n)= ®(g (n)) = ®(n1°gba)

g(n) jest asymptotycznie réwna f(n) T (n) = ®(g (n) -log n) = @(nl"gba -log n)

g(n) jest wielomianowo mniejsza od f(n) T(n)= ®(f (n))

Tabela 4. Trzy mozliwe przypadki w metodzie rekurencji uniwersalnej

Nalezy po prostu stwierdzi¢, ktory z nich zachodzi, a potem bezposrednio odczytaé
rozwigzanie... Céz, tatwiej powiedzie¢, ale pewnie trudniej zrobi¢. Wyjasnienia wymaga na
pewno okreslenie, ze funkcja jest ,wielomianowo” wieksza lub mniejsza od innej.
Stwierdzenie to oznacza mianowicie, ze obie funkcje musza rézni¢ sie od siebie
przynajmniej o czynnik wielomianowy - tzn. o n¥, gdzie k jest dowolng liczba dodatnia.
Wezmy np. f(n) = ©(nlogn) i g(n) = ©(n?). Tutaj wiadomo rzecz jasna, ze g(n) jest
wieksza od f(n), jednak nie jest ona wielomianowo wieksza. Réznica miedzy obiema
funkcjami sprowadza sie bowiem do czynnika logarytmicznego - logn - ktéry jest
mniejszy niz wielomianowy. W takiej sytuacji jak powyzsza nie moglibysmy niestety
zastosowac¢ metody rekurencji uniwersalnej; wariant ten niejako ,wpada w luke”
pomiedzy przypadkami 1 i 2.

Na szczescie w wiekszosci réwnan obie funkcje spetniajg ktérys z trzech warunkéw. Dla
naszego sortowania zachodzi na przyktad przypadek drugi, gdyz zaréwno f(n), jak i g(n)
sg sobie asymptotycznie réwne: obie to funkcje liniowe. Wynika stad natychmiast, ze
T(n) jest rzedu ©(g(n) logn), czyli ®(nlogn). Uzyskalismy wiec taki sam wynik jak przy
zastosowaniu drzewka, jednak metoda rekurencji uniwersalnej jest zwykle o wiele
szybsza i wygodniejsza.

Ciekawostka: twierdzenie o rekurencji uniwersalnej

Cata ta metoda opiera sie na matematycznym twierdzeniu o rekurencji uniwersalnej.
Jego tresc¢ jest zgodna z informacjami z poprzedniego akapitu, aczkolwiek formalny jezyk
matematyki czyni jg nieco precyzyjniejsza. Naturalnie nie ma najmniejszej potrzeby,
abys znat je na pamieé¢; wystarczy tylko bys$ wiedziat, gdzie mozesz je znalez¢ i jak je
zastosowac.

Oto wiec rzeczone twierdzenie®:

Niech a = 1i b > 1 bedg statymi, f(n) dowolng funkcja, zas T(n) zdefiniowane dla
nieujemnych liczb catkowitych poprzez rekurencje:

T(n)=aT (n/b)+ f(n)
Wowczas T(n) mozemy asymptotycznie oszacowac w nastepujacy sposob:
1.Jedli f (n) = O(nlogba_g) dla pewnej statej € > 0, to T(n)=®(n1°g"a)
2. Jedli f (n)=®(n1°gha), to T(n):G)(n“’gbalog n)

3.3l f(n)=Q(n"***) dla pewnej statej € > 0, to T(n)=6(f (n))

9 Cytowane za Wprowadzeniem do algorytmdéw Thomasa H. Cormena. Pominatem jedynie tzw. warunek
regularnosci w trzecim przypadku, gdyz jest on spetniony dla wszystkich rozsadnych funkcji pojawiajacych sie w
analizie algorytmow.

Najprawdopodobniej stwierdzisz, ze wyglada ono dos¢ upiornie. Generalnie jednak jest to
doktadnie to samo zestawienie trzech mozliwych przypadkdéw, podanych w tabeli z
poprzedniego akapitu. Mozna jeszcze zwroci¢ uwage, jak zostata zapisana relacja
wielomianowa: poprzez wprowadzenie statej € > 0 do wykfadnika n w funkcji

g (n): nlogba.

Podsumowanie

Analiza efektywnosci algorytmow moze nie wydwac sie wdziecznym ani prostym
zadaniem. Przynajmniej podstawowa jej znajomos¢ jest jednak konieczna, aby moc pisac
programy, ktére nie beda dziataty slamazarnie nawet na najszybszych komputerach.
Ponadto catkiem czesto okazuje sie, ze niemoznos¢ okreslenia ztozonosci wlasnego
algorytmu staje sie silng przestankg za tym, iz jest on btedny lub w najlepszym wypadku
mato wydajny.

W tym rozdziale mogtes$ wiec poznac gars$c¢ wiedzy na temat tego waznego zagadnienia,
jakim jest wyznaczanie szybkosci algorytmow. Najpierw wiec zastanowiliSmy sie, w jaki
sposdb mozna rozsadnie wyrazaé efektywnosé danego algorytmu i jakich miar mozna
uzy¢ do poréwnywania wydajnosci procedur. Zwrécitem wowczas uwage, ze przygladanie
sie wszelkim sprawom ,technicznym” prowadzi zwykle donikad.

Potem poznaliSmy najbardziej rozpowszechniong metode wyrazania sprawnosci
algorytmow, czyli ztozonos¢ teoretyczng. Ku radosci nielicznych i narzekaniu wiekszosci
zagtebiliSmy sie tez w matematyczng strone tego zagadnienia, a mianowicie notacje
asymptotyczne.

Byto to jednak konieczne, aby$my mogli przejsc do zasadniczej tresci rozdziatu. W
drugiej jego czesci przedstawitem wiec typowe techniki stuzace znajdowaniu ztozonosci
réoznych algorytmoéw. Sporo uwagi poswieciliSmy petlom, ktére wystepujg w prawie
kazdej procedurze. Ponadto zajeliSmy sie takze programami rekurencyjnymi, ktore
wprawdzie nie wystepuja juz czesto, jednak sg o wiele oporniejsze w analizie. Tutaj takze
wymagana byta porcja matematyki ,wyzszej”, czego ukoronowaniem byfa metoda
rekurencji uniwersalnej.

Zapewne zdajesz sobie sprawe, ze podane przeze mnie wskazowki absolutnie nie
wyczerpujg tematu badania efektywnosci algorytmoéw. Istnieje mndstwo zrédet
opisujacych te tematyke, z ktérych najwieksze znaczenie majq pozycje ksigzkowe
poswiecone algorytmice.

Pytania i zadania

Dla utrwalenia zdobytych wiadomosci i umiejetnosci zalecane jest wykonanie ponizszych
¢wiczen i odpowiedz na pytania. Powodzenia!

Pytania

1. Dlaczego podanie czasu wykonania procedury niewiele mowi o jej faktycznej
efektywnosci?

Czym jest rozmiar danych algorytmu? Podaj kilka typowych przyktadéw.

Jakie instrukcje zwykle uwazamy za elementarne?

Co to jest ztozonos¢ praktyczna algorytmu?

Jakie trzy przypadki dziatania mozna rozwazac dla kazdego algorytmu? Ktoéry z
nich najbardziej sie liczy i dlaczego?

Czym jest ztozonos¢ teoretyczna (klasa) algorytmu?

Dlaczego przy podawaniu klasy algorytmu stosujemy notacje asymptotyczne?

uhwn

NOo

8. Jakie ztozonosci majg algorytmy, o ktérych mozemy powiedzieé, ze sq,
~efektywne”?

9. Jakie dwie szczegdlne cechy majq problemy NP-zupetne?

10. Jakie dwie ogdlne zasady majq zastosowanie przy wyznaczaniu klasy algorytméw?

11.Jaka ztozonos$¢ ma k-krotnie zagniezdzona petla przebiegajaca po wszystkich
wartosciach n cyklami o statym czasie?

12. Czym jest rekurencja?

13. Jakie dwie metody mozemy sprobowac zastosowac do oszacowania prostych
funkcji rekurencyjnych?

14. Na czym polega technika projektowania algorytméw znana jako ,dziel i
zwyciezaj"?

15. Jakie dwa sposoby mozna zastosowac do szacowania efektywnosci algorytmow
wykorzystujgcych te technike?

16. Co to znaczy, ze jedna funkcja jest wielomianowo wieksza od drugiej?

Cwiczenia

1. Podaj jakie czynniki techniczne, oprécz tych wymienionych na poczatku
pierwszego podrozdziatu, mogtyby jeszcze wptywac na szybkos$¢ wykonywania sie
algorytmu w rzeczywistym programie.

2. Udowodnij, ze O(f (n))mQ(f (n)) :®(f (n)) .
Znajdz najmniejsza wartosé n, dla ktérej algorytm o ztozonosci praktycznej n'®
bytby mimo wszystko szybszy od tego o ztozonosci 2.

4. Algorytm wyszukiwania binarnego stuzy do wyszukiwania podanej wartosci w

posortowanej tablicy. Dziata on w ten sposob, ze dla podanej tablicy porownuje
szukany element z jej elementem srodkowym i zaleznie od wyniku wywotuje
rekurencyjnie sam siebie dla lewej lub prawej potowy. Okresl klase tego
algorytmu (dowolng metodq); by¢ moze koniecznie bedzie zapisanie go w postaci
(pseudo)kodu.

	ANALIZA SPRAWNOŚCI ALGORYTMÓW
	Złożoność obliczeniowa
	Klasa algorytmu
	Znajdujemy złożoność praktyczną
	Przykład: sortowanie przez wstawianie
	Ustalamy reguły
	Przyglądamy się algorytmowi
	Funkcja złożoności
	Popadamy w pesymizm

	Znajdujemy złożoność teoretyczną
	Kluczowa cecha algorytmu
	Notacja
	Asymptotyczność

	Notacje asymptotyczne
	Trzy ważne definicje
	Dokładne oszacowanie (notacja ()
	Ograniczenie górne (notacja ()
	Ograniczenie dolne (notacja ()
	Nieco zamieszania
	Notacja (a (
	Równość?…

	Własności notacji asymptotycznych
	Działania na anonimowych funkcjach
	Porównywanie funkcji

	Uwagi na temat złożoności
	Porównanie różnych typów złożoności obliczeniowej
	Przykłady algorytmów
	Słówko o NP-zupełności

	W poszukiwaniu złożoności obliczeniowej
	Podstawowe zasady
	Prawo dodawania
	Prawo mnożenia

	Pętle
	Ilość cykli w pętli
	Złożoność

	Rekurencja
	Ogólne metody
	Rozpisywanie
	Najprostsza rekurencja
	Analiza
	Rozwiązanie rekurencji

	Drzewo rekursji
	Słynny ciąg
	Analiza
	Rozwiązanie rekurencji
	Post scriptum: algorytm iteracyjny dla ciągu Fibonacciego

	Rekurencja w technice „dziel i zwyciężaj”
	Przykład: sortowanie przez scalanie
	Analiza
	Analiza algorytmu łączenia
	Złożoność teoretyczna

	Rozwiązanie rekurencji
	Jeszcze raz drzewko
	Metoda rekurencji uniwersalnej
	Ciekawostka: twierdzenie o rekurencji uniwersalnej

	Podsumowanie
	Pytania i zadania
	Pytania
	Ćwiczenia

